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Abbreviations and Acronyms 
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Amino Acid Abbreviations 

Amino Acid 
Abbreviation  

Three Letters 

 

One Letter 
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Arginine Arg R 

Asparagine Asn N 

Aspartic Acid Asp D 
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Glutamic Acid Glu E 
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Abstract 

 

Background: Cirrhosis is a chronic illness that reduces liver functions including drug 

metabolism. Many drugs that are available in the market lack dosage guidance for hepatic 

impairment patients. Including those patients in the early phases of clinical trials can be risky 

if safe doses were not used. Whilst precision medicine is not a new concept, optimising in silico 

modelling such as physiologically-based pharmacokinetic (PBPK) modelling and simulation 

(M&S), can assist in informing drug labelling. This area is quickly growing over the last years, 

especially for special patient populations. Methods: Literature reviews were performed to 

understand the current situation with drug dosing in hepatic impairment, the quality of current 

PBPK models, and identify the gaps. Experimentally, scaling factors for converting clearance 

data from in vitro to in vivo in cirrhosis were determined. LC-MS/MS-based targeted 

proteomics were implemented to quantify the abundances of 51 drug-metabolising enzymes 

and transporters (DME&T) in 32 liver samples from cirrhosis patients at different degrees of 

disease severity compared to 14 normal control samples. Results: Microsomal and cytosolic 

protein contents decreased in cirrhosis relative to control samples and varied according to 

associated liver pathologies. Disease perturbation factor (DPF) reconciled differences in 

absolute abundances between various proteomic data analysis methods. Specifically designed 

heavy-labelled concatenated unique peptides from target proteins showed good performances 

as internal standards with the samples. Abundances of most DME&T per gram liver were lower 

by 30-50% in mild, 40-70% in moderate, and 50-98% in severe cirrhosis groups compared to 

controls. DPF, used as a scalar for protein abundances in PBPK models for repaglinide, 

dabigatran etexilate, and zidovudine, helped to enhance models’ predictive performance. 

Conclusion: This thesis, to our knowledge, provides the first comprehensive quantification of 

relevant DME&T in all stages of liver cirrhosis. This helps the development of existing in silico 
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cirrhosis models to inform drug labelling and recommends dose adjustments in scenarios that 

have not been studied clinically. 
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In this thesis the journal format (Formerly known as the alternative format) was used. This 

format was chosen as the core elements of the work formed nine separate but linked chapters. 

Apart from the “General Introduction”, “Aims and Objectives”, and the “General Discussion” 

chapters, this format allows the incorporation of six other chapters that have already been 

published (2 chapters), submitted (2 chapters), or to be considered for publication (2 chapters) 

in peer-reviewed journals. Another two articles that I have managed to publish during my PhD 

are summarised and cited in the “General Introduction” and the “General Discussion” chapters 

as they have some elements related to PBPK modelling and drug dosing in hepatic impairment 

populations. This format also maximised the research output in the form of publications over 

the course of the study. 

A declaration at the start of each chapter highlights the contribution of each author. The thesis, 

in general, aims to apply proteomic lab-based data using human liver tissue along with in silico 

modelling and simulations of drug pharmacokinetics to aid precision dosing in hepatic 

impairment populations. Each chapter has its own “References” and “Supplementary Material” 

sections. References cited in the Supplementary Material section are included in the same 

bibliography of its relevant chapter. 

The chapters were not ordered according to publication dates (for already published or 

submitted parts), but according to the flow of the whole story in a more logical order.  

The first chapter represents a general introduction setting the scene and giving the background 

to the research and identifies knowledge gaps. It also shows the trends in physiologically-based 

pharmacokinetic (PBPK) models over the last two decades and how research on disease 

population models are growing according to a recent survey that I have published in the Journal 

of Biopharmaceutics and Drug Disposition.  

The second chapter illustrates the aims and objectives of the whole thesis. 
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In the third chapter, I tried to address the need for predicting drug clearance and its exposure 

levels as well as identifying the optimum dose for special populations, specifically for hepatic 

impairment patients. It also identifies the obstacles with the current classification system, the 

gaps in the current PBPK models, and methods proposed to fill in these gaps. 

Chapter four represents the experimentally-defined, cirrhosis-specific scaling factors required 

for the extrapolation from microsomal or cytosolic in vitro systems to liver tissue before being 

included in PBPK models. These scalars can help in predicting drug clearance and selection of 

dosage regimens for cirrhosis populations. Attempts to consider potential changes have been 

empirical and ignored the potential impact of the disease cause. We obtained experimental 

values for these scalars for the first time and assessed their impact on predicted exposure to 

various substrate drugs using physiologically-based pharmacokinetic simulations. This chapter 

has been published in the Drug Metabolism and Disposition Journal. 

To fill in the gap related to the abundances of drug-metabolising enzymes and drug transporters 

(DME&T) in cirrhosis, a review on different LC-MS proteomic methods and their applications 

in drug development has been published in the Journal of Pharmacology and Therapeutics and 

represents the fifth chapter of this thesis. 

For the experimental investigation of the use of proteomics in determining the abundance of 

DME&T in diseased and control samples, I have designed a novel and specific standard protein 

for the quantification of the most important non-CYP, non-UGT metabolising enzymes. This 

QconCAT, along with the previously designed QconCATs (MetCAT and TransCAT), covers 

most of the proteins that play a key role in drug metabolism. The design and quality control 

checks of this new standard are described in the sixth paper (Chapter Six). 

Chapter Seven is related to the experimental design and the choice of the best quantification 

method and how differences among all methods can be reconciled using a set of control 
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samples as a proof-of-concept. Cirrhosis pooled samples were used to verify the utility of 

disease perturbation factor as a scalar for proteomic data instead of the absolute abundance 

levels. 

Method optimisations and proteomic tools discussed in the previous two chapters were invested 

in the next chapter (Chapter Eight) which covers the absolute abundances of different 

DME&T in individual human liver microsomal samples from cirrhosis patients and how these 

proteomic data can be applied into PBPK models to achieve better predictions of drug 

exposure. 

Chapter Nine is a general discussion and conclusions chapter that summarises the overall 

findings of the research, how the data generated can optimise future PBPK models, and how 

these models should be applied in drug development. An example to this urgent application 

was in COVID crisis where verified PBPK models of different promising drugs were used to 

substitute the “guess work” in scenarios were clinical data are not available as in organ 

impairment populations. I participated in the latter research in collaboration with 

AstraZeneca® and Certara ® with a paper published in the British Journal of Clinical 

Pharmacology. Moreover, it highlights the future outlook and areas that require more 

investigations.  
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1 Chapter One  

General Introduction 

Declaration 

This chapter illustrates the current situation in dosing of patients with hepatic impairment, the 

current strategies in drug development, and the need for evidence-based approaches in the 

absence of clinically-based drug labelling. It also explains the trends in PBPK modelling and 

simulation applications over the last two decades and the increased interest in using these tools 

for drug dosing in hepatic impairment. Moreover, it identifies the current gaps in this area and 

how this thesis can help to fill in these gaps.  
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1.1. Current strategy for drug development 

In drug development, new molecular entities pass through pre-clinical followed by three phases 

of clinical trials to assess drug efficacy and safety in both healthy volunteers and patients who 

are diseased with the disease for which this drug was designed (Umscheid, et al., 2011). The 

enrolment of patients in these clinical trials is based on a list of inclusion criteria and usually a 

longer list of exclusion criteria that in most cases include organ impaired patients such as 

hepatic and renal impairment. This is mainly to avoid the risk of inappropriate dosing in those 

patients (Duma, et al., 2019). However, it is also recommended to have dedicated studies later 

on for these special patient populations in order to assess the change in drug exposure in those 

patients (FDA, 2016). However, most of the drugs that have been approved in 2013 and 2014 

lack clinically-based information on dosing of special disease populations in their labels 

(Jadhav, et al., 2015). In this project we have followed the same survey criteria (In Chapter 3) 

and realised that this situation is still the same for at least hepatic impairment populations. 

Therefore, those patients will be treated with these drugs without appropriate dosage guidance 

in their label which might expose them to the risk of toxicity or drug ineffectiveness if the dose 

was outside the therapeutic range. 

1.2. Physiologically based Pharmacokinetic modelling and simulations in human  

Over the last 2 decades mathematical and computational modelling progressed massively in 

the form of what is called “Physiologically Based Pharmacokinetic Modelling and 

Simulations” or “PBPK M&S”. This approach implements system (drug independent 

parameters) that divides the human body into different organs each has its own distribution, 

blood flow, and other pharmacokinetic related characteristics. These parameters are combined 

with drug-specific parameters (physicochemical properties of the drug, protein binding, 

elimination pathways, etc) and study design parameters (route of administration, dose and 
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dosing regimen, proportion of female to male subjects, etc) to predict the drug exposure in 

human. Most of these system or physiological parameters are affected by intrinsic factors 

(including the disease condition such as hepatic impairment) and extrinsic factors (alcohol, 

diet, polypharmacy, smoking, etc). Therefore, these modelling approaches seem to be 

promising in replacing the guess work or what is called “in cerebro” dosing with more 

evidence-based “in silico” dosing in scenarios where clinical data are scarce or lacking. There 

is no doubt that to achieve this purpose, these models have to be robust and verified with the 

currently available clinical data for this specific drug and the population under investigation. 

1.3. Development of PBPK M&S tools and applications over the years 

More interest was paid to PBPK models in the last decade as evident from the growth rate in 

PBPK M&S publications which was massively higher in the last decade compared to the 

previous decade (43 fold). Whereas, the increase in publications for the overall science and 

general pharmacokinetic studies was nearly three folds over the last two decades (El‐Khateeb, 

et al., 2020). PBPK M&S include many applications such as clinical study design, formulation 

impact on drug exposure, metabolic drug-drug interactions (DDIs), changes in exposures in 

special populations such as disease (e.g. Hepatic, renal impairments), paediatrics, pregnancy, 

and geriatrics.  

According to a recent update by the FDA that highlights the application of PBPK models 

included in regulatory submissions, some areas such as metabolic DDIs were highly mature 

and showed high level of confidence, while for organ impairment populations, there is still a 

limited experience and a low confidence of using these model to predict the drug in these 

populations (Grimstein, et al., 2019). Interestingly, the highest increase in studies, by academia, 

industry, and regulatory agencies, collectively over the last decade according to a recent 

publication, was in the area of special populations (mainly disease populations of more than 8 
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fold increase). This indicates the growing interest in this area and the urgent need to develop 

robust and reliable PBPK models for those populations (El‐Khateeb, et al., 2020). Hepatic 

impairment is especially well represented in the study of special populations. Although hepatic 

impairment can arise from several diseases, cirrhosis is a major player. This is predicted to be 

reflected in the future as a higher number of new drug submissions to the regulators using 

PBPK models in organ impairment. 

PBPK M&S tools are used by academia, pharmaceutical industry as well as regulatory 

authorities. Some of them are commercial tools and others are free, however based on the same 

publication analysis, graphical user-interface based tools (Simcyp, Gastroplus, and PKsim) 

were the most commonly used by all organisations relative to bespoke software or scripting 

tools. Therefore, throughout this thesis, I applied the generated experimental and optimised 

data to Simcyp® software, but of course, it can be implemented into other PBPK models 

irrespective of the used tool. 

Cirrhosis population library have been generated based on previous publications (Edginton & 

Willmann, 2008; Johnson, et al., 2010) and classified virtual patients according to Child-Pugh 

scoring system. Although many drug models have illustrated that the current set-up and 

parameters in those population libraries were useful to predict drug exposure within 2 fold 

range of the observed clinical data, some other situations did not show good predictions. 

According to a recent publication from the QI consortium using Simcyp simulator to predict 

the exposure of nearly 60 drugs in cirrhosis populations, 30% of the simulated scenarios were 

outside the 2-fold range (Heimbach, et al., 2020). Moreover, most of these investigated drugs 

were of low hepatic extraction ratio and therefore the degree of changes in the expression of 

metabolising enzymes and drug transporters (DME&T) might need to be revisited. 

1.4. Current gaps in cirrhosis populations PBPK models  
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Predicted exposure profiles using PBPK models in cirrhosis are showing over-estimation of 

the disease impact on the drug clearance for some drugs especially in the moderate and severe 

stage of cirrhosis. Therefore parameters related intrinsic clearance predictions such as in vitro-

in vivo scaling factors and the changes in DME&T expressions have to be disease-specific, 

accurately determined and updated with the gold standard techniques in the field.  

The changes in the expression of many enzymes did not use the current gold standard protein 

quantification method such as LC-MS/MS and rely either on immunoblotting, immune-

histochemical analysis and correcting the available in vitro and in vivo activity studies for only 

a limited number of target proteins. Many other non-CYP enzymes have not been implemented 

into the models because of the lack of sufficient data in all stages of cirrhosis disease severity. 
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2 Chapter Two 

Aims and Objectives 

2.1. The ultimate aim 

The overall aim of this thesis is to optimise and qualify the currently available physiologically-

based pharmacokinetic (PBPK) models for the purpose of predicting the exposure and the most 

appropriate dose (Safe and at the same time effective) for liver cirrhosis patients. Part of this is 

thought to be achieved by revisiting and updating different translational aspects related to in 

vitro in vivo extrapolation before coupling these data with PBPK models in liver cirrhosis 

virtual populations. 

Each subsequent chapter satisfies one or more of the following objectives related to the above 

mentioned overall aim. 

2.2. Objectives 

1- Identifying and criticising the current situation related to dosing and classification of adult 

liver cirrhosis patients, needs and the gaps in this area (Chapter 3). 

2- Estimation of disease specific-scaling factors for extrapolating in vitro clearance data to in 

vivo to be fed into PBPK models (Chapter 4). 

3- Understanding the experimental work flow and the differences among LC-MS proteomic 

methods as a gold standard tool for the quantification of biological proteins and its 

applications in drug development (Chapter 5). 

4- Design and quality control assessment of new standard proteins to be used in the proteomic 

experiment for the quantification of various metabolising enzymes simultaneously in the 

same sample (Chapter 6). 
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5- Comparing the performance of different proteomic data analysis methods for the purpose 

of quantifying metabolising proteins in health and disease and ways to reconcile differences 

among these methods (Chapter 7). 

6- Comprehensive absolute quantification of DME&T in liver samples from adult cirrhotic 

patients at different grades of disease severity and various disease aetiologies (chapter 8). 

7- Applying the generated proteomic data into PBPK models for some drugs (Chapter 8). 
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3 Chapter Three  

Time to Revisit Child-Pugh Score as the Basis for Predicting 

Drug Clearance in Hepatic Impairment 
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3.1. Abstract 

Background  

Prescription information for many available drugs, particularly at the time of entering the 

market, lacks dosage guidance for hepatic impairment (HI). Dedicated studies for assessing the 

fate of drugs in HI commonly use Child-Pugh (CP) score for stratifying patients. CP is a 

prognostic clinical score but it has many limitations in reflecting capacity to eliminate drugs. 

Aims 

To demonstrate the need for better drug-dosing approaches in HI, summarise the current status, 

identify knowledge gaps regarding parameters defining the changes in drug disposition in HI, 

propose solutions for predicting the impact of HI on drug exposure, and discuss barriers to 

improving dosing guidance in HI population.  

Methods 

Relevant reports on dosage adjustment in HI patients were reviewed and analysed regarding 

the prediction of the effects of impairment on drug kinetics, particularly when using 

physiologically-based pharmacokinetic (PBPK) modelling. 

Results 

PBPK models are suggested as a potential framework to understand drug clearance changes in 

HI. However, quantifying the changes in abundance and activity of drug-metabolising enzymes 

and drug transporters, understanding the impact of shunting, and accounting for variations on 

drug absorption in each individual, outside the frame of CP score, could be considered as key 

elements for extending the success of HI PBPK models. 

Conclusions 

Many physiological changes in HI determining drug disposition do not necessarily correlate 

with CP scores. Quantifying these changes in individual patient is essential in future HI studies. 

CP scores were never intended for anything beyond the clinical assessment of HI patients. 
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3.2. Introduction 

Liver metabolism is responsible for the elimination for many drugs.  The liver has impressive 

functional hepatic reserve and consequently significant hepatic impairment (HI) has to occur 

before changes in drug metabolism occur. Unlike renal impairment (RI), there is currently no 

surrogate markers to estimate HI and limited evidence to guide drug dose adjustment 

(Davenport, et al., 2011). HI can be defined as any acute or chronic liver injury that affects 

liver functional capacity. Dose adjustment in HI population is challenging as the impact of the 

disease on drugs clearance varies depending on the drug characteristics as well as individual 

patient factors (Delcò, et al., 2005). 

Cirrhosis is a significant and increasing burden of disease worldwide (Sepanlou, et al., 2020). 

It is the common end-point of most chronic fibrotic liver diseases and the point at which hepatic 

reserve has been exhausted. Consequently, decline in hepatic function is evident with 

progressive cirrhosis. Multiple interacting factors determine the behaviour of drugs in cirrhosis, 

making drug dose adjustment a challenge. Under or over dosing could have significant clinical 

consequences. Therefore, given the prevalence of disease and the importance of optimal drug 

dosing, it is essential to predict drug metabolism. In this review we focus on strategies for drug 

dosing in liver cirrhosis. 

In cirrhosis, the absorption and disposition kinetics of most drugs are affected. It changes not 

only the metabolic function of the liver, but it also has an impact also on parameters such as 

liver blood flow, binding to plasma proteins, and biliary and renal excretion. These all 

potentially influence drug pharmacokinetics at different degrees depending on the drug and the 

severity of the disease in the patient (Verbeeck & Horsmans, 1998). This in turns may lead to 

significant alterations in the exposure to many drugs, necessitating dosage adjustment to avoid 

drug toxicity. 
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Dedicated pharmacokinetic studies for HI patients are part of many drug development 

programs and there is a regulatory guidance on the conduct of such studies and interpretation 

of the results. This is with a view to providing information to prescribers in the drug label. 

However, many drug regulatory authorities may approve drugs prior to availability of complete 

dosage guidance in sub-groups of patients, such as those with HI (Jadhav, et al., 2015). This 

raises the need for evidence-based approaches to guide clinicians to the best course of action 

regarding any dose adjustment of drugs in HI until clinical evidence is established. 

Physiologically-based pharmacokinetic (PBPK) modelling and simulations have been used for 

this purpose. However optimisation is still required to increase the predictive performance of 

these models. This review summarises key requirements for developing PBPK models for 

hepatic impairment populations; the current scoring systems implemented into these models; 

their limitations; and potential to enhance model predictability. 

3.3. Cirrhosis epidemiology, causes, and classification 

Cirrhosis is a global health burden, accounting for over 1 million deaths per annum, and 4.9% 

to 9.5% of the global population are believed to have some level of cirrhosis (Blachier, et al., 

2013; Mokdad, et al., 2014; Sarin SK, 2016). Alcohol, hepatitis C, hepatitis B, and non-

alcoholic steatohepatitis (NASH) are among the most common causes of cirrhosis worldwide 

(Schuppan & Afdhal, 2008). Different classification systems have been used for categorisation 

of cirrhosis, among which Child-Pugh classification is the most common. 

3.3.1.  Child-Pugh system  

Liver cirrhosis is routinely classified based on disease progression into Child-Pugh (CP) 

grades, CP-A (mild), CP-B (moderate), and CP-C (severe) (Child & Turcotte, 1964). Although 

this classification is widely used clinically and can give an indication of the severity of liver 

disease, it does not express quantitative changes in hepatic metabolic function responsible for 
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drug clearance (Schuppan, et al., 2008). Scores in this classification are calculated based on 

encephalopathy, ascites degree (absent, moderate/controlled or severe/refractory), serum 

bilirubin and albumin levels, as well as prothrombin time or the international normalised ratio 

(INR) (Tsoris & Marlar, 2021). 

3.3.2.  Other classification systems 

Apart from CP score, several models exist for grading the severity of liver disease. The Model 

for End Stage Liver Disease (MELD) score depends on three readily available laboratory 

variables; serum creatinine, serum bilirubin, and INR (Wiesner, et al., 2003). 

The MELD score was developed and validated to predict mortality in patients with portal 

hypertension undergoing placement of transjugular intrahepatic portosystemic shunts, but it is 

now more commonly used to predict survival in cirrhosis and for prioritisation of patients for 

liver transplant (Kamath, 2001; Malinchoc, et al., 2000). 

Another system to assess HI specifically in oncology patients was developed by the National 

Cancer Institute (NCI) Organ Dysfunction Working Group (ODWG) to guide dosing for 

chemotherapeutics (Patel, et al., 2004). The NCI classification system (NCIc) uses two 

biochemical parameters to grade hepatic dysfunction: total bilirubin and aspartate 

aminotransferase (Elmeliegy, et al., 2021). 

Other classification systems for cirrhosis are available but are not frequently used. Most of 

these correlate with the CP classification, including Maddrey’s discriminant function (df) 

(Maddrey, et al., 1978) (using prothrombin time and total serum bilirubin), and the Mayo 

Survival Model for primary biliary cirrhosis (Dickson, et al., 1989). 

Using specific markers of metabolic activity has been an alternative approach. 

Monoethylglycinexylidide (MEGX) is a lignocaine metabolite (via cytochrome P450 (CYP) 

3A) and a biomarker for the assessment of oxidative enzymes activity (Testa, et al., 1997). 

Indocyanine green clearance has been validated as a tool for pre-operative assessment of liver 
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function and also gives indication of hepatic blood flow (Figg, et al., 1995). Consequently, it 

has been assessed as a tool for measuring hepatic function for drug metabolism (Gasperi, et al., 

2016). Galactose single point (GSP) is a simple test that can be used to define clearance of both 

highly metabolised drugs and drugs which are eliminated without undergoing metabolism in 

the liver (Tang and Hu, 1992). GSP was originally reported in 1995 and further validation 

studies are awaited (Hu, et al., 1995). Overall, despite promising results, the lack of routine 

availability limits clinical utility of all these tests.   

3.3.3.  Limitations of the CP scoring system for drug dosing 

Although the CP score is the most commonly used classification system for patients with 

cirrhosis, it has some limitations that can be explained as follows: 

1) Subjective scoring: Two elements in CP classification are clinical parameters. These are 

ascites and encephalopathy scores. They are subjective according to clinical judgement and can 

also be confused with other disorders (Kok & Abraldes, 2019). For example, a patient with 

liver cirrhosis and diabetes can experience diabetic coma that can be mistakenly diagnosed as 

hepatic encephalopathy. Similarly, a patient with a brain tumour along with cirrhosis can show 

symptoms that may be confused with hepatic dysfunction or disorder. Metabolic 

encephalopathy can be also precipitated by sepsis or renal insufficiency (Kunze, 2002). Ascites 

severity is also a subjective assessment and may be exacerbated by non-cirrhotic factors, 

including heart failure, cancer, and infectious diseases (Carrier, et al., 2014). Careful clinical 

diagnosis is required to rule out other causes and reduce the subjective nature of these 

parameters. Other scoring systems such as MELD and NCI scores include only biochemical 

laboratory tests to overcome this subjectivity in CP scoring.  

2) Not accounting for renal function: Although RI is common with cirrhosis, this scoring 

system does not consider changes in renal function. For drugs that are mainly eliminated by 

the kidney, CP classification does not help in clinical predictions or correlate with drug 
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kinetics. Other scoring systems, such as MELD score, were developed to overcome this 

limitation by including creatinine levels as one of its components. 

3) Not distinguishing between different causes of cirrhotic liver disease: Different reports have 

indicated discrepancies between different causes of cirrhosis in relation to enzyme and 

transporter expression, inflammatory mediators, speed of progression, and control by certain 

drugs, such as ursodeoxycholic acid (UDCA). Scoring systems (i.e. MELD) consider 

cholestatic and alcoholic cirrhosis as lower risk than other underlying causes in the formula 

score, but it is uncertain if these aetiologies have better hepatic function compared to other 

disease aetiologies for the same biochemistry (Cholongitas, et al., 2005). 

4) Correlation with liver metabolic capacity is not well established: CP classification was not 

created to assess liver metabolic function and it utilises assays attributable to synthetic state, 

function and clinical status. However, it is not possible to separate the main contributor to CP 

grade from these three elements. For example, a patient with normal metabolic and synthetic 

liver function that has refractory ascites or encephalopathy might be scored in the same class 

as a patient with deteriorated functions and normal clinical measures. Those two patients may 

require completely different treatment options and drug doses as the metabolic capacity of their 

livers are widely different. Therefore, the use of markers like serum albumin, prothrombin time 

and bilirubin is encouraged and abnormalities in these parameters may be better related to drug 

elimination capacity than other components of the CP classification, e.g. encephalopathy and 

ascites as recommended by the European Medicine Agency (EMA) (EMA, 2005). 

In spite of all the limitations discussed above, CP scoring system is still the most widely used 

in drug development. This scoring system is recommended by the US Food and Drug 

Administration (FDA) and the EMA owing to its reproducibility, low cost, classification of 

cirrhosis into only 3 main categories (simplicity of interpretation), and incorporation of 

routinely measured parameters for hepatically-impaired patients. Ninety five percent of 
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pharmacokinetic studies dedicated for HI populations in drug development use CP 

classification to categorise patients at different stages of disease severities by contrast less than 

2% use NCI or MELD score exclusively (Talal, et al., 2017). 

3.4. Methods proposed to overcome limitations of the CP scoring system  

Several attempts have been made to correlate CP score with NCI, MELD and other scoring 

systems (Patel, et al., 2004), or to use other non-invasive metabolic scoring systems such as:  

Disease severity index (DSI): This test uses metabolism of oral and intravenous radioactive 

cholates that account for the changes in first-pass metabolism and the effect of shunting 

(Helmke, et al., 2015). This score showed good correlation with CP score but not with the 

MELD score. Although it seems to be a promising non-invasive method, its applicability in 

routine clinical practice and in clinical trials have yet to be investigated.  

Changing the cut-off points for key biomarkers: The current cut-off points for several 

biomarkers included in the CP scoring system shown in Table 3.1 were not previously 

validated, and therefore this scoring system has shown some shortcomings in predicting the 

five-year survival of patients with different aetiologies. A retrospective study was performed 

to refine these cut-off levels for bilirubin, albumin and INR and to introduce creatinine levels 

into the classification system (Kaplan, et al., 2016). Although these changes reflected better 

predictive performance for intermediate and long-term survival, they have not yet been 

investigated against the metabolic capacity of the liver for different drugs. 

Table 3.1. Parameters used in the calculation of the Child-Pugh score 

 

Parameter 

Points Scored for Observed Findings 

1 2 3 

Encephalopathy grade † 
None 1 or 2 3 or 4 

Ascites 
Absent Slight Moderate 
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Serum bilirubin, mg/dl 
<2 2-3 <3 

Serum albumin, g/dl 
<3.5 2.8-3.5 >2.8 

Prothrombin time, sec prolonged 

INR (international normalised 

ratio) 

>4 

 

>1.7 

4-6 

 

1.7-2.3 

<6 

 

<2.3 

†Grade 0: normal consciousness, personality, neurological examination, and 

electroencephalogram. 

Grade 1: restless, sleep disturbed, irritable/agitated, tremor, impaired handwriting, 5 cps waves 

Grade 2: lethargic, time-disoriented, inappropriate, asterixis, ataxia, slow tri-phasic waves. 

Grade 3: somnolent, stuporous, place-disoriented, hyperactive reflexes, rigidity, slower waves. 

Grade 4: unarousable coma, no personality/behaviour, decerebrate, slow 2-3 cps delta activity. 

5-6 points; mild or CP-A, 7-9 points; moderate or CP-B, 10-15 points; Severe or CP-C (Child 

& Turcotte, 1964). 

 

Imaging techniques: Liver stiffness measurements such as transient elastography, are linked to 

the deposition of extracellular matrix and can be used to identify patients with cirrhosis and 

predict progression to decompensated disease (Talal, et al., 2017). Computed tomography has 

also been used as a tool to scale-up enzyme abundance and activity data by measuring the 

functional hepatocyte volume as a direct reflection of the functional reserve of the organ and 

correlating these values with changes in the CP score (Edginton & Willmann, 2008; Johnson, 

et al., 2010). The simulation outputs for different drugs were in agreement with the biologically 

determined scalars using microsomal and cytosolic protein contents (El-Khateeb, et al., 2020). 

These technologies offer promise but more studies are required to investigate the change in the 

activities of different drug-metabolising enzymes and drug transporters (DME&T) against 

image-related measures. 
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3.5. Regulatory perspective on drug development in hepatic impairment 

Drug dosing is moving from a “one dose fits all” dosing strategy to “personalised medicine”, 

individualised tailoring of drug dosing to optimise efficacy and minimise harm has become a 

key focus of investigation. The united states’ FDA guidance recommends pharmacokinetic 

(PK) studies in patients with impaired hepatic function if the hepatic metabolism and/or 

excretion accounts for a substantial portion of the elimination of the parent drug or its active 

metabolite (>20% of absorbed dose is eliminated by the liver). The guidance also recommends 

a HI study even if the drug and/or its active metabolite are eliminated to a lesser extent by the 

liver when they have a narrow therapeutic index. In the case of drugs that are intended only for 

single-dose administration, a HI study will generally not be necessary unless clinical concerns 

suggest otherwise (FDA, 2003). 

These PK studies determine the plasma concentrations of the parent drug and sufficiently 

important active metabolites and calculate PK parameters, such as the area under the 

concentration-time curve (AUC), terminal half-life (t1/2), maximum plasma concentration 

(Cmax), and apparent clearance for the parent compound (CL/F). For multiple dose studies, 

trough concentration (Cmin) and fluctuation should be taken into account. When possible, both 

unbound and total concentrations are used to express these parameters. Generally, dose 

reduction is required if the change in the AUC in HI exceeds a two-fold increase relative to 

healthy volunteers (FDA, 2003). Usually, doses are reduced if the liver disease has resulted in 

a clinically significant impairment in the clearance of the drug except for prodrugs, in which 

doses may be increased or the frequency of administration may be decreased. In some cases, 

the drug may be classified as contraindicated in severe liver impairment, depending on the 

drug’s therapeutic window and the impact on the clearance of the drug. In the case of lack of 

data supporting drug labelling, the drug may be classified as “used with extreme caution” 
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(Pena, et al., 2016). To ensure equitable access to patients with cirrhosis to potentially safe and 

efficacious medication, it is critical that drugs are appropriately scrutinised in HI.  

3.6. The need for dose adjustment in hepatic impairment  

Around 50-80% of new molecular entities (NMEs) approved in the United States between the 

years 2013 and 2014 did not include clinical studies that inform dosage recommendations in 

RI and HI, irrespective of whether these clinical trials were required (Jadhav, et al., 2015). The 

percentage of drugs which did not have dosing recommendations for mild and moderate HI at 

initial approval was ~30% and 50%, respectively, in both of the years 2013 and 2014. However, 

for severe HI, this proportion was close to 80% in 2013 and ~60% in 2014, as shown by the 

left part of Figure 3.1 derived from data published by Jadhav and co-workers (Jadhav, et al., 

2015). 

We followed the same strategy and found that a similar trend persisted in subsequent years in 

the period 2016 to 2019 (Supplementary Table 3.1). Biologics were not included in this survey. 

In 2016, about 53%, 60%, and 60% of the NMEs lacked study-based label guidance for mild 

(CP-A), moderate (CP-B), and severe (CP-C) cirrhosis, respectively. In the following two years 

(2018-2019), the situation remained similar with a gradual rise in the percentage of drugs 

without label guidance, mainly in the severe stage of cirrhosis, as shown in Figure 3.1. These 

drugs are now available in the market without any labelling guidance regarding their dose 

levels in this special patient population. 
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Figure 3.1. The percentage of new molecular entities (NMEs) approved without explicit 

dosing recommendations in hepatic impairment population on their initial approval from 

2013 to 2019 (Data for the first two years are derived from Jadhav et al,  (2015) while the 

rest represents data from the current review for the period from 2016 to 2019). 

During the different phases of clinical trials, patients are recruited and treated by the 

investigational drug to test its safety and efficacy. Many special patient populations are 

excluded during these phases to avoid subjecting those individuals to any risks of unexpected 

side effects due to inappropriate dosing. However, extensive narrowing of the inclusion criteria 

or expansion of the exclusion criteria without an obvious aim may influence the inference and 

usefulness of clinical trials with respect to different issues. First, a large number of patients 

may miss the opportunity to participate in such trials that may be clinically beneficial. Second, 

trial results will be less likely to capture the diversity in patient populations that might be 

exposed to this therapy after being released onto the market. The study population may in fact 

only represent a small fraction of the market population. Third, extensive time wastage in the 
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recruitment of patients can occur with “restricted” criteria in all phases of clinical studies (Kim, 

et al., 2017). 

Ironically, when we examine the exclusion criteria related to organ dysfunction, one can find 

that these exclusions are based on liver function tests (LFTs) and CP scores in the case of 

hepatic dysfunction. Unlike renal dysfunction, where creatinine clearance can be a reliable 

measure of renal clearance, neither LFTs nor CP score accurately reflect the drug-metabolising 

efficiency of the liver. The upper limits of normal (ULN) range for LFTs, such as aspartate 

transaminase (AST) and alanine transaminase (ALT), is around 40 IU/L (Yin & Tong, 2009). 

These can vary between populations according to sex, age and weight of the patient as well as 

between laboratories (Giannini, 2005). Some patients with mild and moderate hepatic 

impairment may have LFTs between 5 and 20 folds the ULN; however, they can still tolerate 

the approved doses without any symptoms or complications. Thus, for drugs metabolised by 

the liver, a total exclusion of patients with liver enzymes above 2-3 fold ULN is not logical and 

the lack of more metabolic-reflective measures is an urgent issue (Lichtman, et al., 2017). 

Due to the aforementioned reasons, the American Society of Clinical Oncology (ASCO) 

adopted a suggestion to modify the eligibility criteria in cancer research clinical trials to be 

more inclusive of patients with organ dysfunction as long as the dose is suitably adjusted based 

on evidence-based data (Masters & Wiernik, 2018). After this recommendation, the FDA 

published a guidance document for broadening eligibility criteria to increase diversity in 

enrolment and to include more patients from underrepresented populations (FDA, 2020). 

3.7. Can physiologically-based pharmacokinetic modelling help in filling the gap in 

dedicated clinical trials? 

Physiologically based pharmacokinetics (PBPK) is an ‘in silico’ modelling approach that has 

been advanced over the last decades and has been supported by regulatory agencies such as 
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EMA and the FDA to be used for informing drug labelling (Rostami-Hodjegan, 2012; Younis, 

et al., 2017). It mathematically integrates physiochemical and biochemical drug-related data 

parameters along with physiological/system specific parameters such as blood flow, organ 

volume/weight, and protein concentration to simulate the expected pharmacokinetics of 

individuals within a population (Jones & Rowland-Yeo, 2013) (Figure 3.2). This distinct 

advantage of incorporating variability in physiological parameters is particularly valuable in 

disease states (such as HI) where these parameters may be altered from healthy subjects. PBPK 

models can also account for the compounding effects of changes to other compartments/organs 

and the drug dosing regimen (Rostami-Hodjegan, 2012). 

 

Figure 3.2. The Components of physiologically based pharmacokinetic (PBPK) models 

(drug-specific and system-specific parameters) with the intrinsic and extrinsic factors that 

can affect drug exposure. Adapted from (Zhao, et al., 2011). 

Although PBPK modelling may inform regulatory approval for many drugs and in different 

situations with more confidence in relation to drug-drug interactions and paediatric 

applications, only a small number of FDA submissions use PBPK for predicting drug exposure 

in hepatic impairment (Wagner, et al., 2015). Different physiological changes in cirrhosis with 
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disease progression were reported to impact on drug exposure, such as changes in blood flow 

to gut, liver, kidneys, and other organs, plasma protein levels, haematocrit level, liver size, 

DME&T expression and activity both in the liver and the gut, renal function, and liver 

circulation, including shunting (Edginton, et al., 2008; Johnson, et al., 2010). Although the 

application of these changes in models produced good predictions (within 2-fold in predicted 

versus observed data), poor predictive performance of these models have been reported in other 

scenarios which have shown under-prediction of the clearance of the modelled drugs, 

especially in moderate and severe stages of cirrhosis (Figure 3.3 and Supplementary Table 3.2). 

No single factor can be the source of these biases, as they are not related to common features 

of the drugs. For example, some models for CYP2D6 substrates showed good performance 

with moderate HI populations as in the case of eliglustat, while others such as atomoxetine did 

not (Huang, et al., 2017; Li, et al., 2020). 

 
Figure 3.3. The predictive performance of published models for 20 different drugs in hepatic 

impairment populations with different severities (mild, moderate, and severe cirrhosis). Data 

were obtained from 14 studies (Chiney, et al., 2020; Huang, et al., 2017; Johnson, et al., 
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2010; Li, et al., 2020, 2015; Morcos, et al., 2018; Ogawa, et al., 2020; Ono, et al., 2017; 

Prasad, et al., 2018; Rasool, et al., 2019, 2017; Snoeys, et al., 2017; Tortorici, et al., 2011; 

Tse, et al., 2020). 

However, some of these studies used different software tools and different model structures. 

Therefore, IQ consortium has recently conducted a comprehensive PBPK modelling and 

simulation research with fixed physiological parameters on nearly 60 drugs and concluded that 

about 70% of the predicted performance was within two-fold difference (Heimbach, et al., 

2020). Similar to previous studies, most of the 30% outliers were observed in moderate and 

severe HI populations. More knowledge and understanding of these pathophysiological 

changes, a proper classification system of HI patients that correlates with liver metabolic 

capacity, and availability of clinical data for validation might help in improving the predictive 

performance of these models and increase their robustness and reliability. The use of PBPK 

modelling in drug development has grown over the years to inform doses, optimise clinical 

study design, shorten the duration of clinical studies, and simulate untested scenarios (such as 

steady state exposure, drug-drug interactions, or different doses and/or formulations) (Zhang, 

et al., 2020). 

3.8. Current gaps and challenges for PBPK modelling in hepatic impairment populations 

3.8.1.  The heterogeneous nature of the disease and the scoring system 

As pointed out earlier, chronic liver disease is progressive and different grades and 

classifications are available with different scoring systems. The mild grade of CP classification 

is variable with widely different survival rates depending on whether the disease is associated 

with portal hypertension or not (Vilar-Gomez, et al., 2018). Other scoring systems do not 

correlate well with CP score making the use of these systems interchangeably very difficult. 

Moreover, the level of change in the expression and activity of different DME&T is not the 
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same across scores and is also affected by the aetiology of the disease and its surrounding 

environment (Drozdzik, et al., 2019; El-Khateeb, et al., 2020). This can be partly attributed to 

the fact that the liver is actually not ‘well-stirred’ as usually assumed in different models. The 

well-stirred model assumes that the liver is a single well-stirred compartment and that the 

unbound drug concentration in the emergent blood is in equilibrium with the unbound drug 

within the liver (Pang & Rowland, 1977). Some preclinical evidence has shown that inter-zonal 

and inter-lobar differences in the distribution of enzymes and transporters as well as the 

location and degree of liver disease can have a key role in predicting the pharmacokinetic 

outcome (Berasain & Avila, 2014; George, et al., 1995a; Gougelet, et al., 2014). Therefore, 

designing a dedicated study using the most common scoring system, such as CP scoring, with 

all its limitations with regard to assessment of hepatic metabolic capacity, makes dosage 

adjustment for those patients and extrapolation of PBPK models for liver disease more 

challenging. 

3.8.2.  Information on abundance and activity of drug-metabolising enzymes and 

transporters (DME&T) 

3.8.2.1. Drug-metabolising enzymes 

Xenobiotic detoxification process in the liver rely on the presence of metabolic enzymes. 

Within the hepatocyte, transforming enzymes are primarily located in the microsomes (small 

vesicles) of the endoplasmic reticulum and the soluble fraction of the cytoplasm (cytosol). The 

impact of impairment on drug clearance varies depending on the metabolic reaction involved 

to clear this drug and the functional reserve of these enzymes in the liver. Phase I metabolism 

is usually known to be significantly affected by the severity of hepatic dysfunction to a higher 

degree than phase II conjugation reactions. The difference between phase I and phase II 

biotransformation in response to HI supports the oxygen limitation theory (Yang, et al., 2003). 

This theory is based on the assumption of reduced oxygen transfer from blood to hepatocytes 
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by capillarisation of sinusoids and cirrhotic tissue development. It relies on the observation that 

oxidative Phase I reactions are substantially reduced in liver disease, while Phase II 

(conjugative) metabolic reactions are preserved until end-stage liver disease is reached (Palatini 

& De Martin, 2016). For example, theophylline clearance, which depends mainly on CYP450 

oxidative metabolism, was shown to be reduced by 37% in cirrhotic rats and activity was 

restored to normal values by oxygen supplementation (Hickey, et al., 1995). 

Some clinical studies showed that glucuronidation does not appear to be altered except when 

hepatic cell mass is reduced abruptly, while others found that some patients with severe hepatic 

disease exhibited an increase in enzyme activities (Larson, et al., 2009; Rowland & Tozer, 

2011; Verbeeck, 2008). Debinski and coworkers (1995) demonstrated upregulation of UDP-

glucuronosyltransferase (UGT) enzymes in the remaining viable human hepatocytes of 

diseased livers, as observed using immunohistochemical staining (Supplementary Table 3.4). 

Impaired glucuronidation is observed for drugs, such as morphine, lamotrigine, lometazepam, 

zidovudine, and mycophenolate mofetil, especially in advanced stages of cirrhosis (Verbeeck, 

2008).  

Clinical studies have also shown that the biotransformation of CYP3A4 substrates, such as 

midazolam or erythromycin, is significantly reduced in severe HI, while for CYP2C, the 

situation is different as the expression trends of these enzymes are highly variable (ranging 

from no change in liver disease to about 34-72% of that in healthy control subjects). Murray 

and co-workers recently concluded that CYP2C protein expression is not impaired in cirrhotic 

livers by studying selective drug substrates (Murray, et al., 2018). 

Studies using immunochemical quantification reported variability in the microsomal levels of 

different CYP isoforms with different sensitivities toward disease progression as shown in 

Figure 3.4 and Supplementary Table 3.3 (George, et al., 1995b; Guengerich & Turvy, 1991; 

Lown, et al., 1992). This wide variation in the response of enzymes to hepatic injury is most 
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probably linked to the disease stage and its severity as proposed by Frye et al  who suggested 

a “sequential progressive model of hepatic dysfunction”, leading finally to a decrease in the 

activity of most CYP450 enzymes in end-stage liver disease (Frye, et al., 2006). Moreover, a 

doubling in CYP2E1 activity and depletion in glutathione levels were revealed in chronic 

alcohol ingestion, leading to lower protection against paracetamol, isoniazid, methotrexate and 

other substrates of this enzyme (Verbeeck, 2008). 

 

Figure 3.4. Changes in the abundances (A) and activities (B) of different CYP450 isoforms 

in cirrhotic liver disease relative to control, as reported in the literature (Adedoyin, et al., 

1998; Frye, et al., 2006; George, et al., 1995a; Guengerich, et al., 1991; Lown, et al., 1992; 

Prasad, et al., 2018; Sotaniemi, et al., 1995). Activities are assessed in vivo using selective 

probes at different stages of disease progression. Abundances were measured my 

immunoblotting, immunohistochemistry or proteomics per milligram liver microsomes 

obtained from either control or cirrhosis livers. HC; Hepatocellular liver disease, CHOL; 

Cholestatic liver disease, CPA; Child-Pugh score A, CPB; Child-Pugh score B, CPC; Child-

Pugh score C. 

There are several methods for assessing metabolic enzyme activity and expression in cirrhotic 

patients and comparing them to healthy control subjects. One of these methods is the 
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measurement of tissue-specific mRNA expression either through reverse transcription (RT)-

quantitative polymerase chain reaction (PCR) or microarrays (Heikkinen, et al., 2015; Nakai, 

et al., 2008). In spite of the utility of this approach, many limitations have been reported, 

including: 

 Providing a relative quantification between tissues. 

  mRNA does not always correlate with protein abundances such as the weak 

correlation for most CYP450s and UGTs (George, et al., 1995a; Izukawa, et al., 2009). 

 Dependence on mRNA synthesis and degradation rather than protein turnover. 

Another commonly used approach is the use of selective probe drugs for a limited number of 

enzymes (Table 3.2). These probes should have a high degree of enzyme selectivity either in 

vitro or in vivo (Adedoyin, et al., 1998; Frye, et al., 2006; Sotaniemi, et al., 1995). However, 

this technique has the limitation of small sample size (limited number of patients) in addition 

to the interference of other factors that may affect the study results, such as other elimination 

pathways (e.g., renal elimination), inaccuracy in metabolic ratio calculations for complex 

pathways, and the effect of genotype differences (Prasad, et al., 2018; Tucker, et al., 1998). 
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Table 3.2. Activity studies for different CYP450 isoforms at different degrees of disease severity with the applied indices and probes. 

Study 
Stage of liver 

disease 

CYP 

isoform 
Probe 

Cause of cirrhosis 

(number of 

patients) 

Measure/index for activity 

Sotaniemi 

(Sotaniemi, et 

al., 1995) 

Mild, 

Moderate, and 

Severe 

CYP3A4 

CYP2A6 

Lignocaine (i.v.) 

Coumarine (P.O) 

All are alcoholic 

(26) 

- Plasma concentration of MEGX metabolite in the 15 min 

post injection 

- Urine recovery of the hydroxyl metabolite after 2, 4 and 24 

h from the oral dose. 

Frye (Frye, et 

al., 2006) 

Mild and 

Moderate-to-

severe 

- CYP1A2 

- CYP2C19 

- CYP2D6 

- CYP2E1 

- Caffeine 

- Mephenytoin 

- Debrisoquin 

- Chlorzoxozone 

HCV (14), HBV 

(1), chemical (1), 

alcoholic (2), PSC 

(1), cryptogenic (1). 

- 
𝐶𝑝 𝑜𝑓 𝑃𝑎𝑟𝑎𝑥𝑎𝑛𝑡ℎ𝑖𝑛𝑒

𝐶𝑝 𝑜𝑓 𝑐𝑎𝑓𝑓𝑒𝑖𝑛𝑒
 in the 8 h post dose sample 

- Urinary recovery of hydroxyl metabolite/ (urine recovery of 

parent (mephenytoin)+metabolite) 

- Urinary recovery of hydroxyl metabolite/ (urine recovery of 

parent (debrisoquin)+metabolite) 

- 
𝐶𝑝 𝑜𝑓 ℎ𝑦𝑑𝑟𝑜𝑥𝑦𝑚𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑡𝑒

𝐶𝑝 𝑝𝑓 𝑡ℎ𝑒 𝑝𝑎𝑟𝑒𝑛𝑡 (𝐶ℎ𝑙𝑜𝑟𝑧𝑜𝑥𝑎𝑧𝑜𝑛𝑒)
 in the 4 h post dose sample 

Adedoyin 

(Adedoyin, et 

al., 1998) 

Mild and 

moderate 

- CYP2C19 

- CYP2D6 

- S-mephenytoin 

- Debrisoquin 
Not specified 

Urine was collected over 192 hours 

- Urinary recovery of 4-hydroxymephenytoin 

- Urinary excretion ratio of the hydroxydebrisoquin relative 

to (debrisoquin+ hydroxydebrisoquin urine recoveries) 

 i.v.: intravenous dosing, P.O: Per oral dosing, MEGX: monoethylglycinexylidide (lignocaine metabolite), HCV and HBV: hepatitis C and B virus infections 

respectively, Cp: Plasma concentration. 
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Apart from relative quantification, absolute quantification of protein abundances is relatively 

recent with limited studies available (Supplementary Table 3.3 and Supplementary Table 3.4). 

It provides the possibility of measuring absolute and direct protein amounts for incorporation 

into PBPK models and bridging between studies without the necessity of correlation to a 

reference sample. Different techniques have been used for protein quantification, such as 

immunoblotting as well as label-free and isotope-labelling proteomic techniques. The choice 

of suitable methodology depends on the sample under study, the number and nature of the 

target proteins being quantified, whether discrimination of isoforms of the same subfamily is 

required and the overall cost (El-Khateeb, et al., 2019; Heikkinen, et al., 2015). 

According to Prasad et al, (Prasad, et al., 2018) the changes in abundance of CYPs, UGTs and 

other drug-metabolising enzymes in cirrhotic livers is not only dependent on the enzyme but 

also the origin or cause of cirrhosis. For example, there is an evidence of more extensive 

reduction in drug-metabolising enzyme abundance in alcoholic cirrhosis than hepatitis C-

induced cirrhosis (Prasad, et al., 2018). However, this study did not assess changes in enzyme 

abundances for mild and moderate cirrhosis patients or zonal differences in these abundances 

across the liver. Moreover, some of the enzymes, such as CYP2B6, CYP3A5, UGT2B17, and 

UGT1A1, were below the detection limit of the analytical method. 

3.8.2.2. Transporters  

Drug transporters are membrane-bound proteins present in organs, such as the intestine, liver, 

and kidneys, and they play a key role in the absorption and elimination of drugs and their 

metabolites. Figure 3.5 shows the most important transporters in drug disposition within the 

liver. Drug transporters are categorised either functionally into two superfamilies: uptake 

transporters or phase 0 proteins and efflux transporters or phase III proteins, or structurally 

mainly into solute carriers (SLC) and ATP-binding cassette (ABC) transporters (Döring & 

Petzinger, 2014; Nigam, 2015). 
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Figure 3.5. Location of clinically relevant drug transporters expressed in human 

hepatocytes. Uptake transporters located in the basolateral membrane include members of 

the SLC superfamily, such as OCT1, OCT3, OAT2, OAT7, OATP1B1, OATP1B3, 

OATP2B1, and NTCP. Efflux transporters located in the basolateral membrane include 

members of the ABC transporters superfamily, such as MRP3, MRP4, and MRP6. Efflux 

transporters are also located in the canalicular membrane and include BCRP, BSEP, MATE 

1, MDR3, MRP2, and P-gp. 

Relative transporter mRNA levels have previously been measured by quantitative PCR at 

different stages of HCV liver disease (Nakai, et al., 2008). NTCP and OCT1 showed a 

significant rise in mild F1 fibrosis relative to normal control (~75% and 38%, respectively), 

while later stages showed a non-significant difference in NTCP expression relative to healthy 

subjects and a significant reduction, by 38%, in OCT1 levels in severe cirrhosis. On the other 

hand, OATP-C transporters showed a gradual reduction of 16%, 20%, and 60% with F1, F2, 

to F3 fibrosis scores, respectively. 

Ogasawara et al, (2010) also investigated the effect of HCV-related cirrhosis on 17 different 

hepatic drug transporters and observed that the expression of most of these transporters (OCT1, 
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OATP1B1, OATP1B3, MATE1, MRP4, MRP5 and BCRP) decreased by approximately 50% 

in cirrhosis. This does not only affect the hepatic uptake of drugs via these transporters but also 

biliary excretion was also noticeably reduced. 

More and co-workers studied transporter mRNA (using QuantiGene Plex 2.0 assay) as well as 

relative transporters protein expression (using Western blotting) in human liver tissues with 

steatosis (with no cirrhosis), alcoholic cirrhosis, or diabetic alcoholic cirrhosis compared to 

normal livers (More, et al., 2013). A summary of the results of the study is shown in Table 3.3. 

This study did not assess the activity at different stages of disease severity, and did not measure 

OATP1B1/1B3 because of lack of commercially available high-quality specific antibodies for 

these transporters at the time of the study. Moreover, the results are not scalable to liver tissue 

levels, which limits their usefulness in modelling. Recent studies assessed changes in 

transporter abundances per unit mass of tissue using LC-MS proteomic techniques in samples 

with different causes of cirrhosis and reported progressive reduction of most key transporters 

with disease progression (Drozdzik, et al., 2020; Wang, et al., 2016). 

In spite of the impact of cirrhosis aetiology on enzyme expressions, hepatocyte uptake and 

biliary excretion, the current CP classification does not differentiate between the different 

causes of the disease as previously indicated. 

Table 3.3. Transporter mRNA and protein expression in cirrhotic livers with different 

aetiologies. 

Cause of Cirrhosis  No change from 

control (↔) 

Decreased compared 

to control (↓ %) 

Increased compared 

to control (↑ %) 

Transporter mRNA expression 

Alcohol † SLCO1B1, ABCC2, 

ABCC3, ABCC6 

SLCO1B3 (78%) SLCO2B1 (51%), 

ABCC1 (38.44%), 

ABCC4 (58%), ABCC5 

(34%), ABCG2 (194%) 
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Alcohol and diabetes 

mellitus † 

SLCO1B1,  

SLCO1B3, 

SLCO2B1, ABCG2, 

ABCC1, ABCC2, 

ABCC4, ABCC5, 

ABCC6, ABCC2 

ABCC3 (88%)  

Transporters protein expression 

Alcohol and diabetes 

mellitus † 

ABCC2 ABCC6 (~30-40%) ABCC1 (1.5-2 folds) 

ABCC3 (2-3 folds) 

ABCC5 (~20-30%) 

ABCC4 (~ 2 folds) 

ABCG2 (~50%) 

Alcohol ‡ SLC47A1, ABCC2, 

ABCB1, SLCO2B1 

SLC10A1 (35%), 

SLCO1B1 (55%), 

SLCO1B3 (87%), 

SLC22A1 (73%), 

ABCG2 (50%), 

ABCB11 (36%)  

ABCC3 (38%) 

Alcohol § -- SLC10A1 (24%), 

SLCO1B1 (39%), 

SLCO1B3 (21%), 

SLC22A7 (74%), 

ABCC2 (70%), and 

OATP2B1 (27%) 

-- 

Chronic hepatitis C ‡ ABCG2, ABCC3, 

SLCO1B1 

ABCB11, ABCC2, 

SLCO10A1, SLCO1B3, 

SLC22A1, ABCB1 (32-

56%) 

SLC47A1 (46%) 

Chronic hepatitis C § -- ABCB11 (53%), 

SLCO2B1 (26%) 

-- 

Cholestatic liver 

disease § 

-- -- ABCB1 (~3.5 folds), 

ABCC4 (~3 folds) 

Autoimmune 

hepatitis § 

-- ABCC2 (82%) ABCB1 (~4folds), 

ABCC4 (~2.5 folds) 

Data derived from †(More, et al., 2013), ‡(Wang, et al., 2016), §(Drozdzik, et al., 2020) 
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3.8.1.  Small sample size in dedicated clinical studies 

In clinical studies dedicated to HI, which are designed to developing dosage recommendations, 

subjects are stratified based on CP score with at least six subjects per arm (FDA, 2003). 

Although the guidance states that for pathways known to exhibit genetic polymorphism (such 

as CYP2D6 and CYP2C19) the number increases and should include no less than eight subjects 

per arm, this still might not be enough to represent the whole population and allow accurate 

prediction of drug exposure changes in HI. Other causes of differences can be age, weight, 

smoking, concomitantly administered drugs and other disease states that are not completely 

reported for every patient. Moreover, most of these dedicated studies do not enrol all classes 

of liver impairment (Figure 3.1). In some situations, reduced (in terms of the acceptable number 

of enrolled patients) clinical trials are accepted when the oral clearance of the drug shows a 

negative correlation with the progression of the disease. In that case, the findings in the 

moderate category would be applied to patients with a mild CP category, and dosing in the 

severe category would generally be contraindicated (FDA, 2003). However, dosage adjustment 

in moderate HI cannot be generalised or extrapolated to mild or less severe conditions and the 

drug can be still useful in severe stages with appropriate dosage adjustment.  

3.8.2.  Accounting for the change in plasma protein binding in HI patients 

Plasma protein concentrations mainly albumin and α1 acid glycoprotein are known to decline 

with progress of HI severity (Li, et al., 2018). The fraction unbound of a drug is the proportion 

that is responsible for therapeutic effect and available for systemic metabolism and elimination 

which can be calculated in HI from Equation 1. Scaling with this equation was shown to have 

high predictive performance especially for albumin bound drugs (Li, et al., 2018).  

𝑓𝑢,𝐻𝐼 =
1

1+
[𝑃]𝐻𝐼

[𝑃]𝑛𝑜𝑟𝑚𝑎𝑙
×

1−𝑓𝑢,𝑛𝑜𝑟𝑚𝑎𝑙
𝑓𝑢,𝑛𝑜𝑟𝑚𝑎𝑙

 ………………………………………… (1) 
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Where fu,normal  and fu,HI  denote free drug fraction in plasma in normal and hepatic impairment 

subjects, respectively. [P]normal and [P]HI are the plasma protein concentrations in normal and 

hepatic disease, respectively. Although the prediction of the absolute value of fu was good, the 

authors did not assess the predictive performance based on the relative changes of fu (by 

comparing the observed and predicted changes of different drugs in various HI populations).  

When doses are intended to be adjusted in cirrhotic patients, CL/Funbound and AUCunbound are the 

parameters that should be taken into account rather than the total parameters; CL/Ftotal and 

AUCtotal (bound and unbound) as the latter are deceiving. For instance, the AUCtotal may not 

change or, on the contrary, may decrease, while the unbound value, which is more clinically 

relevant, increases. This conclusion has been recommended by many studies and was observed 

for different drugs, such as naproxen, (Williams, et al., 1984) carvedilol, (Rasool, et al., 2017) 

and quinine (Orlando, et al., 2009). The decrease in CL/Funbound is obscured by the increase in 

the unbound fraction of the drug in the blood fub as can be deduced from the following equation:     

CL/Funbound = 
CL/Ftotal 

𝑓𝑢𝑏
 …………………………. (2) 

Therefore, the net result may be unchanged total CL/Ftotal as in the case of naproxen in cirrhotic 

patients compared to that in healthy controls, or a worse result as in the case of quinine, which 

showed an increase in CL/Ftotal for cirrhotic patients relative to healthy individuals. This may 

lead to a major error in dose adjustment. This factor will mainly affect the systemic clearance 

of low clearance or low extraction ratio drugs (T’jollyn, et al., 2018). 

It is also important to note that differences in protein binding obtained from in vitro 

experiments and in vivo situations can be observed, and this can contribute to the poor 

predictive performance for some drugs in HI populations (Yim, 2019; Zeitlinger, et al., 2011).  

3.8.3.   The shunting effect 

Due to the progressively developing portal hypertension with increasing cirrhosis severity, 

spontaneous porto-systemic shunts (SPSS) are formed to vent the increased portal pressure 
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(Nardelli, et al., 2020). Unfortunately, although this mechanism seems to be compensating for 

deterioration during cirrhosis, complications such as hepatic encephalopathy, variceal 

bleeding, portal vein thrombosis, and deterioration of liver function start to appear (Simón-

Talero, et al., 2018). Concerning pharmacokinetics of administered drugs, these SPSS as well 

as surgically implemented transjugular intrahepatic portosystemic shunts (TIPS) constitute a 

challenge to the predictive performance of different models. TIPS can lead to a reduction in 

gut CYP3A4 levels as well as levels of hepatic enzymes (Chalasani, et al., 2001). Therefore, 

changes in the mesenteric blood flow and CYP3A4 should be accounted for in the models 

based on the presence or absence of these shunts, their severities, and the stage of cirrhosis 

(Johnson, et al., 2010; Neal, et al., 1979). Computed tomography images can help in 

visualisation and identification of SPSS. It should be highlighted that the MELD score fails to 

capture severity of portal hypertension, while CP does reflect this to an extent, but neither of 

these scoring systems addresses the presence or severity of spontaneous portosystemic 

shunting. 

3.8.4.  Impact of hepatic impairment on drug absorption is not well understood 

As pointed out earlier, the degree of shunting and the corresponding changes in mesenteric 

blood flow and intestinal enzyme abundances and activities in HI can affect oral drug 

bioavailability (Chalasani, et al., 2001; Verbeeck, 2008). The bioavailability of drugs such as 

morphine, meperidine, verapamil, metoprolol, clomethiazole, labetalol, carvedilol and 

midazolam may increase to double their values in cirrhosis because they escape extensive first-

pass metabolism.  

One of the changes that may occur in severe hepatic impairment is the change in the gastric 

emptying time. In a PBPK modelling and simulation study that compared the residence times 

of metformin in the elderly and young populations with and without hepatic impairment, a 40-

50% increase in gastric emptying time was suggested in patients with CP-C compared to their 
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healthy control counterparts (Rhee, et al., 2017). Although these findings have not been 

validated by clinical data, this change may not only cause a slight delay in Tmax (time to Cmax) 

or the rate of absorption but may also play a role, to some degree, in alteration of the extent of 

absorption in these populations. 

3.9. Future directions 

Given the limitations in the classification systems of HI, it is clear that there is no magic number 

that can be applied to all drugs in all patients with HI. Strategies using CP score or other tests 

of disease severity and inter-individual variation cannot reliably predict differences with regard 

to exposure to therapeutic drugs. Genotyping is one of the methods that have been used to 

individualise patient’s therapy, however there are still variabilities among patients with the 

same genotype. Liver biopsy is an invasive and impractical approach to the characterisation of 

individual patients by direct measurement of the expression of metabolising enzymes and 

transporters or their activities. Therefore, newly developed liquid biopsy and multi-omic 

techniques are proposed as a minimally invasive alternative to tissue biopsies by measuring 

plasma biomarkers that reflect the liver’s metabolic capacity (Achour, et al., 2021). The link 

between liquid biopsy and tissue is predicated on the continuous shedding into the bloodstream 

of exosomes that contain a sample from the intracellular bimolecular pool of liver tissue. This 

technology has recently been applied to the characterisation of various hepatic enzymes and 

transporters at baseline and after drug treatment in healthy controls and liver cancer patients 

(Achour, et al., 2021; Aslanis, et al., 2019). The technique has the potential of monitoring not 

only markers of hepatic elimination of drugs but also biomarkers of disease severity and 

progression. However, the use of this technique for the highlighted application requires further 

assessment in liver disease to demonstrate its applicability in clinical practice.  
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3.10. Conclusion 

There is unmet clinical need for dose adjustment in HI populations especially for drugs that 

have been released to the market and are lacking appropriate guidance in liver disease patients. 

PBPK modelling and simulations were proposed as tools to fill in this gap. Dedicated 

pharmacokinetic clinical studies required for dosage adjustment in HI and for the validation of 

PBPK models use CP system for patients’ stratification which has shown a lot of limitations. 

Other scoring systems, DSI, and imaging techniques, and the emerging liquid biopsy can be 

introduced to overcome some of CP pitfalls. Whilst it is unlikely that CP score will be replaced 

by an alternative stratification system when it comes to dose adjustment in HI, ongoing efforts 

should be encouraged in light of the evidence of poor performance of CP scoring as an 

indication for changes to drug clearance, a task that the CP system was never designed for. 
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3.12. Supplementary Material 

Supplementary Table 3.1. Drugs accepted as new molecular entities (NMEs) during 2016, 

2017, 2018, and 2019 without label guidance related to their use in different stages of hepatic 

impairment (HI). 

 
                                Year 
Population 
 
  

The number of NMEs with no explicit dosing recommendation in hepatic 
impairment population 

2016 2017 2018 2019 

Mild HI 7 13 10 15 

Moderate HI 6 14 15 20 

Severe HI 6 21 28 31 

Total number of NMEs 
approved 

15 33 41 38 
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Supplementary Table 3.2. Model performance of different drugs reported in the literature that have both observed 

and predicted AUC ratio; AUCR (diseased relative to healthy control) at different stages of hepatic impairment 

progression. 

Drug Predicted AUCR Observed AUCR Predicted / Observed Reference 

Mild Moderate Severe Mild Moderate Severe Mild Moderate Severe (Johnson, et al., 2010) 

Omeprazole infusion 2.2 2.5 5.3 1.5 2 2.2 1.5 1.3 2.4 

Omeprazole oral 1.7 3.5 5.8 1.8 2.5 2.8 0.9 1.4 2.1 

Oral theophylline 3.8 N/A 1.3 3 N/A 1 1.3 N/A 1.3 

Carvedilol i.v. N/A N/A 2.1 N/A N/A 1.6 N/A N/A 1.3 (Rasool, et al., 2017) 

Carvedilol oral N/A N/A 7.8 N/A N/A 5.9 N/A N/A 1.3 

Bosentan 1.5 N/A N/A 0.9 N/A N/A 1.7 N/A N/A (Li, et al., 2015) 

Olmesartan 1.1 1.5 N/A 1.1 1.2 N/A 1 1.3 N/A 

Repaglinide N/A 4.9 N/A N/A 4.0 N/A N/A 1.2 N/A 

Telmisartan 1.95 N/A N/A 2.7 N/A N/A 0.7 N/A N/A 

Valsartan 1.2 1.8 N/A 2.2 2.1 N/A 0.5 0.9 N/A 

Bosutinib 1.7 2.6 3.6 2.4 1.9 1.8 0.7 1.4 2 (Ono, et al., 2017) 

Atomoxetine N/A 4.8 10.7 N/A 1.7 3.7 N/A 2.8 2.9 (Huang, et al., 2017) 

Simeprevir N/A 14.5 20.5 N/A 3.6 5.8 N/A 4 3.5 (Snoeys, et al., 2017) 
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Axitinib 1.3 1.52 N/A 0.78 1.95 N/A 1.7 0.8 N/A (Tortorici, et al., 2011) 

Zidavudine N/A N/A 3.6 N/A N/A 3.8 N/A N/A 0.9 (Prasad, et al., 2018) 

Morphine N/A N/A 1.9 N/A N/A 2.4 N/A N/A 0.8 

Eliglustat 2.85 8.84 N/A 2.49 8.33 N/A 1.1 1.1 N/A (Li, et al., 2020) 

Elagolix 1.6 4.5 7.3 0.8 2.7 6.7 2 1.7 1.1 (Chiney, et al., 2020) 

Alectinib N/A 2.25 2.34 N/A 1.7 2.14 N/A 1.3 1.1 (Morcos, et al., 2018) 

Pemafibrate 2.21 5.05 N/A 1.8 3.7 N/A 1.2 1.4 N/A (Ogawa, et al., 2020) 

Rifampicin Profile 1 0.84 N/A N/A 0.99 N/A N/A 0.8 N/A N/A (Rasool, et al., 2019) 

Rifampicin Profile 2 0.84 N/A N/A 1.67 N/A N/A 0.5 N/A N/A 

Rifampicin Profile 3 0.83 N/A N/A 0.85 N/A N/A 1 N/A N/A 

Rifampicin Profile 4 0.98 N/A N/A 1.38 N/A N/A 0.7 N/A N/A 

Tofacitinib 1.69 3.02 N/A 1.02 1.73 N/A 1.7 1.7 N/A (Tse, et al., 2020) 

N/A: no data available for the model validation. Grey cells: represents situations in which the predictive performance 

was poor (> 2 folds Predicted/observed ratio). 
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Supplementary Table 3.3. Changes in content/expression/abundances of different CYP enzymes in cirrhosis 

Enzyme/ 

isoform 

Significant change in 

Protein abundance level  

relative to control 

Severity of the 

disease 
Method used Reference 

CYP3A4 

↓ to 25% in HC & 41% in 

CHOL 
Mixed 

Microsomal proteins using gel electrophoresis and immunochemical 

quantification 

(George, et al., 

1995b) 

↓ to 53% Not specified 
Microsomal proteins using gel electrophoresis and immunochemical 

staining 

(Guengerich, et 

al., 1991) 

± Moderate and severe 
Microsomal levels using gel electrophoresis and immunochemical 

staining 

(Lown, et al., 

1992) 

↓ to <25% Severe LC-MS/MS quantification after isolation of S9 fractions 
(Prasad, et al., 

2018) 

CYP1A2 

↓ to 29% in HC & to 18% in 

CHOL 
Mixed 

Microsomal proteins using gel electrophoresis and immunochemical 

quantification 

(George, et al., 

1995b) 

↓ by 47% Not specifies 
Microsomal levels using gel electrophoresis and immunochemical 

staining 

(Guengerich, et 

al., 1991) 

↓ to 46% Moderate and severe 
Microsomal levels using gel electrophoresis and immunochemical 

staining 

(Lown, et al., 

1992) 

↓ to <25% Severe LC-MS/MS quantification after isolation of S9 fractions 
(Prasad, et al., 

2018) 

CYP1A4 ↓ to <25% Severe LC-MS/MS quantification after isolation of S9 fractions 
(Prasad, et al., 

2018) 

CYP1A6 ↓ to <25% Severe LC-MS/MS quantification after isolation of S9 fractions 
(Prasad, et al., 

2018) 
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CYP2E1 

↓ to 41%  Not specified 
Microsomal protein content using gel electrophoresis and 

immunochemical staining 

(Guengerich, et 

al., 1991) 

↓ to 81% in HC & to 49% in 

CHOL 
Mixed 

Microsomal proteins using gel electrophoresis and immunochemical 

quantification 

(George, et al., 

1995b) 

± Moderate and severe 
Microsomal levels using gel electrophoresis and immunochemical 

staining 

(Lown, et al., 

1992) 

↓ to 25-50% Severe LC-MS/MS quantification after isolation of S9 fractions 
(Prasad, et al., 

2018) 

CYP2A6 ↓ to 25-50% Severe LC-MS/MS quantification after isolation of S9 fractions 
(Prasad, et al., 

2018) 

CYP2B7 ↓ to <25% Severe LC-MS/MS quantification after isolation of S9 fractions 
(Prasad, et al., 

2018) 

CYP2D6 ± Severe LC-MS/MS quantification after isolation of S9 fractions 
(Prasad, et al., 

2018) 

CYP2C19 

± Not specified 
Microsomal proteins using gel electrophoresis and immunochemical 

staining 

(Guengerich, et 

al., 1991) 

↓ to 57% in HC & 34%  in 

CHOL 
Mixed 

Microsomal proteins using gel electrophoresis and immunochemical 

quantification 

(George, et al., 

1995b) 

↓ to 25-50% Severe LC-MS/MS quantification after isolation of S9 fractions 
(Prasad, et al., 

2018) 

CYP2C8 ↓ to 55% Moderate and severe 
Microsomal levels using gel electrophoresis and immunochemical 

staining 

(Lown, et al., 

1992) 

CYP2C9 ↓ to 47% Moderate and severe 
Microsomal levels using gel electrophoresis and immunochemical 

staining 

(Lown, et al., 

1992) 

CYP: Cytochrome P450, LC-MS: Liquid Chromatography-Mass spectrometry, ± no change, ↓ Significant decrease relative to healthy control, 

HC: Hepatocellular cirrhosis, CHOL: Cirrhosis with cholestatic origin. 
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Supplementary Table 3.4. Changes in content/expression/ activities of different Phase II metabolising enzymes in cirrhosis 

Enzyme 
Significant 

change in activity 

Method used for in-vitro 

activity 

Significant change 

in abundance/ 

protein level 

Method used for protein 

quantification 
Reference 

Glucuronidation 

(UGT) 
 

 

 

 

 

 

 

UGT1A6,UGT1

A4,UGT2B7,UG

T2B15 

-- -- 

↑ staining in the 

remaining 

hepatocytes 

Semi-quantitative Immuno-chemical 

microsomal staining 

(Debinski, et al., 

1995) 

± 

Activity towards 2-

naphthol and 

ethinyloestradiol as 

substrates 

-- -- 
(Pacifici, et al., 

1990) 

± Hepatic mRNA levels -- -- 
(Congiu, et al., 

2002) 

± in alcoholic 

cirrhosis 

Hepatic mRNA 

expression 
-- -- (More, et al., 2013) 

-- -- 
↓ to <25% 

↓to 40-50% 

LC-MS/MS quantification after 

isolation of S9 fractions 

(Prasad, et al., 

2018) 

Sulphation 

SULT 

↓ Activity for 

  Lithocolate to 

~45% 

  Estrone to 

~28% 

Lithocolate and estrone 

metabolism were 

determined in supernatant 

fractions from PBC 

patients 

-- -- (Iqbal, et al., 1990) 

↓ Activity for 

 2-naphthol to 

~41% 

 Ethinylestradiol 

to ~47% 

Activity towards 2-

naphthol and 

ethinyloestradiol as 

substrates 

-- -- 
(Pacifici, et al., 

1990) 

-- -- 
↓ to (33% - 74%) 

based on the type of 

Quantified DHEA ST in human liver 

cytosol using a semiquantitative gel 

(Elekima, et al., 

2000) 
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cirrhosis and the 

method of 

quantification 

electrophoresis (SDS-PAGE)/ 

immunoblotting method, and ELISA.  

Acetylation ↓ Activity to 22% 
Activity towards p-

aminobenzoic acid 
-- -- 

(Pacifici, et al., 

1990) 

Glutathione 

conjugation 
↓ Activity to 29% 

Activity towards BPO as 

substrates 
-- -- 

(Pacifici, et al., 

1990) 

Thiomethylation ↓ Activity to 25% 
Activity towards 

mercaptoethanol 
-- -- 

(Pacifici, et al., 

1990) 

± No significant change, ↓ Significant decrease relative to healthy control, ↑ significant increase relative to healthy control, DHEA ST: 

Dehydroepiandro-steronesulphotransferase, SDS-PAGE: sodium dodecyl sulphate/polyacrylamide gel electrophoresis, ELISA: enzyme-linked 

immunosorbent assay. BPO: 4,5-dihydro-benzo(a)-pyrene-4,5-oxide. 
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4.1. Abstract 

In-vitro in-vivo extrapolation (IVIVE) enables prediction of in vivo clinical outcomes related 

to drug exposure in various populations from in vitro data. Prudent IVIVE requires scalars 

specific to the biological characteristics of the system in each population. This study 

determined experimentally, for the first time, scalars in liver samples from patients with 

varying degrees of cirrhosis. Microsomal and cytosolic fractions were extracted from 13 non-

cirrhotic and 32 cirrhotic livers (6 mild, 13 moderate, and 13 severe, based on Child-Pugh 

Score). Fractional protein content was determined and cytochrome P450 reductase activity was 

used to correct for microsomal protein loss.  Although the median microsomal protein per gram 

liver (MPPGL) in mild, moderate, and severe cirrhosis (26.2, 32.4, and 30.8 mg/g, respectively) 

seemed lower than control livers (36.6 mg/g), differences were not statistically significant 

(Kruskal-Wallis test, p > 0.05). Corresponding values for cytosolic protein per gram liver 

(CPPGL) were  88.2, 67.9, 62.2 and 75.4 (mg/g) for mild, moderate, sever cirrhosis and control 

livers, respectively, with statistically lower values for server vs controls (Mann-Whitney p = 

0.006). Cirrhosis associated with cancer showed lower MPPGL (24.8 mg/g) than cirrhosis 

associated with cholestasis (38.3 mg/g, p = 0.003). Physiologically-based pharmacokinetic 

simulations with disease-specific scalars captured cirrhosis impact on exposure to afentanil, 

metoprolol, midazolam, and ethinylestradiol. These experimentally-determined scalars should 

alleviate the need for indirect scaling using functional liver volume. Scaling factors in cirrhosis 

might be a reflection of the aetiology rather than the disease severity. Hence, bundling various 

cirrhotic conditions under the same umbrella when predicting hepatic impairment impact 

should be revisited. 
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4.2. Introduction 

Cirrhosis is a histological end-point of most chronic liver diseases. It is characterised by 

pathological deposition of extra-cellular matrix, fibrosis, and impairments of liver functions, 

including metabolic activity. Chronic liver disease can be secondary to different aetiologies, 

such as alcoholic and non-alcoholic fatty livers, chronic biliary disease, viral infections, and 

other causes. Moreover, most hepatocellular carcinomas arise within chronic liver cirrhosis 

(Kanda, et al., 2019; Schuppan & Afdhal, 2008). Liver cirrhosis is commonly classified using 

Child-Pugh Score ranging from A (least severe) to C (most severe), based on synthetic liver 

function (prothrombin time, albumin, and bilirubin serum levels) and clinical liver function 

(ascites and encephalopathy scores). This classification gives prognostic information on 

survival and assessment of disease severity. However, it is not predictive of metabolic capacity 

for drug hepatic elimination (EMA, 2005; Pugh, et al., 1973), and consequently, may not be 

useful in predicting the necessary drug dose changes in patients suffering from hepatic 

impairment.     

Physiologically-based pharmacokinetic (PBPK) modelling offers the possibility of model-

informed precision dosing (MIPD) in cases where drug label information is not provided for 

vulnerable patients (Darwich, et al., 2017). To achieve MIPD, PBPK modelling requires 

information on how systems’ parameters change in these special patient populations along with 

drug-specific parameters. The prediction of in vivo hepatic clearance from in-vitro data using 

in-vitro in-vivo extrapolation (IVIVE) has been reported to considerably improve drug 

exposure predictions within PBPK modelling framework (Chen, et al., 2012). 

Scaling from in vitro enriched sub-cellular fractions, such as microsomes or the cytosol, is 

common in IVIVE (Houston, 1994). In most cases, these scaling approaches rely on robust 

estimates of biologically-relevant scaling factors, including protein content of sub-cellular 
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fractions from the tissue of interest. Microsomal protein per gram liver (MPPGL) for healthy 

human liver ranges from 32 to 40 mg/g and is commonly used for IVIVE of drug metabolism 

data (Barter, et al., 2007). Factors such as age and sex that contribute to differences in MPPGL 

have been highlighted (Barter, et al., 2008). Additional variability in reported values originate 

from differences in specificities of the markers used for correction for protein loss during the 

preparation of subcellular fractions and in the design of these studies (Harwood, et al., 2014). 

Cytochrome P450 content and P450 reductase activity are frequently used as markers for 

microsomal protein loss (Barter, et al., 2008). Activities of glutathione-S-transferase or alcohol 

dehydrogenase can be used to estimate loss in cytosolic protein per gram liver, CPPGL (Cubitt, 

et al., 2011).  

Although scaling factors have been reported in human liver samples obtained from healthy 

individuals and certain patient populations (Barter, et al., 2007; De Bock, et al., 2014), data are 

lacking for liver cirrhosis, particularly with reference to disease severity (Johnson, et al., 2010) 

and the cause of cirrhosis. Previous attempts to incorporate fractional protein content in severe 

cirrhosis compared to healthy livers did not consider any estimate of protein recovery and 

reported the values in milligrams of microsomal protein while assuming these recoveries to be 

similar between cirrhotic and non-cirrhotic tissue (Prasad, et al., 2018; Wang, et al., 2016).  

Current practice of scaling in vitro data for prediction of hepatic clearance in cirrhosis 

population is based on functional liver mass (Edginton & Willmann, 2008; Johnson, et al., 

2010; Prasad, et al., 2018). This empirical parameter is derived using a radio-ligand that binds 

to a surface antigen on viable cells (Miki, et al., 2001) along with some computed tomography 

(CT) image processing (Matsui, et al., 1996). It assumes that viable cells in diseased livers 

retain similar microsomal and cytosolic protein yields as viable healthy hepatocytes (intact cell 

theory), which has not been confirmed (Morgan & McLean, 1995). Moreover, this assumption 

does not account for changes in overall liver weight in cirrhosis relative to healthy liver 
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(Supplementary Table 4.1). At its best, this approach can be considered as an indirect way of 

estimating scaling factors with no differentiations for various sub-categories of cirrhosis.  

Therefore, there is an urgent need for determining cirrhosis-specific MPPGL and CPPGL 

values that can serve as a biological mean for PBPK-based extrapolation from normal to 

diseased liver function, thereby enabling model informed dose adjustments for the cirrhosis 

population. To our knowledge, this is the first report to provide such experimental data which 

will facilitate accurate prediction of clearance and help in MIPD in cirrhosis populations. It 

also provides preliminary links between these scalars and disease severity as well as 

causes/associated diseases with cirrhosis. Applicability of the generated data is demonstrated 

in PBPK simulations using different probe drugs. 

4.3. Methods 

4.3.1. Liver Samples and Donor Characteristics 

Liver samples, obtained from explanted livers from patients with cirrhosis undergoing liver 

transplantation or liver resection, were provided by Cambridge University Hospitals (CUH) 

tissue bank, Cambridge, UK. Cirrhotic (n = 32). Histologically non-cirrhotic/normal control 

liver tissues were obtained from tissue adjacent to metastatic tumours after surgical liver 

resection (n =13). Anonymised demographic and clinical data, are provided in Supplementary 

Table 4.2 and Supplementary Table 4.3. This study is covered by ethical Health Research 

Authority and Health and Care Research Wales Approval (Research Ethics Committees 

Reference 18/LO/1969). 

The samples were categorised for severity of cirrhosis according to Child-Pugh system using 

clinical data extracted from the records related to each donor into Child-Pugh A for mild 

severity (CP-A, n = 6), Child-Pugh B for moderate severity (CP-B, n = 13), Child-Pugh C for 

severe stage (CP-C, n = 13) (see Supplementary Table 4.3 for details). The power of the study 
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(80%) had been estimated based on sample size of ≥10 per each group to detect at least a 

12 mg/g difference in scalars values (confidence level 95%). The above difference deemed to 

be of adequate clinical significance. Post-hoc analysis of data (see Results section) indicated 

that the differences in many cases were lower than the level that we could statistically detect 

with the current sample size. 

The number of cirrhosis liver samples was higher than the control, allowing assessment of 

hypothesis regarding the possible effect of the aetiology of the disease or co-existing liver 

conditions on the scalars. Using patient diagnosis data, the samples were further classified into 

the following groups: cirrhosis associated with cancer, biliary or cholestatic liver disease, and 

alcoholic and non-alcoholic fatty liver disease (NAFLD).  

4.3.2. Preparation of Microsomal and Cytosolic Fractions 

Microsomal fractions were isolated from control and cirrhotic liver samples using differential 

centrifugation (Graham, 2002) (Figure 4.1). Homogenisation of the liver tissue (50-380 mg) 

was performed on ice using a mechanical homogenizer (CamLab, Cambridge, UK) in 

potassium phosphate buffer (0.25 M, pH 7.25, and 1.15% KCl) at 10 ml buffer per gram of 

liver tissue. The homogenate was centrifuged with an OptimaTM L-100 ultracentrifuge 

(Beckman Coulter, Inc., Fullerton, CA) at 10,000 g for 20 min at 4°C, and the supernatant (S9 

fraction) was retained and centrifuged at 100,000 g for 75 min at 4°C. The supernatant (cytosol) 

was retained and the microsomal pellet was suspended at 1 ml of storage buffer (0.25 M 

potassium phosphate, pH 7.25) per gram of liver tissue. Homogenate, cytosol and microsomal 

fractions from each sample were stored at -80°C.  

4.3.3. Determination of the Total Protein Content 

Protein content in all fractions was determined using bicinchoninic acid (BCA) assay (Pierce® 

Microplate BCA Protein Assay Kit – Reducing Agent Compatible). Each sample fraction was 
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assessed in triplicate and the mean of the three readings was calculated. The protein 

concentrations of each fraction were used to determine the amount of protein per gram liver, 

as described below.  

4.3.4. NADPH Cytochrome P450 Reductase Activity 

MPPGL was corrected for loss due to centrifugation based on cytochrome P450 reductase 

activity, a marker of microsomal membrane.  The choice of the activity assay compatible with 

bilirubin was necessary because a subset of the samples were from patients with biliary disease. 

Bilirubin shows absorption at 453 nm (Vreman, et al., 2019), which interferes with the 

absorbance results of the dithionite difference method obtained at 450 nm (De Bock, et al., 

2014). The NADPH cytochrome P450 reductase (NADPH-P450 reductase) method relies on 

measurement of absorbance at a different wavelength (550 nm) and was therefore preferred 

(Matsubara, et al., 1976; Omura & Sato, 1964), and was used as previously described (Achour, 

et al., 2011; Guengerich, et al., 2009). Briefly, microsomal or homogenate fraction from 1 mg 

of tissue was mixed in 1.5 ml cuvette with 80 µl of 0.5 mM oxidised equine cytochrome c 

(Sigma-Aldrich, Poole, UK), 900 μl of potassium phosphate buffer and 10 μl of 1 mM 

potassium cyanide. Baseline absorbance was measured at 550 nm using the kinetic mode of a 

Jenway 7315 UV-Visible spectrophotometer (Camlab Ltd., Cambridge, UK) every 20 seconds 

for 2 min The reaction was started by adding 10 μl of 10 mM NADPH and the absorbance (A) 

was measured every 20 seconds for 3 min. The activity of NADPH-P450 reductase represented 

in units per millilitre of the fraction (homogenate or microsome) was determined by calculating 

the slope of the linear phase of the curve after the addition of NADPH and applying the 

following equation. 

Units/mg tissue=
∆𝐴550/ min  × 𝑑𝑖𝑙  × 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑣𝑜𝑙𝑢𝑚𝑒 𝑖𝑛 𝑚𝑙

21.1 × 𝐸𝑛𝑧𝑣𝑜𝑙
                                               (1) 
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Where one unit will reduce 1 μmol of oxidised cytochrome c in the presence of 100 μM 

NADPH per minute at pH 7.8 at 25⁰C; ΔA550/min = the rate of change in the absorbance at 

550 nm = Δ Asample – Δ Ablank; dil is the dilution factor of the original enzyme sample; Enzvol is 

the volume of the sample equivalent to 1 mg of tissue (millilitre) and 21.1 is the extinction 

coefficient (εmM) for reduced cytochrome c.  

The ratio of the microsomal slope to the homogenate slope per gram of tissue indicates the 

fraction of recovered microsomal protein and is used to correct MPPGL values for each 

individual liver sample (Eq. 2; Figure 4.1) (Barter, et al., 2008).  

   MPPGL (mg/g) = 
𝑃𝑟𝑜𝑡𝑒𝑖𝑛 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑖𝑛 𝑚𝑔 𝑝𝑒𝑟 𝑔 𝑜𝑓 𝑡𝑖𝑠𝑠𝑢𝑒

𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑓𝑎𝑐𝑡𝑜𝑟
                                                              (2)  

The ratio of the slopes of the microsomes and the homogenate per 1 mg total protein was used 

to calculate enrichment in the microsomal fraction. 

 
Figure 4.1. Preparation of sub-cellular fractions from liver tissue samples. Microsomal 

protein loss is estimated by cytochrome P450 reductase activity to correct microsomal protein 

per gram liver (MPPGL). CPPGL and HomPPGL are the uncorrected cytosol and 

homogenate protein contents per gram of liver, respectively. 
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4.3.5. Assessing the Effect of Disease Severity and Aetiology or Underlying Liver 

Conditions with Cirrhosis 

The median values of the scalars (MPPGL, CPPGL, and homogenate protein per gram of 

liver/HomPPGL) from six mild, 13 moderate and 13 severe cirrhosis samples were compared 

with the control set (n = 13).  Further, the cirrhotic samples were stratified according to co-

existing liver diseases into four different groups: NAFLD (n = 8), hepatocellular carcinoma 

(HCC, n = 9), alcoholic liver injury (n = 2), and biliary disease or cholestasis (n = 13). The 

MPPGL and CPPGL values in these different groups were compared against one another and 

to normal controls.  

4.3.6. Statistical Data Analysis 

Statistical analysis of the data was carried out and graphs were created using GraphPad Prism 

version 7.0 (La Jolla, California USA). Shapiro-Wilk normality test was applied to assess 

normality of distribution of the data. Data sets with p values >0.05 were considered to be 

normally distributed. 

For reporting NADPH-P450 reductase activities, mean ± SD was used as normal distribution 

was confirmed in all groups. For all other data, in the absence of normal distribution, non-

parametric statistics were used, and results were presented as median and 95% confidence 

interval (CI). Equality of variance was assessed by a modified Levene’s test (Brown-Forsythe 

test) at 0.05 significance level.  

The differences in median values of MPPGL and CPPGL between the control group and the 

three levels of disease severity (mild, moderate, and severe) were assessed using Kruskal-

Wallis ANOVA test with statistical significance level set at 0.05. If this test indicated 

statistically significant differences, post hoc Mann-Whitney test was performed for all pairwise 

comparisons with statistical significance considered after Bonferroni correction at *p < 0.0085 
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and **p < 0.0017 (six iteration). Similarly, Kruskal-Wallis test and Mann-Whitney tests with 

Bonferroni correction were performed to compare the data for the control group and four 

different underlying disease states. For post hoc analysis in this case, *p < 0.005 and 

**p < 0.001 were considered statistically significant (10 iteration).  

Mann-Whitney test was performed at a 0.05 significance level to compare MPPGL and CPPGL 

values between male and female donors within either control or disease groups. Correlation 

with age of the donors was assessed using Spearman correlation test. 

4.3.7. PBPK Simulations to Assess the Impact of Scalars for Cirrhotic Liver 

PBPK simulations were performed to assess the impact of the experimentally determined 

scalars on drug exposure. Substrates predominantly metabolised by the liver were selected. 

Three cytochrome P450 (CYP) substrates with different hepatic extraction ratios (ERs)- 

namely, alfentanil (low ER), metoprolol (high ER) and midazolam (intermediate ER)- were 

selected from the compound library in Simcyp® Simulator V18 Release 1 (Certara, Sheffield, 

UK) to compare the impact of three different methods of scaling on their predicted clearance 

and exposure. No modifications were made to metoprolol and midazolam compound files. 

However, for alfentanil, the full PBPK distribution model recently described and verified in 

healthy adults by Abduljalil et al., (2020) was used (See supplementary information for more 

details).Alfentanil is mainly metabolised by CYP3A4, midazolam is a substrate of CYP3A4 

and uridine diphosphate (UDP)-glucuronosyltransferase (UGT) 1A4, whereas metoprolol is 

mainly metabolised by CYP3A4/2D6. All these enzymes are microsomal. 

Firstly, the model was validated in healthy population then extrapolated to cirrhosis populations 

using three different methods of scaling (Figure 4.2). 

Method 1 (CS; Cirrhosis-specific scalar, no liver size adjustment) uses cirrhosis-specific 

scaling factor values (MPPGL) from the current study and normal liver volume (1.65 L). 
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Method 2 (CS+SA; Cirrhosis-specific scalar +whole liver size adjustment) uses cirrhosis-

specific scaling factor values (MPPGL) from the current study and the average liver volume 

corresponding to each Child-Pugh grade (1.04 fold of normal liver volume for CP-A, 0.87 of 

normal liver volume for CP-B, 0.68 of normal liver volume for CP-C ) (Ozaki, et al., 2016).  

Method 3 (EFLV; Empirical functional liver volume + scalars from healthy population) 

uses Equation 3 below from Barter et al., (2008) that describes relationship between MPPGL 

and age (in years) in healthy subjects, and accounts for the change in the functional hepatocyte 

volume as a reflection of the functional reserve of the liver (1.469 L for CP-A, 1.17 L for CP-

B, and 0.94 L for CP-C). These functional hepatocyte volumes are implemented into the 

simulator according to unpublished meta-analysis of tissue imaging literature data (Li, 2003; 

Lin, et al., 1998; Reddy, et al., 2018; Shan, et al., 2005; Zhu, 1999). 

MPPGL (mg/g)  = 10(𝐶0+ 𝐶1∗𝑎𝑔𝑒+𝐶2∗𝑎𝑔𝑒2+ 𝐶3∗𝑎𝑔𝑒3)                                                  (3) 

Where, C0 = 1.407, C1 = 0.0158, C2 = -0.00038, C3 = 0.0000024. 

For Methods 1 and 2, the coefficients of variation (CV) in MPPGL for mild, moderate, and 

severe cirrhosis populations were calculated from the SD and mean for CP-A, and CP-B groups 

in this study; for Method 3, the CV was 26.9% (Barter, et al., 2008).  

To assess the impact of change in the CPPGL on drug exposure, ethinylestradiol was selected 

from Simcyp compound files library as a substrate of both microsomal enzymes (mainly 

CYP3A4, 2C9, and 1A2 and UGT1A1), and a cytosolic sulfotransferase 1E1 (SULT1E1) 

(Zhang, et al., 2007). The compound file supplied with the software was altered to allow 

inclusion of cytosolic elimination (Supplementary Table 4.6). All hepatic intrinsic clearance 

other than those for CYPs and UGTs were assumed to be cytosolic (by SULT1E1). So, the 

additional human liver microsomal (HLM) clearance obtained from back-calculation from the 

intravenous clearance via the well-stirred liver model and reported by Ezuruike et al., (2018) 
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were converted to human liver cytosol (HLC) intrinsic clearance after the correction with 

relative ratio of healthy MPPGL to healthy CPPGL values. 

The three cirrhosis scaling methods mentioned above were also applied for ethinylestradiol in 

addition to using the current study’s median CPPGL and CV values corresponding to each CP 

group in Methods 1 and 2. The mean (CV) CPPGL for a healthy virtual population of 81.03 

mg/g (21.47%) (Mallick, et al., 2020) was applied in the healthy population simulations and in 

scaling Method 3 for the cirrhosis populations.  

The demographic, anatomic, and physiologic parameters that were used in the creation of 

virtual populations (healthy and disease) were based on Simcyp population libraries with no 

change apart from the scaling parameters illustrated above for the three methods 

(Supplementary Table 4.9). Simulations of virtual or mixed virtual populations were performed 

with 10 trials. The number of subjects in each trial, age range and proportion of females were 

consistent with clinical studies with the drugs from which observed data were derived 

(Supplementary Table 4.5).  For all models, non-specific binding in microsomes or hepatocytes 

from diseased livers were assumed to be similar to healthy livers. In the case of ethinylestradiol, 

no clinical data were available for the cirrhosis groups; therefore, a trial design of 10 subjects 

per trial, age range 21-23 years, and 100% females was used. The arithmetic mean of plasma 

concentration-time profile for the 10 trials per simulation was plotted using Microsoft Excel. 

The average AUC0-t of the 10 simulation trials for each simulation method was calculated for 

each drug using the linear trapezoidal method. Average AUC∞ was used only for metoprolol 

to allow comparison with clinical data. 

Predictions within 1.5-fold range of the observed AUC were considered acceptable for both 

healthy and cirrhosis simulations. The ratios of AUC in the cirrhosis population to the AUC in 

healthy population (AUCR) was reported for each scaling method. Then, the ratio of predicted 
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AUCR to the observed AUCR (AUCR_pred/AUCR_obs) was calculated to evaluate the ability 

of the model to capture the disease effect (Figure 4.2). Any difference in the predicted cirrhosis 

AUC values less than 25% between different scaling methods was considered negligible. Doses 

similar to those used in the corresponding clinical studies were chosen for alfentanil, 

metoprolol, and midazolam simulations (Supplementary Table 4.5). Input parameters for each 

drug are reported in Supplementary Table 4.6. 

Figure 4.2. A Schematic illustration showing the workflow of PBPK simulations for 

alfentanil, midazolam, metoprolol and ethinylestradiol to validate the simulator’s built-in 

model and extrapolate to cirrhosis populations using empirical scaling with functional liver 
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volume compared to scaling with current study cirrhosis-specific scalars (MPPGL/CPPGL). 

AUCR; ratio of area under the plasma concentration-time curve in cirrhosis relative to 

healthy population. 

4.4. Results 

In this study, homogenate, microsomal, and cytosol protein concentrations were measured in 

relevant fractions from healthy livers (n = 13) and in livers with varying degrees of cirrhosis 

(n = 32) (Supplementary Table 4.7). The median and range of the uncorrected protein contents 

per gram tissue for each fraction (microsomes, cytosol, and homogenate) in control and 

cirrhotic groups were calculated based on measured concentrations as shown in Supplementary 

Table 4.8. 

4.4.1. Recovery and Enrichment of Microsomal Fractions 

Cytochrome P450 reductase activity in homogenate and microsomal fractions were measured 

for each sample (Supplementary Table 4.4). Data for all groups (control as well as mild, 

moderate, and severe cirrhosis) showed normal distribution (p >0.05 with Shapiro-Wilk 

normality test). The mean ± SD of activity in homogenate fraction for the control group was 

3.4 ± 1.13 units/mg of tissue, and it decreased in mild, moderate, and severe cirrhosis (2.3±0.34, 

2.7±0.95, and 2±0.66 units/mg of tissue, respectively). The recovery and enrichment ratios 

were measured based on P450 reductase activity using the ratio of the slope associated with 

the microsomal fraction to the slope for the homogenate corresponding to 1 mg of tissue or 1 

mg of total protein, respectively, for each individual sample. Recovery ratios ranged from 20 

to 90% (mean of 50.8%), whereas the enrichment factor ranged from 1.6- to 9.0-fold (mean 

~3.0-fold). 
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4.4.2. MPPGL and CPPGL Values for Control and Cirrhosis Samples 

MPPGL values for the control group did not show normal distribution (Shapiro-Wilk test, 

p = 0.005). Similarly, CPPGL data for the CP-C group, NAFLD, and cholestasis-associated 

cirrhosis groups were not normally distributed (p < 0.01). Therefore, non-parametric statistics 

were applied for all comparisons. Using Brown-Forsythe test, MPPGL and CPPGL values 

among all groups with different Child-Pugh scores and causes of disease showed homogeneity 

of variance (p  > 0.05), and accordingly, Kruskal-Wallis and post hoc Mann-Whitney tests were 

used for comparison between groups. 

Although median MPPGL values in all three cirrhosis groups were lower compared to the 

control group (Figure 4.3), these were not statistically significant (Kruskal-Wallis test, 

p = 0.054).  

Median MPPGL values in the disease sets were 26.2 (95% CI 12.9- 42.2 mg/g), 32.4 (95% CI 

24.8- 42.4 mg/g), and 30.8 (95% CI 25.1- 38.3 mg/g) for mild, moderate, and severe cirrhosis, 

respectively, compared to 36.6 (95% CI 33- 49.5 mg/g) for the control group.  

There was an apparent gradual decrease in median CPPGL with increasing disease severity. 

Kruskal-Wallis ANOVA test showed a significant difference among the four groups 

(p = 0.008). CPPGL median values were 88.2 (95% CI 61.4- 105.5 mg/g; p = 0.28) and 67.9 

(95% CI 58.3- 76.9 mg/g; p = 0.07) in the mild and moderate cirrhosis groups, respectively, 

compared to 75.4 (95% CI 63.2- 89.5 mg/g) for the control group. The CPPGL median value 

for severe cirrhosis group was 62.2 (95% CI 58.1- 64.9 mg/g), which was significantly lower 

than the control group (p = 0.006 *). The CPPGL median values of the three groups of cirrhosis 

were not significantly different from each other (p > 0.0085). 
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Figure 4.3. Protein content per gram of liver for microsomal (A) and cytosolic (B) fractions 

(MPPGL and CPPGL) for samples from control, mild cirrhosis (Child-Pugh A), moderate 

cirrhosis (Child-Pugh B), and severe cirrhosis (Child-Pugh C) groups. Horizontal lines 

represent median values, and error bars represent 95% confidence intervals. The asterisk 

(*) represents a statistically significant difference in the median of the severe cirrhotic group 

relative to control determined (Mann-Whitney test, p = 0.006). For cirrhosis groups, different 

symbols refer to different disease severities, and different colours refer to the primary 

concomitant liver disease. NAFLD, non-alcoholic fatty liver disease.  

4.4.3. Effects of Underlying Liver Disease on Scaling Factors 

MPPGL and CPPGL were compared for different groups of samples classified according to 

the most likely cause of liver cirrhosis and/or coexisting disease conditions related to cirrhosis 

(Figure 4.4). Kruskal-Wallis test showed significant differences in median MPPGL values 

among all groups (p = 0.001).  

Cirrhosis groups associated with NAFLD and cancer showed significantly lower median 

MPPGL values of 27.2 (95% CI 20- 36 mg/g; p value of Mann-Whitney test compared to 

control = 0.003*), and 24.8 (95% CI 22- 32.8 mg/g; p = 0.0009 **), respectively (Figure 
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4.4 A), compared to control group median MPPGL at 36.6 (95% CI 33- 49.5 mg/g), whereas 

MPPGL for cirrhosis with cholestasis and alcoholic liver was comparable to the control groups 

with median values of 38.3 (95% CI 29.5- 42.4 mg/g; p = 0.96), and 31.3 mg/g (95% CI 30.2- 

32.4 mg/g; p = 0.08), respectively. 

Among cirrhosis groups, only cancer-associated cirrhosis showed statistically significant lower 

median MPPGL compared to cholestasis-cirrhosis group (p = 0.003*).  

Although Kruskal-Wallis test showed p value = 0.009 (<0.05), Mann-Whitney pairwise 

comparisons with Bonferroni correction showed no significant differences in median CPPGL 

values among all groups. CPPGL median values for cirrhosis groups associated with 

cholestasis, NAFLD, alcoholic liver injury, and cancer were 60.7 (95% CI  56.7- 68.9 mg/g; 

p = 0.01), 66.4 (95% CI  61.7- 87.5 mg/g; p = 0.12), 59.3 (95% CI  58.3- 60.2 mg/g; p = 0.08), 

78.9 (95% CI  66.9- 94.4 mg/g; p = 0.74), respectively (Figure 4.4 B), compared to the control 

group at 75.4 (95% CI  63.2- 89.5 mg/g).  

 

Figure 4.4. Differences in median MPPGL (A) and CPPGL (B) values between groups of 

cirrhotic livers with different underlying pathologies and associated diseases. Cholestasis, 
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cirrhosis with any biliary/cholestatic liver disease; NAFLD, cirrhosis with non-alcoholic 

fatty liver disease; Alcoholic SH, cirrhosis with alcoholic steatohepatitis; Cancer, cirrhosis 

with hepatocellular carcinoma. Horizontal lines represent median values and error bars 

represent 95% confidence intervals. *, and ** represent statistically significant differences 

between different groups at p < 0.005, and p < 0.0025, respectively. 

4.4.4. Impact of Demographics on Scaling Factors 

Among the 13 histologically normal liver samples, four were from female donors. The age 

range of all control liver donors was from 36 to 83 years, with a median age of 71 years. For 

the 32 cirrhosis livers, the median age of donors was 61 years (from 39 to 75 years), and 13 

were females (Supplementary Table 4.2 and Supplementary Table 4.3).  

Non-parametric Spearman correlation between age and MPPGL or CPPGL in both control and 

diseased groups was weak (Rs = -0.11 and -0.40 for the control group and 0.02 and 0.20 for 

the diseased group, respectively, p > 0.05). Differences in MPPGL and CPPGL values between 

males and females were not significant in control or disease groups (Mann-Whitney test, 

p > 0.05). 

4.4.5. Comparison of Scaling in the Current Study with Previous Scaling Methods 

Previous scaling methods (Edginton, et al., 2008; Johnson, et al., 2010; Prasad, et al., 2018) 

used the difference in functional liver volume because of unavailability of experimental 

MPPGL values for cirrhosis populations (Supplementary Table 4.1). For MPPGL-based 

scaling methods, the ratios of the scalars from the current study relative to control were 

comparable to corresponding ratios with the functional liver volume especially for moderate 

and severe cirrhosis populations (Table 4.1).  

Table 4.1. Comparing MPPGL-based scaling factors for mild, moderate, and severe cirrhosis 

relative to control from the current study with empirical scaling methodology 
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Population 

Scalar from the current study 

(MPPGL_Population × Total liver 

volume_Population
*) 

Relative to healthy population 

Empirical scalar 

 (Healthy MPPGL × Functional liver 

volume_population) Relative to healthy population 

(Johnson, et al., 

2010) 

Simcyp  V18 

& V19** 

Simcyp 

V20** 

Healthy 1 1 1 1 

Cirrhosis Child-Pugh A 0.74 0.81 0.89 0.86 

Cirrhosis Child-Pugh B 0.77 0.65 0.71 0.71 

Cirrhosis Child-Pugh C 0.57 0.53 0.61 0.59 

*From (Ozaki, et al., 2016), ** Unpublished meta-analyses of literature functional liver volume data 

from imaging techniques (Li, 2003; Lin, et al., 1998; Reddy, et al., 2018; Shan, et al., 2005; Zhu, 1999) 

via personal communication with Trevor Johnson, Simcyp, Sheffield, UK. 

4.4.6. PBPK Simulations Using the Measured Scaling Factors 

Figure 4.5 shows alfentanil simulations in healthy population and in mixed virtual cirrhosis 

populations (CP-A, one individual; CP-B, seven individuals; CP-C, three individuals). In 

cirrhosis simulations, the three scaling methods were applied and compared. The three methods 

showed average AUC0-10h within 1.5-fold of observed values obtained from a previous study 

(Ferrier, et al., 1985) (Figure 4.5, and Table 4.2). The relative difference in 

AUCR_pred/AUCR_obs ratio among all simulations with the three different scaling methods 

did not exceed 17% (Table 4.2).  

Table 4.2. Measures of alfentanil model predictive performance in healthy and cirrhosis 

populations using three in-vitro in-vivo clearance scaling methods after a single 0.05 mg/kg 

intravenous bolus dose.  

Population (method of scaling) 

AUC_pred 

(ng.h/ml) 

AUC_Obs 

(ng.h/ml)* 

Model predictability of disease 

impact 

AUCR_pred /AUCR_obs 

Healthy 296 269 NA 
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Cirrhosis A, B, and C  (CS) 499 521 0.87 

Cirrhosis A, B, and C  (CS+SA) 545 521 0.95 

Cirrhosis A, B, and C  (EFLV) 586 521 1.02 

A, B, and C refer to a mixed population with different Child-Pugh scores; AUCR_pred/AUCR_obs, A 

ratio representing model predictability of disease impact; CS, Cirrhosis population-specific scalar from 

current study and normal liver size; CS+SA, Cirrhosis population-specific scalar + liver size 

adjustment; EFLV, Empirical functional liver volume with scalars from healthy population; AUCR, 

AUCcirrhosis/AUChealthy; pred, Predicted value from the simulation. *The observed values were derived 

from (Ferrier, et al., 1985). NA; Not applicable. 

 
Figure 4.5. Alfentanil plasma concentration-time profile following a single 0.05 mg/kg 

intravenous bolus dose in healthy (black line) and cirrhosis populations (coloured dashed 

lines) with three different in-vitro in-vivo scaling methods (CS, Cirrhosis population-specific 

scalar from the current study + normal liver size; CS+SA, Cirrhosis population-specific 

scalar + liver size adjustment; EFLV, Empirical functional liver volume with scalars from 

healthy population). Symbols represent observed clinical data from healthy individuals and 
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cirrhosis patients (mixed CP-A, -B, and -C) (Ferrier, et al., 1985). Error bars represent the 

standard deviation from the mean observed data. 

For metoprolol, the predicted AUC0-∞ for healthy populations was within 1.5 fold of the 

corresponding observed value from a previous study (Regårdh, et al., 1981). Regårdh, et al. 

also reported metoprolol pharmacokinetic data for patients with cirrhosis, although there were 

no specific data in this report on the Child-Pugh score for these cirrhotic individuals. Therefore, 

simulations for mild, moderate, and severe cirrhosis were performed separately with the three 

scaling methods, and each was compared with the clinical data of Regårdh, et al., (1981) 

(Figure 4.6). For the mild cirrhosis population only, the AUCR_pred/AUCR_obs ratio was 

close to unity; the difference in these ratios were less than 8% for the three methods of scaling 

(Table 4.3). For moderate and severe populations, the CS method showed modest deviations 

in relative disease impact factor from CS+SV (9% and 20%, respectively) and EFLV (19% and 

25%, respectively) methods. Scaling with the CS+SA method showed comparable 

predictability to EFLV method, with differences within 15% in all degrees of the disease 

severity. 

Table 4.3. Measures of metoprolol model predictive performance in healthy and cirrhosis 

populations using three in-vitro in-vivo clearance scaling methods after intravenous 

infusion with 20 mg metoprolol tartrate over 10 min. 

Population/ 

method of scaling 
AUC_pred  (ng.h/ml) 

AUC_Obs*  

(ng.h/ml) 

 

Model predictability of 

disease impact 

AUCR_pred/AUCR_obs 

Healthy 363 379 NA 

Cirrhosis 

CP-A 

CS 743 

697 

1.11 

CS+SA 725 1.09 

EFLV 689 1.03 

Cirrhosis 

CP-B 

CS 1056 1.58 

CS+SA 1148 1.72 

EFLV 1318 1.97 

CS 1907 2.85 
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Cirrhosis 

CP-C 

CS+SA 2389 3.58 

EFLV 2538 3.8 

AUCR, AUC_cirrhosis/AUC_healthy; pred, Predicted value from the simulation; 

AUCR_pred/AUCR_obs, A ratio representing model predictability of disease impact; * obs, The 

observed value for both healthy and cirrhosis groups (one value for all diseased groups as there was no 

information on the Child-Pugh grade) were derived from (Regårdh, et al., 1981); CS, Cirrhosis 

population-specific scalar from current study and normal liver size; CS+SA, Cirrhosis population-

specific scalar + liver size adjustment; EFLV, Empirical functional liver volume with scalars from 

healthy population; NA, Not applicable. 

 

Figure 4.6. Metoprolol plasma concentration-time profiles after intravenous infusion in 

healthy (black line) versus (A) Child-Pugh A, (B) Child-Pugh B, (C) Child-Pugh C cirrhosis 

populations (coloured dashed lines) with three different in-vitro in-vivo scaling methods (CS, 

Cirrhosis population-specific scalar from current study and normal liver size; CS+SA, 

Cirrhosis population-specific scalar + liver size adjustment; EFLV, Empirical functional 

liver volume with scalars from healthy population). Symbols represent observed clinical data 

from healthy individuals and cirrhosis patients (Regårdh, et al., 1981). Error bars represent 

the standard deviation from the mean observed data. 

Good predictive performance of the PBPK model was also noted for midazolam, in both 

healthy and cirrhosis populations (within 1.5 fold of the observed AUC0-24h values), for 
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intravenous and oral routes of administration (Figure 4.7). The clinical data derived from a 

previous study (Pentikäinen, et al., 1989) represented a mixed cirrhosis population consisting 

of both CP-B (n = 5) and CP-C (n = 2) patients. The differences in AUCR_pred/AUCR_obs 

among the three methods were within 20% for both intravenous and oral dosing (Table 4.4). 

Table 4.4. Measures of midazolam model predictive performance in healthy and cirrhosis 

populations using three in-vitro in-vivo clearance scaling methods after single intravenous 

bolus and oral doses.  

Population 

(method of scaling) 

Intravenous  bolus  

(7.5 mg single dose) 

Oral  

(15 mg single dose)  

AUC_pred 

(ng.h/ml) 

AUC_Obs 

(ng.h/ml) 

AUCR_pred

/AUCR_obs 

AUC_pred 

(ng.h/ml) 

AUC_Obs 

(ng.h/ml) 

AUCR_pred 

/AUCR_obs 

Healthy 303 298 NA 347 362 NA 

Cirrhosis CP-B & C  (CS) 522 543 0.95 522 576 0.95 

Cirrhosis CP-B & C  (CS+SA) 589 543 1.07 621 576 1.12 

Cirrhosis CP-B & C  (EFLV) 631 543 1.14 629 576 1.14 

AUCR, AUC_cirrhosis/AUC_healthy; pred, The predicted value from the simulation; obs, The 

observed value from the clinical study (Pentikäinen, et al., 1989); AUCR_pred/AUCR_obs, A ratio 

representing model predictability of disease impact; CS, Cirrhosis population-specific scalar from 

current study and normal liver size; CS+SA, Cirrhosis population-specific scalar + liver size 

adjustment; EFLV, Empirical functional liver volume with scalars from healthy population; NA, Not 

applicable. 
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Figure 4.7. Intravenous (A) and oral (B) observed and simulated midazolam plasma 

concentration-time profiles in in healthy (black line) and cirrhosis populations (coloured 

dashed lines) with three different in-vitro in-vivo scaling methods (CS, Cirrhosis population-

specific scalar from the current study and normal liver size; CS+SA, Cirrhosis population-

specific scalar + liver size adjustment; EFLV, Empirical functional liver volume with scalars 

from healthy population). Symbols represent observed clinical data from healthy individuals 

and cirrhosis patients (mixed CP-B and -C) (Pentikäinen, et al., 1989). Error bars represent 

the standard deviation from the mean observed data. 

Overall for MPPGL, at high severities of cirrhosis, the CS scaling method showed the highest 

predicted clearance compared to other scaling methods for all drugs evaluated, whereas EFLV 

showed the lowest predicted clearance. The CS+SV method was closer to EFLV scaling 

method than CS method in all scenarios. Nevertheless, these differences were effectively 

negligible (<25%).  

For ethinylestradiol, simulations were run with a single oral dose (0.05 mg) in healthy and 

mild, moderate, and severe cirrhosis populations. In the healthy population, the predicted 

AUC0-24 was within 1.5 fold of observed values derived from previous study (Back, et al., 

1979). Predicted AUC0-24 (AUC_pred) was 1.03 ng.h/ml (95% CI 1.01- 1.06 ng.h/ml). 
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AUC_obs in healthy populations was 1.048 ng.h/ml (95% CI 0.564- 1.53 ng.h/ml). Because of 

the lack of clinical data for single oral ethinylestradiol dosing in cirrhosis populations, only the 

simulations for the cirrhosis populations were presented in this study (Figure 4.8, and Table 

4.5). The differences in the predicted AUCR for the CS and CS+SV methods of scaling  relative 

to the EFLV method were 40% and 2% in mild, 8% and 1.4% in moderate, and 12.1% and 

12.4% in severe cirrhosis (Figure 4.8, and Table 4.5). The exposures predicted by CS+SA and 

EFLV methods were comparable, with lower differences than the CS method in all cirrhosis 

populations (Table 4.5). 

Table 4.5. Differences in the predicted impact of cirrhosis on ethinylestradiol exposure 

between three in-vitro in-vivo clearance scaling methods after 0.05 mg single oral dose. 

Population /Method of scaling AUC_pred   (ng.h/ml) % difference in disease 

impact (AUCR_pred) 

from EFLV method 

Healthy 1 NA 

Cirrhosis CP-A 

CS 2.2 40% 

CS+SA 1.6 2% 

EFLV 1.6 NA 

Cirrhosis CP-B 

CS 1.6 8% 

CS+SA 1.8 1% 

EFLV 1.8 NA 

Cirrhosis CP-C 

CS 37 12% 

CS+SA 51 12% 

EFLV 48 NA 

AUCR, AUC_cirrhosis/AUC_healthy; pred, Predicted value from the simulation; CS, Cirrhosis 

population-specific scalar from current study and normal liver size; CS+SA, Cirrhosis population-

specific scalar + liver size adjustment; EFLV, Empirical functional liver volume with scalars from 

healthy population; NA, Not applicable. 
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Figure 4.8. Simulated ethinylestradiol plasma concentration-time profiles following single 

0.05 mg oral dose in healthy (black line) versus (A) Child-Pugh A, (B) Child-Pugh B, and 

(C) Child-Pugh C cirrhosis populations (coloured dashed lines) with three different in-vitro 

in-vivo scaling methods (CS, Cirrhosis population-specific scalar from current study and 

normal liver size; CS+SA, Cirrhosis population-specific scalar + liver size adjustment; 

EFLV, Empirical functional liver volume with scalars from healthy population). Black 

squares represent observed clinical data from healthy individuals (Back, et al., 1979). Error 

bars represent the standard deviation from the mean observed data. 

4.5. Discussion 

Subcellular fractions are frequently used in in-vitro studies to assess the activity or the 

expression of different hepatic enzymes,  followed by IVIVE scaling  based on protein content 

per unit liver mass (MPPGL and CPPGL) (Barter, et al., 2007). Cirrhosis is a chronic hepatic 

disorder characterised by impaired drug and xenobiotic metabolism (Prasad, et al., 2018). 

There are different classification systems for the degree of cirrhosis, with the Child-Pugh being 

the most widely used for diagnosis as well as clinical pharmacokinetic studies and dose 

adjustment recommendations (Talal, et al., 2017). Information on the effects of hepatic 

impairment associated with cirrhosis on IVIVE scaling factors is lacking. Therefore, this study 

aimed to investigate, for the first time, the impact of various cirrhosis conditions on MPPGL 

and CPPGL.  
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The average activity of P450 reductase in the control group (0.097 ± 0.029 units/mg 

microsomal protein) was in agreement with reported values (Mishin, et al., 2014). The median 

MPPGL for controls (36.6 mg/g) was within the reported range for healthy human liver (Barter, 

et al., 2007). Although CPPGL was not corrected for loss, no major loss in the cytosol (soluble 

fraction) is expected during preparation. The median value for the control group (75.4 mg/g) 

was within the reported range of 45-134 mg/g (Cubitt, et al., 2011), and close to the range 

reported using organelle-specific markers, 65-75 mg/g (Xu, et al., 2018).  

Differences in MPPGL and CPPGL between male and female in both control and diseased 

groups were negligible, and correlation with age was weak, in agreement with published 

evidence from adult livers (Barter, et al., 2007, 2008). Moreover, the set of samples used in 

this study was obtained from the right lobe of the liver in order to allow comparison between 

scalar values; evaluation of any potential differences due to liver lobe heterogeneity were 

therefore beyond the scope of this study. 

Fewer CP-A samples were acquired than intended based on the power analysis. Clinical sample 

acquisition and annotation is a commonly cited challenge for this type of research, frequently 

leading to apparently low sample sizes (Grizzle, et al., 2011); indeed, consensus paper that 

reported meta-analysis of 10 publications for healthy livers had 197 samples in total (i.e., 

average of nearly 20 samples per publication, some of them with only four samples) (Barter, 

et al., 2007). 

We expected a decline in both MPPGL and CPPGL with the severity of cirrhosis to reflect the 

decrease in amounts of most metabolic proteins within hepatocytes as reported previously by 

Prasad et al., (Prasad, et al., 2018). However, there was no statistically significant differences 

in MPPGL among groups (Figure 4.3) which may be attributed to the following factors: 
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- First: the small sample size, especially in the case of mild cirrhosis, may have affected 

the confidence in the detection of small differences.  

- Second, Child-Pugh classification is a clinical classification with some subjective 

elements, such as scoring ascites and encephalopathy, which are variable according to 

the physician’s judgment, and patient compliance on diuretics and lactulose (Peng, et 

al., 2016),  

- Third, this classification does not consider the cause of cirrhosis and is not directly 

related to liver metabolic function (Talal, et al., 2017). There seems to be a confounding 

effect by the accompanying disease of cirrhosis. For example, most of the mild cirrhosis 

samples were diagnosed with cancer and had the lowest MPPGL values. This, in turn, 

caused the median MPPGL to drop to a lower value than the severe group, most of 

which belong to cholestasis origin. Less subjective classification systems might be 

required such as National Cancer Institute (NCI), and Model for End-Stage Liver 

Disease (MELD) scores, but donors’ data were not enough to calculate these scores. 

Comparison of cirrhotic MPPGL ratios (relative to control) against ratios of functional liver 

volume showed very similar trends, especially after correction by the change in whole liver 

size (Table 4.1), lending more support to the observation of concomitant decrease in content 

and function associated with cirrhotic livers. This comparison was only confined to previous 

studies that have used MPPGL and functional liver volumes as scalars. Studies that have scaled 

the clearance using functional liver volume values reported based on single article and only 

one cause of the disease; alcoholic cirrhosis was not included (Edginton, et al., 2008). 

The control group MPPGL values were mostly (11 samples out of 13) within the 95th 

confidence interval of age-matched predicted values using Equation 3 from Barter et al., (2008) 

(Supplementary Figure 4.1). The little bias observed might be attributed to the fact that the 
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control samples were from histologically normal samples from metastatic liver diseases and 

not from healthy volunteers (Supplementary Table 4.2). 

Patients with cirrhosis tend to exhibit various concomitant liver diseases that are either likely 

to be a cause of cirrhosis or are developed as a result of cirrhosis progression (e.g. 

hepatocellular carcinoma). Some of these disorders were reflected in the samples used in this 

study. We could not confirm whether these associated diseases were the main cause of cirrhosis 

according to the clinical information provided by the tissue bank; however, diagnosis notes 

showed these as existing conditions at the time of sample collection.  

A decrease in the expression of cytochrome P450 enzymes with increasing severity of fatty 

liver disease has been reported previously (Fisher, et al., 2009), and this could be a general 

trend for microsomal proteins. There were only two samples associated with alcoholic liver 

disease, which also showed lower levels of MPPGL relative to controls; however larger sample 

size might be recommended for future studies to asses any differences (Figure 4.4). Similarly 

for CPPGL, although previous proteomic and immuo-histochemical investigations reported 

changes in expression of various cytosolic proteins in alcohol-fed rats compared to normal 

control animals (Kim, et al., 2015), cytosolic protein contents did not show significant 

differences. 

A statistical analysis of the subgroups with different coexisting diseases and according to 

Child-Pugh score was not possible due to the low sample size. The variations in scalars 

associated with co-existing conditions (especially in case of MPPGL) might assist in more 

specific scaling of in vitro data for the development of models in various cirrhosis populations 

with different underlying conditions instead of the conventional practice of averaging values 

from all cirrhotic livers.  
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The PBPK simulations compared different methods to recapitulate cirrhosis within IVIVE 

scaling. Very limited differences in alfentanil model’s performance was noted between the 

methods (Figure 4.5, and Table 4.2), while for metoprolol and midazolam, late stages of 

cirrhosis showed modest differences between CS and EFLV methods (Figure 4.6, Figure 4.7, 

Table 4.3, and Table 4.4). These results indicate that changes in cirrhosis-specific MPPGL 

values correlate with changes in functional liver mass, especially when the former values were 

adjusted with actual whole liver volume at different cirrhosis populations. As the hepatic 

extraction ratio of the drug increased, the sensitivity to this whole liver volume adjustment 

increased. This can be attributed to the change in whole liver volume among the three methods 

of scaling leading to changes in liver blood flow and consequently variability in hepatic 

clearance of these drugs.  

The ethinylestradiol model was developed to assess the simultaneous impact of cirrhosis-

specific CPPGL and MPPGL values on the drug exposure. As intrinsic clearance per mg of 

cytosolic protein was used in the model, changes due to differences in the cytosolic enzyme 

expression or activity between healthy and cirrhosis populations were not considered in this 

model; the main variables influencing the overall hepatic clearance of the drug were CPPGL, 

MPPGL, liver volume, fraction unbound and liver blood flow changes. Similar to CYP450 

specific substrates, the ethinylestradiol profile showed that CS+SV scalar method agreed with 

EFLV scalar in all stages of the disease. 

Further studies might be required to validate current experimental scalars not only with already 

established PBPK models but also to assess the in vivo clearance of different probes using in 

vitro liver microsomal and cytosol fractions from cirrhosis patients. This is a common approach 

when a considerable amount of in vitro fractions are available and when the model is not yet 

defined for drugs in early stages of development (Obach, 1999; Obach, et al., 1997). 
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In conclusion, this study compared, for the first time, MPPGL and CPPGL scalars in livers 

with varying severity of cirrhosis relative to histologically normal livers. Cirrhosis associated 

with NAFLD and liver cancer showed the largest reduction in MPPGL. Simulations using 

experimentally-derived MPPGL and CPPGL values showed agreement with empirical 

methodology using functional liver volume especially when considering that whole liver 

volume changes with disease progression. However, the experimental and biologic nature of 

MPPGL and CPPGL values provided here offer more confidence to PBPK models for a priori 

dose adjustment in cirrhosis patients. This finding is in line with what was promoted by 

different reports (Jadhav, et al., 2015; Younis, et al., 2017) to achieve evidence-based dosage 

adjustment for special populations when there are no clinical data available (instead of the 

guess work or in cerebro modelling). It also helps in including cirrhosis patients into drug 

clinical trials with safe doses, as described in recent Food and Drug Administration guidance 

(FDA, 2020).    
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4.7. Supplementary Material 

Supplementary Table 4.1. Previous studies that reported scaling fraction protein to original 

tissue in cirrhosis and their limitations 

Study Software 

platform 

Scaling factor 1 Scaling factor 2 Limitations 

Prasad et 

al., 2018 

Simcyp Healthy S9PPGL 

(120.8 mg/g) 

Functional liver mass 

(61% of normal for 

CP-C) 

Recovery factors and 

efficiency of the process of 

S9 preparation were not 

considered 

Johnson 

et al., 

2010 

Simcyp Healthy MPPGL 

(39.8 mg/g) 

Functional liver mass 

(81, 65, 53% of normal 

for CP-A to C, 

respectively) 

Similar enzymatic activity 

and microsomal yield were 

assumed in viable diseased 

cells and healthy cells (i.e. 

intact cell theory) 

Edginton 

et al., 

2008 

PK-Sim  fenz.act Functional liver mass 

(69, 55, 28% of normal  

for CP-A to C, 

respectively) 

As fenz.act have been 

determined in cirrhosis 

tissues, the scaling method 

accounted for the impact of 

fibrous tissue on clearance  

twice, leading to 

underestimation of clearance 

in the disease group 

S9PPGL, S9 protein content per gram liver; MPPGL, microsomal protein per gram liver; fenz.act, fraction of specific 

enzyme activity in disease relative to healthy livers, a variable parameter with disease severity; CP-A, -B, -C, 

mild, moderate, and severe Child-Pugh grades of cirrhosis. 
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Supplementary Table 4.2. Demographic and clinical data for individual donors of control 

samples 

Sample ID Date of 

surgery  

Age sex PT 

(sec) 

Albumin 

level (g/L) 

Weight 

(Kg) * 

Height 

(m) * 

Total 

bilirubin 

(µmol/L) 

General 

diagnosis 

2759 12/12/16 81 M 11.3 34 82 1.72 11 CRC 

2721 06/12/16 36 M 11.5 39 61.5 1.696 18 CRC 

2841 28/12/16 57 M 12.3 40 84 1.74 9 CRC 

0103 16/01/17 81 M 21.6 38 75 1.67 16 CRC 

2847 30/12/16 48 F 12.2 43 67.8 1.619 10 SCC 

0044 09/01/17 83 F 10.6 39 62.3 1.637 6 CRC 

761 20/04/17 73 M 12.7 35 94.9 1.638 6 HCC 

713 13/04/17 57 F 12.1 42 65.9 1.73 9 CRC 

502 14/03/17 77 M 11.9 38 112.5 1.71 9 CRC 

0125 19/01/17 62 M 10.9 38 69.7 1.7 7 CRC 

0336 16/02/17 71 F 10.5 34 76 1.53 8 GIST 

484 13/03/17 80 M 21.9 24 71 1.81 28 CRC 

0322 14/02/17 71 M 10.8 43 93.6 1.715 11 CRC 

PT, prothrombin time; * measured at time of surgery; HCC, hepatocellular carcinoma; CRC, colorectal cancer; 

SCC, squamous cell carcinoma; GIST, gastrointestinal stromal tumour. 
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Supplementary Table 4.3. Demographic and clinical data for individual donors of cirrhosis liver samples and Child-Pugh classification 

Sample 

ID 

Date of 

surgery 

D/M/Y 

Age sex 

PT 

(sec) 

Albumin 

level 

(g/L) 

Total 

bilirubin 

(µmol/L) 

Weight 

(Kg) a 

Height 

(m) a 

Ascites volumeb HE grade c General diagnosis 

CP class 

(Score) 

0974  19/05/17 56 M 18.1 37 8 117.5 1.75 Severe 1-2 SH B(9) 

0549  22/03/17 59 M 18.8 28 53 89.2 1.72 Mild 1-2 NAFLD C(10) 

0355 17/02/17 67 F 17.9 26 81 82.2 1.64 Moderate None NAFLD C(11) 

0863  08/05/17 51 F 19.8 23 78 89.2 1.6 Mild None NAFLD C(11) 

2728   07/12/16 66 F 24.9 32 29 82.6 1.6 Moderate 1-2 NAFLD C(10) 

1982   17/08/16 63 F 18 25 30 70.7 1.57 Mild 1-2 NAFLD B(9) 

1571   11/06/16 46 F 14.7 25 51 78.6 1.58 Mild 1-2 NAFLD C(11) 

1545  09/06/16 69 F 20.9 50 44 62.7 1.55 Moderate None Alcoholic SH B(9) 

1963  13/08/16 68 M 13.6 27 28 113.45 1.77 None 1-2 HCC& alcoholic injury B(8) 

1745  14/07/16 67 M 15.2 27 46 92 1.7 Mild None HCC& NAFLD B(9) 

2431  27/10/16 69 M 15.7 28 30 95 1.79 None None HCC& HCV A(6) 

2408  22/10/16 51 M 18.9 31 44 88.5 1.85 Mild None HCC& HCV B(8) 

1926  10/08/16 63 M 17 33 97 82.3 1.74 None 1-2 HCC& NAFLD B(9) 

997  21/04/16 59 M 19.7 13 63 100.8 1.82 Severe 1-2 CHOL. C(14) 

0746 19/04/17 67 M 13.7 24 58 76.4 1.6 None 1-2 PBC C(10) 
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0147 25/01/17 57 M 15.3 19 243 72.3 1.74 Mild 1-2 CHOL. C(11) 

2682  02/12/16 56 F 15.2 40 75 67.3 1.62 Severe 1-2 CHOL. C(11) 

2500 07/11/16 63 F 11.9 30 82 80.15 1.64 Mild 1-2 PBC C(10) 

2306  11/10/16 60 M 16.9 22 326 83.2 1.76 Mild 1-2 PSC C(11) 

2159  15/09/16 39 M 14.2 30 49 80.8 1.90 Mild None PSC B(8) 

2136  12/09/16 54 M 19.1 30 484 79.7 1.75 Moderate 1-2 PSC C(12) 

1684 11/07/16 69 F 15.4 28 102 78.6 1.67 Mild 1-2 CHOL.&PBC C(10) 

1570 10/06/16 62 F 16.6 32  26  72.1 1.52 Moderate 1-2 NAFLD B(9) 

0955 18/05/17 63 M 15 36 18 89.2 1.73 None None HCC& alcoholic SH A(5) 

1429 18/07/17 57 M 15.2 37 37 69 1.75 Mild None PSC B(7) 

0544 21/03/17 70 M 13.3 30 25 87.8 - None 1-2 PSC B(7) 

2403 21/10/16 57 M 14.4 29 16 89 1.803 None None HCC& HCV A(6) 

2020 24/08/16 59 F 15.9 29 26 43.95 1.5 Severe None PBC B(9) 

3688 12/11/15 65 F 13.8 40 14 84 1.63 None None HCC& alcoholic SH A(5) 

1509 04/06/16 57 M 14.4 33 18 74.95 1.75 Moderate 1-2 Alcoholic SH B(9) 

1228 06/12/17 55 F 14.3 29 13 78.6 1.62 None None HCC A(6) 

0819 05/02/17 75 M 13.2 41 18 79.5 1.6 None None CHOL. A(5) 

PT, prothrombin time; CP; Child-Pugh; HCC, hepatocellular carcinoma; NAFLD, non-alcoholic fatty liver disease; CHOL, cholestasis; PBC, primary biliary cirrhosis; PSC, primary sclerosing 

cholangitis, SH, Steatohepatitis; a measured at time of surgery; b controlled with diuretics recorded as Mild ascites, c controlled with rifaximin / lactulose recorded as grade 1-2.
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Supplementary Table 4.4. NADPH-P450 reductase activity (Units/mg of liver tissue) in both 

homogenate and microsomal fractions from control and cirrhosis samples 

 

Sample ID 

NADPH-P450 

reductase activity in 

homogenate sample 

(unit/mg  of tissue) 

NADPH-P450 activity 

in microsomes 

(unit/mg of tissue) 

C
o
n

tr
o
l 

g
ro

u
p

 

2759 2.133 0.506 

2721 3.981 0.995 

2841 2.938 0.336 

103 3.341 0.889 

2847 5.829 1.616 

44 3.697 0.74 

761 1.991 0.914 

713 4.763 2.464 

502 2.085 0.932 

125 3.555 2.445 

336 3.299 1.449 

484 2.37 1.065 

322 4.171 2.137 

Mean 3.4 1.27 

SD 1.13 0.7 

M
il

d
 c

ir
rh

o
si

s 

2431 2.133 1.128 

955 2.085 1.316 

2403 1.991 1.656 

3688 2.285 1.757 

1228 2.903 1.781 

819 2.53 0.827 

Mean 2.32 1.41 

SD 0.34 0.39 

 

M
o
d

er
a
te

 c
ir

rh
o
si

s 

974 2.169 0.735 

1982 1.836 1.404 

1545 2.178 1.175 

1963 2.444 1.852 

1745 3.988 2.336 

2408 1.28 0.669 

1926 2.52 2.2 

2159 2.23 0.732 

1570 2.559 1.137 

1509 2.148 1.175 
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1429 4.756 2.656 

544 3.377 1.477 

2020 3.434 1.991 

Mean 2.69 1.5 

SD 0.95 0.65 

S
ev

er
e 

ci
rr

h
o
si

s 

549 2.133 1.347 

355 1.873 1.185 

863 1.871 1.297 

2728 1.493 0.682 

1571 1.536 0.704 

997 1.441 0.7 

746 1.045 0.804 

147 1.919 1.195 

2682 3.689 1.895 

2500 2.342 1.263 

2306 1.876 0.812 

2136 2.708 0.931 

1684 2.073 1.078 

Mean 2 1.07 

SD 0.66 0.35 

 

 

Supplementary Table 4.5. Study design, doses, and demographic data from the clinical 

studies used for simulating alfentanil, metoprolol, and midazolam concentration- time 

profiles in cirrhosis populations. 

Drug Route Dose 

Child-Pugh 

score N Age range 

Weight 

range 

% 

females Reference 

Alfentanil i.v. bolus 0.05 mg/kg 

A (1), B (7), 

C (3) 11 39-69 -- 45% 

(Ferrier, et 

al., 1985) 

Metoprolol 

i.v. 

infusion 

over 10 

min  

20 mg 

metoprolol 

tartarate                            

No 

information 

10 (50-66)      (47-117) 45% 

(Regårdh, et 

al., 1981) 

Midazolam 

i.v.  bolus 

& oral 

7.5 mg (i.v.) 

& 15 mg 

(oral) B (5)  C (2) 7  

B (30-58)           

C (66-67)  

B (71-108)        

C (74-87) 0% 

(Pentikäinen, 

et al., 1989) 

   i.v.; intravenous 
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Supplementary Table 4.6. PBPK parameters for midazolam, metoprolol, alfentanil, and 

ethinylestradiol used for the simulations  

Physicochemical and Blood Binding 

Parameter Midazolam a Metoprolol a Alfentanil b Ethinylestradiol c 

Mol Weight 

(g/mol) 
325.8 267.4 416.52 296.4 

log P 3.53 1.88 2.16 3.81 

Compound Type Monoprotic Base Monoprotic Base Monoprotic Base Diprotic acid 

pKa 6 9.75 6.5 10.2, 13.1 

B/P 0.603 1.15 0.63 1 

Haematocrit 45 45 45 45 

Fu 0.032 0.88 0.104 0.015 

Absorption 

Absorption  
1st order     1st order 

Model 

Fa 1 (CV= 30%)     0.96 (Predicted)  

ka (1/h) 3 (CV=30%)      1.17 (Predicted) 

Q(Gut) (L/h) 16.18 (Predicted)     11.74 (Predicted) 

Peff,man Cap (10-

4 cm/s) 
12     2.68 (Predicted) 

Permeability 

Assay 
PCaco-2     

PSA 42.7 (Å2) 

HBD 2 

Distribution 

Distribution 

Model 

Minimal PBPK 

Model 

Minimal PBPK 

Model 

Full PBPK 

Model 
Minimal PBPK Model 

SAC kin (1/h) 0.2 0   0.287 

SAC kout (1/h) 0.25 0   0.096 

Volume [Vsac] 

(L/kg) 
0.23 1.00E-05   2 

Vss (L/kg) 0.88  3.19 0.37 d 4.06 

Kp Scalar   0.567 d  

Elimination 

Clearance Type  Enzyme Kinetics  

Pathway 

Vmax 

Km 

(μM) 

CLint 

Fumic 

CLint 

Fumic 

Vmax 

Km 

(μM) 

CLint 

μl/min/p

mol 

fuinc 

pmol/min/

pmol 

μl/min/

pmol 

μl/min/

pmol 

pmol/

min/p

mol 

 (Recombinant in 

vitro system) 
                    

Enzyme                     
CYP 3A4                   

Pathway 1 5.23 2.16 0.02 1 0.559 1   0.51 1 

Pathway 2 5.2 31.8                 

CYP 3A5                     

Pathway 1 19.7 4.16                 
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Pathway 2 4.03 34.8                 

CYP 2D6     3.61 1             
CYP2C9                    0.51 1 

CYP1A2               0.51 1 

CYP2C8               0.13 1 

UGT1A4 445 40.3                 

UGT1A1 

(HLM)
            408.5 19.22     

Additional 

(HLM) μl/min/mg 

protein
        5.76 1       

Additional 

(HLC) μl/min/mg 

protein
        56e 1e 

Additional 

intestine (HIC) 

μl/min/mg protein
        43.92 1 

CL R (L/h) 0.085 5.23 0.07 2.079 

a Provided with Simcyp Simulator v18 R1 
b As reported by (Abduljalil, et al., 2020). 
c Adapted from model file provided with Simcyp Simulator v18 R1 that reported by (Ezuruike, et al., 

2018) to account for cytosolic metabolism. 
d Predicted using Rodgers & Rowland method (2006) with tissue-plasma partition coefficient (Kp) 

scalar (applied to Kp for all tissues) was set to 0.567 as reported by (Abduljalil, et al., 2020). 
e calculated from the additional HLM CLint provided by the simulator after accounting for the relative 

MPPGL and CPPGL for the healthy population and assuming all the remaining metabolism is due to 

sulfation by SULT1E1. 

B/P; Blood to plasma ratio.  

Fu; Fraction unbound to plasma proteins.  

Fa; the fraction of dose entering the cellular space of the enterocytes (variability is shown in parentheses 

but values were not allowed to exceed 1). 

ka; first order rate constant, Qgut; A nominal flow in gut model (Yang, et al., 2007).  

Peff,man; Human effective permeability. 

SAC Kin and SAC Kout; first order rate constants which act upon the masses of drug within 

respectively, the Systemic compartment and the Single Adjusting Compartment (SAC).  

VSAC; The apparent volume associated with the SAC. 

Vss; volume of distribution at steady state.  

CL R; Renal clearance.  

CV: coefficient of variation for Fa and ka (these values does not exceed 1). 

 

Dug distribution models used for the investigated drugs 

Minimal PBPK distribution model was adopted in the files of the three compounds; midazolam, 

metoprolol, and ethinylestradiol. It is a 'lumped' PBPK model and, in its simplest form, has 

only four compartments, predicting only the systemic, portal vein and liver concentration 

(Rowland Yeo, et al., 2010) . The SAC (Single Adjusting Compartment) is an additional non-

physiological compartment which permits adjustment to the drug concentration profile in the 
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Systemic compartment, where the latter represents a lump of all tissues excluding the liver and 

portal vein (Ando, et al., 2008). The full PBPK distribution model was used for alfentanil; the 

model was reported and verified previously in healthy adults (Abduljalil, et al., 2020), which 

allowed better recovery of the initial phase of the plasma-concentration time curve in subjects 

with normal liver function.  The full-PBPK model simulates the concentrations in various organ 

compartments—the blood (plasma), adipose, bone, brain, gut, heart, kidney, liver, lung, 

muscle, pancreas, skin and spleen. Inter-individual variability is introduced through tissue 

volume predictions using age, sex, weight and height as covariates through a Monte Carlo 

sampling that takes into account correlations between these covariates (Abduljalil, et al., 2020).  
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Supplementary Table 4.7. Mean and standard deviation of protein concentrations (μg/μl) of 

different fractions (microsomes, homogenate, cytosol) for each individual sample (normal 

and cirrhotic).    

  Microsomal fraction Homogenate Cytosol 

Normal 

Mean of 3 

readings 

SD  

Mean of 3 

readings 

SD 

Mean of 3 

readings 

SD 

2759 6.90 0.48 9.29 0.11 1.67 0.05 

2721 8.71 0.40 9.09 0.14 7.52 0.45 

2841 3.32 0.43 9.85 0.10 2.18 0.10 

0103 8.95 0.10 14.69 0.88 3.00 0.14 

2847 15.20 0.59 10.10 8.70 4.72 0.24 

0044 5.68 0.14 9.25 0.21 1.23 0.06 

761 28.48 4.82 10.21 0.23 4.17 0.20 

713 21.16 0.66 22.13 0.31 6.02 0.21 

502 13.88 0.46 12.86 0.29 4.11 0.16 

0125 20.77 0.43 12.34 0.39 5.02 0.21 

0336 13.54 0.33 11.68 0.47 3.33 0.14 

484 16.22 0.87 11.07 0.99 3.32 0.17 

0322 15.97 0.34 11.06 0.15 5.08 0.09 

Cirrhosis             

974 9.42 0.36 8.65 0.16 5.70 0.27 

549 15.94 0.95 10.05 0.32 5.53 0.29 

355 14.09 0.73 8.67 0.37 4.48 0.29 

863 12.78 0.13 8.13 0.36 3.52 0.24 

2728 13.59 0.13 10.86 0.13 3.29 0.13 

1982 13.55 0.05 9.24 0.55 4.69 0.28 
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1570 14.04 0.52 9.04 0.21 4.33 0.17 

1571 14.38 0.41 7.23 0.12 2.86 0.08 

1545 14.98 0.21 10.12 0.21 3.70 0.05 

1509 14.83 0.43 9.45 0.31 4.38 0.12 

1745 19.25 0.44 11.02 0.13 6.88 0.19 

3688 18.47 0.11 11.29 0.22 8.16 0.30 

1926 18.11 0.39 10.71 0.29 6.82 0.16 

1429 22.53 0.24 13.10 0.24 8.08 0.03 

544 17.48 0.48 10.61 0.31 5.35 0.31 

2020 17.88 0.25 11.16 0.10 6.16 0.63 

997 12.40 0.38 8.30 0.06 5.28 0.22 

746 13.75 0.19 7.89 0.06 4.74 0.28 

147 16.57 0.73 8.71 0.16 5.64 0.11 

2682 15.01 0.10 6.48 0.22 4.95 0.21 

2500 16.74 0.86 11.82 0.51 6.32 0.34 

2306 16.51 1.36 8.97 0.51 5.27 0.14 

2159 12.80 0.21 9.93 0.27 5.07 0.13 

2136 13.75 0.10 10.87 0.41 4.90 0.08 

1684 15.49 0.51 10.24 0.23 6.16 0.25 

2408 7.85 0.15 8.55 0.33 4.47 0.20 

2403 9.37 0.27 11.43 0.15 5.45 0.23 

2431 10.66 0.31 8.89 0.47 5.69 0.24 

1963 15.73 0.12 9.06 0.96 5.25 0.26 

955 16.97 0.47 13.48 0.67 4.97 0.28 

1228 12.08 0.27 12.66 0.12 3.45 0.15 

0819 8.32 0.14 13.66 0.13 1.30 0.07 
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Supplementary Table 4.8. Median protein content per gram tissue for each fraction in the 

control, mild, moderate, and severe cirrhosis groups without correction for the loss due to 

centrifugation. 

Fraction 

Control  

(mg/g) 

Mild CP-A  

(mg/g) 

Moderate CP-B 

(mg/g) 

Severe CP-C 

 (mg/g) 

Microsomes 15.6 (3.5-28.4) 14.5 (11.8-21.2) 17.5 (8.8-27.4) 16.5 (13.6-20.1) 

Cytosol 75.4 (57.4-94.7) 81.8 (61.4-105.5) 67.9 (56.7-85.5) 75.4 (57.4-94.7) 

Homogenate 129.8 (72.9-216.4) 89.8 (56.7-191.2) 94.2 (32.5-135.3) 96.6 (56.4-190.7) 

Data are presented as median (range). Units: mg protein/g liver 

 

Supplementary Table 4.9. Physiological differences between healthy volunteers and patients 

with liver cirrhosis population within Simcyp Simulator V18* 

  

Liver condition  Healthy 

Control  

Mild 

Impairment  

Moderate 

Impairment  

Severe 

Impairment  

Simcyp-population  HV  CP-A  CP-B  CP-C  

Albumin/α1-AG/HCT (ratio to 

HV, male)  

1/1/1  0.8/0.9/0.9  0.7/0.8/0.8  0.6/0.6/0.8  

Enzymes abundances (pmol/mg) 

 Liver CYP3A4/5 

 Gut CYP3A4/5  

 Liver CYP2C9/1A2/2C8 

 Liver UGT1A4 

 

137  

65.4  

73/52/24 

52 

 

108  

65.4 

50.4/32.9/16.6 

52  

 

56  

39.9 

38/13.6/12.5  

52 

 

31.7  

23.6  

24.09/6.14/7.92 

52 

Liver Volume (L)  1.65  1.47  1.17  1.0  

Liver Q (Arterial/Portal), (% 

cardiac output)  

6.5/19  9.2/17.3  10.6/13.6  12.5/10.5  

*Source: (Johnson, et al., 2010) + Population library in the simulator; HCT, Haematocrit. 
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Supplementary Figure 4.1. Comparing current study MPPGL values for the control group 

corresponding to each patient age with the predicted MPPGL from the equation by (Barter, 

et al., 2008) with 95% confidence interval lines from the same study. 
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5 Chapter Five 

Quantitative Mass Spectrometry-Based Proteomics in the Era of 

Model-Informed Drug Development: Applications in 

Translational Pharmacology and Recommendations for Best 

Practice  
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5.1. Abstract 

Quantitative translation of the fate and action of a drug in the body is facilitated by models that 

allow extrapolation of in vitro measurements (such as the rate of metabolism, active transport 

across membranes, inhibition of enzymes and receptor occupancy) to in vivo consequences 

(intensity and duration of drug effects). These models use various physiological parameters, 

including data that describe the expression levels of pharmacologically relevant enzymes, 

transporters and receptors in tissues and in vitro systems. Immunoquantification approaches 

have traditionally been used to determine protein expression levels, generally providing 

relative quantification data with compromised selectivity and reproducibility. More recently, 

the development of several quantitative proteomic techniques, fuelled by advances in state-of-

the-art mass spectrometry, has led to generating a wealth of qualitative and quantitative data. 

These data are currently used for various quantitative systems pharmacology applications, with 

the ultimate goal of conducting virtual clinical trials to inform clinical studies, especially when 

assessments are difficult to conduct on patients. In this review, we explore available 

quantitative proteomic methods, discuss their main applications in translational pharmacology 

and offer recommendations for selecting and implementing proteomic techniques.    
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5.2. Introduction 

Translational pharmacology requires extrapolation of in vitro observations to predict the 

outcome of therapy in vivo using various scaling factors measured in tissues and relevant in 

vitro systems (Rostami-Hodjegan, 2012). When extrapolating measurements made in vitro 

(e.g. Km, Vmax, Jmax), functional data may be used as scalars when selective probes are 

available, for example in the case of several cytochrome P450 (CYP) (Walsky & Obach, 2004) 

and uridine 5′-diphospho-glucuronosyltransferase (UGT) enzymes (Achour, et al., 2017b; 

Walsky, et al., 2012). However, owing to a lack of specific substrates for many enzymes and 

for the majority of transporters and receptors, the use of abundance data remains the preferred 

approach for in vitro-in vivo extrapolation (IVIVE), facilitated by analytical methods that can 

quantify the levels of individual proteins in heterogeneous biological matrices. Over the past 

two decades, quantitative proteomics based on liquid chromatography in conjunction with mass 

spectrometry (LC-MS) has replaced traditional immunoquantitative methods, such as Western 

blotting and enzyme-linked immunosorbent assays (ELISA) (Aebersold, et al., 2013), mainly 

because traditional techniques require purified protein standards and specific antibodies for 

each target, which are not always available.  

Pharmacologically active enzymes and transporters tend to have high sequence homology and 

most of these proteins are found at very low amounts within the membranes of tissues and 

cellular systems (Vildhede, et al., 2015). Highly selective and sensitive mass spectrometry 

techniques are therefore ideal for implementation in pharmacology applications (Al Feteisi, et 

al., 2015b; Heikkinen, et al., 2015). LC-MS analysis offers various other advantages including 

reproducibility, high throughput and the ability to multiplex measurements. This allows 

simultaneous detection and quantification of dilute amounts of a large number of proteins 

(hundreds to thousands) in complex biological systems (Ong & Mann, 2005). Quantitative 

proteomic techniques have therefore been implemented by different laboratories worldwide for 
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various pharmacology applications, leading to improved extrapolation of drug 

pharmacokinetics (Doki, et al., 2018; Kumar, et al., 2018) and better understanding of the 

effects various factors, including age (Ladumor, et al., 2019; van Groen, et al., 2018), ethnicity 

(Kawakami, et al., 2011; Ladumor, et al., 2019; Peng, et al., 2015), and genetics (Bhatt, et al., 

2019; Peng, et al., 2015; Prasad, et al., 2014a) on the expression of enzymes and transporters.  

The typical aim of a proteomic experiment is to characterise the entire set of proteins expressed 

in a particular system (global proteomics) or to target a specified set of proteins for 

quantification (targeted proteomics) (Gillet, et al., 2016). These two types of proteomic 

analysis require specific considerations for robust analysis to be achieved (Prasad, et al., 2019). 

In this review, we explore state-of-the-art mass spectrometry-based proteomic methods, both 

global and targeted, used for the characterisation of drug-metabolising and transporting 

proteins as well as drug targets, and discuss their advantages, limitations, caveats for 

implementation and their main applications in translational pharmacokinetics (PK) and 

pharmacodynamics (PD).  

5.3. Overview of a typical quantitative proteomic experiment 

The quantitative proteomic workflow can be customised for the type of biological sample and 

the target proteins to be quantified; however, routinely applied bottom-up methods tend to 

follow generally similar steps (Figure 5.1 A). A biological sample (tissues, cell lines or 

biofluids) is processed by cell lysis or homogenisation, often followed by enrichment of 

specific fractions (e.g. microsomes, cytosol, S9, plasma membrane, mitochondrial fraction) 

(Figure 5.1 B) prior to protein solubilisation and digestion (Drozdzik, et al., 2014; Harwood, 

et al., 2014; Wiśniewski, et al., 2016b). The variable array of available samples requires 

consideration of the effects of the type of sample and subsequent processing on end-point 

protein abundance (Bhatt & Prasad, 2018).  
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Whole cell lysates or tissue homogenates can be used for the quantification of various 

pharmacologically relevant proteins (Wegler, et al., 2017). When enriched systems are 

required, the localisation of the target protein is critical to the decision of which fraction to use 

(Wiśniewski, et al., 2016b). Cytosolic proteins (e.g. alcohol/aldehyde dehydrogenases, 

sulfotransferases) are best quantified in cytosol or S9 fractions (Prasad, et al., 2018). 

Membrane-bound reticular proteins (e.g. CYPs and UGTs) are enriched in microsomal 

membrane fractions (Chen, et al., 2016). Enzymes localised in the reticular lumen (e.g. 

carboxylesterases) can be quantified in microsomes; however, a proportion of these proteins is 

expected to be lost into the cytosol during sample processing and therefore these proteins are 

quantified more accurately in S9 fractions (consisting of microsomes and cytosol) provided the 

target proteins are sufficiently abundant (Prasad, et al., 2018; Wang, et al., 2019). Transporters 

and PD-relevant targets, such as receptors, protein phosphatases and kinases, can be found in 

the plasma membrane (Batth, et al., 2018; Ohtsuki, et al., 2012), and therefore cell membrane-

enriched fractions can be used for these applications. Detailed sub-cellular location information 

can be found in various databases, including Gene Ontology (www.geneontology.org) and 

UniProt (www.uniprot.org).    

Bottom-up proteomic techniques rely on quantitative analysis of unique (proteotypic) peptides 

used as surrogates for target proteins (Gillet, et al., 2016). Sample proteins are digested using 

specific proteases, typically trypsin or lysyl endopeptidase (LysC), independently or in 

combination (Achour & Barber, 2013; Wiśniewski & Mann, 2012a). Other proteases, such as 

chymotrypsin, can be used for specific applications, such as increased depth and reproducibility 

of analysis (Wiśniewski, et al., 2019). Sample digestion can be done in gel, in solution or using 

filter-aided sample preparation (FASP) (Fallon, et al., 2008; Langenfeld, et al., 2009; 

Wiśniewski, et al., 2009). Complementary data are expected to be generated when several 

protein preparation workflows are used (Al Feteisi, et al., 2018; Choksawangkarn, et al., 2012). 

http://www.geneontology.org/
http://www.uniprot.org/
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After digestion, peptides are desalted, enriched, separated by liquid chromatography (LC) and 

analysed using mass spectrometry (MS). Additional separation prior to mass spectrometry can 

be performed using ion mobility (Achour, et al., 2017a; Distler, et al., 2014). Multiple 

quantitative MS and data acquisition approaches can be used (Figure 5.1 C), depending on the 

aim of the experiment and the availability of instrumentation (Smith, et al., 2019). Targeted 

and global methodologies are routinely used to identify and quantify expression levels of 

pharmacologically-relevant proteins. Standards are added at different stages of the proteomic 

workflow (Figure 5.1 A). Data acquisition is followed by data analysis and interpretation, often 

facilitated by vendor or open-source software. Assessment of the performance of various 

software packages used for targeted and global proteomics was previously reported (Cox & 

Mann, 2008; Röst, et al., 2014; Tommi, et al., 2018) 

Several quality control (QC) steps are required at certain stages of the experiment. Assessment 

of the quality of sample processing during homogenisation and fractionation is required to 

ensure maximum recovery of protein, normally using colorimetric/fluorometric protein assays. 

Assessment of the digestion efficiency is done before LC-MS analysis; this is achieved by 

evaluating time-dependent release of peptides in targeted experiments or by monitoring the rate 

of missed cleavage in global experiments. Finally, the reliability of the proteomic 

quantification technique depends on the performance of the LC-MS system, which can be 

assessed using internal standards and well-characterised QC samples (Bhatt, et al., 2018; 

Prasad, et al., 2019).  
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Figure 5.1. Overview of the experimental quantitative proteomic workflow. A. Basic 

proteomic strategy starting from selection of targets and sample preparation, followed by 

LC-MS analysis, and finally data analysis/interpretation. Protein digestion relies on 

proteases, such as trypsin and lysyl endopeptidase (LysC), and can be done in solution, in 

gel or using filter-aided sample preparation (FASP). Standards are added at different stages 

of sample preparation. SILAC mixtures represent isotopically labelled proteomes; QconCAT 

and PSAQ protein standards are added to samples prior to protein digestion; AQUA peptide 

standards are added before LC-MS analysis. Several quality control (QC) steps are required 

throughout the workflow. B. The two main types of samples used to generate proteomic data, 

whole cell lysates (cell and tissue homogenates) and enriched fractions (e.g. microsomes, 

plasma membrane, cytosol, mitochondrial fractions or S9 fractions). C. The main types of 

proteomic techniques (targeted and global) and data acquisition methods (MRM/PRM for 
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targeted proteomics and DDA/DIA for global proteomics). Red arrows show the steps where 

standards are introduced. Abbreviations: AQUA, absolute quantification peptide standards; 

DDA, data-dependent acquisition; DIA, data-independent acquisition; MRM; multiple 

reaction monitoring; QC, quality control; QconCAT, quantitative concatemers; PM, plasma 

membrane; PRM, parallel reaction monitoring; PSAQ, protein standards for absolute 

quantification; SILAC, stable isotope labelling by amino acids in cell culture. 

5.4. Targeted quantitative proteomic methods 

Targeted methods are in many ways superior to global methods for the quantification of 

specific proteins of interest that are known to be expressed in a particular system. The use of 

targeted proteomics with enriched fractions (e.g. plasma membrane, microsomes) offers highly 

reproducible measurements of proteins expressed at low levels. The workflow of quantification 

using these methods starts with identifying the target proteins of interest, followed by selection 

of proteotypic peptides used as surrogates to quantify the selected targets. These methods 

require stable isotope labelled (SIL) internal standards for absolute quantification. Generally, 

MS platforms used for targeted techniques include triple quadrupole (QqQ), quadrupole/time-

of-flight (Q-TOF) and hybrid Orbitrap mass spectrometers. Table 5.1 summarises the 

advantages and limitations of targeted proteomic methods. The types of targeted acquisition 

methods are discussed below. 
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Table 5.1. The overall aims, advantages and limitations of various proteomic data acquisition methods: targeted (MRM, PRM), global data-

dependent acquisition (DDA) and data-independent acquisition (DIA) techniques 

Method Advantages Disadvantages 

Targeted techniques (MRM, PRM) 

Aim: Robust quantification of a 

selected set of proteins, known to be 

expressed in a particular system 

 High sensitivity and reproducibility  

 Simple data analysis 

 Allows relative and absolute 

quantification; SIL standards address 

matrix effects 

 High resolution instruments are not 

required for MRM 

 High selectivity with PRM 

 Limited resolution and selectivity with MRM 

 Limited number of target proteins (10-50 targets 

per single analysis) 

 Requirement of prior knowledge of target 

proteins 

 Requirement for synthesis of internal standards 

 Targeted methods cannot be used for discovery 

of novel targets or pathways 

Global data-dependent acquisition 

(DDA) techniques 

Aim: discovery proteomics and 

proteome-wide quantification 

 Simple method setup  

 High proteome coverage 

 Internal SIL standards are not needed 

 Allows relative and absolute 

quantification (with spiked standards 

or TPA approach) 

 PTMs can be characterised using 

global data 

 Data can provide guidance for 

targeted quantification 

 Bias toward highly expressed proteins and 

compromised reproducibility for low 

abundance proteins 

 Sensitive to changes in LC-MS conditions due 

to longer runs required 

 Absolute quantification is relatively less 

reliable than targeted methods 

 Requirement of instrument with high-end 

specifications 

 Selectivity and sensitivity are compromised 

Global data-independent 

acquisition (DIA) techniques 

 

Aim: discovery proteomics and 

proteome-wide quantification. In the 

case of sequential window methods 

(SWATH), the aim can also be set to 

 Moderate/high precision of peptide 

quantification.  

 Wide breadth of peptide 

identification and quantification 

leading to high target coverage 

(typically higher than DDA) 

 Amenable to discovery and 

quantitative applications 

 Complex and convoluted data 

 SWATH requires multiple steps to compile 

spectral libraries, with many parameters to 

optimise 

 Requirement of instrument with high-end 

specifications 

 Requirement for specialist software and high 

computational power for analysis 
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the quantification of a limited 

number of target proteins 

 

 Provides rich data for targeted 

methods, including peptide 

information, fragment information, 

PTMs and potentially SNPs 

PTM, post-translational modifications; SNP, single-nucleotide polymorphism; TPA, total protein approach 
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5.4.1. Selected/multiple reaction monitoring (SRM/MRM) 

Selected or multiple reaction monitoring (SRM/MRM) is the most commonly used targeted 

proteomic method in biological and pharmacological research (Gillette & Carr, 2013; 

Kitteringham, et al., 2009). In MRM, a peptide and a selected set of its fragment ions 

(transitions) are monitored by mass filtering on a triple quadrupole instrument (Carr, et al., 

2014). The technique is routinely used with internal SIL standards, and heavy (standard) and 

light (analyte) ions are analysed simultaneously. This technique offers several advantages 

including multiplexed analysis, high throughput, reproducibility, sensitivity and wide dynamic 

range (Aebersold, et al., 2013; Carr, et al., 2014). The sensitivity achieved by this method 

makes it ideal when samples are small, e.g. biopsies (Vrana, et al., 2017). The limitations of 

targeted techniques include the requirement for extensive method development and the 

selection of suitable targets. Low abundance analyte proteins are not accurately quantifiable 

and interference can occur due to the use of pre-defined mass filters and low resolution mass 

analysers (Gillette, et al., 2013; Kitteringham, et al., 2009).  

Several applications of this technique have been reported including determination of inter-

individual variability in drug-metabolising enzymes and transporters (Gröer, et al., 2014; 

Kumar, et al., 2015; Margaillan, et al., 2015), prediction of variability in clearance (Vildhede, 

et al., 2016) and drug-drug interactions (DDIs) (Doki, et al., 2018), determination of inter-

species differences of transporter expression at the blood-brain barrier (Al Feteisi, et al., 2018; 

Hoshi, et al., 2013), characterisation of various hepatocyte-based in vitro systems (Kumar, et 

al., 2019; Schaefer, et al., 2012), region-specific transporter expression in the brain (Billington, 

et al., 2019), kidney (Prasad, et al., 2016b) and intestine (Drozdzik, et al., 2014), region-specific 

enzyme expression in the kidney (Knights, et al., 2016), quantification of biomarkers in 

biological fluids, such as plasma and urine (Abbatiello, et al., 2015) and assessment of the 
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effects of disease on different organs (Al-Majdoub, et al., 2019; Billington, et al., 2018; Prasad, 

et al., 2018).  

5.4.2. Parallel reaction monitoring (PRM) 

Parallel reaction monitoring (PRM) is a recently introduced targeted method with higher 

specificity than MRM (Gallien, et al., 2013; Schiffmann, et al., 2014) because of the use of 

high-end mass spectrometers, such as Orbitrap (Gallien, et al., 2012; Peterson, et al., 2012) and 

quadrupole/time-of-flight (Schilling, et al., 2015) platforms, offering high resolution and high 

mass accuracy. The principle of PRM is based on simultaneous monitoring of all (precursor 

ion/fragment ion) transitions of a targeted peptide arising from both standard and sample, in 

parallel at the MS and tandem MS (MS/MS) levels. By contrast, the MRM approach monitors 

only pre-defined fragments. The combination of full scan mode, high resolution and high mass 

accuracy makes PRM a very attractive method, especially for the analysis of complex 

biological matrices. PRM requires less time for method development and is less prone to 

interference than MRM owing to the availability of a higher number of quantifiable fragments 

(Gallien, et al., 2014; Ronsein, et al., 2015). Because of the large number of monitored 

transitions, the sensitivity of PRM is sometimes reduced relative to MRM, and the requirement 

of high resolving power makes the technique less widely applicable (Gallien, et al., 2014). 

Comparable performance by MRM and PRM has recently been demonstrated (Nakamura, et 

al., 2016; Ronsein, et al., 2015). Reported applications of PRM-MS include plasma biomarker 

analysis (Kim, et al., 2015), quantification of enzyme variants (Shi, et al., 2018), and 

characterisation of liver, kidney and intestine pools (Nakamura, et al., 2016). 

5.4.3. Accurate mass and retention time (AMRT) 

Quantification (relative or absolute) based on accurate mass and retention time (AMRT) is a 

simple and rapid method (Silva, et al., 2005). This method is less widely used than MRM and 

PRM techniques and relies on measurement of precursor ion intensity of analyte and standard 
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peptides at a predefined mass (m/z ratio) and retention time. Confirmation of the peptides 

identities is carried out after fragmentation at the MS/MS level. This method can be used in 

conjunction with global proteomic methods to quantify selected targets in proteome-wide 

analyses. Because AMRT relies on the parent ion intensity in the MS scan, its efficiency is 

dependent on reproducible peptide separation (by LC) and the use of high resolution mass 

analysers (MS). In addition, only a limited number of moderate to high abundance proteins can 

be quantified. This technique was applied to measuring protein abundance in human serum 

(Silva, et al., 2005) and assessment of disease perturbations in the expression of transporters at 

the blood-brain barrier (Al-Majdoub, et al., 2019).  

5.5. Standards for targeted proteomics 

Absolute quantification is typically achieved by targeted techniques that use SIL peptides or 

proteins as standards or calibrants (Calderón-Celis, et al., 2018). These standards represent 

heavy versions of the surrogate peptides selected to quantify the target proteins. Standards are 

synthesised chemically or biologically and incorporate a heavy isotope (13C, 15N), which allows 

distinction between analyte (light) and standard (heavy) by mass spectrometry. The types of 

standards routinely used in targeted quantitative proteomics include absolute quantification 

(AQUA) peptides, quantitative concatemers (QconCAT) and protein standards for absolute 

quantification (PSAQ). A summary of the characteristics of these standards is shown in Table 

5.2.  
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Table 5.2. Characteristics of standards used in targeted proteomic methods (AQUA, QconCAT and PSAQ) and their analytical performance  

 AQUA QconCAT PSAQ 

Description  

Chemically synthesised isotope 

labelled peptides 

Biologically synthesised sequence 

of isotope labelled peptides  

Intact isotopically labelled 

recombinant protein  

Commercial availability Available  Available  Available  

Digestion evaluation  Necessary  Necessary Not Necessary but desirable 

Number of target proteins One for each standard Up to 50 per standard protein One for each standard 

Cost  

Low, depending on the number of 

targets  

Moderate  High 

Considerations for synthesis 

Subject to stability issues during the 

chemical synthesis 

Subject to failure of expression  

 

Subject to failure of expression   

Addition in the experimental 

workflow  

Post-digestion Before solubilisation and digestion Before solubilisation and digestion 

Compatible proteomic 

techniques  

MRM 

PRM 

MRM 

PRM 

MRM 

PRM 
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AMRT 

Performance of targeted 

methods 

Highly reproducible  

Multiplexed 

Highly reproducible 

Multiplexed 

Ideal for stoichiometric analysis 

Highly reproducible 

Accurate 

SNP and stoichiometric 

analysis 

Possible; requires QC Yes No 

Analysis of PTMs Yes No No 

AMRT, accurate mass and retention time mass spectrometry; MRM, multiple reaction monitoring; PRM, parallel reaction monitoring; PTM, post-

translational modifications; QC, quality control; SNP, single-nucleotide polymorphism 
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The selection of standard peptide sequences is a critical step and follows previously reported 

criteria (Kamiie, et al., 2008). These criteria can also be applied to select surrogate peptides in 

global proteomic methods (Prasad, et al., 2019). Generally accepted requirements include: 

 Proteotypic sequence: unique to the protein of interest with distinct mass (m/z) and 

fragmentation pattern (MS/MS); isobaric and isomeric sequences are avoided.  

 Cleavable by proteases used in quantitative proteomics: the sequence should not be 

mapped to transmembrane domains; absence of closely occurring cleavage sites in the target 

protein sequence (e.g. arginine (R) and lysine (K) in the case of trypsin). 

 Detectable by LC-MS: optimal hydrophobicity (LC) and ionisability (MS); absence of 

known single nucleotide polymorphism (SNP) and post-translational modification (PTM); 

optimal length (7-25 amino acids depending on the MS platform). 

 Stable: not susceptible to chemical modification during storage and handling including 

oxidation of methionine (M) and deamidation of asparagine/glutamine (N/Q). 

These general selection criteria can be customised for different biological applications. For 

example, peptides with known PTMs and SNPs are targeted if the biological question requires 

such stoichiometric analysis. Allele-specific protein quantification was demonstrated recently 

for the assessment of significant genetic variations in CYP and UGT enzymes (Russell, et al., 

2013; Shi, et al., 2018). 

5.5.1.  Absolute quantification (AQUA) peptide standards  

SIL peptides or AQUA standards are chemically synthesised isotope labelled standard peptides 

with sequences specific to the target proteins. High quality and high purity peptides are 

available commercially in isotopically labelled form, making them easily accessible for large 

scale studies (Kettenbach, et al., 2011; Kirkpatrick, et al., 2005). A known amount of the 

AQUA peptide is introduced into the sample at a late stage of sample preparation, usually after 
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protein digestion. AQUA standards can be applied with MRM or PRM techniques, making 

these targeted techniques very useful when screening a specific protein in a large number of 

samples as a clinical test or when the quantification of a small set of proteins is desirable 

(Smith, et al., 2019). AQUA can also be applied to the elucidation of PTMs, such as 

phosphorylation (Kettenbach, et al., 2011). However, synthesis and quantification of standards 

for large scale studies is expensive and time-consuming (Al Feteisi, et al., 2015a). The need to 

store peptides can be limiting as they tend to precipitate during long-term storage and lead to 

inconsistent quantification (Mirzaei, et al., 2008). AQUA peptides are normally added to the 

sample directly before LC-MS analysis and the accuracy of quantification by the AQUA 

method can therefore be affected by analyte peptide loss during sample preparation (Havliš & 

Shevchenko, 2004). We recommend addition of standards to the samples before pre-

fractionation and desalting so that equal loss of standard and analyte peptides is incurred from 

the mixture. 

The AQUA-MRM approach is the most widely used quantification method in pharmacokinetic 

research and has been used to quantify various enzymes and transporters in different human 

tissues. Quantified enzymes include CYP and UGT enzymes in liver (Cieślak, et al., 2016; 

Fallon, et al., 2013; Hansen, et al., 2019; Ohtsuki, et al., 2012; Prasad, et al., 2018; Sato, et al., 

2012, 2014; Weiß, et al., 2018), intestine (Drozdzik, et al., 2018; Gröer, et al., 2014; Harbourt, 

et al., 2012; Sato, et al., 2014) and Kidney (Harbourt, et al., 2012; Knights, et al., 2016; Sato, 

et al., 2014). In brain, the AQUA-MRM workflow was used to quantify CYPs, glutathione S-

transferases (GSTs) and catechol O-methyltransferase (COMT) (Shawahna, et al., 2011). Non-

CYP and non-UGT drug-metabolising enzymes quantified by this method include liver flavin-

containing monooxygenases (FMOs), sulfotransferases (SULTs), aldehyde oxidase 1 and 

alcohol and aldehyde dehydrogenases (Bhatt, et al., 2017; Chen, et al., 2016; Fu, et al., 2013; 

Yoshitake, et al., 2017). In additions, drug transporters were successfully quantified using this 
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quantitative strategy in various tissues, including liver (Prasad, et al., 2014a; Wegler, et al., 

2017), intestine (Drozdzik, et al., 2014; Gröer, et al., 2013), kidney (Prasad, et al., 2016b), brain 

(Billington, et al., 2019; Shawahna, et al., 2011; Uchida, et al., 2011) and lung (Fallon, et al., 

2018).   

5.5.2. Quantitative concatemers (QconCAT)  

QconCAT is a concatenated set of peptides expressed recombinantly from an artificial gene.  

The host organism is usually E. coli grown in culture media, supplemented with labelled amino 

acids, usually 13C6-lysine and 13C6-arginine. QconCATs are available commercially but can 

also be expressed in-house at relatively reasonable costs (Russell, et al., 2013). The QconCAT 

protein is added to the sample at a known concentration (estimated using an unlabelled peptide 

corresponding to a standard peptide within the QconCAT) prior to digestion and can be used 

with several targeted techniques (MRM, PRM, AMRT). A single QconCAT can be designed 

to quantify several proteins (up to 50), making it amenable to multiplexing and achieving 

higher coverage of protein targets. QconCAT ensures a strict 1:1 stoichiometry making it 

particularly advantageous in determining polymorphisms (Russell, et al., 2013; Shi, et al., 

2018) and establishing protein-protein inter-correlations (Achour, et al., 2014b). The 

development of QconCAT constructs is time-consuming and most worthwhile when a 

significant number of proteins (10-50) are to be quantified in a large number of samples. The 

QconCAT-MRM workflow has been successfully used to quantify hepatic drug-metabolising 

enzymes (Achour, et al., 2014b; Shi, et al., 2018; Wang, et al., 2015, 2019) as well as 

transporters in liver (Wegler, et al., 2017), intestine (Harwood, et al., 2016a, 2015) and brain 

microvessels  (Al-Majdoub, et al., 2019; Al Feteisi, et al., 2018).  

Complete cleavage of peptides in the digestion process is, of course, essential, and there has 

been some interest in the use of ‘flanking’ sequences to make the environment of the peptides 

more analyte-like so that incomplete digestion will better resemble digestion efficiency of the 
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target proteins (Cheung, et al., 2015; Kito, et al., 2007).  Although this idea is attractive in 

theory, the claim of comparable digestion efficiency between standard and analyte proteins is 

yet to be tested. We have preferred to optimise the digestion process so that there is complete 

release of peptides from the QconCAT and as far as possible of the target proteins (Achour, et 

al., 2015; Al-Majdoub, et al., 2014).  

There is always the possibility of expression failure of a QconCAT, and this has been addressed 

in several ways (Achour, et al., 2015; Russell, et al., 2013). Experience indicates that smaller 

QconCATs are generally expressed more efficiently than larger constructs and ideally 

QconCATs should be below 100 kDa in size (Brownridge, et al., 2011). The use of a small, 

insoluble tag, such as a ribosomal construct (Al-Majdoub, et al., 2014) can force a QconCAT 

to express in insoluble form in inclusion bodies, from which it may be readily isolated (Russell 

et al, 2013). More radically, to address the issue of low yield and expression failure of larger 

QconCATs, multiplexed efficient expression of recombinant QconCATs (MEERCAT) was 

recently introduced to serve as standard for large scale protein quantification. The QconCATs 

are expressed in cell-free medium, with advantages such as expression efficiency, cost-

effectiveness and ability to monitor the number of expressed QconCATs (Takemori, et al., 

2017). 

5.5.3. Protein standards for absolute quantification (PSAQ) 

A PSAQ standard is similar in concept to a QconCAT, but consists of an intact isotopically 

labelled recombinant protein added at a known concentration to the sample under investigation 

early in the sample preparation workflow. When a PSAQ standard is employed to quantify an 

unmodified protein, it can control for solubilisation efficiency, digestion and LC-MS 

conditions; digestion discrepancies are avoided as PSAQ conserves the native context of the 

target peptides (Chen, et al., 2017). This approach is particularly advantageous when 

quantifying low abundance, soluble targets in clinical samples (Adrait, et al., 2012; Dupuis, et 
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al., 2008). However, PSAQ is only applicable to a small number of proteins; the development 

of such standards is prohibitively expensive and requires rigorous quality control (Al Feteisi, 

et al., 2015a). This technique is not useful for assessing PTMs, identifying inter-correlations or 

multiplexed quantification of a large number of targets (Smith, et al., 2019). The application 

of PSAQ in the quantification of drug-metabolising enzymes and drug transporters in human 

tissue is yet to be reported. In biomarker research, this method was successfully used to 

quantify enzymes useful as indicators of cardiovascular disease (Huillet, et al., 2012) and acute 

kidney injury (Gilquin, et al., 2017) in biological fluids.   

5.6. Global quantitative proteomic methods  

Global untargeted proteomic approaches are routinely used for assessment of protein 

expression profiles, biomarker discovery, and identification and quantification of a large 

number of target proteins. Global approaches offer a wide dynamic range and broad proteome 

coverage while targeted approaches offer higher precision and accuracy. Proteome-wide 

quantification by global methods is routinely performed either by stable isotope labelling of 

sample proteins or peptides, e.g. stable isotope labelling by amino acids in cell culture (SILAC) 

and isobaric tags for relative and absolute quantitation (iTRAQ) (Ong, et al., 2002; Wiese, et 

al., 2007), or by label-free analysis of the entire identifiable proteome (Silva, et al., 2006; 

Vildhede, et al., 2015).  

In metabolic labelling methods, such as SILAC, samples are labelled with amino acids (e.g. 

arginine, lysine or leucine) carrying a stable isotope label (13C, 15N) and pooled before further 

sample processing, thus minimising bias due to handling. The ratios of light to heavy peptide 

signals at defined retention times are used to relatively quantify protein expression differences 

between control and treatment conditions. Recent developments in labelling technology 

increased the ability of SILAC to multiplex from 2 samples to 6 samples (Merrill, et al., 2014). 

SILAC is best suited for induction studies, elucidation of drug effects on protein expression 
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(Kurokawa, et al., 2019; Zhang, et al., 2017), and analysis of post-translational modifications, 

such as relative quantification of phosphorylated proteins and identification of novel 

phosphorylation sites (Ibarrola, et al., 2003). In addition, SILAC has been used to prepare 

labelled standard mixtures for targeted proteomics (Geiger, et al., 2010). These labelled 

standards are added to analyte samples before protein digestion (Figure 5.1 A), demonstrating 

similar performance to AQUA standards (Prasad & Unadkat, 2014b). Metabolic labelling of 

whole animals, such as rodents, represents a recent extension of SILAC, with various 

applications in pharmacology research, such as the direct quantification of liver drug-

metabolising enzymes (MacLeod, et al., 2015). 

Chemical labelling methods, such as iTRAQ and tandem mass tags (TMT), are used at the 

peptide level after proteolytic digestion of sample proteins. Chemical tags react with amine 

groups and unique reporter ions are released upon fragmentation in MS/MS analysis (Ross, et 

al., 2004). Unlike SILAC, chemical labelling can be used to analyse up to 8 samples and 11 

samples in the same pool using iTRAQ and TMT reagents, respectively. Chemical labelling 

methods in conjunction with global proteomics demonstrated comparable performance to 

targeted AQUA-MRM methodology (Vildhede, et al., 2018). Applications of chemical 

labelling include quantification of hepatic drug-metabolising enzymes and drug transporters 

(Vildhede, et al., 2018), characterisation of plasma proteins in acute renal rejection (Freue, et 

al., 2010), biomarker identification for breast cancer (Meiqun, et al., 2011), eye disease 

(Linghu, et al., 2017) and gum disease (Tsuchida, et al., 2013), and relative quantification of 

proteins in Alzheimer’s disease (Morales, et al., 2017). It is worth noting that proteome-wide 

labelling methods (SILAC/iTRAQ/TMT) are more aligned with applications that require 

relative quantification.  

In label-free methods, normalisation of measurements uses either unlabelled exogenous protein 

references or the total protein approach (TPA). Exogenous proteins include various protein 
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standards distinct from the target proteome; for example, quantification of human enzymes can 

employ bovine serum albumin or yeast alcohol dehydrogenase at known concentrations (Silva, 

et al., 2006). The TPA method uses the total intensity of peptide peaks belonging to a certain 

protein relative to the total intensity of all quantifiable peptides in the proteome (Wiśniewski, 

et al., 2012b). Both methods have previously been used to quantify human liver enzymes and 

transporters (Achour, et al., 2017a; Couto, et al., 2019; Vildhede, et al., 2015).  

Global proteomic techniques are generally carried out using Q-TOF or Orbitrap instruments. 

To correct for changes in MS conditions over long analyses, sophisticated correction and 

chromatographic alignment procedures are used to compensate for retention time shifts and to 

avoid mismatching peptide peaks across runs (Ludwig, et al., 2018). Data acquisition methods 

used in global proteomics include data-dependent acquisition (DDA) and data-independent 

acquisition (DIA). DDA represents the standard shotgun approach widely used for whole-

proteome analysis (Geromanos, et al., 2009). On the other hand, the more recent DIA approach 

can generate more depth of analysis and broader proteome coverage, especially when window 

acquisition approaches, such as sequential window acquisition of all theoretical fragment mass 

spectra (SWATH), are used (Hu, et al., 2016; Smith, et al., 2019). A summary of the advantages 

and limitations of global proteomic methods is presented in Table 5.1.  

5.6.1. Data-dependent acquisition (DDA)  

In DDA, the initial scan of peptide peaks is used for the selection of peptides for fragmentation 

depending on their ion intensity, with the most abundant ions being selected preferentially. The 

main advantages of DDA are its flexibility and broad proteome coverage compared to targeted 

methods. DDA proteomics can identify thousands of proteins and provide reliable relative 

quantification across samples (Hu, et al., 2016). DDA can also be used for absolute 

quantification using suitable exogenous protein standards (Silva, et al., 2006). However, this 

method is less precise in comparison with targeted quantitative methods as low abundance 
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peptides are not detected reproducibly, leading to bias toward high abundance proteins (Hu, et 

al., 2016; Michalski, et al., 2011; Wegler, et al., 2017). The performance of this method 

declines as sample complexity increases (Bilbao, et al., 2015; Geromanos, et al., 2009).  

Q-TOF or Orbitrap mass analysers are normally used and data are interpreted using software 

packages, such as MaxQuant, Progenesis or Peaks. DDA data analysis can be performed 

either by spectral counting or by ion abundance/intensity (Ishihama, et al., 2005; Silva, et al., 

2006), with ion intensity preferred owing to its higher accuracy and reproducibility (Distler, et 

al., 2014; Prasad, et al., 2019). Importantly, to ensure robust quantification, consistency in 

sample preparation and stability of LC-MS conditions are required. DDA shotgun methodology 

was successfully used for the quantification of transporters and receptors at the blood-brain 

barrier (Al-Majdoub, et al., 2019) and for profiling various enzymes and transporters in liver 

tissue (Couto, et al., 2019; Vildhede, et al., 2015, 2018; Wegler, et al., 2017; Wiśniewski, et 

al., 2019) and hepatocyte-based in vitro systems (Vildhede, et al., 2015; Wiśniewski, et al., 

2016a).  

5.6.2. Data-independent acquisition (DIA) 

DIA was proposed to address the limitations of DDA in relation to limited depth of analysis 

and biased quantification. In DIA, all precursor ions within a selected mass range are 

fragmented and analysed (Hu, et al., 2016). Theoretically, this method identifies all detectable 

peptides within the selected mass range and is therefore less biased towards high abundance 

proteins. However, the generated data tend to be highly complex and specialised software is 

required for data deconvolution post-acquisition (Ludwig, et al., 2018). DIA combines the 

advantage of broad proteome coverage offered by DDA methods and highly reproducible 

quantification, typically achieved by targeted techniques (Gillet, et al., 2016; Hu, et al., 2016). 

The most widely used DIA approaches include MSE (Distler, et al., 2014; Silva, et al., 2006) 

and SWATH (Gillet, et al., 2012). MSE is a collision energy alternation method that uses a 
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range of collision energies over a m/z window, leading to high- and low-energy fragmentation 

(Distler, et al., 2014). The deconvoluted spectra are searched against a protein database for 

identification, while quantification can be done using an unlabelled standard protein. The 

applications of MSE include relative and absolute label-free quantification of proteins (Bilbao, 

et al., 2015). For example, this method was successfully used for quantitative profiling of 

various drug-metabolising enzymes in human liver (Achour, et al., 2017a).  

In methods that use fragmentation windows, such as SWATH-MS, instead of fragmenting the 

entire set of precursor ions in a particular scan, small m/z windows can be selected for 

fragmentation and acquisition (Gillet, et al., 2012). This potentially reduces the complexity of 

data and theoretically improves analytical depth and coverage. SWATH is widely applied using 

Q-TOF and Orbitrap mass analysers, and data are processed by sophisticated pipelines, such 

as the open-source, cross-platform software OpenSWATH (Röst, et al., 2014). The main 

advantages of SWATH are its compatibility with the analysis of low abundance sub-proteomes 

and PTMs, such as acetylation and glycosylation (Keller, et al., 2016), and its high 

reproducibility and consistency owing to peptide-centric scoring analysis (Ludwig, et al., 

2018). SWATH is therefore particularly applicable when wide proteome coverage, high 

consistency and accurate quantification are required. Post-acquisition interrogation of selected 

data yields high quality quantification of target proteins comparable to targeted MRM analyses 

(Gillet, et al., 2012). SWATH has only recently been introduced and therefore it has not been 

widely used in pharmacology research; reported applications include profiling of hepatic drug-

metabolising enzymes (Jamwal, et al., 2017) and quantification of enzymes and transporters in 

pooled liver, intestine and kidney microsomes (Nakamura, et al., 2016). Importantly, the utility 

of SWATH has recently been demonstrated in digital biobanking of tissue proteomic maps in 

health and disease (Guo, et al., 2015). 
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5.7. Key pharmacology applications of proteomic data  

The interaction between various intrinsic and extrinsic factors that affect patient populations 

can result in variability in the expression levels of PK-relevant proteins and PD targets, leading 

to variations in drug exposure and response profiles (Figure 5.2 A). Proteomic methods are 

used to assess the effects of these factors, including age (Bhatt, et al., 2019; Boberg, et al., 

2017; Prasad, et al., 2016a; van Groen, et al., 2018), disease (Al-Majdoub, et al., 2019; 

Billington, et al., 2018; Margaillan, et al., 2015; Prasad, et al., 2018; Wang, et al., 2016), 

ethnicity (Kawakami, et al., 2011; Peng, et al., 2015) and genetics (Bhatt, et al., 2019; Peng, et 

al., 2015; Prasad, et al., 2014a), individually or in combination, on protein expression profiles. 

Changes in abundance associated with perturbed systems relative to control are then used to 

predict effects on the fate of drugs (Figure 5.2 B) (Bi, et al., 2013; Ishida, et al., 2018; Prasad, 

et al., 2018; Vildhede, et al., 2014, 2018; Wang, et al., 2016).   

 

Figure 5.2. The use of proteomic data in PBPK prediction of drug exposure. A. Several 

intrinsic and extrinsic factors can affect the abundance of proteins which in turn can affect 

drug PK and PD. B. Effects of intrinsic and extrinsic factors can be simulated using QSP 
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(PBPK) models that incorporate physiological parameters (e.g. abundance) and drug data. 

C. The process of extrapolation from in vitro measurements in hepatocytes to the prediction 

of clearance in human liver; the process of IVIVE is used in combination with PBPK (or 

QSP) models (B) to predict drug PK (or PD) in a population of interest.  Scaling factors used 

in IVIVE from hepatocytes are REF = Abundance in tissue/Abundance in the in vitro 

system, HPGL and liver mass. Abbreviations: CLuint, intrinsic clearance of unbound drug; 

HHEP, human hepatocytes; HPGL, hepatocytes per gram liver; IV, intra-venous 

administration; PBPK, physiology-based pharmacokinetics; PD, pharmacodynamics; PK, 

pharmacokinetics; QSP, quantitative systems pharmacology; REF, relative expression 

factor measured using abundance data.  

Ideally, measurement of the effects on abundance and activity of functional proteins should be 

carried out and used to achieve robust predictions; however, specific substrates and optimised 

functional assays are still lacking for enzymes and transporters, with the exception of several 

CYP and UGT enzymes (den Braver-Sewradj, et al., 2017; Walsky, et al., 2012, 2004). 

Abundance is commonly used as a surrogate for activity; correlation between protein 

abundance and activity was demonstrated for various hepatic and renal drug-metabolising 

enzymes, such as CYPs, UGTs, carboxylesterase 1, aldehyde oxidase 1, flavin-containing 

monooxygenases and sulfotransferases (Achour, et al., 2017b; Chen, et al., 2016; Fu, et al., 

2013; Knights, et al., 2016; Margaillan, et al., 2015; Ohtsuki, et al., 2012; Venkatakrishnan, et 

al., 2000; Wang, et al., 2019; Xie, et al., 2017). This was also demonstrated for certain 

transporters, such as P-gp and BCRP (Harwood, et al., 2016c; Kumar, et al., 2015). In vitro 

measurements are therefore routinely extrapolated to in vivo activity (IVIVE) using scaling 

factors that rely on abundance measurements (C) (Barter, et al., 2007; Harwood, et al., 2016a). 

In addition to scaling, measuring the abundance of pharmacologically relevant proteins also 

allows evaluation of the sources of variability in activity rates; inter-individual variation is 
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driven by variability in the level of expression, alterations in intrinsic protein activity, or a 

combination of these factors (Zhang, et al., 2016). Below is a brief account of the main 

pharmacology applications of proteomic data. Each application requires a different level of 

proteomic analysis (absolute quantification, relative quantification or discovery/identification) 

as illustrated in Figure 5.3. 

 
Figure 5.3. The characteristics and applications of absolute quantification, relative 

quantification and discovery proteomic approaches. A. The requirements and characteristics 

of different levels of quantitative proteomic analysis. Absolute quantification requires assays 

that are accurate and precise; relative quantification requires reproducibility. B. 

Applications of data generated using absolute quantification, relative quantification and 

exploratory proteomics in translational PK and PD research. Several applications overlap 

between absolute and relative quantification. Abbreviations: DDI, drug-drug interaction; 

PBPK, physiology-based pharmacokinetics; PD, pharmacodynamics; PK, 

pharmacokinetics; PTM, post-translational modification; QSP, quantitative systems 

pharmacology; QST, quantitative systems toxicology; SIL, stable isotope label; SNP, single 

nucleotide polymorphism. 
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5.7.1. Physiology-based pharmacokinetic (PBPK) modelling and IVIVE   

The use of PBPK models has now become firmly embedded in practices within the 

pharmaceutical industry and evidence from these models is used in different phases of drug 

development (Huang, et al., 2013; Jamei, 2016). PBPK modelling has gained wide acceptance 

with regulatory agencies (Rowland, et al., 2015), with PBPK data being used in the labels of 

21% of new drug applications approved by US Food and Drug Administration (FDA) in 2015 

(Marsousi, et al., 2017). Modelling is commonly used for prediction of human pharmacokinetic 

parameters and evaluation of the effects of factors affecting a patient population, such as 

genetics and lifestyle (Heikkinen, et al., 2015; Prasad, et al., 2017). PBPK models are built by 

integrating drug profiles with physiological data, including blood flow, organ size, protein 

binding, and abundances of enzymes and transporters (Figure 5.2) (Jones & Rowland-Yeo, 

2013). Various commercial and non-commercial platforms, e.g. Simcyp, GastroPlus, and PK‐

Sim, have facilitated the use of PBPK modelling (Kuepfer, et al., 2016), but all require data 

describing protein abundance and population variability, and such data are still in short supply 

(Heikkinen, et al., 2015). Key areas where PBPK models suffer from limited data include non-

CYP and non-UGT metabolic pathways, extra-hepatic drug-metabolism and disposition, 

effects of differences in special populations (e.g. hepatically/renally-impaired, paediatric and 

geriatric patients) and inter-species variability. These limitations have started to be addressed 

in recent years mainly because of increased availability of (biopsy and surgical) tissue samples, 

advances in sample preparation methods and increased application of LC-MS proteomic 

techniques.  

The use of IVIVE has extended the utility of PBPK modelling and made biosimulation more 

widely usable by linking modelling to in vitro studies using animal and human systems (Sager, 

et al., 2015). The application of IVIVE-PBPK requires integration of absolute abundance data 

in tissue relative to the in vitro system and system-specific scaling factors (e.g. microsomal 
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protein content or hepatocellularity) with various patient-derived physiological parameters 

(Barter, et al., 2007) to predict pharmacokinetic profiles and account for metabolic differences 

among specific populations (Rostami-Hodjegan, 2012). A recent systematic survey of the 

literature showed that the majority of PBPK models are used for the assessment of clinical 

pharmacokinetics and DDIs (Sager, et al., 2015). Recently reported PBPK models that used 

proteomic data were developed for an array of applications, such as the prediction of variability 

in clearance (Harwood, et al., 2016b; Kumar, et al., 2018; Vildhede, et al., 2018), variability in 

DDIs (Doki, et al., 2018), impact of formulation (Johnson, et al., 2014), effects of liver disease 

(Prasad, et al., 2018; Wang, et al., 2016) and kidney impairment (Zhao, et al., 2012) on drug 

pharmacokinetics, and predicting drug kinetics in paediatrics (Jiang, et al., 2013; Johnson, et 

al., 2014; Ladumor, et al., 2019), older patients (Polasek, et al., 2013) and during pregnancy 

(Gaohua, et al., 2012; Ke, et al., 2013, 2014). In addition to these applications, PBPK models 

represent a valuable tool for learning and internal decision making in the pharmaceutical 

industry as well as storing and integrating compound-specific information throughout drug 

discovery and development.  

5.7.2. Quantitative systems pharmacology (QSP) models 

Models with broader pharmacological applications include QSP models which represent new 

tools for drug development (Danhof, 2016), with several applications, including prediction of 

the effects of therapeutic agents, mechanisms of interaction between therapeutic targets and 

elucidating the biological processes underlying disease and resistance to drugs (Dimitrova, et 

al., 2017; Kirouac, 2018; Kirouac, et al., 2015). The US FDA has recently adopted the use of 

these models and the first case was the assessment of a novel parathyroid hormone replacement 

biologic (Peterson & Riggs, 2015). The use of QSP models for supporting new drug 

submissions is therefore expected to increase (Niu, et al., 2019). In particular, a promising 

application of QSP models is the assessment of pharmacodynamics DDI potential by probing 
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the mechanisms of interaction of a drug combination in the system and exploring the outcomes 

of target perturbations, as reported recently for the interaction between glibenclamide and the 

glucose-insulin-glucagon system in Type 2 diabetes (Choy, et al., 2013). The requirement for 

multi-omics data is emphasised for building pharmacology and toxicology models with the 

essential role of pharmaco- and toxico-proteomics in identifying and quantifying critical 

proteins in pathways affected by drug, chemical and environmental exposure (Wetmore & 

Merrick, 2004). This normally follows a strategy consisting of a discovery method followed 

by robust targeted quantification (Gillet, et al., 2016). Proteomic data were previously used as 

the basis for developing QSP models to predict the effects of drugs, such as gemcitabine and 

birinapant in pancreatic cancer (Zhu, et al., 2018) and 5-flurouracil in colorectal cancer (Hector, 

et al., 2012). 

5.7.3. Disease perturbation 

 Disease perturbation models are QSP models that aim to simulate disease progression and 

assess the effects of different drug regimens on a diseased population. Modelling disease 

perturbations requires relative abundance data for the diseased tissue compared to a healthy set 

of samples used as control. Disease-scale models have been applied to several disease states, 

including cirrhosis and different types of cancer. Cirrhosis is a disease of the liver that 

significantly affects drug metabolism and disposition and hence disease modelling can help 

with tailoring dosage regimens that are both safe and efficacious. Liver fibrosis generally leads 

to a reduction in expression of phase I and phase II enzymes (including CYPs, UGTs and 

sulfotransferases), and consequently, progressive decline in their abundance and activity is 

observed as the disease advances (Fisher, et al., 2009; Hardwick, et al., 2013). Proteomic 

evidence of changes in the abundance of CYPs, UGTs and other hepatic enzymes was reported 

in cirrhotic livers and was shown to be dependent on the cause of cirrhosis (Prasad, et al., 2018). 

Phase I metabolising enzymes are reported to be more influenced by disease progression than 
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phase II pathways which can be attributed to shortage in blood supply reaching the scarred 

tissue (Yang, et al., 2003). Incorporating proteomic data into disease-scale PBPK models has 

led to improved model performance in cirrhosis as reported for zidovudine, morphine (Prasad, 

et al., 2018), repaglinide, bosentan, telmisartan, valsartan and olmesartan (Li, et al., 2015; 

Wang, et al., 2016).   

Applications of disease models have also been highlighted for different malignancies, 

including breast cancer (Hodgkinson, et al., 2012) and colon cancer (Hector, et al., 2012). 

These models were mainly used to predict the prognosis in certain populations and assess the 

effect of anti-cancer regimens at different stages of the disease. Because of the difficulty in 

recruiting cancer patient populations in clinical studies and the ethical issues related to the 

exposure of healthy subjects to toxic anti-cancer drugs, PBPK models are better accepted in 

oncology drug development compared to other disease states (Yoshida, et al., 2017). There is 

currently a lack of abundance data in cancer, and LC-MS proteomics is set to address this gap 

by providing quantitative measurements of enzymes and transporters from biopsies and 

archived surgical samples (Prasad, et al., 2017).  

5.7.4. Protein inter-correlations 

Inter-individual variation in drug PK and PD can largely be predicted by integration of known 

sources of variability, including demographic factors (e.g. age and ethnicity) and physiological 

parameters (e.g. blood flow, levels of enzymes and transporters) (Jamei, et al., 2009). In silico 

approaches, such as PBPK models, can simulate the interaction between different covariates, 

such as changes in enzyme/transporter abundance, and predict their effects on clearance and 

DDIs (Doki, et al., 2018; Melillo, et al., 2019). Considering the inter-correlation between the 

expression levels of pharmacologically active proteins, and indeed between other physiological 

parameters (e.g. liver size and blood flow), can lead to more plausible parameter combinations 

when sampling from a population distribution (Tsamandouras, et al., 2015). Multiplexed 
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quantitative proteomics can measure multiple enzymes and transporters in individual biological 

samples simultaneously, allowing robust assessment of inter-correlations between these 

proteins (Achour, et al., 2014a; Prasad, et al., 2019). Due to the nature of correlation analysis, 

technical bias can in some cases lead to apparent relationships in protein expression and 

therefore caution should be exercised in order to use only verified biological inter-correlations 

in modelling applications (Heikkinen, et al., 2015).  

While various inter-correlations between drug-metabolising enzymes and transporters have 

been confirmed both at the RNA (Izukawa, et al., 2009; Wortham, et al., 2007; Zhang, et al., 

2016) and protein levels (Achour, et al., 2014b; Cheung, et al., 2019; Couto, et al., 2019; Mooij, 

et al., 2016), the quantitative impact of such relationships on pharmacokinetic outcomes has 

only recently started to be explored, with models incorporating inter-correlations 

outperforming those that do not (Barter, et al., 2010; Doki, et al., 2018). It is expected that the 

use of more realistic combinations of physiological parameters will be widely practiced in PK 

and PD modelling and simulation (Melillo, et al., 2019).  

5.7.5. Precision dosing 

Model-informed precision dosing (MIPD) aims to predict the right dose of a drug for a specific 

patient based on individual characteristics. This is expected to lead to improved efficacy and 

reduced toxicity and pave the way to individualised therapy (Darwich, et al., 2017). This 

approach is most applicable to drugs with a narrow therapeutic index and for special 

populations, such as paediatrics, geriatrics and patients with hepatic and renal impairment 

(Polasek, et al., 2018). Multi-omic approaches and recent developments in ‘liquid biopsy’ 

assays (Rowland, et al., 2019) are expected to facilitate the construction of ‘virtual twins’ as a 

useful strategy to enable precision dosing. A ‘virtual twin’ is an in silico model that represents 

an individual patient, created by integrating system parameters (i.e. demographic, clinical and 

enzyme/transporter abundance data) from the patient in order to simulate individualised drug 
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response (Patel, et al., 2018). This requires collection of absolute and relative expression data 

(Polasek, et al., 2018) measured in individual patients using innovative sampling techniques, 

such as the use of biofluids (Boukouris & Mathivanan, 2015). 

5.7.6.  Ontogeny  

The process of growth and maturation is thought to be the main contributor to observed 

differences in drug PK profiles across the paediatric population age range and when compared 

to adult populations (Fernandez, et al., 2011). For example, physiological changes, such as 

gastric pH and emptying and intestinal motility that occur from birth to adulthood affect the 

rate of drug absorption. This is particularly evident in neonates in which absorption is generally 

delayed (Batchelor & Marriott, 2015; Lu & Rosenbaum, 2014). In addition, the ontogeny of 

drug-metabolising enzymes, such as CYPs and UGTs, and transporter proteins within the liver 

and other organs contributes to variable rates of drug metabolism and excretion (Badée, et al., 

2019; Bhatt, et al., 2017, 2019; Boberg, et al., 2017; van Groen, et al., 2018), with consequences 

for toxicity and efficacy profiles (Batchelor, et al., 2015; Elmorsi, et al., 2016). 

Current drug dosing regimens for paediatrics are based on allometric scaling from adult 

populations or reliant on local guidance and clinician experience because of lack of data from 

clinical trials (Calvier, et al., 2017). Regulators are increasingly supportive of mechanistic 

PBPK models to inform drug labels in lieu of clinical trials in paediatric applications (Jones, et 

al., 2015; Miller, et al., 2019). There is still, however, a paucity of data to feed these paediatric 

models, in large part because paediatric samples are obtained opportunistically (Howard, et al., 

2018; Templeton, et al., 2018).  

Despite the difficulties of sample collection, there is consensus that the abundance and function 

of the majority of enzyme and transporter proteins are comparatively low in foetal and neonatal 

samples, increasing at varying rates as a function of age toward adult equivalent levels (Badée, 
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et al., 2019; Chen, et al., 2016; Cheung, et al., 2019; Upreti & Wahlstrom, 2016). For example, 

CYP3A4, UGT2B7 and P-gp are present in small amounts in neonatal samples, increasing 

toward or surpassing adult equivalent levels by 1-3 years of age (Bhatt, et al., 2019; Mehrotra, 

et al., 2015; van Groen, et al., 2018). Conversely, CYP3A7 abundance is relatively high in 

foetal and neonatal samples, decreasing rapidly toward adult equivalent levels within 1 year 

(Leeder & Meibohm, 2016; Mehrotra, et al., 2015). Incorporation of ontogeny profiles with in 

silico models led to useful pharmacokinetic predictions for several drugs, such as theophylline 

(Ginsberg, et al., 2004), propofol  (Michelet, et al., 2018), tramadol (T’jollyn, et al., 2015) and 

valproic acid (Ogungbenro & Aarons, 2014), in children. 

5.7.7.  Characterisation of polymorphisms 

Most drug-metabolising enzymes, particularly CYPs, and transporters, such as organic anion 

transporting polypeptides, are polymorphic with a range of clinical consequences (Oswald, 

2019; Zhou, et al., 2017). Various genetic polymorphisms are non-synonymous and can be 

characterised at the protein level, while polymorphisms occurring in the regulatory region of a 

gene can affect gene expression and mRNA stability in a particular tissue but do not result in 

modifications to the protein sequence. The effect of polymorphism becomes significant when 

it causes variability to an extent that necessitates a change in the administered dose of a specific 

drug (Gentry, et al., 2002); a case in point is CYP2C9 polymorphism and its effects on the 

required dose of the anti-coagulant warfarin. Our group has previously developed an allele-

specific proteomic workflow that can distinguish different polymorphic variants of CYP2B6 

(Achour, et al., 2014b; Russell, et al., 2013). Shi et al. (2018) showed applicability of this 

approach to UGT2B15 with the aim of elucidating the regulatory mechanisms of UGT 

expression. Although relative quantification is as applicable to studying polymorphisms as 

absolute quantification, this application requires accurate and reproducible assessment of the 
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stoichiometry of target enzymes (or transporters), and therefore targeted proteomic methods 

that employ a QconCAT standard are especially suitable (Achour, et al., 2019).  

5.7.8. Disease biomarker discovery 

Identification of biomarkers assists in understanding the pathophysiology of a disease and its 

progression, as well as monitoring patient response during therapy (Hector, et al., 2012; 

O’Dwyer, et al., 2011). This is applicable not only to traditional drugs but also to testing the 

efficacy of new candidates and comparing them to already available therapeutic agents. Often 

more than one biomarker is necessary to characterise a disease state, where the synergy 

between several targets in the same (or related) disease pathway makes a composite test more 

effective than monitoring a single biomarker of disease (Russell, et al., 2017). A rigorous 

discovery proteomics workflow should consist of a preliminary discovery phase using global 

proteomics, such as shotgun DDA or SWATH profiling, followed by verification or validation 

of target proteins using more quantitative targeted techniques, such as MRM or PRM. The 

settings of the targeted experiment will depend on information collected in the discovery phase 

(Prasad et al., 2019). 

The initial step can be performed on a small set of well-characterised samples from patients 

with the relevant disease state relative to control with the aim of identifying differentially 

expressed proteins (Gillet, et al., 2016; O’Dwyer, et al., 2011). Global proteomics has led to 

the discovery of various diagnostic biomarkers, such as proteins related to resistance to cancer 

chemotherapy, and biomarkers for monitoring treatment (Russell, et al., 2016; Srivastava & 

Creek, 2019). These biomarkers are normally associated with critical cell function pathways, 

such as survival, proliferation (Shruthi, et al., 2016), apoptosis (Hector, et al., 2012) and post-

translational modification of proteins (Held, et al., 2010). After conclusive identification of a 

set of biomarkers, targets are quantified in samples from different populations, such as patients 
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at different stages of the disease, and a healthy cohort (Elschenbroich, et al., 2011; Sjöström, 

et al., 2015).  

A promising application of global proteomics showed differences in expression profiles 

between Crohn’s disease and ulcerative colitis, which are symptomatically very similar but 

require entirely different treatment regimens (Starr, et al., 2017). In cancer, a wide range of 

signalling pathways can be perturbed, including the function of protein kinases and 

phosphatases, which can be monitored as disease biomarkers and targeted by novel drug 

therapies (Bhullar, et al., 2018; Bollu, et al., 2017). Recently characterised cancer biomarkers 

for the assessment of prognosis and therapy-related considerations include HER2 for decision-

making in cancer treatment (Kirouac, et al., 2015), cAMP-CREB1 axis as a key mechanism 

associated with resistance to platinum-based therapy (Dimitrova, et al., 2017), caspase 

networks associated with prognosis of colorectal cancer (Hector, et al., 2012), Stathmin-1 in 

relation to cell migration in colon cancer metastasis (Tan, et al., 2012), and protein Z as an 

early biomarker for the detection of ovarian cancer (Russell, et al., 2016). 

5.8. Recommendations for best practice in applying proteomic techniques 

With the recent expansion in the use of proteomic techniques in clinical and pharmacology 

research, robust guidelines have become crucially required for choosing the most appropriate 

method for a specific application. The decision-making process tends to be complex and will 

depend on multiple factors including the biological question, the type of sample, the number 

of samples, the number of targets, and the available budget. Figure 5.4 shows a simplified 

decision tree intended to guide the choice of proteomic methods used for pharmacology 

applications. In the same line, a workshop was recently held by the International Society for 

the Study of Xenobiotics (ISSX), with the aim of reaching a consensus on the use of proteomics 

in translational pharmacology research. Various recommendations for the choice and 
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application of different techniques were proposed but a general consensus was not achieved 

(Prasad, et al., 2019).  

 

Figure 5.4. Decision tree for choosing suitable proteomic techniques intended for 

pharmacology applications. A typical number of samples (~30) is used as input for the 

decision tree. The application can be hypothesis-driven and focused on quantification or 

hypothesis-generating and intended for discovery. If the application is focused on discovery, 

global proteomics are most suitable, with preference for data-independent acquisition when 

reproducible quantification of differential expression is required. When a target or a 

biomarker is discovered, more accurate quantification is achieved with targeted proteomics. 

If the target proteins are known to be expressed in the system and are well-defined, targeted 

proteomics are preferred. If the number of targets is small (< 10), AQUA-based methods (in 

conjunction with MRM or PRM techniques) are cost-effective. When the number of targets 

is higher (10-100), QconCAT methodology is preferred. Quantification of larger numbers of 

targets (> 100) and characterization of proteomes is better achieved using global proteomics. 

Orange boxes denote applications and blue boxes represent proteomic methods. 
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Considerations for choosing a technique will generally differ for targeted and global proteomic 

methods. In targeted analysis, isotopically labelled standards are used to improve precision and 

accuracy of measurements and reduce bias caused by variations in sample preparation and 

matrix effects (Bhatt, et al., 2018). This is desirable when accurate quantification of inter-

individual variability is required for QSP models and MIPD. Techniques recommended for 

these applications include MRM applied on triple quadrupole instruments and PRM conducted 

on higher resolution platforms, such as Orbitraps and Q-TOF instruments. Both methods can 

be used for multiplexed quantification and they offer a wide dynamic range, typically two 

orders of magnitude, and therefore spiking of standards should be guided by the range of 

targeted proteins. One of the main advantages of targeted analysis is possibly its unparalleled 

sensitivity achieved even in the presence of a complex biological matrix (Holman, et al., 2012). 

Therefore, recommended practice is to quantify protein expressed at very low abundance in a 

targeted manner. MRM is currently the ‘gold standard’ in clinical and pharmacological 

research (Carr, et al., 2014), and recent guidelines by the Clinical Proteomic Tumour Analysis 

Consortium (CPTAC) provides recommendations and standard operating procedures (SOPs) 

for the development, application and reporting of MRM assays (Abbatiello, et al., 2017; 

Whiteaker, et al., 2014). Large-scale cross-laboratory assessment of plasma proteins showed 

improved quantification when harmonised SOPs are followed (Abbatiello, et al., 2015). Triple 

quadrupole instruments used for MRM are less expensive than higher resolution mass 

spectrometers and the use of scheduled MRM improves the reproducibility of the data and 

increases the number of peptides that can be analysed in one experiment (Oswald, et al., 2013), 

thus reducing the cost and time of analysis. PRM methodology offers advantages in selectivity, 

resolution and sensitivity while requiring a lower level of method development compared to 

MRM (Peterson, et al., 2012). Orbitrap and Q-TOF instruments tend to be expensive but they 
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represent versatile platforms capable of targeted (PRM) and global analyses (Peterson, et al., 

2012; Schilling, et al., 2015).  

Targeted techniques rely on the use of labelled standards and the choice of suitable standards 

depends on the type of experiment and available budget and expertise. Isotope-labelled internal 

standards tends to be expensive, but they provide better quality quantification (higher precision 

and accuracy) than label-free methods. AQUA peptides are ideal for screening applications 

where a small number of proteins (< 10) are monitored in a large number of samples. 

QconCATs are more applicable when higher numbers of proteins are targeted and for 

applications that require strict stoichiometry, such as allele-specific proteomics (Achour, et al., 

2019; Shi, et al., 2018). QconCAT standards have the advantage of sustainability and 

transferability across laboratories (Russell, et al., 2013); a plasmid can be shared by different 

groups with access to protein expression facilities. We have previously developed a cost-

benefit framework to assess the use of quantitative proteomic methods based on cost and 

application (Al Feteisi, et al., 2015a). This assessment showed that the high cost of PSAQ 

standards hinders their application when a considerable set of proteins are targeted. 

For applications that aim to identify novel proteins or quantify a large number of targets (> 100 

proteins), the method of choice is global proteomics. Shotgun global proteomics, in conjunction 

with the TPA approach, can be cheaper than targeted methods because they do not require the 

use of labelled standards. This method is applied with Q-TOF and Orbitrap instruments and 

has a wide range of hypothesis-generating applications, including proteome-wide analysis, 

assessment of disease perturbations and biomarker discovery. Data-independent methods, such 

as SWATH, offer increased depth of analysis and quantitative reproducibility (Gillet, et al., 

2012), making them very suitable for generating protein network data for systems 

pharmacology applications. Their use is however still restricted to core facilities, and 

sophisticated bioinformatics tools are required for data analysis and interpretation (Distler, et 
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al., 2014; Röst, et al., 2014). A combined discovery-quantification strategy is recommended 

when characterising a novel target or disease pathway (Gillet, et al., 2016). This requires using 

global analysis (e.g. SWATH) on well-defined (disease and control) samples followed by 

targeted (MRM or PRM) quantification.   

The concept of a ‘proteomic map of disease’ has recently been proposed (Guo, et al., 2015; 

Xu, et al., 2019), supported by highly reproducible sample preparation and global proteomic 

workflows. We recommend that major academic centres should conduct harmonised efforts to 

generate and share similar proteomic maps in health and disease for available biopsy and 

surgical samples from different tissues, as demonstrated recently (Uhlen, et al., 2015). This 

will likely require the use of highly reproducible methods capable of wide proteome coverage, 

such as SWATH-MS (Gillet, et al., 2012), and these digital maps can be interrogated 

retrospectively by various groups for future applications.  

5.9. Conclusion 

Quantitative proteomic measurements can make a significant contribution to the advance of 

quantitative systems pharmacology and can be relatively quickly translated into the clinic, 

where they directly benefit patients. These measurements are powerful, providing selectivity 

and sensitivity unparalleled by other protein-level techniques. The disadvantage of the 

unparalleled sensitivity is that independent orthogonal verification of a measurement is often 

challenging. Further, the cost of these experiments and small sample sizes preclude extensive 

sample sharing and cross-laboratory analyses. Prasad et al. (2019) have highlighted the 

difficulty in obtaining consensus as to appropriate protocols for different measurements, 

especially as the most thorough approaches are beyond the budgets of many laboratories. 

We can however make a number of broad observations. Firstly, targeted methods are preferred 

where a specific, poorly expressed set of proteins is to be quantified, whereas global methods 

are better adapted to gaining a general picture of the functional proteome in a cell. Secondly, 
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while there is merit in terms of accuracy in analysing unfractionated samples, the loss of 

precision and sensitivity compared with the use of fractions is often critical. Thirdly, neither 

QconCAT proteins nor AQUA peptides are ideal as standards for targeted proteomics; 

QconCATs are favourable where large numbers of similar samples are to be analysed for 

several proteins, whereas AQUA peptides are effective for small numbers of target proteins. 

When a decision is made, the minimal requirement is that the use of a particular quantitative 

proteomic technique should be ‘fit for purpose’. Ultimately, the selected method and the level 

of proteomic quantification will have a substantial impact on the quality and validity of model-

informed predictions. 
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6.1. Abstract 

QconCAT is a tool for quantitative proteomics, consisting of an artificial protein, expressed 

from an artificial gene. This protein is made up of a concatenated string of proteotypic peptides 

selected from the proteins under study. Isotopically labelled QconCAT, usually containing 

13C6-arginine and 13C6-lysine, provides a standard for each proteotypic peptide included in its 

sequence. A novel QconCAT (NuncCAT) was constructed in this article for enzymes other 

than Cytochromes P450 and Uridine 5'-diphospho-glucuronosyltransferase enzymes. The need 

for such QconCAT, criteria for peptides selection, construct, expression, and quality control 

tests were presented. The designed and expressed NuncCAT showed good purity, high 

labelling efficiency (above 98% for all peptides), high coverage (93% of the sequence), and its 

concentration was measured to allow its use as internal standard with the biological sample of 

interest. This QconCAT construct is ideal for quantitative experiments that use FASP digestion 

protocols. 

6.2. Introduction       

6.2.1. Overview on internal standards 

Determination of the absolute abundance of proteins in biological samples can be laborious 

using western blotting and ELISA. Mass spectrometry enables the simultaneous analysis of 

multiple proteins, but the mass spectrometry signal does not reflect the absolute amount of the 

underlying protein. Therefore stable isotope labelled (SIL) peptides or proteins can be used as 

a standard or reference. These standards include heavy surrogate peptides (contain heavy 

isotopes (13C, 15N) that are synthesised either chemically or biologically) to quantify target 

proteins that are present in the biological sample (analyte) in a light form (12C, 14N). The added 

standards can be either small peptides; absolute quantification (AQUA) peptides for small 

number of targets, concatenated larger peptides; quantitative concatemers (QconCAT) for 
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relatively larger number of targets up to 20, or protein standards for absolute quantification 

(PSAQ) for a single protein target (El-Khateeb et al., 2019).  

6.2.2. Concatenated labelled internal standards for proteins involved in drugs 

metabolism 

For modelling approaches in systems biology and drug metabolism, measuring the absolute 

abundances of different drug-metabolising enzymes and proteins is essential. One way to gain 

this knowledge is through the use of QconCATs which are synthetic proteins consisting of 

proteotypic peptides derived from the target proteins to be quantified. This QconCAT 

technology delivers heavy isotope labelled reference standards that involve signature or 

surrogate peptides for each target protein of interest. Usually, a known concentration of these 

purified synthetic concatenated peptides, previously expressed in E.coli is spiked with the 

analyte or the sample of interest. When both the sample and the QconCAT are simultaneously 

digested, surrogate peptides from the QconCAT will be released. The ratio of heavy peptide 

(from the QconCAT) to the light peptide (from the analyte) can be used for the quantification 

of the protein of interest within the sample. However, the selection and the order of these 

surrogate peptides have some criteria to be applicable for global proteomic methods (Prasad et 

al., 2019). These criteria are essential for the optimal cleavage by proteolytic enzymes used in 

the analyte digestion, in order to completely release the surrogate peptides with high flyability, 

ionisability, and detectability by Liquid Chromatography-tandem mass spectrometry (LC-

MS/MS). These peptides also need to be stable and less liable to modifications or interaction 

with the analyte.  

Several QconCATs have been designed by our group for that purpose. Each QconCAT is 

considered as an internal standard for the quantification of a specific number of drug-
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metabolising enzymes and transporters (DME&T). Each target protein is represented in the 

QconCAT as one, and preferably, two, or three specific/unique peptides to that target. 

The first two QconCATs, which covered most of the drug-metabolising enzymes (either for 

phase I or II metabolism) and drug transporters in the tissue fraction sample, are the MetCAT 

(Achour, et al., 2015), and TransCAT (Russell, et al., 2013), respectively.   

6.2.3. The Need for Non-Cytochrome P450 and Non-Uridine Diphosphate 

Glucuronosyltransferase QconCAT (NuncCAT). 

The MetCAT included most human liver cytochrome P450 (CYP450) and uridine diphosphate 

glucuronosyltransferases (UGTs). However, there are lots of compounds with high 

lipophilicity, low aqueous solubility, low microsomal turnover, and are not mainly CYPs or 

UGT substrates. These compounds or substances are usually metabolised by other oxidases, 

reductases, estrases, and sulfotransferase enzymes (Table 6.1). Therefore, there was an urgent 

need to design another QconCAT that can help in the absolute quantification and hence filling 

the gap for absolute abundance data for these critical enzymes.  

Although the criteria of designing the QconCATs have been published before by our group 

(Achour, et al., 2015), this internal standard design is target-specific and requires experience 

in selecting the most promising peptides that are most likely to be specific and with the highest 

possible expected flyability in the LC-MS/MS.
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Table 6.1. Tissue harbouring NuncCAT enzymes, examples of their endogenous and xenobiotic/drug substrates 
S

er
ia

l 

Enzyme 
Tissue with high 

expression* 
Substrate Reference 

1 CES1  
Mainly liver, small intestine, 

but also in kidney, and lungs 

Methylphenidate, oseltamivir, clopidogrel,  

dabigatran etexilate, enalapril, and other ACEs, Simvastatin, lovastatin, clofibrate, 

fenofibrate, oseltamivir, methylphenidate, cocaine, meperidine, flumazenil, 

mycophenolate mofetil, ciclesonide, Capecitabine     

 

(Laizure, et al., 2014; Merali, 

et al., 2014) 

2 CES2  
Mainly liver, small intestine, 

but also in kidney, and lungs 

Prasugrel, aspirin, candesartan citexetil, olmesartan medoxomil, azilsartan medoxomil, 

tenofovir ester, adefovir ester, valacuclovir, cocaine, Heoin, 6-monoacetylmorphine, 

methylprednisolone, irinotecan 

(Casey Laizure, et al., 2013) 

3 FMO3  Liver 

Sulfer containing drugs such as albendazole, ethionamide, methimazole, 

phenothiazine, cimetidine, ranitidine, tazarotenic acid, and sulindac. 

Nitrogen containing drugs such as amfetamine, benzydamine, clozapine, dapsone, 

itopride, methamfetamine, olopatadine, sulfamethoxazole, and tamoxifen 

(Krueger & Williams, 2005) 

4 FMO5  

liver, stomach, pancreas, small 

intestine and foetal tissues 

 

S-methyl esonarimod, E7016 anticancer, MRX-I antibacterial, phosphosulindac, 

ranitidine 

 

(Phillips & Shephard, 2017) 

5 EPHX1  Liver and brain 

Endogenous steroids, and xenobiotics such as arene oxides and aflatoxin epoxide, 

detoxifies certain carcinogenic compounds, e.g., butadiene, benzene, and styrene, it 

can also activate procarcinogens such as polycyclic aromatic hydrocarbons 

(Václavíková, et al., 2015) 

6 POR  
Liver, brain, thyroid, intestine, 

brain, placenta, skin 
Zidovudine, mitomycin C, tacrolimus,  and warfarin 

(Fayz & Inaba, 1998; Kandel 

& Lampe, 2014) 

7 MGST1 

Mainly in the liver, and kidney 

but also in adrenal glands and 

adipose tissue 

Detoxification of epoxide intermediates of glyceryl trinitrate, Aflatoxin B1 

chlorambucil, melphalan, carmustine, doxorubicin and cisplatin 

Activates prodrugs as : doxorubicin derivatives 

(Johansson, et al., 2006; 

Morgenstern, et al., 2011) 

8 MGST 2 Liver, intestine, placenta. 

Metabolise different toxic chemicals, drugs, and environmental pollutants, detoxify 

some of the toxic carbonyl-, peroxide-, and epoxide-containing metabolites. 
(Hayes & Pulford, 1995) 

9 MGST 3 

Adrenal glands, intestine, 

kidney and lower levels in the 

liver. 

10 UGT 2B17 

liver, intestine, kidney, testis, 

uterus, placenta, mammary 

gland, adrenal gland, skin, and 

prostate 

Numerous endogenous steroids, including testosterone (T), dihydrotestosterone 

(DHT), androstane-3-α, 17-β-diol (3-α-diol), androsterone and estradiol, and 

xenobiotics (e.g., 17-dihydroexemestane, vorinostat, lorcaserin) 

(Bhatt, et al., 2018) 
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11 ADH1A  Liver, intestine 
Ethanol, retinol, other aliphatic alcohols, hydroxysteroids, and lipid peroxidation 

products 
(Duester, et al., 1999) 12 ADH1B  Liver, intestine, adipose tissue 

13 ADH1C  Liver, intestine, kidney 

14 ALDH1A1  

Liver, kidney, red blood cells, 

skeletal muscle, lung, breast, 

lens, stomach, brain, pancreas, 

testis, prostate, ovary 

Oxazaphosphorines anticancers, acetaldehyde, cyclophosphamide, and  4-

hydroperoxycyclophosphamide 
(Tomita, et al., 2016) 

15 AOX1  
Adrenal glands, liver, testis, 

kidney 

6-Mercaptopurine, vitamin B6 or pyridoxal ,  citalopram, zebularine, caffeine, 

nicotine, brimonidine,  vanillin, phthalazine and N1-methylnicotinamide, zaleplon, 

methotrexate and ziprasidone, and tamoxifen 

(Garattini & Terao, 2012; 

Kücükgöze & Leimkühler, 

2018) 

16 NAT1 

Testis, liver, thyroid, adrenal 

gland, intestine, kidney, 

placenta 
Acetylates isoniazid (treatment for tuberculosis), hydralazine, procainamide, dapsone, 

aminoglutethimide, and sulfamethazine 
(Meisel, 2002) 

17 NAT2 
Lung, intestine, liver, kidney, 

testis 

18 SULT1E1 Intestine, liver Endogenous and synthetic oestrogens, and acetaminophen (Barbosa, et al., 2019) 

19 SULT1A1 Intestine, liver Several  phenolic compounds, iodothyronine, and acetaminophen 
(Gamage, et al., 2006; 

Yamamoto, et al., 2015) 
20 SULT1A2 Intestine, liver Several  phenolic compounds 

21 SULT2A1 Adrenal gland, liver, intestine Dehydroepiandrosterone (DHEA), testosterone, abiraterone, and acetaminophen 

22 TPMT 
Thyroid, kidney, skin, 

intestine, liver, testis, placenta. 

Aromatic thiol compounds such as thiophenol, thiosalicylic acid, azathioprine, 

mercaptopurine and thioguanine 
(Lennard, 1998) 

23 EPHX2  
Mainly in the liver but also in 

kidney and adipose tissue 

Trans-Stilbene oxide, leukotriene A4, and metabolises the biologically active 

epoxyalcohol metabolites of arachidnoic acid, hepoxilin A3 & B3 
(Gautheron & Jéru, 2020) 

*The Human Protein Atlas https://www.proteinatlas.org/ 

 

 

https://www.proteinatlas.org/
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6.3. Methods 

6.3.1. Design and Synthesis of the NuncCAT. 

A. Tools used: 

 Uniprot human to find the ID number of the protein, the cellular location and the 

transmembrane sequence (The UniProt Consortium, 2019). 

 Protein Prospector (MS Digest) for the theoretical digestion (http://prospector.ucsf.edu/). 

 Peptide uniqueness checker to find the unique peptides in the human proteome 

(https://www.nextprot.org/tools/peptide-uniqueness-checker). 

 Expasy peptide mass to check the post-translational modifications 

(https://www.expasy.org/). 

 Isoelectric point (pI) and the molecular weight (Mwt) calculators to determine the pI and 

Mwt for each peptide (http://isoelectric.org/calculate.php). 

 Phobius to find the transmembrane peptides (https://phobius.sbc.su.se/; double-checked 

with Uniprot https://www.uniprot.org/) 

Firstly, a list has been created for the pharmacologically important liver enzymes/targets that 

are not included in the MetCAT and TransCAT. Then, a full protein sequence was obtained 

from Uniprot database search. Using protein prospector, the whole protein was theoretically 

digested using “Trypsin P” as the digestive enzyme. The produced peptides’ list was then 

introduced into the peptide uniqueness checker to select only the unique peptides for this 

specific target protein. 

A new shorter list was created for which the peptide masses and lengths were calculated. 

Subsequently, the following criteria have been applied to each peptide of which the first three 

criteria were considered essential conditions while others were preferable. 

B. Criteria: 

http://prospector.ucsf.edu/
https://www.nextprot.org/tools/peptide-uniqueness-checker
https://www.expasy.org/
http://isoelectric.org/calculate.php
https://phobius.sbc.su.se/
https://www.uniprot.org/
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1) Uniqueness 

2) Not including M (methionine-prone to oxidation) and C (cysteine-prone to alkylation) in 

its sequence. 

3) Not a transmembrane peptide 

4) Length – ideal 6 to 10 (Peptides up to 20 amino acids length were included if there was no 

other shorter alternative) 

5) N (asparagine-prone to glycosylation) was considered as a disadvantage. 

6) Aspartate followed directly by Glutamate (DE) in the peptide sequence or the reverse (ED) 

were considered as disadvantages (prone to missed cleavages). These peptides were 

completely excluded if this occurred at the beginning of the peptide. 

7) Dibasic or tribasic forms of K (lysine), R (arginine), H (histidine) (e.g. KK, HK, RR, KH, 

KR, HK, HR, RK, RH, etc) were avoided. 

8) No Q (Glutamine) at the start of the peptide sequence (N-terminus) 

9) Peptides with Asparagine followed by Glycine (NG), Aspartate followed by Proline (DP), 

Lysine followed by Proline (KP), or Asparagine followed by Glutamine (NQ) were avoided 

(prone to deamidation and missed cleavage) 

10) Liability to post-translational modifications was checked 

11) Avoid C- and N-terminal peptides in the protein/enzyme sequence 

12) pI up to 6 was considered appropriate. 

13) R or K amino-acids before or after the sequence of the peptide of interest was avoided 

(prone to missed cleavage) 

14) Usually peptides ending at -R were preferred 

After applying these criteria, each target was represented by one to three peptides. Peptides that 

have been used as AQUA standards for the quantification of the same targets in the literature 

were also preferred if they matched most of the above criteria  (Bhatt, et al., 2017; Chen, et al., 
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2016; Dubaisi, et al., 2019; Prasad, et al., 2018; Sato, et al., 2014; Song, et al., 2015). The 

ribosomal core 30S was added to the QconCAT structure to improve its expression in E.coli 

bacteria as reported by (Al-Majdoub, et al., 2014). His6-affinity tag, “His-tag”, was added to 

the C-terminus to enable purification. The final molecular weight and pI of the whole 

QconCAT after adding the His-tag was determined and sent to PolyQuant GmbH, Germany 

for expression and synthesis. 

C. NuncCAT structure 

Twenty-three targets have been represented in the QconCAT structure that represent 

metabolising enzymes other than those included in the MetCAT. Apart from UGT2B17, they 

were all non-CYPs and non-UGTs enzymes. The newly designed QconCAT was given the 

name of “NuncCAT” referring to Non-UGT, Non-CYP QconCAT. Two other protein targets 

(CYP1A2 and ABCB1) were added to the targets list. CYP1A2 is a common enzyme with the 

MetCAT, and ABCB1 is a common transporter with TransCAT, but they are represented here 

by unique peptides other than the selected ones in the MetCAT and TransCAT. They were used 

for quality control within the sample. Out of the 25 targets included in the NuncCAT, 11 targets 

were microsomal, 1 plasma membrane, and 13 were cytosolic enzymes (Table 6.2). The list of 

25 total NuncCAT’s targets with their representative peptides, and the main cellular fraction 

harbouring these targets is shown in the table below. Two non-naturally occurring peptides 

(NNOPs) were used along with one bacterial/nonhuman peptide for the quantification of the 

NuncCAT.  

D. Expression and synthesis 

The designed sequence of the NuncCAT was sent to PolyQuant® for expression and synthesis. 

The expression protocol is similar to that described previously (Al-Majdoub, et al., 2014; Pratt, 

et al., 2006). 
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In short, the QconCAT was synthesised and cloned into a bacterial expression vector namely 

E.coli. The vector was transformed and a clone with high expression of the QconCAT protein 

was selected. The labelled QconCAT was produced by culturing the selected clone in 13C-K/R 

labelling-medium containing ampicillin for selection. QconCAT protein was extracted from 

the bacterial pellet and purified using nickel-nitrilotriacetic acid resin (Ni-NTA) beads. The 

eluted QconCAT protein was dialysed against 0.1% formic acid as a storage buffer. 

6.3.2. Quality control checks 

A. Purity 

The presence and the purity of the designed and expressed NuncCAT was assessed using One-

dimensional sodium dodecyl sulphate-polyacrylamide gel electrophoresis (1DSDS-PAGE). 

Two different volumes of the NuncCAT ( 3µl and 6µl)  along with the molecular weight marker 

(Precision Plus ProteinTM Standards) were loaded onto a stacking gel (acryl-bisacrylamide 

37.5:1 5%; Tris-HCl 0.2 M, pH 6.8; SDS 1%; ammonium persulfate 1%; and TEMED 1 μl/ml) 

overlaid on a resolving gel (acryl-bisacrylamide 37.5:1 12%; Tris-HCl 0.375 M, pH 8.8; SDS 

0.1%; ammonium persulfate 0.1%; and TEMED 0.4 μl/ml) and resolved with a mini-Protean 3 

system (Bio-Rad). Gels were run at a constant voltage 100 V until the dye front penetrated the 

resolving gel. The voltage was then elevated to 160 V and the run was terminated when the 

dye front reached the bottom of the gel. The gels were stained overnight with 0.1 % Coomassie 

Brilliant Blue (Sigma, UK) in 40% methanol, 10% acetic acid. Stained gels were then 

developed in 45% methanol and 10% acetic acid (de-staining solution) until clear protein bands 

appeared and the background staining was removed.  

B. Peptides detection and identification 

The protein concentration of the NuncCAT was firstly measured using Bradford assay 

(ThermoFisher Scientific, Hemel Hempstead, UK). A volume equivalent to 10 μg proteins was 
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prepared for LC-MS/MS analysis using the filter-aided sample preparation (FASP) 

(Wiśniewski, et al., 2009) as previously described with minor modifications (Al Feteisi, et al., 

2018; Couto, et al., 2019).  

The sample was solubilised by incubation with sodium deoxycholate (10% w/v final volume), 

1,4-dithiothreitol (DTT) was added at a final concentration of 100 mM, and the protein mixture 

was incubated at room temperature for 10 min. Reduction of protein disulfide bonds was 

carried out by incubation at 56°C for 40 min. Amicon Ultra 0.5 ml centrifugal filters, 3 kDa 

molecular weight cut-off, (Millipore, Nottingham, UK) were conditioned by briefly 

centrifuging 400 μl of 0.1 M Tris of pH 8.5 at 14000g at room temperature. The QconCAT 

sample was then transferred to the conditioned filter units, followed by centrifugation at 

14000g at room temperature for 30 min. The sample was then incubated with 100 μl of 50 mM 

iodoacetamide in the dark for 30 min at room temperature. After alkylation, deoxycholate 

removal was performed by buffer exchange using two successive washes with 8 M urea in 100 

mM Tris-HCl (pH 8.5), 200 μl each. To reduce urea concentration, three additional washes 

were performed using 1 M urea in 50 mM ammonium bicarbonate (pH 8.5).   Protein digestion 

was achieved using LysC twice (LysC: protein ratio 1:50, 2 hours each, at 30°C), then trypsin 

digestion was carried out (trypsin: protein ratio 1:25) for 12 hours at 37°C and another 

equivalent treatment for an extra 6-hour incubation. Peptides were recovered from the filter by 

centrifugation (14000g, 20 min), followed by a second collection using 0.5 M sodium chloride. 

The collected peptides were lyophilised using a vacuum concentrator at 30 ⁰C and with vacuum 

in aqueous mode. Lyophilised peptides were reconstituted in 20% (v/v) acetonitrile in water, 

acidified with 2% (v/v) trifluoroacetic acid, then desalted using C18 spin columns  according 

to the manufacturer’s instructions   (Nest group, USA). The peptides were lyophilised and 

stored at −80°C until mass spectrometric analysis. 

Liquid chromatography and tandem mass spectrometry (LC-MS/MS) 
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Lyophilised peptides were re-suspended in either 10 μl of 3% (v/v) acetonitrile in water with 

0.1% (v/v) formic acid. Digested NuncCAT sample was analysed by LC-MS/MS using an 

UltiMate® 3000 Rapid Separation LC (RSLC, Dionex Corporation, Sunnyvale, CA) coupled 

to a Q Exactive HF Hybrid Quadrupole-Orbitrap mass spectrometer (Thermo Fisher Scientific, 

Waltham, MA) mass spectrometer. Mobile phase A was 0.1% formic acid in water and mobile 

phase B was 0.1% formic acid in acetonitrile, and peptides were eluted on CSH C18 analytical 

column (75 mm x 250 μm inner diameter, 1.7 μm particle size) (Waters, UK). A 1 µl aliquot 

of the sample was transferred to a 5 µl loop and loaded onto the column at a flow rate of 300 

nl/min for 5 min at 5% B. The loop was then taken out of line and the flow was reduced from 

300 nl/min to 200 nl/min in 0.5 min. Peptides were separated using a gradient from 5% to 18% 

B in 63.5 min, then from 18% to 27% B in 8 min, and finally from 27% B to 60% B in 1 min. 

The column was washed at 60% B for 3 min before re-equilibration to 5% B in 1 min. At 85 

min, the flow was increased to 300 nl/min until the end of the run at 90 min. Mass spectrometry 

data were acquired in a data-dependent manner for 90 min in positive mode. Peptides were 

selected for fragmentation automatically by data dependent analysis on a basis of the top 12 

peptides with m/z between 300 to 1750 Th and a charge state of 2+, 3+, and 4+ with dynamic 

exclusion set at 15 sec. The MS resolution was set at 120,000 with an AGC target of 3E6 and 

a maximum fill time set at 20 ms. The MS2 resolution was set to 30,000, with an AGC target 

of 2E5, a maximum fill time of 45 ms, isolation window of 1.3 Th and a collision energy of 28 

eV. 

MaxQuant 1.6.1.0 was used for data analysis. The number of surrogate peptides identified was 

reported. The retention time for each peptide was also defined using Skyline v20.1.0.31.  

C. Percent coverage 
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In order to make sure that the expression was successful and nearly all the sequence have been 

covered, the percent coverage of the detected peptides to the overall sequence was also 

calculated. This was achieved by counting the number of amino acids in the detected peptides 

relative to the number of amino acids in the whole sequence.  

D. Incorporation/labelling efficiency of heavy lysine and arginine residues 

The efficiency of incorporating heavy labels to every R and K amino acids within the 

NuncCAT sequence is called incorporation or labelling efficiency. Incorporation efficiency 

was determined by triple-quadrupole mass spectrometry of trypsin/Lys C digests of the labelled 

QconCAT proteins followed by the determination of the intensity ratios of the residual 

unlabelled (Light) to labelled (Heavy) peptide peaks for a set of peptides. It was calculated and 

reported for each set of peptides, ending with either R or K amino acids. 

E. NuncCAT LC-MS/MS quantification  

Another 10 μg sample was prepared for analysis as previously described for peptides 

identification. However in the reconstitution step and before the LC-MS/MS analysis, 52.7 

pmoles of the light/unlabelled form of the NNOP peptide (AEGVNDNEEGFFSAR) were 

added and the volume was completed up to 10 μl with 3% (v/v) acetonitrile in water with 0.1% 

(v/v) formic acid. 

The concentration of the QconCAT in μg/μl was calculated using Equation (1) 

The concentration of the NuncCAT in (μg/μl) =
(𝐻/𝐿)×𝑁𝑁𝑂𝑃 𝑎𝑚𝑜𝑢𝑛𝑡 𝑖𝑛 𝑝𝑚𝑜𝑙∗𝑀𝑤𝑡

𝑉×106 ×𝐿𝐸
   (1) 

Where; H/L is the ratio of the intensities of both heavy form of the NNOP from the NuncCAT 

to the light form from both the sample and the unlabelled fraction of the NuncCAT, Mwt is the 

molecular weight of the NuncCAT in Daltons, V is the starting digested volume of the 

NuncCAT, LE is the labelling efficiency fraction of the peptide (from Section D above).   
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6.4. Results 

6.4.1. Design and synthesis 

Using the criteria mentioned above in the Methods, a list of the best peptides for each target 

was generated to be included in the NuncCAT structure (Table 6.2). 

Table 6.2. NuncCAT target protein with their representative peptides and the main cellular 

location. 

Target Peptides 
Reference study if used as 

AQUA 

Main cellular 

location 

CES1  
EGYLQIGANTQAAQK (Prasad, et al., 2018) 

Microsomes 
FLSLDLQGDPR Current study search  

CES2  

ADHGDELPFVFR (Prasad, et al., 2018) 

Microsomes SFFGGNYIK Current study search  

TTHTGQVLGSLVHVK (Prasad, et al., 2018) 

FMO3  
LVGPGQWPGAR (Prasad, et al., 2018) 

Microsomes 
NNLPTAISDWLYVK Current study search  

FMO5  

WATQVFK (Chen, et al., 2016) 

Microsomes TDDIGGLWR (Chen, et al., 2016) 

LTHFIWK (Chen, et al., 2016) 

EPHX1  
IIPLLTDPK (Song, et al., 2015) 

Microsomes 
FSTWTNTEFR (Song, et al., 2015) 

POR  

QYELVVHTDIDAAK Current study search  

Microsomes YYSIASSSK Current study search  

IQTLTSSVR Current study search  

MGST1 
VFANPEDCVAFGK (Song, et al., 2015) 

Microsomes 
IYHTIAYLTPLPQPNR (Song, et al., 2015) 

MGST 2 HLYFWGYSEAAK (Song, et al., 2015) Microsomes 

MGST 3 
IASGLGLAWIVGR* (Song, et al., 2015) 

Microsomes 
VLYAYGYYTGEPSK (Song, et al., 2015) 

UGT 2B17 

WTYSISK (Sato, et al., 2014) 

Microsomes GHEVIVLTSSASILVNASK* Current study search  

SVINDPIYK (Prasad, et al., 2018) 

CYP 1A2 IGSTPVLVLSR Current study search  Microsomes 

ABCB1 IATEAIENFR Current study search criteria Plasma membrane 

ADH1A  

GAILGGFK (Bhatt, et al., 2017; Prasad, et al., 2018) 

Cytosol NDVSNPQGTLQDGTSR (Bhatt, et al., 2017; Prasad, et al., 2018) 

KPIHHFLGISTFSQYTVVDENAVAK (Prasad, et al., 2018) 

ADH1B  
AAVLWEVK (Bhatt, et al., 2017; Prasad, et al., 2018) 

Cytosol 
GAVYGGFK Current study search  

ADH1C  FSLDALITNILPFEK* Current study search  Cytosol 

ALDH1A1  
IFVEESIYDEFVR  (Bhatt, et al., 2017; Prasad, et al., 2018) 

Cytosol 
IFINNEWHDSVSGK (Bhatt, et al., 2017; Prasad, et al., 2018) 
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TIPIDGNFFTYTR Current study search  

AOX1  

LILNEVSLLGSAPGGK (Prasad, et al., 2018) 

Cytosol GLHGPLTLNSPLTPEK (Prasad, et al., 2018) 

VFFGEGDGIIR Current study search  

NAT1 
DNTDLIEFK Current study search  

Cytosol 
NYIVDAGFGR Current study search  

NAT2 
TLTEEEVEEVLK Current study search  

Cytosol 
DNTDLVEFK Current study search  

SULT1E1 
KPSEELVDR (Dubaisi, et al., 2019) 

Cytosol 
NHFTVALNEK Current study search  

SULT1A1 VHPEPGTWDSFLEK (Dubaisi, et al., 2019) Cytosol 

SULT1A2 VYPHPGTWESFLEK (Dubaisi, et al., 2019) Cytosol 

SULT2A1 
DEDVIILTYPK (Dubaisi, et al., 2019) 

Cytosol 
TLEPEELNLILK Current study search  

TPMT 
NQVLTLEEWQDK Current study search  

Cytosol 
TSLDIEEYSDTEVQK Current study search  

EPHX2  
GLLNDAFQK (Prasad, et al., 2018) 

Cytosol 
WLDSDAR Current study search  

*peptides that have not been detected after the experimental digestion. 

 The overall molecular weight of the concatenated and synthesised protein was 93557 Daltons 

and the isoelectric point (pI) was 4.7. The fasta file of the whole sequence and the order of the 

chosen peptides within the NuncCAT structure is shown in Figure 6.1. 

MGTKTFTAKPETVKRDWYVVDATGKSMALRLANELSDAAENKFGSELLAKVEGDTKPELEL

TLKSDLSADINEHLIVELYSKGVNDNEEGFFSAKLEPGRLEYDPNRSAGTYVQIVARDAQS

ALTVSETTFGRDFNEALVHQVVVAYAAGARLDNVVYRAVVESIQRWTYSISKNHFTVALNE

KGLHGPLTLNSPLTPEKGAILGGFKNQVLTLEEWQDKIYHTIAYLTPLPQPNRNYIVDAGF

GRGLLNDAFQKFSLDALITNILPFEKIFVEESIYDEFVRSVINDPIYKTEGVNDNEEGFFS

ARDNTDLVEFKIFINNEWHDSVSGKYYSIASSSKEGYLQIGANTQAAQKFSTWTNTEFRAD

HGDELPFVFRVLYAYGYYTGEPSKTLEPEELNLILKLVGPGQWPGARHLYFWGYSEAAKWA

TQVFKSLLAVGITEVIGDFRVHPEPGTWDSFLEKIIPLLTDPKFLSLDLQGDPRGHEVIVL

TSSASILVNASKNDVSNPQGTLQDGTSRVFANPEDCVAFGKKPIHHFLGISTFSQYTVVDE

NAVAKNNLPTAISDWLYVKSFFGGNYIKIASGLGLAWIVGRVYPHPGTWESFLEKVFFGEG

DGIIRIQTLTSSVRAAVLWEVKDNTDLIEFKTLTEEEVEEVLKLILNEVSLLGSAPGGKKP

SEELVDRWLDSDARIATEAIENFRQYELVVHTDIDAAKLTHFIWKDEDVIILTYPKTTHTG
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QVLGSLVHVKGAVYGGFKTSLDIEEYSDTEVQKIGSTPVLVLSRAEGVNDNEEGFFSARTI

PIDGNFFTYTRTDDIGGLWRSSYVGDEASSKLAAALEHHHHHH 

Figure 6.1. NuncCAT fasta file with the 30S ribosomal core (Orange), 2 non-naturally 

occurring peptides (NNOP) used for the quantification in Green, one bacterial/nonhuman 

peptide (Blue), and the replical peptide (Red). 

6.4.2. Quality control 

A. Purity 

As the molecular weight of the NuncCAT was designed to be 93557 Daltons, a band in between 

75 and 100 Kilo Daltons (according to the marker’s bands) was expected in each NucCAT lane 

of gel electrophoresis. 

In Figure 6.2, clear bands were present within the expected molecular weight region and one 

of them was nearly half of the other which was matching the loaded volumes. No other 

dominant bands were present in NuncCAT’s lanes indicating a purely expressed QconCAT.    
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Figure 6.2. SDS-PAGE photo of NuncCAT loaded with two different volumes (3µl and 6µl) 

along with two different lanes of the molecular weight marker on the right and the left of 

the QconCAT.   

B. Peptides detection and identification 

The concentration of NuncCAT protein using Bradford assay was 1.2 μg/μl on average of three 

readings. A volume equivalent to 10 μg was 12.42 μl and was used for the FASP digestion. 

The overall spectrum generated for the digested NuncCAT showed that 48 out of 51 peptides 

related to the desired targets were identified, in addition to the two NNOPs 

(AEGVNDNEEGFFSAR, TEGVNDNEEGFFSAR) required for the QconCAT quantification. 

These peptides have been identified with variable intensities at different retention times (Figure 

6.3). 

Peptides that have not been detected in the experiment are FSLDALITNILPFEK, 

GHEVIVLTSSASILVNASK, IASGLGLAWIVGR related to ADH 1C, UGT2B17, and 

MGST3 enzymes, respectively. 17% of all the detected peptides were miscleaved (198 out of 

1142 peptide). Only 15% of these miscleaved peptides are related to the target proteins. Only 

35% of the target peptides were miscleaved. The ratio of cleaved to miscleaved peptides ranged 

from 10 to 770. 
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Figure 6.3. The full chromatogram of the NuncCAT peptides showing the retention time at 

which each peptide was detected. Peptides were annotated with the first three letters and 

different colours. 

C. The percent coverage 

The number of amino acids in the whole sequence with the ribosomal core was 836 amino 

acids and 669 amino acids without the ribosomal core. The number of amino acids that have 

been detected was 789 and 622 in each case respectively. Therefore, the percent coverage 

obtained from the analysis was 94% when the ribosomal core was considered, and 93% for 

sequence without the ribosomal core. The peptides detected are shown in Figure 6.4. 
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1 MGTKTFTAKP ETVKRDWYVV DATGKSMALR LANELSDAAE NKFGSELLAK 

51 VEGDTKPELE LTLKSDLSAD INEHLIVELY SKGVNDNEEG FFSAKLEPGR 

101 LEYDPNRSAG TYVQIVARDA QSALTVSETT FGRDFNEALV HQVVVAYAAG 

151 ARLDNVVYRA VVESIQRWTY SISKNHFTVA LNEKGLHGPL TLNSPLTPEK 

201 GAILGGFKNQ VLTLEEWQDK IYHTIAYLTP LPQPNRNYIV DAGFGRGLLN 

251 DAFQKFSLDA LITNILPFEK IFVEESIYDE FVRSVINDPI YKTEGVNDNE 

301 EGFFSARDNT DLVEFKIFIN NEWHDSVSGK YYSIASSSKE GYLQIGANTQ 

351 AAQKFSTWTN TEFRADHGDE LPFVFRVLYA YGYYTGEPSK TLEPEELNLI 

401 LKLVGPGQWP GARHLYFWGY SEAAKWATQV FKSLLAVGIT EVIGDFRVHP 

451 EPGTWDSFLE KIIPLLTDPK FLSLDLQGDP RGHEVIVLTS SASILVNASK 

501 NDVSNPQGTL QDGTSRVFAN PEDCVAFGKK PIHHFLGIST FSQYTVVDEN 

551 AVAKNNLPTA ISDWLYVKSF FGGNYIKIAS GLGLAWIVGR VYPHPGTWES 

601 FLEKVFFGEG DGIIRIQTLT SSVRAAVLWE VKDNTDLIEF KTLTEEEVEE 

651 VLKLILNEVS LLGSAPGGKK PSEELVDRWL DSDARIATEA IENFRQYELV 

701 VHTDIDAAKL THFIWKDEDV IILTYPKTTH TGQVLGSLVH VKGAVYGGFK 

751 TSLDIEEYSD TEVQKIGSTP VLVLSRAEGV NDNEEGFFSA RTIPIDGNFF 

801 TYTRTDDIGG LWRSSYVGDE ASSKLAAALE HHHHHH  

Figure 6.4. Segmented fasta sequence of the NuncCAT illustrating parts that have been 

detected using LC-MS/MS analysis (red). Green parts represent the ribosomal core 

sequence, while black parts are the undetectable parts in the analysis. 

D. The labelling efficiency 

Detected peptides have shown high labelling efficiency. The labelling efficiency of K-ending 

peptides were slightly lower mean ± SD (98.57 ± 0.6%, n = 29) than R ending peptides (98.72 

± 0. 5 %, n = 46) as shown in Figure 6.5.  
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Figure 6.5. Labelling efficiency of both arginine (R) and lysine (K) ending peptides in the 

NuncCAT. Data are presented as a scatter plot with horizontal lines representing means and 

standard deviations. 

E. NuncCAT quantification 

Equation 1 in the Methods section was applied knowing the starting volume of the NuncCAT 

in the experiment 12.42 μl, the overall molecular weight of 93557, the obtained H/L ratio of 

0.707 and the labelling efficiency for an R-ending petide of 0.987. The calculated concentration 

of the NuncCAT was 0.283 μg/μl which can be used as a standard that is digested at the same 

time with the biological sample. 

6.5. Discussion 

Concatenated peptides that are labelled with heavy amino acids are showing increasing usage 

in targeted proteomics over the last decade (Achour, et al., 2015; Chen & Turko, 2014). They 

can be spiked at the same time with the biological sample and digested together under the same 

conditions (El-Khateeb, et al., 2019; Simpson & Beynon, 2012). A QconCAT can be designed 

for targets in a wide variety of cellular fractions (microsomes, cytosols, S9, or tissue lysate), 

and for different tissues such as liver, kidney, intestine, or brain (Al-Majdoub, et al., 2019; Al‐

Majdoub, et al., 2020). Therefore, a prior knowledge of the fraction or the tissue that is rich in 

the target enzyme under investigation is required for any targeted proteomic experiment. 

This methodology allows the absolute quantification and the comparison of target protein 

levels within a set of samples, as the standard will be digested simultaneously with the sample 

and released in equimolar stoichiometry under the same conditions (Kito, et al., 2007). 

However, the choice of surrogate peptides is very critical as different peptides can lead to 

variable abundance levels (Prasad, et al., 2019). For a new QconCAT, applying the 

construction criteria explained above increases the probability of generating a successful 
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standard. However, for targets where the number of unique surrogates is limited, the chance of 

getting a high quality, best performing peptide is low. This was the case in situations such as 

VFANPEDCVAFGK (MGST1), KPIHHFLGISTFSQYTVVDENAVAK (ADH1A), and 

KPSEELVDR (SULT1E1). 

The successfully expressed QconCAT should produce detectable, pure, and reliable heavy-

labelled peptides upon digestion (Achour, et al., 2015). The QconCAT peptides are designed 

to incorporate heavy isotope label, in this case 13C6-R and 13C6-K. The quantification principle 

here is mainly dependent on the ratio of heavy peptides in the QconCAT to the light peptide 

within the sample. Therefore, high, consistent, and efficient labelling of all peptides is required 

to guarantee that the remaining unlabelled fractions from the QconCAT will not greatly 

interfere with the quantification of the same peptide in the biological sample under 

investigation (Pratt, et al., 2006). The newly designed NuncCAT showed excellent labelling 

efficiency for all the resulting peptides. The slightly lower and more variable incorporation of 

labelled lysine is consistent with the more complex metabolic fate of this amino acid; 

nevertheless, these levels of incorporation are more than sufficient for the development of 

quantitative assays using these QconCATs. This was expected and previously reported for 

other QconCATs (Russell, et al., 2013). When quantification is carried out, quantitative ratios 

can be corrected for the residual level of unlabelled standard. 

The low percentage of miscleavages indicates the efficiency of the sequential digestion 

protocol using LysC and trypsin. For the miscleaved peptides, the high ratio of cleaved to 

miscleaved peptides (Over 10 folds) makes the quantification using these peptides still reliable. 

However, whenever possible, the peptide with complete cleavage is more preferred.  

Peptides that have not been detected with the experimental conditions of the current study are 

long hydrophobic peptides and, therefore, are less readily eluted from the column. They are 
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considered to be either removed or replaced by other alternatives, when possible, in the second 

version of the NuncCAT. 

In conclusion, the current study offers a novel QconCAT for metabolising enzymes other than 

CYPs and UGTs (NuncCAT). These enzymes are important for the fate of many drugs within 

the human body. The NuncCAT showed high performance with regards to the sequence 

coverage, labelling efficiency, purity, and detectability. Using unique non-naturally occurring 

peptides in the design of the NuncCAT, it can be quantified at the same time with the digested 

sample to act as a standard for any protein whose surrogate peptide is included within the 

QconCAT structure.  
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7.1. Abstract 

Model-based assessment of the effects of liver disease on drug pharmacokinetics requires 

quantification of changes in enzymes and transporters responsible for drug metabolism and 

disposition. Different proteomic methods are currently used for protein quantification in tissues 

and in vitro systems, each with specific procedures and requirements. The outcome of 

quantitative proteomic assays from four different methods (one targeted and three label-free), 

applied to the same sample set, were compared in this study. Three pooled cirrhotic liver 

microsomal samples, corresponding to cirrhosis with non-alcoholic fatty liver disease, biliary 

disease or cancer, and a control microsomal pool, were analysed using QconCAT-based 

targeted proteomics, the total protein approach (TPA), high three (Hi3) ion intensity approach, 

and intensity-based absolute quantification (iBAQ), to determine the absolute and relative 

abundance in disease compared with control. The relative abundance data provided a ‘disease 

perturbation factor’ (DPF) for each target protein. Absolute and relative abundances generated 

by standard-based label-free methods (iBAQ and Hi3) showed good agreement with targeted 

proteomics (limited bias and scatter) but TPA (standard-free method) over-estimated absolute 

abundances by approximately 2 fold. DPF was consistent between different proteomic methods 

but varied between enzymes and transporters, indicating discordance of effects of cirrhosis on 

various ADME proteins. DPF ranged from no change (e.g. for UGT1A6 in NAFLD group) to 

less than 0.3 (e.g. CES1 in cirrhosis of biliary origin).  
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7.2. Introduction 

The use of liquid chromatography-mass spectrometry (LC-MS) based proteomics for the 

characterisation of biological samples has become more widespread in recent years. The main 

advantage of this analytical tool is that it allows sensitive, selective and simultaneous 

quantification of a large number of proteins in a single assay. Proteomic quantification can be 

performed either by quantifying all detectable proteins in a global proteomic experiment or by 

targeting a predefined set of proteins using specific standards (Prasad, et al., 2019). In targeted 

proteomics, heavy (isotopically-labelled) versions of proteotypic peptides are used to quantify 

the target proteins. Global proteomics relies on label-free quantification, which is somewhat 

cheaper, can offer high proteome coverage, and can be employed for absolute quantification 

through the addition of unlabelled protein standards (Al Feteisi, et al., 2015; El-Khateeb, et al., 

2019; Li, et al., 2012; Megger, et al., 2014). In global proteomics, many different data analysis 

methods have been proposed such as the total protein approach (TPA), high n (Hi-N) ion 

intensity method, and intensity-based absolute quantification (iBAQ) (Couto, et al., 2019; 

Fabre, et al., 2014; Wiśniewski, et al., 2019).  

Cirrhosis is a liver disease caused by various conditions, including alcoholic and non-alcoholic 

fatty liver disease, biliary disease, including primary sclerosing cholangitis (PSC) and primary 

biliary cholangitis (PBC), autoimmune hepatitis, and hepatitis C virus (HCV) infection. 

Cirrhosis can also progress to primary liver cancer (Schuppan & Afdhal, 2008). Liver disease 

affects the pharmacokinetics of different drugs, especially compounds that are mainly 

hepatically extracted, but can also affect renally excreted drugs (Verbeeck, 2008). These effects 

are normally due to changes in protein binding, hepatic blood flow, and altered expression of 

different drug-metabolising enzymes (DMEs) and transporters (Edginton & Willmann, 2008; 

Johnson, et al., 2010). There is, however, no unique and universal measure that can summarise 

the impact of the cirrhosis on all enzymes and transporters (El-Khateeb, et al. Unpublished) 
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and not all drugs are affected in the same manner. Therefore, recent FDA guidance encourages 

performing clinical trials with patients with hepatic impairment for drugs with a narrow 

therapeutic index if these are mainly eliminated by the liver, and for any other drug if 20% or 

more of clearance is attributable to the hepatic route (FDA, 2003). Indeed, there has been more 

demand than before for the inclusion of hepatically-impaired patients in early stage clinical 

trials in order to be more representative of patients who will receive the drug after approval 

(FDA, 2020; Lichtman, et al., 2017). The practical determination of a safe and effective dose 

for those patients is, however, challenging to implement in such clinical trials. Alternative 

approaches, such as the use of virtual clinical trials based on physiologically based 

pharmacokinetic (PBPK) modelling and simulation (M&S), to predict the clearance and 

implement dose adjustment in this population have been suggested and applied for regulatory 

submission of some drugs (Jamei, 2016). In these models, change in drug clearance in patients 

is accounted for by administration of selective probes, where available, in vivo and subsequent 

measurement of specific enzyme activity or by using in vitro systems and scaling by activity 

or abundance of relevant enzymes/transporters (Frye, et al., 2006; Johnson, et al., 2010). 

Variability in measurements of enzymes and transporters have previously been reported and 

these can stem from differences in quality and handling conditions of the samples, sample 

preparation, proteomic methods, data analysis strategies or a combination of these factors 

(Achour, et al., 2017b; Harwood, et al., 2016; Wegler, et al., 2017). These covariates are 

especially important when the effect of disease is the focus of the proteomic investigation and 

increasing the trust in outcome of the predictive PBPK models which rely on the proteomics 

data as a major input.  The aim of this study was therefore to assess the performance of different 

proteomic methods (targeted and untargeted) in relation to characterisation of the effect of 

hepatic cirrhosis on the abundance of enzymes and transporters. A strategy to address method-
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specific bias is proposed to achieve improved implementation of the generated data in 

downstream M&S.  

7.3. Methods 

7.3.1. Human liver samples 

Pooled human liver microsomal (HLM) samples represented four sets of samples: 

histologically normal control group (n = 14 individual livers), non-alcoholic fatty liver disease 

(NAFLD) associated cirrhosis (n = 9), biliary disease associated cirrhosis (n = 13), and cancer 

associated cirrhosis (n = 9). Individual liver tissue samples were provided by Cambridge 

University Hospitals Tissue Bank (Cambridge, UK) and HLM fractions were prepared by 

differential centrifugation, as reported previously (El-Khateeb, et al., 2020). The HLM 

fractions were pooled for each group separately by mixing 6 μl from each individual sample 

(corresponding to 6 mg from each liver tissue sample). Anonymised demographic and clinical 

data for donors are presented in Supplementary Table 7.1 and Supplementary Table 7.2. These 

samples are covered by ethical approval from the Health Research Authority and Health and 

Care Research Wales (Research Ethics Committee Approval Reference 18/LO/1969). The 

samples were prepared and analysed for previous work (El-Khateeb et al., 2020) and the 

opportunity arose to further use these sets for a comparative investigation of different 

quantification methods in health and disease.    

7.3.2. Sample preparation for proteomics 

Protein content in the HLM pooled samples was estimated by the Bradford assay 

(ThermoFisher Scientific, Hemel Hempstead, UK). Three stable isotope (13C) labelled 

concatenated standards (QconCATs) (Russell, et al., 2013) were spiked into 70 μg of each 

pooled sample as internal standards; 0.56 μg of MetCAT (QconCAT standard for the 

quantification of CYPs and UGTs), 0.45 μg of NuncCAT (QconCAT for the quantification of 
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non-CYP, non-UGT enzymes), and 0.24 μg of TransCAT (QconCAT for the quantification of 

transporters), in addition to 0.126 μg of bovine serum albumin (BSA) (as a label-free 

exogenous protein standard).  

Filter-aided sample preparation (FASP) (Wiśniewski, et al., 2009) was used for sample 

preparation as previously described with minor modifications (Al Feteisi, et al., 2018; Couto, 

et al., 2019). Sample mixtures were solubilised by incubation with sodium deoxycholate (10% 

w/v final volume), 1,4-dithiothreitol (DTT) was added at a final concentration of 100 mM, and 

the protein mixture was incubated at room temperature for 10 min. Reduction of protein 

disulfide bonds was carried out by incubation at 56°C for 40 min. Amicon Ultra 0.5 mL 

centrifugal filters, 3 kDa molecular weight cutoff, (Millipore, Nottingham, UK) were 

conditioned by briefly centrifuging 400 μl of 0.1 M Tris of pH 8.5 at 14000g at room 

temperature. The protein samples were then transferred to the conditioned filter units, followed 

by centrifugation at 14000g at room temperature for 30 min. Alkylation of reduced cysteine 

was performed by incubation with 100 μl of 50 mM iodoacetamide in the dark for 30 min at 

room temperature. After alkylation, deoxycholate removal was performed by buffer exchange 

using two successive washes with 8 M urea in 100 mM Tris-HCl (pH 8.5), 200 μl each. To 

reduce urea concentration, additional washes (3 x 200 µl were performed using 1 M urea in 50 

mM ammonium bicarbonate (pH 8.5). For each wash, solvent (200 µl) was added to the filter, 

without mixing, centrifuged at 14000g at room temperature for 20 min, leaving a volume of 

approximately 20 µl in the filter.  The filtrate containing small molecules such as detergent was 

discarded.  Protein digestion was achieved using LysC twice (LysC: protein ratio 1:50, 2 hours 

each, at 30°C), then trypsin digestion was carried out (trypsin: protein ratio 1:25) for 12 hours 

at 37°C and another equivalent treatment for an extra 6 hour incubation. Peptides were 

recovered from the filter by centrifugation (14000g, 20 min); a second collection was achieved 

by adding 0.5 M sodium chloride (100 µl) to the filter and centrifuged at 14000g for another 
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20 min. The collected peptides were lyophilised to dryness using a vacuum concentrator at 

30⁰C and with vacuum in aqueous mode; the time required was in the range 1-3 hours and was 

sample-dependent. Lyophilised peptides were reconstituted in 20% (v/v) acetonitrile in water, 

acidified with 2% (v/v) trifluoroacetic acid, then desalted using C18 spin columns  according 

to the manufacturer’s instructions (Nest group, USA). The peptides were lyophilised and stored 

at −80°C until mass spectrometric analysis. 

7.3.3. Liquid chromatography and tandem mass spectrometry (LC-MS/MS) 

Lyophilised peptides were re-suspended in 70 μl 3% (v/v) acetonitrile in water with 0.1% (v/v) 

formic acid. The samples were analysed by LC-MS/MS using an UltiMate® 3000 Rapid 

Separation LC (RSLC, Dionex Corporation, Sunnyvale, CA) coupled to a Q Exactive HF 

Hybrid Quadrupole-Orbitrap mass spectrometer (Thermo Fisher Scientific, Waltham, MA) 

mass spectrometer. Mobile phase A was 0.1% formic acid in water and mobile phase B was 

0.1% formic acid in acetonitrile, and peptides were eluted on CSH C18 analytical column (75 

mm x 250 μm inner diameter, 1.7 μm particle size) (Waters, UK). A 1 µl aliquot of the sample 

was transferred to a 5 µl loop and loaded onto the column at a flow rate of 300 nl/min for 5 

min at 5% B. The loop was then taken out of line and the flow was reduced from 300 nl/min 

to 200 nl/min in 0.5 min. Peptides were separated using a gradient from 5% to 18% B in 63.5 

min, then from 18% to 27% B in 8 min, and finally from 27% B to 60% B in 1 min. The column 

was washed at 60% B for 3 min before re-equilibration to 5% B in 1 min. At 85 min, the flow 

was increased to 300 nl/min until the end of the run at 90 min. Mass spectrometry data were 

acquired in a data-dependent manner for 90 min in positive mode. Peptides were selected for 

fragmentation automatically by data dependent analysis on a basis of the top 12 peptides with 

m/z between 300 to 1750 Th and a charge state of 2+, 3+, and 4+ with dynamic exclusion set 

at 15 sec. The MS resolution was set at 120,000 with an AGC target of 3E6 and a maximum 
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fill time set at 20 ms. The MS2 resolution was set to 30,000, with an AGC target of 2E5, a 

maximum fill time of 45 ms, isolation window of 1.3 Th and a collision energy of 28 eV. 

7.3.4. Proteomic data analysis 

Proteins were identified by searching peptide MS/MS data against UniProtKB database 

(http://www.uniprot.org/) using MaxQuant version 1.6.10.43 (Max Planck Institute of 

Biochemistry, Martinsried, Germany). Processing parameters for both targeted and label-free 

analysis are summarised in Supplementary Table 7.3. QconCAT-based quantification was 

carried out as previously described (Achour, et al., 2014; Al-Majdoub, et al., 2019, 2020a) to 

measure the abundance of 15 CYP and 9 UGT enzymes (MetCAT), in addition to UGT2B17, 

22 non-CYP/non-UGT drug-metabolising enzymes (NuncCAT) and 30 transporters 

(TransCAT). A protein was considered quantifiable in liver microsomal samples if (a) there 

was evidence of its expression in the liver (Human Protein Atlas, 

https://www.proteinatlas.org/), (b) it was localised in a membrane (Uniprot, 

https://www.uniprot.org/), (c) it was identified by at least one razor or one unique peptide, and 

(c) it was detected in a sufficient number of samples (at least 3/14 samples) and by at least two 

data analysis methods with priority assigned to the targeted approach. A list of the peptides that 

constitute these QconCATs is presented in Supplementary Table 7.4. Details of data analysis 

and quantification approaches are provided below.  

 Method 1. Targeted proteomics 

In targeted analysis, the abundance of each target protein was calculated using the following 

equation (Achour, et al., 2014; Harwood, et al., 2015). 

[𝑃𝑟𝑜𝑡𝑒𝑖𝑛] = [𝑄𝑐𝑜𝑛𝐶𝐴𝑇] × Ii,L Ii,H⁄                                                                 (1) 

Where [Protein] is the protein abundance based on the surrogate peptide i, measured in units 

of pmol/mg microsomal protein. Ii,L Ii,H⁄  is the ratio of the intensity of the light (analyte) to the 

http://www.uniprot.org/
https://www.proteinatlas.org/
https://www.uniprot.org/
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heavy (QconCAT-derived) surrogate peptide, and [QconCAT] is the concentration of the 

QconCAT standard measured using Equation 2.   

[𝑄𝑐𝑜𝑛𝐶𝐴𝑇] = [NNOP]  × INNOP,H INNOP,L⁄                                                      (2) 

Where INNOP,H INNOP,L⁄  is the ratio of the intensity of the heavy (QconCAT-derived) to the light 

(spiked in) non-naturally occurring peptide (NNOP) standard, and [NNOP] is the concentration 

of the NNOP standard expressed in units of pmol/mg microsomal protein analysed by mass 

spectrometry. The intensity ratios were corrected for isotope labelling efficiency prior to use 

in the equations (Achour, et al., 2018; Russell, et al., 2013). Unlabelled NNOP peptides, 

EGVNDNEEGFFSAR, GVNDNEEGFFSAR and AEGVNDNEEGFFSAR were added to the 

pooled samples at 38, 125 and 350 fmol, respectively, to quantify the TransCAT, MetCAT and 

NuncCAT, respectively. 

 Method 2: HiN or Hi3 method 

In label-free analysis with the HiN method, quantification was performed using the averaged 

intensity of the three most abundant unique peptides based on the acquired MS/MS data for 

the protein of interest and the standard protein (Achour, et al., 2017a; Al-Majdoub, et al., 

2019). The selection of peptides was according to previously published criteria (Achour, et 

al., 2018). The following equation was applied. 

[𝑃𝑟𝑜𝑡𝑒𝑖𝑛] = [𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑] × (∑ I𝑟𝑎𝑛𝑘 (𝑖)
𝑛
𝑖=1 𝑛⁄ )

(∑ I𝑟𝑎𝑛𝑘 (𝑗)
𝑚
𝑗=1 𝑚⁄ )

⁄                     (3) 

Where [Protein] represents the abundance of a target protein, [standard] represents the 

abundance of the standard protein, both expressed in units of pmol/mg microsomal protein, and 

the fraction refers to the ratio of the averaged intensities of the n highest ion peaks for the target 

protein relative to the reference (in this case, n = m = 3). Peptides used in quantification of the 

selected proteins were identified as unique using a BLAST search (NCBI, 
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https://www.ncbi.nlm.nih.gov/). For the pooled samples, BSA at known concentration (26 

pmol/mg fraction protein) was used as a standard. 

 Method 3: The total protein approach (TPA) 

In the total protein approach (TPA), peptides were assigned to the proteins of interest and the 

total signal intensity from a particular protein was used for quantification as follows. Peptides 

were assigned to proteins from the Uniprot human proteome, with full length characterised 

sequences being prioritised over truncated, uncharacterised and cDNA sequences. The 

remaining peptides that did not match any protein were deleted. A best-fit analysis was then 

run to minimise the number of protein assigned to account for all the peptides (Al‐Majdoub, et 

al., 2020b). 

[𝑃𝑟𝑜𝑡𝑒𝑖𝑛] =  ∑ I𝑖
𝑛
𝑖=1

(𝑀 × ∑ 𝐼𝑠𝑎𝑚𝑝𝑙𝑒)⁄                                             (4) 

Where the ratio of the sum of intensity of all peptides derived from a protein of interest to the 

sum of intensity of all peptides in a particular sample (expressed in parts per billion) is 

converted to an abundance value (pmol/mg) by normalising to the molecular mass of the 

protein, M, in Daltons.    

 Method 4: Intensity-based absolute quantification (iBAQ) 

Intensity-based absolute quantification, iBAQ, relies on normalising protein MS intensity to 

the total number of observable peptides. The protein concentration is then inferred by 

comparing the obtained normalised intensity to a similar ratio for an internal protein standard 

at known concentration, as follows.  

[𝑃𝑟𝑜𝑡𝑒𝑖𝑛] = [𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑] × (∑ I𝑖
𝑛
𝑖=1 𝑇𝑖⁄ )

(∑ I𝑗
𝑚
𝑗=1 𝑇𝑗⁄ )

⁄                                          (5) 

https://www.ncbi.nlm.nih.gov/
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Where I is the summed intensity of all peptides from the protein of interest i or the standard j, 

and T is the number of theoretically observable peptides from in silico digestion of protein i or 

standard j.  Similar to the Hi3 method, BSA at known concentration was used as a standard. 

Absolute abundances in pmol/mg microsomal protein were determined using the four methods 

discussed above for the set of targets that fit our predefined criteria. 

7.3.5. Disease-to-control abundance ratios 

For each method, the abundance of target proteins obtained from each cirrhotic pool was 

normalised to the corresponding value from the control pooled sample. This ratio represents 

alteration in protein expression due to disease and will henceforth be referred to as disease 

perturbation factor (DPF). In the context of comparative performance, the absolute abundances 

and the ratios determined using different quantification methods were compared, and the 

proportion of values within a 2-fold difference across methods were determined. Targets 

showing ratios for the cirrhotic pools (relative to control) outside the range of 0.5-2 fold were 

considered to be affected by the disease.  

7.3.6. Statistical analysis 

Data analysis was performed using Microsoft Excel 2010 and GraphPad Prism 8.4.3 (La Jolla, 

CA). Linear regression analysis was performed to assess correlations of data from different 

quantification methods, both at the level of absolute quantification and the disease-to-control 

ratios. The deviation from the line of unity (represented by the slope of the line of regression) 

and goodness of fit (R2) were used to assess the quality of the correlation. Good correlation 

was considered for comparisons with correlation coefficients above 0.5. The percentage of data 

points outside a 2-fold range was used as an overall measure of agreement. Bias specific to 

each method was assessed using the average fold error (AFE) and scatter of one dataset relative 

to another was assessed using the absolute average fold error (AAFE) as follows:  
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AFE = 10[
∑ Log(𝑥2,𝑖 𝑥1,𝑖⁄ )𝑛

1

𝑛
]
                                              (6) 

AAFE = 10[
∑ | Log(𝑥2,𝑖 𝑥1,𝑖⁄ )|𝑛

1

𝑛
]                                          (7) 

Where x1,i and x2,i are data derived for the same target i using two different methods. Values 

different from 1 reflect higher bias and scatter.  

7.4. Results 

7.4.1. Global proteomics of pooled liver membrane fractions 

Pools from normal, NAFLD-cirrhosis, biliary-cirrhosis, and cancer-cirrhosis liver sets were 

analysed using global and targeted proteomics. The average protein content from three different 

measurements for each pool (mean ± SD) was 7.11 ± 0.09, 7.03 ± 0.01, 13.78 ± 0.01, 

12.19 ± 0.02 μg total protein per mg liver tissue, respectively. Global proteomics identified 

18073, 20010, 19482, and 18866 peptides from samples representing the control, NAFLD, 

biliary disease, and cancer related cirrhotic livers. This translated to 2307, 2587, 2577, and 

2530 fraction proteins, respectively.   

7.4.2. Effect of surrogate peptide selection on targeted quantification 

Two unique peptides representing each protein of interest are routinely included in a QconCAT 

standard. In this study, absolute abundance values and disease-to-control ratios were calculated 

using QconCAT peptides detected by LC-MS/MS in the majority of the pooled samples (the 

control sample and at least one diseased pool). Where quantification from both peptides for 

each target was possible, the values were compared (Table 7.1). Absolute levels were, in 

several cases (CYP2A6, 2E1, 3A4, 4F2 and UGT1A1), different from one peptide to another 

for the same target protein (assay-related bias reaching up to 10 fold difference). It is possible 

to reconcile these differences by selecting the most appropriate peptide or so-called  “best 

performer” peptide using criteria related to the peptide’s amino acid composition (stability and 
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physicochemical properties), mapping of the sequence (cleavability and proximity to the 

membrane) and visual MS and MS/MS spectral examination, as we have discussed previously 

(Achour, et al., 2018). The “best performing” peptides, showing reliable intensity values, for 

each of these proteins in most of the samples are shown in Table 7.1.  Excitingly, however, the 

impact of disease (represented by disease-to-control ratio) was consistent for these pairs of 

peptides, even where the absolute quantification was not (Table 7.1). 

7.4.3. Quantification of key hepatic enzymes and transporters using global proteomics 

For global proteomics, quantification of the targets focused on key proteins involved in 

pharmacokinetics of xenobiotics and therapeutic drugs. The criteria for selecting the targets 

followed technical and biological considerations to ascertain that the quantification was 

reliable. We focused on targets quantifiable by the QconCAT standards to enable head-to-head 

comparison. A total of 35 drug-metabolising enzymes and drug transporters satisfied the 

criteria (12 CYPs, 7 UGTs, 7 non-CYP non-UGT enzymes and 9 transporters). The data are 

presented in Table 7.2.  
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Table 7.1. The absolute and relative abundances of different proteins using targeted proteomic assays based on two surrogate peptides for each 

protein. 

Target protein Peptides used for targeted 
Absolute abundance (pmol/mg protein) 

 
Disease to control ratio 

Control NAFLD Biliary Cancer NAFLD Biliary Cancer 

CYP1A2 
ASGNLIPQEK$  19 7.1 5.8 9.0 0.37 0.31 0.48 

YLPNPALQR 18.17 7.1 5.3 7.8 0.39 0.29 0.43 

CYP2A6 
GTGGANIDPTFFLSR$ 20.1 20.2 8.2 11.7 1.1 0.41 0.58 

DPSFFSNPQDFNPQHFLNEK 1.6 2 0.7 1.1 1.3 0.45 0.71 

CYP2D6 
AFLTQLDELLTEHR 68.3 38.1 35.4 44.2 0.56 0.52 0.65 

DIEVQGFR$ 8.7 5.6 4.2 5.1 0.65 0.48 0.59 

CYP2E1 
GIIFNNGPTWK 13.9 22 7.2 11.5 1.5 0.51 0.82 

FITLVPSNLPHEATR$ 37.4 49.4 12.2 30.1 1.3 0.33 0.80 

CYP3A4 
LSLGGLLQPEK$ 64 33.4 20.9 20.6 0.52 0.33 0.32 

EVTNFLR 24.9 15.5 9.7 8.4 0.62 0.39 0.34 

CYP4F2 
HVTQDIVLPDGR$ 9.6 9.5 4.8 5.1 1.02 0.51 0.54 

FDPENIK 3.1 ND 1.7  ND ND 0.55 ND 

UGT1A1 
DGAFYTLK$ 15.5 22.5 14.5 19.8 1.5 0.93 1.28 

TYPVPFQR 6.5 11.7 6.7 7.5 1.7 1.04 1.2 

UGT1A6 
VSVWLLR 4.7 5.3 3.5 3.8 1.01 0.74 0.79 

SFLTAPQTEYR$ 5.9 6.1 3.9 3.8 1.03 0.66 0.65 

CES2 
ADHGDELPFVFR$ 23.4 18.2 8.7 8.1 0.78 0.37 0.35 

SFFGGNYIK 17.6 14.5 ND 6.6 0.82 ND 0.37 

POR 
QYELVVHTDIDAAK$ 19.8 34.5 ND 7.5 1.7 ND 0.38 

IQTLTSSVR 21.1 31.9 16.4 ND 1.5 0.77 ND 

MGST3 
IASGLGLAWIVGR$ 8.1 9.5 5.9 2.1 1.2 0.73 0.26 

VLYAYGYYTGEPSK 6.9 7.7 5.4 2.3 1.1 0.79 0.33 

BCRP 
SSLLDVLAAR$ 0.15 0.20 0.16 ND 1.3 1.04 ND 

ENLQFSAALR 0.12 ND 0.13 ND ND 1.1 ND 
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Control, NAFLD, Biliary, Cancer denote microsomal samples from histologically normal or cirrhotic liver tissue from patients with non-alcoholic fatty liver disease, 

cholestasis, and hepatocellular carcinoma at the time of sample collection. ND, The peptide was not detected in the sample. $ Peptide used for the quantification. 

 

Table 7.2. Quantification of drug-metabolising enzymes and drug transporters in pooled human liver samples from normal and cirrhotic livers with 

different co-existing conditions using four quantification approaches; QconCAT-based targeted proteomics, Hi3 label-free quantification, the total 

protein approach (TPA), and intensity-based absolute quantification (iBAQ).  

Protein Method 1 

Targeted quantification 

(pmol/mg protein) 

Method 2 

Hi3 label-free quantification 

(pmol/mg protein) 

Method 3 

TPA 

(pmol/mg protein) 

Method 4 

iBAQ 

(pmol/mg protein) 

Control NAFLD Biliary Cancer Control NAFLD Biliary Cancer Control NAFLD Biliary Cancer Control NAFLD Biliary Cancer 

CYP1A2 19 7.1 5.8 9 25.1 8.8 8.5 11.8 31.5 11.7 16.4 27.9 35.7 10.4 10.1 15.3 

CYP2A6 20.1 20.2 8.2 11.7 38.9 31.1 16.6 26.6 43.8 38 28.6 45.3 41.5 28.3 14.7 20.8 

CYP2B6 2.8 3.4 1.1 2.4 6.5 6.4 2.2 4.3 3.1 3.1 2.2 4.9 3.3 2.7 1.3 2.6 

CYP2C8 25.8 17 7.7 12.6 39.5 22.8 10.6 22 53.7 32.4 26.5 47.8 53.9 25.5 14.4 23.2 

CYP2C9 92.5 100.2 42.6 58.3 73 58.1 36.1 51.6 68 59.2 56.7 83.6 82.8 56.6 37.4 49.2 

CYP2C18 1.3 0.7 0.7 0.7 1.4 0.6 ND ND 10.5 7 6.1 10 10.5 5.5 3.3 4.8 

CYP2D6 8.7 5.6 4.2 5.1 6.7 3.2 3.8 3.5 13.8 8.1 13.3 22.5 15.5 7.1 8.1 12.2 

CYP2E1 37.4 49.4 12.2 30.1 25.4 20.9 6.6 24 28.9 38.5 12 35.3 31.8 33.3 7.2 18.7 

CYP3A4 64.0 33.4 20.9 20.6 24.8 13.7 8.7 10 36.7 20.7 20.6 23.8 40.8 18 12.4 12.8 

CYP3A5 4.4 ND 2.4 7.3 1.2 ND 0.6 ND 12.3 8.2 9.1 14 14.1 7.4 5.7 7.8 

CYP2J2 1.26 0.77 0.6 0.55 0.4 0.2 0.2 0.2 0.29 0.13 0.15 0.21 0.26 0.09 0.07 0.09 

CYP4F2 9.6 9.5 4.8 5.1 3.3 2.7 1 2.4 14.4 11 9.7 16.4 15 9 5.5 8.2 

UGT1A1 15.5 22.5 14.4 19.8 7.3 14.8 5.6 9.7 4.9 10.2 7 13.4 8.1 13.3 6.3 10.8 

UGT1A4 20.8 14.3 14.9 ND 27.7 18.2 22.7 21.5 20.4 14.8 30.3 29.8 25.7 14.6 20.7 18.1 
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UGT1A6 5.9 6.1 3.9 3.8 7 5.7 4.7 6.6 8.6 7.4 9.1 12.1 9.4 6.3 5.4 6.4 

UGT1A9 11.8 10.9 5.5 8.3 9.5 5.1 1.4 7.1 7.5 6.3 5.6 13.2 10.7 7.1 4.4 9.1 

UGT2B4 25.4 23.6 14.4 16.7 27.4 23.2 11.3 23 25.7 29.5 33 45.1 30.1 27.2 21 25.5 

UGT2B7 61.2 43.4 20 30.6 116.2 62.2 38.7 58.6 54.9 37.6 34.8 50.1 69.9 37.6 24.1 30.8 

UGT2B17 8 7.1 3.3 3.1 7.8 ND ND 3.5 28.4 16.8 17.4 28 33.6 15.6 11.2 16 

CES1 303.2 180.6 81.2 88.7 277.4 150 70.4 158.8 584 280.7 245.2 498 574.4 216.9 130.8 236.7 

CES2 23.4 18.2 8.7 8.1 31.3 22.6 13.4 19.9 27.8 19.3 15.1 31.2 39.4 21.4 11.6 21.3 

FMO3 66.8 53 26.5 22.5 68.4 42.1 24 42.1 118.2 85.5 67.6 109.4 111.6 63.4 34.6 49.9 

FMO5 18.1 16.5 8.1 5.3 23.9 14.9 11.7 10.5 34.1 23 25.1 26 35.7 18.9 14.2 13.2 

POR 19.8 34.5 13.4 7.5 48.2 46 28.7 30.5 26.6 31.9 35 36.8 27.7 26.2 19.8 18.6 

MGST1 45.1 38.2 32 13.3 70.1 67.5 44.8 53.5 137.3 128.8 161 159.2 202.7 149.4 128.9 113.6 

MGST3 7.5 8.6 5.7 2.2 5.8 5.5 3.4 4.2 7.1 6.8 8.1 8.6 9.9 7.4 6.1 5.8 

BSEP 0.23 0.35 0.34 0.11 0.3 0.3 0.3 0.3 0.07 0.08 0.17 0.15 0.07 0.07 0.1 0.08 

MRP3 0.16 0.55 0.27 0.13 ND 0.3 ND 0.3 ND 0.06 ND 0.03 ND 0.07 ND 0.02 

MRP6 0.41 0.56 0.29 0.19 0.6 0.5 0.3 0.4 0.11 0.09 0.06 0.18 0.15 0.1 0.04 0.12 

ATP1A1 2.52 6.63 2.58 1.82 4.3 8.1 4.5 4.6 6.28 13.63 10.57 11.51 7.93 13.52 7.24 7.02 

OCT1 1.53 1.5 0.67 0.82 ND ND ND ND 0.3 0.28 0.13 0.41 0.87 0.66 0.21 0.59 

OAT2 0.52 1.16 0.4 0.35 ND ND ND ND 0.08 0.12 0.08 0.15 0.09 0.11 0.05 0.08 

OATP1B1 0.42 0.72 0.5 0.22 1.6 1.2 0.9 1.2 0.61 0.46 0.49 0.71 0.65 0.39 0.29 0.37 

OATP2B1 1.01 1.22 0.74 0.47 1.2 0.7 0.5 0.6 0.22 0.25 0.22 0.2 0.39 0.35 0.21 0.17 

MCT1 1.43 3.21 1.47 0.89 ND ND ND ND ND 0.33 0.18 ND ND 0.18 0.07 ND 

Normal, NAFLD, biliary, cancer denote microsomal samples from histologically normal or cirrhotic liver tissue from patients with non-alcoholic fatty liver disease, 

cholestasis, and hepatocellular carcinoma at the time of sample collection. ND, not detected using a particular method.
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7.4.4. Comparison of absolute abundances of target proteins quantified by different 

methods 

Absolute abundance values of the targets under investigation were highly correlated for all four 

methods with R2 ranging from 0.69 to 0.88 (Supplementary Figure 7.1 A). Standard-based 

label-free methods, iBAQ and Hi3, showed better agreement with targeted quantification 

(slopes of 1.58 and 0.85, respectively) than the TPA method (1.80 fold higher on average). 

Label-free methods (iBAQ, Hi3, and TPA) returned values for 60%, 68%, and 42% of the 

targets, which were within a 2-fold range relative to the targeted data (Figure 7.1). Using the 

targeted data as a reference, the Hi3 and iBAQ approach were less biased (AFE = 0.96) than 

the TPA (AFE = 1.19) methods. The TPA approach was the least precise method (AAFE = 

2.55), while the Hi3 and iBAQ approaches reflected lower data scatter (AAFE of 1.85 and 2.21, 

respectively). 

 

Figure 7.1. Assessment of agreement between absolute abundance data generated using 

label-free methods (iBAQ, Hi3, and TPA) and targeted proteomics. The AFE and AAFE 

values reflect bias and scatter of the data. The continuous line is the line of unity and the 

dashed lines represent the 2-fold range. 
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7.4.5. Comparison of disease-to-control ratios determined by different proteomic 

methods 

Discrepancies in absolute values in Table 7.1 and Table 7.2 suggest the use of DPF as a way 

of reconciling differences.  We now compared the relative levels of 35 proteins in diseased 

(with reference to control) samples as determined by four different quantification methods. The 

ratios obtained by the Hi3 and iBAQ methods showed good correlation with one another and 

with the targeted approach and TPA data (R2 range 0.56-0.81). TPA data showed poor 

correlation to the targeted method with R2 of only 0.21 (Supplementary Figure 7.1 B). The 

ratios measured by the iBAQ, Hi3 and TPA label-free methods for 96%, 94%, and 77% of the 

targets, respectively, were within 2-fold difference from the targeted data. Compared with the 

absolute abundance values, the scatter of the data was significantly reduced after 

implementation of the ratio (AAFE of 1.33, 1.31, and 1.62 for iBAQ, Hi3 and TPA, 

respectively, relative to the targeted data). Bias in the ratio values was low for the Hi3 and 

iBAQ methods (AFE of 0.95 and 0.87, respectively), but still persisted with the TPA method 

(AFE of 1.44) (Figure 7.2). 

 

Figure 7.2. Assessment of the agreement between disease-to-control ratios (disease 

perturbation factor, DPF) generated using label-free methods (iBAQ, Hi3, and TPA) and 
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targeted proteomics. The AFE and AAFE values reflect bias and scatter of the data. The 

continuous line is the line of unity and the dashed lines represent the 2-fold range.  

 

 

7.4.6. Recovering disease-related perturbations in abundance of hepatic enzymes and 

transporters  

Disease effects on the abundances of key drug-metabolising enzymes and drug transporters is 

shown in Figure 7.3. Based on targeted proteomics, biliary and cancer-related cirrhosis were 

associated with 2 or more fold reduction in abundance of CYP3A4, 1A2, 2C8, 2J2, UGT2B7, 

2B17, CES1, CES2, FMO3 and FMO5. Expression levels of the majority of the remaining 

enzymes and transporters dropped to less than 50% in cancer-associated cirrhosis compared 

with control. CYP2A6, 2B6, 2C9, 2E1, and UGT1A9 were significantly downregulated in 

cholestatic cirrhosis. In this group, BSEP and MRP3 (implicated in transport of bile salts and 

bile conjugates, respectively) increased by 45 and 70%, respectively, while there was a 

reduction in OCT1 (by 60%) and OATP2B1 (by 30%). However, for changes that are within a 

2-fold cut-off range, disease effects may be masked by analytical or technical variability. 

Although NAFLD-related cirrhosis had a lower impact on CYPs and UGTs than other types of 

cirrhosis, this aetiology was associated with increased expression (> 2 fold) of several 

transporters, including MRP3, OAT2, and MCT1 (Figure 7.3). 
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Figure 7.3. Disease-to-control abundance ratios (disease perturbation factor, DPF ) for 

enzymes and transporters measured by targeted (QconCAT) proteomics in three pooled 

cirrhosis liver samples with concomitant hepatic disease, non-alcoholic fatty liver (NAFLD), 

cholestasis (biliary), and hepatocellular carcinoma (cancer), relative to histologically 

normal control  liver samples. 

7.5. Discussion 

This study investigated the performance of targeted and global proteomic methods in 

measuring the effects of liver disease on expression of hepatic enzymes and transporters. 

Absolute abundance values of DMEs and transporters measured by targeted and global (Hi3 

and iBAQ) methods showed good overall agreement in terms of accuracy and precision. 

Although the TPA method correlated with the targeted approach, as highlighted previously 

(Vildhede, et al., 2018), the TPA tended to overestimate consistently by approximately two 

fold. This emphasises the observation that standard-based methods perform well relative to 

methods with no standards (such as TPA) when accurate quantification, rather than an estimate, 

is required. It is not very surprising that the TPA overestimates. The central tenet of this 

approach is that the total intensity in a sample represents the total amount of protein.  In fact, 



|Chapter Seven 

231 
 

many proteins fall below the limit of detection, and many others fall below the limit of 

quantification. Wiśniewski et al (2014) have attempted to overcome this limitation using the 

protein ruler, allowing a standardisation to internal standards.  A further limitation of the 

classical TPA (used in this study) is that the intensity corresponding to more than one protein 

(where a peptide is present in more than one protein) is assigned in full to each of those proteins. 

A modification in the TPA can be performed by assigning such intensity on the basis of the 

ratio of intensity due to the razor peptides; this modification is more important in limiting 

overestimation of individual proteins than in addressing the global overestimation (Al‐

Majdoub, et al., 2020b).  

 The high correlation between Hi3 and iBAQ methods (R2 0.87) is in line with findings by Krey 

et al. (2014). The difference between these two methods is that in the Hi3 method only unique 

peptides are used for quantification, whereas non-unique peptides may be used in the iBAQ 

method. This can justify the over-estimation observed in the iBAQ compared to the targeted 

and the Hi3 using the observed data. There are advantages to both approaches, which have not 

been fully explored.  The elimination of non-unique peptides is arguably more robust; even 

when their contribution is divided among contributing proteins, the ratio is an estimation.  

However, their inclusion allows more data to be used in the quantification, and this is important 

where proteins with few unique peptides are to be quantified. 

As previously discussed (Prasad, et al., 2019), absolute quantification is critically dependent 

on the choice of the surrogate peptides used to quantify each protein. Different peptides behave 

differently under sample preparation and LC-MS conditions (Chen, et al., 2020). Peptides in 

close proximity to membrane-spanning domains, those prone to missed cleavage and sequences 

with hydrophobic amino acids (such as P, V, W) negatively affect proteomic quantification 

(Achour, et al., 2018). These factors can lead to high variability in the data generated by 

different laboratories, with differences reaching up to 10 fold in some instances (Chen, et al., 
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2020; Prasad & Unadkat, 2014; Wegler, et al., 2017). Our results confirmed previous 

conclusions of cross-laboratory studies about the impact of peptide choice and analysis method 

on reported end-point measurements.  

This study shows that relative quantification to a control set can lead to greater consistency 

between quantification methodologies and this might be a useful strategy to offset bias related 

to surrogate peptides, analytical methods or even different laboratories. Where the aim is to 

demonstrate the effect of disease, DPF described here, is a useful measure. When the disease 

to control ratios were compared, they were shown to be more consistent than absolute values 

across methods and between surrogate peptides. Using the QconCAT approach, the differences 

in these ratios were within 25% for different targets, which supported the possibility of 

reconciling inherent technical variability in absolute abundance measurements.  In a similar 

fashion, relative expression factors, REF, extensively used in in vitro-in vivo extrapolation, 

were previously shown to be more consistent when the abundance in tissue and in the in vitro 

system are measured in the same laboratory using the same methodology (Harwood, et al., 

2016).    

The ability of different quantification methods to define DPF in expression of various drug 

metabolism proteins was investigated by applying the ratios of expression of each protein in 

the disease samples relative to histologically normal controls. The ratios should be compatible 

with reverse translational modelling of drug kinetics and effects of co-morbidities as described 

previously (Rostami-Hodjegan, 2018). This relies on implementing the DPF into verified 

models in a healthy population rather than a fully bottom-up approach (Sharma, et al., 2020). 

Again, the Hi3 and iBAQ label-free methods were able to capture the disease perturbation in 

agreement with the targeted approach, with much less bias (lower AFE) and scatter in the data 

(lower AAFE) than the TPA. The reason may well be that this approach does not apply a 

standard that acts as an anchor to offset the effect of technical variability on measured 
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abundance. The use of the protein ruler with stable expression in a lysate (Wiśniewski, et al., 

2014) together with a principled division of intensities due to non-unique peptides among 

contributing proteins may bring this in line. The remaining difficulty is to establish a suitable 

ruler for microsomal samples.   

Cirrhosis is a chronic fibrotic liver disease that is known to change the liver architecture and 

affect the expression of drug-metabolising enzyme and their activities. However, these changes 

are not fully understood and differences can be related to the enzyme isoform, degree of disease 

severities and underlying conditions (Elbekai, et al., 2004). Using DPF, the degree of change 

in expression of hepatic enzymes and transporters among cirrhosis samples of different 

aetiologies revealed differences in their pathophysiology and confirmed the heterogeneity of 

cirrhosis as a disease, in line with previous studies (Drozdzik, et al., 2019; El-Khateeb, et al., 

2020; Prasad, et al., 2018). In agreement with our findings, Prasad et al. (2018) reported 

reduced CYP and UGT expression in cirrhosis, although the causes of the disease were 

different from those explored in the current study. Drozdzik et al., (2019) reported relative 

changes in the abundance of different transporters in cirrhotic livers with aetiologies associated 

with alcohol, cholestasis, autoimmune diseases and viral hepatitis compared to normal controls. 

In their cholestasis group, the reported changes in OCT1, BSEP, and OATP2B1 were in line 

with findings in the current study. Measuring the effect of disease in the current and previous 

studies relied on measurements in liver tissue. Non-invasive techniques, such as liquid biopsy 

(Achour, et al., 2021), might be an avenue for further development to determine the extent and 

inter-individual variabilities in perturbation, knowing that significant differences exist in the 

altered values for different pathways, as typical clinical scores of cirrhosis, such as the Child-

Pugh system, cannot predict these changes in metabolic capacity (Elmeliegy, et al., 2021; 

EMA, 2005). 
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In conclusion, differences were observed in absolute abundances measured by several targeted 

and untargeted methods. Error inherent to these methods was mitigated by measuring a relative 

factor that captures the effect of disease on the expression of various hepatic enzymes and 

transporters. DPF is more consistent than using absolute values, when the same method is 

employed for the disease and control sample sets. Application of this approach can help in 

understanding different expression patterns of enzymes and transporters in disease states, such 

as cirrhosis across different disease aetiologies or severities. 
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7.7. Supplementary Material 

Supplementary Table 7.1. Demographic and clinical data for individual donors of control 

samples 

Serial Sample ID 
Date of 

surgery  
Age sex 

PT 

(sec) 

Albumin 

level (g/L) 

Weight 

(Kg) * 

Height 

(m) * 

Total 

bilirubin 

(µmol/L) 

General 

diagnosis 

1 2759 12/12/16 81 M 11.3 34 82 1.72 11 CRC 

2 2721 06/12/16 36 M 11.5 39 61.5 1.696 18 CRC 

3 2841 28/12/16 57 M 12.3 40 84 1.74 9 CRC 

4 0103 16/01/17 81 M 21.6 38 75 1.67 16 CRC 

5 2847 30/12/16 48 F 12.2 43 67.8 1.619 10 SCC 

6 0044 09/01/17 83 F 10.6 39 62.3 1.637 6 CRC 

7 761 20/04/17 73 M 12.7 35 94.9 1.638 6 HCC 

8 713 13/04/17 57 F 12.1 42 65.9 1.73 9 CRC 

9 502 14/03/17 77 M 11.9 38 112.5 1.71 9 CRC 

10 0125 19/01/17 62 M 10.9 38 69.7 1.7 7 CRC 

11 0336 16/02/17 71 F 10.5 34 76 1.53 8 GIST 

12 484 13/03/17 80 M 21.9 24 71 1.81 28 CRC 

13 0322 14/02/17 71 M 10.8 43 93.6 1.715 11 CRC 

14 2809 20/12/16 52 M 10.1 42 88 1.735 6 CRC 
PT, prothrombin time; * measured at time of surgery; HCC, hepatocellular carcinoma; CRC, colorectal cancer; 

SCC, squamous cell carcinoma; GIST, gastrointestinal stromal tumour. 
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Supplementary Table 7.2. Demographic and clinical data for individual donors of cirrhosis liver samples and Child-Pugh classification 

Serial 

for 

each 

group 

Sample 

ID 

Date of 

surgery 

D/M/Y 

Age sex 
PT 

(sec) 

Albumin 

level 

(g/L) 

Total 

bilirubin 

(µmol/L) 

Weight 

(Kg) a 

Height 

(m) a 

Ascites 

volumeb 

HE 

grade c 
General diagnosis 

CP class 

(Score) 

1 0974  19/05/17 56 M 18.1 37 8 117.5 1.75 Severe 1-2 SH B(9) 

2 1982   17/08/16 63 F 18 25 30 70.7 1.57 Mild 1-2 NAFLD B(9) 

3 1570 10/06/16 62 F 16.6 32  26  72.1 1.52 Moderate 1-2 NAFLD B(9) 

4 0549  22/03/17 59 M 18.8 28 53 89.2 1.72 Mild 1-2 NAFLD C(10) 

5 0355 17/02/17 67 F 17.9 26 81 82.2 1.64 Moderate None NAFLD C(11) 

6 0863  08/05/17 51 F 19.8 23 78 89.2 1.6 Mild None NAFLD C(11) 

7 2728   07/12/16 66 F 24.9 32 29 82.6 1.6 Moderate 1-2 NAFLD C(10) 

8 1571   11/06/16 46 F 14.7 25 51 78.6 1.58 Mild 1-2 NAFLD C(11) 

9 0286 10/02/17 48 M NA NA NA NA NA NA NA NAFLD NA 

1 2403 21/10/16 57 M 14.4 29 16 89 1.803 None None HCC& HCV A(6) 

2 0955 18/05/17 63 M 15 36 18 89.2 1.73 None None HCC& alcoholic SH A(5) 

3 1963  13/08/16 68 M 13.6 27 28 113.45 1.77 None 1-2 HCC& alcoholic injury B(8) 

4 1745  14/07/16 67 M 15.2 27 46 92 1.7 Mild None HCC& NAFLD B(9) 

5 2431  27/10/16 69 M 15.7 28 30 95 1.79 None None HCC& HCV A(6) 

6 2408  22/10/16 51 M 18.9 31 44 88.5 1.85 Mild None HCC& HCV B(8) 

7 1926  10/08/16 63 M 17 33 97 82.3 1.74 None 1-2 HCC& NAFLD B(9) 

8 3688 12/11/15 65 F 13.8 40 14 84 1.63 None None HCC& alcoholic SH A(5) 

9 1228 06/12/17 55 F 14.3 29 13 78.6 1.62 None None HCC A(6) 

1 997  21/04/16 59 M 19.7 13 63 100.8 1.82 Severe 1-2 CHOL. C(14) 

2 0746 19/04/17 67 M 13.7 24 58 76.4 1.6 None 1-2 PBC C(10) 

3 0147 25/01/17 57 M 15.3 19 243 72.3 1.74 Mild 1-2 CHOL. C(11) 
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4 2682  02/12/16 56 F 15.2 40 75 67.3 1.62 Severe 1-2 CHOL. C(11) 

5 2500 07/11/16 63 F 11.9 30 82 80.15 1.64 Mild 1-2 PBC C(10) 

6 2306  11/10/16 60 M 16.9 22 326 83.2 1.76 Mild 1-2 PSC C(11) 

7 2159  15/09/16 39 M 14.2 30 49 80.8 1.90 Mild None PSC B(8) 

8 2136  12/09/16 54 M 19.1 30 484 79.7 1.75 Moderate 1-2 PSC C(12) 

9 1684 11/07/16 69 F 15.4 28 102 78.6 1.67 Mild 1-2 CHOL.&PBC C(10) 

10 1429 18/07/17 57 M 15.2 37 37 69 1.75 Mild None PSC B(7) 

11 0544 21/03/17 70 M 13.3 30 25 87.8 - None 1-2 PSC B(7) 

12 2020 24/08/16 59 F 15.9 29 26 43.95 1.5 Severe None PBC B(9) 

13 0819 05/02/17 75 M 13.2 41 18 79.5 1.6 None None CHOL. A(5) 

PT, prothrombin time; HE, Hepatic encephalopathy; CP, Child-Pugh; NA, No data available; HCC, hepatocellular carcinoma; NAFLD, non-alcoholic fatty liver disease; 

CHOL, cholestasis; PBC, primary biliary cirrhosis; PSC, primary sclerosing cholangitis, SH, Steatohepatitis; a measured at time of surgery; b controlled with diuretics 

recorded as Mild ascites, c controlled with rifaximin / lactulose recorded as grade 1-2. 
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Supplementary Table 7.3. MaxQuant main quantification parameters for targeted and label-

free quantifications 

Parameter description Label-Free 

Quantification 

Targeted 

Label free quantification Yes None 

Multiplicity 1 2 (Max. Labelled 2 

(heavy labels Arg6 

&Lys6) 

Digestion Enzyme Trypsin/P Trypsin/P 

Variable Modifications Oxidation (M) & 

Deamidation (NQ) 

Oxidation (M) & 

Deamidation (NQ) 

Fixed modifications            Carbamidomethyl (C) Carbamidomethyl (C) 

Max number of modifications per peptide 5 5 

Max charge 7 7 

Main search peptide tolerance 5 ppm 5 ppm 

Min pep length       5 5 

Min pep length for unspecific search 8 8 

Max pep length for unspecific search 25 25 

Max peptide mass [Da] 5000 Da 5000 Da 

Peptides for quantification All All 

MS/MS match tolerance 0.5 Da 0.5 Da 

False discovery rate (FDR) 1% 1% 

 

Supplementary Table 7.4.Targets and their unique peptides in each QconCAT standard; 

NuncCAT, MetCAT, and TransCAT 

NuncCAT MetCAT TransCAT 
Target Peptide Sequence Target Peptide Sequence Target Peptide Sequence 

CES1  EGYLQIGANTQAAQK
§
 CYP1A2 ASGNLIPQEK

§
 P-gp, 

MDR1 

FYDPLAGK 

FLSLDLQGDPR YLPNPALQR AGAVAEEVLAAIR
§
 

CES2  ADHGDELPFVFR
§
 CYP2A6 DPSFFSNPQDFNPQHFLNEK BSEP STALQLIQR 

SFFGGNYIK GTGGANIDPTFFLSR
§
 AADTIIGFEHGTAVER

§
 

TTHTGQVLGSLVHVK CYP2B6 ETLDPSAPR MDR3 IATEAIENIR 

FMO3  LVGPGQWPGAR
§
 GYGVIFANGNR

§
 GAAYVIFDIIDNNPK 

NNLPTAISDWLYVK CYP2C18 GSFPVAEK
§
 MRP2 LTIIPQDPILFSGSLR 

SLTNFSK 

FMO5 WATQVFK CYP2C19 GHFPLAER YLGGDDLDTSAIR 

TDDIGGLWR CYP2C8 SFTNFSK
§
 AFEHQQR 

LTHFIWK
§
 CYP2C9 GIFPLAER

§
 MRP3 AEGEISDPFR 

EPHX1  IIPLLTDPK LPPGPTPLPVIGNILQIGIK IDGLNVADIGLHDLR
§
 

FSTWTNTEFR CYP2D6 AFLTQLDELLTEHR MRP4 AEAAALTETAK 

POR QYELVVHTDIDAAK
§
 DIEVQGFR

§
 APVLFFDR 

YYSIASSSK CYP2E1 FITLVPSNLPHEATR
§
 MRP6 SSLPSALLGELSK 

IQTLTSSVR GIIFNNGPTWK APETEPFLR
§
 

MGST1 VFANPEDCVAFGK CYP2J2 FEYQDSWFQQLLK SSLASGLLR 

IYHTIAYLTPLPQPNR
§
 VIGQGQQPSTAAR

§
 BCRP VIQELGLDK 
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MGST2  HLYFWGYSEAAK CYP3A4 EVTNFLR SSLLDVLAAR
§
 

MGST 3 IASGLGLAWIVGR
§
 LSLGGLLQPEK

§
 ENLQFSAALR 

VLYAYGYYTGEPSK CYP3A43 YIPFGAGPR ATP1A1 IVEIPFNSTNK 

UGT2B17 WTYSISK CYP3A5 DTINFLSK
§
 SPDFTNENPLETR

§
 

GHEVIVLTSSASILVNA

SK 

YWTEPEEFRPER Cadherin-

17 

AENPEPLVFGVK 

SVINDPIYK
§
 CYP3A7 FGGLLLTEK QNSRPGK 

ADH1A* GAILGGFK FGGLLLTEKPIVLK Cadherin-

23 

ATDADEGEFGR 

NDVSNPQGTLQDGTSR FNPLDPFVLSIK DAYVGALR 

KPIHHFLGISTFSQYTV

VDENAVAK 
CYP4F2 HVTQDIVLPDGR

§
 OST-α YTADLLEVLK 

ADH1B * AAVLWEVK UGT1A1 DGAFYTLK
§
 VGYETFSSPDLDLNLK 

GAVYGGFK TYPVPFQR OST-β DHNSLNNLR 

ADH1C  FSLDALITNILPFEK UGT1A3 HVLGHTQLYFETEHFLK ETPEVLHLDEAK 

ALDH1A1 

* 

IFVEESIYDEFVR  YLSIPTVFFLR OCT1 MLSLEEDVTEK
§
 

IFINNEWHDSVSGK UGT1A4 GTQCPNPSSYIPK
§
 GVALPETMK 

TIPIDGNFFTYTR YIPCDLDFK ENTIYLK 

AOX1 * LILNEVSLLGSAPGGK UGT1A6 SFLTAPQTEYR
§
 OCT2 GIALPETVDDVEK 

VSVWLLR 

GLHGPLTLNSPLTPEK UGT1A9 AFAHAQWK
§
 FLQGVFGK 

VFFGEGDGIIR ESSFDAVFLDPFDNCGLIVA
K 

OCTN2 TWNIR 

NAT1 * DNTDLIEFK UGT2B4 ANVIASALAK DYDEVTAFLGEWGPF

QR 

NYIVDAGFGR FSPGYAIEK
§
 OAT2 WLLTQGHVK 

NAT2* TLTEEEVEEVLK UGT2B7 ADVWLIR
§
 NVALLALPR

§
 

DNTDLVEFK TILDELIQR OAT4 DTLTLEILK 

SULT1E1* KPSEELVDR UGT2B10 GHEVTVLASSASILFDPNDSS
TLK 

ISLLSFTR 

NHFTVALNEK UGT2B11 GHEVTVLASSASILFDPNDA

STLK 
MATE1 GGPEATLEVR 

SULT1A1 VHPEPGTWDSFLEK UGT2B15 SVINDPVYK DHVGYIFTTDR 

SULT1A2 VYPHPGTWESFLEK ASGNLIPQEK OATP1A2 EGLETNADIIK 

SULT2A1

* 

DEDVIILTYPK   

  

  

  

  

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

  

  

  

  

  

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

IYDSTTFR 

TLEPEELNLILK OATP1B1 YVEQQYGQPSSK 

TPMT* NQVLTLEEWQDK MFLAALSLSFIAK 

TSLDIEEYSDTEVQK LNTVGIAK
§
 

EPHX2 * GLLNDAFQK OATP1B3 NVTGFFQSLK 

WLDSDAR IYNSVFFGR
§
 

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

  
  

  

  
  

  

  
  

  

  
  

  

  

  

  

  
  

OATP2B1 VLLQTLR 

SSPAVEQQLLVSGPGK
§
 

  

OATP4C1 

HLPGTAEIQAGK 

SPEPSLPSAPPNVSEEK 

DFPAALK 

NTCP GIYDGDLK 

GIVISLVLVLIPCTIGIV

LK  

AHLWKPK  

PEPT1 GNEVQIK 

TLPVFPK 

HTLLVWAPNHYQVVK 

ASBT IAGLPWYR 

LWIIGTIFPVAGYSLGF
LLAR 

MCT1 SITVFFK 

DLHDANTDLIGR
§
 

OATP4A1 YEVELDAGVR 

ILGGIPGPIAFGWVIDK 

* Represent targets mainly located in the cytosolic fraction. § Peptides used for the quantification of 

the targets in the current study 
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Supplementary Figure 7.1. Linear regression analysis to assess the possible correlations 

between (A) absolute quantification data and (B) disease-to-control ratios derived from 

analysis of pooled samples (normal and cirrhotic) using four quantification methods 

(targeted, Hi3, iBAQ and TPA approaches). 
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8 Chapter Eight 

Proteomic Quantification of Drug-Metabolising Enzymes and 

Drug Transporters in Human Liver with Different Grades of 

Cirrhosis and PBPK Modelling of Disease Perturbation 
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8.1. Abstract 

Liver cirrhosis is a chronic disease that affects liver structure, protein expression and overall 

metabolic function. Abundance data for drug-metabolising enzymes and transporters (DMET) 

across all stages of disease severity are scarce. Levels of these proteins are crucial for the 

accurate prediction of drug clearance in hepatically-impaired patients using physiologically-

based pharmacokinetic (PBPK) models, which can be used to guide the selection of more 

precise dosing. This study aimed to determine the absolute abundance of 51 DMET proteins in 

human liver across the three degrees of cirrhosis severity (n = 32; 6 mild, 13 moderate, and 13 

severe), compared to histologically-normal controls (n = 14), using QconCAT-based targeted 

proteomics. The results revealed significant reduction in abundance of the majority of enzymes 

and transporters, from control, by 30-50% in mild, 40-70% in moderate, and 50-90% in severe 

cirrhosis groups. Cancer and/or NAFLD-related cirrhosis showed larger deterioration in levels 

of CYP3A4, 2C8, 2E1, 1A6, UGT2B4/7, CES1, FMO3/5, EPHX1, MGST1/3, BSEP, and 

OATP2B1 than the cholestasis set. Application of abundance changes in PBPK models of 

repaglinde, dabigatran etexilate and zidovudine successfully recovered disease-related 

alterations in drug exposure. The current study demonstrates the utility of proteomics-informed 

PBPK modelling in predicting the differential effect of the severity of liver cirrhosis on drug 

metabolism and disposition. 
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8.2. Introduction 

Cirrhosis occurs in late-stage liver fibrosis (scarring) as a result of different types of liver 

disease, such as hepatitis, cholestasis, cancer, alcoholic and non-alcoholic fatty liver disease 

(Bataller & Brenner, 2005). It leads to alterations to hepatic architecture, which cause changes 

in blood flow, protein binding, and expression of drug-metabolising enzymes (DMEs) 

(Johnson, et al., 2010). These changes lead to variable pharmacokinetics (PK) of many drugs 

in cirrhotic populations, compared to healthy subjects, through multiple mechanisms, such as 

a reduction in the absolute number of functioning cells in the liver, changes in abundance and/or 

activity of enzymes in surviving hepatocytes, and impaired drug and oxygen entry into liver 

cells (Elbekai, et al., 2004). Therefore, patients with liver disease are liable to decreased 

capacity of the liver to eliminate drugs and may require specific drug dosage adjustment (FDA, 

2003). 

In drug development, dedicated PK studies on patients with different degrees of hepatic 

impairment (HI) are recommended; however, such studies are not conducted for most drugs 

approved by regulatory agencies, and patients with hepatic impairment currently receive these 

drugs with no dosage guidance (Jadhav, et al., 2015). Recent FDA guidelines recommended 

the inclusion of HI patients into the early phases of clinical studies with close monitoring of 

side effects (FDA, 2020). Implementation of this recommendation may require time, and 

alternate approaches, such as the use of physiologically-based pharmacokinetic (PBPK) 

models, are therefore applied for predicting changes in drug exposure and guiding dose 

adjustment in HI populations (Heimbach, et al., 2020). These HI PBPK models incorporate 

either in vitro abundance data from immunoblotting studies or in vivo activity data using 

selective probe substrates administered to patients with liver disease (Johnson, et al., 2010). 

The highlighted strategies are limited to protein targets that have specific antibodies or probe 

substrates. More recently, the use of LC-MS proteomics in the quantification of phase I and II 
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enzymes as well as transporters has contributed useful data, which have so far been only limited 

to the severe stage of cirrhosis and do not cover some key aetiologies of the disease (Prasad, et 

al., 2018; Wang, et al., 2016). Therefore, the aim of this study was to assess the impact of 

cirrhosis at different degrees of disease severity, classified according to the Child-Pugh (CP) 

system (Pugh, et al., 1973) (as Mild, CP-A, Moderate, CP-B, and Severe, CP-C). Further, the 

possible effects of disease aetiologies associated with cirrhosis, such as non-alcoholic fatty 

liver disease (NAFLD), alcoholic fatty liver, biliary disease and cancer, on the expression of 

enzymes and transporters were investigated. 

8.3. Methods 

8.3.1. Liver samples and donor characteristics 

Human liver microsomal (HLM) samples (n = 46) representing four sets: histologically-normal 

control group (n = 14, Supplementary Table 8.1) and three cirrhotic groups (n = 32, 

Supplementary Table 8.2), divided according to the severity of cirrhosis using CP scoring into: 

CP-A or mild cirrhosis group (n = 6), CP-B or moderate cirrhosis group (n =13), CP-C or 

severe cirrhosis group (n = 13). These 32 cirrhosis samples are also subdivided according to 

liver disease associated with cirrhosis into: non-alcoholic fatty liver disease (NAFLD) 

associated cirrhosis (n = 8), biliary disease associated cirrhosis (n = 13), cancer associated 

cirrhosis (n = 9), and alcoholic fatty liver disease (n = 2). 

Individual liver tissue samples were provided by Cambridge University Hospitals Tissue Bank 

(Cambridge, UK), and HLM fractions were prepared by differential centrifugation, as reported 

previously (El-Khateeb, et al., 2020). This study is covered by ethical approval from the Health 

Research Authority and Health and Care Research Wales (HCRW) (Research Ethics 

Committee Approval Reference 18/LO/1969). Anonymised demographic and clinical data for 

the donors were previously reported (El-Khateeb, et al., 2020) and are summarised in 
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Supplementary Table 8.1 and Supplementary Table 8.2. The average age for the control group 

was 66 years (range: 36 to 83 years). The average age of cirrhosis patients was 60 years (range: 

39 to 70 years). The percentage of female subjects was 29% in the control group and 39% in 

the cirrhosis group. In addition to individual samples, a pool of normal samples was prepared 

by mixing 6 μl from each individual HLM fraction and was used to assess the analytical 

variability between and within batches of samples. 

8.3.2. Sample preparation for proteomics 

Three stable isotope (13C) labelled concatenated concatemers (QconCATs) (Russell, et al., 

2013) were spiked into 70 µg of each individual HLM sample as internal standards: 0.351 μg 

of MetCAT [QconCAT standard for the quantification of cytochrome P450 enzymes (CYPs) 

and uridine-5'-diphospho-glucuronosyltransferases (UGTs)], 0.450 μg of NuncCAT 

[QconCAT for the quantification of non-CYP, non-UGT enzymes] and 0.165 μg of TransCAT 

[QconCAT for the quantification of transporters]. The samples were also spiked with a mixture 

of unlabelled exogenous protein standards [0.126 μg bovine serum albumin (BSA), 0.037 μg 

yeast aldehyde dehydrogenase (ADH) and 0.168 μg horse myoglobin] to monitor experimental 

conditions and enable label-free quantification of the liver proteome. 

Filter-aided sample preparation (FASP) (Wiśniewski, et al., 2009) was used for sample 

preparation, as previously described with minor modifications (Al Feteisi, et al., 2018; Couto, 

et al., 2019). Sample mixtures were solubilised by incubation with sodium deoxycholate (10% 

w/v final volume), 1,4-dithiothreitol (DTT) was added at a final concentration of 100 mM, and 

the protein mixture was incubated at room temperature for 10 min. Reduction of protein 

disulfide bonds was carried out by incubation at 56°C for 40 min. Amicon Ultra 0.5 ml 

centrifugal filters, 3 kDa molecular weight cut-off, (Millipore, Nottingham, UK) were 

conditioned by brief centrifugation of 400 μl of 0.1 M Tris-HCl, pH 8.5, at 14000g at room 
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temperature. Protein samples were then transferred to the conditioned filter units, followed by 

centrifugation at 14000g at room temperature for 30 min. Alkylation of reduced cysteines was 

performed by incubation with 100 μl of 50 mM iodoacetamide in the dark for 30 min at room 

temperature. After alkylation, deoxycholate removal was performed by buffer exchange using 

two successive washes with 8 M urea in 100 mM Tris-HCl (pH 8.5), 200 μl each. To reduce 

urea concentration, additional washes (3 x 200 µl) were performed using 1 M urea in 50 mM 

ammonium bicarbonate (pH 8.5). For each wash, the buffer (200 µl) was added to the filter, 

without mixing, centrifuged at 14000g at room temperature for 20 min, leaving a volume of 

approximately 20 µl in the filter. The filtrate containing small molecules, such as detergent, 

was discarded.  Protein digestion was achieved using LysC twice (LysC:protein ratio 1:50, 2 

hours each, at 30°C), then trypsin digestion was carried out (trypsin:protein ratio 1:25) for 12 

hours at 37°C and another equivalent treatment for an extra 6-hour incubation. Peptides were 

recovered from the filter by centrifugation (14000g, 20 min); a second collection was achieved 

by adding 0.5 M NaCl (100 µl) to the filter and centrifugation at 14000g for another 20 min. 

The collected peptides were lyophilised to dryness using a vacuum concentrator at 30⁰C and 

with vacuum in aqueous mode; the time required was in the range 1-3 hours and was sample-

dependent. Lyophilised peptides were reconstituted in 20% (v/v) acetonitrile in water, acidified 

with 2% (v/v) trifluoroacetic acid, then desalted using C18 spin columns  according to the 

manufacturer’s instructions (Nest group, USA). The peptides were lyophilised and stored at 

−80°C until mass spectrometric analysis. 

8.3.3. Liquid chromatography and tandem mass spectrometry (LC-MS/MS) 

Lyophilised peptides were re-suspended in 70 μl of 3% (v/v) acetonitrile in water with 0.1% 

(v/v) formic acid. Digested samples were analysed by LC-MS/MS using an UltiMate® 3000 

Rapid Separation LC (RSLC, Dionex Corporation, Sunnyvale, CA) coupled to a Q Exactive 

HF Hybrid Quadrupole-Orbitrap mass spectrometer (Thermo Fisher Scientific, Waltham, MA) 
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mass spectrometer. Mobile phase A was 0.1% formic acid in water and mobile phase B was 

0.1% formic acid in acetonitrile, and peptides were eluted on CSH C18 analytical column (75 

mm x 250 μm inner diameter, 1.7 μm particle size) (Waters, UK). A 1 µl aliquot of the sample 

was transferred to a 5 µl loop and loaded onto the column at a flow rate of 300 nl/min for 5 

min at 5% B. The loop was then taken out of line and the flow was reduced from 300 nl/min 

to 200 nl/min over 0.5 min. Peptides were separated using a gradient from 5% to 18% B in 63.5 

min, then from 18% to 27% B in 8 min, and finally from 27% B to 60% B in 1 min. The column 

was washed at 60% B for 3 min before re-equilibration to 5% B in 1 min. At 85 min, the flow 

was increased to 300 nl/min until the end of the run at 90 min. Mass spectrometry data were 

acquired in a data-dependent manner for 90 min in positive mode. Peptides were selected for 

fragmentation automatically by data dependent analysis on a basis of the top 12 peptides with 

m/z between 300 to 1750 Th and a charge state of 2+, 3+, and 4+ with dynamic exclusion set 

at 15 sec. The MS resolution was set at 120,000 with an AGC target of 3E6 and a maximum 

fill time set at 20 ms. The MS2 resolution was set to 30,000, with an AGC target of 2E5, a 

maximum fill time of 45 ms, isolation window of 1.3 Th and a collision energy of 28 eV. 

8.3.4. Proteomic data analysis 

Proteins were identified by searching peptide MS/MS data against UniProtKB database 

(http://www.uniprot.org/) using MaxQuant version 1.6.10.43 (Max Planck Institute of 

Biochemistry, Martinsried, Germany). QconCAT-based quantification was carried out as 

previously described (Achour, et al., 2021; Al-Majdoub, et al., 2019; Harwood, et al., 2015) to 

measure 15 CYPs and 9 UGTs (MetCAT), in addition to UGT2B17, 22 non-CYP/non-UGT 

drug-metabolising enzymes (NuncCAT) and 30 transporters (TransCAT). A protein was 

considered quantifiable in liver microsomal samples if (a) there was evidence of its expression 

in the liver (Human Protein Atlas, https://www.proteinatlas.org/), (b) it was localised in a 

membrane (Uniprot, https://www.uniprot.org/), (c) it was identified by at least one razor or one 

http://www.uniprot.org/
https://www.proteinatlas.org/
https://www.uniprot.org/
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unique peptide, and (c) it was detected in a sufficient number of samples (at least 3 

samples/group). A list of the peptides that constitute the QconCATs used in this study is 

presented in Supplementary Table 8.3. The abundance of each target protein was calculated 

using the Equation 1.  

[𝑃𝑟𝑜𝑡𝑒𝑖𝑛] = [𝑄𝑐𝑜𝑛𝐶𝐴𝑇]  × Ii,L Ii,H⁄                                                                 (1) 

Where [Protein] is the protein abundance based on surrogate peptide i, measured in units of 

pmol/mg microsomal protein. Ii,L Ii,H⁄  is the ratio of the intensity of the light (analyte) to the 

heavy (QconCAT-derived) surrogate peptide, and [QconCAT] is the concentration of the 

QconCAT standard measured using Equation 2.   

[𝑄𝑐𝑜𝑛𝐶𝐴𝑇] = [NNOP]  × Ij,H Ij,L⁄                                                                    (2) 

Where Ij,H Ij,L⁄  is the ratio of the intensity of the heavy (QconCAT-derived) to the light 

(spiked in) NNOP standard peptide, and [NNOP] is the concentration of the NNOP peptide 

standard expressed in units of pmol/mg microsomal protein, analysed by the mass 

spectrometer. The intensity ratios were corrected for isotope labelling efficiency prior to use in 

the equations (Achour, et al., 2018; Russell, et al., 2013). Unlabelled NNOP peptides, 

EGVNDNEEGFFSAR, GVNDNEEGFFSAR and AEGVNDNEEGFFSAR were added to the 

samples at 376, 700 and 156 fmol, respectively, to quantify the TransCAT, MetCAT and 

NuncCAT, respectively.  

The measured abundance values of each protein were scaled up to their corresponding levels 

in tissue (pmol/g liver) using individual microsomal protein content per gram of liver (MPPGL) 

for each sample, as previously reported (El-Khateeb, et al., 2020). 
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8.3.5. Comparing abundance of enzymes and transporters among sample groups 

The absolute abundance values of the quantified liver enzymes and transporters in mild, 

moderate, severe cirrhosis samples (classified according to CP score) were compared and 

assessed against abundance in the control group. A secondary aim of the study was to 

investigate the impact of disease aetiology or associated liver disease on the individual 

abundance data for each target. For this purpose, the samples were grouped into NAFLD, 

cancer, and cholestasis related cirrhosis. Targets that were detected in at least 3 samples per 

group were included in the comparison. Alcohol-related cirrhosis was represented by only 2 

samples, and therefore this group was excluded from the comparison. To rule out the 

confounding effect of disease severity, this comparison was restricted to moderate disease, 

which was the only disease grade that included a sufficient number of samples in each 

aetiology.     

8.3.6. Assessment of the degree of technical and analytical variability 

Nine samples, representing all groups (2 normal, 2 cancer, 1 alcohol, 2 cholestasis, and 2 

NAFLD samples), were prepared in triplicate and analysed by LC-MS/MS under the same 

conditions. The data were used to assess technical variability in quantification. A pool of 

normal samples (n = 14) was prepared once and analysed twice in each of 5 batches of samples 

(10 overall runs) to assess intra and inter-batch variability. Technical and batch-to-batch 

variability was evaluated using the coefficient of variation (CV) of replicates from different 

analyses in each set and across batches.  

8.3.7. Statistical analysis 

The samples were classified based on disease severity, using the CP score, and according to 

the associated disease. Statistical analysis of the data was carried out and graphs were created 

using GraphPad Prism version 7.0 (La Jolla, California, USA). Shapiro-Wilk normality test 
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was applied to assess normality of distribution of the data. In the absence of normal distribution, 

non-parametric statistics was used and the data were presented as median and 95% confidence 

interval (CI). Equality of variance was assessed by a modified Levene’s test (Brown-Forsythe 

test). Differences in abundance values between the control group and the three levels of disease 

severity (mild, moderate, and severe) were assessed using Kruskal-Wallis ANOVA test with 

statistical significance cut-off set at 0.05. If this test indicated statistically significant 

differences, post-hoc Mann-Whitney test was performed for pairwise comparison. Similar 

ANOVA analysis with post-hoc tests were used to compare the data for the control group and 

three disease aetiologies (cancer, cholestasis, and NAFLD) at the same degree of severity of 

cirrhosis (moderate set). Statistical significance was again considered with a cut-off p-value of 

0.05 and Bonferroni-corrected for multiple iterations to p < 0.0085* and p < 0.0017** (six 

iteration). Correlation between the abundance of hepatic transporters and log-transformed total 

serum bilirubin for each individual patient was performed using Spearman test (Rs). 

Correlations were considered significant if Rs was at least 0.5 and the probability was < 0.05. 

8.3.8. Application of proteomic data in PBPK models of cirrhosis  

Three previously verified PBPK models were used to confirm applicability of the collected 

proteomic data in the prediction of drug exposure in cirrhosis populations. In this modelling 

exercise, we used repaglinide (an antidiabetic agent and a substrate for CYP2C8, CPY3A4, 

and OATP1B1), dabigatran etexilate (a prodrug converted by carboxylesterases CES1 and 

CES2 to the active anticoagulant dabigatran, which is mainly excreted unchanged in urine), 

and zidovudine (an antiretroviral drug and a substrate for UGT2B7 and, to a lesser degree, 

metabolised by CYP/CYP reductase).  

For each drug, simulations with virtual cirrhosis populations were performed using the 

following two methods and the outputs were compared: 
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1- Prototeomic_sim_cirrhosis method: The disease to normal abundance ratio from the current 

study was used as a scalar for the intrinsic clearance in each cirrhosis population (CP-A, 

CP-B, or CP-C). As this ratio was based on enzyme abundance per gram of tissue, changes 

in MPPGL between diseased samples and normal livers have already been accounted for 

in this ratio. Therefore, the functional liver volume hypothesised by Johnson et al (2010) 

was returned back to normal values measured in healthy populations. Physiological 

changes other than enzyme abundance per g liver tissue and liver size scalar were kept the 

same as in Simcyp V19 population library, as previously reported by Johnson et al. (2010) 

and summarised here in Supplementary Table 8.4.  

2- Simcyp_cirrhosis method: Default Simcyp V 19 settings in cirrhosis populations were kept 

the same including abundance data and liver volume scalars presented in Supplementary 

Table 8.4. 

Demographic data for both healthy and cirrhosis individuals were reported previously for 

repaglinide (Hatorp, et al., 2000), dabigatran etexilate (Stangier, et al., 2008), and zidovudine 

(Taburet, et al., 1990) and are summarised in Supplementary Table 8.5. Drug-specific input 

parameters and changes in the intrinsic clearance of the three drugs in cirrhosis populations are 

presented in Table 8.1. All parameters were derived from the simulator’s library unless 

otherwise stated, as shown in Table 8.1. Simulation trials were set to 10 trials of 10 individuals 

each. The ratio of the area under the curve predicted by the model (AUCpred) and the observed 

value (AUCobs) was calculated and considered acceptable if the value was between 0.5 to 2 

fold. The ability of the model to predict changes in exposure due to cirrhosis was performed 

by comparing the ratio of AUC for the diseased population to that for the healthy population 

(AUCR) in both simulated and observed data. The model’s prediction was considered 

acceptable if the ratio of predicted AUCR to observed AUCR was between 0.5 and 2 fold.
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Table 8.1. Input parameters used for physiologically based pharmacokinetic (PBPK) simulations of repaglinide, dabigatran etexilate and 

zidovudine.  

 Repaglinide Dabigatran etexilate* Zidovudine 

PBPK Parameter Control 
Cirrhosis 

Reference Control 
Cirrhosis 

Reference Control 
Cirrhotic 

Reference 
CP-B CP-C CP-B CP-A CP-B CP-C 

Molecular mass 

(g/mol) 
452.6 Simcyp library 627.75 Simcyp library 267.2 Simcyp library 

LogP 5.18 Simcyp library 3.8 Simcyp library 0.05 Simcyp library 

Acid dissociation 

constant (pKa) 
4.18, 6.02 Simcyp library 4, 6.7 Simcyp library 9.7 Simcyp library 

Blood-to-plasma ratio 0.566 Simcyp library 1.26 Simcyp library 0.91 Simcyp library 

Unbound fraction (Fu) 0.026 (Hatorp, et al., 2000) 0.063 Simcyp library 0.8 Simcyp library 

Absorption Model 

  

First order Simcyp library ADAM model Simcyp library First order  

Peff,man permeability  4.6 

10-4 cm/s 
Simcyp library 

Ptrans,0 permeability  

6×10-6 cm/s 

(Mechanistic passive 

regional permeability 

predictor) 

Simcyp library 

 
Fraction absorbed  Fa = 0.83 

Predicted by advanced 

dissolution, absorption, 

and metabolism model 

(Prasad, et al., 2018) 

ka (h−1) - - 4.05 
(Zhang & Unadkat, 

2017) 

Distribution model Full PBPK Simcyp library Full PBPK Simcyp library Minimal PBPK model (Zhang, et al., 2017) 

Steady-state volume of 

distribution (Vss, L/kg) 
0.226 

Predicted by 

Rodgers & Rowland 

Method 

(2007) 

15.08 

Predicted by 

Rodgers & 

Rowland 

Method 

(2007) 

1.1 (Zhang, et al., 2017) 

Renal clearance  

(L/h) 
0.0128 

Simcyp library (van 

Heiningen, et al., 1999) 
0  13.2 

(Singlas, et al., 1989; 

Taburet, et al., 1990) 

CLint,CYP2C8 (µl/min 

per mg protein) 
93.01 

34 

(↓63%) 

 

22.6 

(↓75%) 

 

(Varma, et al., 2013), & 

proteomic data from the 

current study 

-  
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 Repaglinide Dabigatran etexilate* Zidovudine 

PBPK Parameter Control 
Cirrhosis 

Reference Control 
Cirrhosis 

Reference Control 
Cirrhotic 

Reference 
CP-B CP-C CP-B CP-A CP-B CP-C 

CLint,CYP3A4 (µl/min 

per mg protein) 
38 

8.7 

(↓77%) 

 

7.6 

(↓80%) 

 

-  

CES1 

Vmax (pmol/min/mg 

S9 protein) 

Km (μM) 

Fuinc 

Liver scalar 

Intestine scalar 

Kidney scalar 

- 

 

17588 

 
 

33.5 

0.692 

1 

0.004 

0.01 

 

8442.24 

(↓72%) 

 

33.5 

0.692 

1 

0.004 

0.01 

Simcyp library 

& proteomic 

data from the 

current study 

 

CES2 

Vmax (pmol/min/mg 

S9 protein) 

Km (μM) 

Fuinc 

Liver scalar 

Intestine scalar 

Kidney scalar 

 

- 

 

46.2 

 

15.4 

0.692 

1 

10 

0 

 

129.36 

(↓52%) 

15.4 

0.692 

1 

10 

0 

Simcyp 

Library & 

proteomic data 

from the 

current study 

 

CLint,UGT2B7 (µl/min 

per mg protein) 
- - 29.5 

16.2 

(↓45%) 

8.85 

(↓70%) 

4.2 

(↓86%) 

Estimated from literature 

(Singlas, et al., 1989; 

Taburet, et al., 1990)  & 

proteomic data from the 

current study 

Additional clearance 

CLint, P450 reductase (L/h) 
- - 3.07 

1.47 

(↓52%) 

1.63 

(↓47%) 

1.1 

(↓65%) 

Estimated from literature  

(Stagg, et al., 1992) & 

proteomic data from the 

current study 

OATP1B1 

CLint,T μl/min per 

million cells 

838.11 
348.39 

(↓58%) 

248.60 

(↓70%) 

Simcyp library & 

proteomic data from the 

current study 

-  

* Dabigatran is the active metabolite that is mainly eliminated by the kidney; the input parameters were kept the same as the default in Simcyp 

V19 library as no abundance data were required to be modified. 
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8.4.  Results 

8.4.1. Quality and scaling of the proteomic data 

In this study, we applied QconCAT-based targeted proteomics to investigate changes in protein 

expression of liver enzymes and transporters across three degrees of cirrhosis severity relative 

to histologically-normal liver. The targets included 14 CYPs, 9 UGTs, 9 non-CYP and non-

UGT enzymes and 19 transporters. Technical and batch-to-batch variabilities were within 30% 

for 90% and 92% of targets, respectively (Supplementary Figure 8.1). The targets that reflected 

the highest variability (>30%) were of low abundance and were not detected consistently. The 

lower limit of quantification (LLOQ) for consistently quantified targets was 0.08 pmol/mg 

protein (translating to an average tissue content of ~2 pmol/g liver) based on a cut-off technical 

variability of 20% in quality control samples.  

The abundance levels measured in pmol/mg membrane protein were scaled up to tissue levels 

using MPPGL values for each individual sample. Individual MPPGL values were previously 

reported for the same set of samples (El-Khateeb, et al., 2020) and are summarised in 

Supplementary Table 8.6. The median MPPGL for the control group was 37.3 (range 30.4 - 

63.6 mg/g), whereas for the cirrhotic samples, it was 30.8 (range 12.9 - 49.1 mg/g). We used 

the measured tissue levels of enzymes and transporters to compare abundance and model 

differences in drug exposure between cirrhotic and normal sets of samples. 

8.4.2. Abundance of drug-metabolising enzymes and transporters in livers with 

different severities of cirrhosis  

A summary of the abundance of drug-metabolising enzymes and transporters is presented in 

Supplementary Table 8.8. The data were not normally distributed (Shapiro-Wilk test, p < 0.05) 

and variance within severity groups was homogeneous (Brown-Forsythe test, p > 0.05).  

Accordingly, non-parametric statistics was used to assess differences between groups 



|Chapter Eight 

258 
 

(Kruskal-Wallis and post-hoc Mann-Whitney tests). Figure 8.1,Figure 8.2, Figure 8.3, and 

Figure 8.4 show the individual abundance values of CYP, UGT, non-CYP non-UGT and 

transporter targets, respectively, with the medians and 95% confidence intervals (CI) in each 

cirrhosis group, compared to control. 

Kruskal-Wallis ANOVA test showed significant differences (p < 0.05) for most of the targets 

of interest, except UGT1A1 (p = 0.051), UGT 1A3 (p = 0.34), MDR3 (p = 0.051), MRP4 

(p = 0.25), BCRP (p = 0.78), ASBT (p = 0.18), and OATP1A2 (p = 0.11). For targets that 

showed significant differences, post-hoc Mann-Whitney test with Bonferroni corrected p-value 

was applied for pairwise comparisons. For mild cirrhosis, median abundance was significantly 

lower than control for only six proteins: CES1 (by 47%, p = 0.003*), FMO3 (by 37%, 

p < 0.001**), EPHX1 (by 41%, p = 0.005*), MGST3 (by 51%, p = 0.003*), MRP2 (54%, 

p < 0.001**) and OATP1B1 (by 54%, p < 0.001**). For Moderate cirrhosis group, some 

targets showed a statistically significant reduction from control, by 40 to 50%, such as MGST1, 

P-gp, MRP3, OCT3, and ATP1A1. Several targets showed a more significant decline by up to 

77% from the control group, including CYP3A4, 1A2, 2C8, 2C9, 2E1, 2D6, 2A6, 2J2, 4F2, 

UGT1A6/9, 2B4/7, CES1/2, FMO3, EPHX1, MGST3, OAT2/4, OCT1, MRP2/6, BSEP, 

OATP1B1, OATP2B1, NTCP, and MCT1. The largest reduction was observed with most of 

the targets in the severe grade of cirrhosis. The level of reduction ranged from 40 to 55% with 

P-gp, MRP3, ATP1A1, and OCT3, while a decline of 60 to 78% was noted for CYP2C8/9/18, 

2D6, 2A6, UGT1A4/6, 2B4, 2B15, 1A9, CES2, FMO5, POR, MGST1/3, BSEP, MRP6, OAT 

2/4, OATP1B1, 2B1, NTCP, and MCT1. Further, CYP3A4, 1A2, 2E1, 2J2, 4F2, 2C9/19, 

UGT2B7, CES1, FMO3, EPHX1, MRP2, and OCT1 showed 80% to 98% reduction in the 

disease group relative to control. By contrast, CYP2B6 and OATP1B3 did not show 

statistically significant change in any of the three cirrhosis groups compared to control in spite 

of showing significant differences across groups with the Kruskal-Wallis ANOVA test 
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(p < 0.05). Both CYP2B6 and OATP1B3 have not been consistently detected in the set of 

samples. 

 

Figure 8.1. Individual abundance values of cytochrome P450 enzymes in pmol per g of liver 

tissue from normal control compared to different grades of liver cirrhosis stratified using 

Child-Pugh (CP) score (A: CP-A or mild; B: CP-B or moderate and C: CP-C or severe). 

Horizontal lines represent medians and error bars are the 95% confidence intervals. Stars 

represent comparisons with statistical significance (*p < 0.0085 and **p <0.0017), while the 

percentages represent the degree of change from normal control.  
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Figure 8.2. Individual abundance values of uridine-5'-diphospho-glucuronosyltransferase 

(UGT) enzymes in pmol per g of liver tissue from normal control compared to different 

grades of liver cirrhosis stratified using Child-Pugh (CP) score (A: CP-A or mild; B: CP-B 

or moderate and C: CP-C or severe). Horizontal lines represent medians and error bars are 

the 95% confidence intervals. Stars represent comparisons that are statistically significant 

(*p < 0.0085 and **p <0.0017), while the percentages represent the degree of change from 

normal control. 
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Figure 8.3. Individual abundance values of non-CYP and non-UGT enzymes in pmol per g 

of liver tissue from normal control compared to different grades of liver cirrhosis stratified 

using Child-Pugh (CP) score (A: CP-A or mild; B: CP-B or moderate and C: CP-C or 

severe). Horizontal lines represent medians and error bars are the 95% confidence intervals. 

Stars represent comparisons that are statistically significant (*p < 0.0085 and **p <0.0017), 

while the percentages represent the degree of change from normal control. 
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Figure 8.4. Individual abundance values of transporters in pmol per g of liver tissue from 

normal control compared to different grades of liver cirrhosis stratified using Child-Pugh 

(CP) score (A: CP-A or mild; B: CP-B or moderate and C: CP-C or severe). Horizontal lines 

represent medians and error bars are the 95% confidence intervals. Stars represent 

comparisons that are statistically significant (*p < 0.0085 and **p < 0.0017), while the 

percentages represent the degree of change from normal control. 

8.4.3. Relative distribution of enzymes in cirrhotic liver 

The order in abundances of hepatic metabolising enzymes (CYPs, UGTs, and others) was 

generally similar in cirrhosis compared to control with few exceptions (Supplementary Figure 

8.2). CYP2C9 and CYP3A4 were the most abundant CYPs across the normal and cirrhosis 

groups. CYP2E1 was one of the top 3 highest expressed CYP enzymes in the control, mild and 

moderate cirrhosis groups; however, it dropped down to the 5th rank in the severe stage of the 

disease.  UGT2B4 and 2B7 were the dominant UGTs in all groups, while UGT1A1 ranked the 

5th in the control group and the 2nd in the mild and severe cirrhosis groups.  Non-CYP and non-

UGT enzymes did not show differences in their relative distribution between control and 

diseased livers. 

8.4.4. Correlations between transporter abundances and total serum bilirubin levels 

Increased levels of systemic bilirubin are a common symptom of liver disease. The mean total 

serum bilirubin level (± SD) was 11 ± 6.1 for the control group, 18.2 ± 6.0 in mild, 36.8 ± 21.7 

in moderate, and 132.7 ± 135.3 µmol/L in severe cirrhosis. As transporter abundances were not 

normally distributed (Shapiro-Wilk test, p < 0.05), Spearman correlation analysis was used. 

Linear regression was used to assess scatter of the data. Correlations between the transporter 

abundance and log-transformed total bilirubin for liver donors showed moderate correlation 

(R2 = 0.3-0.5; Rs = 0.5-0.8, p < 0.05), with a declining trend, in the case of bile efflux 
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transporters: P-gp, BSEP, MRP2, MRP3, and MRP6, and also uptake transporters: NTCP, 

MCT1, OCT1, OCT3, OATP2B1, OAT2, OAT4, and OATP1B1/1B3 (Supplementary Figure 

8.3).  

8.4.5. The effect of aetiology of liver cirrhosis on abundance of enzymes and 

transporters  

Changes in the abundance of the targets relative to normal control varied according to liver 

disease present with or underlying cirrhosis. Considering samples with the same degree of 

severity (CP-B), cirrhosis associated with cancer and NAFLD showed a more significant 

reduction in the levels of most targets, relative to control, than cholestasis-related cirrhosis 

(Figure 8.5). Targets affected only by NAFLD-associated cirrhosis were CYP2C8, MGST1, 

MGST3, UGT2B4, FMO5, and BSEP, while targets that showed a significant reduction only 

with cancer-associated cirrhosis were CYP2E1 and UGT1A6. Targets significantly affected by 

both diseases were CYP3A4, FMO3, UGT2B7, OATP2B1, EPHX1 and CES1. The only target 

showing a significant reduction in cholestasis-associated cirrhosis was MRP2; expression of 

this transporter was also reduced with cancer but not with NAFLD. Further, the degree of 

difference across the disease groups was not statistically significant in the current study 

(Supplementary Table 8.7). 
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Figure 8.5. Individual abundance values of drug-metabolising enzymes and transporters in 

moderate cirrhosis groups classified by associated liver disease into cancer; CHOL, 
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cholestasis; and NAFLD, non-alcoholic fatty liver disease, compared to the control group. 

Horizontal lines represent medians and error bars are the 95% confidence intervals. Stars 

represent comparisons that are statistically significant (*p < 0.0085 and **p <0.0017).  

8.4.6. The impact of cirrhosis-related changes in abundance on the performance of 

PBPK models 

The proteomic data generated with cirrhosis samples at different grades of severity were 

applied in PBPK models for repaglinide (in a mixed CP-B&-C population) and dabigatran 

etexilate (in CP-B population). For dabigatran simulations, the model accounting for proteomic 

changes in CES1/2 in cirrhosis relative to normal was able to capture drug exposure in cirrhosis 

and was in agreement with output from Simcyp default settings for cirrhosis populations (<1% 

difference in AUCpred) (Figure 8.6). For repaglinide, the AUCRpred using proteomic data from 

the current study was 4.9 compared to 2.8 with default Simcyp population settings 

(Supplementary Table 8.9). The ratio of the predicted AUCR (AUCRpred) to the observed value 

(AUCRobs) was 1.19 using abundance data from the current study and 0.68 using default 

Simcyp population data, both within 2 fold of the observed exposure change. 
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Figure 8.6. Repaglinide (A) and dabigatran (B) simulated plasma concentration-time 

profiles with changes in the abundance of metabolising enzymes and transporters using 

proteomic data from the current study (Proteomic_sim_cirrhosis mean; solid black lines), 

and default settings in Simcyp V19 (Simcyp_cirrhosis mean; dotted red lines) in cirrhosis 

populations, compared to profiles in a healthy population (blue line). The corresponding 

observed data are presented for diseased (white circles) and healthy individuals (blue 

circles). CI, confidence interval around the mean. 

For zidovudine, adjusting the intrinsic clearance with proteomic data resulted in AUCRpred of 

2.1 in CP-A, 3.4 in CP-B, 5.7 in CP-C (Figure 8.7). The predicted simulations adjusted with 

proteomic data showed AUC levels within 2 fold of the observed data.  Predicted-to-observed 

AUCR for CP-A, B, and C with proteomic data were 0.62, 0.97, and 1.2, respectively. By 
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contrast, with default Simcyp abundance data, these values were not within 2 fold (0.38, 0.46, 

and 0.49, respectively), as shown in Supplementary Table 8.9. 

 
Figure 8.7. Zidovudine simulated plasma concentration-time profile with changes in the 

abundance of metabolising enzymes and transporters using proteomic data from the current 

study (Proteomic_sim_cirrhosis mean; solid black lines) and default settings in Simcyp V19 

(Simcyp_cirrhosis mean; dotted red lines) in mild (A), moderate (B) and severe (C) cirrhosis 

populations, compared to the profile in a healthy population (blue line). The corresponding 

observed data are presented for diseased (white circles) and healthy individuals (blue 

circles). CI, confidence interval around the mean. 
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8.5. Discussion 

Heterogeneity in chronic liver disease and the degree of change in hepatic metabolic function 

are a challenge in the selection of effective drug dosing to patients with impaired liver function. 

Specific alterations in the metabolic pathway by which a drug is eliminated is one of the 

contributing factors to this issue. This is because not all enzymatic reactions are affected by 

liver disease equally, even at the same disease severity, which is routinely determined clinically 

by the CP score. To the best of our knowledge, this study is the first to use quantitative LC-MS 

proteomics for the characterisation of changes in the expression of enzymes and transporters 

in three grades (mild, moderate and severe) of liver cirrhosis.  

We observed progressive decline in abundance of enzymes and transporters with the severity 

of cirrhosis relative to control livers. The suppressed expression of enzymes and transporters, 

as reported in this study, is likely due to exposure to inflammatory cytokines in chronic 

inflammation and the resulting downregulation of gene expression. This has been reported for 

several chronic inflammatory diseases, such as cirrhosis, rheumatoid arthritis and cancer 

(Chung, et al., 2011; Lippitz & Harris, 2016; Prystupa, et al., 2015). The level of inflammatory 

cytokines, such as IL-6 and TNFα, increases gradually with cirrhosis progression (Tilg, et al., 

1992), which supports the theory of inflammatory effect and corroborates the results of the 

current study.  

Further, we assessed changes in relative distribution of enzymes in cirrhotic liver. Distribution 

pie charts of CYP and UGT protein abundances in the control group were in overall agreement 

with previous studies (Achour, et al., 2014; Couto, et al., 2019; Ohtsuki, et al., 2012; Prasad, 

et al., 2018). Notably, CYP2C9 was the most abundant CYP enzyme in control livers, which 

is in line with findings by Ohtsuki et al., (2012) and Couto et al., (2019). However, other studies 

had CYP3A4 as the most abundant CYP (Achour, et al., 2014; Prasad, et al., 2018). This 
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difference may be attributed to the origin of the control samples as ours were excised from 

histologically-normal samples adjacent to tumours and were not from healthy individuals. 

Similarly for UGTs, the order of quantified proteins was in agreement with results from 

previous studies (Izukawa, et al., 2009; Margaillan, et al., 2015; Prasad, et al., 2018). The rate 

of disease-driven deterioration in the enzyme abundance affects its relative distribution within 

its family. Most CYP enzymes did not show major differences in rank order with disease 

progression except for CYP2E1, which had a lower relative abundance in severe cirrhosis. The 

most abundant UGTs were UGT2B4 and 2B7 in disease and control groups. On the other hand, 

UGT1A1 relative abundance was higher in mild and severe stages of cirrhosis compared to 

controls. These changes might be important for drugs cleared by multiple pathways, with 

expected changes in the relative contribution of each pathway (fm) with disease progression and 

the response to metabolic drug-drug interactions (Palatini & De Martin, 2016; Yu, et al., 2017).  

The absolute abundance of UGTs in HLM fractions was consistently higher than that reported 

in post-mitochondrial supernatant (S9 fraction), as reported by Fallon et al., (2013), which is 

consistent with enrichment data in our samples (El-Khateeb, et al., 2020), leading to more 

robust measurements (Wang, et al., 2020). We quantified the abundance of CYP2B6 and 

UGT1A1 for the first time in cirrhotic liver; these proteins were below the limit of 

quantification achieved by other studies that used non-enriched samples, such as post-

mitochondrial supernatant fractions (Prasad et al., 2018). Several targets, such as CYP3A4, 

1A2, 2A6, POR, UGT1A4, UGT2B7, showed comparable change in severe cirrhosis from 

control to those reported by others (Prasad, et al., 2018). On the other hand, CYP2D6, 2E1, 

2C8, 2C9, CES1 and CES2 were more affected in our data by severe stages of cirrhosis than 

reported in previous studies (Prasad, et al., 2018). The change in CYP2D6 was consistent with 

earlier reports (Frye, et al., 2006; Johnson, et al., 2010). These differences might be attributed 

not only to differences in disease causes but also to the fact that previous reports did not classify 
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samples based on full criteria of the CP scoring system (as we have done herein) and only 

considered transplantation to occur in severe stages of the disease, which is not accurate for 

some of the cases. Therefore, this could increase the likelihood of including moderately 

impaired patients, and possibly even mild cases, in the sample donors (Lucey, et al., 1997).  

Several reports have claimed that phase II reactions are less affected by HI than oxidative phase 

I reactions (Hoyumpa & Schenker, 1991; Morgan & McLean, 1995; Park, 1996). Results from 

the current study show that expression of several UGTs, such as UGT1A6, 1A9, 2B4 and 2B7, 

was significantly impaired by cirrhosis, especially in moderate to severe stages, which reflected 

changes at a degree similar to that observed with most of CYP enzymes. For non-CYP and 

non-UGT metabolising enzymes, the current study quantified nine enzymes, resident in the 

endoplasmic reticulum membrane, for the first time in cirrhosis, and assess the degree of 

change in their abundances relative to the control. These include MGST1, MGST3, and FMO5. 

It is worth noting that changes in sulfotransferases and other cytosolic enzymes such as ADH1, 

ALDH1A1, AOX, NAT, and EPHX2 (whose surrogate peptides are present in the NuncCAT) 

were not investigated because we used microsomal fractions in this study.  

The current study and previous reports suggest variability in the impact of cirrhosis on 

expression of transporters according to the disease severity and the underlying pathophysiology 

(viral, alcoholic and biliary diseases) (Drozdzik, et al., 2020; Taniguchi, et al., 2020; Wang, et 

al., 2016). The progressive decline in the expression of NTCP, OATP1B1/2B1, OCT1, BSEP, 

and MRP2 with increasing CP score is in line with previous findings by (Drozdzik, et al., 2020). 

By contrast to findings by Dorzdzik, et al., (2020) which suggested a lack of change in 

expression of BSEP, MRP3, OAT2, OCT3, and OATP1B3 in cirrhosis, we demonstrated a 

progressive decline in abundance of these transporters. This could be due to differences in 

disease aetiologies in the two set of samples. Although it was reported in previous studies that 

MRP4 is not normally detectable in healthy livers (Al-Majdoub et al., 2020), it was detectable 
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in our control group. This can also be attributed to the fact that these control samples are excised 

from histologically-normal samples adjacent to tumours and were not from healthy individuals. 

Bilirubin level is a liver function test and a component of the Child-Pugh scoring system (Talal, 

et al., 2017). Bilirubin is released into the blood after breakdown of haemoglobin, conjugated 

in the liver by UGTs, and then excreted into bile by transporters (Méndez-Sánchez, et al., 

2017). Elevated levels (above the normal limit of 20.5 μmol/L) occur in different conditions, 

including liver disease (Shiraishi, et al., 2019). Progressive elevation with disease severity was 

observed in our data. Correlations between transporter abundances and total serum bilirubin 

can be explained mechanistically by the role of these transporters in bilirubin disposition as 

either efflux or uptake transporters. The drop in their expression leads to hyperbilirubinemia, 

which is common in patients with cirrhosis and can be used as a predictor for poor prognosis 

(López-Velázquez, et al., 2014). The expression of these transporters also plays a key role in 

biliary secretion and enterohepatic recycling of various drugs, which when taken into account 

in PBPK models, can help in predicting their plasma levels, and ultimately, dose adjustment 

can be facilitated for these drugs in health and disease (Patel, et al., 2016; Thakkar, et al., 2017; 

Wegler, et al., 2021). 

The effect of underlying conditions in the patient cohort were investigated at the same level of 

severity (moderate cirrhosis). The effects of cholestasis and viral cirrhosis have been 

investigated previously (Prasad, et al., 2018; Wang, et al., 2016), and the current study is the 

first investigation of the effects of NAFLD and cancer-associated cirrhosis. NAFLD and 

cancer-related cirrhosis had a higher impact on expression of enzymes and transporters 

compared to cholestasis. This difference in impact was previously reported to affect MPPGL 

in the same samples (El-Khateeb, et al., 2020). In previous reports that examined other causes 

of cirrhosis (alcoholic and HCV infection) in a larger number of samples (~30 per group), the 

impact of underlying disease was similar for most targets, and only the degree of change from 
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the control group showed significant differences (Prasad, et al., 2018; Wang, et al., 2016). The 

current CP classification system does not distinguish different causes or pathophysiology of 

cirrhosis.  

Although modelling and simulation currently employ protein expression data generated in the 

past few decades by Western blotting, these data have recently started to be supplanted by state-

of-the-art proteomic data, which should lead to improved performance of these models, as 

demonstrated in this study. We used our data to simulate the impact of changes in the 

abundance of liver enzymes on exposure of a cirrhotic population to repaglinide, dabigatran 

etexilate and zidovudine. The choice of the drugs aimed to cover one or more proteins from 

each group (CYPs, UGTs, non-CYP non-UGT enzymes, and transporters), while prioritising 

drugs that have clinical data in both healthy and cirrhosis patients and have a verified model 

that is either available in the simulator’s library or is reported in a previous publication. The 

performance of the adapted models was verified against observed data and compared to the 

output from Simcyp default cirrhosis settings. The latter were based on a combination of 

available Western blotting abundance and in vitro and in vivo activity studies (Johnson, et al., 

2010). Differences were not large for repaglinide and dabigatran, either due to similar measure 

of change in disease used in these models (LC-MS expression data and data implemented into 

the disease populations from immunoblotting and activity meta-analyses) or because of low 

sensitivity of drug exposure to changes in expression. By contrast, in the case of zidovudine, 

the default Simcyp settings did not account for any change in expression and/or activity of 

UGTs with cirrhosis, and hence proteomic data improved the performance of the model and 

allowed the predictions to capture the impact of the disease on drug clearance.  

In conclusion, this study demonstrated, for the first time, gradual decline in the expression of 

enzymes and transporters with the progression of cirrhosis severity. The rate of this decline 

was specific to each target protein. The impact of underlying condition was most significant in 
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the cases of cancer and NAFLD. Introducing specific proteomic data related to changes due to 

cirrhosis into the population parameters of PBPK models will improve the predictive 

performance of these models in hepatic impairment populations. 
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8.7. Supplementary Material 

Supplementary Table 8.1. Demographic and clinical information for the individual donors 

of control samples. 

Serial 
Sample 

ID 

Date of 

surgery  

DD/MM/YY 

Age sex 
PT 

(sec) 

Albumin 

level (g/L) 

Weight 

(Kg) * 
Height 

(m) * 

Total 

bilirubin 

(µmol/L) 

General 

diagnosis 

1 2759 12/12/16 81 M 11.3 34 82 1.72 11 CRC 

2 2721 06/12/16 36 M 11.5 39 61.5 1.696 18 CRC 

3 2841 28/12/16 57 M 12.3 40 84 1.74 9 CRC 

4 0103 16/01/17 81 M 21.6 38 75 1.67 16 CRC 

5 2847 30/12/16 48 F 12.2 43 67.8 1.619 10 SCC 

6 0044 09/01/17 83 F 10.6 39 62.3 1.637 6 CRC 

7 761 20/04/17 73 M 12.7 35 94.9 1.638 6 HCC 

8 713 13/04/17 57 F 12.1 42 65.9 1.73 9 CRC 

9 502 14/03/17 77 M 11.9 38 112.5 1.71 9 CRC 

10 0125 19/01/17 62 M 10.9 38 69.7 1.7 7 CRC 

11 0336 16/02/17 71 F 10.5 34 76 1.53 8 GIST 

12 484 13/03/17 80 M 21.9 24 71 1.81 28 CRC 

13 0322 14/02/17 71 M 10.8 43 93.6 1.715 11 CRC 

14 2809 20/12/16 52 M 10.1 42 88 1.735 6 CRC 

PT, prothrombin time; *measured at time of surgery; HCC, hepatocellular carcinoma; CRC, colorectal 

cancer; SCC, squamous cell carcinoma; GIST, gastrointestinal stromal tumour. 
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Supplementary Table 8.2. Demographic and clinical information for the individual donors of cirrhosis liver samples with associated Child-

Pugh classification. 

Serial for 

each 

group 

Sample 

ID 

Date of 

surgery 

DD/MM/YY 

Age sex 
PT 

(sec) 

Albumin 

level 

 (g/L) 

Total 

bilirubin 

(µmol/L) 

Weight 

(Kg) a 

Height 

(m) a 

Ascites 

volumeb 

HE 

grade c 
General diagnosis 

CP 

class 

(Score) 

1 0974  19/05/17 56 M 18.1 37 8 117.5 1.75 Severe 1-2 SH B(9) 

2 1982   17/08/16 63 F 18 25 30 70.7 1.57 Mild 1-2 NAFLD B(9) 

3 1570 10/06/16 62 F 16.6 32  26  72.1 1.52 Moderate 1-2 NAFLD B(9) 

4 0549  22/03/17 59 M 18.8 28 53 89.2 1.72 Mild 1-2 NAFLD C(10) 

5 0355 17/02/17 67 F 17.9 26 81 82.2 1.64 Moderate None NAFLD C(11) 

6 0863  08/05/17 51 F 19.8 23 78 89.2 1.6 Mild None NAFLD C(11) 

7 2728   07/12/16 66 F 24.9 32 29 82.6 1.6 Moderate 1-2 NAFLD C(10) 

8 1571   11/06/16 46 F 14.7 25 51 78.6 1.58 Mild 1-2 NAFLD C(11) 

1 2403 21/10/16 57 M 14.4 29 16 89 1.803 None None HCC & HCV A(6) 

2 0955 18/05/17 63 M 15 36 18 89.2 1.73 None None HCC & alcoholic SH A(5) 

3 1963  13/08/16 68 M 13.6 27 28 113.45 1.77 None 1-2 HCC & alcoholic 

injury 

B(8) 

4 1745  14/07/16 67 M 15.2 27 46 92 1.7 Mild None HCC & NAFLD B(9) 

5 2431  27/10/16 69 M 15.7 28 30 95 1.79 None None HCC & HCV A(6) 

6 2408  22/10/16 51 M 18.9 31 44 88.5 1.85 Mild None HCC & HCV B(8) 

7 1926  10/08/16 63 M 17 33 97 82.3 1.74 None 1-2 HCC & NAFLD B(9) 

8 3688 12/11/15 65 F 13.8 40 14 84 1.63 None None HCC & alcoholic SH A(5) 

9 1228 06/12/17 55 F 14.3 29 13 78.6 1.62 None None HCC A(6) 

1 997  21/04/16 59 M 19.7 13 63 100.8 1.82 Severe 1-2 CHOL C(14) 

2 0746 19/04/17 67 M 13.7 24 58 76.4 1.6 None 1-2 PBC C(10) 

3 0147 25/01/17 57 M 15.3 19 243 72.3 1.74 Mild 1-2 CHOL C(11) 

4 2682  02/12/16 56 F 15.2 40 75 67.3 1.62 Severe 1-2 CHOL C(11) 

5 2500 07/11/16 63 F 11.9 30 82 80.15 1.64 Mild 1-2 PBC C(10) 

6 2306  11/10/16 60 M 16.9 22 326 83.2 1.76 Mild 1-2 PSC C(11) 
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7 2159  15/09/16 39 M 14.2 30 49 80.8 1.90 Mild None PSC B(8) 

8 2136  12/09/16 54 M 19.1 30 484 79.7 1.75 Moderate 1-2 PSC C(12) 

9 1684 11/07/16 69 F 15.4 28 102 78.6 1.67 Mild 1-2 CHOL & PBC C(10) 

10 1429 18/07/17 57 M 15.2 37 37 69 1.75 Mild None PSC B(7) 

11 0544 21/03/17 70 M 13.3 30 25 87.8 - None 1-2 PSC B(7) 

12 2020 24/08/16 59 F 15.9 29 26 43.95 1.5 Severe None PBC B(9) 

13 0819 05/02/17 75 M 13.2 41 18 79.5 1.6 None None CHOL A(5) 

1 1509 04/06/16 57 M 14.4 33 18 74.95 1.75 Moderate 1-2 Alcoholic SH B(9) 

2 1545  09/06/16 69 F 20.9 50 44 62.7 1.55 Moderate None Alcoholic SH B(9) 

PT, prothrombin time; CP, Child-Pugh; NA, HCC, hepatocellular carcinoma; NAFLD, non-alcoholic fatty liver disease; CHOL, cholestasis; PBC, primary 

biliary cirrhosis; PSC, primary sclerosing cholangitis, SH, steatohepatitis; a measured at time of surgery; b controlled with diuretics recorded as mild ascites, c 

controlled with rifaximin / lactulose recorded as grade 1-2. 
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Supplementary Table 8.3. Targets and their surrogate peptides in each QconCAT standard, NuncCAT, MetCAT and TransCAT 

NuncCAT MetCAT TransCAT 

Target Peptide Sequence Target Peptide Sequence Target Peptide Sequence 

CES1  
EGYLQIGANTQAAQK

§
 

CYP1A2 
ASGNLIPQEK

§
 

P-gp, MDR1 
FYDPLAGK

§
 

FLSLDLQGDPR YLPNPALQR
§
 AGAVAEEVLAAIR 

CES2  

ADHGDELPFVFR 
CYP2A6 

DPSFFSNPQDFNPQHFLNEK 
BSEP 

STALQLIQR 

SFFGGNYIK
§
 GTGGANIDPTFFLSR

§
 AADTIIGFEHGTAVER

§
 

TTHTGQVLGSLVHVK 
CYP2B6 

ETLDPSAPR 
MDR3 

IATEAIENIR 

FMO3  

LVGPGQWPGAR
§
 GYGVIFANGNR

§
 GAAYVIFDIIDNNPK

§
 

NNLPTAISDWLYVK CYP2C18 
GSFPVAEK 

MRP2 

LTIIPQDPILFSGSLR
§
 

SLTNFSK
§
 

FMO5 

WATQVFK
§
 CYP2C19 GHFPLAER YLGGDDLDTSAIR 

TDDIGGLWR CYP2C8 SFTNFSK
§
 AFEHQQR 

LTHFIWK 
CYP2C9 

GIFPLAER
§
 

MRP3 
AEGEISDPFR 

EPHX1  
IIPLLTDPK

§
 LPPGPTPLPVIGNILQIGIK IDGLNVADIGLHDLR

§
 

FSTWTNTEFR 
CYP2D6 

AFLTQLDELLTEHR 
MRP4 

AEAAALTETAK 

POR 

QYELVVHTDIDAAK DIEVQGFR
§
 APVLFFDR

§
 

YYSIASSSK 
CYP2E1 

FITLVPSNLPHEATR 

MRP6 

SSLPSALLGELSK 

IQTLTSSVR
§
 GIIFNNGPTWK

§
 APETEPFLR

§
 

MGST1 
VFANPEDCVAFGK

§
 

CYP2J2 
FEYQDSWFQQLLK SSLASGLLR 

IYHTIAYLTPLPQPNR VIGQGQQPSTAAR
§
 

BCRP 

VIQELGLDK 

MGST2  HLYFWGYSEAAK 
CYP3A4 

EVTNFLR SSLLDVLAAR
§
 

MGST 3 
IASGLGLAWIVGR

§
 LSLGGLLQPEK

§
 ENLQFSAALR 

VLYAYGYYTGEPSK CYP3A43 YIPFGAGPR 
ATP1A1 

IVEIPFNSTNK 

UGT2B17 

WTYSISK
§
 

CYP3A5 
DTINFLSK

§
 SPDFTNENPLETR

§
 

GHEVIVLTSSASILVNASK YWTEPEEFRPER 
Cadherin-17 

AENPEPLVFGVK 

SVINDPIYK 

CYP3A7 
FGGLLLTEK

§
 QNSRPGK 

ADH1A* 

GAILGGFK FGGLLLTEKPIVLK 
Cadherin-23 

ATDADEGEFGR 

NDVSNPQGTLQDGTSR FNPLDPFVLSIK DAYVGALR 

KPIHHFLGISTFSQYTVVDENAVAK CYP4F2 HVTQDIVLPDGR
§
 

OST-α 
YTADLLEVLK 

ADH1B * 
AAVLWEVK 

UGT1A1 
DGAFYTLK

§
 VGYETFSSPDLDLNLK 

GAVYGGFK TYPVPFQR 
OST-β 

DHNSLNNLR 

ADH1C  FSLDALITNILPFEK 
UGT1A3 

HVLGHTQLYFETEHFLK ETPEVLHLDEAK 

ALDH1A1 * IFVEESIYDEFVR  YLSIPTVFFLR
§
 OCT-1 MLSLEEDVTEK 
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IFINNEWHDSVSGK 
UGT1A4 

GTQCPNPSSYIPK
§
 GVALPETMK

§
 

TIPIDGNFFTYTR YIPCDLDFK ENTIYLK 

AOX1 * 

LILNEVSLLGSAPGGK UGT1A6 
SFLTAPQTEYR 

OCT-2 
GIALPETVDDVEK 

VSVWLLR
§
 

GLHGPLTLNSPLTPEK 
UGT1A9 

AFAHAQWK
§
 FLQGVFGK 

VFFGEGDGIIR ESSFDAVFLDPFDNCGLIVAK 
OCTN2 

TWNIR 

NAT1 * 
DNTDLIEFK 

UGT2B4 
ANVIASALAK DYDEVTAFLGEWGPFQR 

NYIVDAGFGR FSPGYAIEK
§
 

OAT2 
WLLTQGHVK 

NAT2* 
TLTEEEVEEVLK 

UGT2B7 
ADVWLIR

§
 NVALLALPR

§
 

DNTDLVEFK TILDELIQR 
OAT4 

DTLTLEILK 

SULT1E1* 
KPSEELVDR UGT2B10 GHEVTVLASSASILFDPNDSSTLK ISLLSFTR

§
 

NHFTVALNEK UGT2B11 GHEVTVLASSASILFDPNDASTLK 
MATE-1 

GGPEATLEVR 

SULT1A1 VHPEPGTWDSFLEK 

UGT2B15 

SVINDPVYK DHVGYIFTTDR 

SULT1A2 VYPHPGTWESFLEK 
ASGNLIPQEK 

OATP1A2 
EGLETNADIIK 

WIYGVSK
§
 

SULT2A1* 
DEDVIILTYPK 

  

  

  

  

  

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

  

  

  

  

  

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

IYDSTTFR
§
 

TLEPEELNLILK 

OATP1B1 
YVEQQYGQPSSK

§
 

TPMT* 
NQVLTLEEWQDK MFLAALSLSFIAK 

TSLDIEEYSDTEVQK LNTVGIAK 

EPHX2 * 
GLLNDAFQK 

OATP1B3 
NVTGFFQSLK

§
 

WLDSDAR IYNSVFFGR 

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

  
  

  

  
  

  

  
  

  

  
  

  

  

  

  

  
  

OATP2B1 
VLLQTLR 

SSPAVEQQLLVSGPGK
§
 

OATP4C1 
HLPGTAEIQAGK 

SPEPSLPSAPPNVSEEK 
 DFPAALK 

NTCP 
GIYDGDLK

§
 

GIVISLVLVLIPCTIGIVLK  

AHLWKPK 

PEPT-1 

GNEVQIK 

TLPVFPK 

HTLLVWAPNHYQVVK 

ASBT 
IAGLPWYR

§
 

LWIIGTIFPVAGYSLGFLLAR 

MCT-1 
SITVFFK

§
 

DLHDANTDLIGR 

OATP4A1 
YEVELDAGVR 

ILGGIPGPIAFGWVIDK 

* Represent targets mainly located in the cytosolic fraction; §Peptides used for the quantification of the targets in the current study 
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Supplementary Table 8.4. Physiological parameters for healthy individuals and cirrhosis patients within Simcyp Simulator V19. 

Liver condition Healthy Control Mild Impairment Moderate Impairment Severe Impairment 

Simcyp-population HV CP-A CP-B CP-C 

Gastric residence time (h) (fasted/fed)/colon 

transit time 
0.4/1.0/12 0.48/1.2/24 0.55/1.38/24 0.6/1.5/24 

Albumin/α1-AG/ Haematocrit (ratio to HV, 

male) 
1 / 1/1 0.8 /0.9/0.9 0.7 /0.8/0.8 0.6/0.6/0.8 

CYP3A4 abundance in the liver (pmol/mg) 137 108 56 31.7 

CYP2C8 abundance in the liver (pmol/mg) 24 16.6 12.5 7.92 

OATP1B1 abundance in the liver (pmol/mg) 3.1 3.1 3.1 3.1 

CES1/CES2 abundance in the liver (pmol/mg) ND ND ND ND 

CYP3A4 abundance in the intestine (pmol/mg) 65.4 65.4 39.9 23.6 

Liver Volume (L) 1.65 1.47 1.17 1.0 

Liver Q (Arterial/Portal), (% cardiac output) 6.5/19 9.2/17.3 10.6/13.6 12.5/10.5 

ND, No data are available; CP, Child-Pugh score; HV, healthy volunteer; Q, blood flow.  
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Supplementary Table 8.5. Demographic data of the healthy and cirrhosis subjects used for repaglinide, dabigatran etexilate and zidovudine 

simulations. 

Drug Parameter Cirrhosis patients Healthy 

subjects 

References 

Repaglinide 

Mean age in years 

(range)  
52.9 (37- 62) 53.2 (42- 62) 

(Hatorp, et 

al., 2000) 

Proportion of females 0 0 

Weight (kg) ± SD 86.8 ± 13.9 78.5 ± 12 

Number of participants 12 (9 CP-B, 3 CP-C) 12 

Dabigatran etexilate  

Mean age in years 

(range) 
55.2 (41-68) 54.9 (38-66) 

(Stangier, 

et al., 2008) 

Proportion of females 0.417 0.417 

Weight (kg) ± SD 80.6 ± 17.7 82.3 ± 18.7 

Number of participants 12 (all are CP-B) 12 

Zidovudine 

Mean age in years 

(range) 

CP-A 57 (54-59), CP-B 52 (43-60), CP-C 53 

(46-63) 
45 (26-62) 

(Taburet, et 

al., 1990) 

Proportion of females 0 0 

Weight (kg) ± SD CP-A 71 ± 6, CP-B 73 ± 16, CP-C 63 ± 15 70 ± 10 

Number of participants 3 (CP-A), 5 (CP-B), 6 (CP-C) 6 

SD, standard deviation; CP-B and CP-C, Child-Pugh grades B (moderate cirrhosis) and C (severe cirrhosis). 
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Supplementary Table 8.6. MPPGL values for each sample used for scaling up abundances 

in pmol/mg microsomal protein to pmol/g liver tissue. 

Serial Sample ID 
Type 

[CP class (grade), disease cause] 

MPPGL 

(mg microsomes/g liver) 

1 2759 HN 31.4 

2 2721 HN 33 

3 2841 HN 30.4 

4 0103 HN 40.7 

5 2847 HN 63.6 

6 0044 HN 34.9 

7 761 HN 61.8 

8 713 HN 49.5 

9 502 HN 34.9 

10 0125 HN 37.9 

11 0336 HN 35.4 

12 484 HN 39.2 

13 0322 HN 36.6 

14 2809 HN 62.7 

15 0974  B(9), NAFLD 28.5 

16 1982   B(9), NAFLD 30.8 

17 1570 B(9), NAFLD 36 

18 0549  C(10), NAFLD 25.9 

19 0355 C(11), NAFLD 25.1 

20 0863  C(11), NAFLD 20.9 

21 2728   C(10), NAFLD 20 

22 1571   C(11), NAFLD 35 

23 2403 A(6), Cancer 39.9 

24 0955 A(5), Cancer 32.8 

25 1963  B(8), Cancer 22.4 

26 1745  B(9), Cancer 12.9 

27 2431  A(6), Cancer 30 

28 2408  B(8), Cancer 21 

29 1926  B(9), Cancer 24.8 

30 3688 A(5), Cancer 22 

31 1228 A(6), Cancer 25.6 

32 997  C(14), CHOL 28.1 

33 0746 C(10), CHOL 18.5 

34 0147 C(11), CHOL 29.5 

35 2682  C(11), CHOL 38.3 

36 2500 C(10), CHOL 37.2 

37 2306  C(11), CHOL 40.9 

38 2159  B(8), CHOL 42.4 

39 2136  C(12), CHOL 41.7 

40 1684 C(10), CHOL 34 

41 1429 B(7), CHOL 49.1 

42 0544 B(7), CHOL 44.8 

43 2020 B(9), CHOL 35 

44 0819 A(5), CHOL 42.2 

45 1509 B(9), Alcoholic SH 30.2 

46 1545 B(9), Alcoholic SH 32.4 

CP, Child-Pugh; HN, histologically normal liver tissue, NAFLD, non-alcoholic fatty liver disease; CHOL, 

cholestasis; SH, steatohepatitis 
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Supplementary Table 8.7. Comparison of the impact of disease associated with cirrhosis (cancer, cholestasis, and NAFLD) on the abundance 

of enzymes and transporters relative to normal control. 

                          Groups 

Target 

proteins 

ANOVA (Control and 3 

diseased groups) 

Control vs Cancer-cirrhosis 

% change in medians (p-

value) 

Control vs Cholestasis-cirrhosis 

% change in medians (p-value)  

Control vs  NAFLD-cirrhosis 

% change in medians (p-value) 

ANOVA  

(3 diseased 

groups) 

 

CYP2A6 0.012^ -53 (0.018) -52 (0.039) -72 (0.017 ) 0.76 

CYP2C8 0.003^ -60 (0.014) -57 (0.026) -63 (0.003*) 0.5 

CYP2C9 0.013^ -59 (0.019) +2 (0.9) -63 (0.01) 0.051 

CYP2C18 0.35 -70 (NA) +26 (NA) -53 (NA) 0.17 

CYP2E1 0.002^ -64 (0.003*) -60 (0.012) -59 (0.024) 0.87 

CYP3A4 0.003^ -77 (0.001**) -20 (0.33) -82 (0.003*) 0.11 

CYP4F2 0.026^ -77 (0.017) -54 (0.37) -81 (0.02) 0.18 

UGT1A1 0.05 -23 (NA) -27 (NA) -57 (NA) 0.49 

UGT2B15 0.19 -49 (NA) -39 (NA) -54 (NA) 0.94 

UGT1A6 0.013^ -55 (0.008*) -7 (0.45) -73 (0.016) 0.54 

UGT1A9 0.023^ -52 (0.013) -15 (0.92) -63 (0.03) 0.085 

UGT2B4 0.006^ -55 (0.015) -28 (0.35) -68 (0.003*) 0.14 

UGT2B7 0.003^ -66 (0.008*) -47 (0.059) -72 (0.004*) 0.55 

CES1 0.001^ -69 (0.002*) -46 (0.02) -77 (0.005*) 0.58 

FMO3 0.001^ -67 (0.001**) -51 (0.024) -74 (0.002*) 0.09 

FMO5 0.22^ -67 (0.08) +8 (0.87) -80 (0.006*) 0.06 

EPHX1 0.001^ -64 (0.003*) -47 (0.048) -71 (0.003*) 0.29 

MGST1 0.002^ -44 (0.013) -31 (0.2) -68 (0.001**) 0.023^ (NS) 

MGST3 0.004^ -55 (0.024) -64 (0.018) -65 (0.006*) 0.62 

POR 0.004^ -60 (0.009) 14 (0.58) -62 (0.01) 0.046^ (NS) 

ABCB11 (BSEP) 0.008^ -62 (0.01) -38 (0.224) -72 (0.007*) 0.29 

ABCB4 (MDR3) 0.009^ -80 (0.12) -23 (0.57) -67 (0.098) 0.023^ (NS) 

ABCC2 (MRP2) 0.001^ -66 (0.002*) -67 (0.002*) -60 (0.017) 0.74 

ABCC3 (MRP3) 0.037^ -45 (0.015) -44 (0.088) -62 (0.1) 0.97 
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ATP1A1 0.032^ -42 (0.021) -46 (0.039) -43 (0.093) 0.82 

SLC22A7 (OAT2) 0.015^ -65 (0.036) -74 (0.013) -64 (0.051) 0.48 

SLCO2B1 (OATP2B1) 0.002^ -67 (0.003*) -50 (0.068) -70 (0.004*) 0.32 

NAFLD, non-alcoholic fatty liver disease; ^, statistically significant difference with Kruskal-Wallis ANOVA test (p < 0.05); (-) and (+) signs refer to decreased or increased 

abundance from control, respectively; *, statistically significant difference in pairwise comparison (p < 0.008); **, statistically significant pairwise comparison (p < 0.0017); 

NS, no statistical significance with post hoc test; NA, not applicable pairwise comparison as the ANOVA test showed no statistical significance (p > 0.05). 

Supplementary Table 8.8. Absolute abundance in pmol/g liver tissue of drug-metabolising enzymes and transporters in normal controls and 

cirrhosis samples of various severities and causes.  

Target Normal control 
pmol/mg liver tissue 

Mild (CP-A) cirrhosis 
pmol/mg liver tissue 

Moderate (CP-B) cirrhosis 
pmol/mg liver tissue 

Severe (CP-C) cirrhosis 
pmol/mg liver tissue 

 Mean ± SD Median [CI] Mean ± SD Median [CI] Mean ± SD Median [CI] Mean ± SD Median [CI] 

CYP1A2 795.8±531 665.8 [359-1418] 318.5±289 248.8 [90-869] 272.1±180.4 256.5 [83-454] 99.7±72.4 88.4 [20.6-187] 

  CYP2A6    987.6±758   692.9 [368-1265]   351.9±158   305.5 [225-634]   298.8±139.9   312.2   [178-465]   221.3±129.6   191.2   [146-351] 

CYP2B6 166.4±71 165.9 [88-304] 98.3±4 98.3 [96-101] 84.1±42 82.4 [25.5-140] 82.8±57.1 56.7 [45-110] 

CYP2C18 28±22.8 17.4 [14.7-43.7] 14.9±8 19.1 [3.2-21.6] 10.4±8.2 8.2 [2.4-23.8] 7±4.4 6.9 [2.2-11] 

CYP2C19 272±312 126.6 [34.7-601.8] 4.7±ND 4.7 ND 10.5±16.3 1.3 [0.1-39.8] 15.5±26 5.8 [1.8-68.5] 

CYP2C8 1066.6±569 965.6 [630-1741] 686.1±188 702.1 [473-960] 362.2±165.5 353 [224-528] 252.8±163 234.4 [112-341] 

CYP2C9 5124.3±2402 4825.4 [2885-8618] 3450.3±925 3326.6 [2139-4638] 2797.3±201
7 

2216 [1191-4279] 1409.2±1134 1091.2 [680-1780] 

CYP2D6 182.9±120.7 131.9 [88.6-319.5] 100±19 94 [87-133] 70.8±50 52.7 [23-120] 32.9±16.3 39.6 [17-45.5] 

CYP2E1 1250.4±452 1209.5 [857-1557] 787.7±287 718.1 [397-1207] 571.8±387.7 471.2 [384-778] 216.8±136.6 165.3 [124-283] 

CYP2J2 22.9±19 18.9 [6.7-35] 9.4±4 9.1 [4.4-13.6] 6.2±4 5.5 [2.6-9.5] 2.9±2.4 1.9 [1-4.9] 

CYP3A4 2719.1±2864 1498.4 [704-7597] 917.1±637 891.6 [89-1713] 558.4±460.4 347 [200-1129] 516.7±841 306.5 [200-493] 

CYP3A5 973.9±983 880.1 [41-2001] 565.3±613 464.7 [36-1296] 53.4±25.8 53.4 [30.5-89.5] 529.5±470 508.5 [37.6-1063] 

CYP3A7 ND ND  ND 138.9±56 142.6 [8.8-193] 115.6±54.7 92.3 [72-224] 70.8±11.4 68 [56-87] 

CYP4F2 357.5±195 410.3 [103-521] 265±143 235 [124-508] 136.3±70.7 118.4 [72-203] 76.6±37.3 68.9 [45.5-123] 

UGT1A1 694.7±517 588.9 [166.5-1323] 1183.7±534 1245.1 [413-1800] 448.2±216.9 406.9 [239-630] 458.4±317.9 360 [156-701] 

UGT1A3 110.7±87 146.6 [11.5-174] 20.4±3 20.4 [18-23] 52.7±23.6 43.6 [23.6-79] 33.6±21.5 24.7 [10-65.5] 
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UGT1A4 790.4±457 697.1 [532-928.4] 383.1±33 383.4 [350-416] 504.6±316.9 460.4 [208-1105] 192.4±98.7 231.4 [83.4-312.2] 

UGT1A6 208.4±97 186.7 [145.5-233] 136.7±56 139.2 [70-215] 101.6±81.8 81.5 [50.5-122] 58.9±34.1 43.5 [40.7-73] 

UGT1A9 689.7±425 561.1 [357-1209] 648.3±263 760.5 [173-855] 310.5±192.9 267.1 [132-443] 180.7±128 156.9 [89-240] 

UGT2B15 725.1±335 729.7 [436-1045] 347.4±94 315.4 [273-454] 446±273 392.7 [205-611] 167.6±54.8 169.2 [69-233] 

UGT2B4 1091.8±570 945.5 [619-1270] 725±238 653.9 [454-1059] 497.5±346.2 382 [307-466] 227.7±93 233.3 [145-272] 

UGT2B7 3302.6±1470 3122.5 [2148-4993] 1894.5±993 1715.3 [863-3594] 1111.3±703.
2 

927.5 [540-1623] 464.7±180.6 406.2 [318-636] 

UGT2B17 137.7±136 81.6 [11.7-419.4] ND ND  ND 48.4±NA 48.4  ND ND ND  ND 

ATP1A1 105.8±41 94.2 [75-134] 107.7±42 119 [26.6-142] 64.8±29.4 55.3 [48-79.6] 50.3±18.8 49.5 [36-65.4] 

CES1 10552.1±5590 8790.8 [6964-12270] 4637.8±219
0 

4648.9 [1280-7951] 3112.5±157
6.2 

2431 [1999-4533] 1145.1±704.3 787.3 [721-1655] 

CES2 669.1±449 513.2 [384-1283] 363.4±103 321.4 [247-488] 252.5±102.3 246.4 [145-376] 126.5±41.5 121.6 [91.5-159] 

EPHX1 11417.6±4814 10269.2 [8475-13749] 
6395.8±242
9 

6052.1 [3682-9757] 
4182.7±206
8.1 

3452.
7 

[2761-4815] 
2002.2±1248.
9 

1506.3 [1261-2586] 

FMO3 2600.5±1100 2221.8 [2003-3064] 1323.7±305 1390.9 [866-1668] 887.3±366.6 964.2 [489-1146] 469.4±298.4 424.6 [216.8-601] 

FMO5 753.2±602 492.5 [317-1587] 375.4±186 342.3 [183-603] 323.2±245.8 248 [104-463] 129.6±105.8 107.7 [49-158] 

MGST1 3922.6±1452 3632.5 [2596-4294] 
2960.4±102
7 

3053.9 [1647-4503] 
2143.2±119
8.6 

2049.
1 

[1235-2380] 1161.6±508.8 1094 [664-1558] 

MGST3 292.8±115 258 [188.8-403] 128.4±50 126.1 [49.6-201.5] 120.5±59.5 111.7 [69-137] 81.1±31.8 72.1 [53.3-112] 

POR 1119.1±477 1051.8 [775-1191] 690.9±530 505.7 [113-1610] 600.2±380.1 553.8 [256-1204] 481.3±457.9 371.1 [278-470.5] 

P-gp, MDR1 9.4±3 8.2 [5.8-14] 11.4±5 10.8 [7.2-20] 5.6±2.4 5.1 [3.9-6] 4.5±1.8 4.5 [3-6.3] 

BSEP 11.9±5 11.1 [8.6-14] 6.7±3 6.3 [3-12.5] 5.1±3.7 4 [2.8-5.4] 3.8±2.3 3 [2.1-5.5] 

MDR3 7±4 5.9 [1.4-11.8] 4.4±2 4.7 [0.5-7] 3.4±3.7 2.4 [0.9-4.4] 2.8±2.9 2.1 [0.9-5.4] 

MRP2 16.2±6 14.7 [12.2-17.3] 7.3±3 6.7 [2.7-11.5] 5.1±2.5 5 [3-8.7] 3.1±2 2.7 [2.1-4.3] 

MRP3 10.5±6 9 [6-17] 8.4±5 7.3 [2.2-15] 5.4±2.7 5 [3-6] 5.6±2.7 5.1 [3.4-7.9] 

MRP4 1±0.7 1.1 [0.03-2] 0.6±0.1 0.4 [0.2-1.2] 0.5±0.3 0.7 [0.01-1] 0.9±1.5 0.3 [0.05-0.7] 

MRP6 19.2±8 16.8 [13.5-25] 11.7±6 11.1 [4-20.5] 7.5±7.7 5.1 [3-11] 4.3±1.9 4 [2.9-5.8] 

BCRP 1.2±1 0.4 [0.14-2.7] 0.4±0.04 0.3 [0.1-0.9] 0.5±0.2 0.5 [0.2-0.6] 38.4±65.7 0.4 [0.38-0.49] 

NTCP 71.3±17 71 [57.8-85.4] 40.4±21 39.9 [20.8-60.9] 33.1±19.7 28.6 [16.5-76.5] 16.1±7 16.7 [8.2-24.8] 

ASBT 0.9±0.8 0.4 [0.17-2.2] 0.4±0.03 0.2 [0.1-1] 0.5±0.4 0.3 [0.15-1] 13.6±37.7 0.2 [0.08-0.6] 

MCT1 30.2±10 32.2 [20.5-37.8] 27.7±12 31.7 [9.4-42.8] 18.4±13 15 [10.5-18.3] 11.1±3.1 11.3 [8-13.4] 

OCT1 85.2±4 86.7 [80.8-88] 41.7±12 39.1 [31.2-62.7] 26.8±14.4 19.9 [16.3-40.8] 16.7±8.4 16 [7-32.8] 

OCT3 10.8±4 9.4 [6.2-15.9] 9.8±5 8.9 [3.1-18] 5.8±3.4 4.6 [4.2-7] 7±9.1 3.4 [2.6-8.3] 

OAT2 29.3±14 29.4 [15.5-41.8] 23.3±13 19.2 [10.8-43.6] 12.4±7.7 10.2 [7.5-15.4] 7.7±2.7 7.3 [5.3-10.3] 
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OAT4 4±3 3.4 [2.2-5.1] 1.8±1 1.7 [0.7-2.7] 1.2±0.7 1 [0.6-2.8] 0.9±0.6 0.8 [0.37-1.8] 

OATP1A2 3.3±3 3.1 [0.3-6.5] 0.1±0 0.1 [0.005-0.28] 0.7±0.6 0.5 [0.2-1.7] 1.3±2.6 0.2 [0.09-6.7] 

OATP1B1 34.2±12 33.1 [23.2-41.5] 16.3±4 15.1 [11.6-22.7] 15.9±10.7 13.8 [8.2-16.8] 11.9±7.1 9.8 [6.4-28.3] 

OATP1B3 31.8±14 26.9 [21-63.1] 7±0 7.1 ND 6±4.2 5.6 [2-10.5] 3.8±3.4 2.4 [1.4-7.7] 

OATP2B1 48.5±17 41.3 [36.2-72] 29.6±15 32 [11.8-52.5] 18.3±11.2 14.4 [12.2-24.8] 12±5.5 10.8 [7-16.4] 

CP, Child-Pugh score; CI, confidence interval around the median; ND, not detected; NA, not applicable 

Supplementary Table 8.9. Observed and simulated pharmacokinetic parameters in healthy and cirrhosis populations using either Simcyp V19 

default settings or the change in the protein abundance from the current study. 

Drug 

 AUCobs in 

healthy 

ng.h/ml 

AUCobs in 

cirrhosis 

ng.h/ml 

AUCpred in 

healthy 

ng.h/ml 

AUCpred 

Proteomic 

in cirrhosis 

ng.h/ml 

AUCpred Simcyp 

in cirrhosis 

ng.h/ml 

AURobs 
AUCRpred 

Proteomics 

AUCRpred 

Simcyp 

AUCRpred/obs 

Proteomics 

AUCRpred/obs 

Simcyp 

Repaglinide 91.6±6.7 368.9±233.4 84.3±66 414±303 236±180 4.1 4.9 2.8 1.19 0.68 

Dabigatrane 

etexilate 
937±649 922±965 1014.3±649 879±523 885±526 0.98 0.87 0.87 0.89 0.89 

Zidovudine 1388.4±374 

 

CPA:  

4714.6±1909 

CPB: 

4842.1±1289 

CPC: 

6321.4±1624 

 

1412.4±635 

CPA:  

3026.4±1456 

CPB: 

4839.2±2123 

CPC: 

8078.1±3084.5 

 

 

CPA:  

1867.7±940 

CPB: 

2196.5±1088 

CPC: 

2515.7±1228 

 

 

 

CPA:3.4 

CPB: 3.5 

CPC: 4.6 

 

CPA:2.1 

CPB:3.4 

CPC:5.7 

 

CPA:1.3 

CPB:1.6 

CPC:1.8 

 

CPA:0.62 

CPB:0.97 

CPC:1.2 

 

CPA:0.38 

CPB:0.46 

CPC:0.39 

AUC, area under concentration-time profile; AUCR, ratio of AUC in cirrhosis population relative to healthy population; obs, observed data from clinical studies; pred, predicted 

by the model; Proteomics, predicted data by the model after applying the change in the abundance of protein in cirrhosis population relative to control; Simcyp, predicted data 

by the model after applying default abundance settings in the Simcyp simulator
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Supplementary Figure 8.1. Technical (A1) and batch-to-batch (B1) variability represented 

by percent coefficient of variations (%CV) for different targets in a set of QC samples 

(triplicates of 9 samples for the technical variability and 10 runs of same sample for batch-

to-batch variability) and the density of targets at each CV value (A2, B2). 
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Supplementary Figure 8.2. Pie charts representing relative abundance distribution of CYP enzymes (A), uridine-5'-diphospho-

glucuronosyltransferases (B), and other microsomal enzymes (C) per gram of liver tissue from the normal control, mild (CP-A), moderate (CP-

B), and severe (CP-C) cirrhosis groups.
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Supplementary Figure 8.3. Correlations between abundance of liver transporters (in pmol/g 

tissue), and log-transformed total serum bilirubin levels; Log [bil] (μmol/L) in liver donors 

assessed by Spearman correlation test (Rs) and linear regression (R2). 
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9 Chapter Nine  

General Discussion 

 

9.1. Starting point and the needs 

The liver is an important route of elimination for many drugs and their metabolites. This 

elimination is either via hepatic metabolism, biliary excretion, or a combination of both, and 

therefore it is a main contributor to the pharmacokinetic profiles of drugs. Chronic liver 

diseases such as cirrhosis affect the metabolic capacity of the liver drastically and therefore 

affects the pharmacokinetics of many hepatically-metabolised or eliminated drugs. In some 

other instances, it can also affect indirectly the elimination of renally excreted drugs (Verbeeck 

& Horsmans, 1998). As a progressive illness, the degree of effect of this disease is changing 

over time and results in high inter-individual variations in drug response (Lauschke & 

Ingelman-Sundberg, 2016). Based on previous reports and data from current study analysis, 

many drugs available in the market, that are involved in the treatment of liver cirrhosis patients, 

skip the dedicated clinical studies in hepatically-impaired patients and hence drug therapy is 

left to clinician judgment and guess rather than valid evidence (Jadhav, et al., 2015). 

In vitro assays and in vitro-in vivo extrapolation (IVIVE) approaches have been increasingly 

used for the prediction of pharmacokinetic parameters, particularly hepatic clearance (Rostami-

Hodjegan, 2012). Improved use of these tools over the last two decades has increased the 

confidence in the models for a number of applications which resulted in a reduction in the 

attrition rate in drug development for some cases (Kola & Landis, 2004; Waring, et al., 2015). 

However, generalising this impact on other populations or disease conditions such as liver 

cirrhosis is still immature and the models work properly for some drugs and do not for others 
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(Heimbach, et al., 2020). Therefore, more work is still required to reach to a high level of 

confidence in both drug and system related parameters.  

In the current thesis, an extensive literature search was carried out to pick up the current weak 

points in IVIVE and physiologically-based pharmacokinetic (PBPK) modelling, to allow 

prediction of drug exposures in cirrhotic patients computationally in more confidence, and to 

make this area of PBPK applications more trustworthy in drug development. Aspects such as 

understanding the classification system of cirrhosis, cirrhosis-specific IVIVE scaling factors, 

changes in metabolising enzymes and transporters expressions with the disease, and application 

of these multiple parameters together in PBPK models were extensively investigated in this 

thesis.  

9.2. Cirrhosis classification system: from clinical use to drug development 

In spite of the availability of different scoring systems in cirrhosis, Child-Pugh (CP) score is 

the most commonly used clinically for cirrhotic patients. Because of its routine and ease use, 

it has been applied for stratifying patients in pharmacokinetic studies. However, looking deeply 

into its validity from drug dosing perspectives, it was evident that it is not completely fitting to 

that purpose and can be a contributor to the noticed disconnection between predicted and 

observed clinical data in many situations due to various limitations. 

 Inclusion of kidney function related parameters, limiting the subjectivity of clinically assessed 

parameters such as hepatic encephalopathy and ascites scores with more careful criteria, 

distinguishing patients with or without portal hypertention/ porto-systemic shunting even if 

they have the same CP score, and the identification of cirrhosis disease aetiology can help in 

overcoming CP score limitations for the purpose of drug dosing. Coupling CP score with 

parameters from other scoring systems, imaging information, disease severity index, and the 

discovery of cirrhosis specific markers that can be detected in the plasma through liquid biopsy 
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are proposed future solutions and directions to avoid these limitations. However, these 

proposals require long term as well as prospective studies rather than going retrospectively and 

gathering data from the literature. It also highlights the need to report all relevant and patient-

specific information in future clinical and pharmacokinetic studies to facilitate such 

investigations, not only the overall CP score for each patient. 

9.3. Moving from empirical scaling factors to biologically-relevant and cirrhosis-specific 

scalars 

Any in vitro assay such as those used for the determination of intrinsic clearance for specific 

metabolic pathways in liver microsomes need to be extrapolated to its corresponding values 

per gram of liver. This is required to estimate the overall hepatic intrinsic clearance which 

along with other parameters (such as plasma protein binding and liver blood flow) can allow 

the prediction of drug exposure in any individual. In liver cirrhosis populations, this 

extrapolation was previously performed empirically using image processing techniques. These 

techniques provides approximate estimation of the fraction of the non-fibrous (more likely to 

retain function) part of the liver and assumes that this part is as functioning as healthy liver 

tissue. 

Although the method used for the determination of factors that can scale these in vitro data 

from any fraction (microsome, cytosol, or hepatocytes) was well-known and was used for 

healthy livers, it has not been previously applied on adult cirrhotic liver samples. Therefore, 

the current project has provided experimentally defined values for these scalars in cirrhosis. 

These values were different from those in the healthy population and were variable according 

to the pathophysiology of the cirrhotic liver and the associated liver diseases.  

9.4. The use of gold standard proteomics for the quantification of key proteins involved 

in drug metabolism 
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The key advance in this projects was assessed as an estimation of the abundances of enzymes 

and transporters in diseased and healthy tissues. This is most conveniently achieved using LC-

MS/MS proteomic techniques. Mass spectrometry is extremely sensitive and selective and is 

powerful for multiplexed measurements. The problem is that the relationship between the size 

of the signal and the concentration of the analyte is complex. The selection of a peptide whose 

signal is unique to that specific protein of interest is crucial. Most measurements rely on 

standards that may be unrelated to the analytes, represent the whole family (not a specific 

isoform), or, in the best case, are isotopomers of the analytes.  In chapter 5, we considered the 

available proteomic techniques currently in use, and conclude that the QconCAT methodology 

is the most appropriate single technique for the quantification of the desired number of 

metabolism related proteins in this study. Support from global (label-free analysis) has been 

employed in this work to resolve ambiguity and the best workflow may ultimately be a 

combination of the two approaches or at least to use the other for validation. 

NuncCAT standard protein specifically designed in this study for the proteomic quantification 

of non-CYP non-UGTs enzymes can be used for any tissue known to express these proteins 

and for other disease states. These proteins are usually dismissed and fewer data are available 

in the literature for them compared to CYPs and UGTs. Consequently, most models ignore the 

impact of the disease on these enzymes. Therefore, this work aimed to quantify them and 

investigate the impact of different grades of disease severities on these enzymes. Data produced 

in this thesis can be used to refine PBPK models for drugs (covering most of the known 

metabolic pathways) and to improve the predictability of the model with higher confidence.  

One obstacle facing modellers is the availability of different quantitative studies in the literature 

that might have overlapping or different conclusions and need to be criticised to get the best 

values that can be populated into their models. Chapter 7 provides a comparison of the most 

common LC-MS proteomic data analysis methods that might show variabilities in the resulting 
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absolute quant of the protein of interest. However, when the disease perturbation factor was 

calculated (the ratio of the abundances in the diseased sample to healthy controls), it reconciled 

most of these differences and resulted in comparable results irrespective of the data analysis 

method performed and the used standard. Although we used pooled samples for this exercise, 

pools are not usually representative of the whole population, and analysis of individual samples 

is required to assess the disease-perturbation factor more precisely and reduces the impact of 

outliers that can mask the right conclusion. 

Analysis of individual adult human cirrhotic liver samples allowed the investigation - for the 

first time - of not only the impact of the disease severity on more than 50 ADME protein 

abundances but also the other contributing factors such as the disease pathology. Most of the 

drug-metabolising enzymes and transporters showed gradual reductions in the abundance with 

disease progression. However, the degree of this reduction was protein-specific ranging from 

no change at all (as in the case of UGT1A1) to more than 90% reduction in the protein level 

(as for CYP2C19). This can be attributed to the fact that each protein has its specific 

susceptibility to degradation by inflammatory mediators in chronic inflammatory diseases like 

cirrhosis. This also suggests that drug dosing should not be empirically based on the disease 

stage but should consider the pathway in which the drug is metabolised and the degree of 

enzyme deterioration to ensure efficacy and safety of the treatment. Additionally, we have 

spotted differences in bile transporters that correlate, in most cases, with the total serum 

bilirubin levels. Bile transport and solubilisation might be important for lipophilic drug 

absorption and drugs that undergo enterohepatic recycling. Therefore, accounting for the 

change in bile transporters’ expression with cirrhosis will improve the predictability of the 

models for these drugs. 

9.5. The use of modelling to answer urgent and unmet clinical needs 
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All these effort to optimise PBPK models for drugs in various populations ultimately aim to 

help in providing evidence in scenarios where clinical data are scarce or not available, or for 

less urgent situations, to help in the proper design of these clinical studies. Sometimes, ethical 

and practical issues limit the numbers of clinical studies that one can feasibly conduct. A clear 

and urgent application of this approach was the use of PBPK modelling to help during the 

hardship of the current COVID pandemic. PBPK models were used to study the change in the 

pharmacokinetics of drugs repurposed for COVID-19 in geriatric patients, different race 

groups, organ impairment (hepatic and renal impairments), and drug-drug interaction risks 

(Pilla Reddy, et al., 2021). As we need these drugs to treat COVID-19 in all populations, we 

realised that there is no enough clinical data that can support their dosing as the case for most 

of the approved drugs, especially in organ impaired patients. In the presence of complex 

conditions and the cytokine storm due to the virus infection and the populations’ physiological 

changes, there is an urgent need for individualised therapy. Models verified with the available 

clinical data were used to predict plasma and lung exposures in these untested scenarios for 

these drugs to ensure if the current dosing regimen will produce sufficient lung concentrations 

to eradicate the virus. As most of the repurposed drugs for COVID-19 treatment are primarily 

metabolised in the liver, it was unsurprising to find that impaired liver function or liver disease 

impacts the PK of these drugs. PBPK models suggest dosing adjustments for CYP3A4 

substrates like ibrutinib, dexamethasone, and acalabrutinib are likely to be necessary (Pilla 

Reddy, et al., 2021). 

9.6. Final Conclusion  

This project was an attempt to fill some of the gaps in this area of precision dosing in hepatic 

impairment, improve some translational aspects of PBPK modelling and simulation approaches 

in liver cirrhosis populations via the determination of the abundances of key disposition 
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proteins in cirrhosis populations, and scale them to liver tissue in order to populate models with 

the resulting data.  

The availability of disease-specific and biologically-relevant IVIVE scaling factors increases 

the confidence in the model and limits the uncertainties for various system and substrate 

parameters to allow model refinement and improvement. It also highlights the heterogeneity of 

cirrhosis disease that has different aetiologies with variable pathophysiological mechanisms 

which can in turns result in different response to drug therapy.    

The use of gold standard proteomics can substitute the less reliable mRNA, limited 

immunoblotting, and empirically corrected in vivo data that were restricted to few proteins and 

depends on the availability of selective and appropriate probe or antibody to only a limited 

number of target proteins. Whereas using proteomic LC-MS/MS, a large number of proteins 

can be investigated simultaneously in the sample in a highly sensitive and selective manner. 

For the quantification of predefined target enzymes and transporters (up to 100 proteins) in a 

single run, QconCAT-based quantification was concluded to be the best option that can 

reconcile experimental and analytical bias and allows the determination of not only the absolute 

levels of each enzyme or transporter, but also the relative change from the control set of 

samples. The latter can be applied directly to the already verified PBPK models when models 

in healthy populations were ought to be extrapolated to liver disease populations. Proteomic 

data from the current study have improved the performance of PBPK for selected drugs that 

cover several metabolic pathways. However, it is believed that these data are applicable for 

any other drug for future investigation. 

From drug development perspective and as pointed out by Heimbach and co-workers in the IQ 

consortium, (2020) , building robust PBPK models in hepatic impairment populations can help 

to inform and optimise the design of hepatic impairment studies, shorten study duration, reduce 
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the costs, or simulate other scenarios (such as steady-state exposure, different dose, other 

categories of disease severity different from those previously studied clinically, drug-drug 

interactions due to enzymes/transporters inhibition, etc.).  

The role that hepatic impairment PBPK models can play in drug development may vary 

depending on the predictive performance of the model and the therapeutic index of the drug. If 

the model predictions were within bioequivalence range of the observed data, the dedicated 

trials in hepatic impairment can be restricted to only severe stage of the disease to support drug 

label and can be delayed from phase II to phase III trials. Whereas, in the presence of a good 

predictive model and the lack of information on the drug’s therapeutic index, models can also 

help to widen the inclusion list for subjects enrolled in phase II and III trials with less severe 

stages of the disease with or without dose adjustment. However, if the model predictions were 

outside the bioequivalence limits, models can still be applied to help in the design of dedicated 

hepatic impairment studies and assist in supplementing current evidences when clinical data 

are lacking. Generally, with the current set-up of hepatic impairment model, it was clear that 

when the model succeeds to predict exposures within the moderate stage of disease severity, it 

is more likely to predict the exposure in mild and severe stages within 2 fold of the observed 

data.  

The more we understand the physiological changes in hepatic impairment and the higher the 

confidence the parameters included into mathematical models, the more engagement of PBPK 

models in drug development and supporting drug labels. While it is still challenging to develop 

evidence-based and individualised dosing regimens for special patient populations including 

hepatic impairment, the knowledge and tools to do so are available. Therefore it is mandatory 

to make safe and effective pharmacotherapy available for these patients. Current efforts in 

optimising modelling and simulation tools to allow the prediction of drug pharmacokinetics in 
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hepatic impairment patients (including this thesis work) can help the field of model informed 

precision dosing (MIPD) to move forward even further.  

9.7. Future outlook 

For hepatic impairment populations, further studies are recommended to investigate the impact 

of disease severity on hepatic cytosolic enzymes such as sulfotransferases, alcohol and 

aldehyde dehydrogenases, N-acetyltransferases, and aldehyde oxidases that could not be 

quantified in our human liver microsomal fractions.  

Although the change in duodenal CYP3A expression in cirrhosis patients has been previously 

investigated (McConn II, et al., 2009), extrahepatic consequences of cirrhosis on other 

intestinal enzymes and transporters as well as the change in the expression of these proteins in 

other intestinal segments need to be further explored.  

Application of current study proteomic data results in further PBPK models of various drugs 

will build confidence and allow more focus on other intrinsic and extrinsic factors that can 

affect the model performance. This can also be linked to pharmaco-economic studies to 

investigate how the application of these models in drug development can lead to the cost-

effective design of the clinical studies and allow more focusing on necessary and promising 

trials. 

All the liver tissues used herein were derived from the right lobe of the excised livers. 

Variabilities in the expression of metabolism-related proteins in different lobes and zones of 

the liver may also be useful. As noted in the first chapter, Child-Pugh scoring was not aimed 

at stratifying patients according to their liver metabolic capacities. Therefore, classification 

based on imaging, non-invasive biomarkers, or liquid biopsy might be required.    
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