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A B S T R A C T

Problem definition. The impact of lead times on the bullwhip effect produced by the order-up-to (OUT)
replenishment policy is studied. Practical relevance. Under general auto-regressive moving average (ARMA)
demand, we investigate when the OUT policy possesses an always-increasing-in-the-lead-time bullwhip effect
and when it does not. Methodology. A bullwhip measure based on the difference between the demand and
order variance is combined with a novel analysis based on the eigenvalues and impulse response of the ARMA
demand process. Contribution. We show a positive demand impulse response is a necessary and sufficient
condition for an increasing in the lead time bullwhip effect. The ordering of zeros and poles (the eigenvalue
ordering) of the z-transform transfer function of the demand process reveals when the demand impulse is
positive. To provide further insight, we study ARMA(2,2) demand, which contains six different eigenvalue
orderings. Two of these orderings satisfy a sufficient condition (positive demand eigenvalues in a particular
order) for a positive impulse response. Two orderings satisfy the inverse of this sufficient condition and do
not possess a positive impulse response. The final two orderings do not satisfy the sufficient condition, nor
its inverse, but do contain positive impulse responses. Managerial implications. Our findings are important as
reducing lead-times is often advocated as an improvement action to reduce the bullwhip effect. By identifying
the demand characteristics that lead to a bullwhip effect that increases in the lead time we offer prescriptive
advice on when, and when not, to invest in lead time reduction.
1. Introduction1

Since the important contributions by Lee et al. (1997, 2000), the
bullwhip effect has been extensively studied. The bullwhip effect is a
term used to describe a supply chain phenomenon where the variance
of the outgoing orders is larger than the variance of the incoming
demands at each echelon of the supply chain. While little general
knowledge has been gained about influence of the lead time on the
bullwhip, it is often advocated that the bullwhip effect is an increasing
function of the lead time. Indeed, Zhang (2004b) asserts ‘‘In general,
increasing lead time enhances [the] bullwhip effect regardless of the
forecasting methods employed. However, the size of the impact does
depend on the forecasting methods’’. This advice could motivate com-
panies to reduce lead time by investing in faster production technology
or using quicker transportation modes. These actions are often costly
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and the question of when a lead time reduction yields a bullwhip
benefit is the focus of this paper.

1.1. Literature review

We will not present a through literature of the bullwhip effect here;
others (Bhattacharya and Bandyopadhyay, 2011), Wang and Disney
(2016), and Yang et al. (2021) provide extensive review papers al-
ready. Bhattacharya and Bandyopadhyay (2011) provide a review of
the literature on the causes of the bullwhip effect, identifying 19 main
causes of the bullwhip effect; lead times and lead time variability were
identified as important causes. From an operational research perspec-
tive, Wang and Disney (2016) found the linear order-up-to (OUT) policy
was the most often studied replenishment policy. The OUT policy can
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be also be found in many enterprise resource planning (ERP) systems as
a standard replenishment policy for controlling high volume products
that are ordered and replenished in every period. Yang et al. (2021)
conducted a systematic literature review of the behavioural causes
of the bullwhip effect. They found the mental model used to make
sense of the replenishment decision was the most studied cause of the
bullwhip effect in the behavioural bullwhip literature. The anchoring
and adjustment heuristic of Sterman (1989), is an important mental
model and has long been known to be a cause of judgemental bias
which is also closely related to the OUT policy, Riddalls and Bennett
(2002).

To focus our literature review on the topics directly relevant to our
problem we restrict ourselves to papers that consider: the OUT policy,
ARIMA demand processes, and the influence of the lead time on the
bullwhip effect. We will introduce references to the technical aspects
of our study as required.

When demand is independently and identically distributed, IID,
the bullwhip generated by the OUT policy with constant forecasts
is independent of the lead-time as always 𝑜𝑡 = 𝑑𝑡. The first order
auto-regressive, AR(1), process is the simplest demand process with
auto-correlation (Urban, 2005; Luong, 2007). Zhang (2004b) shows the
bullwhip effect in an increasing function of the lead-time under AR(1)
demand with positive auto-correlation. First-order auto-regressive mov-
ing average, ARMA(1,1), demand processes were studied by Gaalman
(2006), Chen and Disney (2007), and Duc et al. (2008). Duc et al.
(2008) reveals that bullwhip is increasing in the lead time when the
moving average parameter 𝜃 is smaller than a positive auto-regressive
parameter 𝜙 > 0. They also provide a bullwhip expression valid when
the lead time approaches infinity, concluding the bullwhip does not
always increase in the lead time. Duc et al. (2008) also notes that there
is an oscillating bullwhip effect in the lead-time when 𝜙 < 0. Chen
and Lee (2016) show the bullwhip effect is an increasing function of
the lead time under integrated moving average, IMA(0,1,1), demand.
The second order ARMA(2,2) process is less frequently considered,
although (Gaalman and Disney, 2009) studied the bullwhip produced
by a family of the OUT policies reacting to this demand process. Luong
and Phien (2007) considered AR(2) demand, noting that ‘‘due to the
complicated functional form of the bullwhip measure... it is impossible
to identify the range of [demand parameter] values 𝜙1 and 𝜙2 in which
the bullwhip effect will not always increase when [the lead time] 𝐿
increases’’.

Studies that consider higher order ARMA models, or models with
seasonal factors, are rare and often conducted via simulation. For
example, Bayraktar et al. (2008) use simulation to show that under
highly seasonal demand it is necessary to use smaller exponential
smoothing parameters to avoid creating excessive bullwhip effects
compared to the smoothing parameters recommended for non-seasonal
demand. Chen and Lee (2009) study a general demand pattern based
on the martingale method of forecast evolution revealing the bullwhip
effect was influenced by the correlation in the forecast errors.

Gilbert (2005) studies general auto-regressive, integrated, moving
average (ARIMA) demand. He reveals that multi-echelon supply chains
with linear OUT policies have the same dynamic behaviour as a single
echelon OUT supply chain with a lead time equal to the sum of all
the downstream lead-times. Gilbert (2005) also shows how the ARIMA
end customer demand changes its structure as it is transferred up the
supply chain. Zhang (2004a) considered ARMA end customer demand
and noticed an ARMA-in-ARMA-out property that could be predicted
with a simple algorithm in OUT policy based supply chains.

General statements (that hold for more than one demand process)
about the interaction between the bullwhip effect and the lead-time are
rather rare in the literature. Dejonckheere et al. (2003) provide one of
the only references that explicitly considers the link between lead times
and the bullwhip effect. They show, for all demand processes and for all
lead times, the OUT replenishment policy, with exponential smoothing
and moving average forecasts, always generates bullwhip. This was
extended by Li et al. (2014) who showed Holt’s method also has this
guaranteed always-increasing-in-the-lead-time bullwhip behaviour, but
2

that damped trend forecasting does not. s
1.2. Contribution

While others have revealed the bullwhip/lead time behaviour for
specific ARMA demand processes, our contribution herein is to deter-
mine, for general ARMA demand, when the OUT policy with minimum
mean squared error (MMSE) forecasting possesses an always increasing
in the lead time bullwhip effect and when it does not. We show it is
related to positivity of the demand impulse response, which in turn
is characterized by the order of the demand eigenvalues. We start by
considering the general ARMA(p,q) process, before focusing on the
special case of the ARMA(2,2) demand process. We are able to unify all
previously known results within a unique theoretical approach based
on the order of the eigenvalues. As the demand impulse response is
equivalent to the system’s autocovariance function, our results provide
a framework for managers to predict the bullwhip consequences of
altering lead times from the demand process alone.

1.3. Paper structure

The structure of paper is as follows. In Section 2 we review the
ARMA(p,q) demand process. In Section 3, we derive the order-up-to
policy and propose a new measure for the bullwhip effect. Section 4
highlights the link between the impulse response and the variances
required for the bullwhip measure. Section 5 presents our main result,
a positive demand impulse response leads to a bullwhip effect that
increases in the lead time. Section 6 identifies the necessary and
sufficient conditions for a positive ARMA(2,2) impulse response based
on the ARMA(2,2) eigenvalues. In Section 7, we study the weekly time
series from the so-called M4 dataset and also reflect on how a practicing
manager may use our approach, facilitated by an interactive website we
have constructed with the R-shiny technology. Section 8 concludes.
2. The ARMA(p,q) demand process

We assume the demand process follows a mean centred ARMA(p,q)
process, Box et al. (2008),

𝑑𝑡 = 𝜇𝑑 +
𝑝
∑

𝑖=1
𝜙𝑖

(

𝑑𝑡−𝑖 − 𝜇𝑑
)

−
𝑞
∑

𝑗=1
𝜃𝑗𝜖𝑡−𝑗 + 𝜖𝑡. (1)

Here, 𝑑𝑡 is the demand in time period 𝑡, 𝜇𝑑 is the mean demand, 𝜙𝑖 are
𝑝 auto-regressive coefficients, 𝜃𝑗 are 𝑞 moving average coefficients, and
𝜖𝑡 is an IID random variable with zero mean and variance 𝜎2𝜖 . Note,
we have made no assumptions about the distribution of the random
variable 𝜖𝑡.

.1. Transfer function of the ARMA(p,q) demand process

Methodologically, we will exploit z-transforms in our analysis. We
efer readers to a good control engineering textbook such as (Nise,
004) or Moudgalaya (2007) for more information on our general
ethodology and to Disney and Lambrecht (2008) for a review of

ontrol theory in a bullwhip/supply chain context. The z-transform
equires a linear system to exist; this has both advantages and dis-
dvantages. On the positive side we are able to obtain analytical
xpressions for the variances of the demand and the orders. However,
inear systems dictate we must assume: backlogs rather than lost sales
xist, no capacity constraints exist, and that negative demand implies
hat customers can return unwanted product; negative orders imply
inished goods inventory is disassembled into raw materials (or raw
aterials are returned to suppliers). However, for non-linear systems,
local linear approximation can offer acceptable insights, Lee et al.

2000).
The ARMA(p,q) demand process has the following z-transform

ransfer function,

[𝑧] =
𝑧𝑚 − 𝜃1𝑧𝑚−1 −⋯ − 𝜃𝑚−1𝑧 − 𝜃𝑚
𝑧𝑚 − 𝜙1𝑧𝑚−1 −⋯ − 𝜙𝑚−1𝑧 − 𝜙𝑚

; 𝑚 = max[𝑝, 𝑞]. (2)

f 𝑞 < 𝑝 then ∀𝑗 > 𝑞, 𝜃𝑗 = 0; if 𝑝 < 𝑞 then ∀𝑖 > 𝑝, 𝜙𝑖 = 0.
The z-transform representation is useful as it allows us to identify

everal important characteristics of the demand process.



International Journal of Production Economics xxx (xxxx) xxxG. Gaalman et al.

p

e
𝜇
p
a
c
a
i
i

s
a
i

𝑖

S
s
i

𝜇

F
𝑑
𝑖

𝑜

v

𝐵

D
b
b
b
p

𝐶

T
𝐵
a
a
b
t

e
d
s
g
t
I
o
i
e
f

3. Deriving the inventory cost optimal order-up-to replenishment
policy

We consider a discrete time (periodic) inventory system. At the
beginning of a time period (at time 𝑡), the state of the system is
observed; demand and receipts since the last replenishment order was
generated are tallied, forecasts for future demands are generated, inven-
tory and work-in-progress (WIP) levels are observed, and replenishment
orders are calculated. Notice, the order 𝑜𝑡−𝑘 is determined during the
replenishment period 𝑡 − 𝑘; 𝑘 is the lead-time. When 𝑘 = 0, an order is
received within the same period it was placed, and its arrival will be
observed and accounted for in the next ordering decision made at time
𝑡 + 1. With these sequence of events, the following inventory balance
equation exists,

𝑖𝑡 = 𝑖𝑡−1 + 𝑜𝑡−𝑘−1 − 𝑑𝑡. (3)

Here, 𝑖𝑡 is the inventory level at time 𝑡, 𝑜𝑡−𝑘 is the replenishment order
laced 𝑘 periods ago, and 𝑑𝑡 is the demand in period 𝑡.

It is desirable that the mean value of the replenishment orders is
qual to the mean demand, i.e. 𝜇𝑜 = 𝜇𝑑 . The mean (target) inventory,
𝑖, is not prescribed by (3) and can be set arbitrarily. With per unit,
er period, linear and convex inventory holding and backlog costs, ℎ
nd 𝑏, setting the target (mean) inventory 𝜇𝑖 = 𝐹−1[𝑏∕(𝑏 + ℎ)] to the
ritical newsvendor fractile2 minimizes the expected inventory holding
nd backlog costs (Churchman et al., 1957). The mean inventory value
s influenced by the standard deviation of the inventory levels which,
n turn, is influenced by the ordering policy.

To find an optimal linear replenishment policy for minimizing the
tandard deviation of the inventory levels we first notice from (3) that
n order placed at time 𝑡 (at the beginning of time period 𝑡) will have
ts first consequences on the inventory in period 𝑡 + 𝑘 + 1,

𝑖𝑡+𝑘+1 = 𝑖𝑡+𝑘 + 𝑜𝑡 − 𝑑𝑡+𝑘+1. (4)

Therefore, the order placed, 𝑜𝑡, must account for the future (and so
it must be predicted) inventory and the future (and so it must be
predicted) demand. These forecasted demand and inventory variables
(𝑑 and 𝑖) are conditional upon information available at time 𝑡 (Gaalman
and Disney, 2009). Consider how the forecasted inventory builds up
over the lead-time and review period,

𝑖𝑡+1|𝑡 =𝑖𝑡 + 𝑜𝑡−𝑘 − 𝑑𝑡+1|𝑡
𝑖𝑡+2|𝑡 =𝑖𝑡+1|𝑡 + 𝑜𝑡−𝑘+1 − 𝑑𝑡+2|𝑡

𝑖𝑡+3|𝑡 =𝑖𝑡+2|𝑡 + 𝑜𝑡−𝑘+2 − 𝑑𝑡+3|𝑡 (5)
⋮

�̂�+𝑘+1|𝑡 =𝑖𝑡+𝑘|𝑡 + 𝑜𝑡 − 𝑑𝑡+𝑘+1|𝑡

ince the first inventory level that 𝑜𝑡 can directly influence is 𝑖𝑡+𝑘+1, we
et the forecasted inventory level 𝑘+1 periods ahead to the target mean
nventory 𝑖𝑡+𝑘+1 = 𝜇𝑖. The last equation in (5) then becomes

𝑖 = 𝑖𝑡+𝑘|𝑡 + 𝑜𝑡 − 𝑑𝑡+𝑘+1|𝑡. (6)

inally, rearranging (6) and using the relationship 𝑖𝑡+𝑘|𝑡 = 𝑖𝑡+𝑘−1|𝑡+𝑜𝑡−1−
�̂�+𝑘|𝑡 from (5) recursively until we eliminate the forecasted inventory
�̂� we obtain,

𝑡 = 𝜇𝑖 + 𝑑𝑡+𝑘+1|𝑡 − 𝑖𝑡+𝑘|𝑡
𝑜𝑡 = 𝜇𝑖 + 𝑑𝑡+𝑘+1|𝑡 + 𝑑𝑡+𝑘|𝑡 − 𝑜𝑡−1 − 𝑖𝑡+𝑘−1|𝑡
𝑜𝑡 = 𝜇𝑖 + 𝑑𝑡+𝑘+1|𝑡 + 𝑑𝑡+𝑘|𝑡 + 𝑑𝑡+𝑘−1|𝑡 − 𝑜𝑡−1 − 𝑜𝑡−2 − 𝑖𝑡+𝑘−2|𝑡

⋮

2 Here 𝐹 −1[⋅] is the inverse cumulative distribution function (cdf) of the
arbitrary inventory distribution. Linear combinations of normally distributed
random variables are also normally distributed; if 𝜖𝑡 is normally distributed,
𝐹 −1[⋅] can be replaced by the inverse cdf of the normal distribution, 𝛷−1[⋅].
3

𝑜𝑡 = 𝑑𝑡+𝑘+1|𝑡 −
(

𝑖𝑡 − 𝜇𝑖
)

−
𝑘
∑

𝑗=1

(

𝑜𝑡−𝑗 − 𝑑𝑡+𝑗|𝑡
)

. (7)

We recognize (7) as the linear OUT policy, Lee et al. (2000). The
inventory level plus the open orders (the WIP, the in-transit inventory),
𝑖𝑡 +

∑𝑘
𝑗=1 𝑜𝑡−𝑗 , is also known as the inventory position. Furthermore,

𝑑𝑡+𝑗|𝑡 is a forecast of the demand in period 𝑡 + 𝑗 conditional upon the
information available at time 𝑡. As more accurate forecasts of the de-
mand over the lead time and review period result in smaller inventory
variances, lower average inventory levels and small inventory holding
and backlog costs, we will adopt the MMSE forecasting method (Box
et al., 2008).

Zhang (2004b) shows the OUT policy can also be represented by

𝑜𝑡 = 𝑑𝑡 + 𝑠𝑡 − 𝑠𝑡−1 (8)

where the dynamic order-up-to level, 𝑠𝑡 =
∑𝑘+1

𝑗=1 𝑑𝑡+𝑗|𝑡. 𝑠𝑡 is also known
as the base stock level. Eq. (8) can be obtained from (7) by noticing that

𝑜𝑡 = 𝑠𝑡 + 𝜇𝑖 −
𝑘
∑

𝑗=1
𝑜𝑡−𝑗 . (9)

The difference between 𝑜𝑡 and 𝑜𝑡−1 is given by

𝑜𝑡 − 𝑜𝑡−1 = 𝑠𝑡 + 𝜇𝑖 −
𝑘
∑

𝑗=1
𝑜𝑡−𝑗 −

(

𝑠𝑡−1 + 𝜇𝑖 −
𝑘
∑

𝑗=1
𝑜𝑡−𝑗−1

)

. (10)

Using 𝑜𝑡−𝑘−1 = 𝑖𝑡 − 𝑖𝑡−1 + 𝑑𝑡 from (3), cancelling like terms reveals (8).
Lee et al. (1997) highlights that updating the dynamic base stock level,
𝑠𝑡, is an important cause of the bullwhip effect.

3.1. The bullwhip criterion and the impulse response

Bullwhip effect is usually measured as the ratio of 𝜎2𝑜 , the long run
variance of the replenishment orders 𝑜𝑡, divided by 𝜎2𝑑 , the long run
ariance of the demand, 𝑑𝑡, Disney and Towill (2003),

𝐼 = (𝜎2𝑜∕𝜎
2
𝑑 ). (11)

emand must be stationary for these variances to exist. When demand
ecomes non-stationary, (11) incorrectly suggests 𝐵𝐼 = 1; that is,
ullwhip is not present, Gaalman and Disney (2012). An alternative
ullwhip criterion, 𝐶𝐵[𝑘], provides a better measure that avoids this
roblem,

𝐵[𝑘] = (𝜎2𝑜 − 𝜎2𝑑 )∕𝜎
2
𝜖 . (12)

here is a clear equivalence between 𝐶𝐵[𝑘] and 𝐵𝐼 ; when 𝐶𝐵[𝑘] > 0,
𝐼 > 1 and a bullwhip effect exists, when 𝐶𝐵[𝑘] < 0, 0 ≤ 𝐵𝐼 < 1
nd the orders have less variance than the demand. Notice, only 𝜎2𝑜 is
ffected by the lead-time; 𝜎2𝑑 is unaffected. Thus, our insights on the
ullwhip behaviour remain, regardless of whether (11) or (12) is used
o quantify the bullwhip effect.

To facilitate the derivation of our main result (Theorem 1), we
lect to use 𝐶𝐵[𝑘] here (as also used by Zhang (2005)). The order and
emand variances, 𝜎2𝑜 and 𝜎2𝑑 , can be readily obtained by Tsypkin’s
quared impulse response theorem; the variance of the noise, 𝜎2𝜖 , is
iven by assumption. The impulse response is the system’s output when
he system input is zero ∀𝑡 except at 𝑡 = 0 when the input is unity.3
n our case here, the system input is the random noise, 𝜖𝑡, and the
utput is either the demand 𝑑𝑡, or the orders 𝑜𝑡. The impulse response
s also equivalent to the system’s autocovariance function and can be
asily obtained from the inverse z-transform of the system’s transfer
unction, Nise (2004).

3 Example impulse responses can be seen in Figs. 3–8.
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Lemma 1 (Tsypkin’s Squared Impulse Response Theorem). A linear system
reacting to an IID white noise input, with variance 𝜎2𝜖 , has an output 𝑥𝑡,
hose long-run variance 𝜎2𝑥, is given by the sum of its squared impulse
esponse, �̃�2𝑡 .

2
𝑥 = 𝜎2𝜖

∞
∑

𝑡=0
�̃�2𝑡 . (13)

roof. All proofs of the Lemmas, Corollaries, and Theorems in this
aper are housed in the Appendix. □

. Impulse responses

Lemma 1 shows that the variances used to measure the bullwhip
ffect can be obtained from the system’s impulse responses. In Sec-
ion 4.1, we consider the transfer function of the demand and it’s
mpulse response; in Section 4.2 we consider the order impulse re-
ponse.

.1. The ARMA(p,q) demand impulse response

The zero-pole form of the rational transfer function (2) is

[𝑧] =
∏𝑚

𝑖=1(𝑧 − 𝜆𝜃𝑖 )
∏𝑚

𝑖=1(𝑧 − 𝜆𝜙𝑖 )
. (14)

Here 𝜆𝜃𝑖 are the zeros and 𝜆𝜙𝑖 are poles of the transfer function. The zeros
are the roots of the numerator of (14) w.r.t. 𝑧 and are related to the
moving average coefficients. The poles are the roots of the denominator
of (14) w.r.t. 𝑧 and are related to the auto-regressive coefficients.
The poles and zeros are collectively known as the eigenvalues of the
system.

Lemma 2 (Impulse Response of ARMA(p,q) Demand). The impulse re-
ponse of the ARMA(p,q) demand process, 𝑑𝑡, given by

𝑑𝑡+1 =

{

1, if 𝑡 = 0,
∑𝑚

𝑗=1 𝑟𝑗 (𝜆
𝜙
𝑗 )

𝑡 if 𝑡 ≥ 1,
(15)

where,

𝑟𝑗 =

∏𝑚
𝑖=1(𝜆

𝜙
𝑗 − 𝜆𝜃𝑖 )

∏𝑚
{𝑖=1,𝑖≠𝑗}(𝜆

𝜙
𝑗 − 𝜆𝜙𝑖 )

. □ (16)

Eq. (15) is fundamental to our analysis and is the basis of all our
esults. For 𝑡 > 0, the sum of the 𝑚 power functions, (𝜆𝜙𝑗 )

𝑡, is determined
y the poles and 𝑚 coefficients, 𝑟𝑗 , which are functions of the poles
nd zeros. Eq. (15) holds wherever the poles and zeros are located in
he complex z-plane. Common poles are allowed and do not lead to
undamentally different insights from our analysis. Furthermore, if the
oles are real and positive, the impulse response (12) has a maximum
f 𝑚 − 1 changes of sign, a property that will be relevant later.

.2. The impulse response of the orders

Section 4.1 provided the impulse response of the ARMA(p,q) de-
and. In this section, we derive the impulse response of the replenish-
ent orders.

emma 3 (Impulse Response of the Orders). The order impulse response,
�̃�𝑡, is

�̃�𝑡 =

{

∑𝑘+1
𝑗=0 𝑑𝑡+𝑗 , if 𝑡 = 0,

̃ (17)
4

𝑑𝑡+𝑘+1, if 𝑡 > 0. □
. Demand and order variances

Lemma 1 provides both the long run variance of the demand,

2
𝑑 = 𝜎2𝜖

∞
∑

𝑡=0
𝑑2𝑡 = 𝜎2𝜖

(𝑘+1
∑

𝑡=0
𝑑2𝑡 +

∞
∑

𝑡=𝑘+2
𝑑2𝑡

)

, (18)

nd the long run variance of the orders

2
𝑜 = 𝜎2𝜖

((𝑘+1
∑

𝑗=0
𝑑𝑗

)2
+

∞
∑

𝑡=𝑘+2
𝑑2𝑡

)

. (19)

sing (18) and (19), 𝐶𝐵[𝑘] = (𝜎2𝑜 − 𝜎2𝑑 )∕𝜎
2
𝜖 becomes

𝐵[𝑘] =
(𝑘+1
∑

𝑗=0
𝑑𝑗

)2
−

𝑘+1
∑

𝑡=0
𝑑2𝑡 . (20)

hese relations hold regardless of the demand process. That is, they
old for all types of demand processes, not just ARMA(p,q) demands
rocesses.

orollary 1 (Influence of the ARMA Coefficients on the Bullwhip Effect).
nly the first 𝑘+1 pairs of ARMA coefficients determine whether a bullwhip
ffect exists or not. □

If 𝑘 ≥ 𝑚 − 1, all 𝑚 of the ARMA(p,q) parameter pairs determine
hether bullwhip is present.

heorem 1 (Necessary-Sufficient Condition for an Increasing Bullwhip
ffect). 𝐶𝐵[𝑘] is always positive and increasing in the lead time ∀𝑘 iff
𝑑1, 𝑑2,… , 𝑑𝑘+1} > 0. □

Theorem 1, shows that bullwhip is always present and always
ncreasing in the lead-time if, and only if, the demand impulse response
s positive for all 𝑡; that is, 𝐶𝐵[𝑘] is increasing in 𝑘 iff ∀𝑡, 𝑑𝑡 >
. Theorem 1 holds for all ARMA(p,q) demand processes, not just
or ARMA(2,2) demand processes. There is one important subtlety to
onsider that we capture in the following Corollary.

orollary 2 (Necessary-sufficient Condition for an Increasing Order Vari-
nce). 𝐶𝐵[𝑘] is increasing in the lead time 𝑘 iff {𝑑2,… , 𝑑𝑘+1} > 0 and
1̃ > −1. □

Notice the subtle difference between Theorem 1 and Corollary 2.
heorem 1 shows when the bullwhip effect is present when 𝑘 = 0 and

ncreases in the lead time 𝑘. Corollary 2 shows when bullwhip is not
resent when 𝑘 = 0 and that the order variance increases in the lead
ime 𝑘.

orollary 3 (Bullwhip Lead Time Behaviour Under ARMA(1,1) Demand).
table and invertible ARMA(1,1) demand processes are positive ∀𝑡, iff 𝜙 > 0
and 𝜃 < 𝜙; for these demand processes, bullwhip increases in the lead
time. □

Corollary 3 simply recovers Proposition 5 in Duc et al. (2008).

Corollary 4 (Bullwhip Lead Time Behaviour Under MA(q) Demand). The
bullwhip effect under an invertable4 MA(q) demand process is increasing in
lead-time iff ∀𝑗, 𝜃𝑗 < 0. □

Corollary 4 shows that iff ∀𝑗, 𝜃𝑗 < 0, bullwhip is present when 𝑘 = 0
and increases in the lead time until 𝑘 = 𝑞, after which bullwhip remains
constant.

Corollary 5 (Bullwhip Lead Time Behaviour Under AR(p) Demand). The
bullwhip effect under a stable5 AR(p) demand process is increasing in
lead-time if ∀𝑗, 𝜙𝑗 > 0. □

4 For more information on invertibility see Section 6.1.
5 For more information on stability, see Section 6.1.
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Corollary 5 recovers the result of Luong and Phien (2007) in a
simple and direct manner.

Theorem 2 (Sufficient Condition for a Positive Impulse Response). When
all the AR eigenvalues are positive, 0 ≤ 𝜆𝜙𝑗 < 1, if for each 𝜆𝜙𝑗 there are more
MA eigenvalues smaller than 𝜆𝜙𝑗 than there AR eigenvalues smaller than 𝜆𝜙𝑗 ,
then ∀𝑡, 𝑑𝑡+1 > 0. □

For Theorem 2 to hold, the smallest eigenvalues must always be a
zero and the largest eigenvalue must always be a pole. Note, to exploit
the convolution property, negative poles are not allowed in Theorem 2.
However, all poles can be at the origin and negative zeros are allowed.
From a control theory perspective, as the 𝜆𝜙𝑗 eigenvalues dominate
the 𝜆𝜃𝑗 eigenvalues, the demand process has low pass frequency filter
characteristics, Nise (2004). Low pass filters are an important control
theory concept as they are able to filter out high frequencies (noise)
and pass on the low frequency (long term trends in demand). Low pass
filters are also able to remove resonance (seasonality). The OUT policy
strives to reduce inventory fluctuations caused by the demand and as
a result the orders have relatively more low frequency harmonics than
the demand. For low pass demand processes, this increases the order
variance compared with the demand variance.

Corollary 6 (An Eigenvalue Ordering with a Positive Impulse Response).
If 𝜆𝜙1 > 0 ∧𝜆𝜃1 < 𝜆𝜙1 < 𝜆𝜃2 < 𝜆𝜙2 < ⋯ < 𝜆𝜃𝑚 < 𝜆𝜙𝑚 < 1 a positive demand
impulse response exists, and bullwhip is always present and increasing in the
lead time.6 □

Note, 𝜆𝜙1 > 0 allows that 𝜆𝜃1 < 0 in Corollary 6. Further note, if a zero
𝜆𝜃𝑖 (in an ordering that satisfies Theorem 2) decreases, then ∀𝑘 𝐶𝐵[𝑘]
increases. As a consequence the ordering given by Corollary 6 has the
‘weakest’ bullwhip effect and the ordering 𝜆𝜙1 > 0∧𝜆𝜃1 < 𝜆𝜃2 < ⋯ < 𝜆𝜃𝑚 <
𝜆𝜙1 < 𝜆𝜙2 < ⋯ < 𝜆𝜙𝑚 < 1 has the ‘strongest’ bullwhip effect.

The inverse of Theorem 2: If the number of AR eigenvalues smaller
than each of the 𝜆𝜃𝑗 is larger than the number of MA eigenvalues smaller
than 𝜆𝜃𝑗 , then the demand impulse response is not always positive.
When the 𝜆𝜃𝑗 eigenvalues dominate the 𝜆𝜙𝑗 eigenvalues, high-frequency
harmonics are present in the demand process.

Corollary 7 (An Eigenvalue Ordering with a Negative Impulse Response).
If 0 < 𝜆𝜙1 < 𝜆𝜃1 < 𝜆𝜙2 < 𝜆𝜃2 < ⋯ < 𝜆𝜙𝑚 < 𝜆𝜃𝑚 < 1 then a negative demand
impulse exists, and bullwhip is not present and the order variance is always
decreasing in the lead time. □

When Corollary 7 holds, after 𝑑0 = 1 and −1 < 𝑑1 < 0, all subsequent
demands are negative and increasing. This means when the lead time
𝑘 = 0, the order variance is less than the demand variance (i.e. the
bullwhip effect is not present), and the order variance is decreasing in
the lead time.

In general there are (2 𝑚)!∕(𝑚!)2 possible eigenvalue orderings. The
eigenvalue orderings can be split into 3 subsets: one set that potentially
satisfies Theorem 2, one set satisfying the inverse of Theorem 2, and
the set of remaining eigenvalue orderings. This last subset also contains
orderings which may also have an increasing-in-the-lead-time bullwhip
behaviour. For instance, Liu and Bauer (2008), Liu (2011) identify an
eigenvalue ordering that has positive impulse responses that are not
covered by Theorem 2 or its inverse. Liu’s eigenvalue ordering always
has a positive pole as the lowest eigenvalue and a positive pole as the
largest eigenvalue. The inverse of this ordering was not discussed in Liu
and Bauer (2008) or (Liu, 2011); we found this impulse response is neg-
ative. The AR(p) demand process, with positive correlation coefficients
(Corollary 5), also has a positive demand impulse response that does
not conform to Theorem 2 or its inverse.

6 Here ∧ is the logical and operator.
5

(

For high dimensional ARMA(p,q) demand processes the number
of possible eigenvalue orderings grows very large. For example, with
𝑚 = 2 there are 6 orderings, 𝑚 = 3 has 20 orderings, the 𝑚 = 7 has
3432 orderings. Due to its simplicity, in the next section we consider
the ARMA(2,2) demand. We are able to find the necessary and sufficient
condition for increasing bullwhip with respect to the eigenvalues. This
is accompanied by additional insights of the bullwhip characteristics.

6. Bullwhip behaviour over the lead time under ARMA(2,2) de-
mand

While the ARMA(2,2) demand process is of low order, it contains (as
special cases) many other ARIMA type demand processes such as IID,
AR(1), IMA(0,1,1), MA(1), AR(2), ARMA(2,1), MA(2), and ARMA(1,2).
In a study of a European retailer, Ali et al. (2012) found that 75% of
1798 SKU’s were ARMA(2,2) demand processes or is special cases. The
ARMA(2,2) demand process is given by, Box et al. (2008),

𝑑𝑡 = 𝜇𝑑 +
2
∑

𝑖=1
𝜙𝑖

(

𝑑𝑡−𝑖 − 𝜇𝑑
)

−
2
∑

𝑗=1
𝜃𝑗𝜖𝑡−𝑗 + 𝜖𝑡. (21)

The z-transform transfer function of the ARMA(2,2) demand process is
given by

𝐷[𝑧] =
𝑧2 − 𝜃1𝑧 − 𝜃2
𝑧2 − 𝜙1𝑧 − 𝜙2

. (22)

.1. Stability and invertibility of the ARMA(2,2) process

When the poles (roots of the denominator of the system transfer
unction) lie within the unit circle in the complex plane a stable systems
xists. Stable systems return to a finite state, after a finite input, in a
inite amount of time. When the poles are real, this means −1 < 𝜆𝜙1 ≤
𝜙
2 < 1. Complex poles are required to be within the unit circle in the
omplex plane; the stability conditions can be determined directly from
he denominator of the transfer function, (22), using Jury’s stability
est (Jury, 1974) which produces the following (triangular) set of
tability conditions,

1 − 𝜙2 > 𝜙1 > 𝜙2 − 1, 𝜙2 > −1}. (23)

ox et al. (2008) show that invertible time series allow for the structure
f the demand process to be uniquely identified. The zeros must lie
nside the unit circle in the complex plane to be invertible. For real
eros this means −1 < 𝜆𝜙1 ≤ 𝜆𝜙2 < 1. When complex zeros are present,
pplying Jury’s criterion to the numerator of the transfer function in
22) reveals the invertibility conditions:

1 − 𝜃2 > 𝜃1 > 𝜃2 − 1, 𝜃2 > −1}. (24)

he stability and invertibility conditions provide limits on the allowable
RMA(2,2) parameters.

.2. The six eigenvalue orderings of ARMA(2,2) demand

The eigenvalues of the ARMA(2,2) demand process can be found
y solving for the roots of the numerator and denominator of the
ransfer function, (22). The MA eigenvalues, the zeros, are the roots
f numerator w.r.t. 𝑧,

𝜆𝜃1 = 1
2

(

𝜃1 −
√

𝜃21 + 4𝜃2

)

, 𝜆𝜃2 = 1
2

(

𝜃1 +
√

𝜃21 + 4𝜃2

)}

. (25)

he AR eigenvalues, the poles, are the roots of denominator w.r.t. 𝑧,

𝜆𝜙1 = 1
2

(

𝜙1 −
√

𝜙2
1 + 4𝜙2

)

, 𝜆𝜙2 = 1
2

(

𝜙1 +
√

𝜙2
1 + 4𝜙2

)}

. (26)

he poles and zeros can be real, can have common poles or zeros,
nd can be complex. When 𝜃21 + 4𝜃2 < 0, complex poles exist; when
2
𝜙1 + 4𝜙2 < 0), complex zeros exist.
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Fig. 1. The six possible real eigenvalue orderings for ARMA(2,2) demand. Circles represent the zeros, crosses represent the poles.
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(

Lemma 2 provides the ARMA(2,2) demand impulse response, 𝑑𝑡,

�̃�+1 =

{

1, if 𝑡 = 0,
𝑟1(𝜆

𝜙
1 )

𝑡 + 𝑟2(𝜆
𝜙
2 )

𝑡, if 𝑡 ≥ 1,
(27)

here

1 =
(𝜆𝜙1 − 𝜆𝜃1)(𝜆

𝜙
1 − 𝜆𝜃2)

(𝜆𝜙1 − 𝜆𝜙2 )
and 𝑟2 =

(𝜆𝜙2 − 𝜆𝜃1)(𝜆
𝜙
2 − 𝜆𝜃2)

(𝜆𝜙2 − 𝜆𝜙1 )
. (28)

The four eigenvalues of the ARMA(2,2) demand process can be
arranged into six different eigenvalue orderings, see Fig. 1. We focus
on the case of real poles only as, in a second order system, complex
poles result in an impulse response that oscillates between positive
and negative values and bullwhip does not always increase in the lead
time. However, complex conjugate zeros (where conjugate zeros are
projected onto the real axis in the complex plane to determine its
eigenvalue ordering) are allowed. Note, in this section we assume the
poles can be positive or negative.

6.3. Cases that potentially satisfy Theorem 2

6.3.1. Case A
The eigenvalues order here is −1 < Re[𝜆𝜃1] ≤ Re[𝜆𝜃2] < 𝜆𝜙1 ≤ 𝜆𝜙2 < 1.7

It is easy to verify that 𝑟1 < 0 < 𝑟2, 𝑑1 > 0, and −𝑟2∕𝑟1 ≥ 1. This case
can exist when complex zeros are present. Three sub-cases are present,
depending on the sign of the poles, {𝜆𝜙1 , 𝜆

𝜙
2 }:

Case 𝐴1: 0 ≤ 𝜆𝜙1 ≤ 𝜆𝜙2 . Consider first the case when 0 < 𝜆𝜙1 < 𝜆𝜙2 .
sing 𝑟1 = 𝑑1 − 𝑟2 in (27) provides

�̃�+1 = 𝑑1(𝜆
𝜙
1 )

𝑡 + 𝑟2((𝜆
𝜙
2 )

𝑡 − (𝜆𝜙1 )
𝑡) > 0, (29)

hich is positive ∀𝑡 ≥ 0 as {𝑑1, 𝑟2, 𝜆
𝜙
1 , 𝜆

𝜙
2 } > 0 and 𝜆𝜙2 > 𝜆𝜙1 . That 𝑑𝑡+1 > 0

indicates bullwhip is always present and increases in the lead time.
The case of common poles 0 < 𝜆𝜙1 = 𝜆𝜙2 , requires a different

approach as 𝜆𝜙1 = 𝜆𝜙2 results in a divide by zero in (27). With common
poles, the demand impulse evolves via

𝑑𝑡+1 = 𝑑1(𝜆
𝜙
1 )

𝑡 + 𝑡(𝜆𝜙1 − 𝜆𝜃1)(𝜆
𝜃
1 − 𝜆𝜃2)(𝜆

𝜙
1 )

𝑡−1, (30)

which is always positive. That is, common poles do not fundamentally
alter the solution. The case of common poles at zero, 0 = 𝜆𝜙1 = 𝜆𝜙2 ,
represents the case of MA(2) demand, as ∀𝑖, 𝜆𝜙𝑖 = 0 implies ∀𝑖, 𝜙𝑖 = 0.
In this situation, Corollary 4 is relevant and an increasing bullwhip in
the lead time is present iff ∀𝑖, 𝜃𝑖 < 0 as 𝑑0 = 1, 𝑑1 = −𝜆𝜃1 −𝜆𝜃2 = 𝜃1, 𝑑2 =
𝜆𝜃1𝜆

𝜃
2 = 𝜃2, and ∀𝑡 ≥ 2, 𝑑𝑡+1 = 0.
Case 𝐴1 is present when −1 ≤ Re[𝜆𝜃1] ≤ Re[𝜆𝜃2] ≤ 1. That is, case

𝐴1 is present in the whole invertible region regardless of the values
of 𝜃1 and 𝜃2. Fig. 2 highlights the {𝜃1, 𝜃2} values required for each
of the eigenvalue cases to exist. Case 𝐴1 satisfies the requirements of
Theorem 2.

7 Formally, when there are real zeros, the following order exists −1 <
𝜃
1 ≤ 𝜆𝜃2 < 𝜆𝜙1 ≤ 𝜆𝜙2 < 1. When complex zeros are present the order is
1 < Re[𝜆𝜃1] = Re[𝜆𝜃2] < 𝜆𝜙1 ≤ 𝜆𝜙2 < 1. In order to reduce notational clutter
e have combined these two statements.
6

Case 𝐴2: 𝜆
𝜙
1 < 0 < 𝜆𝜙2 . The increasing bullwhip condition, 𝑑𝑡+1 =

1(𝜆
𝜙
1 )

𝑡 + 𝑟2(𝜆
𝜙
2 )

𝑡 > 0, can be rearranged into,
(

𝜆𝜙1
𝜆𝜙2

)𝑡

< −
𝑟2
𝑟1
. (31)

As 𝜆𝜙1 < 0 < 𝜆𝜙2 and −𝑟2∕𝑟1 > 1, two further sub-cases exist:

• 𝐴2𝑖. When −𝜆𝜙1 < 𝜆𝜙2 the LHS of (31) alternates sign with a
decaying amplitude strictly less than one, indicating 𝑑𝑡+1 > 0.
Using (26) it is clear that −𝜆𝜙1 < 𝜆𝜙2 is equivalent to 𝜆𝜙1 + 𝜆𝜙2 >
0 ⟹ 𝜙1 > 0. Even though the requirements of Theorem 2 are
not met (as one of the AR poles is negative), bullwhip is always
present and increases in the lead time for case 𝐴2𝑖.

• 𝐴2𝑖𝑖. If −𝜆𝜙1 > 𝜆𝜙2 , the LHS of (31) will alternate sign with ever
increasing amplitude. Initially, when the integer valued 𝑡 is less
than the real valued 𝜏,

𝜏 = ln(|𝑟2∕𝑟1|)∕ ln(|𝜆
𝜙
1 ∕𝜆

𝜙
2 |), (32)

(𝜆𝜙1 ∕𝜆
𝜙
2 )

𝑡 < −𝑟2∕𝑟1, indicating the demand impulse 𝑑𝑡+1 is initially
positive and the increasing bullwhip in the lead time criterion
holds when the lead time is small. However, the LHS of (31)
will alternate with ever increasing amplitude as 𝑡 increases. When
𝑡 ≥ 𝜏, the increasing bullwhip condition will no longer hold and
for even 𝑡, 𝑑𝑡+1|even 𝑡 < 0; for odd 𝑡 ≥ 𝜏, 𝑑𝑡+1|odd 𝑡 > 0.

Case 𝐴2 exists whenever −1 < Re[𝜆𝜃1] ≤ Re[𝜆𝜃2] < 0 which is equivalent
to the invertible region plus 𝜃1 < 0 ∧ 𝜃2 < 0.

Case 𝐴3: 𝜆
𝜙
1 ≤ 𝜆𝜙2 < 0. At 𝑡 = 0, 𝑑0 = 1 as always, and as relation

𝜆𝜙1 ∕𝜆
𝜙
2 )

0 < (−𝑟2∕𝑟1) holds, 𝑑1 > 0. Further insight into the sign of the
demand impulse response can be gained from considering the following
form of the impulse response,

𝑑𝑡+1 = (−1)𝑡+1
(

−𝑟1(−𝜆
𝜙
2 )

𝑡)
((𝜆𝜙1

𝜆𝜙2

)𝑡
−

𝑟2
−𝑟1

)

, (33)

which can be obtained from (27). The first factor, (−1)𝑡+1 is alternating
between positive and negative numbers; for even 𝑡, it is negative, for
odd 𝑡, it is positive. The second factor,

(

−𝑟1(−𝜆
𝜙
2 )

𝑡) is always positive.
The third factor,

((

𝜆𝜙1 ∕𝜆
𝜙
2
)𝑡 − (𝑟2∕(−𝑟1))

)

, is initially negative, up until
the threshold 𝜏, then it becomes positive. After 𝑑0 = 1, these facts
produce two different consequences. Initially, when 𝑡 < 𝜏, even 𝑡 result
in 𝑑𝑡+1|even 𝑡 > 0 and odd 𝑡 result in 𝑑𝑡+1|odd 𝑡 < 0. When 𝑡 ≥ 𝜏, even 𝑡
result in 𝑑𝑡+1|even 𝑡 < 0 and odd 𝑡 result in 𝑑𝑡+1|odd 𝑡 > 0. In the transition,
there may be either two negative demands or two positive demands
depending on the value of 𝜏. If ⌈𝜏⌉ is odd, two positive demands occur
at the transition; if ⌈𝜏⌉ is even, two negative demands occur at the
transition.

As case 𝐴3 has negative poles, it does not conform to the require-
ments of Theorem 2. Case 𝐴3 exists whenever −1 < Re[𝜆𝜃1] ≤ Re[𝜆𝜃2] < 0;
this is possible in the invertible region plus 𝜃1 < 0 ∧ 𝜃2 < 0, the same
area in the {𝜃1, 𝜃2} parameter plane as Case 𝐴2, see Fig. 2.

Fig. 3 illustrates the {𝜙1, 𝜙2} hyper-plane when the eigenvalue
ordering in case 𝐴 is present for a given set of 𝜃 values. It also
provides example impulse responses for each sub-case, highlighting the
positivity of the impulse response with a sequence of ‘‘+ ’’ and ‘‘-’’
beneath each impulse response.
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Fig. 2. Case map in the {𝜃1 , 𝜃2} hyper-plane. The grey areas indicates possible 𝜃 values for each eigenvalue ordering and their main sub-cases.
Fig. 3. Areas of increasing bullwhip over the lead-time when −1 < Re[𝜆𝜃1] ≤ Re[𝜆𝜃2] < 𝜆𝜙1 ≤ 𝜆𝜙2 < 1, case A.
6.3.2. Case B
The eigenvalue order is −1 < 𝜆𝜃1 < 𝜆𝜙1 < 𝜆𝜃2 < 𝜆𝜙2 < 1, {𝑟1, 𝑟2} > 0,

and by this 𝑑1 = 𝑟1 + 𝑟2 > 0. As the zeros enclose a pole, this ordering
cannot exist with complex conjugate zeros.

Case 𝐵1: 0 ≤ 𝜆𝜙1 < 𝜆𝜙2 . That {𝑟1, 𝑟2, 𝜆
𝜙
1 , 𝜆

𝜙
2 } > 0, implies ∀𝑡, 𝑑𝑡+1 =

𝑟1(𝜆
𝜙
1 )

𝑡 + 𝑟2(𝜆
𝜙
2 )

𝑡 > 0.
Case 𝐵1 exists when (−1 < 𝜆𝜃1 < 1)∧ (0 < 𝜆𝜃2 < 1) which is equivalent

to the invertible region with (𝜃21 + 4𝜃2 > 0 ∧ 𝜃1 > 0) ∨ 𝜃2 > 0, where ∨ is
the logical or function. Case 𝐵1 satisfies the requirements of Theorem 2
and Corollary 6.

Case 𝐵2: 𝜆𝜙1 < 0 < 𝜆𝜙2 . The increasing bullwhip criterion, 𝑑𝑡+1 =
𝑟1(𝜆

𝜙
1 )

𝑡 + 𝑟2(𝜆
𝜙
2 )

𝑡 > 0, can be re-arranged into
(

𝜆𝜙1
𝜆𝜙2

)𝑡

> −
𝑟2
𝑟1
. (34)

s {𝑟1, 𝑟2} > 0, the RHS of (34) is negative. Thus, all even 𝑡 have positive
mpulse responses, 𝑑𝑡+1|even 𝑡 > 0. The positivity of the demand impulse
or odd 𝑡 depends on extra conditions:
7

Sub-case 𝐵2𝑖. If −𝜆𝜙1 < 𝜆𝜙2 , (𝜆𝜙1 ∕𝜆
𝜙
2 )

𝑡 alternates between positive and
negative numbers that tend towards zero as 𝑡 increases. This leads to
two further sub-sub-cases depending on the sign of 𝑑2:

• 𝐵2𝑖𝑎. As −1 < (𝜆𝜙1 ∕𝜆
𝜙
2 ) < 0, the minimum (𝜆𝜙1 ∕𝜆

𝜙
2 )

𝑡 occurs at 𝑡
= 1. If (𝜆𝜙1 ∕𝜆

𝜙
2 )

1 > −𝑟2∕𝑟1, 𝑑2 > 0, and all subsequent 𝑑𝑡+1 > 0.
The requirement that 𝑑2 > 0 produces the curve in the {𝜙1, 𝜙2}
hyper-plane, see Fig. 4.

• 𝐵2𝑖𝑏. When (𝜆𝜙1 ∕𝜆
𝜙
2 )

1 < −𝑟2∕𝑟1, 𝑑2 < 0; the impulse response is
initially negative for odd 𝑡, 𝑑𝑡+1|odd 𝑡 < 0, (and positive for even
𝑡, 𝑑𝑡+1|even 𝑡 > 0). As the alternating (𝜆𝜙1 ∕𝜆

𝜙
2 )

𝑡 has a decreasing
amplitude over time, eventually (𝜆𝜙1 ∕𝜆

𝜙
2 )

𝑡 > −𝑟2∕𝑟1 and all sub-
sequent demands will be positive for both odd and even 𝑡. This
change in behaviour occurs when 𝑡 ≥ 𝜏.

Sub-case 𝐵2𝑖𝑖. When −𝜆𝜙1 > 𝜆𝜙2 , (𝜆𝜙1 ∕𝜆
𝜙
2 )

𝑡 alternates with ever-
increasing amplitude which will eventually violate the criterion (𝜆𝜙1 ∕
𝜆𝜙2 )

𝑡 > −𝑟2∕𝑟1. There are two further sub-cases depending on the
positivity of 𝑑 :
2
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Fig. 4. Areas of increasing bullwhip over the lead-time when −1 < 𝜆𝜃 < 𝜆𝜙 < 𝜆𝜃 < 𝜆𝜙 < 1, case B.
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• 𝐵2𝑖𝑖𝑎. If 𝑑2 < 0 then for all odd 𝑡, 𝑑𝑡+1|odd 𝑡 < 0 and for even 𝑡,
𝑑𝑡+1|even 𝑡 > 0, indicating that bullwhip does not always increase
in the lead time.

• 𝐵2𝑖𝑖𝑏. If 𝑑2 > 0 then for small (odd and even) 𝑡 < 𝜏, 𝑑𝑡+1 > 0;
when 𝑡 ≥ 𝜏, for odd 𝑡, 𝑑𝑡+1|odd 𝑡 < 0 and for even 𝑡, 𝑑𝑡+1|even 𝑡 > 0,
indicating bullwhip is initially present and increases in the lead
time when the lead time is small, but not for a large lead time.

Case 𝐵2 exists when (−1 < 𝜆𝜃1 < 0)∧(−1 < 𝜆𝜃2 < 1) which is equivalent
to invertibility region plus (𝜃21 + 4𝜃2 > 0 ∧ 𝜃1 < 0) ∨ (𝜃2 > 0), see
Fig. 2. Case 𝐵2 does not satisfy Theorem 2, but sub-case 𝐵2𝑖𝑎 possesses

positive impulse response, indicating an increasing bullwhip in the
ead-time behaviour is present. This again confirms that Theorem 2 is
nly a sufficient condition for a positive impulse response.
Case 𝐵3: 𝜆𝜙1 < 𝜆𝜙2 < 0. That {𝑟1, 𝑟2} > 0, {𝜆𝜙1 , 𝜆

𝜙
2 } < 0 and

�̃�+1 = 𝑟1(𝜆
𝜙
1 )

𝑡+𝑟2(𝜆
𝜙
2 )

𝑡, implies 𝑑𝑡+1|even 𝑡 > 0 for even 𝑡 and 𝑑𝑡+1|odd 𝑡 < 0
or odd 𝑡. This demand impulse response is alternating in sign and the
ullwhip effect does not increase in the lead time.

Case 𝐵3 requires that (−1 < 𝜆𝜃1 < 𝜆𝜃2 < 0); parametrically, this is
quivalent to the invertible region plus (𝜃21 + 4𝜃2 > 0 ∧ 𝜃2 < 0 ∧ 𝜃1 < 0).
ote, {𝐵1, 𝐵2} and {𝐵2, 𝐵3} can co-exist for a given set of {𝜃1, 𝜃2}, but

t is not possible that all three 𝐵 regions are present for a single set of
𝜃1, 𝜃2}. Fig. 4 highlights the areas within the parameter plane where
ases {𝐵1, 𝐵2} exist as well as some of the typical time series responses
ound in the three different sub-cases.

.4. Satisfying the inverse of Theorem 2

Here the pole-zero order is the inverse of the order considered in
he previous section. This set of eigenvalue orderings never conforms to
he eigenvalue ordering requirements of Theorem 2. A positive demand
mpulse response does not always exist and bullwhip is not always
ncreasing in the lead-time for this class of eigenvalue orderings.

.4.1. Case C
The eigenvalue order 𝜆𝜙1 ≤ 𝜆𝜙2 < Re[𝜆𝜃1] ≤ Re[𝜆𝜃2] and 𝑟1 < 0 < 𝑟2

mplies that −𝑟1 > 𝑟2. As a consequence 𝑑1 = 𝑟1 + 𝑟2 < 0, and we can
conclude immediately that the bullwhip is not always present when
𝑘 = 0 as the order variance is smaller than demand variance for case
𝐶.

Case 𝐶1: 0 ≤ 𝜆𝜙1 ≤ 𝜆𝜙2 . The increasing bullwhip criteria is given in
𝜙 𝜙 𝜙 𝜙 𝑡
8

(34), as 0 < 𝜆1 ∕𝜆2 < 1 then 0 < (𝜆1 ∕𝜆2 ) < 1 is decreasing in 𝑡. As
𝑟2∕𝑟1 > 0, when 𝑡 becomes sufficiently large, 𝑑𝑡 > 0. There is only
ne change in the sign of the demand after 𝑡 = 1. If 𝑡 < 𝜏, there is a
egative impulse response, 𝑑𝑡+1 < 0. When 𝑡 ≥ 𝜏, there is a positive
mpulse response, 𝑑𝑡+1 > 0. If 𝜏 ≤ 1 then Corollary 2 holds; if 𝜏 > 1,
hen the order variance is initially decreasing in the lead time, before
ecoming, and remaining, an increasing function of the lead time.

The case of common poles does not fundamentally alter our insights.
ommon poles at zero result in an MA(2) process and, due to the
igenvalue ordering, all 𝜃 > 0 and Corollary 4 does not hold. The 𝐶1
ase is present when 0 < Re[𝜆𝜃1] ≤ Re[𝜆𝜃2] < 1; parametrically, this is
quivalent to the invertible region plus 𝜃1 > 0 ∧ 𝜃2 < 0, see Fig. 2.
Case 𝐶2: 𝜆

𝜙
1 < 0 < 𝜆𝜙2 . Using (34) and that −𝑟2∕𝑟1 > 0, two further

ub-cases exist:
Sub-case 𝐶2𝑖. If −𝜆𝜙1 < 𝜆𝜙2 then (𝜆𝜙1 ∕𝜆

𝜙
2 )

𝑡 initially alternates between
positive and negative numbers with decreasing amplitude that tends
to zero as 𝑡 increases. If 𝑡 < 𝜏, for even 𝑡, 𝑑𝑡+1|even 𝑡 < 0 and for
odd 𝑡, 𝑑𝑡+1|odd 𝑡 > 0. When 𝑡 ≥ 𝜏, 𝑑𝑡+1 > 0 for both odd and even 𝑡.
This indicates an increasing in the lead-time bullwhip behaviour is not
present with a short lead-time, but will be present when the lead-time
is large enough.

Sub-case 𝐶2𝑖𝑖. If −𝜆𝜙1 < 𝜆𝜙2 , (𝜆𝜙1 ∕𝜆
𝜙
2 )

𝑡 alternates with ever-increasing
amplitude between positive and negative numbers. 𝑑𝑡+1 alternates sign;
for odd 𝑡, 𝑑𝑡+1|odd 𝑡 > 0 and for even 𝑡, 𝑑𝑡+1|even 𝑡 < 0 and an increasing
in the lead-time bullwhip does not exist.

Case 𝐶2 is present in the same {𝜃1, 𝜃2} region as case 𝐶1.
Case 𝐶3: 𝜆

𝜙
1 < 𝜆𝜙2 < 0. In this case, 0 < −𝑟2∕𝑟1 < 1, (𝜆𝜙1 ∕𝜆

𝜙
2 ) > 1

and (𝜆𝜙1 ∕𝜆
𝜙
2 )

𝑡 is increasing in 𝑡. The demand impulse response can be
written as

𝑑𝑡+1 = (−1)𝑡+1(−𝑟1)(−𝜆
𝜙
2 )

𝑡((𝜆𝜙1 ∕𝜆
𝜙
2 )

𝑡 − (−𝑟2∕𝑟1)). (35)

Here, the three multipliers are all positive and the multiplicand is
alternating sign in 𝑡; with an even 𝑡, 𝑑𝑡+1|even 𝑡 < 0 and with an odd
𝑡, 𝑑𝑡+1|odd 𝑡 > 0. This odd-even effect means that an always increasing
in the lead time bullwhip effect is not present.

Case 𝐶3 is present whenever −1 < Re[𝜆𝜃1] ≤ Re[𝜆𝜃2] < 1; 𝐶3 instances
can be found over the whole invertible {𝜃1, 𝜃2} plane, see Fig. 2. Note,
that it is possible that all three 𝐶 cases can be observed for some
particular {𝜃1, 𝜃2} values. Fig. 5 provides an example when case 𝐶 is
present in the {𝜙1, 𝜙2} hyper-plane, together with some sample impulse

responses.



International Journal of Production Economics xxx (xxxx) xxxG. Gaalman et al.
Fig. 5. Areas of increasing bullwhip over the lead-time when 𝜆𝜙1 ≤ 𝜆𝜙2 < Re[𝜆𝜃1] ≤ Re[𝜆𝜃2], case C.
6.4.2. Case D
The eigenvalue ordering 𝜆𝜙1 < 𝜆𝜃1 < 𝜆𝜙2 < 𝜆𝜃2 implies that complex

zeros are not possible in case D (as there is a pole between the two
zeros). The eigenvalue ordering reveals that {𝑟1, 𝑟2} < 0 and 𝑑1 =
𝑟1+𝑟2 < 0, immediately revealing that bullwhip is not always increasing
in the lead-time.

Case 𝐷1: 0 < 𝜆𝜙1 < 𝜆𝜙2 . As {𝑟1, 𝑟2} < 0 then ∀𝑡, 𝑑𝑡+1 = 𝑟1(𝜆
𝜙
1 )

𝑡 +
𝑟2(𝜆

𝜙
2 )

𝑡 < 0. That is, after 𝑑0 = 1, the demand impulse response is
always negative. The 𝐷1 case is present when (0 < 𝜆𝜃1 < 𝜆𝜃2 < 1); this is
equivalent to the invertibility region plus (𝜃21+4𝜃2 > 0∧(𝜃1 > 0)∧𝜃2 < 0).
Case 𝐷1 conforms to the requirements of Corollary and 7; bullwhip is
not present when 𝑘 = 0 and the order variance is decreasing in the lead
time.

Case 𝐷2: 𝜆
𝜙
1 < 0 < 𝜆𝜙2 . A positive impulse response exists if (𝜆𝜙1 ∕

𝜆𝜙2 )
𝑡 < −𝑟2∕𝑟1. Here, −𝑟2∕𝑟1 < 0 and (𝜆𝜙1 ∕𝜆

𝜙
2 )

𝑡 will either alternate
between a positive and negative number that decays away to zero
(when −𝜆𝜙1 < 𝜆𝜙2 , sub-case 𝐷2𝑖) or alternate with ever-increasing
amplitude (when −𝜆𝜙1 > 𝜆𝜙2 , sub-case 𝐷2𝑖𝑖). In both cases, 𝑑𝑡+1|even 𝑡 < 0
when 𝑡 is even, indicating that the bullwhip is not increasing in the
lead-time. The behaviour of 𝑑𝑡+1 for odd 𝑡 depends on the sub-case:

Sub-case 𝐷2𝑖. When −𝜆𝜙1 < 𝜆𝜙2 , (𝜆𝜙1 ∕𝜆
𝜙
2 )

𝑡 is alternating with decreas-
ing amplitude in 𝑡. Initially, for small odd 𝑡, (𝜆𝜙1 ∕𝜆

𝜙
2 )

𝑡 < −𝑟2∕𝑟1 implying
𝑑𝑡+1|small odd 𝑡 > 0; for large odd 𝑡, the amplitude of (𝜆𝜙1 ∕𝜆

𝜙
2 )

𝑡 gets
smaller and (𝜆𝜙1 ∕𝜆

𝜙
2 )

𝑡 > −𝑟2∕𝑟1 implying 𝑑𝑡+1|large odd 𝑡 < 0. This means
the impulse response is initially alternating, but then it becomes, and
remains, negative. Depending on when this change of behaviour occurs,
we have two further sub-sub-cases:

• 𝐷2𝑖𝑎: If 𝑑2 > 0, when 𝑡 < 𝜏, for even 𝑡, 𝑑𝑡+1|even 𝑡 < 0; for odd 𝑡,
𝑑𝑡+1|odd 𝑡 > 0. When 𝑡 ≥ 𝜏, 𝑑𝑡+1 < 0 for both odd and even 𝑡.

• 𝐷2𝑖𝑏: If 𝑑2 < 0, all 𝑑𝑡+1 < 0.

Sub-case 𝐷2𝑖𝑖. When −𝜆𝜙1 > 𝜆𝜙2 , (𝜆𝜙1 ∕𝜆
𝜙
2 )

𝑡 is alternating with ever
increasing amplitude that will, for odd 𝑡, eventually become more
negative than −𝑟2∕𝑟1. Always 𝑑0 = 1 and 𝑑1 < 0; the sign of 𝑑2
determines the fundamental character of the 𝐷2𝑖𝑖 cases:

• 𝐷2𝑖𝑖𝑎: If 𝑑2 > 0, when 𝑡 is even, 𝑑𝑡+1|even 𝑡 < 0; when 𝑡 is odd,
𝑑𝑡+1|odd 𝑡 > 0.

• 𝐷2𝑖𝑖𝑏: If 𝑑2 < 0, when 𝑡 < 𝜏, after 𝑑0 = 1, 𝑑𝑡+1 < 0. When 𝑡 ≥ 𝜏, if 𝑡
is even, 𝑑𝑡+1|even 𝑡 < 0; if 𝑡 is odd, 𝑑𝑡+1|odd 𝑡 > 0.

Case 𝐷2 requires (−1 < 𝜆𝜃1 < 1) ∧ (0 < 𝜆𝜃2 < 1); this is equivalent to
the invertibility region plus (𝜃21 +4𝜃2 > 0∧𝜃1 < 0)∨𝜃2 > 0, as illustrated
in Fig. 2.
9

Case 𝐷3: 𝜆
𝜙
1 < 𝜆𝜙2 < 0. Using 𝑑𝑡+1 = 𝑟1(𝜆

𝜙
1 )

𝑡+𝑟2(𝜆
𝜙
2 )

𝑡, where {𝑟1, 𝑟2} <
0 and {(𝜆𝜙1 )

𝑡, (𝜆𝜙2 )
𝑡} alternates around zero, it is clear that 𝑑𝑡+1|odd 𝑡 > 0,

and 𝑑𝑡+1|even 𝑡 < 0. Case 𝐷3 occurs when (−1 < 𝜆𝜃1 < 0) ∧ (−1 < 𝜆𝜃2 < 1),
the invertible region plus (𝜃21 + 4𝜃2 > 0 ∧ 𝜃1 < 0) ∨ 𝜃2 > 0.

Cases 𝐷1 and 𝐷2 can exist together for some specified {𝜃1, 𝜃2}, but
neither can exist with 𝐷3, see Fig. 2. Fig. 6 illustrates some case D
solutions.

6.5. Other eigenvalue orderings

This set of eigenvalue orderings does not conform to the require-
ments of Theorem 2 or its inverse. However, we may continue to study
this set using Theorem 1.

6.5.1. Case E
The eigenvalue ordering 𝜆𝜃1 < 𝜆𝜙1 ≤ 𝜆𝜙2 < 𝜆𝜃2 implies 𝑟1 > 0 > 𝑟2. This

case does not exist when complex poles are present as the two zeros
are separated by the two poles.

Case 𝐸1: 0 < 𝜆𝜙1 ≤ 𝜆𝜙2 . 𝑑𝑡+1 may initially be positive. However,
as 𝑑𝑡+1 = 𝑟1(𝜆

𝜙
1 )

𝑡 + 𝑟2(𝜆
𝜙
2 )

𝑡 and 𝜆𝜙2 > 𝜆𝜙1 , when 𝑡 becomes sufficiently
large, −𝑟2(𝜆

𝜙
2 )

𝑡 > 𝑟1(𝜆
𝜙
1 )

𝑡 and 𝑑𝑡+1 turns negative after one change of
sign, indicating that bullwhip does not always increase in the lead-time.
Depending of when this change of sign occurs we have two sub-cases:

• Sub-case 𝐸1𝑎. Here 𝑑1 < 0, the change of sign has happened im-
mediately and after 𝑑0 = 1, all subsequent demands are negative,
𝑑1+1 < 0. This means bullwhip is not present when 𝑘 = 0 and the
order variance is decreasing in the lead time.

• Sub-case 𝐸1𝑏. Here 𝑑1 > 0, indicating when 𝑡 < 𝜏 that 𝑑𝑡+1 > 0;
when 𝑡 ≥ 𝜏, 𝑑𝑡+1 < 0.

Case 𝐸1 exists when (−1 < 𝜆𝜃1 < 1)∧ (0 < 𝜆𝜃2 < 1) which is equivalent
to the invertible region plus (𝜃21 +4𝜃2 > 0) ∧ (𝜃1 > 0) ∨ 𝜃2 > 0, see Fig. 2.
Case 𝐸2: 𝜆

𝜙
1 < 0 < 𝜆𝜙2 . As 𝜆𝜙1 < 0, 𝑟1(𝜆

𝜙
1 )

𝑡 alternates sign, 𝑟2(𝜆
𝜙
2 )

𝑡 < 0. 𝑑𝑡+1
is either always negative or initially alternating sign before becoming
negative depending on the relative sizes of {𝑟1, 𝑟2, 𝜆

𝜙
1 , 𝜆

𝜙
2 }:

Sub-case 𝐸2𝑖. If −𝜆𝜙1 < 𝜆𝜙2 , there are two sub-sub-cases depending
on the positivity of 𝑑1. The behaviour of both the sub-sub-cases can
ascertained by rearranging (29) into

(

𝜆𝜙1 ∕𝜆
𝜙
2

)𝑡
> −𝑟2∕𝑟1. Knowing that

−1 <
(

𝜆𝜙1 ∕𝜆
𝜙
2

)𝑡
≤ 1 is alternating with ever decreasing amplitude leads

to the following insights:

• 𝐸 : As 𝑑 < 0, −𝑟 ∕𝑟 > 1 and after 𝑑 = 1, all 𝑑 < 0.
2𝑖𝑎 1 2 1 0 𝑡+1
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Fig. 6. Areas of increasing bullwhip over the lead-time when 𝜆𝜙1 < 𝜆𝜃1 < 𝜆𝜙2 < 𝜆𝜃 , case D.
2
• 𝐸2𝑖𝑏: As 𝑑1 > 0, 0 < −𝑟2∕𝑟1 < 1 and when 𝑡 < 𝜏, 𝑑𝑡+1 is initially
alternating between a positive (𝑑𝑡+1|even 𝑡 > 0) and negative
number (𝑑𝑡+1|odd 𝑡 < 0). When 𝑡 ≥ 𝜏, 𝑑𝑡+1 will become negative,
𝑑𝑡+1 < 0.

Sub-case 𝐸2𝑖𝑖. When −𝜆𝜙1 > 𝜆𝜙2 , (𝜆𝜙1 ∕𝜆
𝜙
2 )

𝑡, is alternating in 𝑡 with ever
increasing amplitude. The bullwhip criterion remains as

(

𝜆𝜙1 ∕𝜆
𝜙
2

)𝑡
>

−𝑟2∕𝑟1, and two important sub-sub-cases are present:

• 𝐸2𝑖𝑖𝑎: When 𝑑1 < 0, −𝑟2∕𝑟1 > 1 and after 𝑡 = 0, 𝑑𝑡+1 is initially
negative when 𝑡 < 𝜏, but when 𝑡 ≥ 𝜏, it alternates sign; for odd 𝑡,
𝑑𝑡+1|odd 𝑡 < 0, and for even 𝑡, 𝑑𝑡+1|even 𝑡 > 0.

• 𝐸2𝑖𝑖𝑏: When 𝑑1 > 0, 0 < −𝑟2∕𝑟1 < 1 and the demand impulse
response is alternating; for odd 𝑡, 𝑑𝑡+1|odd 𝑡 < 0, and for even 𝑡,
𝑑𝑡+1|even 𝑡 > 0.

Case 𝐸2 exists when −1 < 𝜆𝜃1 < 0 < 𝜆𝜃2 < 1 which is equivalent to
the invertible region plus 𝜃2 > 0.

Case 𝐸3: 𝜆𝜙1 ≤ 𝜆𝜙2 < 0. Using 𝑑𝑡+1 = 𝑟1(𝜆
𝜙
1 )

𝑡 + 𝑟2(𝜆
𝜙
2 )

𝑡 > 0, as
𝜆𝜙1 ∕𝜆

𝜙
2 > 1, (𝜆𝜙1 ∕𝜆

𝜙
2 )

𝑡 increases in 𝑡 and −𝑟2∕𝑟1 > 0. When 𝑡 is even,
the increasing bullwhip criterion becomes (𝜆𝜙1 ∕𝜆

𝜙
2 )

𝑡 > −𝑟2∕𝑟1; when 𝑡
is odd the increasing bullwhip criterion becomes (𝜆𝜙1 ∕𝜆

𝜙
2 )

𝑡 < −𝑟2∕𝑟1.
Depending on the positivity of 𝑑1 there are two sub-cases:

• Sub-case 𝐸3𝑎: That 𝑑1 < 0 implies −𝑟2∕𝑟1 > 1. This means initially
when 𝑡 < 𝜏, (𝜆𝜙1 ∕𝜆

𝜙
2 )

𝑡 < −𝑟2∕𝑟1, and for even 𝑡, 𝑑𝑡+1|even 𝑡 < 0;
for odd 𝑡, 𝑑𝑡+1|odd 𝑡 > 0. Later, when 𝑡 ≥ 𝜏 (𝜆𝜙1 ∕𝜆

𝜙
2 )

𝑡 > −𝑟2∕𝑟1,
and for even 𝑡, 𝑑𝑡+1|even 𝑡 > 0; for odd 𝑡, 𝑑𝑡+1|odd 𝑡 < 0. During the
transition, there will be either two consecutive positive demands
or two consecutive negative demands. If ⌈𝜏⌉ is odd, two negative
demands occur at the transition; if ⌈𝜏⌉ is even, two positive
demands occur at the transition.

• Sub-case 𝐸3𝑏: 𝑑1 > 0 means that −𝑟2∕𝑟1 < 1 and (𝜆𝜙1 ∕𝜆
𝜙
2 )

𝑡 > 1 is
increasing in 𝑡. Together with the increasing bullwhip conditions
highlighted above means that 𝑑𝑡+1|even 𝑡 > 0 and 𝑑𝑡+1|odd 𝑡 < 0.

Bullwhip is not always increasing in the lead time in case 𝐸3. Case
𝐸3 exists when (−1 < 𝜆𝜃1 < 0) ∧ (−1 < 𝜆𝜃2 < 1) which is equivalent to the
invertibility region plus (𝜃21 + 4𝜃2 > 0 ∧ 𝜃1 < 0) ∨ 𝜃2 > 0, see Fig. 2. It is
not possible to illustrate all possible subsets of our 4-D parameter space
on a single 2-D map. Hence, case 𝐸3 is not shown on the parameter
hyper-plane in Fig. 7.
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6.5.2. Case F
The eigenvalue order 𝜆𝜙1 < Re[𝜆𝜃1] ≤ Re[𝜆𝜃2] < 𝜆𝜙2 implies 𝑟1 < 0 < 𝑟2,

but the relative size of 𝑟1 and 𝑟2 is unknown. Complex conjugate poles
can be present.

Case 𝐹1: 0 < 𝜆𝜙1 ≤ 𝜆𝜙2 . From 𝑑𝑡+1 = 𝑟1(𝜆
𝜙
1 )

𝑡 + 𝑟2(𝜆
𝜙
2 )

𝑡 and that
𝜆𝜙2 ≥ 𝜆𝜙1 , we can see that as 𝑡 increases, eventually 𝑟2(𝜆

𝜙
2 )

𝑡 > −𝑟1(𝜆
𝜙
1 )

𝑡

and lim𝑡→∞ 𝑑𝑡+1 = 0+. From (31), as 0 < (𝜆𝜙1 ∕𝜆
𝜙
2 ) < 1, then (𝜆𝜙1 ∕𝜆

𝜙
2 )

𝑡

is decreasing 𝑡. Furthermore −𝑟2∕𝑟1 > 0, thus the positivity of 𝑑1 is
sufficient to reveal the behaviour of the 𝐹1 cases.

Sub-case 𝐹1𝑎. Here, −𝑟2∕𝑟1 < 1, 𝑑1 = 𝜙1 − 𝜃1 < 0, and bullwhip is not
present when 𝑘 = 0. However, after 𝑡 ≥ 𝜏, 𝑑𝑡+1 becomes, and remains,
positive. After 𝑡 = 1, there is only one change of sign. If 𝜏 < 1, ∀𝑡 ≥ 1,
𝑑𝑡 > 0 and Corollary 2 holds.

Sub-case 𝐹1𝑏. If 𝑑1 = 𝜙1 − 𝜃1 > 0 then −𝑟2∕𝑟1 > 1 and ∀𝑡 𝑑𝑡+1 >
0, indicating that an increasing bullwhip effect in the lead time is
present. The 𝐹1𝑏 case illustrates again that Theorem 2 is only a sufficient
condition for increasing bullwhip in the lead-time. The positive impulse
responses identified by Liu and Bauer (2008) correspond to case 𝐹1𝑏.

Case 𝐹1 exists when (0 < Re[𝜆𝜃1] ≤ Re[𝜆𝜃2] < 1) which is equivalent
to the invertibility region plus 𝜃1 > 0 ∧ 𝜃2 < 0, see Fig. 2.

Case 𝐹2: 𝜆
𝜙
1 < 0 < 𝜆𝜙2 . Consider the increasing bullwhip criterion,

(𝜆𝜙1 ∕𝜆
𝜙
2 )

𝑡 < (−𝑟2∕𝑟1), in (31). As 𝜆𝜙1 ∕𝜆
𝜙
2 < 0 and −𝑟2∕𝑟1 > 0, further

sub-cases exist:
Sub-case 𝐹2𝑖. Here −𝜆𝜙1 ∕𝜆

𝜙
2 < 1, (𝜆𝜙1 ∕𝜆

𝜙
2 )

0 = 1 and (𝜆𝜙1 ∕𝜆
𝜙
2 )

𝑡 alternates
with decreasing amplitude in 𝑡. This leads to two sub-sub-cases:

• 𝐹2𝑖𝑎. Here 𝑑1 < 0, −𝑟2∕𝑟1 < 1. Initially, when 𝑡 < 𝜏, the demand
alternates in sign with 𝑑𝑡+1|odd 𝑡 > 0 and 𝑑𝑡+1|even 𝑡 < 0, before
becoming always positive when 𝑡 ≥ 𝜏.

• 𝐹2𝑖𝑏. Here 𝑑1 > 0, −𝑟2∕𝑟1 > 1. The demand impulse is always
positive, 𝑑𝑡+1 > 0.

Sub-case 𝐹2𝑖𝑖. Here −𝜆𝜙1 ∕𝜆
𝜙
2 > 1, (𝜆𝜙1 ∕𝜆

𝜙
2 )

0 = 1 and (𝜆𝜙1 ∕𝜆
𝜙
2 )

𝑡 alternates
with ever increasing amplitude in 𝑡. This leads to two sub-sub-cases:

• 𝐹2𝑖𝑖𝑎. Here 𝑑1 < 0, −𝑟2∕𝑟1 < 1. The demand is forever alternating
sign with 𝑑𝑡+1|odd 𝑡 > 0 and 𝑑𝑡+1|even 𝑡 < 0.

• 𝐹2𝑖𝑖𝑏. Here 𝑑1 > 0, −𝑟2∕𝑟1 > 1, and while (𝜆𝜙1 ∕𝜆
𝜙
2 )

𝑡 alternates sign
with ever increasing amplitude in 𝑡, initially, when 𝑡 < 𝜏, (𝜆𝜙1 ∕
𝜆𝜙2 )

𝑡 < (−𝑟2∕𝑟1) and the demand impulse is positive, 𝑑𝑡+1 > 0.
While for all odd 𝑡, (𝜆𝜙∕𝜆𝜙)𝑡 < −𝑟 ∕𝑟 , as 𝑡 gets larger, eventually
1 2 2 1
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Fig. 7. Areas of increasing bullwhip over the lead-time when 𝜆𝜃1 < 𝜆𝜙 ≤ 𝜆𝜙 < 𝜆𝜃 , case E.
1 2 2
for even 𝑡 (𝜆𝜙1 ∕𝜆
𝜙
2 )

𝑡 > −𝑟2∕𝑟1, indicating, when 𝑡 ≥ 𝜏, the demand
impulse will alternate with 𝑑𝑡+1|even 𝑡 < 0 and 𝑑𝑡+1|odd 𝑡 > 0.

Note, under AR(2) demand with positive correlation coefficients and
two zeros at the origin, there will be one negative pole and one positive
pole. In this situation sub-case 𝐹1𝑖𝑖 does not exist, and Corollary 5 is
equivalent to sub-case 𝐹2𝑖. Case 𝐹2 is present when (−1 < Re[𝜆𝜃1] ≤
Re[𝜆𝜃2] < 1); that is, 𝐹2 solutions can exist in the whole invertible region.

Case 𝐹3: 𝜆
𝜙
1 ≤ 𝜆𝜙2 < 0. As 𝜆𝜙1 ∕𝜆

𝜙
2 > 1, (𝜆𝜙1 ∕𝜆

𝜙
2 )

𝑡 > 1 and increases in
𝑡. The finite −𝑟2∕𝑟1 > 0. Using 𝑑𝑡+1 = 𝑟1(𝜆

𝜙
1 )

𝑡 + 𝑟2(𝜆
𝜙
2 )

𝑡 > 0, for even 𝑡,
we require (𝜆𝜙1 ∕𝜆

𝜙
2 )

𝑡 < −𝑟2∕𝑟1; for odd 𝑡, we require (𝜆𝜙1 ∕𝜆
𝜙
2 )

𝑡 > −𝑟2∕𝑟1.
There are two sub-cases depending on the sign of 𝑑1:

Sub-case 𝐹3𝑎. As 𝑑1 < 0, −𝑟2∕𝑟1 < 1 and the demand impulse is
alternating sign; for even 𝑡, 𝑑𝑡+1|even 𝑡 < 0; for odd 𝑡, 𝑑𝑡+1|odd 𝑡 > 0.

Sub-case 𝐹3𝑏. As 𝑑1 > 0, −𝑟2∕𝑟1 > 1, and initially, when 𝑡 < 𝜏, for
even 𝑡, 𝑑𝑡+1|even 𝑡 > 0 and for odd 𝑡, 𝑑𝑡+1|odd 𝑡 < 0. Later, when 𝑡 ≥ 𝜏,
(𝜆𝜙1 ∕𝜆

𝜙
2 )

𝑡 > −𝑟2∕𝑟1, and for even 𝑡, 𝑑𝑡+1|even 𝑡 < 0; for odd 𝑡, 𝑑𝑡+1|odd 𝑡 > 0.
During the transition, there will be either two consecutive positive
demands or two consecutive negative demands. If ⌈𝜏⌉ is odd, two
positive demands occur at the transition; if ⌈𝜏⌉ is even, two negative
demands occur at the transition’’.

In Case 𝐹3, bullwhip is not always increasing in the lead time. Case
𝐹3 occurs when (−1 < Re[𝜆𝜃1] ≤ Re[𝜆𝜃2] < 0). This is equivalent to the
invertible region plus 𝜆1 > 0 ∧ 𝜆2 < 0. Fig. 8 illustrates some instances
of case 𝐹 .

To summarize our ARMA(2,2) investigation, in some low pass filter
settings (where Theorem 2 holds, cases A and B), two positive poles
(sub case 1) or a single negative pole (sub case 2) can lead to a positive
impulse response and an increasing in the lead time bullwhip effect.
However, two negative poles (sub case 3) always lead to an alternating
impulse response, and bullwhip does not always increase in the lead-
time. When the inverse of Theorem 2 holds (cases C and D), bullwhip
does not always increase in the lead time. Indeed, case 𝐷1 possessed
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an always decreasing in the lead time bullwhip effect. There are also
positive impulses responses when neither Theorem 2, nor its inverse,
hold (case F). However, a maximum of one pole can be negative for an
increasing in the lead time bullwhip behaviour to exist.

7. Verification via simulation of bullwhip response to real de-
mand data

In order to gain some insight on the practical implications of our
research we investigated the bullwhip lead-time behaviour when the
demand is drawn from the M4 dataset. The M-competitions are a series
forecasting competitions organized by Spyros Makridakis. In the forth
M-competition, M4, a dataset of 100,000 time series were used to judge
the accuracy of different forecasting mechanisms, Makridakis et al.
(2020). The M4 dataset is available in the R software package via the
M4comp2018 package. We considered only time series with a weekly
period as most practical supply chain planning operations we know
operate on a weekly schedule. We also truncated this subset so as to
consider only the last 104 (2 years) periods in each time series (or
length of the time series if the original series contained less than 104
periods of data). This was to avoid over-fitting of high order ARMA
models and also reflects industrial practice of only having access to only
the most recent demand data. Using the auto.arima and ndiffs functions
in R we identified the ARIMA model for each time series. Of the 359
weekly time series, 70 time series were identified as stationary, stable,
and invertible (that is, they had no integrative terms and no poles or
zeros outside the unit circle) and were amenable to our analysis.

For each of the 70 time series we: identified the ARMA coeffi-
cients, plotted the demand impulse response function with the iden-
tified ARMA coefficients, calculated the poles and zeros, and simulated
the OUT polices bullwhip lead time behaviour (up to lead time 𝑘 =
30). In all cases, the simulated bullwhip lead time behaviour was
as predicted by the impulse response, confirming the robustness and
accuracy of our analysis.

Fig. 9, summaries our results. Of the 70 time series:
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Fig. 8. Areas of increasing bullwhip over the lead-time when 𝜆𝜙1 < Re[𝜆𝜃1] ≤ Re[𝜆𝜃2] < 𝜆𝜙2 , case F.
• One time series was identified as IID; for all lead-times the
bullwhip ratio, 𝐵𝐼 = 1, an obvious result as 𝑜𝑡 = 𝑑𝑡 under IID
demand with MMSE forecasts.

• Six time series had an MA(1) structure. All six MA(1) processes
had 𝜃 > 0, and a constant bullwhip effect over the lead time
with 𝐵𝐼 < 1, confirming Corollary 4 that requires a 𝜃 < 0 for
a bullwhip effect to exist.

• There were 26 AR(1) time series, all with 𝜙 > 0. Corollary 5
and Lee et al. (1997) showed that the bullwhip effect is increasing
in the lead time under AR(1) demand with positive correlation.

• Fourteen ARMA(1,1) time series all conformed to Corollary 3
and Duc et al. (2008), with 𝜙 > 0 and 𝜃 < 𝜙. The bullwhip effect
always increases in the lead time for these time series.

• Six ARMA(1,2) time series were present. Two of the ARMA(1,2)
belonged to case 𝐴1 and had complex zeros. Three time series was
from the 𝐵1 case that satisfies Theorem 2 and Corollary 6. One
time series was from the 𝐸1𝑏 case. All six cases had a bullwhip
effect that increased in the lead time.

• Three AR(2) demand processes: the two increasing bullwhip in
the lead time were from the 𝐴1 and 𝐹2𝑖𝑏 subcases, the multi-
periods oscillation case had complex poles.

• Three ARMA(2,1) and two ARMA(2,2) demand processes all had
complex poles that produced multi-periods oscillations.

All the above time series were subsets of the ARMA(2,2) demand
process and our analysis in Section 6 applies directly. The final row of
Fig. 9 contained higher order ARMA processes that we do not yet fully
understand:

• One AR(3) demand with two complex poles and increasing bull-
whip in the lead-time.
12
• One AR(4) demand with four complex poles and a multi-period
oscillation.

• An ARMA(3,1), ARMA(3,2) and ARMA(2,3) all with complex
poles, exhibiting a multi-period oscillation in the impulse re-
sponse.

• Two ARMA(1,3) and two ARMA(1,4) demands which satisfied
Theorem 2 and had an increasing bullwhip effect in the lead time.

All time series were simulated; in all cases the theoretical bullwhip-lead
time behaviour concurred with a simulation of the OUT policy with
the identified demand parameters reacting to the M4 time series. This
provides additional support that our theoretical results can be used to
predict the OUT policies bullwhip-lead time behaviour from a demand
time series alone.

8. Managerial insights

The practicing manager, having observed an ARMA process struc-
ture in demand, may want to consider lead time reduction. Depending
on the demand process observed, there may or may not be a bullwhip
benefit from reducing the lead time. If there is a benefit, the cost
of reducing the lead time may be offset against reduced capacity
costs, (Hosoda and Disney, 2012); if bullwhip does not increase in
the lead time, perhaps different (cheaper, more ecologically friendly)
transport modes or production technology (with longer lead-times) can
be used to access other financial or environmental benefits while still
reducing capacity costs. The impulse response-eigenvalue analysis that
we introduced here can be used to answer these questions.

We have created a R-shiny web app (https://www.bullwhip.co.uk/
#shiny) where users can explore the bullwhip lead time behaviour of
ARMA demand (up until ARMA(12,12)). The shiny app also includes
some real demand patterns we have collected and identified their
ARMA coefficients. The practicing manager is also able to upload their
own demand data to the shiny app. Using the auto.arima function
in R, the shiny will automatically identify the ARMA coefficients and

https://www.bullwhip.co.uk/#shiny
https://www.bullwhip.co.uk/#shiny
https://www.bullwhip.co.uk/#shiny
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Fig. 9. The bullwhip lead time behaviours observed in the stationary, stable, and invertible weekly time series in the M4 dataset.
compare the simulated bullwhip lead time performance based on the
actual demand to the theoretical performance based on the ARMA
model identified. Fig. 10 illustrates the workflow when using the shiny
apps to analyse the bullwhip lead time behaviour from the demand time
series.
9. Conclusions

Bullwhip may be measured with either a ratio of variances (𝐵𝐼 =
(𝜎2𝑜∕𝜎

2
𝑑 )) or a difference of variances (𝐶𝐵[𝑘] = (𝜎2𝑜 − 𝜎2𝑑 )∕𝜎

2
𝜖 ). The

bullwhip metric based on the difference, 𝐶𝐵[𝑘], useful when large order
and demand variances are present, allowed us to concisely derive the
conditions under which a bullwhip effect is always present and always
increasing in the lead time. Building upon Tsypkin’s squared impulse
response theorem, we derived our core contribution, Theorem 1, which
showed the positivity of the demand impulse response determines
whether the bullwhip effect is present and increasing in the lead-
time. Theorem 1 is both necessary and sufficient. We showed how the
impulse response could be expressed as a function of the eigenvalues,
{𝜆𝜙, 𝜆𝜃}, of the demand process rather than the AR and MA param-
13

eters, {𝜙, 𝜃}, directly. This is an important contribution as it proved
to be efficient as only the order of the eigenvalues determines a lead-
time/bullwhip relationship, not the specific value of the eigenvalues or
the demand parameters.

Theorem 2 identified a class of easy-to-identify eigenvalue orderings
for which the general demand processes behaves as a low pass filter that
is sufficient to describe when the bullwhip is an increasing function
of the lead-time. Using Theorem 2 we found three different sets of
eigenvalue orderings exist:

• a set where Theorem 2 is potentially satisfied and a bullwhip
effect that increases over the lead-time is possible,

• an set where the inverse of Theorem 2 and bullwhip is not always
increasing in the lead-time,

• and a third set where neither Theorem 2 or its inverse holds
but which does include a bullwhip effect that increases over the
lead-time.

While our main results (Theorems 1 and 2) hold for general
ARMA(p,q) demand, we furthered our investigation by studying all the
possible eigenvalue orderings of the ARMA(2,2) demand process with
our unique impulse response/eigenvalue approach. The ARMA(2,2)
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Fig. 10. Procedure for analysing bullwhip lead time behaviour from a time series of
emand.

ncludes a number of well-known sub-ARMA cases and is also practi-
ally relevant. For all possible stable and invertible ARMA(2,2) demand
rocesses, we fully characterized the bullwhip/lead-time behaviour.
his numerical example illustrated the ARMA(2,2) demand process
ontained a rich set of dynamic responses. Low pass demand pro-
esses, where bullwhip was an increasing function of the lead-time
ith positive poles, were found as predicted by Theorem 2. Other
emand processes with an increasing bullwhip in the lead-time were
ominated by high frequency harmonics caused had a negative pole,
onfirming that Theorem 2 is sufficient, but not a necessary condition.
urthermore, demand processes that did not conform to Theorem 2,
r its inverse, also had a bullwhip effect that increased in the lead
ime. The impulse response and bullwhip properties for higher order
RMA demand processes is generally complex and we do not yet fully
nderstand their behaviour.

.1. Further work

The characteristics of both the demand process and the OUT pol-
cy are important factors that determines whether a bullwhip effect
s increasing in the lead-time or not. Our study has shown that an
ncreasing bullwhip in the lead-time only happens in a small subset
f the possible demand processes with a specific eigenvalue ordering.
t would be interesting to better understand the propensity of real
emand processes belonging to each of the eigenvalue subsets, perhaps
xtending our analysis conducted for Fig. 9. Studying how the lead-time
nfluences the bullwhip behaviour under higher order ARMA demand
rocesses, with other inventory replenishment policies (such as the
14

d

(𝑠, 𝑆) policy), and other forecasting techniques are also worthy areas
for future research. The impact of stochastic lead times on the bullwhip
effect might also be interesting to study, especially given the recent
supply chain congestion issues.
Data availability

We have used the publically available dataset from the M4 compe-
tition that is available in R.

Appendix. Proof of all Lemmas, Corollaries, and Theorems

A.1. Proof of Lemma 1: Tsypkin’s squared impulse response theorem

Tsypkin (1964, pp 183–192) and Boute et al. (2022) provide a proof
of this relation.

A.2. Proof of Lemma 2 : Impulse response of ARMA(p,q) demand

Following Moudgalaya (2007), we can re-write (14) using polyno-
mial long division as

𝐷[𝑧] = 1 +
∏𝑚

𝑖=1(𝑧 − 𝜆𝜃𝑖 ) −
∏𝑚

𝑖=1(𝑧 − 𝜆𝜙𝑖 )
∏𝑚

𝑖=1(𝑧 − 𝜆𝜙𝑖 )
. (36)

Applying partial fraction expansion to (36) provides

𝐷[𝑧] = 1 +
𝑚
∑

𝑗=1

𝑟𝑗
𝑧 − 𝜆𝜙𝑗

. (37)

inally, taking the inverse z-transform of (37) gives (15).

.3. Proof of Lemma 3 : Impulse response of the orders

When the demand is an impulse response, the forecasted demand
�̂�+𝑗|𝑡 = 𝑑𝑡+𝑗 for 𝑡 ⩾ 0 and 𝑑𝑡+𝑗|𝑡 = 0 otherwise. Substituting these
elations into (8) produces (17).

.4. Proof of Corollary 1 : Influence of the ARMA coefficients on the
ullwhip effect

Eq. (12) shows that bullwhip exists iff 𝐶𝐵[𝑘] > 0; (20) shows only
he demand impulses until time 𝑡 = 𝑘 + 1 influence the difference
etween the order and demand variances. The demand impulse is given
y

�̃� =

⎧

⎪

⎨

⎪

⎩

1, if 𝑡 = 0,
∑𝑡−1

𝑗=1 𝜙𝑗𝑑𝑡−𝑗 + (𝜙𝑡 − 𝜃𝑡) if 0 < 𝑡 ≤ 𝑚,
∑𝑚

𝑗=1 𝜙𝑗𝑑𝑡−𝑗 if 𝑡 > 𝑚.

(38)

fter the initial demand impulse of unity at time 𝑡 = 0, the demand
mpulse evolves by adding, in each time period, the next pair of {𝜙, 𝜃}
ntil all 𝑚 pairs are present. At, and after, 𝑡 = 𝑚 all the parameter pairs
f {𝜙, 𝜃} are present in the demand impulse.

Eq. (38) shows at time 𝑡, 𝑑𝑡 is influenced only by {𝜙𝑗 , 𝜃𝑗} with
≤ 𝑡. Therefore, the question whether bullwhip exists or not is fully

etermined by the first 𝑘 + 1 pairs of ARMA coefficients.

.5. Proof of Theorem 1 : Necessary-sufficient condition for an increasing
ullwhip effect

𝐶𝐵[𝑘] is positive and increasing in 𝑘 if 𝐶𝐵[0] > 0 and ∀𝑘, 𝐶𝐵[𝑘] −
𝐵[𝑘−1] > 0. Note always, 𝑑0 = 1. 𝐶𝐵[0] =

(
∑1

𝑗=0 𝑑𝑗
)2−

∑1
𝑡=0 𝑑

2
𝑡 = 2𝑑0𝑑1

s positive if additionally 𝑑1 > 0. 𝐶𝐵[1]−𝐶𝐵[0] = 2(𝑑0+𝑑1)𝑑2 is positive
f additionally 𝑑2 > 0. 𝐶𝐵[2] − 𝐶𝐵[1] = 2(𝑑0 + 𝑑1 + 𝑑2)𝑑3 is positive
f additionally 𝑑3 > 0. This process can be continued ∀𝑘, indicating
hat bullwhip is always present and increasing in the lead-time iff the

emand impulse response is positive for all 𝑡.
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A.6. Proof of Corollary 2 : Necessary-sufficient condition for an increasing
order variance

If 𝐶𝐵[0] ≥ 0, Theorem 1 holds and that the order variance is
increasing in the lead time follows naturally. However, if 𝐶𝐵[0] < 0
then 𝑑1 < 0 as 𝑑0 = 1 and 𝐶𝐵[0] = 2𝑑0𝑑1. This implies the order
variance is smaller than the demand variance when 𝑘 = 0. The order
variance increases when the lead time 𝑘 increases to unity if 𝐶𝐵[1] −
𝐶𝐵[0] = 2(𝑑0 + 𝑑1)𝑑2 > 0. This implies 𝑑2 > 0 and 𝑑1 > −1. The order
variance increases when the lead time 𝑘 increases from unity to two if
𝐶𝐵[2] − 𝐶𝐵[1] = 2(𝑑0 + 𝑑1 + 𝑑2)𝑑3 > 0. This implies that additionally
𝑑3 > 0. This last step can be continued ∀𝑘 ≥ 3, indicating that the order
variance is increasing the lead-time iff {𝑑2,… , 𝑑𝑘+1} > 0 and 𝑑1 > −1.

A.7. Proof of Corollary 3 : Bullwhip lead time behaviour under ARMA(1,1)
demand

The proof of Corollary 3 follows by simple inspection of the demand
impulse response. Eq. (15) shows after 𝑑0 = 1, the demand impulse
response evolves via 𝑑𝑡+1 = (𝜆𝜙1 − 𝜆𝜃1)(𝜆

𝜙
1 )

𝑡 = 𝜙𝑡(𝜙 − 𝜃). The last equality
is a consequence of 𝜆𝜙1 = 𝜙 and 𝜆𝜃1 = 𝜃 under ARMA(1,1) demand.

A.8. Proof of Corollary 4 : Bullwhip lead time behaviour under MA(q)
demand

The proof of Corollary 4 follows by adapting (36) for MA(q) de-
mand:

𝐷[𝑧] = 1 +
∏𝑞

𝑖=1(𝑧 − 𝜆𝜃𝑖 ) − 𝑧𝑞

𝑧𝑞
=

∏𝑞
𝑖=1(𝑧 − 𝜆𝜃𝑖 )

𝑧𝑞
= 1 −

𝑞
∑

𝑖=1
𝜃𝑖𝑧

−𝑖. (39)

Taking the inverse z-transform of (39) reveals the demand impulse
response; after 𝑑0 = 1, evolves via 𝑑𝑡 = −𝜃𝑡 until 𝑑𝑞 = −𝜃𝑞 , after which
∀𝑡 > 𝑞, 𝑑𝑡 = 0.

A.9. Proof of Corollary 5 : Bullwhip lead time behaviour under AR(p)
demand

The proof of Corollary 5 follows by simple inspection of the demand
impulse response which after 𝑑0 = 1 evolves via 𝑑𝑡 =

∑𝑡
𝑖=1 𝜙𝑗𝑑𝑡−𝑗 , with

𝜙𝑗 = 0 when 𝑗 > 𝑝.

A.10. Proof of Theorem 2 : Sufficient condition for a positive impulse
response

We use the pole-zero transfer function of 𝑑𝑡 given in (14) and the
convolution theorem in our proof. Theorem 1 showed a positive im-
pulse response of 𝐷[𝑧] led to a bullwhip effect that always increases in
the lead time. Because of the restrictions placed on the 𝜆𝜙𝑗 eigenvalues
in relation to the 𝜆𝜃𝑗 eigenvalues in Theorem 2, 𝜆𝜙𝑗 > 𝜆𝜃𝑗 and 𝜆𝜙𝑗 > 0.
Noting

𝐷[𝑧] =
𝑚
∏

𝑗=1
𝐷𝑗 [𝑧]; where 𝐷𝑗 [𝑧] =

⎛

⎜

⎜

⎝

𝑧 − 𝜆𝜃𝑗
𝑧 − 𝜆𝜙𝑗

⎞

⎟

⎟

⎠

, (40)

nd 𝜆𝜙𝑗 > 𝜆𝜃𝑗 and 𝜆𝜙𝑗 > 0, it is then clear that each 𝐷𝑗 [𝑧] has a positive
mpulse response as

�̃�,𝑡 = 𝑍−1[𝐷𝑗 [𝑧]] =

{

1 if 𝑡 = 0,
(𝜆𝜙𝑗 )

𝑡−1(𝜆𝜙𝑗 − 𝜆𝜃𝑗 ) if 𝑡 ≥ 1.
(41)

Multiplication of the factors 𝐷𝑗 [𝑧] in (40) is equivalent to convolution
of (41) in the time domain. As convolution involves addition and multi-
plication operations, any combination of addition and multiplication of
positive terms produces a positive outcome. 𝐷[𝑧] has a positive impulse
response because of these properties.
15
A.11. Proof of Corollary 6: An eigenvalue ordering with a positive impulse
response

The eigenvalue ordering means ∀𝑗, 𝑟𝑗 > 0 and ∀𝑖, 𝜆𝜙𝑖 > 0. It is then
easy to see from (15) that 𝑑𝑡+1 > 0 when Corollary 6 holds.

A.12. Proof of Corollary 7: An eigenvalue ordering with a negative impulse
response

The eigenvalue ordering means ∀𝑗, 𝑟𝑗 < 0 and ∀𝑖, 𝜆𝜙𝑖 > 0. It is then
asy to see from (15) that 𝑑𝑡+1 < 0 when Corollary 7 holds.
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