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Abstract

Quantifying the uncertainty of model predictions is a critical task for engineering

decision support systems. This is a particularly challenging effort in the context of

statistical inverse problems, where the model parameters are unknown or poorly

constrained, and where the data is often scarce. Many such problems emerge in

the fields of hydrology and hydro–environmental engineering in general, and in

hydrogeology in particular. While methods for rigorously quantifying the uncertainty

of such problems exist, they are often prohibitively computationally expensive,

particularly when the forward model is high–dimensional and expensive to evaluate.

In this thesis, I present a Metropolis–Hastings algorithm, namely the Multilevel

Delayed Acceptance (MLDA) algorithm, which exploits a hierarchy of forward models

of increasing computational cost to significantly reduce the total cost of quantifying

the uncertainty of high–dimensional, expensive forward models. The algorithm is

shown to be in detailed balance with the posterior distribution of parameters, and

the computational gains of the algorithm is demonstrated on multiple examples.

Additionally, I present an approach for exploiting a deep neural network as an

ultra–fast model approximation in an MLDA model hierarchy. This method is

demonstrated in the context of both 2D and 3D groundwater flow modelling. Finally,

I present a novel approach to adaptive optimal design of groundwater surveying, in

which MLDA is employed to construct the posterior Monte Carlo estimates. This

method utilises the posterior uncertainty of the primary problem in conjunction with

the expected solution to an adjoint problem to sequentially determine the optimal

location of the next datapoint.
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1. Introduction

Inverse problems are ubiquitous in science and engineering and emerge in such diverse

fields as materials science, medical imagining, geophysics, acoustics, astronomy and

many others. Inherently uncertain and often ill-posed, inverse problems constitute

a colossal challenge in terms of both application, methodology and the underlying

theory. The Bayesian perspective offers a biaxial antidote. First, by preserving the

inherently probabilistic nature of these problems, it allows for rigorously quantifying

the uncertainty. Second, by incorporating prior information and physics-informed

regularisation, it offers a straightforward and transparent way to constrain ill-posed

inverse problems. The computational workhorse of Bayesian inverse problems is

Markov Chain Monte Carlo (MCMC), a large family of Monte Carlo algorithms

capable of drawing samples from the Bayesian posterior distribution. While these

methods have achieved widespread use in statistics and data-science, their application

to inverse problems remains fairly limited and is mostly restricted to academic

benchmarks and (rarely) case studies (see Chapter 2).

One apparent reason for this lack of uptake may be the computational burden

of running MCMC for the relatively expensive models often encountered in the realm

of inverse problems. Standard MCMC methods are innately wasteful, and often the

forward problem must be solved many times to yield a single independent MCMC

sample. At the heart of MCMC lives a fundamental paradox, pertaining to the

proposal distribution used to generate MCMC samples. For an MCMC algorithm

to be efficient, the proposal distribution must be well-aligned with the posterior

distribution, the very object of the Bayesian enquiry. Moreover, there exists a trade-

off between algorithmic efficiency (the acceptance rate) and statistical efficiency (the

effective sample size), for which the proposal distribution must be carefully balanced.
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For these reasons, immense scientific efforts are made to develop efficient MCMC

algorithms, and the work presented here can be framed in this context.

Another reason for the perceived lack of uptake may simply be an insensitivity

amongst practitioners to the both technical, economic and environmental advantages

of knowing the exact uncertainty of a given inverse problem. In the context of e.g.

environmental risk assessments, Monte Carlo analysis is often employed for forward

uncertainty propagation. However, for similar endeavours involving inverse problems,

the engineering solutions often rely on brute-force techniques and (historical, but

essentially arbitrary) safety margins, which are wasteful and expensive. There are

legitimate historical reasons for this discrepancy since Bayesian methods for inverse

problems have only very recently become computationally feasible for practitioners.

It is my opinion that it can also be attributed to an unhealthy attachment to determ-

inistic problems and unique solutions. However, this is a question of epistemology

and Weltanschauung rather than technical ability and beyond the scope of this work.

Thomas Kuhn said that “the competition between paradigms is not the sort of battle

that can be resolved by proofs” (Kuhn, 1996), referring to his view that each scientific

paradigm is built upon a particular axiomatic worldview that does not necessarily

admit proofs from other paradigms. While engineering sciences are particularly

resistant to epistemological paradigm shifts, I expect the probabilistic worldview to

prevail - not because it is “truer” than the deterministic one, but because it provides

a richer framework to explain the data.

1.1 Aims and Objectives

The aim of the work presented in this thesis has been two-fold, encompassing both

methodological and practical developments. First, I present a novel methodological

development in the field of MCMC, which addresses critical challenges when dealing

with high-dimensional and large-scale Bayesian inverse problems. MCMC is a popular

method for sampling from unnormalised distributions, such as the ones emerging as

the posterior distribution of Bayesian inverse problems. When this distribution is

high-dimensional and the forward model constituting the likelihood (or – broadly –
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data misfit) functional is computationally expensive, the standard MCMC methods

become infeasible. Gradient-based MCMC alleviates the challenge of sampling from a

high-dimensional distribution but requires additional information that is typically not

readily available for complex models. Methods that exploit a cheaper approximation

of the forward model, such as Delayed Acceptance (DA) MCMC (Christen and Fox,

2005) and Multilevel MCMC (MLMCMC, Dodwell et al. (2015)) handle both high-

dimensionality and expensive models in a natural way that is also easy to implement,

and can readily be combined with gradient-based MCMC if the forward model allows

it. However, the original manifestation of the DA algorithm is a relatively inflexible

approach, and MLMCMC is theoretically only ergodic at an infinite computational

cost. Hence, the first aspect of this thesis is concerned with developing a novel

MCMC algorithm, termed Multilevel Delayed Acceptance (MLDA), which combines

the strengths of both methods, and – admittedly – inherits some of their weaknesses.

MLDA is, in its non-adaptive variety, strictly ergodic and in detailed balance with the

exact posterior, also at a finite computational cost. It can exploit a model hierarchy

of arbitrary size, rather than just a two-level hierarchy, and allows for sampling

subchains of extended length to decorrelate samples across levels. However, like most

MCMC algorithms, it turns out to be difficult to parallelise.

Second, I present two distinct practical developments, particular to application-

specific challenges within hydrogeological inverse problems, i.e. inverse groundwater

flow modelling. The first of these concerns the design of a fast surrogate for the

forward model. As hinted above, a significant computational bottleneck of MCMC

is the cost of the forward model, which must be solved many times for the MCMC

sampler to converge to the desired distribution. The advantage of using the various

above-mentioned multilevel methods (DA, MLMCMC and MLDA) is that they are

completely agnostic to the nature of the approximate model, and any reasonably good

approximation can be used on the coarse level(s). The flexibility of artificial neural

networks in general and deep neural networks in particular, make them a natural

candidate for such model approximations, and exploiting this in the context of MLDA

is the fundamental idea of the first practical development. Hence, in the enclosed
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paper, we design deep neural networks that can be employed as surrogate models

in the context of uncertainty quantification of the groundwater flow problem using

MLDA. The second practical development concerns a downstream application of the

uncertainty estimates generated by exposing the groundwater flow problem to MLDA.

Groundwater surveying is typically extremely costly due to the inherent variability

of subsurface physical properties in combination with the practical complexity of

establishing a monitoring well. We tackle the problem of optimally choosing the next

monitoring well (given data from existing wells) for groundwater surveying, using

both the uncertainty of the model parameters and the expectation of an adjoint state

equation. The presented approach can be utilised to maximise the information gain

of a sequential groundwater survey at a constant cost or to minimize the cost of the

survey at some acceptable level of uncertainty.

1.2 Preliminaries

Each enclosed research paper contains theory and methodology sections relevant

to the topic covered by the respective paper, with some overlap. However, in this

section, I will introduce the overarching theoretical framework and discuss some

topics that are not covered in depth by the papers but may contribute to a broader

understanding of the topic at large.

1.2.1 The Bayesian Inverse Problem

The objective of the Bayesian inverse problem is to determine the distribution of

parameters given noisy measurements. We begin by defining the data-generating

model as

d = F(θ) + ε (1.1)

where d ∈ D is a vector of noisy measurements, F : Θ→ D is the (possibly nonlinear)

forward map from the parameter space Θ to the measurement space D, θ ∈ Θ is

a vector of model parameters and ε is the noise. If the forward operator perfectly

describes the underlying true data generating process, ε represents the measurement
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errors. However, in most practical applications, ε will encapsulate both measurement

errors, model misspecification errors, discretisation errors, etc. We assume that the

noise is distributed according to some probability distribution ε ∼ πε, allowing us to

define a misfit or likelihood functional L(d|θ) = πε(d−F(θ)).

The distribution of parameters θ given measurements d can then be expressed

in terms of Bayes’ Theorem:

π(θ|d) =
π0(θ) L(d|θ)

π(d)
(1.2)

where π(θ|d) is the posterior distribution of parameters given measurements, π0(θ)

is the prior distribution of parameters, L(d|θ) is the likelihood of observing the

measurements given the parameters, and π(d) is a normalising constant, commonly

referred to as the evidence. At this point, we are confronted with a challenge. The

evidence can be expanded to

π(d) =

∫

Θ

π0(θ) L(d|θ) dθ (1.3)

which is typically impossible to determine analytically and prohibitively expensive

to approximate with sufficient accuracy. The key to unlocking this challenge is to

recognise that π(d) is constant with respect to the parameters θ. This allows us to

write

π(θ|d) ∝ π0(θ) L(d|θ) , (1.4)

or, equivalently,

π(y|d)

π(x|d)
=
π0(y) L(d|y)

π0(x) L(d|x)
(1.5)

with x,y ∈ Θ. In other words, while we cannot compute the unnormalised posterior

density of a single parameter set π(θ|d), we can compute the exact ratio between

the posterior densities of two different parameter sets. This is the simple intuition

underpinning the logic of Markov Chain Monte Carlo (MCMC) methods for Bayesian

inverse problems, as well as related methods such as the Independence Sampler (IS).

More specifically, if we have some means of generating parameter realisations
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Algorithm 1: Metropolis–Hastings MCMC

Choose θ0. Then, for t = 0, . . . , N − 1:

1. Given θt, generate a proposal θ′ from a proposal distribution q(θ′|θt),

2. Accept proposal θ′ as the next sample with acceptance probability

α(θ′|θt) = min

{
1,
π0(θ′)L(d|θ′) q(θt|θ′)
π0(θt)L(d|θt) q(θ′|θt)

}
,

i.e. set θt+1 = θ′ with probability α, and θt+1 = θt with probability 1− α.

θ′, or (colloquially) proposals, from a proposal distribution q(·|·), we can sample

indirectly from the posterior distribution π(θ|d) by sequentially generating and

comparing proposals to the (at any given time) current state θt of the Markov

chain. Broadly, the proposal is accepted as a sample θt+1 with a probability equal

to the ratio of the proposal’s posterior density to the state’s posterior density (eq.

1.5). However, if the proposal distribution is asymmetric, care must be taken to

ensure detailed balance (see Section 1.2.2). This procedure is referred to as the

Metropolis–Hastings algorithm (Algorithm 1).

Figure 1.1: MCMC sampler traversing the parameter space Θ and converging towards
a high-density region. The contours show isolines of a contrived posterior density, with
higher saturation signifying higher density. The arrows show accepted MCMC samples
( ) and rejected proposals ( ), respectively.

In this fashion, the Metropolis–Hastings algorithm will traverse the parameter

space Θ, and gather samples according to their relative posterior densities (Figure 1.1).
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As sampling progresses, it collects more samples from regions of high posterior density

and fewer from regions of low posterior density. When converged, the Metropolis–

Hastings algorithm will have yielded a sequence of samples {θ0,θ1, . . . ,θN−1}, which

(after discarding an initial burnin) are distributed exactly according to the posterior

distribution π(θ|d). See e.g. Gelman (2004), Liu (2004) and Brooks (2011) for

additional details.

1.2.2 Detailed Balance

A critical condition with respect to the design of MCMC algorithms is that of

detailed balance. It is referred to numerous times in this work, but the underlying

reasoning is not included in the papers since it is well-known and widely accepted.

For completeness, I will briefly reproduce the reasoning following the argument

presented in Liu (2004).

The detailed balance condition is in fact a proxy for another crucial condition,

namely that the Metropolis transition kernel is invariant with respect to the target

distribution. Let π(·) be the target distribution, T (·|·) the transition kernel and let

x,y ∈ Θ, where Θ is the sample space. Then the invariance condition states that

the following must hold: ∫
π(x)T (y|x)dx = π(y) (1.6)

This condition can be difficult to prove in practice, and that is where the detailed

balance condition comes in, which takes the following form:

π(x)T (y|x) = π(y)T (x|y). (1.7)

This condition is more restrictive than the invariance condition, but if detailed

balance is satisfied, so is invariance:

∫
π(x)T (y|x)dx =

∫
π(y)T (x|y)dx = π(y)

∫
T (x|y)dx = π(y). (1.8)

It should be noted that the transition kernel T (·|·) is the true transition kernel which
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includes the acceptance probability, as opposed to the proposal distribution q(·|·):

T (y|x) = q(y|x) min

{
1,
π(y)q(x|y)

π(x)q(y|x)

}
(1.9)

Hence, when designing a new MCMC algorithm with some (potentially exotic)

proposal distribution q(·|·), we can satisfy the detailed balance condition (1.7) by

ensuring that indeed
∫
T (x|y)dx = 1 and then simply plugging the correct proposal

distribution into the acceptance probability α = min
{

1, π(y)q(x|y)
π(x)q(y|x)

}
. However, this

is not always a trivial task when the actual proposal distribution is not obvious, as

evident from the detailed balance proof for MLDA described in Chapter 4.

1.2.3 Adaptive MCMC

Another topic central to the material presented here is that of adaptive MCMC

algorithms. While an exhaustive discussion is beyond the scope of this work, I would

like to highlight that the concept itself is subject to debate between researchers,

and some do not consider it to be a completely legitimate approach. Some of the

potential issues with adaptive MCMC are discussed in Atchadé and Rosenthal (2005)

and Andrieu and Moulines (2006). The reason for the apparent controversy is that

adaptive MCMC algorithms cannot strictly be in detailed balance with the target

distribution, since the proposal distribution (and hence the transition kernel) changes

as MCMC sampling progresses. This problem can be completely alleviated by simply

stopping adaptation after some burn-in, after which the (now constant) transition

kernel is certainly in detailed balance with the posterior. However, the most widely

used technique to ensure detailed balance for adaptive MCMC algorithms is that of

diminishing adaptation (Andrieu and Thoms, 2008; Roberts and Rosenthal, 2009).

According to this criterion, instead of abruptly ceasing adaptation, the MCMC

algorithm should be designed in such a way that the tuning parameters subject to

adaptation converge to some (hopefully optimal) values, so that adaptation naturally

diminishes as MCMC sampling progresses. In this work I will assume the position

that adaptive MCMC algorithms are indeed legitimate, so long as the diminishing

adaptivity condition is satisfied, which is true for all the algorithms presented herein.

8



Not only has this assumption been studied closely in the aforementioned papers, but

adaptivity is often a necessity in the context of high-dimensional Bayesian inverse

problems with complex posteriors and no obvious and/or inexpensive way to compute

the gradient. I will discuss adaptive MCMC in more detail in Section 2.2.1.

1.2.4 A remark on MCMC for Bayesian inverse problems

The majority of the content in this thesis revolves around the use of Markov Chain

Monte Carlo (MCMC) methods for Bayesian inverse problems in general and the

groundwater flow problem in particular. I will not go into more detail with respect to

MCMC in this section, since the methodology is explained in great detail in the papers

enclosed below as Chapters 3, 4 and 5. However, I want to remark that MCMC can

be employed in any context, where sampling from some (unnormalised) distribution is

required. Hence, MCMC, and in particular the ubiquitous NUTS sampler (Hoffman

and Gelman, 2014), is used extensively in the context of statistical inference, such

as Bayesian (generalised) linear regression models and mixed-effect models (Brooks,

2011). Conversely, MCMC is not the only method capable of tackling Bayesian

inverse problems. Another widely used approach is that of Variational Inference

(VI), where in place of sampling from the posterior distribution, it is approximated

using some pre-defined probability distribution, or variational distribution. This

is typically achieved by minimising the Kullback–Leibler divergence between the

true posterior and the variational distribution. While the VI approach is usually

computationally much cheaper than running MCMC, it is also more laborious to set

up, and the resulting posterior is, critically, tainted by a bias induced by the choice

of variational distribution. Hence, in this work, I will focus exclusively on MCMC

methods. For an extensive overview of VI, see e.g. Wainwright and Jordan (2007),

and for a recent application of VI to a Bayesian inverse problem, see e.g. Zhang and

Curtis (2020).
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2. Literature Review

My research has been balanced between two distinct scientific disciplines, each with

a rich history of discoveries. Hence, the following literature review will visit both

of these disciplines individually and in depth. First, I will address the existing

literature on groundwater flow as a (Bayesian) inverse problem, and second, the

most significant developments of Markov Chain Monte Carlo (MCMC) methodology.

Finally, I will present an overview of the intersection between the two.

2.1 Groundwater Flow as an Inverse Problem

Groundwater flow modelling is ubiquitous in environmental engineering, and emerges

in the context of multiple different technical endeavours, including pollution con-

trol and management, environmental risk assessment, the environmental fate of

contaminants, nuclear waste disposal, water resource surveying, agricultural wa-

ter management, integrated earth systems modelling, contaminant source location

and seawater intrusion modelling, to name a few. The model complexity varies

according to various circumstances, including whether the groundwater flow is in

steady-state or transient, whether the aquifer is confined or unconfined, and whether

transport equations are solved or not (Anderson, Woessner and Hunt, 2015). While

the groundwater flow problem is not always posed (or understood) as an inverse

problem, there are a number of inverse problems associated with groundwater flow

modelling, because of some inherent characteristics of aquifers. Since aquifers are

(sometimes deep) underground, both model input and output parameters are not

directly observable and must be measured either indirectly or pointwise. Indirectly

measuring any parameters is associated with uncertainty and typically involves
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solving some inverse problem, while point measurements are expensive, effectively

resulting in data scarcity. Additionally, it is significantly simpler to measure the

model outputs, such as hydraulic head, flux, and solute concentration, than the model

inputs, such as hydraulic conductivity and storativity (Zhou, Gómez-Hernández

and Li, 2014). Indirect methods for subsurface and aquifer characterisation include

Electrical Resistivity Tomography (ERT, Loke et al. (2013)) and Electromagnetic

(EM) methods, such as Airborne Electromagnetic (AEM, Auken, Boesen and Chris-

tiansen (2017)) and (towed) Transient Electromagnetic (tTEM, Auken et al. (2019)).

Electromagnetic methods allow for direct inversion yielding complete images of the

subsurface, however, the actual aquifer characteristics are derived from a (typically

ill-conditioned) deconvolution problem. While these methods have applications in e.g.

large-scale and preliminary surveying, in this review I will focus on their compliment,

namely direct point measurements of subsurface hydraulics, which only allow for

indirect inversion. While deconvolution problems are typically ill-conditioned and

hence highly sensitive to measurement noise, the point measurement approach is

typically strongly underdetermined and hence ill-posed. Both of these challenges

require some reformulation of the original problem, for example reducing the number

of estimated parameters, exploiting prior information to constrain the inversion, or

imposing some form of regularisation (Zhou, Gómez-Hernández and Li, 2014).

2.1.1 Basic Methods

Early attempts at solving the inverse groundwater flow problem typically relied on

extrapolating point measurements of hydraulic head to the entire domain and then

performing direct inversion using the interpolated head function (Stallman, 1956;

Nelson, 1960; Neuman, 1973). However, these approaches make strong assumptions

about the hydraulic head function, do not handle noisy data well, and can lead to

numerical instability. Hence, they will not be discussed further in this review and

I will instead turn towards later developments that are more closely related to the

techniques employed in this thesis. Please refer to .e.g. Neuman (1973), Carrera and

Neuman (1986) and Zhou, Gómez-Hernández and Li (2014) for more detail on the
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early methods.

One of the first attempts to solve the problem by parameter dimensionality

reduction was the Geostatistical Approach of Kitanidis and Vomvoris (1983). Here,

it is assumed that some measurements of both hydraulic conductivity and hydraulic

head are available. A geostatistical (random field) model is imposed on the hydraulic

conductivity, drastically reducing the number of model parameters. Then, a joint

probability distribution of the conductivity and the (linearised) hydraulic head is used

to find the maximum likelihood estimate of the geostatistical parameters. Finally, the

hydraulic conductivity of the entire domain is interpolated using co-kriging. While

this approach is relatively inexpensive, the requirement to linearise the governing

equations makes it unsuitable for problems with a high level of heterogeneity, and

the requirement to include measurements of the hydraulic conductivity makes it

unsuitable for many practical applications.

A more flexible approach is the Maximum Likelihood method of Carrera

and Neuman (1986) which allows for incorporating any kind of measurements to

estimate any model parameters, in a straightforward way. The likelihood function is

maximised by minimising the corresponding objective function, which can also be

augmented with prior information by way of a “penalty” term. While the authors

do not frame their work in the context of a Bayesian inverse problem, this penalty

term effectively corresponds to the Bayesian prior. The difference is not practical

but theoretical, pertaining to the authors’ perspective on reality. In the Maximum

Likelihood approach, the parameter dimensionality is typically reduced by zonation

of the domain, so that the model parameters are assumed to be zone-wise constant.

While this effectively removes the ill-posedness, it is far from realistic and it is also

not obvious exactly how to determine the zones, a choice that may have a strong

influence on the result of the inversion.

Another approach, which was developed concurrently with the Geostatistical

and Maximum Likelihood methods, was the Pilot Point Method (Marsily, 1984;

Certes and Marsily, 1991), see Figure 2.1. A simple idea, the approach proved

highly effective and is still developed further, and broadly used (Alcolea, Carrera and

12



Figure 2.1: Principle of the Pilot Point Method (Doherty and Hunt, 2010). Panel A shows
the true coefficient field and the model grid. Panel B shows the pilot points and their
respective calibrated values (size and shape). Panel C shows the kriging map rendered by
the pilot points and panel D shows the same kriging map projected onto the model grid.

Medina, 2006; Christensen and Doherty, 2008; Klaas and Imteaz, 2017). It is also

one of the core features of the ubiquitous PEST software package (Doherty and Hunt,

2010; Doherty, Hunt and Tonkin, 2010), which I will discuss in more detail later. In

the Pilot Point Method, a number of so-called “pilot points” are established on the

domain and assigned some initial conductivity values, possibly guided by existing

conductivity measurements. The conductivity of the entire domain is determined

using kriging of both existing measurements and the fictitious pilot point values.

The groundwater flow model is then solved to obtain the predicted heads, and a

generalised least squares criterion, broadly corresponding to a Gaussian negative

log-likelihood function, is computed with respect to the data. The pilot point values

are then updated according to the gradient of this criterion with respect to each

pilot point value, and the procedure is repeated until an acceptable error has been

achieved. This way, the number of calibrated parameters can be controlled, and the

problem remains well-posed. Pilot points can be placed either in bulk or sequentially,

according to various criteria, including the variance of the kriging map, or simply

at areas of particular interest, such as close to wells, boundaries or downstream of

contaminant sources. While the Pilot Point Method has been fairly successful, it
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does entail some significant difficulties. First, it can result in artifacts, since the

method seeks the best fit by manipulating only the pilot points. Second, the result

of the Pilot Point Method may be biased by the placement of the pilot points. And

third, the method yields only a single representation of the conductivity, rather

than multiple plausible realisations. These issues were all addressed by Rubin et al.

(2010), who also developed the anchored distributions approach, which is broadly a

probabilistic (Bayesian) translation of the pilot point idea.

In light of the third difficulty of the Pilot Point Method, the self-calibrating

method was developed (Gómez-Hernánez, Sahuquillo and Capilla, 1997; Capilla,

Jaime Gómez-Hernández and Sahuquillo, 1997; Capilla, Jaime Gómez-Hernández

and Sahuquillo, 1998). Here, instead instead of starting from a single kriging map,

multiple conditional realisations are generated and then updated in a similar fashion

to the Pilot Point Method. This, in essence, makes the self-calibrating method a

form of ensemble method, since each realisation after updating represents an equally

plausible representation of the aquifer. In Gómez-Hernánez, Franssen and Sahuquillo

(2003), the authors provide a review of the method and compare it to other previous

methods, including the Maximum Likelihood method of Carrera and Neuman (1986).

2.1.2 PEST

The PEST (Parameter ESTimation) software package is an environmental model

calibration package, which is widely used for inverse groundwater modelling (Doherty

and Hunt, 2010; Doherty, Hunt and Tonkin, 2010). It incorporates the Pilot Point

Method along with other methods unique to PEST, including the hydrid regularised

inversion method and the subspace or null-space Monte Carlo method.

The hybrid regularisation inversion methodology combines Truncated Singular

Value Decomposition (TSVD) with Tikhonov regularisation to achieve stable inversion

of a potentially under-determined system (Tonkin and Doherty, 2005). The model is

first subjected to an initial over-determined calibration, using e.g. zonation of the

domain to alleviate ill-posedness. Then, a Jacobian matrix describing the forward

action of the fully parameterised, potentially under-determined model is computed
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using either perturbation or adjoint sensitivity equations. This matrix is decomposed

using SVD and the decomposition is truncated at some relative threshold (see

e.g. Hansen (2010)). The dominant “superparameters” then become the target of

further calibration, and the remaining SVD modes are left untouched. A Tikhonov

regularisation scheme is constructed for the base parameters (see e.g. Hansen

(2010)), and the model is calibrated using the TSVD superparameters, subject to

this Tikhonov regularisation scheme. The result is a model that is calibrated in a

measurement-informed subspace and regularised according to whichever constraints

the modeller imposes through the Tikhonov regularisation scheme. It should be

mentioned that under certain conditions, the Tikhonov solution is equivalent of the

Bayesian Maximum a Posteriori (MAP) estimate (Vogel, 2002).

Figure 2.2: Workflow of the subspace (null-space) Monte Carlo method implemented in
PEST (Doherty, Hunt and Tonkin, 2010).

The subspace (null-space) Monte Carlo method (Figure 2.2) is essentially an

extension to the hybrid regularised inversion methodology, which allows for some

quantification of uncertainty within the existing framework (Tonkin and Doherty,

2009). In this context, the dominant SVD components constitute the calibration

15



subspace, while its complement, the remaining SVD components, constitute the

calibration null-space. After calibration using the hybrid methodology described

above, a Monte Carlo sample is drawn from the distribution of base parameters.

The sample is projected into the calibration null-space, added to the calibrated

parameters, and the model is recalibrated according to the new configuration. Since

the calibration null-space constitutes the subspace of the model parameters that

are not informed by the measurements, each Monte Carlo sample drawn this way

is by design conditioned on the measurements. This process is repeated as many

times as necessary, yielding a Monte Carlo estimate of the uncertainty of the model.

While this method allows for determining the uncertainty of the model within the

established hybrid framework, it does add significantly to the computational cost of

the inversion, particularly if the parameter space is high-dimensional and the original

problem is very ill-posed. The result also depends on several user-defined parameters,

such as the TSVD truncation threshold and the Tikhonov regularisation constraints,

both of which require extensive knowledge, not only of the physical problem but of

the intricate details of each method. The Bayesian approach of Markov Chain Monte

Carlo, which I will cover now, removes many of the difficulties associated with the

traditional approaches to solving under-determined inverse problems, albeit at an

even higher computational cost than any of the previously mentioned methods.

2.2 Markov Chain Monte Carlo

While an exhaustive review of Markov Chain Monte Carlo (MCMC) methods is

beyond the scope of this thesis, I will here outline some of the most important devel-

opments in the field. The terms “MCMC” and the “Metropolis–Hastings algorithm”

are often used interchangeably, highlighting the importance of the seminal papers by

Metropolis et al. (1953) and Hastings (1970). While some later developments, at first

sight, appear relatively far removed from these original formulations, most (if not

all) MCMC methods can be formulated as special cases of the Metropolis–Hastings

algorithm (Brooks, 2011). Of special interest is the Gibbs-sampler (Geman and

Geman, 1984), which enjoyed high popularity for many years owing to the paper by
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Gelfand and Smith (1990), since it requires relatively little tuning compared to pre-

vious MCMC algorithms. The GS-family of samplers, including WinBUGS, OpenBUGS

(Lunn et al., 2009) and JAGS (Plummer, 2003), are all implementations of the Gibbs-

sampler. While using the Gibbs-sampler requires little tuning, it does require the

practitioner to specify conditional distributions for all the random variables subject

to Gibbs-sampling. This may have been a contributing factor to the Gibbs-sampler

falling out of use in many fields since that requires a deeper statistical understanding

of the problem than what the average data science practitioner typically possesses.

Another contributing factor was the appearance of the No-U-Turn Sampler (NUTS)

(Hoffman and Gelman, 2014), an extension to Hamiltonian (or “Hybrid”) Monte

Carlo (HMC, Duane et al. (1987)), that automatically determines the essential

tuning parameters of HMC. Both NUTS and HMC exploit the gradient of the target

distribution, which is typically determined through automatic differentiation, to

achieve more efficient MCMC sampling. Moreover, HMC and NUTS do not require

the conditional distributions, and the software implementations allow practitioners

to specify statistical models with relatively little effort. The development of the

NUTS sampler has further popularised the use of Bayesian inference across many

scientific disciplines, and it is the default sampler in the popular software frameworks

Stan (Carpenter et al., 2017) and PyMC (Salvatier, Wiecki and Fonnesbeck, 2016).

2.2.1 Adaptive MCMC

Since the NUTS sampler relies on automatic differentiation to compute the gradient

of the posterior distribution, its use is generally restricted to problems that can

be defined in terms of closed-form probability distributions. For more complic-

ated problems, such as PDE-constrained Bayesian inverse problems, the gradient

of the posterior distribution is typically not readily available and can only be ap-

proximated through numerical methods, such as the finite difference method. For

high-dimensional problems, this approach will result in an unacceptably high compu-

tational cost, and this is exactly the challenge that gradient-free MCMC methods

aim to solve. Broadly, the aim is to construct an inexpensive proposal that is closely
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aligned to the posterior distribution. Since we typically know very little about the

posterior distribution in advance of running MCMC (we run the MCMC exactly

to explore the posterior), gradient-free methods typically involve some manner of

adaptivity. The seminal paper by Haario, Saksman and Tamminen (2001), in which

the Adaptive Metropolis (AM) algorithm was developed, laid the foundation for this

now highly active field of research. The idea of AM is simple but effective. The

proposal distribution is set to a multivariate Gaussian which is iteratively improved

during sampling by using all previous samples to sequentially compute the covariance

matrix. This is achieved by way of the following recursive formula:

Ct+1 =
t− 1

t
Ct +

sd
t

(
t x̄t x̄Tt − (t+ 1) x̄t+1 x̄Tt+1 + xt+1 xTt+1 + εId

)
(2.1)

where t is the current MCMC iteration, Ct is the sample covariance matrix at

iteration t, xt is the MCMC sample at iteration t, with ·̄ signifying the arithmetic

mean, sd = 2.42/d is a scaling parameter, d is the target dimension and ε is a small

parameter that prevents Ct from becoming singular.

Using the AM algorithm, the autocorrelation of successive MCMC samples

can be drastically reduced (Figure 2.3), as the proposal distribution adaptively

approaches the target.

Figure 2.3: Autocorrelation functions for largest component of the target covariance matrix
for an 8-dimensional uncorrelated Gaussian target. Adaptive Metropolis sampler (left
panel) and Metropolis sampler (right panel) (Haario, Saksman and Tamminen, 2001).

The AM algorithm was later extended to a Gibbs-like setting with the devel-
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opment of the Single Component Adaptive Metropolis (SCAM) algorithm (Haario,

Saksman and Tamminen, 2005). Later yet, Andrieu and Thoms (2008) developed a

wide range of techniques that could be utilised for adaptive MCMC and explored

some of the possible pitfalls. In this light, the most important aspect of designing

an adaptive MCMC is to ensure that it exhibits diminishing or vanishing adaptivity

(Roberts and Rosenthal, 2007; Roberts and Rosenthal, 2009). Broadly speaking,

this condition dictates that, as the algorithm proceeds with sampling, the “amount”

of adaptation approaches zero. The diminishing adaptivity condition is naturally

obeyed by the AM algorithm and can be imposed by design on other schemes, such as

using a Robbins-Monro recursion to determine a global scaling parameter (Andrieu

and Thoms, 2008). In this context, I will also highlight a lesser know adaptive

MCMC algorithm, the Adaptive Proposal (AP) distribution (Haario, Saksman and

Tamminen, 1999), which lead to the development of the AM algorithm. The AP

algorithm adapts the proposal distribution to only the latest samples, and hence

does not, in fact, subscribe to the diminishing adaptation condition, and does not

sample from the exact posterior (Haario, Saksman and Tamminen, 2001). It may

still be useful if the posterior is strongly non-Gaussian and if exactness is not crucial.

While a complete overview of adaptive MCMC algorithms are beyond the scope

of this paper, I will highlight two recent and promising avenues, namely those of

surrogate HMC and transport-map accelerated MCMC. First, the work of Strathmann

et al. (2015) who developed Kernel HMC, where an exponential family model is fitted

to previous samples in a Reproducing Kernel Hilbert Space (RKHS). The gradient of

the exponential family model is then used in place of the true gradient. This method

was a further development of the Kernel Adaptive Metropolis–Hastings of Sejdinovic

et al. (2014), where the covariance of the RKHS informs the proposal so that it locally

targets areas of the parameter space with a high expected density. Second, the HMC

using surrogate functions with random bases (RNS-HMC) of Zhang, Shahbaba and

Zhao (2017), where the authors use shallow neural networks to approximate the target

density. Multiple different algorithms are proposed, including a two-stage exploration-

exploitation strategy, where (1) the parameter space is explored using standard HMC,
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(2) a surrogate is constructed using the initial samples, and (3) the surrogate is

exploited for further surrogate HMC sampling. This approach is similar to that of

Rasmussen (2003). The authors also present a fully adaptive version (ARNS-HMC)

of the same algorithm with diminishing adaptation using the principles of Andrieu

and Thoms (2008), and a Riemann Manifold HMC (RMHMC) version, which aligns

the method with the RMHMC of Girolami and Calderhead (2011). The third and

final adaptive MCMC method I want to highlight is the transport-map accelerated

MCMC of Parno and Marzouk (2018), a method that exploits optimal transport maps

(El Moselhy and Marzouk, 2012) to generate proposals. Rather than adapting the

proposal distribution itself, a reference proposal is drawn from a simple distribution,

such as a Gaussian, and is then pushed through an adaptively constructed optimal

transport map that connects the reference distribution with the target. While this

approach is relatively uncomplicated for forward uncertainty propagation (Marzouk

et al., 2016), the MCMC version requires inversion of the transport map, which can

be computationally expensive for high-dimensional problems.

2.2.2 Preconditioned Crank-Nicolson

A relatively recent and important development in gradient-free MCMC proposals

is the preconditioned Crank-Nicolson (pCN) proposal (Cotter et al., 2013). This

proposal is constructed through the Crank-Nicolson discretisation of a Stochastic

Partial Differential Equation (SPDE) describing Brownian motion. With some clever

manipulation the proposal arrives, in its simplest form, at an expression very closely

resembling a Random Walk Metropolis–Hastings (RWMH) proposal:

θ′ =
√

1− β2 θt + βξ (2.2)

where θ′ is the pCN proposal, θt is the current MCMC state, β ∈ [0, 1] is a scaling

parameter and ξ ∼ N (0,C0) is a random draw from the prior distribution of

parameters N (0,C0). However, the pCN proposal has one crucial advantage over

RWMH. The pCN proposal is robust with respect to the target dimension, whereas

the RWMH proposal is not. Plainly speaking, as the dimensionality of the target
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distribution grows, the RWMH proposal requires smaller step sizes, while for the pCN

proposal we can (theoretically) maintain a constant step size (Cotter et al., 2013).

However, the pCN proposal requires the prior to be Gaussian and does not necessarily

perform well for strongly non-Gaussian posteriors, or posteriors with covariances

that were not specified by the prior. This makes the algorithm particularly suitable

for problems with a prior specified by e.g. a Karhunen–Loève decomposition of a

Gaussian Process, but not as universally applicable as the AM algorithm. In the

same paper, Cotter et al. (2013) also developed the preconditioned Crank-Nicolson

Langevin (pCNL) proposal and an Independence Sampler (IS) based on the same

insights as the “Vanilla” pCN proposal. However, the pCNL algorithm, similarly to

the Metropolis-adjusted Langevin (MALA) proposal (Roberts and Tweedie, 1996;

Roberts and Rosenthal, 1998), requires the elusive gradient, and the IS requires

the prior to be relative close to the posterior, and hence these proposals are of

little interest to our applications. The pCN algorithm was developed further by

Law (2014), who proposed the operator-weighted pCN proposal, which allows for

weighting different dimensions differently, according to some linear operator B:

θ′ =
√

Bt θt +
√

I−Bt ξ. (2.3)

If Bt = (1− β2)Id, this simplifies to the original pCN proposal (Cotter et al., 2013),

but Law (2014) suggests constructing Bt from a relaxed Hessian of the forward

operator with respect to the parameters, evaluated near the posterior mode, and

exploit this curvature information to improve the sampling efficiency. Cui, Law and

Marzouk (2016) expanded further on this idea and introduced a family of Dimension-

independent Likelihood-informed (DILI) samplers that restrict pCN sampling to a

likelihood-informed subspace, and simply sample from the prior in its complement,

not unlike the subspace Monte Carlo of Tonkin and Doherty (2009). It also exploits

local gradient information to determine the best proposal direction, and hence may

not be viable for expensive problems with no way to directly compute this gradient.

Of more interest to my applications is the Adaptive pCN (ApCN) proposal, developed

by Hu, Yao and Li (2016). This proposal can be considered a hybrid of the operator-
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weighted pCN proposal and the AM algorithm, in that it exploits past samples to

construct a weighting operator that is closely aligned with the posterior. However,

this proposal requires taking the square root of a matrix at each adaptive update,

and this may be not viable for very high-dimensional problems. In this light, the

same authors developed the Hydrid ApCN algorithm (Zhou et al., 2017), which uses

the standard AM algorithm to sample from a predefined subspace, and the standard

pCN proposal to sample from its compliment, completely avoiding this complication.

However, unlike every other pCN variant mentioned above, it does not strictly have

a dimension-independent acceptance rate.

2.2.3 Differential Evolution Adaptive Metropolis

Figure 2.4: Principle of Differential Evolution Markov Chain. Here, xi represents the
state of one chain, and the proposal x∗ is the sum of the difference between two other
states xR1 and xR2 and a random perturbation e. Panel (a) shows the proposal generating
mechanism, while panel (b) illustrates that the proposal is reversible. From ter Braak and
Vrugt (2008).

Another interesting subset of gradient-free MCMC algorithms is the family

of DREAM-samplers (DiffeRential Evolution Adaptive Metropolis, (Vrugt, 2016)),

which belong to a larger family of algorithms commonly called population-based

MCMC samplers. While merely tangential to the research presented in this thesis, the

DREAM samplers have achieved some uptake in more applied studies (Hinnell et al.,

2010; Keating et al., 2010; Malama, Kuhlman and James, 2013; Laloy et al., 2013;

Shafii, Tolson and Matott, 2014), and are hence included in this literature review for

completeness. They were developed from the original Differential Evolution Markov

Chain (DE-MC) (ter Braak, 2006), which uses the states of multiple parallel chains
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to generate proposals (Figure 2.4). This allows for sampling efficiently from complex,

multimodal distributions, but the original algorithm requires many parallel chains

to function correctly, i.e. N = 2d for a d-dimensional target. This shortcoming

motivated the development of the DE-MCZ algorithm (ter Braak and Vrugt, 2008),

where the Z refers to an archive of past samples. The introduction of an archive not

only allows for using significantly fewer parallel chains but also effectively makes

the DE-MCZ algorithm an adaptive one. The DE-MCZ proposal takes the following

form:

θ′ = θt + (Id + e)γ(δ, d)

[
δ∑

i=1

θR1(i) −
δ∑

j=1

θR2(j)

]
+ ξ (2.4)

where e ∼ Ud(−b, b) and ξ ∼ Nd(0, σ?) are random perturbations with b and σ? small,

γ(δ, d) is a scaling function with δ the number of archival pairs used to construct the

proposal, and R1(i) and R2(j) are indices of previous samples from the archive. The

acronym DREAM was coined by Vrugt et al. (2009), who also introduced another

adaptive feature to the algorithm. Seeing that perturbing every parameter at each

proposal step often leads to small and trivial moves, they developed a method called

Randomised Subspace Sampling, in which each parameter is perturbed according

to a crossover probability, which is adaptively determined to facilitate long moves.

Finally, Laloy and Vrugt (2012) extended the algorithm with Multiple-Try Metropolis

functionality (Liu, Liang and Wong, 2000), allowing for evaluating multiple proposals

and picking (probabilistically) the best one. This can be useful in cases where there

are idle processors, but it does lead to an appreciably higher waste of computational

resources.

Delayed Acceptance

The two final topics I will cover in this section are the distinct but analogous

methods Delayed Acceptance (DA) MCMC and Multi-level Markov Chain Monte

Carlo (MLMCMC). Both methods exploit one or more coarse models or Reduced

Order Models (ROMs) to reduce the computational cost of running MCMC, but

each method has its own advantages and disadvantages that should become apparent.

Delayed Acceptance is a flexible two-stage method first proposed by Christen and
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Fox (2005), where a single ROM is used to “filter” proposals before passing them

on the full order model. When the ROM is state-independent, the DA method is

identical to the Surrogate Transition Method of Liu (2004) with a single surrogate

transition step and the preconditioned two-stage MCMC of Efendiev, Hou and Luo

(2006). The DA sampler works by running any Metropolis–Hastings sampler on

the coarse level, which is set to target the approximate posterior generated by the

ROM using any valid proposal distribution. Only if the proposal is accepted on

the coarse level, it will be evaluated on the fine level, where it will be subject to a

second accept/reject step. While the sampler on the coarse level does not sample

from the exact posterior, this second accept/reject step ensures that the samples on

the fine level come from the exact posterior. One of the greatest attractions of DA

is the flexibility with respect to choosing a ROM. In their original paper, Christen

and Fox (2005) used a local linearisation as the coarse model, corresponding to a

state-dependent ROM, which would not generate a valid Markov Chain when using

the approach of Liu (2004). Other examples of methods that have been successfully

employed as coarse models in DA sampling include polynomial chaos expansions

(Laloy et al., 2013), inverse-distance weighted averages (Sherlock, Golightly and

Henderson, 2015) and deep neural networks (Lykkegaard, Dodwell and Moxey, 2021).

However, data-driven models may add significantly to the precomputation cost, and

may not always perform well, particularly in the tails of the distribution. Hence,

when the posterior is constrained by some model where equations are solved on a grid,

the most obvious choice for a coarse model might simply be the same equations solved

on a coarser grid. This perspective was explored in detail by Kaipio and Somersalo

(2007), who addressed some issues of model discretisation in the context of Bayesian

inverse problems, and developed a theory of how to handle the associated model

discretisation error in a rigorous, Bayesian manner. A similar idea was explored by

Brynjarsdóttir and O’Hagan (2014) who used a Gaussian Process Regression to model

the discrepancy between the model output and the data. However, Brynjarsdóttir and

O’Hagan (2014) considered to problem of model misspecification, rather than model

discretisation, and the paper is only mentioned here for completeness. In Kaipio and
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Somersalo (2007), the authors suggest constructing a discretisation error model from

the prior distribution of parameters. While this is a perfectly sensible thing to do, it

may not always lead to the most useful error model if the discretisation error varies

strongly across the parameter space and the posterior support is markedly different

than the prior. To alleviate this problem, posterior or adaptive Approximation Error

Models (AEMs) were later developed (Cui, Fox and O’Sullivan, 2011; Cui, Fox and

O’Sullivan, 2012; Cui, Fox and O’Sullivan, 2019). These AEMs are tailor-made for

Delayed Acceptance MCMC and construct a (Gaussian) error model while sampling

by extracting the discrepancy between the full order model and the ROM every

time both models are evaluated with the same parameter set (Figure 2.5). There

BL-1

BL-2

FL-1

FL

FL-2

Datapoints

Figure 2.5: Principle of approximation error models generalised to a multi-level context.
For each coarse model level F`, ` ∈ {1, 2, . . . , L− 1}, the bias B` describes the difference
of the model output and the model output of the next-finer level F`+1. Typically, this is
modelled using a Gaussian, so that B ∼ N (µB,ΣB).

are broadly two different approaches, the state-independent AEM and the state-

dependent AEM. The state-dependent AEM is mostly better, however, if the forward

operator is strongly ill-conditioned then the state-independent AEM may provide

better stability.

25



2.2.4 Multilevel MCMC

The MLMCMC method is a relatively recent development (Dodwell et al., 2015). It

was motivated by the now ubiquitous Multilevel Monte Carlo (MLMC) method first

proposed in Giles (2008a) and Giles (2008b). A similar idea can also be found in

Heinrich (2001). The method was studied in the context of elliptic Partial Differential

Equations (PDEs) with random coefficients, a class of problems that the groundwater

flow problem belongs to under certain assumptions, by Cliffe et al. (2011) and

Charrier, Scheichl and Teckentrup (2013). The central idea in MLMC is to use

a particular MLMC estimator taking the shape of a telescoping sum to construct

Monte Carlo estimates of a quantity of interest (QoI) using samples from all levels

of a model hierarchy with an arbitrary number of levels (Giles, 2008a):

E(QL) = E(Q0) +
L∑

`=1

E(Q` −Q`−1) (2.5)

where Q` is the quantity of interest on level ` = 0, . . . , L. The higher the level, the

fewer Monte Carlo samples are evaluated and vice versa. This effectively yields

a Monte Carlo estimate with an accuracy reflecting the resolution of the finest

model, but with a variance and a Monte Carlo Standard Error (MCSE) reflecting

the multitude of samples across levels. This is commonly referred to as Variance

Reduction (VR). The MLMCMC of Dodwell et al. (2015) takes this idea from

the domain of forward uncertainty propagation and into the realm of uncertainty

quantification for Bayesian inverse problems. While MLMCMC appears superficially

similar to DA, there are crucial differences. In DA, coarse samples that are rejected

by the second Metropolis accept/reject step are simply discarded, which ensures

that the samples on the fine level come from the exact posterior. In MLMCMC,

the coarser samplers pass proposals to the finer samplers, and continue from where

they were, regardless of whether a sample was accepted on the finer levels or not

(Figure 2.6). This has two major consequences. First, it allows for massively

parallelising the MLMCMC sampler (Seelinger et al., 2021), and second, it requires

samples passed from the coarser levels to be independent (Dodwell et al., 2015).
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Figure 2.6: The conceptual difference between MLDA (left panel) and MLMCMC (right
panel). Since DA can be framed as a two-level single-step version of MLDA, this also
applies to DA. While the coarse samples in (ML)DA are consecutively realigned with the
fine distribution according to the second Metropolis accept/reject step, the coarse sampler
in MLMCMC is allowed to continue sampling, whether the proposal was accepted or not.

Parallelisation is a massive advantage over most other MCMC algorithms (barring

Multiple-Try Metropolis (Liu, Liang and Wong, 2000)), where parallelisation is

commonly restricted to either running multiple MCMC samplers simultaneously

(which should be done in any case to diagnose convergence), or to simply parallelise

the likelihood function, which is usually the most computationally expensive element.

However, the independence requirement is a potentially significant complication.

MCMC samples are necessarily autocorrelated because of the sequential nature of

the algorithm, and while independence can theoretically be ensured with infinitely

many samples, in practice this autocorrelation may lead to an indeterminable bias

in the multilevel estimator (Fox, 2021). For the DA or Surrogate Transition Method,

achieving VR is even less straightforward. For the multilevel estimator to be valid,

both the (coarse) samples on any level and the proposals to the next-finer level must

come from the same (stationary) distribution, which is not generally the case for the

DA sampler, since the second accept/reject step consecutively realigns the coarse

sampler with the target (fine) distribution. In this light, the coarse samples come

from a mixture distribution “between” the two distributions generated by the coarse

and fine models, respectively. One possible workaround is the Randomised Surrogate

Transition proposal, outlined in Chapter 4. This approach ensures (probabilistically)

that coarse samples are indeed from the same mixture distribution as the proposals

to the next-finer level.
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2.3 MCMC for Groundwater Flow Modelling

The first attempt at using MCMC for inversion and uncertainty quantification of

a groundwater flow problem was, to my knowledge, made by Oliver, Cunha and

Reynolds (1997). Their methodology consisted of using a Gibbs-like sampler to

update the conductivity for only one grid cell at each iteration of the algorithm.

This was done to ensure stability and increase the acceptance rate, but it makes the

algorithm extremely slow to converge, particularly for high-dimensional problems.

To alleviate this problem, Fu and Gómez-Hernández (2009) proposed the Blocking

MCMC approach, where at each iteration a block of grid cells are updated at once,

using a proposal conditioned on each updated cell and their immediate neighbourhood.

The authors also present a two-stage version of their algorithm referring to the work

of Efendiev, Hou and Luo (2006) but do not acknowledge explicitly that the presented

algorithm constitutes a Delayed Acceptance sampler, possibly because the two-stage

method of Efendiev, Hou and Luo (2006) was published in a journal specifically

targeting hydrology and hydraulics. Simultaneously, Dostert, Efendiev and Mohanty

(2009) considered the two-stage approach from a different angle. Addressing Richard’s

equation, an infamously difficult nonlinear PDE describing unsaturated flow in the

vadose zone, they utilised the Multiscale Finite Element Method (MsFEM) (Efendiev,

Ginting and Hou, 2004) to construct coarse-grid basis functions and then employed

the MsFEM formulation as a coarse model. The significantly lower cost of the coarse

model allowed them to use what they refer to as a preconditioned coarse-gradient

Langevin algorithm as the coarse proposal, where the gradient was computed using

finite differences. While the MALA algorithm is certainly an improvement compared

to RWMH, the finite difference approach to gradient estimation requires d+ 1 model

evaluations for a d-dimensional problem, and it is not clear how this method would

compare to a well-tempered AM sampler on the coarse level. A similar approach was

taken in Mondal et al. (2010), where the authors use upscaling (Durlofsky, 1998) and

a mixed MsFEM formulation (Arbogast, 2002) to solve the two-phase flow equations

on a coarse grid. Additionally, the authors present two interesting developments.

First, the hierarchical modelling of hydraulic conductivity by discrete geological
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facies populated with Gaussian Processes (GP). The facies boundaries are modelled

with piecewise linear functions, each describing an interface, and each facies is then

equipped with a GP represented by a truncated Karhunen–Loève (KL) expansion

(Figure 2.7). The piecewise linear functions are described by an arbitrary number

Figure 2.7: Piecewise linear facies boundaries populated with GPs. Left to right: the
reference conductivity field, one posterior realisation, the median of the posterior and the
mean of the posterior. Adapted from Mondal et al. (2010).

of points with stochastic location, resulting in an MCMC sampling problem with

an arbitrary target dimensionality. Second, the authors circumvent this apparent

problem by using Reversible jump MCMC (Green, 1995), an algorithm designed to

achieve exactly this, while maintaining detailed balance. They demonstrate that the

approach can recover simple channel geometries, but the number of channels must

be known in advance, as there is no apparent way to add a complete set of points

and an additional GP describing a new channel.

2.3.1 DREAM MCMC Samplers

The DREAM MCMC samplers described in Section 2.2 have achieved some uptake in

the applied groundwater modelling community and as a black-box MCMC framework

for theoretical studies of e.g. geological models. In Keating et al. (2010), the authors

compare the results of PEST (see Section 2.1) and DREAM using real data from a

very challenging inverse problem, namely the nuclear test site in Yucca Flat, Nevada,

US (Fenelon, 2005). With respect to PEST, the authors calibrate the model using

the Covariance Matrix Adaptation Evolutionary Scheme (CMA-ES, (Hansen and

Ostermeier, 2001)) and then use null-space Monte Carlo to determine the uncertainty.

With respect to DREAM, the authors use the standard approach described in Vrugt

et al. (2009), without an archive. This may be more theoretically correct than using

an archive but is very computationally expensive. Since the true parameters of
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the problem are unknown for this real-world example, it is not clear which of the

methods is better. The authors claim that “each method is capable of providing

consistent estimates of parameter uncertainty and of providing samples from posterior

parameter distributions that, in the main, are consistent with each other”, but there

are certain differences that are not addressed in the paper. The most striking issue

is that, while both methods identify broadly the same parameters as constrained by

the calibration, they do not agree on their degree of “unconstrainedness” (Figure

2.8).

Figure 2.8: Relative “unconstrainedness” of each parameter of the model of Keating et al.
(2010), measured by σ∗ = σposterior/σprior. Results from the DREAM MCMC sampler vs.
results from subspace Monte Carlo (PEST)

The authors explain that it is indeed a highly complex problem and that neither

method is capable of capturing the true parameter values, nor the true uncertainty.

However, deeper investigations into the root causes of the discrepancies and the

potential flaws of both methods are warranted. The uncertainty quantification of

PEST and DREAM were also compared in the study by Malama, Kuhlman and

James (2013). The primary objective of the study, however, was a comparison of

different models to predict the breakthrough time of different tracers through core

samples. The authors did not consider the conductivity of the medium as stochastic,

and hence the stochastic dimensionality of the problem was significantly smaller than

the previously mentioned studies. However, it does provide a much more absorbable

appraisal of the differences between PEST and DREAM. The two methods arrive at
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broadly the same median parameter values, but the uncertainty estimates from PEST

exhibit some artefacts that are difficult to account for. According to the authors, they

could not identify a null space for the PEST uncertainty analysis and assumed that

it was one-dimensional. This highlights some of the potential issues regarding the

hybrid regularisation approach of PEST (Tonkin and Doherty, 2005), namely that

the truncation threshold for the TSVD is a modelling choice. Singular dimensions in

the calibration space are assumed to be absolutely determined by the data, and all

uncertainty is projected into the null-space. This is not reflective of the true nature

of the inverse problem, where all parameters should reflect, at the very least, the

uncertainty of the measurements. The uncertainty quantification produced by the

DREAM MCMC sampler is sharply contrasted to the one produced by PEST. While

the authors do not provide MCMC diagnostics, the presented posterior densities

appear, at least at face value, credible.

A study related to the work presented in the enclosed journal paper on us-

ing deep neural networks as coarse models for Delayed Acceptance (DA) MCMC

(Lykkegaard, Dodwell and Moxey, 2021) was the research presented in Laloy et al.

(2013), who instead used a Polynomial Chaos Expansion as a coarse model and

DREAM as the coarse MCMC sampler. While Laloy et al. (2013) demonstrate their

methodology on a significantly more complicated forward model, there are some

issues with respect to the presented results. The authors admit that their sampler

did not formally converge according to the R̂-criterion suggested by Gelman and

Rubin (1992), which is currently not even considered sufficiently conservative to

guarantee convergence (Gelman, 2004; Vehtari et al., 2020). Instead, the authors

resort to using the root-mean-square error (RMSE) as a rudimentary measure of

convergence, which has little meaning in the context of MCMC. Hence, in essence,

Laloy et al. (2013) employ their DA sampler as a glorified optimisation algorithm, and

the presented uncertainty quantification can most likely not be trusted. The DREAM

MCMC sampler was also employed for inversion and uncertainty quantification in

Laloy et al. (2015), where the authors present an alternative parameterisation of

Gaussian Processes known as Circulant Embedding (Dietrich and Newsam, 1997), in
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the context of a groundwater flow problem. The authors compare the method to

the popular KL expansion and show that the Circulant Embedding dimensionality

reduction outperforms the KL expansion, and is capable of reproducing small scale

variability, even in a relatively low dimensional parameter space. Another advantage

of this approach is that the computational complexity is significantly lower than

that of KL decomposition, which allows for making e.g. Gaussian kernel parameters

stochastic rather than fixing them in advance of running the MCMC. The drawback

of this dimensionality reduction is that the variance of the reduced-order Gaussian

Random Field does not exactly correspond to the full-order one. In Laloy et al.

(2018), the authors present a novel approach to generating realisations of a (random)

hydraulic conductivity field, using a Spatial Generative Adversarial Network (SGAN)

and use the DREAM MCMC sampler to demonstrate the method on an inverse

groundwater flow problem. As discussed in Heße, Comunian and Attinger (2019), the

Gaussian Process approach to modelling conductivity employed in many studies is

not representative of some geological structures, including high-permeability channels,

geological faults and other discontinuities. The Multiple-Points Statistics (MPS)

approach (Guardiano and Srivastava, 1993; Strebelle, 2002) allows for exploiting

complex prior information enclosed in a training image to generate more realistic

geological structures, but it is fairly computationally demanding, as realisations

are constructed iteratively, point by point. In the SGAN-based approach, rather

than scanning the training image for matching geological structures, a convolutional

neural network is trained to generate images that a structurally similar to the original

training image (Figure 2.9). While the precomputation cost is higher than for the

MPS approach, realisations can subsequently be generated at a very low cost. The

method represents a fast and flexible way to generate random realisations of complex

geological structures, but there are some caveats. First, the prior distribution is more

or less nonsensical, and consist of uniform noise that is then propagated through the

generator network to generate an image. Second, the generator map is not necessarily

well-behaved, and similar generator images could be far apart in parameter space,

which could complicate exploration of the full posterior significantly.
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Figure 2.9: A fraction of the original training image intended to represent a braided river
aquifer and two random realisations produced by an SGAN trained on the same training
image (Laloy et al., 2018).

2.3.2 Benchmarks

The groundwater flow problem is a popular benchmark in theoretical studies of

MCMC, particularly of methods aimed at problems constrained by expensive forward

models. The steady-state equation for confined aquifers is in fact Poisson’s equation,

which also governs e.g. heat flow and other diffusion problems. While relatively

simple, it represents a canonical example of an elliptic Partial Differential Equation

(PDE), a class of problems for which there is usually no analytical solution, and the

numerical solution involves solving a typically large system of equations. Here, I

present a review of significant MCMC developments that employ the groundwater

flow problem as a benchmark. While their primary focus is MCMC methodology,

they each provide insight into the governing PDE, inverse solution strategies and

uncertainty quantification. I remark that the groundwater flow problems used as

benchmarks in the studies below are not always realistic and often very simple.

However, the Bayesian perspective and the various geological priors may still serve as

a template for handling harder and more realistic hydrogeological inverse problems.

In Higdon, Lee and Holloman (2003), the authors demonstrate the use of Gaus-

sian Markov random fields (MRF) and Gaussian Processes as hydraulic conductivity

models on an example of the breakthrough time of conservative tracers (Figure

2.10). The study was otherwise dedicated to an MCMC algorithm that exploits a

coarse approximation to improve the mixing of the fine MCMC chain by swapping

proposals between the fine and coarse sampler using Metropolis coupled MCMC
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Figure 2.10: Gaussian Markov random field (MRF) realisations and the MRF posterior
mean (top row), and GP realisations and the GP posterior mean (bottom row). Adapted
from Higdon, Lee and Holloman (2003).
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(Geyer, 1991). This approach is not unlike the differential evolution based samplers

described in Section 2.2 (ter Braak, 2006), where proposals are also swapped between

different MCMC samplers to improve mixing, except the population-based samplers

combine the proposals of different chains, rather than just swapping, and do not

generally exploit a coarse approximation. The authors also demonstrate how the

MRF realisation can be projected to and from the coarse space, to allow for relatively

seamless transitions when swapping proposals between levels. In Marzouk, Najm

and Rahn (2007) and Marzouk and Najm (2009), the authors develop a methodology

for MCMC sampling of inverse problems, in which they construct a computationally

inexpensive surrogate density that is used in place of the true posterior. They

create Polynomial Chaos Expansion (PCE) for the model parameters, substitute

these expansions into the governing equations, and use the solution to construct the

surrogate posterior density. The PCE expansion is much cheaper to evaluate than

original the forward model, which allows for sampling otherwise intractable inverse

problems using standard MCMC. The authors demonstrate the methodology on a

simple groundwater flow problem and show that the approximate posterior density is

very close to the true posterior. However, the presented examples are very simple and

there is no way to validate the approximate posterior other than sampling from the

true one, so the method has limited applicability for real-world problems. Another

study that demonstrated a novel MCMC sampler on a groundwater flow problem was

the active subspace MCMC described in Constantine, Kent and Bui-Thanh (2016).

Here, the authors describe an algorithm, where MCMC sampling is restricted to

a likelihood-informed subspace (Cui et al., 2014) while its complement is sampled

using simple Monte Carlo sampling of the prior distribution. This approach is

strongly related to the null-space Monte Carlo of Tonkin and Doherty (2009) but

transformed into a fully Bayesian setting, where the the likelihood-informed subspace

(or “calibration” subspace in PEST-terminology) is also subjected to quantification

of uncertainty. While the methods are similar in execution, the goal is different.

For null-space Monte Carlo, the intention is to perform uncertainty quantification

for the subspace of parameters, where there is uncertainty. For active subspace
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MCMC, the intention is to decrease the computational burden of running MCMC

by identifying “free” parameters and offsetting the cost by using the (significantly

cheaper) Monte Carlo sampling on those. The example used for demonstration was

identical to the steady-state groundwater flow equation for confined aquifers, with

hydraulic conductivity modelled by a KL decomposition of a GP, an almost classical

example problem at this point. In Conrad et al. (2016) and Conrad et al. (2017), the

authors develop an adaptive MCMC algorithm, where in place of sampling from the

true posterior, a local approximate posterior distribution is iteratively constructed.

The model response is modelled with linear or quadratic approximations fitted to

samples of the true model response in the immediate neighbourhoods of the MCMC

state and proposal, or within a “ball”, as formulated by the authors (Figure 2.11).

Figure 2.11: Principle of local approximation MCMC. The blue dots show exact MCMC
samples from the true model and the red balls show the neighborhoods of potential
proposals, from which samples are used to approximate the model output at that proposal.
As sampling progresses each neighborhood will be denser, since more exact samples are
available, allowing the balls to shrink while producing more accurate local approximations.
Adapted from Conrad et al. (2017).

The approximation is refined by evaluating the true model whenever the error of

cross-validating the approximation exceeds a certain threshold. This is a very flexible

approach, which reduces the cost of running MCMC for problems constrained by

expensive forward models with very little tuning, but it does require the exact

posterior to be somewhat smooth, and the forward operator to be well-conditioned,

since the only metric of accuracy is a relative one. Additionally, the algorithm does

not, in fact, sample from the exact posterior but from the distribution associated with
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the approximation of the forward model. In Conrad et al. (2016), they demonstrate

the approach on a relatively low dimensional groundwater flow example, where

the hydraulic conductivity is modelled using a truncated KL expansion of a GP

incorporating the 6 highest energy eigenmodes. In Conrad et al. (2017), they use a

different model for the hydraulic conductivity, where it is assumed to be constant

within 6 predefined zones, and the objective is to find the posterior distribution

within each zone. This is also a fairly low-dimensional and unrealistic problem since

it is highly unlikely that zones of constant hydraulic conductivity would be fully

known a priori. Finally, the groundwater flow problem was used as a benchmark

problem in some recent developments of the pCN proposal, described in Section 2.2

(Cotter et al., 2013). In Beskos et al. (2017), the authors present various geometric

extensions of the pCN proposal, all of which exploit geometric information about

the posterior to sample more efficiently from non-Gaussian posteriors, and problems

where the posterior deviates strongly from the prior. The pCN proposal is designed

to sample efficiently from a Gaussian prior, but it will under-perform when subject

to complex posteriors. This is addressed by the geometric pCN methods (Beskos

et al., 2017) by incorporating the posterior gradient and Hessian in the proposals.

Recently, Lan (2019) combined the geometric pCN proposals of Beskos et al. (2017)

with the Dimension Independent Likelihood Informed (DILI) sampler of Cui, Law

and Marzouk (2016). He constructs a likelihood-informed subspace, similar to the

active subspace technique of Constantine, Kent and Bui-Thanh (2016) as explained

above, and employs geometric pCN on that subspace, rather than the original

parameter space, to reduce the effective dimensionality of the target distribution.

Both Beskos et al. (2017) and Lan (2019) demonstrate their methods on groundwater

flow problems with the hydraulic conductivity modelled by a KL expansion of a GP.

2.4 Final Remarks

While there are various important inverse problems associated with the field of

hydrogeology, the majority of research efforts are directed towards inferring con-

tinuous geophysical properties, e.g. hydraulic conductivity, from discrete point
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measurements of e.g. hydraulic head and flux. This problem is inherently ill-posed,

unless regularisation, dimensionality reduction or some other constraints (such as

the Bayesian prior) are enforced. This challenge has triggered the development of

a wealth of methods that cleverly constrain the inverse problem, such as zonation

combined with Maximum Likelihood estimation, the Pilot Point Method and the

hybrid regularisation approach, which combines Truncated SVD with Tikhonov

regularisation. The primary disadvantage with these methods is that they introduce

an array of opaque tuning parameters that are essentially subjective and can lead to

artefacts in the recovered solutions. Nestling the inverse problem in the Bayesian

context allows for clearly and transparently enforcing constraints through the prior

distribution of parameters.

The theory of such Bayesian inverse problems is well-established, but they entail

their own integral challenge, namely the cost of running MCMC for high-dimensional,

large-scale inverse problems. Additionally, many Bayesian inverse problems involve a

highly complex likelihood function for which the gradient cannot easily be computed.

The remedy for these challenges is not trivial. The second challenge can be alleviated

by using adaptive MCMC proposal distributions, improving the proposal efficiency

without necessarily requiring the gradient. The first challenge is complex and is

best approached by exploiting some cheaper surrogate or reduced-order model. The

simplicity of defining a reduced-order model for many engineering problems makes

this approach a highly attractive one. The principal techniques to rigorously achieve

this are MLMCMC and DA. However, Monte Carlo samples generated by MLMCMC

are generally tainted by an unidentifiable bias and DA, albeit unbiased, is a relatively

inflexible approach. The difficulties associated with these existing techniques present

a potential for the development of new MCMC algorithms that similarly exploit

reduced-order models.

There is little evidence of the use of MCMC for inversion and uncertainty

quantification in more applied sciences and the majority of the above-mentioned

studies are simply using the groundwater flow problem as a well-balanced but

essentially theoretical benchmark for MCMC algorithms. This discrepancy cannot
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be attributed only to the computational cost associated with MCMC, since many

methods for reducing that already exist. I ascribe it partly to the inaccessibility of

such methods, both in terms of the underlying theory, which is often presented in the

form of (what appears to the average engineer as) convoluted mathematical jargon

and to the lack of an easy-to-use software framework for Bayesian inverse problems.

Additionally, it is not always clear from the algorithmic studies what the advantage

of quantifying the uncertainty of a given problem is. Apart from the, in my opinion –

obvious, potential applications with respect to environmental risk assessment, there

are numerous ways that model uncertainties could be used to inform engineering

decision support systems, allowing engineers to create better and more parsimonious

designs.
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3. Multilevel Delayed Acceptance

MCMC with an Adaptive Error

Model in PyMC3

This conference paper (Lykkegaard et al., 2020), presented at the Machine Learning

for Engineering Modeling, Simulation, and Design Workshop (ML4ENG)1 at the

Neural Information Processing Systems (NeurIPS) 2020 conference presents a novel

development in adaptive error modelling for multilevel Bayesian inverse problems.

The paper also briefly discusses a new algorithm called Multilevel Delayed Acceptance

(MLDA), which was explored further in the following journal paper. Please note that

the ML4ENG workshop was peer–reviewed but non–archival, and hence there may

be some overlap between Chapter 3 and 4.

The idea was conceived by Tim Dodwell and me. I developed the computer

code in collaboration with Greg Mingas, conducted the experiments and wrote the

paper. Tim Dodwell and Robert Scheichl provided feedback during the research

process. All authors contributed to the editing. The paper was peer reviewed by the

ML4ENG organisers.

1 https://ml4eng.github.io/
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Abstract

Uncertainty Quantification through Markov Chain Monte Carlo (MCMC) can be
prohibitively expensive for target probability densities with expensive likelihood
functions, for instance when the evaluation it involves solving a Partial Differential
Equation (PDE), as is the case in a wide range of engineering applications. Mul-
tilevel Delayed Acceptance (MLDA) with an Adaptive Error Model (AEM) is a
novel approach, which alleviates this problem by exploiting a hierarchy of mod-
els, with increasing complexity and cost, and correcting the inexpensive models
on-the-fly. The method has been integrated within the open-source probabilistic
programming package PyMC3 and is available in the latest development version. In
this paper, the algorithm is presented along with an illustrative example.

1 Introduction

Sampling from an unnormalised posterior distribution π(·) using Markov Chain Monte Carlo
(MCMC) methods is a central task in computational statistics. This can be a particularly chal-
lenging problem when the evaluation of π(·) is computationally expensive and the parameter space θ
and data d defining π(·) are high-dimensional. The sequential (highly) correlated nature of a Markov
chain and the slow converge rates of Monte Carlo sampling, means that many MCMC samples are
often required to obtain a sufficient representation of a posterior distribution π(·). Examples of such
problems frequently occur in Bayesian inverse problems, image reconstruction and probabilistic
machine learning, where simulations of the measurements (required to calculate a likelihood) depend
on the evaluation of complex mathematical models (e.g. a system of partial differential equations) or
the evaluation of prohibitively large data sets.

Workshop on machine learning for engineering modeling, simulation and design @ NeurIPS 2020
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In this paper a MCMC approach capable of accelerating existing sampling methods is proposed,
where a hierarchy (or sequence) π0(·), . . . , πL−1(·) of computationally cheaper approximations to
the ‘full’ posterior density π(·) ≡ πL(·) are available. As with the original delayed acceptance
algorithm, proposed by Christen and Fox [1], the idea is to generate MCMC proposals for the next
step in the chain from runs of MCMC subchains targeting the computationally cheaper, approximate
densities. The original DA method proposed the approach for just two levels. In this paper, the
approach is extended to recursively apply delayed acceptance across a complete hierarchy of model
approximations, a method termed multilevel delayed acceptance (MLDA). There are close connec-
tions to and similarities with multilevel variance reduction techniques, first proposed by Giles [2],
widely studied for forward uncertainty propagation problems and importantly extended to Multilevel
Markov Chain Monte Carlo approach by Hoang et al. [3] and Dodwell et al. [4], and further to a
Multi-Index setting by Jasra et al. [5]. As in other multilevel approaches, the subchains in MLDA
can be exploited for variance reduction, but this is beyond the scope of this paper.

The increase in use of Bayesian probabilistic tools has naturally coincided with the development of
user-friendly computational packages, allowing users to focus on model development and testing,
rather than algorithm development of sampling methods and post-processing diagnostics. Various
high quality packages are available. Examples include: MUQ, STAN and Pyro.1 A guiding principle of
our work and of this contribution was to ensure that the MLDA implementation is easily accessible,
well supported and gives flexibility to users to define complex models in a friendly language. To
achieve this we embed our sampler into the widely used open-source probabilistic programming
package PyMC3 [6]. The method and implementation have been accepted in the development version,
and will be made available with the next full release (version 3.9.4).

2 Adaptive Multilevel Delayed Acceptance (MLDA)

2.1 Preliminaries: Metropolis-Hastings MCMC Algorithms

Here, a typical Bayesian inverse problem is considered. Given are (limited) observations d ∈ RM of
a system and a mathematical model F(θ) : RR 7→ RM , which maps from a set of model parameters
θ ∈ RR to the space of model predictions of the data. The connection between model and data is
then, in the simplest case, described by the additive model

d = F(θ) + ε (1)

(but it can also be more general). Here, ε is a random variable, which can depend on θ and captures
the uncertainty of the model’s reproduction of the data. It might include measurement uncertainty
of the recorded data, uncertainty due to model mis-specification and/or uncertainties due to sing
in practice a numerical approximation of the mathematical model. The distribution of the random
variable ε defines the likelihood, i.e. the probability distribution L(d|θ). For simplicity it is assumed
to be Gaussian, i.e. ε ∼ N (µε,Σε) and L(d|θ) ∼ N (d−F(θ)− µε,Σε), but it does not have to be.

Given prior information π(θ) on the distribution of the model parameters θ, the aim is to condition
this distribution on the observations, i.e. to obtain samples from the posterior distribution π(θ|d).
Through Bayes’ theorem, it follows that

π(θ|d) =
L(d|θ)π(θ)

π(d)
∝ L(d|θ)π(θ). (2)

Since the normalising constant π(d) (the evidence) is not typically known, the conditional distribution
π(θ|d) is generally intractable and exact sampling is not possible. There are various computational
strategies for generating samples from π(θ|d). This paper focuses on the Metropolis-Hastings MCMC
algorithm, described in Algorithm 1. It creates a Markov chain {θj}j∈N of correlated parameter
states θj that (in the limit) target the exact posterior distribution π(θ|d) (cf. e.g. [7]). The efficiency
of the algorithm is determined by the choice of the proposal distribution q(·|·).

Whilst MCMC methods are the gold-standard for sampling from complex posterior distributions, for
many types of models and data they come with significant practical challenges. Firstly, each cycle
of Alg. 1 requires the evaluation of the model F(θ′) which may be computationally very expensive.
Secondly, the samples generated in the chain are correlated, and therefore many cycles of Alg. 1 are

1MUQ: http://muq.mit.edu, STAN: https://mc-stan.org, Pyro: https://pyro.ai
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Algorithm 1 (Metropolis-Hastings MCMC): Choose θ0. Then, for j = 0, . . . , J − 1:

1. Given θj , generate a proposal θ′ from a given proposal distribution q(θ′|θj),
2. Accept proposal θ′ as the next sample with probability

α(θ′|θj) = min

{
1,
L(d|θ′)π(θ′) q(θj |θ′)
L(d|θj)π(θj)q(θ′|θj)

}
,

i.e. set θj+1 = θ′ with probability α, and θj+1 = θj with probability 1− α.

often required to produce a sufficient number of ”independent” (or effective) samples from π(θ|d).
The ideal proposal distribution generates cheap candidate proposals θ′, which have a high probability
of being accepted, and are independent of the previous sample θj .

In this paper, efficient, Metropolis-style proposal strategies are developed that exploit a hierarchy of
approximations F`(θ), for ` = 0, . . . , L− 1, to the full model FL := F , which are assumed to be
ordered according to increasing accuracy and computational cost.

2.2 Multilevel Delayed Acceptance

Delayed Acceptance (DA) is an approach first introduced by Christen and Fox [1], exploiting a
simple, but highly effective idea. The original DA approach is a two-level method that assumes
a computationally cheaper approximation F∗ for the forward map F is available. The idea is
that for any chosen proposal θ′, a standard Metropolis accept/reject step (as given in Alg. 1) is
performed with the approximate forward map F∗(θ′) before the expensive forward model F(θ′) is
evaluated. Only if accepted, a second accept/reject step with the original forward map F(θ′) and
with acceptance probability α = min

{
1, L(d|θ

′)L∗(d|θj)
L(d|θj)L∗(d|θ′)

}
is carried out. Here, L∗(d|·) denotes the

posterior distribution with the likelihood defined by F∗. The validity of this approach as a proposal
method, yielding a convergent MCMC algorithm, is provided in [1].

The basic DA approach can be extended in two ways. First, instead of doing a single check for
the proposal that comes from the fine level, a subchain of length J can be ran on the coarse level
[8, 9]. This does not affect the theory, but has the advantage of decorrelating samples passed back
as proposals to the fine level. Second, and this is the main, novel algorithmic contribution, DA is
extended to a general multilevel setting, exploiting links to the Multilevel Markov Chain Monte Carlo
(MLMCMC) Method proposed by Dodwell et al. [4].

The subtle differences between the approaches are apparent when comparing the schematics of the
two multilevel proposal processes shown in Fig. 1. Algorithmically, Multilevel Delayed Acceptance
(MLDA) can be seen as a recursion of Delayed Acceptance over multiple levels ` = {0, 1, . . . , L}.
Crucially, if θi` is the current state at level `, and a proposal θ′ from the coarse subchain on level `− 1
is rejected at level `, the coarse subchain to generate the subsequent proposal for level ` is again
initiated from θi`. For MLMCMC, even if the coarse proposal is rejected, the coarse chain continues
independently of the fine chain and does not revert to the state θi` (see Fig. 1, right). As a result,
coarse and fine chains will detach, and only align once a coarse proposal is accepted at the fine level.

Figure 1: Schematic for generating a proposal θ′ on level ` in MLDA (left) and in MLMCMC (right).

The new MLDA algorithm with subchain length J` ∈ N on level 0 ≤ ` < L is described in
Algorithm 2.

3
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Algorithm 2 (Multilevel Delayed Acceptance MCMC):
Choose θ0 and set the states of all subchains θ00 = . . . = θ0L−1 = θ0. Then, for j = 0, . . . , J − 1:

1. Given θj and θj`` such that j` < J` for all 1 ≤ ` < L, generate a subchain of length J0
with Alg. 1 on level 0, starting from θ00 = θj11 and using the transition kernel q(θ′0|θj10 ).

2. Let ` = 1 and θ′1 = θJ00 .
3. If ` = L go to Step 7. Otherwise compute the delayed acceptance probability on level `,

i.e.,

α` = min

{
1,
L`(d|θ′`) L`−1(d|θj`` )

L`(d|θj`` )L`−1(d|θ′`)

}
.

4. Set θj`+1
` = θ′` with probability α` and θj`+1

` = θj`` otherwise. Increment j` → j` + 1.

5. If j` = J` set θ′`+1 = θJ`` , increment `→ `+ 1 and return to Step 3.

6. Otherwise set jk = 0 and θ0k = θj`` , for all 0 ≤ k < `, and return to Step 1.
7. Compute the delayed acceptance probability on level L, i.e.,

αL = min

{
1,
L`(d|θ′L)L`−1(d|θj)
L`(d|θj)L`−1(d|θ′L)

}
.

Set θj+1 = θ′L with probability αL and θj+1 = θj otherwise. Increment j → j + 1.

8. Set j` = 0 and θ0` = θj , for all 0 ≤ ` < L, and return to Step 1.

2.3 Adaptive correction of the approximate posteriors

While the approach outlined above does guarantee sampling from the exact posterior, there are
situations when convergence can be prohibitively slow. When the model approximation is poor, the
delayed acceptance probability is low, and many proposals are rejected. This will result in suboptimal
acceptance rates and low effective sample sizes. The leftmost panel in Fig. 2 shows a contrived
example, where the approximate likelihoods (red/orange isolines) are offset from the likelihood on
the finest level (blue contours) and their scales, shapes and orientations are incorrect. Thus, as an
additional modification, an Adaptive Error Model (AEM) is introduced to account for discrepancies
between model levels.

Figure 2: Effect of applying the Gaussian Adaptive Error Model (AEM). The first panel shows the
initial state before adaptation, where the coarse likelihoods L`(d|θ) (red/orange isolines) approximate
the fine likelihood LL(d|θ) (blue contours) poorly. The second panel shows the effect of shifting the
likelihoods by the mean of the bias. The third panel shows the effect of additionaly incorporating
estimates of the covariance of the bias. (Adapted from [9].)

Let F` denote a coarse forward map of level ` and FL denote the forward map on the finest level L.
To obtain a better approximation of the data d using F`, the two-level AEM suggested in [10, 11]
and analysed in [12] is extended by adding a telescopic sum of the differences in the forward model
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output across all levels from ` to L:

d = FL(θ) + ε = F`(θ) + B`(θ) + ε with B`(θ) :=
L−1∑

k=`

Fk+1(θ)−Fk(θ)︸ ︷︷ ︸
:=Bk(θ)

, (3)

denoting the bias on level ` at θ. The trick in the context of MLDA is that, since B` is just a simple
sum, the individual bias terms Bk from pairs of adjacent model levels can be estimated independently,
so that new information can be exploited each time any set of adjacent levels are evaluated for
the same parameter value θ. Approximating each individual bias term Bk = Fk+1 − Fk with a
multivariate Gaussian B∗k ∼ N (µk,Σk), the total bias B` can be approximated by the Gaussian
B∗` ∼ N (µB,`,ΣB,`) with µB,` =

∑
k µk and ΣB,` =

∑
k Σk.

The bias-corrected likelihood function for level ` is then proportional to

L∗` (d|θ) ∝ exp

(
−1

2

(
d−F`(θ)− µε − µB,`

)T (
Σε + ΣB,`

)−1(
d−F`(θ)− µε − µB,`

))
. (4)

One way to construct the AEM is offline, by sampling from the prior before running the MCMC, as
suggested in [10]. However, this approach requires a significant overhead prior to sampling, and may
result in a suboptimal error model, since the bias in the posterior may differ substantially from the bias
in the prior. Instead, as suggested by [11], an estimate for the Bk can be constructed iteratively during
sampling, using the following recursive formulae for sample mean and sample covariance [13]:

µk,i+1 =
1

i+ 1

(
iµk,i +Bk(θi+1)

)
and (5)

Σk,i+1 =
i− 1

i
Σk,i +

1

i

(
iµk,i µ

T
k,i − (i+ 1)µk,i+1 µ

T
k,i+1 +Bk(θi+1)Bk(θi+1)T

)
(6)

While this approach in theory compromises ergodicity in the strict sense, the recursively constructed
sample moments exhibit diminishing adaptation [13].

3 Implementation and Demonstration

The Multilevel Delayed Acceptance MCMC algorithm (Alg. 2) has been implemented in PyMC3 [6],
an open-source probabilistic programming package for Python built on top of the Theano library [14].
The code is available in the development version of PyMC3.2. In the following section, we present
a numerical experiment, in which we compare the “vanilla” MLDA sampler to the AEM-activated
MLDA sampler. To demonstrate the effect of the AEM, we have chosen models of very low resolution
on the coarse levels. It is important to stress, however, that the AEM is not a strict requirement for
MLDA in cases, where the coarse models are better approximations of the fine.

3.1 Example: Estimation of Soil Permeability in Subsurface Flow

In this example, a simple model problem arising in subsurface flow modelling is considered. Proba-
bilistic uncertainty quantification is of interest in various situations, for example in risk assessment
of radioactive waste repositories. Moreover, this simple PDE model is often used as a benchmark
for MCMC algorithms in the applied mathematics literature. The classical equations which govern
steady-state single-phase subsurface flow are Darcy’s law coupled with an incompressibility constraint

w + k∇p = g and ∇ · w = 0, in D ⊂ Rd (7)

for d = 1, 2 or 3, subject to suitable boundary conditions. Here p denotes the hydraulic head of the
fluid, k the permeability tensor, w the flux and g is the source term.

A typical approach to treat the inherent uncertainty in this problem is to model the permeability as
a random field k = k(x, ω) on D × Ω, for some probability space (Ω,A,P). Therefore, (7) can be
written as the following PDE with random coefficients:

−∇ · k(x, ω)∇p(x, ω) = f(x), for all x ∈ D, (8)

2https://github.com/pymc-devs/pymc3
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where f := −∇ · g. As a synthetic example, consider the domain D := [0, 1]2 with f ≡ 0 and
deterministic boundary conditions

p|x1=0 = 0, p|x1=1 = 1 and ∂np|x2=0 = ∂np|x2=1 = 0. (9)

A widely used model for the prior distribution of the permeability in hydrology is a log-Gaussian
random field, characterised by the mean of log k, here chosen to be 0, and by its covariance function,
here chosen to be

C(x, y) := σ2 exp

(
−‖x− y‖

2
2

2λ2

)
, for x, y ∈ D, (10)

with σ = 2 and λ = 0.3. The log-Gaussian random field is parametrised using a truncated Karhunen-
Loève (KL) expansion of log k, i.e., an expansion in terms of a finite set of independent, standard
Gaussian random variables θi ∼ N (0, 1), i = 1, . . . , R, given by

log k(x, ω) =
R∑

i=1

√
µiφi(x)θi(ω). (11)

Here, {µi}i∈N are the sequence of strictly decreasing real, positive eigenvalues, and {φi}i∈N the
corresponding L2-orthonormal eigenfunctions of the covariance operator with kernel C(x, y). Thus,
the prior distribution on the parameter θ = (θi)

R
i=1 in the stochastic PDE problem (8) is N (0, IR).

The aim is to infer the posterior distribution of θ, conditioned on measurements of p at M = 25
discrete locations xj ∈ D, j = 1, . . . ,M , stored in the vector dobs ∈ RM . Thus, the forward operator
is F : RR → RM with Fj(θω) = p(xj , ω).

Figure 3: True log-conductivity field of the coarsest model with m0 grid points (left) and the finest
model with m2 grid points (right).

All finite element (FE) calculations were carried out with FEniCS [15], using piecewise linear FEs on
a uniform triangular mesh. The coarsest mesh T0 consisted of m0 = 5 grid points in each direction,
while subsequent levels were constructed by two steps of uniform refinement of T0, leading to
m` = 4`(m0 − 1) + 1 grid points in each direction on the three grids T`, ` = 0, 1, 2 (Fig. 3).

To demonstrate the excellent performance of MLDA with the AEM, synthetic data was generated by
drawing a sample θex from the prior distribution and solving (8) with the resulting realisation of k on
T2. To construct dobs, the computed discrete hydraulic head values at (xj)Mj=1, were then perturbed
by independent Gaussian random variables, i.e. by a sample ε∗ ∼ N (0,Σε) with Σε = 0.012IM .

To compare the “vanilla” MLDA approach to the AEM-enhanced version, we sampled the same
model using identical sampling parameters, with and without AEM activated. For each approach,
we sampled four independent chains, each initialised at a random point from the prior. For each
independent chain, we drew 5000 samples plus a burn-in of 2000. We used subchain lengths
J0 = J1 = 5, since that produced the best trade-off between computation time and effective sample
size for MLDA with the AEM. Note that the cost of computing the subchains on the coarser levels
only leads to about a 50% increase in the total cost for drawing a sample on level L. The PyMC3
non-blocked Random Walk Metropolis Hastings (RWMH) sampler was employed on the coarsest
level with automatic step-size tuning during burn-in to achieve an acceptance rate between 0.2 and
0.5. All other sampling parameters were maintained at the default setting of the MLDA method.
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To assess the performance of the two approaches the Effective Sample Size (ESS) for each parameter
was computed [16]. Since the coarsest model was quite a poor approximation of the finest, running
MLDA without the Adaptive Error Model (AEM), yielded very poor results. None of the four chains
converged, there was poor mixing, a sub optimal acceptance rate of 0.019 on level L, and an ESS of
4 out of 20000 samples, meaning that each independent chain was only capable of producing a single
independent sample. When the AEM was employed and otherwise using the exact same sampling
parameters, we observed convergence for every chain, good mixing, an acceptance rate of 0.66 on
level L and an ESS of 3319 out of 20000 samples (Fig. 4). In comparison, a single-level non-blocked
RWMH sampler on grid T2 with automatic step-size tuning during burn-in produced an ESS of 19
out of 5000 samples with an acceptance rate of 0.26.
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Figure 4: Traces of θ1 on level ` = 2, for MLDA without (left) and with AEM (right).

Note that the particular numerical experiment was chosen to demonstrate the dramatic effect that
employing the AEM can have in MLDA. Thus, making it possible to use multilevel sampling strategies
with very crude approximate models. A FE mesh with 25 degrees of freedom is extremely coarse
for a Gaussian random field with correlation length λ = 0.3, yet using the AEM it still provides an
excellent surrogate for delayed acceptance. Typically much finer models are used in real applications
with longer subchains on the coarser levels (cf. [4]). The AEM will be less critical in that case and
MLDA will also produce good ESS without the AEM. In a future journal paper, this topic will be
carefully studied along with a comparison with other samplers on the finest level and an analysis of
the multilevel variance reduction capabilities of MLDA.

Broader Impact

This research has the potential to make unbiased uncertainty quantification of expensive models
available to a greater audience, including engineers employed in risk assessment and reliability engi-
neering. Since many engineering problems involve solving PDEs, multi-level hierarchies can easily
be introduced using grid refinement, making this method exceptionally well suited for engineering
applications.
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4. Multilevel Delayed Acceptance

MCMC

This journal paper, currently under review in the SIAM/ASA Journal on Uncertainty

Quantification, further develops the Multilevel Delayed Acceptance (MLDA) al-

gorithm outlined in the previous conference paper. This paper includes a theoretical

section where we prove detailed balance of the algorithm, an outline of how to exploit

variance reduction with MLDA, the theory of a multilevel adaptive error model, and

three examples demonstrating the various features of MLDA, including a gravity

surveying problem, a predator-prey model and a groundwater flow problem.

The idea was conceived my Tim Dodwell and me. I developed the computer

code in collaboration with Greg Mingas. I conceived of the examples and completed

the experiments. I wrote the text with contributions from Tim Dodwell and Colin

Fox. Tim Dodwell, Robert Scheichl and Colin Fox provided feedback during the

research process. All authors contributed to the editing.
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ABSTRACT

We develop a novel Markov chain Monte Carlo (MCMC) method that exploits a
hierarchy of models of increasing complexity to efficiently generate samples from
an unnormalized target distribution. Broadly, the method rewrites the Multilevel
MCMC approach of Dodwell et al. (2015) in terms of the Delayed Acceptance
(DA) MCMC of Christen & Fox (2005). In particular, DA is extended to use a
hierarchy of models of arbitrary depth, and allow subchains of arbitrary length.
We show that the algorithm satisfies detailed balance, hence is ergodic for the
target distribution. Furthermore, multilevel variance reduction is derived that ex-
ploits the multiple levels and subchains, and an adaptive multilevel correction to
coarse-level biases is developed. Three numerical examples of Bayesian inverse
problems are presented that demonstrate the advantages of these novel methods.
The software and examples are available in PyMC3.
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1 Introduction

Sampling from an unnormalised posterior distribution π(·) using Markov Chain Monte Carlo
(MCMC) methods is a central task in computational statistics. This can be a particularly chal-
lenging problem when the evaluation of π(·) is computationally expensive and the parameters θ
and/or data d defining π(·) are high-dimensional. The sequential (highly) correlated nature of a
Markov chain and the slow converge rates of MCMC sampling, means that often many MCMC
samples are required to obtain a sufficient representation of a posterior distribution π(·). Examples
of such challenging problems frequently occur in Bayesian inverse problems, image reconstruction
and probabilistic machine learning, where simulations of the measurements (required to calculate
a likelihood function) depend on the evaluation of complex mathematical models (e.g. a system of
partial differential equations) or the evaluation of prohibitively large data sets.

The topic of MCMC methods is a rich and active field of research. While the basic idea of the
original Metropolis–Hastings algorithm [36, 24] is almost embarrassingly simple, it has given rise to
a wide variety of algorithms tailored to different applications. Most notably, the Gibbs sampler [18],
which samples each variable conditional on the other variables, the Metropolis Adjusted Langevin
Algorithm (MALA, [42, 38]), Hamiltonian Monte Carlo (HMC, [16]) and the No-U-Turn Sampler
(NUTS, [26]), which all exploit gradient information to improve the MCMC proposals. We would
also like to highlight the seminal work of Haario et al. [21] on the Adaptive Metropolis sampler that
launched a new paradigm of adaptive MCMC algorithms (see e.g. [2, 1, 41, 49, 50, 14]).

The most efficient MCMC methods cheaply generate candidate proposals, which have a high prob-
ability of being accepted, whilst being almost independent from the previous sample. In this paper,
we define a MCMC approach capable of accelerating existing sampling methods, where a hierarchy
(or sequence) π0(·), . . . , πL−1(·) of computationally cheaper approximations to the exact posterior
density π(·) ≡ πL(·) are available. As with the original Delayed Acceptance (DA) algorithm, pro-
posed by Christen and Fox [8], short runs of MCMC subchains, generated using a computationally
cheaper, approximate density π`−1(·), are used to generate proposals for the Markov chain targeting
π`(·). The original DA method formulated the approach for just two levels and a single step on the
coarse level. In this paper we extend the method by recursively applying DA across a hierarchy
of model approximations for an arbitrary number of steps on the coarse levels – a method we term
Multilevel Delayed Acceptance (MLDA). There are clear similarities with Multilevel Monte Carlo
sampling methods, first proposed by Heinrich [25] and later by Giles [19], which have been widely
studied for forward uncertainty propagation problems (see e.g. [9, 4, 7, 46]) and importantly have
been extended to Bayesian inverse problems in the Multilevel Markov Chain Monte Carlo (MLM-
CMC) approach by Dodwell et al. [15] as well as to the Multi-Index setting [22, 27].

The fundamental idea of multilevel methods is simple: We let the cheaper (or coarse) model(s) do
most of the work. In the context of sampling, be it Monte Carlo or MCMC, this entails drawing
more samples on the coarser levels than on the finer, and use the entirety of samples across all model
levels to improve our Monte Carlo estimates. Additionally, in the context of MCMC, the samplers
on the coarser levels inform the samplers on the finer levels by filtering out poor MCMC proposals,
effectively boosting the acceptance rate and hence computational efficiency on the finer levels.

While applying the multilevel idea to Monte Carlo sampling is straightforward, there are certain
complications in the context of MCMC. The challenges are two-fold. Firstly, MCMC is inherently
sequential and, following the Delayed Acceptance approach, proposals must be evaluated on the
coarse levels before being passed to the fine, which precludes parallelisation across levels. Secondly,
depending on the “quality” of the coarse models, MCMC proposals may not always be filtered
well. The multilevel MCMC algorithm of Dodwell et al. [15] overcomes the first challenge by
letting the coarser levels sample independently of the finer but at the expense of not being Markov
(see Sec. 2.2). The sampler presented in this paper is Markov, so it differs from MLMCMC [15].
The second challenge can be addressed by using adequate coarse models, but the effect may also
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be alleviated by introducing an error model that accounts for discrepancies between levels. The
error models introduced in [28] were constructed offline using samples from the prior. The sampler
presented in this paper uses the a posteriori error model introduced in [13], constructed online and
adaptively, which is much more efficient; see [14, 17] for comparisons of a priori and a posteriori
error models.

In the following section we present the MLDA algorithm. We prove detailed balance of MLDA,
working through each of the constituent elements separately. In this process, we develop two addi-
tional algorithms, namely Randomised-Length-Subchain Surrogate Transition (RST) and Two Level
Delayed Acceptance (TLDA), each of which are valid MCMC samplers in their own respect. We
extend the MLDA algorithm (1) by showing that we can achieve multilevel variance reduction with
respect to some quantity of interest (as for MLMCMC), and (2) by developing a multilevel error ap-
proximation model to adaptively correct the coarse level biases at runtime based on samples. In Sec-
tion 3, we demonstrate the algorithm using three examples of different Bayesian inverse problems.
First, we show that extended subchains on the coarse level can significantly increase the effective
sample size compared to an equivalent single-level sampler on the fine level, using an example from
gravitational surveying. Second, we demonstrate multilevel variance reduction on a predator-prey
model, where coarse models are constructed by restricting the length of the time window over which
the differential equation model is fitted to data. Third, we demonstrate the multilevel error model
in the context of a subsurface flow problem. We show that when we utilize the error model, we
can achieve high effective sample sizes on the finest level, even when a very crude approximation is
employed as the coarsest model.

2 Multilevel Delayed Acceptance

In this section we first outline the theoretical foundations of vanilla Metropolis–Hastings based
MCMC [36, 24] and the Delayed Acceptance (DA) method proposed by Christen and Fox [8]. We
extend DA in two ways: horizontally, by allowing the coarse sampler to construct subchains of
multiple coarse samples before proposing a sample on the fine level; and vertically, by recursively
using DA on an entire hierarchy of models with increasing resolution/accuracy. This constitutes the
Multilevel Delayed Acceptance (MLDA) sampler. From this we propose two extensions which each
give significant gains in statistical efficiency, namely multilevel variance reduction and a multilevel
adaptive error model – the inclusion of these extensions leads us to the Adaptive Multilevel Delayed
Acceptance sampler demonstrated in Section 3.

2.1 Convergence of MLDA and Detailed Balance

We will show that MLDA correctly generates samples from the unnormalised target density π (·) by
building on standard ergodicity results for Markov chains (see [39] and references therein). Each
algorithm considered here defines a stochastic iteration on a well-defined state, so defines a Markov
chain. Hence, we can apply classical ergodic theorems for Markov chains.

The ergodic theorems for Markov chains (see [39] and references therein) state that the chain is
π-ergodic if the chain is π-irreducible, aperiodic, and reversible with respect to π. Essentially, ir-
reducibility and aperiodicity guarantee that the Markov chain has a unique equilibrium distribution,
while reversible with respect to π ensures that π is the density of that unique distribution. The
condition of π-irreducibility is satisfied when the proposal distribution is chosen such that the stan-
dard Metropolis–Hasting algorithm is π-irreducible. For algorithms based on delayed acceptance,
it is also necessary that the coarse-level approximation is chosen to maintain irreducibility; see [8,
Thm. 1] for precise conditions on the approximation. Aperiodicity is a mild condition that is satis-
fied by any Metropolis–Hastings algorithm with a non-zero probability of rejection on any π-positive
set; again see [8, Thm. 1]. We will assume that the proposal and approximations are chosen so that
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these conditions hold. Accordingly, we focus on establishing reversibility of algorithms, which is
equivalent to the stochastic iteration being in detailed balance with the target density π; see [31].

2.1.1 Metropolis–Hastings MCMC

Consider first the plain vanilla Metropolis–Hastings algorithm for sampling from target density πt.
Given an initial state θ0 and a proposal distribution with density function q (·|θ), the Metropolis–
Hastings algorithm for generating a chain of length N is given in Alg. 1.

Algorithm 1. Metropolis–Hastings (MH)

function:
[
θ1, . . . , θN

]
= MH

(
πt(·), q(·|·), θ0, N

)

input: density of target distribution πt(·), density of proposal distribution q(·|·), initial state θ0,
number of steps N

output: ordered list of states
[
θ1, . . . , θN

] (
or just the final state θN

)

for j = 0 to N − 1 :
• Given θj , generate a proposal ψ distributed as q(ψ|θj),

• Accept proposal ψ as the next state, i.e. set θj+1 = ψ, with probability

α(ψ|θj) = min

{
1,
πt(ψ)q(θj |ψ)

πt(θj)q(ψ|θj)

}
(1)

otherwise reject ψ and set θj+1 = θj .

For each j, Alg. 1 simulates a fixed stochastic iteration with θj+1 being conditionally dependent
only on θj , the state at step j, which can be represented by a fixed (stationary) transition kernel
K (y|x) that generates a (homogeneous) Markov chain. For target density πt, detailed balance may
be written

πt (x)K (y|x) = πt (y)K (x|y) ,

which, in general, is the property that K is self-adjoint in the measure πt. See [31, Sec. 5.3] for a
nice method for showing that K simulated by MH Alg. 1 is in detailed balance with πt, and also for
a more general class of acceptance probabilities.

Hence, under mild conditions on the proposal density q and the initial state θ0, the ergodic theorem
for Markov chains applies, which guarantees that the j-step density converges to πt, asymptotically
as j →∞. Hence, the Markov chain is πt-ergodic.

A common choice of proposal distributions for inverse problems in multiple dimensions are random-
walk proposals, though these typically lead to adjacent states of the chain being highly correlated,
resulting in high computational cost to estimate posterior expectations with a desired accuracy. In
the following we do not discuss the choice of proposal q, though in some sense our primary concern
is how to improve a proposal once chosen. We also do not discuss the choice of initial state.

The following lemma gives an alternative form of the acceptance probability in Eq. (1) used later.
Lemma 1. If the proposal transition kernel q(·|·) in Alg. 1 is in detailed balance with some distri-
bution π∗, then the acceptance probability (1) may be written

α(ψ|θj) = min

{
1,
πt(ψ)π∗(θj))
πt(θj)π∗(ψ)

}
(2)

Proof. Substitute the detailed balance statement π∗(ψ)q(θj |ψ) = π∗(θj))q(ψ|θj) into (1) to get
(2), almost everywhere.
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2.1.2 MCMC for Hierarchical Bayesian Models

A hierarchical Bayesian model of some problem, including inverse problems, leads to the posterior
distribution for unknown parameters θ conditioned on measured data d, given by Bayes’ rule

π(θ|d) =
π(d|θ)πp(θ)

π(d)
. (3)

In the Bayesian framework, solving the inverse problem is performed by exploring the posterior
distribution π(θ|d) defined by (3) and evaluating statistics with respect to that distribution. Sample-
based inference does this by drawing samples from the posterior distribution to evaluate sample-
based Monte Carlo estimates of expected values. The plain vanilla route to drawing samples from
π(θ|d) is to invoke MH Alg. 1 with πt(·) = π(·|d) such that[

θ1, . . . , θN
]

= MH
(
π(θ|d), q(·|·), θ0, N

)
.

Asymptotically, the density of the jth state θj converges to the posterior density π(·|d) and averages
over this chain converge to expectations with respect to π(·|d), asymptotically in N .

The following lemma formalises the usual observation that the unnormalised posterior density
π(d|θ)πp(θ) ∝ π(θ|d) may be used to evaluate the Metropolis ratio in Eq. (1).
Lemma 2. When π(d) in (3) is finite, the Metropolis ratio πt(ψ)/πt(θ

j) in Alg. 1 Eq. (1) may be
evaluated as a ratio of unnormalized densities

π(d|ψ)πp(ψ)

π(d|θj)πp(θj)
. (4)

Proof. Substitute πt(·) = π(·|d) from Eq. (3) into the Metropolis ratio and note that the normalisa-
tion constants 1/π(d) in the numerator and in the denominator cancel.

Hereafter, for brevity we typically write the acceptance probability using the ratio of normalized
posterior densities, as in Eq. (1), but actually compute with unnormalized densities, as in Eq. (4).

2.1.3 Delayed Acceptance MCMC

The Delayed Acceptance (DA) algorithm was introduced by Christen and Fox in [8], with the goal of
reducing the computational cost per iteration by utilizing a computationally cheaper approximation
of the forward map, and thus also of the posterior density, for evaluating the acceptance probability
in Alg. 1. One may also view DA as a way to improve the proposal kernel q, since DA modifies the
proposal kernel using a Metropolis–Hastings accept-reject step to give an effective proposal that is
in detailed balance with an (approximate) distribution that is hopefully closer to the target than is
the equilibrium distribution of the original proposal kernel.

The delayed acceptance algorithm is given in Alg. 2, for target (fine) density πF and approximate
(coarse) density πC. Delayed acceptance first performs a standard Metropolis–Hastings accept/reject
step (as given in Alg. 1) with the approximate/coarse density πC. If accepted, a second accept
reject/step is used, with acceptance probability chosen such that the composite iteration satisfies
detailed balance with respect to the desired target πF.

In Alg. 2 Eq. (6), qC(·|·) is the effective proposal density from the first Metropolis–Hastings step
with coarse density πC(·) as target; see [8] for details. The acceptance probability in Eq. (6) is the
standard Metropolis–Hastings rule for proposal density qC, targeting πF(·), hence Alg. 2 simulates
a kernel in detailed balance with πF(·) and produces a chain that is ergodic with respect to πF(·);
see [8] for conditions on the approximation that ensure that the ergodic theorem applies. Compu-
tational cost per iteration is reduced because for proposals that are rejected in the first MH step
in Eq. (5), and thus result in ψ = θj , the second acceptance ratio in Eq. (6) involving the more
expensive, fine target density πF(·) does not need to be evaluated again.
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Algorithm 2. Delayed Acceptance (DA)
function:

[
θ1, . . . , θN

]
= DA

(
πF(·), πC(·), q(·|·), θ0, N

)

input: target (fine) density πF(·), approximate (coarse) density πC(·), proposal kernel q(·|·),
initial state θ0, number of steps N

output: ordered list of states
[
θ1, . . . , θN

] (
or just the final state θN

)

for j = 0 to N − 1 :
• Given θj , generate proposal ψ by invoking one step of MH Alg. 1 for coarse target πC:

ψ = MH
(
πC(·), q(·|·), θj , 1

)
. (5)

• Accept proposal ψ as the next state, i.e. set θj+1 = ψ, with probability

α(ψ|θj) = min

{
1,
πF(ψ)qC(θj |ψ)

πF(θj)qC(ψ|θj)

}
(6)

otherwise reject proposal ψ and set θj+1 = θj .

In the multilevel context with levels indexed by `, the original DA Alg. 2 is a two-level method.
Denote the more accurate forward map that defines the fine posterior distribution π`(θ`|d`) by
F`, and the less accurate forward map that defines the approximate (coarse) posterior distribution
π`−1(θ`|d`−1) by F`−1. Note that we also allow a possibly altered or reduced data set d`−1 on level
` − 1, but that the states in the two forward maps and in the two distributions are the same. Then
setting πF(·) = π`(·|d`) and πC(·) = π`−1(·|d`−1) in the call to DA Alg. 2, such that

[
θ1` , . . . , θ

N
`

]
= DA

(
π`(·|d`), π`−1(·|d`−1), q(·|·), θ0, N

)
,

computes a chain that is ergodic with respect to π`(·|d`), asymptotically as N →∞.

DA Alg. 2 actually allows for the approximate, coarse posterior distribution to depend on the state
of the chain. Denote the state-dependent, approximate forward map at state θ by F`−1,θ and the
resulting approximate posterior density by π`−1,θ(·|d`−1). For state-dependent approximations it is
always desirable and easy to achieve (see [14]) that F`−1,θ(θ) = F`(θ), so that π`−1,θ(θ|d`−1) =
kπ`(θ|d`) with the normalising constant k independent of state θ. The acceptance probability Eq. (6)
then has the explicit form

α(ψ|θj) = min



1,

min
{
πF(ψ)q(θj |ψ), πC,ψ(θj)q(ψ|θj)

}

min
{
πF(θj)q(ψ|θj), πC,θj` (ψ)q(θj |ψ)

}



 . (7)

For technical reasons, as explained later, we will not use state-dependent approximations, but rather
restrict ourselves to fixed approximate forward maps that do not depend on the current state.

2.1.4 Randomised-Length-Subchain Surrogate Transition MCMC

When the approximate forward map does not depend on the current state – for example, when
using a fixed coarse discretization for a PDE – the resulting approximate posterior density is a fixed
surrogate for the true posterior density, and Alg. 2 coincides with the surrogate transition method
introduced by Liu [31]. Lemma 1 then implies that the acceptance probability in Eq. (6) is

α(ψ|θj) = min

{
1,
πF(ψ)πC(θj)

πF(θj)πC(ψ)

}
, (8)

since the Metropolis–Hastings step in Eq. (5) ensures that the effective proposal kernel qC(·|·) is in
detailed balance with the approximate density πC(·).
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We extend the surrogate transition method in two ways. As noted by Liu [31], multiple steps can
be made with the surrogate, i.e. iterating the proposal and first accept/reject step Eq. (5) before
performing the second accept/reject step with acceptance probability in Eq. (8). We call the sequence
of states generated by multiple steps of Eq. (5) a subchain. Further, we consider subchains of random
length, set according to a probability mass function (pmf) p(·) on the positive integers. In practice
we set J ∈ Z+ and then set p = U({1, 2, . . . , J}), though note that a deterministic choice of
subchain length is another special case. The utility of randomising the subchain length will become
apparent in Section 2.3. These extensions are included in Alg. 3.

Algorithm 3. Randomised-Length-Subchain Surrogate Transition (RST)
function:

[
θ1, . . . , θN

]
= RST

(
πF(·), πC(·), q(·|·), p(·), θ0, N

)

input: target (fine) density πF(·), surrogate (coarse) density πC(·), proposal kernel q(·|·), prob-
ability mass function p(·) over subchain length, initial state θ0, number of steps N

output: ordered list of states
[
θ1, . . . , θN

] (
or just the final state θN

)

for j = 0 to N − 1 :
• Draw the subchain length n ∼ p(·).

• Starting at θj , generate subchain of length n using MH Alg. 1 to target πC(·):

ψ = MH
(
πC(·), q(·|·), θj , n

)
(9)

• Accept the proposal ψ as the next sample, i.e. set θj+1 = ψ, with probability

α(ψ|θj) = min

{
1,
πF(ψ)πC(θj)

πF(θj)πC(ψ)

}
. (10)

otherwise reject and set θj+1 = θj .

We will show that Alg. 3 satisfies detailed balance using the following lemma, needed also later.
Lemma 3. Let K1(x|y) and K2(x|y) be two transition kernels that are in detailed balance with a
density π and that commute. Then their composition (K1 ◦K2) is also in detailed balance with π.

Proof.
π(ψ)(K1 ◦K2)(θ|ψ) = π(ψ)

∫
K1(θ|φ)K2(φ|ψ)dφ = π(ψ)

∫
K2(θ|φ)K1(φ|ψ)dφ

= π(ψ)

∫
K2(φ|θ)π(θ)

π(φ)
K1(ψ|φ)

π(φ)

π(ψ)
dφ

= π(θ)

∫
K2(φ|θ)K1(ψ|φ)dφ = π(θ)(K1 ◦K2)(ψ|θ)

Lemma 4. Alg. 3 simulates a Markov chain that is in detailed balance with πF(·).

Proof. Recall that the effective density qC(·|·) for proposals drawn according to Alg. 2 Eq. (5) is
in detailed balance with πC(·). Since qC clearly commutes with itself, using Lemma 3, it follows
by induction that qnC(·|·), i.e., qC composed n times with itself) is in detailed balance with πC(·) for
any n. Hence, the effective proposal density induced by Alg. 3 Eq. (9), namely the mixture kernel∑
n∈Z+ p(n)qnC(·|·) is also in detailed balance with πC(·).

Finally, the acceptance probability in Alg. 3 Eq. (10) for target density πF(·) follows from Lemma 1,
since the proposal kernel is in detailed balance with πC(·). Consequently, Alg. 3 produces a chain
in detailed balance with πF(·).
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Remark 1. (a) Choosing a multinomial pmf over the subchain length, with p(J) = 1 and p(¬J) =
0, implies that Lemma 4 is also valid for the special case of a fixed subchain length JC .

(b) We do not yet have a version of Lemma 4 for fully state-dependent approximations, which is
why we restrict here to state-independent surrogates.

When both posterior distributions are with respect to the same prior distribution, the acceptance
probability in Eq. (10) simplifies to a ratio of likelihood functions. The proof is obvious.
Lemma 5. If the densities of the coarse and fine posterior distributions in Alg. 3 are with respect to
the same prior distribution, i.e. πF(θ) = π`(θ|d`) ∝ π`(d`|θ)πp(θ) and πC(θ) = π`−1(θ|d`−1) ∝
π`−1(d`−1|θ)πp(θ), the acceptance probability in Alg. 3 Eq. (10) is equal to

α(ψ|θj) = min

{
1,
π`
(
d`|ψ

)
π`−1

(
d`−1|θj

)

π`
(
d`|θj

)
π`−1

(
d`−1|ψ

)
}
. (11)

2.1.5 Different Fine and Coarse States

In delayed acceptance Alg. 2, and hence also in the randomised surrogate transition Alg. 3, the state
in the fine and coarse target distributions is the same. In the MLMCMC of Dodwell et al. [15] the
(fine) state θ` at level ` is partitioned into “coarse modes” (or “components”) denoted θ`,C and “fine
modes” θ`,F, so that θ` = (θ`,F, θ`,C). The coarse modes are the components of the state vector
on the coarse, approximate level ` − 1, i.e., θ`,C = θ`−1, and the target πC at the coarse level is a
function of the coarse modes only, while the fine target distribution additionally depends also on the
fine modes.

The randomised surrogate transition Alg. 3 is easily extended to allow this structure, as shown in
Alg. 4 below, where surrogate transition is only used to propose the states of the coarse modes, while
the fine modes are drawn from some additional proposal distribution. The composite of the fine and
coarse proposals then forms the proposed state at the fine level. For this extension it is important
that the fine modes are proposed independently of the coarse modes to ensure detailed balance, as
shown below.
Lemma 6. Two Level Delayed Acceptance in Alg. 4 generates a chain in detailed balance with πF.

Proof. As noted in the proof of Lemma 4, the proposal density qC induced by the surrogate transi-
tion step in Alg. 4 Eq. (12) is in detailed balance with the coarse target density πC(·) over θC. As a
kernel on the composite state θ = (θF, θC) we can write the coarse proposal as

KC =

[
I 0
0 qC

]

where I denotes the identity of appropriate dimension. Similarly, the fine proposal Eq. (13) on the
composite state has kernel

KF =

[
qF 0
0 I

]
.

Since KF does not change the coarse modes, it trivially is in detailed balance with πC(·). Further, it
is easy to check that KC and KF commute. Hence, by Lemma 3 the composition (KF ◦Kn

C) is also
in detailed balance with πC(·) and so is the effective proposal kernel

∑
n∈Z+ p(n)(KF ◦ Kn

C) for
drawing ψ = (ψF, ψC) according to Alg. 4 Eqs. (12) and (13). The acceptance probability in Alg. 4
Eq. (14) then follows again from Lemma 1 and the chain produced by Alg. 4 is in detailed balance
with πF(·), as desired.

Note that the Randomised Surrogate Transition Alg. 3 is a special case of Alg. 4 with θj = θjC, i.e.
θjF is empty, and correspondingly qF(·|·) is the (trivial) proposal on the empty space.
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Algorithm 4. Two Level Delayed Acceptance (TLDA)
function:

[
θ1, . . . , θN

]
= TLDA

(
πF(·), πC(·), q(·|·), qF(·|·), p(·), θ0, N

)

input: target (fine) density πF(·), surrogate (coarse) density πC(·), proposal kernel q(·|·) on
coarse modes, proposal kernel qF(·|·) on fine modes, probability mass function p(·)
over subchain length, initial state θ0, number of steps N

output: ordered list of states
[
θ1, . . . , θN

] (
or just the final state θN

)

for j = 0 to N − 1 :
• Draw the subchain length n ∼ p(·).

• Starting at θjC, generate subchain of length n using MH Alg. 1 to target πC(·):

ψC = MH
(
πC(·), q(·|·), θjC, n

)
(12)

• Draw the fine-mode proposal
ψF ∼ qF(·|θjF) (13)

• Accept proposal ψ = (ψF, ψC) as next sample, i.e., set θj+1 = ψ, with probability

α(ψ|θj) = min

{
1,
πF(ψ)πC(θjC)

πF(θj)πC(ψC)

}
. (14)

otherwise reject and set θj+1 = θj .

2.1.6 Multilevel Delayed Acceptance

The multilevel delayed acceptance algorithm is a recursive version of TLDA in which instead of in-
voking Metropolis–Hastings to generate a subchain at the coarser levels the algorithm is recursively
invoked again (except for the coarsest level ` = 0).

To be more precise, MLDA Alg. 5 below is called on the most accurate, finest level L. Then, for
levels 1 ≤ ` ≤ L it generates a subchain at level `− 1 as in TLDA, by recursively invoking MLDA
on level ` − 1, until the coarsest level ` = 0 is reached where plain MH in invoked. Required
for MLDA are the hierarchy of density functions π0(·), . . . , πL(·) along with a coarsest-level pro-
posal q0, partitions into coarse and fine modes at each level, fine-level proposals q1,F, . . . , qL,F and
probability mass functions p1(·), . . . , pL(·) over the subchain lengths on levels 0 to L− 1.

A chain of length N at level L is then produced by calling
[
θ1L, . . . , θ

N
L

]
= MLDA

(
{πk}Lk=0 , q0, {qk,F}

L
k=1 , {pk}

L
k=1 , θ

0
L, L,N

)
. (15)

We can now state the main theoretical result of paper.

Theorem 1. Multilevel Delayed Acceptance in Alg. 5, invoked as in (15), generates a Markov chain
that is in detailed balance with πL.

Proof. The proof follows essentially by induction on the level ` from the proof of Lemma 6. At level
` = 1, MLDA is equivalent to TLDA, and so the base step follows immediately from Lemma 6.
Let us now assume that the proposal kernel for ψ = (ψF, ψC) on level ` simulated using MLDA
on level ` − 1 is in detailed balance with π`−1. Then it follows from Lemma 1 that the acceptance
probability in Alg. 5 Eq. (16) produces a Markov chain that is in detailed balance with π`(·), which
concludes the induction step.
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Algorithm 5. Multilevel Delayed Acceptance (MLDA):

function:
[
θ1` , . . . , θ

N
`

]
= MLDA

(
{πk}`k=0 , q0, {qk,F}

`
k=1 , {pk}

`
k=1 , θ

0
` , `,N

)

input: target densities π0(·), . . . π`(·), proposal densities q0(·|·) and q1,F(·|·), . . . , q`,F, proba-
bility mass functions p1(·), . . . , p`(·) over subchain lengths on levels 0 to ` − 1, initial
state θ0` , current level index `, number of steps N

output: ordered list of states [θ1` , . . . , θ
N
` ] at level `

(
or just the final state θN`

)

for j = 0 to N − 1 :
• Draw the subchain length n` ∼ p`(·) for level `− 1.

• Starting at θj`,C, generate a subchain of length n` on level `− 1:

– If ` = 1, use the Metropolis–Hastings algorithm to generate the subchain

ψC = MH
(
π0(·), q0(·, ·), θj1,C, n1

)
.

– If ` > 1, generate the subchain by (recursively) calling MLDA

ψC = MLDA
(
{πk(·)}`−1k=0 , q0(·|·), {qk,F}`−1k=1 , {pk}

`−1
k=1 , θ

j
`,C, `− 1, n`

)
.

• Draw the fine-mode proposal ψF ∼ q`,F
(
· |θj`,F

)
.

• Accept proposal ψ = (ψF, ψC) as next sample, i.e., set θj+1
` = ψ, with probability

α(ψ|θj) = min

{
1,
π`(ψ)π`−1

(
θj`,C

)

π`
(
θj`
)
π`−1(ψC)

}
(16)

otherwise reject and set θj+1
` = θj` .

2.2 Comparison with MLMCMC

The generalisation of Delayed Acceptance to an extended multilevel setting leads to clear similari-
ties with the Multilevel Markov Chain Monte Carlo (MLMCMC) Method proposed by Dodwell et
al. [15]. The more subtle difference between the two approaches is illustrated in Fig. 1.

The MLDA algorithm can be seen as a recursive application of the surrogate transition method over
multiple levels. If a proposal ψ from level `− 1 for level ` at state θj` is rejected, the initial state for
the coarse subchain θ0`−1 is set back to θj` . Hence, the new coarse subchain, which will generate the
next proposal for level `, is initialised from the same state as the previous subchain.

For MLMCMC [15], even if the coarse proposal is rejected, the coarse chain continues indepen-
dently of the fine chain. In analogy to the subchain picture in MLDA, this corresponds to initialising
the subchain on level `−1 with the coarse state ψC that has just been rejected on level `. As a result,
coarse and fine chains will separate and only re-coalesce once a coarse proposal is accepted at the
fine level. This choice provides better mixing at coarse levels and allows for efficient parallelisation
of the MLMCMC algorithm [44], but it does entail one important caveat; The practical algorithm in
[15, Alg. 3] does not necessarily define a Markov process unless coarse proposals passed to the next
finer level are independent, as in [15, Alg. 2]. The practical implication of violating this requirement
is that we do not have a proof of convergence of MLMCMC with finite subchains because we cannot
apply the theorems that guarantee convergence for homogeneous Markov chains. Indeed, numerical
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Figure 1: Schematic for generating a proposal θ′ on level ` for MLDA (left) and MLMCMC (right)
using a fixed length subchain of length J . The key difference is that for MLMCMC the coarse chain
on level `− 1 is generated independently of the chain on level `.

experiments (not shown) indicate that estimates using MLMCMC with finite subchains are biased
and that the underlying chains do not converge to the desired target distributions.

Accordingly, in theory the practical multilevel estimator proposed by Dodwell et al. [15, Alg. 3] is
only unbiased if the coarse proposal is an independent sample from π`−1; therefore only at infinite
computational cost (i.e. when the subchain length goes to infinity). However, if the fixed subchain
length is chosen to be greater than twice the integrated autocorrelation length of the chain at that
level, in practice this bias disappears. This imposes the constraint that the subchain length might
have to be fairly long. If the acceptance rate is also relatively low, the method becomes compu-
tationally inefficient, i.e. a lot of computational effort has to be put into generating independent
proposals from a coarse distribution which are then rejected with high probability.

2.3 Extension 1: Exploiting Variance Reduction with a Multilevel Estimator

Using the MLDA sampler proposed above, it is in fact possible to define an asymptotically unbiased
multilevel estimator that retains most of the computational benefits of both Multilevel Monte Carlo
[19] and MLMCMC [15]. Let Q`(θ`) define some quantity of interest computed on level ` =
0, . . . , L. The aim is to estimate EπL

[QL] – the expectation of QL with respect to the posterior
distribution πL on the finest level L – using as little computational effort as possible.

The idea of Multilevel Monte Carlo is, at its heart, very simple. The key is to avoid estimating the
expected value E`[Q`] directly on level `, but instead to estimate the correction with respect to the
next lower level. Under the assumption that samples on level `− 1 are cheaper to compute than on
level ` and that the variance of the correction term is smaller than the variance of Q` itself, the cost
of computing this estimator is much lower than an estimator defined solely on samples from level `.
In the context of MLDA and MLMCMC, the target density π` depends on `, so that we write

EπL
[QL] = Eπ0

[Q0] +
L∑

`=1

(
Eπ`

[Q`]− Eπ`−1
[Q`−1]

)
, (17)

which is achieved by adding and subtracting Eπ`
[Q`] for all levels ` = 0, . . . , L − 1. Note that for

the particular case where the densities {π`}L`=0 are all equal, this reduces to the simple telescoping
sum forming the basis of standard Multilevel Monte Carlo [19].

The practical MLMCMC algorithm in [15, Alg. 3] now proceeds by estimating the first term
in Eq. (17) using the MCMC estimator Eπ0

[Q0] ≈ 1
N0

∑N0

i=1Q0(θi0) with a Markov chain[
θ10, . . . , θ

N0
0

]
produced with a standard MH on the coarsest level. Each of the correction terms

for ` ≥ 1 is estimated by

Eπ`
[Q`]− Eπ`−1

[Q`−1] ≈ 1

N`

N∑̀

i=1

Q`
(
θi`
)
−Q`−1

(
θJ`i`−1

)
, (18)
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where N` is the total number of samples on level ` after subtracting burn-in, J` is the subchain
length on level `− 1 and θJ`i`−1 is the state of the coarse chain used as the proposal for the ith state of
the fine chain in the MLMCMC algorithm.

As mentioned in Section 2.2, this multilevel estimator is only unbiased for MLMCMC as J` → ∞
or, in practice, for coarse subchains with J` greater than twice the integrated autocorrelation length.

An unbiased multilevel estimator can be produced using MLDA, without this constraint on the
subchain lengths. We achieve this by employing a particular form of RST Alg. 3 in the MLDA
Alg. 5. For all ` = 1, . . . , L, we set the probability mass function over the subchain length on
level ` − 1 to the discrete uniform distribution p` = U(1, J`), where J` is the maximum subchain
length. Hence, the jth proposal ψC = ψj`−1 for the coarse modes on level ` in this version of
MLDA constitutes an independent, uniformly-at-random draw from a subchain of length J` on level
`− 1. Crucially, we let the coarse sampler continue sampling beyond the proposed state to produce
subchains of fixed length J` for each state of the fine chain. Moreover, we also evaluate and store
the quantity of interest at each state of each of those subchains on level `− 1.

Thus, using MLDA in this way to compute a chain [θ1L, . . . , θ
N
L ] on the finest level L. In addition to

the
NL = N samples QL

(
θ1L
)
, . . . , QL

(
θNL

L

)
on level L,

we obtain also

N` = N ×
L−1∏

k=`

Jk+1 samples Q`
(
θ1`
)
, . . . , Q`

(
θN`

`

)
on levels ` = 0, . . . , L− 1.

Using those samples the following asymptotically unbiased MLDA estimator of the posterior expec-
tation EπL

[QL] can be defined:

Q̂L :=
1

N0

N0∑

i=1

Q0

(
θi0
)

+
L∑

`=1

1

N`

N∑̀

j=1

Q`
(
θj`
)
−Q`−1

(
ψj`−1

)
. (19)

Here, ψj`−1 denotes the proposal ψC for the coarse modes of the jth state θj` of the Markov chain on
level ` produced by MLDA in Alg. 5.

Let us first discuss, why this estimator is asymptotically unbiased. For each j, the proposals ψjl−1
are independently and uniformly drawn from the subchain [θkl−1 : (j − 1)J` < k ≤ jJ`]. Thus,
the ensemble

{
ψ1
l−1, . . . , ψ

N`

l−1
}

is a random draw from
{
θ1l−1, . . . , θ

N`−1

l−1
}

and thus identically
distributed. As a consequence, in the limit as N` →∞ for all `, most terms on the right hand side of
Eq. (19) cancel. What remains, is

∑NL

j=1QL
(
θjL
)
, which due to Theorem 1 is an unbiased estimator

for EπL
[QL] in the limit as NL →∞.

Since the coarse subsamplers in MLDA are repeatedly realigned with the next finer distribution by
way of the MLDA transition kernel, the samples on the coarse levels are in fact not distributed ac-
cording to the “vanilla” densities {π`}L−1`=0 , but come from some “hybrid” mixture distributions.With
the particular choice for p`, the density of the mixture distribution arising from subsampling the
coarse density on level `− 1 < L can be written

π̃`−1 =
1

J`

J∑̀

n=1

Kn
`−1 π̃`,C (20)

where π̃`,C is the marginal density of the coarse modes of the next finer density, K`−1 is the transi-
tion kernel simulated by each step of subsampling on level `− 1, and Kn

`−1 is that kernel composed
with itself n times. Recall again that according to Theorem 1 the finest sampler targets the exact
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posterior, so that π̃L = πL. Thus, the MLDA estimator in Eq. (19) approximates the following
telescoping sum:

EπL
[QL] = Eπ̃0

[Q0] +
L∑

`=1

(
Eπ̃`

[Q`]− Eπ̃`−1
[Q`−1]

)
, (21)

which is a small but crucial difference to the sum in Eq. (17) that forms the basis of MLMCMC [15].

The computational gains due to multilevel variance reduction remain. In fact, since the mixture
densities π̃`−1 are conditioned every J` steps on the next finer chain, they are even closer and thus,
the variances of the correction terms in Eq. (19) will be further reduced compared to the variances
of the estimates in Eq. (18). The fixed subchain lengths J` and thus the numbers of samples N` on
the coarser levels can then be chosen as usual in multilevel Monte Carlo approaches to minimise
the total variance for a fixed computational budget, or to minimise the cost to achieve the smallest
variance. We are not going to go into more depth with respect to this estimator in this paper, but
refer to e.g. [9, 15, 20] for detailed analyses of Multilevel (Markov Chain) Monte Carlo estimators.

2.4 Extension 2: Adaptive Correction of the Approximate Posteriors

While the algorithm outlined in Section 2.1 does guarantee sampling from the exact posterior, there
are situations where convergence can be prohibitively slow. When the coarse model approximations
are poor, the second-stage acceptance probability can be low, and many proposals will be rejected.
This will result in suboptimal acceptance rates, poor mixing and low effective sample sizes. The
leftmost panel in Fig. 2 shows a contrived example where the approximate likelihood function (red
isolines) is offset from the exact likelihood function (blue contours) and its scale, shape and orien-
tation are incorrect.

One way to alleviate this problem is through tempering, where the variance in the likelihood function
Σε on levels ` < L is inflated, resulting in a wider approximate posterior distribution. While
this approach would allow the approximate posterior to encapsulate the exact posterior, it does not
tackle the challenge in an intelligent fashion, and the inflation factor introduces an additional tuning
parameter.

In place of tempering, an enhanced Adaptive Error Model (AEM) can be employed to account for
discrepancies between model levels. LetF` denote the coarse forward map on level ` andFL denote
the forward map on the finest level L. To obtain a better approximation of the data d using F`, the
two-level AEM suggested in [13] and analysed in [14, 17] is extended here by adding a telescopic
sum of the differences in the forward model output across all levels from ` to L:

d = FL(θ) + ε = F`(θ) + B`(θ) + ε with B`(θ) :=

L−1∑

k=`

Fk+1(θ)−Fk(θ)︸ ︷︷ ︸
:=Bk(θ)

(22)

denoting the bias on level ` at θ. The trick in the context of MLDA is that, since B` is just a
simple sum, the individual bias terms Bk from pairs of adjacent model levels can be estimated
independently, so that new information can be exploited each time any set of adjacent levels are
evaluated for the same parameter value θ.

Approximating each individual bias term Bk = Fk+1 − Fk with a multivariate Gaussian B∗k ∼
N (µk,Σk), the total bias B` can be approximated by the Gaussian B∗` ∼ N (µB,`,ΣB,`) with
µB,` =

∑L−1
k=` µk and ΣB,` =

∑L−1
k=` Σk.

The bias-corrected likelihood function for level ` is then proportional to

L`(d|θ) = exp

(
−1

2
(F`(θ) + µB,` − d)T (ΣB,` + Σe)

−1(F`(θ) + µB,` − d)

)
. (23)
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Figure 2: Effect of applying the Gaussian Adaptive Error Model (AEM). The first panel shows
the initial state before adaptation, where the coarse likelihood function (L`(dobs|θ), red isolines)
approximates the fine likelihood function (LL(dobs|θ), blue contours) poorly. The second panel
shows the effect of adding the mean of the bias to the likelihood functional, resulting in an offset of
the coarse model likelihood function. The third panel shows the effect of also adding the covariance
of the bias to the likelihood functional, resulting in a scaling and rotation of the coarse likelihood
function. Adapted from [33].

The Approximation Error Model, suggested by [28], is constructed offline, by sampling from the
prior distribution before running the MCMC; We simply sample N parameter sets from the prior
and compute the sample moments according to

µk =
1

N

N∑

i=1

Bk(θ(i)) and Σk =
1

N − 1

N∑

i=1

(Bk(θ(i))− µk)(Bk(θ(i))− µk)T . (24)

However, this approach requires significant investment prior to sampling, and may result in a sub-
optimal error model, since the bias in the posterior distribution is very different from the bias in the
prior when the data is informative. Instead, as suggested in [13], an estimate for Bk can be con-
structed iteratively during sampling, using the following recursive formulae for sample means and
sample covariances [21]:

µk,i+1 =
1

i+ 1

(
iµk,i +Bk(θi+1)

)
and (25)

Σk,i+1 =
i− 1

i
Σk,i +

1

i

(
iµk,i µ

T
k,i − (i+ 1)µk,i+1 µ

T
k,i+1 +Bk(θi+1)Bk(θi+1)T

)
. (26)

While this approach in theory results in a MCMC algorithm that is not Markov, the recursively
constructed sample moments converge as sampling proceeds and hence the approach exhibits di-
minishing adaptation and bounded convergence which is sufficient to ensure ergodicity for adaptive
MCMC schemes, [40, 41]. As shown in [14], it is also possible to construct a state-dependent AEM,
where the coarse samples are corrected only according to the bias of the state of the MCMC, rather
than the mean of the bias. This approach, however, may require a different form of the multilevel
acceptance probability (16), which we have not yet established, as discussed in Section 2.1.

3 Examples

In this section, we consider three inverse problems which demonstrate the efficiency gains obtained
by using MLDA, as well as by the extensions outlined above. The algorithm has been included in
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the free and open source probabilistic programming library PyMC2 as the MLDA step method since
version 3.10.0, and the examples below were all completed using this implementation.

3.1 Gravitational Survey

In this example, we consider a 2-dimensional gravity surveying problem, adapted from the 1-
dimensional problem presented in [23]. Our aim is to recover an unknown two-dimensional mass
density distribution f(t) at a known depth d below the surface from measurements g(s) of the verti-
cal component of the gravitational field at the surface. The contribution to g(s) from infinitesimally
small areas of the subsurface mass distribution are given by:

dg(s) =
sin θ

r2
f(t) dt (27)

where θ is the angle between the vertical plane and a straight line between two points t and s, and
r = ‖s− t‖2 is the Eucledian distance between the points. We exploit that sin θ = d/r, so that

sin θ

r2
f(t) dt =

d

r3
f(t) dt =

d

‖s− t‖32
f(t) dt (28)

This yields the integral equation

g(s) =

∫ ∫

T

d

‖s− t‖32
f(t) dt (29)

where T = [0, 1]2 is the domain of the function f(t). This constitutes our forward model. We solve
the integral numerically using midpoint quadrature. For simplicity, we use m quadrature points
along each dimension, so that in discrete form our forward model becomes

g(si) =
m∑

l=1

ωl

m∑

k=1

ωk
d

‖si − tk,l‖32
f̂(tk,l) =

m2∑

j=1

ωj
d

‖si − tj‖32
f̂(tj) (30)

where ωj = 1/m2 are the quadrature weights, f̂(tj) is the approximate subsurface mass at the
quadrature points tj , j = 1, . . . ,m2, and g(si) is the surface measurement at the collocation point
si, i = 1, . . . , n2. Hence, when n > m, we are dealing with an overdetermined problem and vice
versa. This can be expressed as a linear system Ax = b, where

aij = ωj
d

‖si − tj‖32
, xj = f̂(tj), bi = g(si). (31)

Due to the ill-posedness of the underlying, continuous inverse problem, the matrix A is very ill-
conditioned, which entails numerical instability and spurious, often oscillatory, naive solutions for
noisy right hand sides. A problem of this type is traditionally solved by way of regularisation, but it
can also be handled in a more natural and elegant fashion as a Bayesian inverse problem.

For the exerimental set-up, a “true” mass density distribution f(t) was assigned on T at a depth of
d = 0.1 (Fig. 3, left panel). The modelled signal was then discretised with m = n = 100 and
perturbed with white noise with standard deviation σε = 0.1 (Fig. 3, right panel) to be used as
synthetic data in the numerical experiment.

The unknown mass density distribution was modelled as a Gaussian Random Process with a Matérn
3/2 covariance kernel [37]:

C3/2(x, y) = σ2

(
1 +

√
3‖x− y‖2

λ

)
exp

(
−
√

3‖x− y‖2
λ

)
, for x, y ∈ D, (32)

2https://docs.pymc.io/en/v3/
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Figure 3: (Left) The “true” mass density f(t) and (right) the noisy signal at d = 0.1, with σε = 0.1.

Figure 4: Random realisations of the Matérn 3/2 random process prior, used to model the unknown
mass density for the coarse model with m = 20 (left) and the fine model with m = 100 (right).

where λ is the covariance length scale and σ2 is the variance. The random field was parametrised
using a truncated Karhunen-Loève (KL) expansion of f(t), i.e. an expansion in terms of a finite set
of independent, standard Gaussian random variables θi ∼ N (0, 1), i = 1, . . . , R, given by

f(t, ω) =
R∑

i=1

√
µiφi(t)θi(ω). (33)

Here, {µi}i∈N are the sequence of strictly decreasing real, positive eigenvalues, and {φi}i∈N the
corresponding L2-orthonormal eigenfunctions of the covariance operator with kernel C3/2(x, y).

A model hierarchy consisting of two model levels, with m = 100 and m = 20 respectively, was
created. A Matern 3/2 random process with l = 0.2 and σ2 = 1 was initialised on the fine model
level and parametrised using KL decomposition, which was then truncated to encompass its R = 32
highest energy eigenmodes. It was then projected to the coarse model space (Fig. 4).

Thus, the prior distribution of the model parameters (θi)
R
i=1 is N (0, IR). To sample from the pos-

terior distribution of these parameters and thus to estimate the posterior mean conditioned on the
synthetic data, we used the TLDA sampler with a Random Walk Metropolis Hastings (RWMH)
sampler on the coarse level. We ran 2 independent chains, each with 20000 draws, a burn-in of 5000
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Figure 5: Traces of θ1 (top row) and θ8, for RWMH (left column) and MLDA (right column),
respectively. Different colors represent the independent chains.
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Figure 6: Algorithmic performance measured in ES/s (effective samples per second), for the eight
highest energy KL coefficients θk, k = 1, . . . , 8, for both RWMH (blue) and MLDA (red).

and a subchain length on the coarse level of 10. We also ran 2 chains using a single level RWMH
sampler on the fine level with otherwise identical settings, but with no subchains. Each chain was
initialised at the MAP (Maximum a Posteriori) point.

While RWMH converged to the same parameter estimates as MLDA, RWMH exhibited inferior
mixing (Fig. 5) and fewer effective samples per second (Fig. 6), particularly for the higher KL
coefficients.

3.2 Predator-Prey Model

The Lotka-Volterra model describes the interaction between populations of prey (N ) and predators
(P ) over time [43]. Their interaction is described by the system of nonlinear, first order, ordinary
differental equations (ODEs)

dN

dt
= aN − bNP and

dP

dt
= cNP − dP, for t > 0. (34)

The model outputs are fully described by the parameters
θ = {N0, P0, a, b, c, d},
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Figure 7: The true (blue) and measured (red) densities of prey (left) and predators (right).

which include the initial densities of prey and predators at time t = 0, and ecological parameters
a, b, c, d, where broadly a is the birth rate of the prey, b is the encounter rate between prey and
predators, c is the growth rate for the predators and d is the death rate of the predators. For further
details on their physical interpretation see for example [3].

In this example, we wish to infer the distribution of θ, given noisy observations of prey and predator
densities at discrete time intervals, i.e. N(t?) and P (t?) for t? ∈ T , where T = [0, 12] is the
domain. The observations are again synthetically generated by solving Eq. (34) with the “true”
parameters

θ? = {10.0, 5.0, 3.0, 0.7, 0.3, 1.0}
and perturbing the calculated valuesN(t?) and P (t?) with independent Gaussian noise ε ∼ N (0, 1)
(Fig. 7). Our aim is to predict the mean density of predators E(P ) over the same period.

The solutions of the ODE system in Eq. (34) can be approximated by a suitable numerical integration
scheme. We use an explicit, adaptive Runge-Kutta method of order 5(4) [45]. For the fine level,
we integrate over the entire time domain TL = [0, 12] and use the entire dataset to compute the
likelihood function, while for the coarse level, we stop integration halfway through, so that TL−1 =
[0, 6], and use only the corresponding subset of the data to compute the likelihood function.

We assume that we possess some prior knowledge about the parameters, and use informed pri-
ors N0 ∼ N (10.8, 1), P0 ∼ N (5.3, 1), a ∼ N (2.5, 0.5), b ∼ Inv-Gamma(1.0, 0.5), c ∼
Inv-Gamma(1.0, 0.5) and d ∼ N (1.2, 0.3).

To demonstrate the multilevel variance reduction feature, we ran the TLDA sampler with randomi-
sation of the subchain length as described in Section 2.3 and then compared the (multilevel) MLDA
estimator in Eq. (19), which uses both the coarse and fine samples, with a standard MCMC estimator
based only on the samples produced by TLDA on the fine level. In both cases, we used the two–level
model hierarchy as described above and employed the Differential Evolution Markov Chain (DE-
MCZ) proposal [47] on the coarse level. The coarse level proposal kernel was automatically tuned
during burn-in to achieve an acceptance rate between 0.2 and 0.5. The subchain length of JL = 15
was chosen to balance the variances of the two contributions to the multilevel estimator (Eq. (19)),
as for MLMC and MLMCMC.

Figure 8 shows the development of the total sampling error as the sampling progresses, for the
sampler with and without variance reduction. Employing variance reduction clearly leads to a lower
sampling error than the standard approach. Figure 9 shows the true prey and predator densities along
with samples from the posterior distribution, demonstrating that the true model is encapsulated by
the posterior samples, as desired.
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red) and without (dashed, blue) variance reduction.
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Figure 9: True model (red) and posterior samples (black).

3.3 Subsurface Flow

In this example, a simple model problem arising in subsurface flow modelling is considered. Proba-
bilistic uncertainty quantification is of interest in various situations, for example in risk assessment
of radioactive waste repositories. Moreover, this simple PDE model is often used as a benchmark
for MCMC algorithms in the applied mathematics literature [35, 34, 15, 11, 10, 5]. The classical
equations which govern steady-state single-phase subsurface flow in a confined aquifer are Darcy’s
law coupled with an incompressibility constraint

w + k∇p = g and ∇ · w = 0, in D ⊂ Rd (35)

for d = 1, 2 or 3, subject to suitable boundary conditions. Here p denotes the hydraulic head of the
fluid, k the permeability tensor, w the flux and g is the source term.

A typical approach to treat the inherent uncertainty in this problem is to model the permeability as a
random field k = k(x, ω) on D × Ω, for some probability space (Ω,A,P). Therefore, Eq. (35) can
be written as the following PDE with random coefficients:

−∇ · k(x, ω)∇p(x, ω) = f(x), for all x ∈ D, (36)
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Figure 10: True log-conductivity field of the coarsest model with m0 grid points (left) and the finest
model with m2 grid points (right).

where f := −∇ · g. As a synthetic example, consider the domain D := [0, 1]2 with f ≡ 0 and
deterministic boundary conditions

p|x1=0 = 0, p|x1=1 = 1 and ∂np|x2=0 = ∂np|x2=1 = 0. (37)

A widely used model for the prior distribution of the permeability in hydrology is a log-Gaussian
random field [15, 12, 11, 5, 29], characterised by the mean of log k, here chosen to be 0, and by its
covariance function, here chosen to be

C(x, y) := σ2 exp

(
−‖x− y‖

2
2

2λ2

)
, for x, y ∈ D, (38)

with σ = 2 and λ = 0.1. Again, the log-Gaussian random field is parametrised using a truncated
Karhunen-Loève (KL) expansion of log k, i.e., an expansion in terms of a finite set of independent,
standard Gaussian random variables θi ∼ N (0, 1), i = 1, . . . , R, given by

log k(x, ω) =
R∑

i=1

√
µiφi(x)θi(ω). (39)

Again, {µi}i∈N are the sequence of strictly decreasing real, positive eigenvalues, and {φi}i∈N the
corresponding L2-orthonormal eigenfunctions of the covariance operator with kernelC(x, y). Thus,
the prior distribution on the parameter θ = (θi)

R
i=1 in the stochastic PDE problem (Eq. (36)) is

N (0, IR). In this example we chose R = 64.

The aim is to infer the posterior distribution of θ, conditioned on measurements of p at M = 25
discrete locations xj ∈ D, j = 1, . . . ,M , stored in the vector dobs ∈ RM . Thus, the forward
operator is F : RR → RM with Fj(θω) = p(xj , ω).

All finite element (FE) calculations were carried out with FEniCS [30], using piecewise linear FEs on
a uniform triangular mesh. The coarsest mesh T0 consisted of m0 = 5 grid points in each direction,
while subsequent levels were constructed by two steps of uniform refinement of T0, leading to
m` = 4`(m0 − 1) + 1 grid points in each direction on the three grids T`, ` = 0, 1, 2 (Fig. 10).

To demonstrate the excellent performance of MLDA with the AEM, synthetic data was generated
by drawing a sample from the prior distribution and solving Eq. (36) with the resulting realisation
of k on T2. To construct dobs, the computed discrete hydraulic head values at (xj)Mj=1 were then
perturbed by independent Gaussian noise, i.e. by a sample ε∗ ∼ N (0,Σε) with Σε = 0.012IM .

To compare the “vanilla” MLDA approach to the AEM-enhanced version, we sampled the same
model using identical sampling parameters, with and without AEM activated. For each approach, we
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Figure 11: Autocorrelation function for θ1 for samples without AEM (left) and with AEM (right).

sampled two independent chains, each initialised at a random point from the prior. For each chain,
we drew 20000 samples plus a burn-in of 5000. We used subchain lengths J0 = J1 = 5, since
that produced the best trade-off between computation time and effective sample size for MLDA
with the AEM. Note that the cost of computing the subchains on the coarser levels only leads to
about a 50% increase in the total cost for drawing a sample on level L. The DE-MCZ proposal
[47] was employed on the coarsest level with automatic step-size tuning during burnin to achieve an
acceptance rate between 0.2 and 0.5.

To assess the performance of the two approaches, the autocorrelation function (Fig. 11) and the
Effective Sample Size (ESS) for each parameter were computed [48]. Since the coarsest model
was quite a poor approximation of the finest, running MLDA without the Adaptive Error Model
(AEM) yielded relatively poor results, with an average ESS of 326 out of 40000 samples, and strong
autocorrelation. However, when the AEM was employed and otherwise using the exact same sam-
pling parameters, we obtained an average ESS of 1012 out of 40000 samples, with correspondingly
weaker autocorrelation.

Note that this particular numerical experiment was chosen to demonstrate the dramatic effect that
employing the AEM can have in MLDA, thus making it possible to use multilevel sampling strate-
gies with very crude approximate models. A FE mesh with 25 degrees of freedom is extremely
coarse for a Gaussian random field with correlation length λ = 0.1, yet using the AEM it still pro-
vides an excellent surrogate for delayed acceptance. Typically much finer models are used in real
applications with longer subchains on the coarser levels (cf. [15]). The AEM will be less critical in
that case and MLDA will also produce good ESS without the AEM.

4 Conclusions and Future Work

In this paper, we have presented an extension of state-independent Delayed Acceptance MCMC [8],
where a hierarchy of coarse MCMC samplers inform the finest sampler in a cascading fashion. If
the models on the coarse levels are carefully designed, the approach can lead to significant compu-
tational savings, compared to standard single-level MCMC. A possible direction for future research
would be to extend this approach further to the general Delayed Acceptance context, where also
state-dependent approximations are supported. We would like to highlight that the choice of pro-
posal on the coarsest level is free, as long as it achieves irreducibility for the coarsest distribution.
We have chosen relatively simple proposals for the coarsest level, but if e.g. the gradient of the
likelihood function is available, one can also employ more advanced gradient-informed proposals,
such as MALA, HMC or NUTS.
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The presented MLDA algorithm has clear similarities with Multilevel MCMC [15], in that it allows
for any number of coarse levels and extended subchains on the coarse levels, but unlike MLMCMC,
it is Markov and asymptotically unbiased, also for finite-length subchains. To achieve this qual-
ity, the algorithm must be sequential, which complicates parallelisation considerably. One remedy
for this challenge, and a possible direction for future research, would be to employ pre-fetching of
proposals [6]. The central idea of pre-fetching is to precompute proposal “branches” and evaluate
those in parallel, since for each proposal there are only two options, namely accept or reject. Pre-
fetching and evaluating entire proposal branches is significantly more computationally demanding
than the strictly sequential approach and generates more waste, similar to Multiple-Try Metropolis
[32], since entire branches will effectively be rejected at each step. Minimising the waste of pre-
fetching while maintaining the computational gains of parallelisation constitutes a complex, proba-
bilistic optimisation problem. This could be addressed by controlling the pre-fetching length, e.g.,
using a reinforcement learning agent to learn an optimal policy, and to then hedge bets on valuable
pre-fetching lengths, based on the latest sampling history.

A question that remains is the optimal choice of the subchain lengths {J`}L`=1 for the coarse levels,
which is essentially the only tuning parameter in the MLDA algorithm. A good rule of thumb may be
to choose the length for any level such that the cost of creating the subchain corresponds to the cost
of evaluating a single proposal on the next finer level, but this is not the most rigorous approach. The
question has previously been studied in the context of Multilevel Monte Carlo [9] and MLMCMC
[15], and involves either computing the optimal (effective) sample size for each level for a fixed
acceptable sampling error, or computing the sampling error corresponding to a fixed computational
budget. A similar approach can be taken for MLDA, but with some caveats. First, the number of
samples on each level is determined, not only by the subchain length on that level, but by the number
of samples on the next finer level. Hence, care must be taken when choosing the subchain lengths.
Second, it is non-trivial to determine the effective sample size of a level a priori, because of the
direct correspondence with the distribution on the next finer level by way of the MLDA acceptance
criterion. One possible workaround would be to determine the optimal subchain lengths adaptively
by empirically determining the effective sample sizes and variances on each level during burn-in.
Similarly to the pre-fetching approach outlined above, these decisions could also be outsourced to
a reinforcement learning agent that would adaptively learn the optimal policy for minimising either
cost or sampling error. We emphasize this question as a potential direction for future research.
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5. Accelerating Uncertainty

Quantification of Groundwater

Flow Modelling Using a Deep

Neural Network Proxy

This journal paper (Lykkegaard, Dodwell and Moxey, 2021), published in Computer

Methods in Applied Mechanics and Engineering in May 2021, explores a novel

approach to multilevel MCMC sampling for Bayesian inverse problems. Our technique

exploits a deep neural network as a fast proxy model to generate MCMC proposals

with very low computational cost. The presented modified Delayed Acceptance

algorithm is strongly related to the MLDA algorithm presented in Chapter 4. In fact,

it can be formulated as a special case of the Randomised-Length-Subchain Surrogate

Transition (RST, Algorithm 3), where the probability mass function over subchain

length is the negative binomial distribution (see e.g. Grinstead and Snell (1997)),

i.e. n ∼ NB(lα, α), where n is the (randomised) MLDA subchain length, α is the

acceptance rate and lα is the predefined offset length, describing the required number

of accepted proposals before terminating the subchain. The methodology of using

a deep neural network as a proxy model in the context of the MLDA sampler is

demonstrated in the context of two synthetic groundwater flow examples.

The idea was conceived by Tim Dodwell and me. I developed the computer

code, conducted the experiments and wrote the paper. Tim Dodwell and David

Moxey provided feedback during the research process. All authors contributed to

the editing.
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Abstract

Quantifying the uncertainty in model parameters and output is a critical component in model-driven decision support systems
for groundwater management. This paper presents a novel algorithmic approach which fuses Markov Chain Monte Carlo
(MCMC) and Machine Learning methods to accelerate uncertainty quantification for groundwater flow models. We formulate
the governing mathematical model as a Bayesian inverse problem, considering model parameters as a random process with an
underlying probability distribution. MCMC allows us to sample from this distribution, but it comes with some limitations: it can
be prohibitively expensive when dealing with costly likelihood functions, subsequent samples are often highly correlated, and
the standard Metropolis–Hastings algorithm suffers from the curse of dimensionality. This paper designs a Metropolis–Hastings
proposal which exploits a deep neural network (DNN) approximation of a groundwater flow model, to significantly accelerate
MCMC sampling. We modify a delayed acceptance (DA) model hierarchy, whereby proposals are generated by running short
subchains using an inexpensive DNN approximation, resulting in a decorrelation of subsequent fine model proposals. Using a
simple adaptive error model, we estimate and correct the bias of the DNN approximation with respect to the posterior distribution
on-the-fly. The approach is tested on two synthetic examples; a isotropic two-dimensional problem, and an anisotropic three-
dimensional problem. The results show that the cost of uncertainty quantification can be reduced by up to 50% compared to
single-level MCMC, depending on the precomputation cost and accuracy of the employed DNN.
c⃝ 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

Keywords: Groundwater flow; Uncertainty quantification; Markov chain Monte Carlo; Surrogate models; Deep neural networks

1. Introduction

Modelling of groundwater flow and transport is an important decision support tool when, for example, estimating
the sustainable yield of an aquifer or remediating groundwater pollution. However, the input parameters for
mathematical models of groundwater flow (such as subsurface transmissivity and boundary conditions) are often
impossible to determine fully or accurately, and are hence subject to various uncertainties. In order to make informed
decisions, it is of critical importance to decision makers to obtain robust and unbiased estimates of the total model
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org/licenses/by/4.0/).
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uncertainty, which in turn is a product of the uncertainty of these input parameters [1]. A popular way to achieve
this, in relation to groundwater flow or any inverse problem in general, is stochastic or Bayesian modelling [2–4]. In
this context, a probability distribution, the prior, is assigned to the input parameters, in accordance with any readily
available information. Given some real-world measurements corresponding to the model outputs (e.g. sparse spatial
measurements of hydraulic head, Darcy flow or concentration of pollutants), it is possible to reduce the overall
uncertainty and obtain a better representation of the model by conditioning the prior distribution on this data. The
result is a distribution of the model input parameters given data, which is also referred to as the posterior.

Obtaining samples from the posterior distribution directly is not possible for all but the simplest of problems.
A popular approach for generating samples is the Metropolis–Hastings type Markov Chain Monte Carlo (MCMC)
method [5]. Samples are generated by a sequential process. First, given a current sample, a new proposal for the input
parameters is made using a so-called proposal distribution. Evaluating the model with this new set of parameters,
a likelihood is computed — a measure of misfit between the model outputs and the data. The likelihoods of the
proposed and current samples are then compared. Based on this comparison, the proposal is either accepted or
rejected, and the whole process is repeated, generating a Markov chain of probabilistically feasible input parameters.
The key point is that the distribution of samples in the chain converges to the posterior – the distribution of
input parameters given the data [5]. This relatively simple algorithm can lead to extremely expensive Bayesian
computations for three key reasons. First, each step of the chain requires the evaluation of (often) an expensive
mathematical model. Second, the sequential nature of the algorithm means subsequent samples are often highly
correlated — even repeated if a step is rejected. Therefore the chains must often be very long to obtain good
statistics on the distribution of outputs of the model. Third, without special care, the approach does not generally
scale well to large numbers of uncertain input parameters; the so-called curse of dimensionality. Addressing these
scientific challenges is at the heart of modern research in MCMC algorithms. As with this paper there is a particular
focus on developing novel and innovative proposal distributions, which seek to de-correlate adjacent samples and
limit the computational burden of evaluating expensive models.

Broadly in the literature, simple Darcy type models and other variants of the diffusion equation have long been
a popular toy example problems for demonstrating MCMC methodologies in the applied mathematics community
(see e.g. [6–8]). There appears to be much less interest in MCMC in the applied groundwater modelling community.
This may be because of the computational cost of running MCMC on highly parametrised, expensive models, or
the lack of an easy-to-use MCMC software framework, akin to the parameter estimation toolbox PEST [9].

An exciting approach to significantly reduce the computational cost has been proposed in multi-level, multi-
fidelity and Delayed Acceptance (DA) MCMC methods. In each case, to alleviate computational cost, a hierarchy
of models is established, consisting of a fine model and (possibly multiple) coarse, computationally cheap
approximations. Typically, the coarser models are finite element solutions of the PDE on a mesh with a coarser
resolution, but as we show in this paper, can be taken to be any general approximation similar to the multi-fidelity
philosophy [10]. Independent of the approach, the central idea is the same: to obtain significant efficiency gains
by exploiting approximate coarse models to generate ‘good’ proposals cheaply, using additional accept/reject steps
to filter out highly unlikely proposals before evaluating the fine, expensive model. Previous studies of two-stage
approaches include [11] who modelled multi-phase flow with coarse level proposals evaluated by a coarse-mesh
single-phase flow model (an idea that was developed further in [12]), [13] and [14]. We note that the latter of
which, instead of simply using a coarser discretisation, implemented a data-driven polynomial chaos expansion as
a surrogate model. We intend to demonstrate how the development of novel techniques in MCMC and machine
learning can be combined to help realise the potential of MCMC in this field.

In this work, we propose a combination of multiple cutting-edge MCMC techniques to allow for efficient
inversion and uncertainty quantification of groundwater flow. We propose an improved delayed acceptance (DA)
MCMC algorithm, adapted from the approach proposed by [15]. In our case, similarly to multi-level MCMC [7],
proposals are generated by computing a subchain using a Deep Neural Network (DNN) as an approximate model
— leading to cheaply computed, decorrelated proposals passed on to the fine model. For our first example, the
subchain is driven by the preconditioned Crank–Nicolson (pCN) proposal distribution [16] to ensure the proposed
Metropolis–Hastings algorithm is robust with respect to the dimension of the uncertain parameter space. For our
second example, proposals for the subchains are generated using the Adaptive Metropolis (AM) proposal [17],
since the posterior distribution in this case is highly non-spherical and multiple parameters are correlated. Finally,
we propose an enhanced error model, in which the DNN is trained by sampling the prior distribution, yet the bias
of the approximation is adaptively estimated and corrected on-the-fly by testing the approximations against the full
model in an adaptive delayed acceptance setting [18].
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2. Preliminaries

In this section we briefly introduce the forward model, defining the governing equations underpinning ground-
water flow and their corresponding weak form, enabling us to solve the equations using FEM methods. We then
formulate our model as a Bayesian inverse problem with random input parameters, effectively resulting in a
stochastic model, which can be accurately characterised by sampling from the posterior distribution of parameters
using MCMC. The simple Metropolis–Hastings MCMC algorithm is then introduced and extended with the
preconditioned Crank–Nicolson (pCN) and Adaptive Metropolis (AM) transition kernels.

2.1. Governing equations for groundwater flow

Consider steady groundwater flow in a confined, inhomogeneous aquifer which occupies the domain Ω with
boundary Γ . Assuming that water is incompressible, the governing equations for groundwater flow can be written
as the scalar elliptic partial differential equation:

− ∇ · (−T (x)∇h(x)) = g(x) for all x ∈ Ω (1)

subject to boundary conditions on Γ = ΓN ∪ ΓD defined by the constraint equations

h(x) = hD(x) on ΓD and (−T (x)∇h(x)) · n = qN (x) on ΓN . (2)

Here T (x) is the heterogeneous, depth-integrated transmissivity, h(x) is hydraulic head, hD(x) is fixed hydraulic
head at boundaries with Dirichlet constraints, g(x) is fluid sources and sinks, q(x) is Darcy velocity, qN (x) is
Darcy velocity across boundaries with Neumann constraints and ΓD ⊂ ∂Ω and ΓN ⊂ ∂Ω define the boundaries
comprising of Dirichlet and Neumann conditions, respectively. Following standard FEM practice (see e.g. [19]),
Eq. (1) is converted into weak form by multiplying by an appropriate test function w ∈ H 1(Ω ) and integrating by
parts, so that∫

Ω

∇w · (T (x)∇h) dx +

∫
ΓN

w qN (x) ds =

∫
Ω

w g(x) dx, ∀w ∈ H 1(Ω ), (3)

where H 1(Ω ) is the Hilbert space of weakly differentiable functions on Ω . To approximate the hydraulic head
solution h(x), a finite element space Vτ ⊂ H 1(Ω ) on a finite element mesh Qτ (Ω ). This is defined by a basis of
piecewise linear Lagrange polynomials {φi (x)}M

i=1, associated with each of the M finite element nodes. As a result
(3) can be rewritten as a system of sparse linear equations

Ah = b where Ai j =

∫
Ω

∇φi · T (x)∇φ j (x) dx and (4)

bi =

∫
Ω

φi (x) g(x) dx −

∫
ΓN

φi (x)qN (x) ds, (5)

where A ∈ RM×M and b ∈ RM are the global stiffness matrix and load vector, respectively. The vector
h := [h1, h2, . . . , hM ] ∈ RM is the solution vector of hydraulic head at each node within the finite element mesh
so that h(x) =

∑M
i=1 hiφi (x). In our numerical experiments, these equations are solved using the open source

general-purpose FEM framework FEniCS [20]. While there are well-established groundwater simulation software
packages available, such as MODFLOW [21] and FEFLOW [19], FEniCS was chosen because of its flexibility and
ease of integration with other software and analysis codes.

2.2. Aquifer transmissivity

The aquifer transmissivity T (x) is not known everywhere on the domain, therefore a typical approach is to model
it as a log-Gaussian random field. There exists extensive literature on modelling groundwater flow transmissivity
using log-Gaussian random fields (see e.g. [22,23,14]). Whilst this may not always prove a good model, particularly
in cases with highly correlated extreme values and/or preferential flow paths [24,25] as seen when considering faults
and other discontinuities [26,27], the log-Gaussian distribution remains relevant for modelling transmissivity in a
range of aquifers [28,29,14].
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Our starting point is a covariance operator with kernel C(x, y), which defines the correlation structure of
the uncertain transmissivity field. For our numerical experiments, we consider the ARD (Automatic Relevance
Determination) squared exponential kernel, a generalisation of the ‘classic’ squared exponential kernel, which allows
for handling directional anisotropy:

C(x, y) = exp

⎛⎝−
1
2

d∑
j=1

(
x j − y j

l j

)2
⎞⎠ , (6)

where d is the spatial dimensionality of the problem and l ∈ Rd is a vector of lengths scales corresponding to each
spatial dimension. We emphasise that the covariance kernel is a modelling choice, and that different options are
available, such as the Matern kernel which offers additional control over the smoothness of the field.

In our work, transmissivity was modelled as a discrete log-Gaussian random field expanded in an orthogonal
eigenbasis with k Karhunen–Loève (KL) eigenmodes. To achieve this we construct a covariance matrix C ∈ RM×M ,
where entries are given by Ci j = C(xi , x j ) for each pair of nodal coordinates within the finite element mesh
i, j = 1, . . . , M . Once constructed, the largest k eigenvalues {λi }

k
i=1 and associated eigenvectors {ψ i }

k
i=1 of C can

be computed. The transmissivity at the nodes t := [t1, t2, . . . , tM ], is given by

log t = µ+ σΨΛ
1
2 θ , where Λ =

⎡⎢⎢⎢⎣
λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...

0 0 . . . λk

⎤⎥⎥⎥⎦ and Ψ = [ψ1,ψ2, . . . ,ψk], (7)

where µ defines the log of the mean transmissivity field, σ is a scalar parametrising the variance and θ is a vector
of Gaussian random variables such that θ ∼ N (0, Ik) as in [30]. The random field can be interpolated from nodal
values across Ω , using the shape functions {φi (x)}M

i=1 so that T (x) =
∑M

i=1 tiφi (x).
Truncating the KL eigenmodes at the kth mode limits the amount of small scale features that can be represented.

This, along with interpolating the field, has a smoothing effect on the recovered transmissivity fields, which may
or may not be desirable, depending on the application. Fig. 1 shows some examples of realisations of Gaussian
random fields with a square exponential kernel, which illustrates the effect of the covariance length scale l and the
number of admitted KL eigenmodes k. For relatively large length scales l, there is a limit to k, above which adding
higher frequency eigenvalues does not provide any additional information. In this context, the proportion of signal
energy encompassed by the truncation can be understood as the ratio between the sum of truncated eigenvalues and
the sum of all eigenvalues:

∑k
i=1 λi/

∑M
j=1 λ j .

2.3. The Bayesian inverse problem

To setup the Bayesian inverse problem and thereby quantify the uncertainty in the transmissivity field T (x), the
starting point is to define a statistical model which describes distribution of the mismatch between observations and
model predictions. The observations are expressed in a single vector dobs ∈ Rm and for a given set of model input
parameters θ , the model’s prediction of the data is defined by the forward map, F(θ ) : Rk

→ Rm . The statistical
model assumes the connection between model and observations through the relationship

dobs = F(θ ) + ϵ (8)

where we take ϵ ∼ N (0,Σ ϵ) which represents the uncertainty of the connection between model and data, capturing
both model mis-specification and measurement noise as sources of this uncertainty.

The backbone of a Bayesian approach is Bayes’ theorem, which allows for computing posterior beliefs of model
parameters using both prior beliefs and observations. Bayes’ theorem states that the posterior probability of a
parameter realisation θ given data dobs can be computed as

π (θ |dobs) =
π0(θ )L(dobs|θ )

π (dobs)
(9)

where π (θ |dobs) is referred to as the posterior distribution, L(dobs|θ ) is called the likelihood, π0(θ ) the prior
distribution and

π (dobs) =

∫
Θ

π (dobs|θ )dθ =

∫
Θ

π0(θ )L(dobs|θ )dθ (10)
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Fig. 1. A selection of Gaussian random process realisations for x ∈ [0, 1]2, with a square exponential kernel using different covariance
length scales l and number of KL eigenmodes k. All displayed realisations were generated using the same appropriately truncated random
vector ξ with identical eigenvectors for each l.

is a normalising constant, sometimes referred to as the evidence. In most cases this integral does not have a
closed-form solution and is infeasible to estimate numerically in most real-world applications, particularly when the
dimension of the unknown parameter space is large and the evaluation of the model (required to compute L(dobs |θ ))
is computationally expensive. A family of methods called Markov Chain Monte Carlo (MCMC) are often employed
to approximate the solution [31]. Importantly MCMC, whilst computationally expensive, allows indirect sampling
from the posterior distribution and avoids the explicit need to estimate (10). Moreover, it can be designed to be
independent of the dimension of the parameter space and has no embedded unquantifiable bias. In this paper we
consider a subclass of MCMC methods called the Metropolis–Hastings [32,33,5] algorithm, which is described in
Algorithm 1. The algorithm generates a Markov chain {θ (n)

}n∈N with a distribution converging to π (dobs |θ ). It is
difficult (often impossible) to sample directly from the posterior, hence at each step, at position θ (i) in the chain, a
proposal is made θ ′ from a simpler known (proposal) distribution q(θ ′

|θ (i)). An accept/reject step then determines
whether the proposal comes from (probabilistically) the posterior distribution or not. This accept/reject step is a
achieved by essentially computing the ratio of the densities of the current state to the proposal. To do this we
exploit Bayes’s Theorem. The key observation in MCMC is that the normalising constant π (dobs) is independent
of θ , and so

π (θ |dobs) ∝ π0(θ )L(dobs|θ ). (11)

Therefore when comparing the ratio of the densities, the normalising constant (since independent of θ ) cancels.
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Algorithm 1: Metropolis–Hastings Algorithm

1. Given a parameter realisation θ i and a transition kernel q(θ ′
|θ i ), generate a proposal θ ′.

2. Compute the likelihood ratio between the proposal and the previous realisation:

α = min

{
1,

π0(θ ′)L(dobs|θ
′)

π0(θ (i))L(dobs|θ
(i))

q(θ (i)
|θ ′)

q(θ ′
|θ (i))

}
3. If u ∼ U (0, 1) > α then set θ (i+1)

= θ (i), otherwise, set θ (i+1)
= θ ′.

In our model problem, the prior density of the parameters π0(θ ) represents the available a priori knowledge
about the transmissivity of the aquifer. From our statistical model (8) we see that our dobs − F(θ ) ∼ N (0,Σ ϵ),
hence

L(dobs|θ ) = exp
(

−
1
2

(F(θ ) − dobs)⊺Σ−1
e (F(θ ) − dobs)

)
. (12)

Importantly we note that for each step of the Metropolis–Hastings algorithms we are required to compute L(dobs |θ
′).

This requires the evaluation of the forward mapping F(θ ′) which can be computationally expensive. Moreover, due
to the sequential nature of MCMC-based approaches, consecutive samples are correlated and hence many samples
are required to obtain good statistics on the outputs.

The proposal distribution q(θ ′
|θ (n)) is the key element which drives the Metropolis–Hastings algorithm and

control the effectiveness of the algorithm. A common choice is a simple random walk, for which qRW(θ ′
|θ (i)) =

N (θ (i),Σ ), yet as shown in [34], the basic random walk does not lead to a convergence that is independent of the
input dimension m. Better choices would be the preconditioned Crank–Nicolson proposal (pCN, [16]), which has
dimension independent acceptance probability, or the Adaptive Metropolis algorithm (AM, [17]), which adaptively
aligns the proposal distribution to the posterior during sampling. Moreover, unlike the Metropolis-Adjusted Langevin
Algorithm (MALA), No-U-Turn Sampler (NUTS) and Hamiltonian Monte Carlo, none of these proposals rely on
gradient information, which can be infeasible to compute for expensive forward models.

To generate a proposal using the pCN transition kernel, one computes

θ ′
=

√
1 − β2 θ (i)

+ βξ (13)

where ξ is a random sample from the prior distribution, ξ ∼ N (0,Σ ). This expression corresponds to the transition
kernel qpCN(θ ′

|θ (i)) = N (
√

1 − β2θ (i), β2Σ ). Moreover, for the pCN transition kernel, the acceptance probability
simplifies to

α = min
{

1,
L(dobs|θ

′)

L(dobs|θ
(i))

}
following the identity

p0(θ (i))
p0(θ ′)

=
qpCN(θ (i)

|θ ′)

qpCN(θ ′
|θ (i))

(14)

as given in [7]. Additional details of derivation of the pCN proposal are provided in Appendix A.
Similarly, to generate a proposal using the AM transition kernel, we draw a random sample

θ ′
∼ N (θ (i),Σ (i)) (15)

where Σ (i) is an iteratively updated covariance structure

Σ (i)
=

{
Σ (0), if i ≤ i0,

sd Cov(θ (0), θ (1) . . . θ (i)) + sd γ Id , otherwise.

Hence, proposals are drawn from a distribution with an initial covariance Σ (0) for a given period i0, af-
ter which adaptivity is ‘switched on’, and used for the remaining samples. The adaptive covariance Σ (i)

=

sd Cov(θ (0), θ (1) . . . θ (i)) + sd γ Id can be constructed iteratively during sampling using the following recursive
formula:

Σ (i+1)
=

i − 1
i

Σ (i)
+

sd

i
(i θ̄

(i−1)
θ̄

(i−1)⊺
− (i + 1)θ̄

(i)
θ̄

(i)⊺
+ θ (i)θ (i)⊺

+ γ Id ) (16)
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Fig. 2. Graph showing the structure of a feedforward DNN.

where ·̄ is the arithmetic mean, sd = 2.42/d is a scaling parameter, d is the dimension of the proposal distribution
and γ is a parameter which prevents Σ i from becoming singular [17]. This, on the other hand, corresponds to
the transition kernel qAM(θ ′

|θ (0), θ (1) . . . θ (i)) = N (θ (i),Σ (i)), which is not guaranteed to be ergodic, since it will
depend on the history of the chain. However, the Diminishing Adaptation condition [35] holds, as adaptation will
naturally decrease as sampling progresses.

2.4. Deep neural network

The approximate/surrogate model in our experiments is a feed-forward deep neural network (DNN), a type of
artificial neural network with multiple hidden layers, as implemented in the open-source neural-network library
Keras [36] utilising the Theano backend [37].

Artificial neural networks have previously been successfully applied as fast model proxies in inverse geophysics
problems. Examples include [38], who used a neural network with two hidden layers for Monte Carlo sampling in
the context of a crosshole traveltime inversion, and [39] who used a neural network with a single hidden layer and
a Differential Evolution Adaptive Metropolis sampler for electromagnetic inversion.

The DNN approximates the forward map, accepting a vector of KL coefficients θ ∈ Rk , and returning an
approximation of the vector of approximate model output F̂(θ ) ∈ Rm – in this paper a vector of hydraulic heads
at given sampling points, i.e. F̂(θ ) : Rk

↦→ Rm . Fig. 2 shows the graph of one particular DNN employed in our
experiments.

Each edge in Fig. 2 is equipped with a weight wl
i, j where l is index of the layer that the weight feeds into, i

is the index of nodes in the same layer and j is the index of nodes in the previous layer. These weights can be
arranged in n × m matrices W l for each layer l. Similarly, each node is equipped with a bias bl

i where l is index
of its layer and i is the index of node, and these biases can be arranged in vectors bl . Data is propagated through
the network such that the output yl of a layer l with activation function Al(·) is

yl = Al
(
bl + W l yl−1

)
. (17)

Activation functions A(·) are applied element-wise on their input vectors x so that

A(x) = (A(x1), A(x2) . . . A(xn))⊺

Many different activation functions are available for artificial neural networks, and we here give a short description
of the ones employed in our experiments: the sigmoid and the rectified linear unit (‘ReLU’). The transfer function
of the nodes in the first layer of each DNN was of the type sigmoid:

S(x) =
1

1 + e−x
(18)
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squashing the input vector into the interval (0, 1), effectively resulting in a strictly positive output from the first
hidden layer. The remaining hidden layers consisted of nodes with the de facto standard hidden layer activation
function for deep neural networks, the rectified linear unit (‘ReLU’):

R(x) =

{
x, if x > 0,

0, otherwise.

To fit an artificial neural network to a given set of data, the network is initially compiled using random weights
and biases and then trained using a dataset of known inputs and their corresponding outputs. The weights and biases
are updated iteratively during training by way of an appropriate optimisation algorithm and a loss function, and if
appropriately set up, will converge towards a set of optimal values, allowing the DNN to predict the response of
the forward model to some level of accuracy [40]. Our particular DNNs were trained using the mean squared error
(MSE) loss function

MSE =
1
m

m∑
i=1

(hi − ĥi )2

for m output variables, and the RMSprop optimiser, a stochastic, gradient based and adaptive algorithm, suggested
by [41] and widely used for training DNNs.

3. Adaptive delayed acceptance proposal using a deep neural network

In this section we describe a modified adaptive delayed acceptance proposal for MCMC, using ideas from multi-
level MCMC [7]. The general approach generates proposals by running Markov subchains driven by an approximate
model. In our case this approximation is constructed from a DNN of the forward map F(θ ) trained from offline
samples of the prior distribution. Finally, we show how the approximate map can be corrected online, by adaptively
learning a simple multi-variant Gaussian correction to the outputs of the neural network.

3.1. Modified delayed acceptance MCMC

Delayed Acceptance (DA) [15] is a technique that exploits a model hierarchy consisting of an expensive fine
model and relatively inexpensive coarse approximation. The idea is simple: a proposal is first evaluated (pre-
screened) by an approximate model and immediately discarded if it is rejected. Only if accepted, it is subjected to a
second accept/reject step using the fine model. In this context, the likelihood of observations given a parameter set
is henceforth denoted L̂(dobs|θ ) when evaluated on the approximate model and remains L(dobs|θ ) when evaluated
on the fine model. This simple screening mechanism cheaply filters out poor proposals, wasting minimal time
evaluating unlikely proposals on the expensive, fine model. Crucially, the coarse model need not evaluate every
parameter, only a subset. The remaining fine parameters can then be sampled prior to the second accept/reject step.
We denote the full parameter set θ , the coarse parameters θ̂ and the fine parameters θ̃ . so that θ = [θ̂ , θ̃ ].

In this paper we extend this approach by not evaluating every accepted approximation proposal with the fine
model. Instead, a proposal for the fine model is generated by running an approximate subchain until t approximate
proposals have been accepted and only then evaluate using the fine model. We define the required number of
accepted proposals in the approximate subchains as the offset length. This modified Delayed Acceptance MCMC
algorithm is described in Algorithm 2 and an illustration of the process is given in Fig. 3.

This way, the autocorrelation of the fine chain is reduced, since proposals are ‘more independent’. This approach
is strongly related to a two-level version of multi-level MCMC. Since the fine model likelihood ratio is corrected by
the inverse of the approximate likelihood ratio in step 6 of Algorithm 2, detailed balance is satisfied, the resulting
Markov Chain is guaranteed to come from the true posterior and there is no loss of accuracy, even if the approximate
model is severely wrong [15]. To demonstrate that this approach does indeed decrease the autocorrelation in our
fine chain MCMC samples, we compute the Effective Sample Size Ne f f of each MCMC simulation according to
the procedures described in [42].

8
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Fig. 3. Illustration of the principle used to offset fine level samples to reduce autocorrelation. The fine model F is only evaluated using the

full set of proposed parameters θ ′ after a prescribed number t (the offset length) of approximation parameter sets {θ̂
(1)

, θ̂
(2)

, . . . , θ̂
(t)

} have
been evaluated on the approximate model F̂ and accepted into the coarse chain.

Algorithm 2: Modified Delayed Acceptance MCMC

1. Given a realisation of the approximation parameters θ̂
( j)

and the transition kernel q(θ̂
′

|θ̂
( j)

),
generate a proposal for the approximation θ̂

′

.
2. Compute the likelihood ratio on the approximate model between the proposal and the previous

realisation:

α1 = min

{
1,

π0(θ̂
′

)L̂(dobs|θ̂
′

)

π0(θ̂
( j)

)L̂(dobs|θ̂
( j)

)

}
(AM)

α1 = min

{
1,

L̂(dobs|θ̂
′

)

L̂(dobs|θ̂
( j)

)

}
(pCN)

3. If u ∼ U (0, 1) > α1 then set θ̂
( j+1)

= θ̂
( j)

and return to (1); otherwise set θ̂
( j+1)

= θ̂
′

and
continue to (4).

4. If t proposals have been accepted in the approximation subchain, continue to (5), otherwise return
to (1).

5. Given the latest realisation of the entire parameter set θ (i)
= [θ̂

(i)
, θ̃

(i)
] with fine parameters

θ̃
(i)

and the transition kernel q(θ̃
′

|θ̃
(i)

), generate a proposal for the fine parameters θ̃
′

and set
θ ′

:= [θ̂
′

, θ̃
′

].
6. Compute the likelihood ratio on the fine model between the proposal and the previous realisation:

α2 = min

{
1,

π0(θ ′)L(dobs|θ
′)

π0(θ (i))L(dobs|θ
(i))

π0(θ̂
(i)

)L̂(dobs|θ̂
(i)

)

π0(θ̂
′

)L̂(dobs|θ̂
′

)

}
(AM)

α2 = min

{
1,

L(dobs|θ
′)

L(dobs|θ
(i))

L̂(dobs|θ̂
(i)

)

L̂(dobs|θ̂
′

)

}
(pCN)

7. If u ∼ U (0, 1) > α2 then set θ (i+1)
= θ (i), otherwise set θ (i+1)

= θ ′.

3.2. Adaptive correction of the approximate posterior

Whilst in theory the modified delayed acceptance proposal described in Section 3.1 will provide a convergent
Metropolis–Hastings algorithm, there are cases in which the rate of convergence will be extremely slow. To
demonstrate this, the left-hand contour plot in Fig. 4 shows an artificially bad example. In this case the approximate
model (red isolines) poorly captures the target likelihood distribution (blue density); there is a clear offset in the
distributions, and the scale, shape and orientation of the approximate likelihood is incorrect. If using the modified
delayed acceptance algorithm without alteration, it is easy to see that the proposal mechanism would struggle
to traverse the whole of the target distribution, since much of it lies in the tails of the approximate likelihood

9
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Fig. 4. Fine/target likelihood (blue) and approximate likelihood (red). (Left) Original likelihood before correction, (middle) corrected likelihood
by a constant shift µbias and (right) corrected approximate likelihood by multivariate Gaussian. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

distribution. As a result, in practice, we would observe extremely slow convergence to the true posterior; in practice
– at finite computational times – results would contain a significant bias.

An ad hoc way to overcome this is to apply so-called tempering on the statistical model which drives the subchain.
In this technique, the variance of the misfit Σ ϵ on the subchain is artificially inflated to capture the uncertainty in
the approximate model. The issue in adopting this approach is the difficulty in selecting a robust inflation factor for
tempering, particularly in higher dimensions. Furthermore, an isotropic inflation of the approximate posterior will
in general be sub-optimal.

In this paper we instead implement an adaptive enhanced error model (EEM), which overcomes many of these
challenges. Moreover, it is easy to implement and has negligible additional computational cost. Let F̂ denote the
approximate forward map of the fine/target model F . Then, following [43,18], we apply a trick to the statistical
model (8) where we add and subtract the coarse map F̂ . With some rearrangement we obtain the expression

dobs = F(θ ) + ϵ = F(θ ) + F̂(θ ) − F̂(θ ) + ϵ = F̂(θ ) +

(
F(θ ) − F̂(θ )

)
  

:=B(θ)

+ϵ. (19)

Here B(θ ) = F(θ )−F̂(θ ) is the bias associated with the approximation at given parameter values θ . We approximate
this bias using a multivariate Gaussian distribution, i.e. B ∼ N (µbias,Σ bias), and therefore the likelihood function
(12) can be rewritten as

L̂(dobs|θ ) = exp
(

−
1
2

(F̂(θ ) + µbias − dobs)⊺(Σ bias + Σ e)−1(F̂(θ ) + µbias − dobs)
)

. (20)

The influence of redefining the likelihood is best demonstrated geometrically, as shown in Fig. 4 (middle and right).
Firstly, as shown in Fig. 4 (middle) we can make a better approximation by simply adding a shift of the mean bias
µbias to the original approximate model F̂(θ ). This has the effect of aligning the ‘centre of mass’ of each of the
distributions. Secondly, we can learn the covariance structure of the bias. This has the effect of stretching and
rotating the approximate distribution to give an even better overall approximation, as shown in Fig. 4 (right). The
final mismatch between the approximate and target distribution will be driven by the assumption that bias can
be represented by a multivariate Gaussian, although more complex distributions could be constructed using, for
example, Gaussian process regression. Whilst this is an avenue to explore in the future, any such approach would
surrender the simplicity of this approach, which from the results appears particularly effective.

The idea of using an EEM when dealing with model hierarchies originates from [43], who suggested to use
samples from the prior distribution of parameters to construct the EEM prior to Bayesian inversion, so that

µbias =
1
N

N∑
i=1

B(θ (i)) and Σ bias =
1

N − 1

N∑
i=1

(B(θ (i)) − µbias)(B(θ (i)) − µbias)
⊺ (21)
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The estimates for µbias and Σ bias could be obtained by sampling the prior distribution and comparing the
approximate forward map against the target forward map. This approach has previously been successfully applied
to a geophysical inverse problem by [44], who compared the modelling error for a large number of crosshole
tomography models. However, since the model output generated by parameter sets drawn from the prior distribution
may be biased significantly differently than samples drawn from a (relatively concentrated) posterior distribution, this
approach may lead to an EEM that poorly represents the model bias associated with the posterior. If the approximate
model is a good approximation on average, constructing the EEM from the prior distribution would lead to an
underestimation of the mean and an overestimation of the covariance of the bias, compared to an EEM constructed
from the posterior. Furthermore, in our example where the approximate model is built from samples from the prior,
it is expected that such an approach would further underestimate both the mean and covariance of the bias, since
the neural network has been explicitly trained to minimise the error with respect to samples from the prior.

Instead of estimating the bias using the prior, the posterior bias can be constructed on-line by iteratively updating
its mean µbias and covariance Σ bias using coarse/fine solution pairs from the MCMC samples as suggested by [45].
Another similar approach was employed to a Bayesian geophysical problem by [46], who collected model bias
estimates while sampling, and used the bias estimates of the k-nearest-neighbours of each new coarse sample to
construct a bias. In this case we select

µbias,i+1 =
1

i + 1

(
iµbias,i + B(θ (i+1))

)
and (22)

Σ bias,i+1 =
i − 1

i
Σ bias,i +

1
i

(B(θ (i+1)) B(θ (i+1))⊺ − µbias,i+1 µ
⊺
bias,i+1) (23)

While this approach does not in theory guarantee ergodicity of the chain (as is also the case with the Adaptive
Metropolis proposal), the bias distribution will converge as the chain progresses and adaptation diminishes, resulting
in a de facto ergodic process after an initial period of high adaptivity. This is a common feature of adaptive MCMC
algorithms, as discussed in the classic paper on Adaptive Metropolis [17]. Our experiments showed that the bias
distribution did indeed converge for every simulation, and that repeated experiments converged towards the same
posterior bias distribution. Admitting a bias term in the inverse problem further introduces an issue of identifiability,
as highlighted in [47]. Since observations are now modelled as a sum of coarse model output and multiple stochastic
terms, the stochastic terms B ∼ N (µbias,Σ bias) and ϵ ∼ N (0, σ 2In) are generally unidentifiable in the coarse
model formulation, meaning that the bias B and the data modelling noise ϵ are observationally equivalent, and not
well-defined.

4. Results

In this section, we examine the effectiveness of our proposed strategy on two synthetic groundwater flow
problems: a two-dimensional problem with an isotropic covariance kernel and a three-dimensional problem with an
anisotropic covariance kernel. For both examples, we begin by outlining the model setup, for which we select a ‘true’
transmissivity field and a number of fixed observation points. For the first example, the influence of training size
for the DNNs is examined, and the total cost of uncertainty quantification using a selection of DNNs is computed.
For the second example we use a single DNN setup and analyse the resulting posterior marginal distributions and
the quantity of interest. The first example was completed on commodity hardware — an HP Elitebook 840 G5
with an Intel Xeon E3-1200 quad-core processor, while the second example was completed on a TYAN Thunder
FT48T-B7105 GPU server with two Intel Xeon Gold 6252 processors and an NVIDIA RTX 2080Ti GPU.

4.1. Example 1: 2D unit square

4.1.1. Model setup
This example was conducted on a unit square domain Ω = [0, 1]2, meshed using an unstructured triangular grid

comprising 2,601 degrees of freedom. Dirichlet boundary conditions were imposed on the left and right boundaries
with hydraulic heads of 1 and 0, respectively. The top and bottom edges impose homogeneous no-flow Neumann
boundary conditions. To avoid committing an inverse crime, the covariance length scales of the ARD squared
exponential kernel was set to l = (0.11, 0.11)⊺ for data generation and l = (0.1, 0.1)⊺ for the forward model used
in sampling. The chosen length scales effectively resulted in an isotropic covariance kernel, equal to the ‘classic’

11

86



M.B. Lykkegaard, T.J. Dodwell and D. Moxey Computer Methods in Applied Mechanics and Engineering 383 (2021) 113895

Fig. 5. “True” transmissivity field, its corresponding solution and sampling points.

Table 1
Neural network layers and activation functions in the model approximation DNNs.

Layer # Nodes Activation functions

DNN1 DNN2 DNN3 DNN4

Input k KL coefficients – – – –
1 4k Sigmoid Sigmoid Sigmoid Sigmoid
2 8k ReLU ReLU – –
3 4k ReLU ReLU ReLU ReLU
Output m datapoints Exponential Linear Exponential Linear

square exponential kernel with l = 0.1. This resulted in a KL decomposition with > 80% of total signal energy
in the 32 largest eigenvalues and > 95% of signal energy in the 64 largest eigenvalues. Hence, 32 modes were
included in the approximate model whilst 64 modes where included in the fine model.

Fig. 5(a) shows the ‘true’ transmissivity field that we attempt to recover through our MCMC methodology and
the modelled, corresponding hydraulic head. Synthetic samples for the likelihood function were extracted at 25
points on a regular grid with a horizontal and vertical spacing of 0.2 m (Fig. 5(b)), and these data were perturbated
with white noise with covariance Σ e = 0.001 Im .

4.1.2. Deep neural network design, training and evaluation
We evaluated a selection of different DNNs to investigate the impact of various network depths and activation

functions on the DNN performance. Table 1 shows the layers of the employed DNNs, the number of nodes in each
layer and their corresponding activation functions. DNN1 and DNN2 had three hidden layers, while DNN3 and
DNN4 had only two, as the ReLU layer with 8k nodes was not included in these networks. The output layer of
DNN1 and DNN3 consisted of nodes with an exponential activation function E(x) = ex , resulting in a strictly
positive output. The DNNs with an exponential activation function in the final layer tended overall to lead to the
best performance.

Each DNN was trained on a set of samples from the prior distribution of parameters π0(θ ) = N (0, Ik), in advance
of running the MCMC. Hence, the DNN samples were drawn from a Latin Hypercube [48] in the interval [0, 1] and
transformed to the standard normal distribution using the probit-function, such that θ train ∼ N (0, Ik). The coarse,
32-mode FEM model was then run for every parameter sample, obtaining for each a vector of model outputs at
sampling points given parameters. We trained and tested each DNN on a range of different sample sizes, namely
NDNN = {2000, 4000, 8000, 16000, 32000, 64000}, where NDNN = Ntrain + Ntest , with a 9:1 training/test splitting
ratio. Each DNN was then trained for 200 epochs with a batch size of 50 using the rmsprop optimiser [41].
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Fig. 6. Testing performance (RMSE) of each DNN against the total sample size (NDNN = Ntrain + Ntest ). Please refer to Table 1 for details
in the structure of each DNN.

Deep Neural Networks performance was compared using the RMSE of their respective testing dataset

RMSE =

√1
n

n∑
i=1

(hi − ĥi )2 (24)

The residual RMSE (24) of each DNN was computed to compare the network designs described in Table 1 and
to investigate the influence of training dataset size on the DNN performance (Fig. 6). As expected, each DNN
performed better as the number of samples in the training dataset were increased. In comparison, the DNN design
had much less influence on the testing performance, suggesting that the main driver for constructing an accurate
surrogate model, within the bounds of the examined DNN designs, was the number of training samples. For the
remaining analysis, we chose the network design resulting in the overall lowest RMSE at NDNN = 64000, namely
DNN1, and the sample sizes NDNN = {4000, 16000, 64000}.

Further performance analysis consisted of analysing the DNN error e = htrue −hpred for true and predicted heads
(htrue and hpred, respectively) for datapoints 0, 8, 16 and 24. (Fig. 7). All error distributions were approximately
Gaussian, with the errors for the DNN with NDNN = 4000 exhibiting some right skew at sampling point 24. For
all DNNs, the sampling points closer to the boundaries (at sampling points 0 and 24) had lower errors than those
further away, since the heads close to the boundaries were more constrained by the model.

4.1.3. Uncertainty quantification
For inversion and uncertainty quantification, we chose a multivariate standard normal distribution as the prior

parameter distribution, π0(θ ) = N (0, Ik) and set the error covariance to Σ e = 0.001 Im . While computationally
convenient, the zero-centred prior in practice favours transmissivity field realisations capable of reproducing the
observed heads with as little variation as possible. In total, eight different sampling strategies were investigated,
namely single level ‘Vanilla’ MCMC, with no delayed acceptance, no adaptivity, and using only the 64-mode
fine model; DA using three different DNNs trained and tested on NDNN = {4000, 16000, 64000} samples as the
coarse model and the 64-mode model as the fine; and DA with an enhanced error model (DA/EEM) using the
same three DNNs. The offset length t for the DA strategies was manually tuned to achieve an acceptance rate of
a ∈ [0.2, 0.4]. To investigate the effect of the offset length t independently of other factors, an additional simulation
with NDNN = 64000 and t = 1 was also completed. In this first example, every simulation was completed using
the pCN transition kernel, with β = 0.15. Each MCMC sampling strategy was repeated (n = 32) using randomly
generated random seeds, to ensure that every starting point would converge towards the same stationary distribution
and to allow for cross-chain statistics to be computed. Results given in this section pertain to these multi-chain
samples rather than individual MCMC realisations, unless otherwise stated.

Our sampling strategies recovered the ground truth with good accuracy. Fig. 8 shows the mean and variance of
the recovered field from the DA/EEM MCMC using the DNN with NDNN = 64000. All recovered fields exhibit
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Fig. 7. Density plot of the error (e = htrue − hpred) of the testing dataset for DNN1 trained and tested on NDNN = {4000, 16000, 64000}

samples, for sampling points 0, 8, 16 and 24. Bars show density of each bin, while the curve shows Gaussian kernel density estimate.

Table 2
Results for various MCMC sampling strategies, means of multiple chains with n = 32. NDNN is the number
of total samples used to construct the DNN. t is the improved DA offset length. NC/NF is the final length of
the coarse and fine chain, respectively, after subtracting burnin. Acc. rate is the fine chain acceptance rate. Time
(min) is the total running time of the simulation in minutes. Ne f f is the Effective Sample Size.

Strategy NDNN t NC/NF Acc. Rate Time (min) Ne f f

Vanilla – – —/40000 0.33 32.1 85.6
DA 4000 2 85461.9/20000 0.27 16.2 64.5
DA/EEM 4000 2 78853.4/20000 0.31 15.2 79.0
DA 16000 4 172383.1/20000 0.27 18.2 116.3
DA/EEM 16000 4 178978.4/20000 0.30 18.4 143.6
DA 64000 8 336447.5/20000 0.24 30.1 196.5
DA/EEM 64000 8 377524.4/20000 0.30 29.9 235.7
DA/EEM 64000 1 56824.3/20000 0.57 15.3 68.6

higher smoothness than the ground truth, which can be attributed to the relatively low number of sampling points
and their regular distribution on the domain, in combination with the regularisation introduced by the prior. Since the
KL decomposition incorporated > 95% of the signal energy, the truncation would have contributed only marginally
to the smoothing. None of the chains recovered the local peak in transmissivity on the right side of the domain,
since there was too little data to discover this particular feature. However, this peak is clearly encapsulated by the
posterior variance, as shown in Figs. 8(b) and 8(d).

While the recovered fields indicate that every MCMC sampling strategy converged towards the desired stationary
distribution, they do not reveal the relative efficiency of each strategy. Hence, the Effective Sample Size (Ne f f )
was computed for each MCMC realisation. Every DA sampling strategy produced higher Ne f f than the Vanilla
pCN sampler, relative to the simulation time, with a clear correlation between DNN testing performance and Ne f f .
This was mainly because the better performing DNNs allowed for a longer coarse chain offset without diverging.
Moreover, utilising the EEM produced even higher Ne f f for every DA chain (Table 2).
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Fig. 8. Mean and variance (n = 32) of recovered log-transmissivity fields using Vanilla pCN sampler (top) and DA/EEM MCMC with
NDNN = 16000 (bottom). Corresponding plots of every sampling strategy are shown in Figs. B.15–B.21 in Appendix B.

4.1.4. Total cost
Since the DA chains required computation of a significant number of fine model solutions and training of a DNN

in advance of running the chain, the total cost Ctotal of each strategy was computed as

Ctotal =
tfine + ttrain + trun

Ne f f
(25)

where tfine was the time spent on precomputing fine model solution, ttrain was the time spent on training the respective
DNN, trun was the time taken to run the chain and Ne f f was the resulting effective sample size (Fig. 9).

The mean cost of every DA chain was lower than that of the Vanilla pCN chain, with the chains using the
EEM consistently cheaper than their non-EEM counterparts. Moreover, using the EEM reduced the variance of the
cost in repeated experiments, allowing each repetition to produce a consistently high Ne f f . The overall cheapest
inversion was completed using the DNN trained on 16,000 samples using the EEM, reducing the total cost, relative
to the Vanilla pCN MCMC, with 50%. Notice that these results are extremely conservative in the sense that the
entire cost of evaluating every DNN training sample and training the DNN in serial on a CPU was factored into the
cost of every repetition, even though the same DNN was used for all the repetitions within each sampling strategy.
The precomputation cost can be dramatically reduced by evaluating the DNN samples in parallel and utilising
high-performance hardware, such as GPUs, for training the DNN.
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Fig. 9. Violinplots showing the total cost Ctotal of each MCMC strategy with n = 32. Points show independent Markov Chains.

4.2. Example 2: 3D rectangular cuboid

4.2.1. Model setup
This example was conducted on a rectangular cuboid domain Ω = [0, 2] × [0, 1] × [0, 0.5] meshed using an

unstructured tetrahedral grid with 10,416 degrees of freedom (Fig. 10). Dirichlet boundary conditions of h = 1
and h = 0 were imposed at x1 = 0 and x1 = 2, respectively. No-flow Neumann conditions were imposed on all
remaining boundaries.

The covariance lengths scales for ARD squared exponential covariance kernel were set to l = (0.55, 0.95, 0.06)⊺

for data generation and l = (0.5, 1.0, 0.05)⊺ for the forward model used in sampling, resulting in a highly anisotropic
random process with high variation in the x3 direction to simulate geological stratification, some variation in the
x1 direction and little variation in the x2 direction (Fig. 10(a)). Like in the first model, the random process was
truncated at 64 KL eigenmodes for the fine model and 32 KL eigenmodes for the coarse model, embodying > 97%
and > 90% of the total signal energy, respectively.

We drew w = 50 sampling well locations randomly using the Maximin Latin Hypercube Design [49], and
samples of hydraulic head were extracted at each well at datums x3 = {0.05, 0.15, 0.25, 0.35, 0.45}, measured from
the bottom of the domain, resulting in m = 250 datapoints in total (Fig. 10(b)). These data were perturbated with
white noise with covariance Σ e = 0.001 Im .

For this example, we first converged the conductivity parameters to the Maximum a posteriori (MAP) estimate
θM AP = arg max

θ

π0(θ )L(dobs|θ ) using gradient descent, since initial MCMC experiments struggled to converge to

the posterior distribution for random initial parameter sets.

4.2.2. Deep neural network design, training and evaluation
Training a DNN to accurately emulate the model response for this setup was challenging, and we found no single

combination of neural network layers and activation functions that would predict the head at every datapoint with
sufficient accuracy. We hypothesise that this limitation could be caused by a strong ill-posedness of the DNN —
for a single neural network, the output dimension greatly exceeded the input dimension, i.e. m ≫ k where m = 250
was the number of datapoints, and k = 32 was the coarse model KL modes. When we instead predicted the heads
at each datapoint datum using a separate DNN, we found that we could utilise largely the same DNN design as
had been employed in the first example. Hence, to predict the head at all datapoints, we utilised five identically
designed but independent DNNs (Fig. 11), each with four hidden layers and activation functions as indicated in
Table 3. Each DNN was trained and tested on a dataset of NDN N = 16000 samples with KL coefficients drawn
from a Latin Hypercube [48] in the interval [0, 1] and transformed to a normal distribution centred on the MAP
estimate of the parameters θM AP , i.e. θ train ∼ N (θM AP , Ik). This was done to increase the density of samples and
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Fig. 10. “True” conductivity field, its corresponding solution and sampling points.

Fig. 11. Layout of the multi-DNN design. Each DNN outputs a vector hx3 vector of w head predictions at datum x3.

thus improve the DNN prediction at and around the MAP point, which ideally equals the mode of the posterior
distribution. The DNNs were then trained for 200 epochs using a batch size of 50, the MSE loss function and the
rmsprop optimiser [41]. Fig. 12 shows performance plots of each DNN for both the training (top) and the testing
(bottom) datasets. While every DNN is clearly moderately biased by the training data, they all performed adequately
with respect to the testing data.
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Fig. 12. Performance of the five DNNs used in the multi-DNN approach, as shown in Fig. 11, with respect to the training dataset (top)
and the testing dataset (bottom).

Table 3
Layers and activation functions in the four DNNs. Each DNN takes all k KL
coefficients as input and predicts the head hx3 at w wells for a given datum.

Layer # Nodes Activation functions

Input k KL coefficients –
1 4k Sigmoid
2 8k ReLU
3 8k ReLU
3 4k ReLU
Output w wells Exponential

4.2.3. Uncertainty quantification
Similarly to the first example, we chose a multivariate standard normal distribution π0(θ ) = N (0, Ik) as the

prior distribution of parameters, and set the error covariance to Σ e = 0.001 Im . Hence, the synthetic head data
from the wells were perturbated with white noise with covariance Σ e. In this example, we utilised the Adaptive
Metropolis (AM) transition kernel for generating proposals. We completed n = 8 independent simulations, each
initialised from a random initial point close to the MAP point θM AP , with a burnin of 1000 and a final sample
size of N = 10,000. The subchains were run with an acceptance delay of t = 2, since longer subchains tended
to diverge, leading to sub-optimal acceptance rates on the fine level. The simulations had a mean acceptance rate
of 0.26, a mean effective sample size (Ne f f ) of 55.2 and a mean autocorrelation length τ = N/Ne f f of 181.0.
The samples of each independent simulation were pruned according to the respective autocorrelation length, and
the remaining samples were pooled together to yield 443 statistically independent samples that were then analysed
further.

Fig. 13 shows the marginal distributions of the six coarsest KL coefficients along with a scatterplot matrix of
all the samples remaining after pruning. All the marginal distributions are approximately Gaussian, and the two-
parameter marginal distributions are mostly elliptical. It is evident that some of these parameters are correlated,
namely parameters (θ0, θ5), (θ1, θ2), (θ1, θ3), (θ1, θ4) and (θ2, θ4). It is worth mentioning that in every independent
simulation, the AM proposal kernel managed to capture these correlations.

Moreover, we analysed the hydraulic head as a function of datum h(x3) along a line in the centre of the domain
x = (1.0, 0.5, x3)⊺. Fig. 14 shows h(x3) of the ground truth, MAP point θM AP , the mean of the n = 8 independent
simulations, and all the samples remaining after pruning. We observe that both the MAP point and the sample
mean are fairly close to the ground truth, albeit exhibiting higher smoothness, particularly between the observation
depths, where the head is essentially allowed to vary freely. It is also clear that the individual samples encapsulate
the ground truth, indicating that the ground truth is indeed contained by posterior distribution.
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Fig. 13. One and two-dimensional posterior marginal distributions (diagonal and lower triangle) and scatterplots (upper triangle) of posterior
samples pruned according to the autocorrelation length of each chain for the largest 5 KL eigenmodes. Please note that the axis scales of
are not equal.

5. Discussion

In this paper, we have demonstrated the use of a novel Markov Chain Monte Carlo methodology which employs
a delayed acceptance (DA) model hierarchy with a deep neural network (DNN) as an approximate model and a
FEM solver as a fine model, and generates proposals using the pCN and AM transition kernels. Results from the
first example clearly indicate that the use of a carefully designed DNN as a model approximation can significantly
reduce the cost of uncertainty quantification, even for DNNs trained on relatively small sample sizes. We have
established that offsetting fine model evaluations in the DA algorithm reduces the autocorrelation of the fine
chain, resulting in a higher effective sample size which, in turn, improves the statistical validity of the results.
In this context, the performance of the DNN is a critical driver when determining a feasible offset length to avoid
divergence of the coarse chain. Hence, if a high effective sample size is required, it may be desirable to invest in
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Fig. 14. Hydraulic head as a function of datum h(x3) at x = (1.0, 0.5, x3)⊺. The solid red line shows the hydraulic head of the ground
truth, the dashed orange line shows the head of the Maximum a posteriori (MAP) point θM AP , the dotted yellow line shows the mean head
of the independent simulations (n = 8) and the thin black lines show the head of 538 statistically independent samples, remaining after
pruning according to the autocorrelation length of each chain, n = 443. The vertical dotted lines show the observation depths.

a well-performing DNN. Moreover, we have shown that an enhanced error model, which introduces an iteratively-
constructed bias distribution in the coarse chain likelihood function, further increases the effective sample size
and decreases the variance of the cost in repeated experiments. Finally, we observed that for the second example,
even when employing a relatively well-performing model approximation, we had to constrain the offset length of
the subchains rather strongly to achieve optimal acceptance rates. This can be attributed in part to an apparent
non-spherical and correlated posterior distribution, causing the employed proposal kernels to struggle to discover
areas of high posterior probability.

We have demonstrated that relatively simple inverse hydrogeological problems can be solved in reasonable time
on a commonly available personal computer with no GPU-acceleration. This opens the opportunity to apply robust
uncertainty quantification during fieldwork and as a decision-support tool for groundwater surveying campaigns.
We have also demonstrated the applicability of our approach on a larger scale three-dimensional problem, utilising
a GPU-accelerated high-performance computer (HPC). Aside from the benefit of using a HPC computer for
accelerating the fine model evaluations, utilising the GPU allowed for rapidly training and testing multiple different
DNN designs to efficiently establish a well performing model approximation. There are other obvious ways to further
increase the efficiency of the proposed methodology. For example, construction of the DNNs used as coarse models
comes with the cost of evaluating multiple models from the prior distribution, and, unlike the MCMC sampler, the
prior models are independent and these fine model evaluations can thus be massively parallelised.

Our methodology was demonstrated in the context of two relatively simple groundwater flow problems with
log-Gaussian transmissivity fields parametrised by Karhunen–Loève decompositions. While this model provides a
convenient computational structure for our purposes, it may not reflect the full scale transmissivity of real-world
aquifers, particularly in the presence of geological faults and other heterogeneities, as discussed in [24]. Future
research could address this problem through geological layer stratification using the universal cokriging interpolation
method suggested in [50], potentially utilising the open-source geological modelling tool GemPy [51], which allows
for simple parametric representation of geological strata. Spatially heterogeneous parameters within each strata could
then be modelled hierarchically using a low order log-Gaussian random field to account for within-stratum variation,
as demonstrated in [12].

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could
have appeared to influence the work reported in this paper.

20

95



M.B. Lykkegaard, T.J. Dodwell and D. Moxey Computer Methods in Applied Mechanics and Engineering 383 (2021) 113895

Acknowledgements

This work was funded as part of the Water Informatics Science and Engineering Centre for Doctoral Training
(WISE CDT) under a grant from the Engineering and Physical Sciences Research Council (EPSRC), UK, grant
number EP/L016214/1. TD was funded by a Turing AI Fellowship, UK (2TAFFP\100007). DM acknowledges
support from the EPSRC Platform Grant PRISM, UK (EP/R029423/1). The authors have no competing interests.
Data supporting the findings in this study are available in the Open Research Exeter (ORE, https://ore.exeter.ac.uk
/repository/) data repository.

Appendix A. Preconditioned Crank–Nicolson

The preconditioned Crank–Nicolson (pCN) proposal was developed in [16] and is based on the following
Stochastic Partial Differential Equation (SPDE):

du
ds

= −KLu +
√

2Kdb
ds

where L = C−1 is the precision operator for the prior distribution µ0, b is brownian motion with covariance operator
I , and K is a positive operator. This equation can be discretised using the Crank–Nicolson approach to yield

v = u −
1
2
δKL(u + v) +

√
2Kδξ0

for white noise ξ0 and a weight δ ∈ [0, 2]. If we choose K = I , we get the plain Crank–Nicolson (CN) proposal:

(2C + δ I )v = (2C − δ I )u +
√

8δCξ

where ξ ∼ N (0, C). If we instead choose K = C, we get the pCN proposal:

v =

√
1 − β2u + βξ, β =

√
8δ

2 + δ
, β ∈ [0, 1]

This is rewritten, conforming to our previous notation:

θ ′
=

√
1 − β2θ i + βξ

Appendix B. Recovered conductivity fields

See Figs. B.15–B.21.

Fig. B.15. Mean (left) and variance (right) of recovered log-transmissivity for Vanilla pCN.
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Fig. B.16. Mean (left) and variance (right) of recovered log-transmissivity for DA, NDN N = 4000.

Fig. B.17. Mean (left) and variance (right) of recovered log-transmissivity for DA/EEM, NDN N = 4000.

Fig. B.18. Mean (left) and variance (right) of recovered log-transmissivity for DA, NDN N = 16000.
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Fig. B.19. Mean (left) and variance (right) of recovered log-transmissivity for DA/EEM, NDN N = 16000.

Fig. B.20. Mean (left) and variance (right) of recovered log-transmissivity for DA, NDN N = 64000.

Fig. B.21. Mean (left) and variance (right) of recovered log-transmissivity for DA/EEM, NDN N = 64000.
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ABSTRACT

We present a novel approach to adaptive optimal design of groundwater surveys –
a methodology for choosing the location of the next monitoring well. Our dual-
weighted approach borrows ideas from Bayesian Optimisation and goal-oriented
error estimation to propose the next monitoring well, given that some data is already
available from existing wells. Our method is distinct from other optimal design
strategies in that it does not rely on Fisher Information and it instead directly
exploits the posterior uncertainty and the expected solution to a dual (or adjoint)
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1 Introduction

In this paper, we present a novel approach to optimally choosing the location of the next monitoring
well when conducting a groundwater survey. Establishing a monitoring well is generally costly,
and depends on the specific geological context and the required penetration depth, and choosing
the most informative location for each well is a critical task when designing a groundwater survey.
Groundwater surveying and modelling are intrinsically imbued with uncertainty and solutions and
predictions are without exception non-unique [1]. Hence, in this paper we assume the perspective that
a useful sampling location is one that most significantly reduces the uncertainty in the solution, while
simultaneously having a substantial influence on some quantity of interest (QoI). While multiple
non-invasive and relatively inexpensive methods for groundwater surveying exist [2, 3, 4, 5], these
methods all involve solving an inverse problem to reconstruct the hydraulic head, which introduces an
additional layer of uncertainty. Hence, in this work, we focus on the problem of determining aquifer
characteristics from direct point measurements of hydraulic head and flux from monitoring wells,
and how to optimally choose the locations of such wells, given existing data. While the method is
here contextualised within this particular problem, it can easily be generalised to any setting where a
continuous function and a derived QoI are approximated with point measurements.

In the “classic” theory of optimal design, we often distinguish between optimality criteria that
minimise the estimated parameter variances (e.g. A−, D− and E−optimality) and those that
minimise the prediction variance (e.g. G−, V− and I−optimality) [6, 7]. Since in this study we
are primarily concerned with the prediction variance, the method presented here belongs in the
latter category. In this context, our method can broadly be considered G−optimal, since our vanilla
acquisition function targets the location of the highest posterior dispersion [see e.g. 7]. However,
rather than iteratively searching for a design that maximises an optimality criterion, we directly
utilise a posterior dispersion estimate to construct an acquisition function. We remark that while
there are some abstract parallels between the method presented here and classic optimal design,
our method is probably better understood in the context of Bayesian Optimisation, as discussed
later. Additionally, the classic optimal design approach is typically centered around the problem of
choosing an experimental design that is optimal with respect to an optimality criterion, before taking
any measurements. In this paper, we take an adaptive approach and assume that some measurements
are already available, and we want to propose optimal new sampling locations, given the data we
already have. How the initial measurement locations are optimally chosen is beyond the scope of
this paper, but we refer to e.g. Cox and Reid [8], Pukelsheim [6], Myers et al. [7] for an extensive
overview of optimal design of experiments. We remark that our dual-weighted method could in theory
be employed to choose initial measurement locations, but in that case the dispersion of the solution
would be constrained only by the prior distribution of parameters and the constraints imposed by the
constitutive equations. In this case, the method presented herein may be used in conjunction with
some space-filling design strategy or using local penalisation functions as described in Section 2.3.2.
However, either of these workarounds would require an informed prior to work well.
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We recycle the notion from classic optimal design that the information gain is driven by minimising the
dispersion of a target distribution [9]. However, rather than integrating out all possible measurements
and model parameters to find the utility of a given design, we take a simpler approach. Namely, we
use a Monte Carlo estimate of the (current) posterior dispersion of the solution to a Partial Differential
Equation (PDE) (or some appropriate function thereof) as an acquisition function. The underlying
rationale being that if we wish to know more about the distribution of our solution, the most useful
place to take a new sample is at the point of the highest posterior uncertainty.

In this context, our Vanilla approach (see Section 2.3.1) is not dissimilar to the maximum entropy
approach to the optimal sensor placement problem [10], where sensors are added at the point of the
highest uncertainty of some probabilistic function that is fitted to current sensor measurements, for
example a Gaussian Process (GP) emulator. While this strategy will typically place many sensors at
the boundaries of the sampling space in the context of adaptive GP fitting [11], this is not necessarily
the case when targeting the uncertainty of the solution to a PDE, since that will be constrained by
boundary conditions. The sensor placement problem has been studied extensively in the context
of GP emulators, and multiple improvements to the maximum entropy approach have been made
(see e.g. Krause et al. [12], Beck and Guillas [13], Mohammadi et al. [11]). However, since our
objective is to minimise the uncertainty of a PDE-derived QoI, and not a GP emulator, many of
the recent developments are not immediately applicable, since they are tailored for use with a GP
emulator. Hence, the Vanilla approach presented herein can be considered a reformulation of the
original maximum entropy approach, particularly tailored for the (probabilistic) solution of a PDE.

Our method (see Section 2.3) borrows ideas from other fields, not obviously related to classic optimal
design. First, our adaptive optimal design approach is formulated in terms of an acquisition function,
a term typically associated with Bayesian Optimisation (BO, Močkus [14], Frazier [15]). Moreover,
our approach uses ideas from both prior-guided BO [16] and batch BO [17], the similarities with
which are discussed in Section 2.3.3. While in the context of BO, the aim is to find the maximum
or minimum of some function that is expensive to evaluate, our objective is to simply reduce the
uncertainty of our model predictions. Hence, our vanilla acquisition function addresses solely the
uncertainty of some target function, and not the function value itself. Second, our approach is inspired
by the goal-oriented error-estimation used in mesh-adaptation for PDEs [18, 19], where the intention
is to refine a mesh locally and parsimoniously to reduce the simulation error with respect to some QoI
using an influence function that is the solution to an adjoint PDE. This approach, however, is most
useful for forward problems, where the domain and coefficients are well-known, and the groundwater
flow problem is typically not of this kind. Instead, we use the same approach of computing an
influence function with respect to the QoI to determine, not where the mesh should be refined, but
from where we need more data.

The idea of exploiting the adjoint or dual problem to minimise the posterior uncertainty with respect
to a QoI was first explored by Attia et al. [20] in a similar context as our model problem. However,
there are several crucial differences between their approach and the one presented in this paper. First,
their method is set in the “classic” optimal design context, where a number of sampling locations
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are determined before taking any measurements, based on the maximising the expected information
gain according to some criterion derived from the Fisher Information matrix. Second, since only a
finite number of designs can be explored this way, the prospective sampling locations are fixed to a
relatively coarse grid. Finally, the approach described in Attia et al. [20] requires the adjoint operator
to be linear – an assumption which is suitable for only a subset of QoIs.

We employ Markov Chain Monte Carlo (MCMC) techniques (see Section 2.1) to generate samples
from the posterior distribution of the model parameters given the data π(θ|d), where the model
parameters (θ) in this case describe hydraulic conductivity and the data (d) are point measurements of
hydraulic head and flux (see Section 2.2). Even if the model parameters themselves are of secondary
interest to a given problem, we can use the MCMC samples to construct Monte Carlo estimates
of any parameter-derived quantity or function, such as the hydraulic flux across a boundary, or the
peak concentration of a contaminant at a well. Additionally, unlike traditional inversion techniques,
MCMC allows for rigorously quantifying the uncertainty of the inverse problem, which is useful
in the context of engineering decision support systems, in particular risk assessment studies. We
believe that there are many unexploited application opportunities tangential to the study of Bayesian
posteriors and demonstrate, in this paper, one such application.

Figure 1 illustrates the proposed workflow at a high level, where new wells are sequentially established
at locations of high uncertainty and influence on a QoI, as dictated by the acquisition function. This
paper is mainly concerned with the construction of optimal acquisition functions based on the
posterior information which would be immediately available from quantifying the uncertainty of the
Bayesian inverse problem.
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Figure 1: Conceptual diagram of the proposed adaptive optimal design workflow. Here, V(Q) denotes
the variance of the quantity of interest Q and Vcrit the desired critical variance.

In the following sections, we briefly summarise the theory of Bayesian inverse problems, MCMC
and groundwater flow modelling. We then outline the proposed methodology and demonstrate the
effectiveness of methodology on a synthetic example. We show that efficient acquisition functions
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can easily be constructed from information that would already be available from solving the Bayesian
inverse problem using MCMC. The method avoids many of the complex calculations that are
associated with classic optimal design and exploits information about the Bayesian posterior in a
direct and straightforward way.

2 Theory

In this section, we first briefly outline the framework of Bayesian inverse problems and Markov Chain
Monte Carlo (MCMC), a popular technique employed to draw samples from the Bayesian posterior.
We then summarise the fundamentals of groundwater flow modelling for steady-state groundwater
flow in a confined aquifer using the Finite Element Method (FEM). Finally, we describe our novel
approach to adaptive optimal design of groundwater surveys.

2.1 Bayesian Inversion

A Bayesian inverse problem can be stated compactly as: Given some data d, find the distribution
π(θ|d) with model parameters θ ∈ Θ, where Θ is the parameter space, so that

d = F(θ) + ϵ (1)

where F(θ) is the model output and ϵ is the measurement error, which is typically assumed to be
Gaussian. Bayes theorem then states that

π(θ|d) = πp(θ)L(d|θ)
π(d)

(2)

where π(θ|d) is referred to as the posterior distribution, πp(θ) is prior distribution, encapsulating
what we already know about our model parameters and L(d|θ) is called the likelihood, essentially a
measure of misfit between the model output F(θ) and the data d. While the the so-called evidence
π(d) =

∫
Θ
πp(θ) L(d|θ) dθ is generally infeasible or impossible to determine in most real-world

scenarios, various sampling techniques allows us to make statistical inferences from π(θ|d) anyway.
Examples include Importance Sampling (IS) and Markov Chain Monte Carlo (MCMC) methods.
While these methods are not the object of this study, a short summary of the main ideas of MCMC,
which is the specific method employed for inversion in this study, is provided for completeness.

In MCMC we exploit that π(d) is constant and does not depend on the parameters θ. We can therefore
write

π(θ|d) ∝ πp(θ)L(d|θ) (3)

or equivalently, for x, y ∈ Θ
π(y|d)
π(x|d) =

πp(y)L(d|y)
πp(x)L(d|x)

(4)
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We then introduce a transition kernel or proposal distribution q(y|x), allowing us to transition from
one state x to another y. Repeatedly applying the transition kernel q(y|x) followed by an accept/reject
step prescribed by equation (5) we construct a Markov chain where the samples, after an initial
burn-in, are precisely from the required distribution π(θ|d). Here, burn-in refers to the initial MCMC
samples which are discarded, since they may not be representative of the equilibrium distribution of
the Markov chain. This procedure is described in the box below [21, 22, 23].

The Metropolis-Hastings Algorithm, θ(0) ∼ πp(θ), for i = 0, . . . , N :

1. Given a parameter realisation θ(i) and a transition kernel q(θ′|θ(i)), generate a proposal
θ′.

2. Compute the acceptance probability of the proposal given the previous realisation:

α(θ′|θ(i)) = min
{
1,

πp(θ
′)L(d|θ′)

πp(θ(i))L(d|θ(i))
q(θ(i)|θ′)
q(θ′|θ(i))

}
(5)

3. If u ∼ U(0, 1) > α then set θ(i+1) = θ(i), otherwise, set θ(i+1) = θ′.

The acceptance probability (Eq. 5) ensures that the algorithm is in detailed balance with the target
(posterior) distribution π(θ|d). See e.g. Liu [24, Sec. 5.3] for more details. Note that when the
measurement error ϵ is Gaussian, ϵ ∼ N (0,Σϵ), which we assume in the experiment in Section 3,
then the (unnormalised) likelihood functional takes the following form:

L(d|θ) ∝ exp

(
−1

2
(F(θ)− d)TΣ−1

ϵ (F(θ)− d)

)
. (6)

In this study we employ a number of extensions to the Metropolis-Hastings algorithm to speed up
inference, namely the Delayed Acceptance (DA, [25]) algorithm with finite subchains [26, 27], also
referred to as the surrogate transition method by Liu [24]. The DA algorithm exploits an approximate
forward model (or Reduced Order Model, ROM) F̂ to filter MCMC proposals before evaluating them
with the fully resolved forward model F , resulting in a reduction in computational cost. Moreover,
we employ a state-independent Approximation Error Model (AEM) to probabilistically correct for
model reduction errors introduced by the approximate model, as described by Cui et al. [28]. Finally,
we use the Adaptive Metropolis (AM) algorithm as the transition kernel [29]. In this work, we used
the open-source DA MCMC framework tinyDA† to perform the MCMC sampling.

2.2 Groundwater Flow

The groundwater flow equation for steady flow in a confined, inhomogeneous aquifer occupying the
domain Ω with boundary Γ can be written as the scalar elliptic partial differential equation

−∇ · k(x)∇u(x) = g(x), for all x ∈ Ω, (7)
†https://github.com/mikkelbue/tinyDA
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subject to boundary conditions on Γ = ΓD ∪ ΓN with the constraints

u(x) = uD(x) on ΓD and − (k(x)∇u(x)) · n = qN (x) on ΓN . (8)

Here, k(x) is the hydraulic conductivity, u(x) is the hydraulic head, g(x) are sources and sinks, and
ΓD and ΓN are boundaries with Dirichlet and Neumann conditions, respectively (see e.g. Diersch
[30]). If θ somehow parameterises the conductivity, then we have k(x) = k(x, θ). This equation can
be converted into the weak form by multiplying with a test function v ∈ H1(Ω) and integrating by
parts:

∫

Ω

∇v · (k(x, θ) · ∇u) dx+

∫

ΓN

v qN (x) ds =

∫

Ω

v g(x) dx, ∀v ∈ H1(Ω) (9)

subject to the boundary condition u(x) = uD(x) on ΓD, where H1(Ω) is the Hilbert space of
weakly differentiable functions on Ω. We approximate the solution u(x) in a finite element space
Vτ ⊂ H1(Ω) on a finite element mesh Qτ (Ω), defined by piecewise linear Lagrange polynomials
{ϕi(x)}Mi=1 associated with the M finite element nodes. This can be rewritten as a sparse system of
equations

A(θ)u = b where Aij =

∫

Ω

∇ϕi(x) · k(x, θ)∇ϕj(x)dx and (10)

bi = −
∫

ΓN

ϕi(x) qN (x) ds +

∫

Ω

ϕi(x) g(x) dx (11)

where A(θ) ∈ RM×M is the global stiffness matrix and b ∈ RM is the load vector. The solution to
this system u := [u1, u2, . . . , uM ] ∈ RM represents the hydraulic head at each node, which can be
interpolated to the entire domain using the finite element shape functions: u(x) =

∑M
i=1 uiϕi(x).

In our numerical experiments, we used the open-source high-performance finite elements package
FEniCS [31] to solve these equations.

2.3 Adaptive Optimal Design

The overarching research question of this paper is this: if we want to collect more data to reduce the
variance in our posterior Monte Carlo estimates, where in the modelling domain Ω should we do it, to
maximise the benefit of the new borehole? More formally, if we let t denote the current design of the
survey, so that dt and πt(θ|dt) denote, respectively, the data and posterior distribution corresponding
to that design, we want to find the next sampling point x⋆ that constrains πt+1(θ|dt+1) in an optimal
way, after setting dt+1 = (dt, d

⋆)T , where d⋆ is the newly collected data at x⋆.

2.3.1 “Vanilla” Approach

As outlined in section 2.1, Bayesian inversion allows us to construct the posterior distribution of
parameters given the data πt(θ|dt). If the inversion was completed using MCMC, and obtain-
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ing the model output F(θ) involved solving some partial differential equation with solution u(x),
we can cache these solutions during sampling, and would after sampling possess a set of pairs
{(θ(i), u(i)(x))}N†

i=0. Since {θ(i)}N†
i=0 are distributed exactly according to πt(θ|dt), so are any func-

tions of θ, such as u(x). Here, N† is the number of MCMC samples after discarding the burn-in.
Hence, we can easily obtain Monte Carlo estimates for

Eπt(θ|dt)[u(x, θ)] and Dπt(θ|dt)[u(x, θ)]

Here, D signifies some measure of statistical dispersion, for example variance, standard deviation,
or entropy. We could, in accordance with the maximum entropy approach [10], postulate that the
accuracy of our inversion is driven by the dispersion in u(x) and hence we could solve the following
optimisation problem

x⋆ = argmax
x∈Ω

Dπt(θ|dt)[u(x, θ)] (12)

2.3.2 Dual-Weighted Approach

The simple approach outlined above will improve the general quality of u(x), but it is limited
by the fact that it is not tailored for a particular quantity of interest Q and this is where the dual
weighted approach comes into play. In this context, rather than simply sampling from places with
high uncertainty, we aim to pick sampling points that also have a high expected influence on our
quantity of interest Q. This is exactly the problem, that adjoint or dual state methods aim to solve
[32].

Suppose in a particular application, we are interested in estimating a particular quantity of interest
Q(u), which we can write as a functional of the solution. For example, if our quantity of interest is
the hydraulic head around a point x′ ∈ Ω, we could choose

Qx′(u) =

∫

Ω

u(x) exp

(
− (x− x′)2

λ

)
dx (13)

for some sufficiently small length scale λ. This, however, is a trivial problem, since if the quantity
of interest is the hydraulic head at some point, we can just place our monitoring well at that point
and measure it. It would be much more useful to target a quantity of interest that we cannot measure
directly. Hence, in this study we consider flux over a boundary Γ′ with the following functional:

QΓ′(u) =

∫

Γ′
[−k(x, θ) · ∇u(x)] · n ds (14)

The adjoint state equation associated with Eq. (14) is

∇ · k∇ω = 0 (15)
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subject to the boundary conditions

ωD(x) = 0 on ΓD \ Γ′

ωΓ′(x) = 1 on Γ′

qωN (x) = (k(x)∇ω(x)) · n = 0 on ΓN .

The solution ω(x) is called the adjoint state or influence function. Please refer to Sykes et al. [33] and
A for details on the derivation of the adjoint state equation and its associated boundary conditions.
Integrating by parts and multiplying with a test function v ∈ H1(Ω), we arrive at the weak form of
the adjoint state equation:

∫

Ω

∇v · (k(x, θ) · ∇ω) dx+

∫

ΓN

v qωN (x) ds = 0, ∀v ∈ H1(Ω) (16)

subject to boundary conditions ωD(x) = 0onΓD \Γ′ andωΓ′(x) = 1onΓ′. Given some conductivity
parameters θ, (16) can be discretised using the same finite element grid as (10), leading to the
following sparse system of equations:

A(θ)ω = bω where Aij =

∫

Ω

∇ϕi(x) · k(x, θ)∇ϕj(x)dx and (17)

bω,i = −
∫

ΓN

ϕi(x) q
ω
N (x) ds. (18)

It is important to note here, that the stiffness matrix A(θ), since the steady-state groundwater flow
equation is self-adjoint, is exactly the same as in equation (10), and the assembled system can hence
be partially recycled when solving both equations. However, since the boundary conditions for the
adjoint state equation are different than for the primal problem, care must be taken when assembling
the adjoint system of equations. After solving this system of equations, the influence function can be
interpolated to the entire domain using our finite element shape functions:

ω(x) =

M∑

i=1

ωiϕi(x) where ω = [ω1, ω2, . . . , ωM ]T .

The influence function is commonly interpreted as the sensitivity of the quantity of interest to a unit
point source anywhere on the domain [33, 34], or in this particular case as the sensitivity of flow
anywhere on the domain to the boundary condition. Broadly speaking, the influence function directs
us towards areas of the modelling domain with a potentially high influence on our quantity of interest,
which is what we required for our dual-weighted approach.

We note that ω(x) is now a random function which depends on model parameters θ, and we can
obtain estimates for Eπt(θ|dt)[ω(x, θ)]. Hence, we propose the following acquisition function

9

110



A PREPRINT - FEBRUARY 24, 2022

x⋆ = argmax
x∈Ω

Dπt(θ|dt)[u(x, θ)] · |Eπt(θ|dt)[ω(x, θ)]|. (19)

where | · | denotes the absolute value. We use the absolute value of the expectation of the influence
function to make sure that the weighting is always positive, since ω(x, θ) is not always positive for
other adjoint equations. We call this approach dual-weighted, since we are essential re-weighting the
dispersion Dπt(θ|dt)[u(x, θ)], by the expected solution of the dual problem. Figure 2 illustrates the
different steps in the proposed adaptive optimal design procedure.

Compute
and

No

Yes
Stop

Initial data

Sample from

Collect
according to eq. (12) or (19)
and set

Figure 2: Proposed adaptive optimal design procedure. As in Figure 1, V(Q) denotes the variance of
the quantity of interest Q and Vcrit the desired critical variance.

2.3.3 Remarks

(1) The dual-weighted approach can be considered a hybrid between the goal-oriented error estimation
employed for mesh-adaptation in the context of various expensive and mesh-sensitive PDE problems
(see e.g. Prudhomme and Oden [18], Oden and Prudhomme [19]), and Bayesian Optimisation (BO),
typically used to optimise some unknown function approximated with sparse and/or noisy data (see
e.g. Močkus [14], Frazier [15]). In this context, our dual-weighted approach could be framed as
a form of prior-guided BO [16], where ω(x) broadly represents our prior belief that any point x
constitutes a “good” sampling location. However, we remark that in our formulation ω(x) is not a
probability distribution but a random weighting function.
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(2) In the above formulations, we have chosen the dispersion of the hydraulic head Dπt(θ|dt)[u(x, θ)]

as the function representing uncertainty in the model. Other sensible choices of uncertainty metrics
would be the dispersion of the hydraulic conductivity Dπt(θ|dt)[k(x, θ)], or of some norm of the flux
Dπt(θ|dt)[∥q(x, θ)∥p].

(3) Since sampling from πt(θ|dt) can be computationally expensive, it may be desirable to pick
multiple new sampling locations at each step of the algorithm. Denote the number of new sampling
locations in each such batch acquisition asN⋆. Then this can be achieved by penalising the acquisition
function by some local penalisation functions {ψx⋆

i
(x)}N⋆−1

i=1 , centered on the previous sampling
points {x⋆i }N

⋆−1
i=1 of the current batch, as described in Gonzalez et al. [17]. This approach would

yield the following dual-weighted batch acquisition function for {x⋆i }Ni=2:

x⋆i = argmax
x∈Ω

Dπt(θ|dt)[u(x, θ)] · |Eπt(θ|dt)[ω(x, θ)]| ·
i−1∏

j=1

ψx⋆
j
(x). (20)

Similarly, the batch acquisition function for the vanilla approach takes the form

x⋆i = argmax
x∈Ω

Dπt(θ|dt)[u(x, θ)] ·
i−1∏

j=1

ψx⋆
j
(x). (21)

A reasonable choice of penalisation functions would be the Gaussian

ψx′(x) = 1− exp

(
−1

2

∥x− x′∥22
lψ

)
(22)

where lψ controls the dispersion of the function and ∥·∥2 is the L2-norm. Using such a penalisation
function, the acquisition function would be exactly zero at previous sampling points from the current
batch, and smoothly rebound to Eq. (19) or Eq. (12) as the distance to previous sampling points
increases.

(4) As mentioned earlier, we formulate our method in the context of steady state groundwater flow
in a confined aquifer. While this is the most common approach to groundwater flow modelling,
it is, naturally, not exhaustive. For a detailed analysis of the adjoint state equations for transient
groundwater flow, we refer the to e.g. Sun [35] and Lu and Vesselinov [36]. The unconfined case
is considerably more complex, since the constitutive equations are nonlinear. While unconfined
groundwater flow can, under some assumptions, be reasonably approximated by the constitutive
equations for confined flow [37], this is not always the case. For a derivation and analysis of the
adjoint equations pertaining to unconfined and coupled aquifers, we refer to e.g. Sun [35] and
Neupauer and Griebling [38].

(5) Note that the constitutive and adjoint equations are discretised using FEM in the above section.
We restrict ourselves to this method for brevity, but remark that the proposed acquisition functions
(Eqs. (12), (19), (20) and (21)) are valid for any discretisation scheme. Also note that if piecewise
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linear shape functions are employed to approximate u(x), the maxima of the acquisition functions
will occur at finite element nodes.

3 Example

In this section, we demonstrate the vanilla and dual-weighted approach in the context of a synthetic
groundwater flow example. We first outline the model setup, including the geological model and
finite element representation. We then explain the particular methodology for this example in detail.
Finally, we present the results.

3.1 Model Setup

We model the hydraulic conductivity as a log-Gaussian Random Field with a Matern 3/2 covariance
kernel:

C(x,y) =

(
1 +

√
3
∥x− y∥2

l

)
exp

(
−
√
3
∥x− y∥2

l

)
(23)

where l is the length scale [39] and ∥·∥2 is the L2-norm. The resulting random field is expanded in
an orthogonal eigenbasis with NKL Karhunen–Loève (KL) eigenmodes. To this end, we construct a
matrix of covariances between each pair of finite element nodes C ∈ RM×M according to Eq. (23),
so that Cij = C(xi,xj). This covariance matrix C is decomposed into the NKL largest eigenvalues
{λi}NKL

i=1 and eigenvectors {ψi}NKL
i=1 . The nodal conductivities k := [k1, k2, . . . , kM ] are then given

by
logk = µ+ σΨΛ

1
2 θ (24)

with Λ = diag([λ1, λ2, . . . , λNKL ]) and Ψ = [ψ1, ψ2, . . . , ψNKL ]. The vector µ = µ1 is the mean
of the log-conductivity, σ is the standard deviation of the log-conductivity, and θ ∼ N (0, INKL)

[40]. When defined in this way, the associated Bayesian inverse problem involves exploring π(θ|d),
i.e. the posterior distribution of hydraulic conductivity parameters θ given measurements d, where
the aforementioned normal distribution constitutes the prior distribution of parameters: πp(θ) =

N (0, INKL).

We used three different models for the experiments (Fig. 3), one data-generating model representing
the ground truth, a fine forward model representing the fully resolved forward model F in the
Bayesian inverse problem (see Eq. (1)), and a coarse forward model, corresponding to the reduced
order forward model in the Delayed Acceptance MCMC sampler F̂ , as described in e.g. Christen
and Fox [25], Liu [24], Cui et al. [28], Lykkegaard et al. [26, 27]. Note that using the dual-weighted
approach described herein does not require a Delayed Acceptance MCMC sampler. Any method
capable of producing Monte Carlo samples from the posterior will do.

The experiments were performed on a rectangular domain Ω = [0, 2] × [0, 1] meshed using a
structured triangular grid with Mfine = 1326 degrees of freedom for the data-generating model
and the fine forward model, and Mcoarse = 703 degrees of freedom for the coarse forward model.
For the data-generating model, the log-Gaussian random conductivity was truncated at NKL = 256
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KL eigenmodes, while for the fine and coarse models it was truncated at NKL = 128. Hence the
dimensionality of the inverse problem in these experiments was 128, which is very high and a
challenging problem for any MCMC algorithm. Moreover, we set l = 0.1, µ = −2 and σ = 1.0 for
every model. This resulted in strongly anisotropic conductivity fields with log-conductivities broadly
between -5 and 1 (Fig. 3a).

We imposed fixed head Dirichlet boundary conditions of 1 and 0 on the left and right boundaries,
respectively, and no-flow Neumann conditions on the remaining top and bottom boundaries. We set
the right hand side of Eq. (7) to g(x) = 0. We chose flux across the right boundary Γr as our quantity
of interest Q, corresponding to the following functional (as in equation (14)):

Q(u) =

∫

Γr

[−k(x, θ) · ∇u(x)] · n ds (25)

and the associated adjoint state equation shown in (15) with Γ′ = Γr. Figure 3f shows an example of
the influence function generated by this adjoint state equation. The left column of Fig. 3 shows the
conductivity associated with a random draw from the prior πp(θ), for the data-generating model, the
fine model, and the coarse model, respectively. The right column of Fig. 3 shows the corresponding
hydraulic head, flux and influence function for the data-generating model.

3.1.1 Methodology

Using the above setup, we completed a total of n = 30 independent numerical experiments to
demonstrate the feasibility of the dual-weighted approach. We chose the standard deviation of the L2-
norm of the flux S(∥q(x)∥2) as the general measure of uncertainty in the model. For each independent
experiment, the following experimental procedure was observed: (1) The hydraulic conductivity
for the data-generating model was initialised with a random draw from the prior, and the primary
problem was solved. (2) Eight observation wells were placed randomly on the domain by Latin
Hypercube sampling [41] (see Fig. 4). (3) For each observation well xi, the hydraulic head u(xi) and
the norm of the flux ∥q(xi)∥2 were computed. These head and flux observations were contaminated
with white noise from ϵu ∼ N (0, 0.012) and ϵ∥q∥2

∼ N (0, 0.0012), respectively. (4) Delayed
Acceptance MCMC sampling was completed with 2 independent samplers each drawing N = 25000

fine samples with a subsampling length of 5 (see e.g. Lykkegaard et al. [26, 27]), and a burn-in of
Nburn = 5000 was discarded. This resulted in a total number of MCMC samples of N† = 40000

for each experiment. (5) The standard deviation of the L2-norm of the flux S(∥q(x)∥2) and the
mean of the influence function ω̄(x) were computed at the finite element nodes and interpolated to
the entire domain using the finite element shape functions, and eight new observation wells were
placed according to the batch vanilla and dual-weighted acquisition functions, see Eq. (21) and
Eq. (20). Figure 4 shows the vanilla and dual weighted acquisition functions for one sample of the
n = 30 models. As expected, the weighting function ω̄(x) prioritised observation wells closer to the
boundary of the quantity of interest. (6) Data were extracted from the four new observation wells as
in step (3) and appended to the data vector. (7) Delayed Acceptance MCMC sampling was repeated,
using the new data vectors for both the vanilla and dual-weighted approaches.
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(a) Conductivity for the data-generating model. (b) Hydraulic head.

(c) Conductivity for the fine forward model F . (d) Flux.

(e) Conductivity for the coarse forward model F̂ . (f) Influence function.

Figure 3: A random realisation from the prior πp(θ), with the corresponding primary and adjoint
solutions. The left column shows the conductivity for the data-generating model (a), the fine forward
model (c) and the coarse forward model (e) respectively. The right column shows the hydraulic head
(b), the flux (d), and the influence function (f), respectively.

(a) Vanilla acquisition S(∥q(x)∥2). (b) Dual-weighted acquisition S(∥q(x)∥2) · ω̄(x).

Figure 4: Acquisition functions of the vanilla and dual-weighted approaches for one sample of the
n = 30 models. The white dots show the initial datapoints, while the black crosses show the new
datapoints suggested by each acquisition function.
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For each experiment and each posterior distribution (initial, vanilla, and dual-weighted) with each
N† = 40000 posterior samples, we computed the mean squared error (MSE) and variance of the
predicted quantity of interest {Q(i)}N†

i=1 compared to the true value Qtrue. The MSE of the predicted
value of the quantity of interest Q(i) with respect to the true value Qtrue was computed as

MSE =
1

N†

N†∑

i=1

(Qtrue −Q(i))2 (26)

Similarly, the sample variance of Q for each experiment was computed as:

s2 =
1

N† − 1

N†∑

i=1

(Q(i) − Q̄)2 (27)

Finally, we constructed Gaussian kernel posterior density estimates f̂π(θ|d)(Q) from the posterior
samples from each experiment {Q(i)}N†

i=1, and computed the kernel density of the true value Qtrue

with respect to this density estimate. Kernel density estimates were computed using SciPy [42] with
automatic bandwidth determination [43].

3.1.2 Results

We compared the MSE, variance, and kernel density of both the vanilla and dual-weighted posterior
samples with the corresponding values for the initial posterior samples for all n = 30 experiments.

With respect to the MSE, the vanilla approach yielded a median reduction of 22%, while the dual–
weighted approach yielded a median reduction of 30% (Fig. 5a). This demonstrates that both
acquisition strategies approach the true value when we add more datapoints, but that the dual-
weighted approach is more efficient. With respect to the variance of the quantity of interest, the
vanilla approach yielded a median reduction of 31%, while the dual–weighted approach yielded a
median reduction of 34% (Fig. 5b). This shows that for both acquisition strategies the posterior
distribution contracts as more data is added, and that the two approaches differ less with respect to this
feature. However, this metric shows only that the posterior contracts, and not if it moves closer to the
true value. Finally, we computed the posterior densities of the true quantity of interest with respect to
kernel posterior density estimates f̂π(θ|d)(Q) for each experiment. Here, the vanilla approach yielded
a median improvement of 12%, while the dual–weighted approach yielded a median improvement of
17%. Since the prediction variance of the quantity of interest reduced in every experiment (Fig. 5b),
this again shows that the posterior distribution moves closer to the true value as more data is added,
but that the dual-weighted approach is better.

We note that in neither method was capable of improving the posterior estimate of the quantity
of interest for every experiment. Hence, in 8/30 vanilla experiments and 5/30 dual-weighted
experiments, adding additional wells resulted in a worse posterior MSE than the initial one. This is
not surprising since we are dealing with a very ill-posed inverse problem, and any new datapoint may
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Figure 5: Kernel densities of the sample error of the quantity of interest ε(i) = Qtrue −Q(i) for the
initial, vanilla and dual-weighted posteriors for two samples of the n = 30 experiments.

reinforce the initial bias rather than reduce it. While both approaches occasionally failed to improve
the posterior estimate, the dual-weighted approach performed better than the vanilla approach.

We computed the Gaussian kernel density estimates of the error ε(i) = Qtrue −Q(i) for two samples
of the n = 30 experiments. The left panel shows a typical example, where the vanilla approach
resulted in a moderate improvement while the dual-weighted approach yielded a more dramatic
improvement. The right panel shows an example where both the dual-weighted and vanilla approaches
failed to produce any improvement.
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Figure 6: Kernel densities of the sample error of the quantity of interest ε(i) = Qtrue −Q(i) for the
initial, vanilla and dual-weighted posteriors for two samples of the n = 30 experiments.

4 Discussion

In this paper, we have proposed a novel approach to the problem of optimally choosing the next
location for a monitoring well, given existing data and some quantity of interest (QoI). The proposed
methodology exploits the solution of an adjoint problem to weigh such an acquisition function
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according to the expected influence on the QoI. Numerical experiments have demonstrated that the
approach works for our model problem. We emphasize that the problem is intrinsically probabilistic,
and hence subject to uncertainty. We have demonstrated that the approach works on average for our
model problem, but there were certain experiments, where the dual-weighted acquisition strategy did
not approach the true QoI (see e.g. Fig. 6b). As the number of wells approach infinity, the posterior
distribution will certainly approach the true value, but for any one new observation well, there are no
such guarantees. In a sense, the dual-weighted approach merely increases the chance of improving
the posterior distribution of the QoI.

While we formulated and demonstrated the approach in the context of a groundwater surveying
problem, the method could be applicable to other areas of science and engineering, where measure-
ments are expensive. The most obvious parallel application is petroleum engineering, where there are
similarities both in terms of the constituent equations and the mode of sampling, but the method could
be adapted with little effort to any inverse problem where establishing sensors is expensive. We note,
however, that the dual problem in our case was unusually simple, since the groundwater flow equation
is self-adjoint. Clearly, the dual-weighted approach can only be used as-written for QoIs, where an
adjoint problem can be formulated and solved directly. For more complicated QoIs, an alternative
approach would be to perturb the posterior mean or mode to approximate the influence function.
Using such an approach would yield ω(x,E[θ]) rather than E[ω(x, θ)] as a weighting function.

A bottleneck of our approach is that the MCMC sampler is rerun after each (batch) data acquisition.
Running MCMC for expensive forward models is notoriously computationally demanding, and while
we employ various tricks to reduce the cost (such as Delayed Acceptance and proposal adaptivity),
this is not the most elegant approach. One way to significantly alleviate the cost of subsequent
posterior distributions would be to employ a particle filter to sequentially reweigh MCMC samples
according to the new data [44]. This sequential approach was investigated in this study but it did
not work well, mainly because of very high sample degeneracy. When the variance of the solution,
as in our case, is relatively high at unobserved locations, only few posterior samples fit the new
observations well, with the mentioned sample degeneracy as a result. Moreover, we found that the
dispersion measures in Eqs. (12), (19), (20) and (21) where highly sensitive to this sample degeneracy.
This challenge could be alleviated by drawing more posterior samples for the initial MCMC, but that
would only offset the cost. We remark that this approach might work better for lower-dimensional
problems than the one investigated in this study. We highlight this problem as a potential target for
future research.

The methodology was demonstrated empirically in the context of a synthetic groundwater flow
example. This gives rise to at least three additional interesting directions of future research. First,
showing theoretically that the distribution of the quantity of interest does indeed converge faster to
the true value when using the dual-weighted approach, and examining the mechanisms that govern
this process in detail. Second, testing the method in practice in the context of an actual groundwater
survey. While testing the method in practice would certainly expose limitations and complications
that were not identified in this study, it would be difficult to validate the method further in this fashion,
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since the true value of the QoI is rarely known in reality. This may be overcome by testing the method
under controlled (laboratory) conditions. Third, generalising the dual-weighted approach to a wider
range of PDE problems with different constituent equations and QoIs.
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Appendix A Adjoint State Equations

A.1 Domain Integral as Objective Function

Given an objective function defined as an integral over the entire domain

Q =

∫

Ω

f dx (28)

Sykes et al. [33, Eq. (15)] write the derivative of Q with respect to some parameter α as

dQ
dα

=

∫

Ω

[
∂f

∂α
+ ψ

(
∂f

∂u
+∇ · k∇ω

)
+ ω

∂g

∂α
−∇ω · ∂k

∂α
∇u
]
dx

+

∫

Γ

[
ψ(k∇ω) · n+ ω

∂qN
∂α

]
ds

(29)

To eliminate the unknown state sensitivities ψ = ∂u
∂α they solve

∇ · k∇ω +
∂f

∂u
= 0 (30)

with boundary conditions ωD = 0 on ΓD and qωN = k∇ω · n = 0 on ΓN .

A.2 Boundary Integral as Objective Function

The problem addressed in this paper involves an objective function defined on a fixed-head boundary
Γ′:

Q =

∫

Γ′
f ds with f = q = −k∇u · n+ (31)
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Where n+ is the outward normal. Hence, the derivative of the objective function instead takes the
form

dQ
dα

=

∫

Ω

[
ψ (∇ · k∇ω) + ω

∂g

∂α
−∇ω · ∂k

∂α
∇u
]
dx

+

∫

Γ

[
ψ(k∇ω) · n− + ω

(
∂q

∂α
· n− +

∂q

∂u
ψ · n−

)]
ds

+

∫

Γ′

[
∂f

∂α
+
∂f

∂u
ψ

]
ds

(32)

where n− is the inward normal [33] and

∂q

∂α
· n− +

∂q

∂u
ψ · n− =

∂qN
∂α

on ΓN . (33)

To eliminate the unknown state sensitivities ψ, we now solve

∇ · k∇ω = 0 (34)

with boundary conditions ωD = 0 on ΓD \ Γ′ and qωN = k∇ω · n− = 0 on ΓN . For the remaining
boundary Γ′, we impose

∂f

∂u
+ ω

∂q

∂u
· n− = 0. (35)

Since on Γ′ we have
−∂q
∂u

· n− =
∂f

∂u
(36)

we can substitute (36) into (35) to get

∂f

∂u
− ω

∂f

∂u
= 0 on Γ′ (37)

and so the operative boundary condition on Γ′ is ωΓ′ = 1.
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7. Conclusions

In this thesis, I have presented a novel MCMC method, namely the Multilevel Delayed

Acceptance (MLDA) algorithm, which can be considered as a biaxial extension and

generalisation of the Delayed Acceptance algorithm (Christen and Fox, 2005). MLDA

is particularly suitable for large-scale, high-dimensional Bayesian inverse problems,

where the cost of the fully resolved forward model may be detrimental to the sampling

efficiency of standard MCMC methods, but it can be employed to sample from any

probability distribution with a (hierarchy of) coarse approximation(s). Additionally,

the MLDA algorithm can be adaptively improved using an approximation error

model and it can be exploited for variance reduction in a fashion similar to Multilevel

Monte Carlo (Giles, 2008a). The algorithm was employed in the context of two novel

developments in the field of hydrogeological inverse problems of a more practical

nature. First, the development of Deep Neural Networks (DNNs) that can be utilised

as fast coarse models when quantifying the geological uncertainty of groundwater

flow problems. Second, the development of a novel approach to adaptive optimal

design of groundwater surveying, which directly utilises Monte Carlo estimates from

MLDA to suggest the next monitoring well.

7.1 Multilevel Delayed Acceptance MCMC

7.1.1 Software Implementation

In Chapter 3 and 4 we presented the MLDA algorithm, which has been implemented

in the popular open-source probabilistic programming framework PyMC. While the

theoretical framework underpinning MLDA is relatively simple, nestling the algorithm

within PyMC was a less than straightforward task. Being designed mainly to provide a
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high-level platform for the NUTS sampler in Python, the existing implementation of

the elementary Metropolis sampler remains fairly rudimentary and is not optimised

for expensive statistical models. Moreover, since PyMC makes heavy use of the high-

performance tensor library Aesara (previously Theano) to compute gradients, defining

custom probability distributions appropriate to the Bayesian inverse problems mainly

targeted by MLDA is not straightforward. If the built-in distributions are sufficient

for a given problem, our implementation of MLDA in PyMC provides practitioners

with a simple interface that can serve as an introduction to multilevel methods.

While it might not be adequate for high-performance computing, it has value as an

educational tool, allowing laymen to apply the method to their problems, without

having to engage with the subtle details of the underlying theory.

The challenges associated with integrating MLDA within an existing software

package ultimately prompted me to launch a new Python library, titled tinyDA1.

Still under active development, tinyDA provides a high-level interface for the MLDA

sampler, supporting a variety of gradient-free MCMC proposals along with both

state-dependent and state-independent error modelling. Given that most of the

computational cost of quantifying the uncertainty of Bayesian inverse problems

is concentrated on the likelihood functional, the software design emphasises using

a high-performance black-box forward model, while the actual MCMC iterations

are performed using idiomatic Python (Rossum, 1995), NumPy (Harris et al., 2020)

and SciPy (Virtanen et al., 2020) code. This makes tinyDA easy to customise

and extend while maintaining high performance for computationally intensive tasks.

Parallelisation is provided through the modern distributed execution framework Ray

(Moritz et al., 2018), allowing easy deployment on computing platforms of any scale,

including clusters. While the actual software of tinyDA is ready to use and can be

acquired through either GitHub or PyPI, the software documentation is still under

development. A journal paper detailing the software design and providing a tutorial

and examples of Bayesian inverse problems is under preparation.

1 https://github.com/mikkelbue/tinyDA
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7.1.2 Parallelisation

As discussed in Chapter 4 one possible future research direction for MLDA is the issue

of parallelising the (sequential) algorithm. There are two obvious ways to exploit

parallel processing in the context of MCMC, namely running multiple parallel chains

and parallelising the likelihood functional, i.e. the forward model. While both of these

approaches are completely valid and in combination offer some flexibility with respect

to exploiting high-performance computing clusters, it would be desirable to have

some method for evaluating e.g. multiple model levels for a single chain in parallel.

Since the MCMC samplers on each level of MLDA are mutually interdependent, this

is not a trivial problem. However, as we propose in Chapter 4, coarse samplers could

be allowed to “sample ahead” while the next-finer sampler evaluates the current

proposal or an entire chain of proposals (depending on the available resources), in a

fashion similar to the pre-fetching approach described in Brockwell, 2006. Since there

are only two options for each proposal, i.e. accept or reject, the coarse samplers could

construct trees of proposals, so that no matter at what point a proposal is rejected on

the next finer level, an alternative would immediately be available to evaluate. This

strategy is particularly promising in the context of MLDA, where the finer samplers,

given that the next-coarser sampler is a sufficiently good approximation, will have

an acceptance rate close to 1. Clearly, this approach would be significantly more

wasteful than running MLDA strictly sequentially, since entire chains of pre-fetched

proposals may be rejected all at once. As outlined in Chapter 4, the pre-fetching

length could be controlled by a reinforcement learning agent that would be trained

to minimise waste, while maximising the use of the available resources. It is also

possible that the problem could be described in a strictly deterministic way to avoid

the additional problem of constructing an adequate reinforcement learning agent. I

am highlighting this as a potential avenue for future research.

7.1.3 Tuning

Another possible future research direction is the question of optimal coarse subchain

lengths for MLDA. When using the variance reduction techniques described in
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Chapter 4, the subchain lengths can be optimised with respect to the acceptable

Monte Carlo sampling error. This principle is described in detail in Dodwell et al.

(2015), and can also be applied to the MLDA algorithm. Here, care must be taken

when deciding the subchain lengths, since the total number of MCMC samples on

a given coarse level will depend on the number of samples on the finest level and

the subsampling lengths on every level above. However, when variance reduction is

not the primary goal of running MLDA, there may be other considerations when

deciding the subchain lengths, mainly associated with the cost and quality of the

approximation. With a low-cost, high-quality approximation, it would be favourable

to run very long subchains to decorrelate proposals to the next-finer level, but for

lower quality approximations, the subchains may diverge from the target distribution,

with lower acceptance rates on the next-finer level as a result. This effect was

demonstrated in Chapter 5, where neural networks trained on fewer data from the

prior required shorter subchains to achieve sufficient acceptance rates. When dealing

with a high-cost, low-quality approximation, it may be more reasonable to revert to

the standard Delayed Acceptance algorithm, where the coarse sampler is simply used

as a filter, or to avoid multilevel methods altogether and simply run some standard

MCMC sampler.

7.1.4 Comparison with Gradient-based MCMC

Finally, an interesting research question that remains unanswered is how do the

multilevel methods, i.e. DA, MLMCMC and MLDA, compare to state of the art

gradient-based MCMC such as MALA (Roberts and Tweedie, 1996), HMC (Duane

et al., 1987), RMHMC (Girolami and Calderhead, 2011) and the NUTS sampler

(Hoffman and Gelman, 2014). In Chapter 4, we demonstrated the superiority of

MLDA compared to standard Random Walk Metropolis–Hastings (RWMH) in terms

of the number of effective samples produced per second of running each algorithm.

While the RWMH sampler was allowed to adapt the global step-size during burn-in,

it is well-known that it does not typically perform well, particularly when dealing

with high-dimensional target distributions. There are several aspects to this question.
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First, if the problem can be described in terms of closed-form probability distributions,

for example in the context of Bayesian generalised linear models or mixed-effect

models, using multi-level methods may not be the best choice since any coarse

approximation would only provide a marginal computational speed-up (except when

dealing with excessive amounts of data). In this case, it is almost certainly better

to use state-of-the-art gradient-based MCMC, such as the NUTS sampler. Second,

if the gradient of the likelihood functional associated with some complex model is

available, by way of e.g. an adjoint equation, any gradient-based sampler can be

employed on the coarse level. As shown by the proofs presented in Chapter 4, the

MLDA algorithm is agnostic to the proposal distribution of the coarsest level, so long

as it is in detailed balance with the distribution rendered by its respective forward

model. Since gradient-based MCMC algorithms are capable of taking longer steps at

each iteration, successive samples generally exhibit less autocorrelation than those

produced by RWMH or other gradient-free MCMC methods. This could be exploited

in the context of MLDA, either by using shorter subchains to get a similar effective

sample size at a lower cost or to use similar subchain lengths to get a higher effective

sample size at a similar cost. Third, if the gradient of the likelihood functional is

not available in closed form, a sufficiently cheap and accurate coarse model could be

exploited to produce a finite difference approximation to the gradient. This approach

would be rather sensitive to the dimension of the target distribution but could be

viable under the specified conditions. Finally, the multi-level approach could be

directly integrated to HMC and its derivatives, since these methods all require taking

multiple leapfrog steps when generating a proposal. While the leapfrog integrator is

volume-preserving, some error is introduced by using discrete time integration, and

so each new proposal must still be subject to a Metropolis accept/reject adjustment

to correct for this error. Given this Metropolis adjustment, nothing is preventing us

from using a cheaper approximation when performing the leapfrog integration. In

conclusion, multilevel methods and gradient-based proposals are not in opposition

but could be combined in various ways to harness the strengths of both approaches.
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7.2 MCMC for Bayesian Inverse Problems

7.2.1 Barriers to Uptake

While there has been some uptake of various MCMC methods for uncertainty

quantification of complex models in applied research environments (see Chapter

2), there is little evidence of use outside academia, i.e. for real-world engineering

problems. As mentioned in Chapter 1, this may be explained by the computational

burden of running MCMC along with limited awareness of its potential amongst

engineering practitioners. Additionally, theoretical studies of MCMC algorithms

(including this study) rarely have realistic, worked examples of applications and are

commonly restricted to toy problems that broadly illustrate the approach but may

fail to demonstrate value in real-world decision making. To enable the transition

from traditional inversion techniques and deterministic model calibration to a more

rigorous, Bayesian approach using e.g. MCMC, more research into applications

to real-world scenarios is required. Not only to provide transparent tutorials for

practitioners but also to uncover the complications that will undoubtedly arise from

using e.g. non-standard prior distributions and real measurement data. In addition

to using real measurement data and modelling domains reflecting the actual physical

constraints, such studies should be accompanied by computer code allowing for easy

reproduction of the results and adaptation of the methodology to other settings.

This requirement is closely linked to a more technical barrier, namely the

absence of an easy-to-use software framework that admits black-box forward models

in the likelihood functional. Popular frameworks such as PyMC and Stan are almost

exclusively targeted at data-science related tasks, and are not easily persuaded to

tackle other, more complex, problems. The open-source software package MUQ (Parno

et al., 2014) provides a modular, graph-based interface for MLMCMC and other

MCMC algorithms, allowing the specification of a wide range of forward and inverse

uncertainty quantification problems. However, while it does provide a high-level

Python interface, the basic software is written in C++, making the learning curve

rather steep, in terms of contribution and customisation. There exists a range of
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implementations of the DREAM family of MCMC samplers (Vrugt, 2016), including

a MATLAB package, a Python package and a standalone commercial application with a

graphical interface2, but the latter two do not appear to be under active development.

The current state of the matter means that the application of MCMC to complex

(engineering) models requires a high degree of, not only statistical understanding but

also programmatical expertise. It is my hope that the MLDA implementation in PyMC

may attract some attention to the yet unrealised potential of multilevel methods, and

provide an entry for practitioners interested in uncertainty quantification. It is my

intention to further develop my own MLDA implementation, tinyDA3 to fill this gap.

This will be achieved by providing a suite of tools, explicitly designed to perform

MCMC in black-box models using pure Python, allowing for easy customisation

when used for uncertainty quantification of real-world engineering problems, and

easy interpretation when used for education.

Another possible obstacle to adaptation may be the difficulty of linking MCMC

code with the forward model. In the context of engineering, the forward model is

often a partial differential equation (PDE), which requires either intricate knowledge

of some discretisation scheme such as the finite difference/element/volume method

(FXM), or access to a (typically commercial) third-party software application which

handles this discretisation in a quasi black-box fashion. Such third-party applications

are mostly not designed to be employed as a plugin for other software, i.e. MCMC

code, which complicates using it in the context of uncertainty quantification. In

this context, I would like to highlight the excellent geophysical inversion library

pyGIMLi (Rücker, Günther and Wagner, 2017), which provides, not only a suite of

regularisation tools for inverse problems but also implementations of many relevant

geophysical models, including cross-hole traveltime tomography, electrical resistivity

tomography, gravimetry and subsurface flow modelling. While pyGIMLi itself does

not include any MCMC code, the software design allows for easily linking the forward

models with external code.

2 https://faculty.sites.uci.edu/jasper/software/
3 https://github.com/mikkelbue/tinyDA
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7.2.2 Separation of Concerns

While running MCMC for a given problem involves solving the forward model many

times for the algorithm to converge to the target distribution, one of the greatest

attractions of MCMC for uncertainty quantification of inverse problems is that it

does not require direct inversion of the model. This means that any inverse problem

that can be formulated in the compact form of a Bayesian inverse problem, i.e.

dobs = F(θ) + ε, can be inverted using MCMC and there is no requirement for the

solver to support sophisticated regularisation techniques since that is all controlled

by the Bayesian prior. This important fact underpins the principle of separation of

concerns with respect to MCMC for Bayesian inverse problems. The actual MCMC

code is generally not computationally expensive, and while evaluating the forward

model may be very expensive, it does not have to be completely exposed to the MCMC

algorithm and can be deployed using any software capable of accepting model input

and producing model output. With this in mind, a good MCMC software package for

uncertainty quantification of inverse problems in engineering would provide a pipeline

for easily specifying F(θ) (possibly involving a call to third-party application), which

could then be plugged into the appropriate probability distribution. Ideally, it would

also implement a library of predefined wrappers, allowing for interfacing with popular

FXM software. This has been one of the guiding principles with respect to the

development of tinyDA. Conversely, the popular MCMC software packages PyMC

and Stan were not designed with this separation of concern in mind, and this is

one of the reasons for using them for uncertainty quantification of Bayesian inverse

problems can be a frustrating experience.

7.3 Hydrogeological Inverse Problems

7.3.1 Surrogate Coarse Models

In Chapter 5, we demonstrated the use of deep neural networks (DNNs) as an

approximation to the forward model PDE in the context of MLDA for uncertainty

quantification of a groundwater flow problem. We described a methodology for the
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design of such DNNs, for both 2D and 3D groundwater flow problems. We showed that

using this approach, the effective sample size of the resulting MCMC samples could

be significantly increased, compared to the baseline of single-level MCMC. There

are some clear advantages to using a DNN as a model approximation, including the

ease of defining the model using modern deep-learning frameworks such as PyTorch

(Paszke et al., 2019) and TensorFlow (Abadi et al., 2015), and the flexibility of DNNs

with respect to approximating any function (Hornik, Stinchcombe and White, 1989).

However, there are also some disadvantages. While we did take the (not insignificant)

upfront cost of generating a dataset and training a DNN into consideration, there

may be more parsimonious ways to construct a data-driven surrogate model. In this

context, we must take into consideration (1) the “appetite” of the chosen surrogate,

i.e. how much data does it need to produce a reasonable approximation, (2) the cost

of training the surrogate and (3) the cost of evaluating the surrogate. For example,

while a Gaussian Process (GP) regression has a low appetite and additionally provides

the uncertainty of the approximation, the cost of training a GP for a high-dimensional

forward model limits the use to relatively simple problems. However, this could be

combined with the active subspace approach of Constantine, Kent and Bui-Thanh

(2016) (see Section 2.3.2) with the GP approximation targeting only the active

subspace. Ideally, the precomputation cost could be avoided completely by training

the surrogate model on-the-fly, using incoming samples from the true forward model

as sampling progresses. The sampler would be initialised as single-level sampler,

and when enough samples have been collected in this fashion, a surrogate model

would be introduced and trained iteratively as more samples from the true model

arrive. The MLDA subsampling length could then be increased, as the accuracy

of the surrogate improves. The surrogate model could even be trained on rejected

MCMC samples, as this would not affect the convergence properties of MLDA. This

would require a surrogate model that is particularly fast to train or fit or one that

can be improved sequentially. Using linear or quadratic local approximations fitted

to neighbouring samples as in Conrad et al. (2016) and Conrad et al. (2017) could be

a fruitful approach. While the original algorithm suffers from a bias introduced by
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using the approximation in place of the true forward model, this problem would be

avoided in the context of DA and MLDA, where the second Metropolis adjustment

step corrects for any bias introduced by the approximation. However, one should take

care when applying this approximation method in the context of MLDA, since it is a

state-dependent approximation, requiring a different form of the second Metropolis

adjustment step for subsampling lengths longer than 1, which we have not developed

yet. Since this method would fulfil all the above-mentioned considerations, I consider

this a potentially highly impactful idea and highlight it as a potential future research

direction.

7.3.2 Optimal Design with MLDA

In Chapter 6 we presented a novel method to propose the optimal location of the

next monitoring well when conducting a groundwater survey. Broadly, the suggested

acquisition function is the product of a measure of uncertainty and the expectation of

the solution to some adjoint state equation, that describes the sensitivity of the model

with respect to a quantity of interest. We demonstrated numerically that the method

could improve the prediction of the quantity of interest, compared to the baseline

method, where only the uncertainty was considered. While termed a method for

optimal design, it is not nestled in existing “classic” optimal design methods, where

the driving principle is usually Fisher information. Instead, the method directly

utilises uncertainty estimates discovered by e.g. MCMC and uses the adjoint state

equation to link the model to a quantity of interest. The method borrows ideas

from previous studies of both adjoint state equations and Bayesian Optimisation,

in particular the sensor placement problem. The primary motivation for this study

was the actual practical problem at hand, i.e. how to place a monitoring well in

a way that would somehow maximise the expected information gain. A secondary

motivation was to demonstrate that measures of uncertainty are not only of academic

and economic interest but can be utilised to solve practical problems in engineering. I

will here briefly remark that although the uncertainty estimates were discovered using

MLDA in our work, any method for uncertainty quantification, such as Importance
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Sampling or Variational Inference, can be employed for this task. As presented, the

method requires an expression for the adjoint state equation, which is not obvious for

all quantities of interest and sometimes does not exist. For example, if the quantity of

interest is the concentration of a groundwater contaminant at some critical location,

the model is typically time-dependent and solving the adjoint state equation is much

more computationally demanding than our self-adjoint problem. As suggested in

Chapter 6, this could be circumvented by computing the adjoint state for only the

mode of the posterior for simple distributions or to use e.g. ensemble techniques

for more complicated posteriors. Another way to tackle harder problems would be

to solve a simpler but related problem to get some auxiliary information about the

primary problem. For example, the hydraulic boundary flux as presented in Chapter

6 over some (potentially interior) boundary could be used as a proxy for predicting

the migration of a contaminant. Chapter 6 outlines the method and provides a

numerical proof-of-concept, and there are many opportunities to develop this idea

further. These include testing the method with different quantities of interest and

more elaborate models, such as time-dependent problems and groundwater flow in

unconfined aquifers, and extending the idea to other fields of engineering. While the

method is presented in the context of groundwater surveying, the underlying idea

could easily be extended to any process governed by a PDE with random coefficients.

The litmus test of the optimal design algorithm presented in Chapter 6 would

be to test the method in reality. However, as suggested in the relevant discussion,

this would involve several complications. First, the method is probabilistic, and there

are no guarantees that any one new monitoring well will improve the expectation

of the quantity of interest. Second, when the true quantity of interest is unknown

there is also no way to validate the outcome. However, the common-sense argument

of why it should work is relatively straightforward. Using the uncertainty in the

acquisition function corresponds broadly to the maximum entropy approach of

Bayesian Optimisation for the sensor placement problem (Shewry and Wynn, 1987),

but using the uncertainty of the solution to a PDE, rather than a GP. Weighing

the uncertainty with the solution to an adjoint state equation simply allows the
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acquisition function to favour areas that have a high expected influence on our

quantity of interest. However, the method is presented as a practical engineering

decision support tool and its viability is proven with a numerical example, and there

are some theoretical subtleties that have not been thoroughly studied. The best

way to develop it further may be to generalise the idea to encompass any PDE with

random coefficients and in that context study the subtle relationship between various

measures of dispersion and the expected solution to different adjoint state equations.

7.4 Summary and Future Research

I have presented the novel MCMC algorithm Multilevel Delayed Acceptance, extend-

ing the Delayed Acceptance algorithm of Christen and Fox (2005) and integrating

some of the lessons learned from the debate following the development of the Multi-

level MCMC algorithm of Dodwell et al. (2015). Along with the simple yet flexible

and powerful base algorithm, we have developed a multilevel error model capable of

iteratively correcting every model level according to the finest model, and translated

the variance reduction feature of Multilevel Monte Carlo and MLMCMC into the

context of MLDA. In Chapter 5, we reimagined the coarse model of MLDA as a deep

neural network and demonstrated that a carefully designed DNN could significantly

speed up uncertainty quantification of groundwater flow problems. In Chapter 6,

we presented a novel take on sequential optimal design using exact statistical ex-

pectations discovered by MLDA and demonstrated how such expectations could be

utilised to solve a practical groundwater surveying problem. Of the potential future

research avenues discussed above, I will now highlight what I consider the two most

promising. First, investigating how various surrogate forward models and distribu-

tions may be rigorously and flexibly integrated with MLDA and potentially exploited

for approximate gradient-based MCMC. While an inexpensive, exact gradient may

not always be available for any forward model, an adequate surrogate distribution

on the coarsest level would allow MLDA to harness the advantages of e.g. MALA,

HMC and NUTS. Second, developing a unified software framework for uncertainty

quantification of engineering models that would allow practitioners to easily and
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flexibly define probabilistic models for their engineering problems and sample from

the posterior with minimal human effort. While most engineering businesses these

days have the computational resources to perform rigorous uncertainty quantification

on their problems, it is rarely done, owing to the lack of a simple and robust software

framework.

7.5 Final Remarks

The Bayesian perspective on statistics in general and inverse problems, in particular,

presents a simple and elegant framework for exploring uncertainty and a transparent

way of constraining ill-posed problems. But it also embodies a much deeper meaning.

By defining model parameters probabilistically, we embed ourselves in a universe

that can only ever be described in terms of distributions and that can never be

uniquely determined. In other words, a universe that is inherently random. This is a

provocative sentiment to some, as evidenced by the famous debates between Albert

Einstein and Niels Bohr (Skibba, 2018), and a transformative one. Even if it was

not metaphysically “true”, it might serve us better to treat it as such. In a universe

where all measurements are inherently noisy and all interpretations are subjectively

biased, is it not arrogant to assume that there is only one legitimate perspective?

Would it not be more honest to be transparent about our subjective biases and (at

least attempt to) consider all possible perspectives?
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J. J. Gómez-Hernánez, H.-J. W. M. H. Franssen and A. Sahuquillo (Nov. 2003).

‘Stochastic conditional inverse modeling of subsurface mass transport: A brief

review and the self-calibrating method’. en. In: Stochastic Environmental Research

and Risk Assessment (SERRA) 17.5, pp. 319–328. issn: 1436-3240, 1436-3259.

doi: 10.1007/s00477-003-0153-5. url: http://link.springer.com/10.

1007/s00477-003-0153-5 (visited on 06/11/2021) (Cited on page 14).
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