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Abstract Vibro-impact drilling has shown huge poten-

tial of delivering better rate of penetration, improved

tools lifespan and better borehole stability. However,

being resonantly instigated, the technique requires a

continuous and quantitative characterisation of drill-

bit encountered rock materials in order to maintain

optimal drilling performance. The present paper intro-

duces a non-conventional method for downhole rock

characterisation using measurable impact dynamics

and machine learning algorithms. An impacting sys-

tem that mimics bit-rock impact actions is employed

in this present study, and various multistable responses

of the system have been simulated and investigated.

Features from measurable drill-bit acceleration sig-

nals were integrated with operated system parame-

ters and machine learning methods to develop intel-

ligent models capable of quantitatively characterising

downhole rock strength. Multilayer perceptron, sup-

port vector regression and Gaussian process regres-

sion networks have been explored. Based on the per-

formance analysis, the multilayer perceptron networks
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showed the highest potential for the real-time quantita-

tive rock characterisation using considered acceleration

features.
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1 Introduction

Drilling and exploration accounts for more than 50%

of the total expenditures of the oil and gas industry [1].

The advantages presented by rotary-percussive drilling

in regards to reducing the expenditures have made it of

high research interest, in order to further improve and

optimise it. The benefits of rotary-percussive drilling

in terms of increased rate of penetration (ROP) and

increased tools lifespan are well documented in liter-

atures [2,3]. The percussive impacts exhibited by the

technique exert greater load on the rock material, hence,

better fracturing compared to the conventional rotary

drilling. The intermittency of the percussions reduces

the bit-rock contact time to about 2% of the entire

drilling time [4] and also produces a reduced weight

on bit (WOB) compared to conventional rotary drilling.

The reduced contact time and WOB help to reduce the

tearing and wearing of the drill-bit, thus prolonging

its lifespan. The rotary action of the technique on the

other hand supports its usage for deep well drilling and

also increases its material removal rate compared to the
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ordinary percussive drilling which often re-compacts

previously fractured materials that are not removed on

time.

The development of rotary-percussive drilling has

progressed from those that use eccentric weights [5],

pressurised fluid from a multivalve or servovalve [6],

friction-induced vibrations [7] and piezo-electric vibra-

tions [8] to those that use resonance [9,10] to impart

percussions on the drilling system. A recent develop-

ment is the vibro-impact drilling (VID), see Fig. 1a, also

referred to as the resonance enhanced drilling [11]. The

system uses the resonance between the drill-bit assem-

blage and the drilled rock formation to generate high

frequency, low amplitude periodic impacts at the drill-

bit. The impacts which are axial to the drilled rock for-

mation alongside existing drill-string rotation form the

rotary-percussion system. A major concern at the ini-

tial stage of the VID development was the issue of how

to instigate vibrations on the drill-bit at depths down-

hole without affecting the rest of the drill string. As

a solution, an electrically controlled piezo-electric or

magneto-restrictive displacement transducer was used

to generate high-frequency axial vibrations of about 1

kHz and 1 mm maximum amplitude [9,12]. A vibro-

transmission connects the transducer to the bit, while a

vibro-isolator unit connects the whole drilling module

to the drill-string. The vibro-transmission effectively

transmits the vibrations from the transducer to the drill-

bit while the vibro-isolator helps to isolate the drilling

module from the drill-string, allowing the vibration

energy to be concentrated on the bit with minimal effect

on the drill-string.

Derivable benefits of VID have been highlighted to

include increased ROP and borehole stability, reduced

tool wearing and non-productive time, reduced hazards

and increased personnel safety due to controlled frac-

turing, and reduced environmental footprint and emis-

sions due to the reduced time on site [13]. However, an

issue of interest is the inhomogeneity of downhole rock

layers which makes it difficult to maintain resonance

during the entire drilling procedure. As the drilling pro-

gresses, the rock material as well as the required reso-

nance conditions continue to vary. Nonetheless, while

investigating strategies for maintaining resonance in

the VID system as it cuts through inhomogeneous

downhole rock materials, Wiercigroch [12] proposed a

rock strength estimation strategy. Estimating the rock

strength is useful for defining the ranges of parameters

on which the VID system can be operated to ensure

resonance with its surrounding rock material. Defin-

ing the ranges of parameters is also helpful in ensuring

that generated radial cracks propagate just ahead of

the bit and that they do not extend more than neces-

sary such as can compromise the stability of the drilled

hole. Different methods are available for rock strength

characterisation; however, most of them do not meet the

requirements needed for the VID system. In this present

study, a non-conventional method of rock characterisa-

tion that uses drill-bit vibration dynamics and machine

learning will be investigated to quantitatively estimate

drilled rock strength. Regression networks including

multilayer perceptron (MLP), support vector regres-

sion (SVR) and Gaussian process regression (GPR)

will be adopted for the machine learning.

Before now, no real-time adaptable method has been

developed to quantitatively characterise the contin-

uously changing downhole rock layers for the VID

system. However, our previous studies [14–16] have

attempted online characterisation of its resulting impact

responses with experimental validation. The studies

were carried out to enable the selection of the best per-

forming impact motion in terms of ROP when multi-

stability (co-existing impact motions) is encountered

while using the VID system. To further optimise the

VID system, the present study makes the following

contributions:

– A non-conventional method of rock characteri-

sation that can be adapted for online usage has

been demonstrated using drill-bit vibrations and

machine learning.

– The proposed method is less computational, not

restricted to a particular impact category, and it is

autonomous, thus requiring minimal human inter-

action.

– Unlike most downhole rock characterisation meth-

ods which are often qualitative, the present method

is capable of quantitative rock evaluation.

– Extraction of rock strength-dependent features

from drill-bit vibration data with little or no manual

interaction has also been demonstrated.

– Various regression networks have also been com-

pared to arrive at the most preferable network

for rock strength prediction using the proposed

method.

The rest of the paper is arranged as follows. Sec-

tion 2 discusses rock characterisation and their usage

for drilling optimisation. Section 3 introduces the
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Fig. 1 a Rock fragmentation mechanism of a vibro-impact drilling system, and b physical model of the impact oscillator representing

the bit-rock impact actions of the VID system

impact oscillator as a representative model of down-

hole bit-rock interaction. Estimation and comparison of

stiffness-related features from measured acceleration

signals are investigated in Sect. 4. The utilised regres-

sion networks and evaluation metrics are discussed in

Sect. 5, and developed stiffness prediction networks

and their performances are reported in Sect. 6. Finally,

conclusion and further works are stated in Sect. 7.

2 Formation characterisation for drilling

optimisation

Drilling optimisation for the purpose of increased ROP,

minimised drilling cost and improved wellbore qual-

ity begins with an accurate estimation of the litholog-

ical properties of the drilled rock formations. Studies

such as [17] have shown close relationship between

rock properties and drilling performance. Hareland et

al. [18] proved a 30% reduction in drilling cost using

optimal parameters defined from the lithological data

of adjacent wells. Hankins et al. [19] achieved a reduc-

tion in drilling cost and time using drilling parame-

ters that were based on the rock strength interpreted

from previously drilled reference wells. Rampersad

et al. [20], also demonstrated how geological drilling

logs obtained while drilling were used to optimise the

drilling of upcoming wells in the same field. These stud-

ies have established that once the drilled rock strength

is known, the drilling parameters can be tuned to opti-

mise the drilling process.

Available means of rock strength characterisation

include cored rock samples testing [21,22], testing of

drilled rock cuttings [23], petrophysical evaluation of

wireline logs [24] and rock strength evaluation from

modelled ROP analyses [25]. Amongst these methods,

the most commonly used is the petrophysical eval-

uation of wireline logs which are series of continu-

ous measurements versus depth or time of formation

properties using electrically powered sondes [26]. The

process of taking the measurements in real-time as

the drilling progresses is referred to as logging while

drilling (LWD). Despite being the standard method for

rock characterisation during oil and gas drilling, LWD

is of limited usage when it comes to rock characteri-

sation for the VID system. The limitations arises from

the facts that: (i) Sensors are located at distances away

from the drill-bit, hence, measurements do not repre-

sent the immediate rock material surrounding the drill-

bit [27,28]; (ii) LWD sensors being electrical are likely

to fail at great depths from the effects of high tempera-

ture and pressure [29]; (iii) Transmitted data are often

high dimensional, nonlinear and noisy, thus making

them difficult to be analysed [30]; and (iv) The multiple

sensors housings attached to the bottom hole assembly

occasionally get it stuck [27,31].

In this present study, a non-conventional method

adaptable for characterising downhole rock layers in

real-time using readily measurable drill-bit vibration

dynamics and machine learning is proposed. The bit-

rock impact dynamics are envisaged to carry informa-
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tion that can be extracted and quantitatively mapped

into rock strength using regression networks. Non-

conventional methods of rock characterisation have in

recent time gained ground in the oil and gas industry

due to improvements in downhole-to-ground surface

data transmission [32,33]. Oloruntobi and Butt [34],

based on the concept that the total energy required to

break and remove a unit volume of rock is a func-

tion of lithology, developed a method for characterising

subsurface lithologies in real-time using drilling spe-

cific energy. Their defined lithologies were in excellent

agreement with those from traditional lithology iden-

tifiers like gamma ray and sonic velocity ratio. Akbari

et al. [35], in their study, established a relationship

between mechanical specific energy, uniaxial compres-

sive strength, differential pressure, and confining pres-

sure. Some studies [36,37] have also investigated the

use of drilling load parameters, such as ROP, WOB and

rotary speed, for downhole lithology identification.

As regarding the use of drilling vibration for down-

hole rock characterisation, some studies although not

many have been carried out. Myers et al. [38] developed

a proxy for identifying lithologic boundaries based on

the amplitudes of measured drill string acceleration

signals. Esmaeili et al. [39] experimentally evaluated

the classification of mechanical formations based on

the variation of higher order frequency moments cal-

culated for their drill-string vibration measurements.

Most of these previous methods have considered qual-

itative evaluation rather than the quantitative evaluation

required for the VID system. In an attempt to carry out

quantitative evaluation, Liao et al. investigated the use

of bifurcation (a change in dynamical stability) anal-

ysis [40] and estimated impact duration [41] as non-

conventional methods for downhole lithological char-

acterisation. Their results showed that bifurcation anal-

ysis was only applicable to period-doubling bifurcation

scenarios while impact duration was only applicable to

stable period-one one impact (P-1-1) motions. These

limitations coupled with their associated complex anal-

ysis made these methods unsuitable for on-line rock

characterisation. Also, since large volume of data are

produced downhole and are required to be transferred

to the surface in real-time, a possible draw back to the

use of vibration data for lithological characterisation

would have been the limitation of data transmission.

However, the development of reliable and high-speed

telemetry techniques has made large data transmission

possible [42,43].

In this present study, drill-bit vibration dynamics

in the form of acceleration measurements have been

used alongside notable regression networks to quantita-

tively characterise downhole rock lithologies. Acceler-

ation measurements were chosen amidst other drill-bit

vibration dynamics, such as displacement and veloc-

ity, because of their high sensitivity to impact motions.

The use of artificial networks was based on their ability

to learn complex nonlinear relationships [44–46], as

may exist between the dynamics of an impacting drill-

bit system and the stiffness of its impacted rock for-

mation. The use of artificial networks for lithological

evaluation, though qualitatively, has been carried out

in the past. Al-Khdheeawi et al. [37] and Li [36] devel-

oped neural network models for identifying drilled rock

lithology using drilling data, such as ROP, WOB and

rotary speed. Chen et al. [47] developed a convolu-

tional neural network algorithm for lithological clas-

sification of downhole rock layers utilising drilling

string vibration data. Sun et al. [48] explored a data-

driven approach for lithology identification based on

parameter-optimised ensemble learning using well log

data, while Esmaeili et al. [49] also investigated the

use linear and nonlinear models for formation lithology

prediction using drill-string vibration measurements

from a laboratory scale rig. Unlike the traditional LWD,

where rocks are qualitatively evaluated and at a lagging

distance from the actual drilling depth, the proposed

method in this study quantitatively evaluates the rock

at the drilling depth. Also, compared to LWD, the new

method is less cost intensive as few sensors are required

to measure the drill-bit vibrations. The use of few sen-

sors on the bottom hole assembly also helps to prevent

stuck-pipe issues.

To harness these benefits from the proposed method,

a comprehensive understanding of bit-rock impact

dynamics is essential; hence, the next section describes

the dynamic impact oscillator as a useful system for

investigating the proposed method.

3 Dynamic impact oscillator as a bit-rock impact

system

The impact oscillator driven by external excitation

and undergoing intermittent contacts with motion lim-

iting constraints is the simplest mechanical system rep-

resenting impacting engineering systems. The rich non-

linear dynamics resulting from sudden change of stiff-
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Fig. 2 Time histories of displacement, velocity, acceleration

and phase trajectories of the impact oscillator calculated for

ω = 0.935, e = 1.26, ζ = 0.01, β = 29, a a = 0.07 for

non-impacting, and b a = 0.7 for impacting responses, where

red lines indicate the impact boundary between the mass and the

secondary spring

ness at the point of contact of its impacting bodies

makes it useful for mimicking the intermittent impact

actions of the drill-bit on downhole rock. Studies such

as [50–58], have investigated the nonlinear dynamics

of similar systems based on the stability and bifurca-

tion phenomena that are associated with its long-term

behaviour during operation. Liu and Páez in their study

[59] adopted the impact oscillator to investigate the

control of co-existing attractors in an impacting sys-

tem. Páez et al. [60] investigated the dynamic responses

and the complex bifurcation scenarios associated with

similar impact oscillator with drift. Liao et al. [40,41]

also used it to carry out stiffness estimation for the

impacted constraint, while Afebu et al. [15] employed

it to investigate a machine learning-based categorisa-

tion of downhole impact responses.

Figure 1b shows the physical model of the impact

oscillator representing the bit-rock interaction. As a

piecewise-smooth system, the impact oscillator con-

sists of a mass m connected to a rigid frame via a linear

spring with the stiffness k1 and a damping coefficient

c representing the drill-bit. A secondary linear spring

with the stiffness k2 acting as the impacted rock media

is attached to the opposite side of the frame and kept at a

distance of g away from the equilibrium position of the

mass m. The variation in the strength of the encountered

downhole rock is modelled by varying the stiffness of

the secondary linear spring. The system is operated by

subjecting the rigid frame to a harmonic excitation of

amplitude A and frequency Ω . When the displacement

of the mass y exceeds g (i.e. y > g), impact occurs

between the mass and the secondary spring. After the

impact, the mass is restored back with a force that is

dependent on the resultant stiffness of the two springs,

i.e. k1 + k2. The general equation of motion of the sys-

tem in a compact form according to [55] can be written

as

my′′ + cy′ + k1 y + H(y − g)k2(y − g)

= A sin(Ωt), (1)

where y′′ and y′ are the acceleration and velocity of the

mass, respectively, and H(·) stands for the Heaviside

step function. By introducing the following variables

and parameters,

x =
y

y0
, β =

k2

k1
, ζ =

c

2mωn

, ωn =

√

k1

m
,

ω =
Ω

ωn

, a =
A

y0
, e =

g

y0
, Γ = aω2, τ = ωn t,

where y0 > 0 is an arbitrary reference distance, Eq. (1)

can be rewritten in a nondimensional form as
{

x ′ = v,

v′ = Γ sin(ωτ) − 2ζv − x − β(x − e)H(x − e),
(2)

where Γ is the nondimensional forcing amplitude.

For simulation purposes, the natural frequency ωn

was taken as 1, and the fourth-order Runge–Kutta

method was coded in MATLAB to iteratively solve

Eq. (2) at a fixed time step. Categories of the result-

ing impact response were designated as P-n1-n2 with

n1 representing the period(s) required for the system

to make a complete cycle back to its original posi-

tion and n2 the number of impact(s) made within the

n1 period(s). Figure 2 shows typical system variables

123



2530 K. O. Afebu et al.

Fig. 3 Data generation via pair-wise parameter sweeps calcu-

lated for a ω = 0.93, a ∈ [2.6, 4.05], β ∈ [50, 75.5], ζ = 0.01,

e = 2.1, b ω = 0.93, a ∈ [0.8, 2.55], β ∈ [0.5, 39.5], ζ = 0.01,

e = 1.26, c ω = 0.65, a = 5.6, β ∈ [0.5, 39.5], ζ = 0.01,

e = 2.1, d ω ∈ [0.925, 0.9395], a = 0.7, β ∈ [0.5, 39.5],

ζ = 0.01, e = 1.26. Additional windows present their represen-

tative phase trajectories on the x − v plane

resulting from (a) non-impacting and (b) impacting sys-

tem alongside their phase portraits on the x −v planes.

The impacting case shows 10 periods of the resulting

P-1-1 signal, and it reveals that acceleration time his-

tories are more indicative of impact motions compared

to the time histories of displacement and velocity. For

this reason, the dynamic acceleration signals were sim-

ulated by pair-wisely sweeping a range of excitation

frequency ω and amplitude a over a range of β values

representing the stiffnesses of downhole rock forma-

tions. Figure 3 shows the plots of the pair-wise parame-

ter sweeps and their resulting impact motion categories.

In all, 2999 samples of dynamic acceleration signals

were simulated.

4 Stiffness feature estimation and comparison

from impact response signals

Aside being the most readily measured dynamic sig-

nal based on available instrumentations, acceleration

has been found to be more sensitive to impact motions
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Fig. 4 Impact duration detection from the second derivation of

the acceleration signal, where Spk and Epk indicate the start and

end of each impact motion, respectively

compared to displacement and velocity. At impact, the

drill-bit acceleration starts to decrease rapidly due to

the restraining elastic force from the impacted rock.

Depending on the stiffness of the rock, the deceleration

of the bit reaches its maximum, and it returns back to

its initial position. This effect results in the occurrence

of high amplitude jumps along the acceleration signal

of an impacting drill-bit. The acceleration jumps thus

appear as peaks whose durations are commensurate to

the stiffness of the rock. Based on this phenomenon,

impact duration-related features will be extracted from

acceleration signals and used alongside operated sys-

tem parameters to estimate impacted constraint stiff-

ness. To implement the aforementioned as an online

non-conventional LWD technique, attention must be

paid to the method used in extracting the impact dura-

tions as well as the method used in mapping them to

stiffness values. The method must require little or no

human interaction, less computative and easily adapt-

able for real-time application. In an attempt to extract

impact durations from acceleration signals for a sim-

ilar purpose, Liao et al. [41] made use of nonlinear

time series and tangent vector analyses. Aside being

Fig. 5 a Estimated impact

durations τi along signals of

different β values for

similar and different impact

categories, b representative

phase portraits and c

acceleration time histories

of the different impact

categories, where blue,

green and red lines denote

the non-impact, impact

trajectories and the impact

boundaries, respectively.

Impact durations from some

impact categories are seen

to be overlapping leaving no

clear distinction between

different β values
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Fig. 6 Variation of average impact durations along signals of

different β values but same impact categories. The β values are

seen to be well differentiated from each other

computationally intensive and only applicable to P-1-

1 acceleration signals, the procedures require time-to-

time manual interaction, thus making them unfit for an

on-line application.

In the case of this study, a self-implementable tech-

nique is adopted for extracting impact duration records

from the acceleration signals. The difference between

the start and end of each impact motion represented as

peaks on the acceleration signals is deduced from the

second derivative of the signal as illustrated in Fig. 4

via a find-peak analysis. With the simulation signals

being in a nondimensional time domain, the calculated

difference is converted to a nondimensional duration

using the nondimensional time-step that is specific to

each signal. For each signal, the impact durations are

calculated as

τi = (Spki
− Epki

) · τs, (3)

where τi is the impact duration of the i th peak in the

signal and τs is the nondimensional time interval.

Figure 5 shows the variation of estimated τi values

for signals of different β values. The variation is com-

pared between signals of same impact category and

for signals of different impact categories. It can be

observed that for some impact categories (e.g. P-2-3

and P-5-4), the estimated τi values tend to overlap and

interwove into each other, thereby not showing a clear

distinction between different β values. This effect may

later impair the training and performance of the net-

works that will be developed. To neutralise the effect,

the average value of the resulting τi values were cal-

culated for each signal. The averages of the τi values

represented in Fig. 5 are shown in Fig. 6, where the

signals can be seen to be well separated with respect

to their β values. The average impact duration τi is

seen to decrease with increase in β values. The same

applies even when the impact motions are of differ-

ent categories (see Fig. 7); however, Fig. 8 shows that

there exist a very small difference (mean absolute dif-

ference of 0.0103) in the resulting τi values for signals

of same β but different Γ . Figure 9 shows the vari-

ation of estimated τi values with their corresponding

β, a, and ω values alongside their impact motion cat-

egories. It shows that no linear relation exists between

the operating system parameters and the estimated τi.

This observation alongside the difference in estimated

τi for signals of same β values but different Γ val-

ues formed the basis for using neural networks and

for including forcing parameters in the network input

features. Figure 10 compares β values with their dif-

ferences (△β) and the difference between their corre-

spondingly estimated average impact duration (△τi). It

can be observed that the ranges of τi values estimated

for the smaller β values are greater than those estimated

for the larger β values.

Aside using the average impact durations, certain

statistical measures, as shown in Table 1, were also

computed for impact durations extracted along each

acceleration signal and also for normalised raw accel-

eration data. These statistical measures are to be used

alongside the system’s forcing parameters as input fea-

tures for the regression networks. The Pearson correla-

tion coefficient of estimated impact durations statistics

and the raw data statistics with the actual β values is

shown in Fig. 11. In both cases, the plots show some sta-

tistical measures to either have high negative or positive

correlations which are consistent for both the training

and testing data. However, this consistency needs to be

further confirmed especially with experimental data.

5 Regression networks

Regression networks predict numeric output (depen-

dent) variables as a function of other input (indepen-

123



Machine learning-based rock characterisation models 2533

Fig. 7 a Actual and b average impact durations calculated along signals of different β values and different impact categories. Typical

acceleration time histories of each impact category alongside the impacting trajectories (green lines) are also shown

dent) variables by converging to the underlying lin-

ear or nonlinear relationship that exists between them.

Every regression model thus create continuous-valued

multivariate function which tries to estimate the depen-

dent variables y from independent variables x while

ensuring minimal mean-squared error. For this study,

supervised regression networks, including MLP, SVR

and GPR, were utilised. The developed networks were

evaluated using coefficient of determination (R2), nor-

malised mean absolute error (Enmae) as and normalised

mean square error (Enmse) which are defined as:

R2 = 1 −

no
∑

n=1

(yn − ŷn )2/

no
∑

n=1

(yn − y)2, (4)

Enmae =

no
∑

n=1

| yn − ŷn | /

no
∑

n=1

yn , (5)

Enmse =
1

no

no
∑

n=1

(yn − ŷn )2/σy, (6)

where yn is the actual value of n th target variable, ŷn is

the predicted value of n th target variable, y = 1
no

no
∑

n=1

yn

is the mean of actual target variables, no is the number

of observed samples, and σy = 1
no

no
∑

n=1

(yn − y)2 is the

mean variance of actual target variables. It should be

noted that R2 values vary between 0 and 1, and values

closer to 1 are considered to be better. For Enmae, the

closer the value is to zero, the better the prediction.

A perfect model tends to have Enmse equal to zero;

however, experiment and real-life are rarely perfect.
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Fig. 8 Average impact duration estimated for signals with a the

same impact categories, same stiffness (β = 17) but different Γ

values and b different impact categories, same stiffness (β = 30)

but different Γ values. Despite being of same stiffness values,

the estimated τi for both (a) and (b) are seen to differ by some

amounts due to the variation of Γ in both cases. Analysed signals

were 20 periods in duration

For an acceptable and a reliable model, Kumar et al.

[61] suggested Enmse ≤ 0.5.

5.1 Multilayer perceptron networks

MLP networks have been used as universal approxima-

tors for nonlinear problems modelling including clas-

sification [62] and regression [63]. They are referred

to as feedforward networks due to their forward flow

of information and are typically made up of an input

layer, one or more hidden layers, and an output layer.

The number of hidden layers and their neurons can be

varied to make the network deeper; however, the num-

ber of neurons in the input and output layers are initially

set to zeros but adjusted to the number of elements in

the input and output data, respectively, during training.

Assuming an input data xi , where i = 1, 2, 3, ..., N ,

the network output yout can be expressed as [64]

Fig. 9 Variation of estimated average impact durations τi values

and other parameters of the signals including stiffness ratio β,

excitation amplitude a, frequency ratio ω and impact response

categories. Forcing parameters, a and ω are seen to significantly

influence resulting τi even when β is maintained
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Fig. 10 Comparison of variation in stiffness ∆β values with

variation in estimated impact durations ∆τi. The variation in

estimated average impact durations is seen to be relatively higher

for lower β values but lower for higher β values
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Table 1 Statistical measures used as statistical features

S/N Statistical Feature

1 Mean

2 Minimum

3 Maximum

4 Standard deviation

5 Range

6 Kurtosis

7 Variance

8 Skewness

9 Sum

10 Mean frequency of signal power-spectrum

11 Average cumulative maximum element

12 Average cumulative minimum element

13 Root-mean-square level

14 Absolute maximum value to rms ratio

15 Root-sum-of-squares level

16 Crest factor

17 Absolute mean

18 Form factor

19 Impulse factor

20 Mean square root of absolute data

21 Kurtosis factor

22 Margin factor

23 Skewness factor
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Fig. 11 Correlation of a impact durations statistics and b raw

data statistics with β values for (i) training and (ii) testing data

sets

yout = foutput





M
∑

j=1

Wj · fhidden ·

N
∑

i=1

Wj i xi + Wo





(7)

Fig. 12 Typical architecture of developed MLP networks with

a four and b twenty-six input elements

where N is the number of input data, M is the number

of hidden neurons, xi is the i th input data, Wi j is the

weighting parameter between the i th input data and j th

hidden neuron and Wj is the weight parameter between

the j th hidden neuron and the output neuron. For regres-

sion problems, the activation function is given as a lin-

ear activation function as

foutput(r) = r, (8)

while the hidden function is a hyperbolic tangent func-

tion written as

fhidden(r) = tanh(r) =
1 − e2r

1 + e2r
. (9)

To maximise performance, the network weights and

biases are iteratively adjusted based on the mean square

error between its predicted output (ŷ) and the actual

target (y) during training.

L(y, ŷ) =
1

no

no
∑

n=1

(yn − ŷn )2. (10)

Inadequate connections due to small number of hid-

den layers and neurons can prevent the network from

sufficiently adjusting its parameters, while excess con-

nections may cause it to overfit the training data [65].

In this study, the input data varied between 2 and 26

elements and were mapped to a single output, thus jus-

tifying the architectures shown in Fig. 12. Best perfor-

mances were achieved using a single hidden layer with

3 or 5 neurons (depending on the number of inputs) and

a Levenberg–Marquardt optimisation function [66] to

update the weights and biases.
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5.2 Support vector regression

SVRs try to fix a function f (x) in a high dimensional

feature space such that its outputs have at most, ε devi-

ation from the actual targets of the training data, and

also at the same time as flat as possible. In other words,

attempt is not made at reducing the training errors in

SVR as long as they are less than ε; however, values

larger than ε will not be accepted. SVR thus permits the

flexibility of defining an acceptable model error while

finding an appropriate line (or hyperplane in higher

dimensions) to fit the data.

Consider a training data set DTR =
{

(xi , yi )
}

,

where xi ∈ R
m represent the input vectors with m

dimension and yi ∈ R represent the target vectors with

i = 1, 2, 3, ..., no, and no is the number of observed

samples. In an attempt to find a model that properly

describe this data, SVR initially proposes a linear func-

tion as

f (x) =
〈

w, x
〉

+ b. (11)

Since real-world problems usually require a nonlinear

formulation, a nonlinear mapping function is used to

transfer the input values to a higher dimension feature

space as

f (x) =
〈

w,8(x)
〉

+ b, (12)

where f (x) represents the general nonlinear regression

function, and
〈

·, ·
〉

is the inner product of two vectors.

8(x) is a nonlinear mapping with the given space x , b

and w are scalar and vector weights, respectively.

The flatness of the latter function and the SVR train-

ing requirement necessitate minimising w and b via

nominalisation of regularised risk, and this results into

a convex optimisation given as

Minimise

[

1

2
‖w‖2 + C

no
∑

i=1

ξi + ξ∗
i

]

Subject to











yi −
(〈

w,8(xi )
〉

+ b
)

≤ ε + ξi
(〈

w,8(xi )
〉

+ b
)

− yi ≤ ε + ξ∗
i

ξi , ξ
∗
i ≥ 0

(13)

where C is a penalty factor for the error term

no
∑

i=1

ξi +ξ∗
i

and determines the trade-off between flatness and larger

deviation of tolerance. The ξi and ξ∗
i represent loose

variables used to define the allowable soft margin of

tolerance for the model, while the constant ε referred

to as the tube size represents the maximum allowable

error, and it defines the performance of the optimisation

process [67,68].

The resulting dual convex optimisation problem

shown in Eq. (13) can be transformed into a dual

Lagrangian problem as

f (x) =

no
∑

i=1

(ϒi − ϒ∗
i )

〈

8(xi ),8(x)
〉

+ b, (14)

which can be solved into a regression function as

f (x) =

no
∑

i=1

(ϒi − ϒ∗
i )κ(xi , x) + b (15)

by replacing the dot product
〈

8(xi ),8(x)
〉

with a non-

linear kernel function κ(xi , x). The kernel function

helps to map the nonlinear separable feature space to

a linear separable feature space [69], and in SVR, the

aim is to minimise the function represented by the first

part of Eq. (13). Different types of kernel functions

exist, however, in this study the Gaussian (or some-

times called radial basis) kernel function

κ(xi , x) = exp
(

− γ ‖xi − x‖2
)

, (16)

where ‖xi − x‖ is the Euclidean distance between xi

and x , with an automatic kernel scale as available on

MATLAB was used on the z-score normalised input

data (with a zero mean and a standard deviation of 1).

The parameters ϒi and ϒ∗
i are the Lagrange multipli-

ers, while γ is the kernel function parameter. During

SVR training C, ε and γ are the parameters that are

usually optimised [70].

5.3 Gaussian process regression

GPR is a network that tries to interpolate between

given data by proposing multiple probabilistic predic-

tion functions and validating them over the data. They

are referred to as nonparametric models as they assume

that the information from a data can only be captured by

an infinite dimensional parameters which are thought

of as functions rather than a finite set of parameters

[71]. The functions constantly update themselves as

more data are added. A typical GPR is defined by a

mean function and a covariance function which is usu-

ally defined with a kernel function. The kernel func-

tion helps to describe by how much a point influences
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Fig. 13 Graphical model for a typical GPR [73]

another, thus controlling the smoothness of the func-

tions in the distribution [72]. Assuming a set of train-

ing data set (X, Y ) =
{

(xi , yi )
}

, and testing data set

(X∗, Y ∗) =
{

(x∗
i , y∗

i )
}

, where xi and x∗
i represent the

input vectors for the training and testing data, yi and y∗
i

represent the target labels for the training and testing

data, respectively, with i = 1, 2, 3, ..., no. The main

task of GPR is to find the best set of latent functions

represented as F = { f1, f2, ..., fno} whose joint dis-

tribution best match the data.

Figure 13 represents a Gaussian process model, and

the latent functions are seen to be inter-connected with

each other by a covariance function that is defined based

on their impact on each other. The prediction of y∗ is

dependent on its corresponding single latent function

f ∗ while an individual latent function fi corresponds

to an input data xi .

To describe and derive the unknown latent functions,

GPR first assigns a prior distribution to the functions

even before observing any data and continues to update

as data are observed. The updated distribution referred

to as posterior distribution is computed using Bayes’

theorem on the prior distribution and the observed data

distribution. With the fitted distribution of functions, y∗
i

is predicted for each test data point x∗
i alongside some

probabilistic bands on the predictions which serve as

the confidence interval.

For a set of latent function F = { f1, f2, ..., fno},

the distribution over them is defined as

F |X ∼ N (M , K ), (17)

where M is the mean function representing the expected

function value at input xi and K is the covariance func-

tion matrix that defines the relations among inputs and

the characteristics of the predicting functions. The prior

mean function is often set to zero (i.e. M = 0) in order

to avoid expensive posterior computations, allowing

inferences to be made using the covariance function

only. The zero prior mean function is achieved by sub-

tracting the (prior) mean from all observations, while

the covariance matrix or function K is calculated using

different kernel functions. This study utilised the auto-

matic relevance determination (ARD) squared expo-

nential kernel function given as

Ki, j = K (xi , x j ) = σ 2
f exp

{

−
1

2

Q
∑

q=1

(xiq − x jq)
2

σ 2
q

}

(18)

to show the covariance between two points xi and

x j , where q is the characteristic length scale defining

how far apart the input values in X can be for their

response values to become uncorrelated. The ARD

Squared Exponential kernel uses separate length scale

(σq ) for each predictor q (where q = 1, 2, ..., Q) while

σ f on the other hand represents the signal variance and

with q, they form the hyperparameters of the kernel

covariance function.

For widely separated data points, increasing q

increases the impacts they have on each other. Going by

the kernel function, close data points are considered and

modelled as highly covariant while data points that are

further apart are considered as low covariant. In super-

vised learning, it will thus be expected that points with

close predictor values xi , will naturally have close tar-

get values yi . Also, a training data point that is close to a

test data point should be informative enough about the

prediction at that point, and these will all be expressed

by the kernel covariance function.

To link the testing target labels Y ∗ to the training

target labels Y , GPR assumes a joint distribution given

as
[

Y

Y ∗

]

∼ N (0, K̃ ), (19)

where

K̃ =

[

K (X, X) K (X, X∗)

K (X∗, X) K (X∗, X∗)

]

,

K (X, X) and K (X∗, X∗) represent the training and

testing data points covariance matrix, respectively,

while K (X, X∗) is a covariance matrix that represents

the correlation between them.
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The covariance matrix between all inputs in X can

be computed as

K (X, X) =









K (x1, x1) K (x1, x2) . . . K (x1, xno )

K (x2, x1) K (x2, x2) . . . K (x2, xno )

.

.

.
.
.
.

. . .
.
.
.

K (xno , x1) K (xno , x2) . . . K (xno , xno )









.

The test target labels Y ∗ conditioned on the training

labels are now then predicted using the probability dis-

tribution of Y ∗|Y ∼ N (µ,6), where

µ = K (X∗, X)K (X, X)−1Y

and

6 = K (X∗, X∗) − K (X∗, X)K (X, X)−1K (X, X∗)

represent the mean and the variance, respectively. Pre-

dicted Y ∗ is estimated as the mean of the distribution µ

while the uncertainty of the estimate is captured in the

variance 6. To tune the hyperparameters σ f and σq in

the chosen covariance kernel function, the log marginal

likelihood given as

log P(Y |X) = − 1
2

Y T
K (X, X)−1Y

− 1
2

log |K (X, X)| − no

2
log 2π,

must be maximised.

It thus shows that GPR do not only yield the mean

prediction (µ) of the latent functions ( f ∗) as output ,

but do so with a measure of uncertainty variance (6)

which is reported as confidence interval [74]. The nar-

rower the confidence interval plots, the more precise

the predictions are, and the wider the confidence inter-

val, the less precise the predictions are. However, the

presence of in-process noises can result in large fluc-

tuation of the confidence interval, which reduces the

reliability of the predicted results [75].

6 Stiffness prediction networks and performances

For the purpose of developing networks that map

extracted information to the stiffness values of impacted

constraint, the signal properties as compared in Fig. 9

except for the impact motion categories were utilised.

Impact motions categories are exempted because com-

pare to previous studies [40,41], we intend to develop

models that are independent of impact motions cate-

gories. Also, it will be very difficult to replicate impact

motion categories that are consistent for both simula-

tion and experiment. The notation of the networks and

their composed parameters are as presented in Table 2.

In each notation, “Features” represents the infor-

mation extracted from the acceleration signal including

the average of the impact durations from each accelera-

tion signal (SimAvID), the statistics of the impact dura-

tions from each acceleration signal (SimStaID) and the

statistics of each raw acceleration signal (SimStaRaw),

while Net represents the network being used including

MLP, SVR or GPR. Using the trial-and-error approach,

some of the networks hyperparameters were tuned to

values shown in Tables 3, 4, and 5 for the MLP, SVM

and GPR models. For the remaining parameters, their

default values as defined in MATLAB were utilised.

Out of the 2999 simulated acceleration signals, 1569

were used for network training, while 1430 were used

as out-of-sample data for cross-validation. The perfor-

mances of the networks developed from different com-

binations of “Net” and “Features” on the testing data

sets are presented in Tables 6, 7, 8, 9, 10, 11, 12, 13,

and 14 and Figs. 14, 15, 16. The networks input data

had each row feature already standardised to have zero

mean and a unit variance; hence, normalisation was set

to “none” in the MLP models, while standardisation

was set to zero in the GPR and SVM models.

The reported evaluations were carried out on the

out-of-sample testing data set, and all the networks

showed R2 values not less than 0.9, while the NMAE

and NMSE ranged between 0.006–0.232 and 0.0002–

0.148, respectively. For the average impact duration-

based networks, the MLP-2-SimAvID, SVR-2-SimAvID

and GPR-2-SimAvID networks were better in per-

formances, while for the impact durations statistics-

based networks, the MLP-3-SimStaID, SVR-2-Sim

StaID and GPR-3-SimStaID networks showed better

Table 2 Networks notation

and composing parameters,

where “Features” can be

SimAvID, SimStaID or

SimStaRaw and “Net” can

be MLP, SVR or GPR

Network input notations Composed parameters

Net-1-Features a ω Γ Features

Net-2-Features a ω - Features

Net-3-Features – – Γ Features
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Table 3 Hyperparameters setting for the MLP models

Parameter Value

Train function Levenberg-Marquardt

Performance function Mean square error

Number of layers 2 (input and output)

Hidden layer size 3

Regularization 0

Normalisation None

Table 4 Hyperparameters setting for the SVM models

Parameter Value

KernelFunction Gaussian

Standardize False

Solver Sequential minimal optimisation

Kernel scale 4.5

response scale 1.0

KFold 5

Table 5 Hyperparameters setting for the GPR models

Parameter Value

KernelFunction ARDSquaredExponential

BasisFunction Linear

FitMethod Exact

PredictMethod Exact

Standardize 0

Table 6 Average impact duration-based MLPs

Networks Test data set

R2 NMAE NMSE

MLP-1-SimAvID 0.982 0.079 0.021

MLP-2-SimAvID 0.992 0.057 0.011

MLP-3-SimAvID 0.989 0.068 0.017

Table 7 Average impact duration-based SVRs

Networks Testing

R2 NMAE NMSE

SVR-1-SimAvID 0.943 0.153 0.065

SVR-2-SimAvID 0.948 0.144 0.061

SVR-3-SimAvID 0.900 0.232 0.148

Table 8 Average impact duration-based GPRs

Networks Testing

R2 NMAE NMSE

GPR-1-SimAvID 0.922 0.090 0.086

GPR-2-SimAvID 0.935 0.084 0.071

GPR-3-SimAvID 0.932 0.123 0.074

Table 9 Impact duration statistics-based MLPs

Networks Testing

R2 NMAE NMSE

MLP-1-SimStaID 0.991 0.046 0.013

MLP-2-SimStaID 0.992 0.046 0.011

MLP-3-SimStaID 0.994 0.033 0.006

Table 10 Impact duration statistics-based SVRs

Networks Testing

R2 NMAE NMSE

SVR-1-SimStaID 0.984 0.086 0.025

SVR-2-SimStaID 0.984 0.082 0.021

SVR-3-SimStaID 0.982 0.084 0.021

Table 11 Impact duration statistics-based GPRs

Networks Testing

R2 NMAE NMSE

GPR-1-SimStaID 0.987 0.063 0.016

GPR-2-SimStaID 0.984 0.067 0.020

GPR-3-SimStaID 0.991 0.045 0.012

Table 12 Raw data statistics-based MLPs

Networks Testing

R2 NMAE NMSE

MLP-1-SimStaRaw 0.999 0.015 0.0009

MLP-2-SimStaRaw 0.999 0.023 0.0018

MLP-3-SimStaRaw 0.999 0.019 0.0012

performances. For the raw data statistics-based net-

works, the MLP and GPR network models were of

exceptional performances with the MLP-1-SimStaRaw

and GPR-2-SimStaRaw being the best. The actual-vs-
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Table 13 Raw data statistics-based SVRs

Networks Testing

R2 NMAE NMSE

SVR-1-SimStaRaw 0.983 0.101 0.028

SVR-2-SimStaRaw 0.984 0.097 0.027

SVR-3-SimStaRaw 0.981 0.095 0.026

Table 14 Raw data statistics-based GPRs

Networks Testing

R2 NMAE NMSE

GPR-1-SimStaRaw 0.999 0.015 0.001

GPR-2-SimStaRaw 1 0.006 0.0002

GPR-3-SimStaRaw 0.999 0.014 0.001
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Fig. 14 Performance metrics of average impact duration-based

networks

prediction plots of these high performance networks are

shown in Figs. 17, 18, 19, and their 20 bins error his-

tograms are presented in Fig. 20. The red and green

circles represent the predicted and actual β values,

respectively, and the dotted black lines in the GPR

plots represent the 95% confidence interval. The initial

high performances of the 23 features statistical mea-

surements made it not necessary to implement a fur-

ther feature selection on them; however, their variation

with β values needs to be further investigated and estab-

lished. Going by the metric values, relative distribution

of errors around zero mean, shorter training time, lower

memory usage and consistency, the MLP networks are

most likely to be preferred for the quantitative on-line

rock characterisation.
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Fig. 15 Performance metrics of impact durations statistics-

based networks
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Fig. 16 Performance metrics of raw data statistics-based net-

works

7 Conclusions

A quantitative and real-time characterisation of down-

hole rocks has been established as an integral require-

ment of the VID system in order to instigate resonance

and controlled fracturing during operation. Before now,

no generalised method has been developed for this as

existing ones [40,41] were impact category dependent,

computationally intensive and non-adaptable for online

purpose since they require time-to-time manual inter-

action. In this study, an unconventional and quantitative

characterisation of downhole rock layers using result-

ing drill-bit vibrations and machine learning has been

carried out for the VID system. This is useful for select-

ing and tuning the operating parameters of the VID sys-
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Fig. 17 (i) Actual-vs-prediction plots and (ii) regression plots for best performing average impact duration-based networks including

a MLP-2-SimAvID, b SVR-2-SimAvID and c GPR-2-SimAvID

Fig. 18 (i) Actual-vs-prediction plots and (ii) regression plots for best performing impact durations statistics-based networks including

a MLP-3-SimStaID, b SVR-2-SimStaID and c GPR-3-SimStaID
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Fig. 19 (i) Actual-vs-predicted plot and (ii) regression plots for best performing raw data statistics-based networks including a MLP-

1-SimStaRaw, b SVR-1-SimStaRaw and c GPR-1-SimStaRaw networks
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tem including the excitation amplitude and frequency

for optimal performance.

As an impacting dynamic system, a complex nonlin-

earity is expected to exist between the operating param-

eters and the resulting variables of the system [57].

For this reason, regression networks which are capa-

ble of learning nonlinear relationships have been used

to force learn the nonlinear relationship between the

stiffness of impacted rock layers and extractable fea-

tures from impact acceleration signals. Acceleration

signals have been selected due to their sensitivity to

impact activities and their easy measurability. Explored

networks include the MLP, SVR and GPR networks

while extracted impact acceleration features include

average impact duration, statistics of impact durations

and statistics of raw acceleration data. Simulation data

from a mathematical impact oscillator model represent-

ing the bit-rock impacts of the VID system have been

considered. The networks evaluation results showed R2

values between 0.900–1.000, NMAE values between

0.006–0.232 and NMSE values between 0.0002–0.148.

Considering the performances of the networks, their

relative distribution of errors around zero mean, their

training time, memory requirement and consistency

in their performances, the MLP networks are most

likely to be preferred for downhole rock characterisa-

tion using any of the acceleration signal features. How-

ever, experimental validation is necessary to conclude

on the best acceleration signal feature for the task.

Future works in this line of study will include fur-

ther investigation into other rock stiffness-dependent

features from impact acceleration signals and experi-

mental verification of proposed methods.
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