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Clinical trials in oncology recruit heterogeneous participants not often representative of the 

target cohort, leading to large variability in pharmacokinetics (PK). This increases the risk of 

toxicity and ineffective treatment. Physiologically-based pharmacokinetic (PBPK) modelling 

can be used as an alternative to clinical trials and inform drug labelling. These models require 

systems data, which are not fully characterized in cancer. In this study, scaling factors (e.g. 

microsomal protein per gram of liver (MPPGL)) for the in vitro-in vivo extrapolation of drug 

clearance were assessed in 16 colorectal cancer liver metastasis (CRLM) patients (paired 

histologically normal and cancerous livers). MPPGL was significantly lower in cancerous 

compared with histologically normal livers and was used to simulate plasma exposure of drugs, 

revealing a substantial decrease in drug exposure, when using typical scaling factors (healthy 

population) instead of cancer-related parameters in cancer population. Subsequently, LC-

MS/MS based proteomic analysis of pooled healthy control, and histologically normal paired 

with cancerous liver samples from CRLM patients was carried out. Most cytochrome P450 

(CYP), UDP-glucuronosyltransferase (UGT) and other drug metabolising enzymes (DMEs) 

were downregulated in cancer, indicating impaired drug metabolism. Similarly, most drug 

transporters were downregulated in CRLM, implying perturbed drug transport. A novel 

QconCAT standard (KinCAT) was designed to quantify receptor tyrosine kinases (RTKs). 

Several RTKs in addition to other pharmacodynamics protein markers were altered in CRLM. 

Application of perturbed CYP abundances on PBPK models demonstrated substantially higher 

drug exposure in cancer compared with healthy populations. These data were confirmed in 

individual liver samples (15 healthy, 18 cancer and paired normal). To our knowledge, this 

project provides the first comprehensive scaling factors for IVIVE and quantification of DMEs, 

transporters, RTKs and other important markers in cancer, with a focus on CRLM. The 

application of the experimentally-derived data on PBPK models showed the importance of 

using population-specific data in oncology and is a promising step towards the development of 

virtual cancer populations for optimal drug dosing. 
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Preface 

The work in this thesis is presented in the journal format. This format was chosen as it allows 

the preparation of chapters in a format that is appropriate for publications in peer-reviewed 

journals. The thesis consists of seven separate but linked chapters that have been or will be 

submitted to journals. In this case, this format is ideal for maximizing the publications of the 

work generated during this PhD project. The thesis contains seven research papers of which 

the thesis author is also the lead author. A declaration at the start of each chapter highlights the 

contribution of each author. The structure of the thesis is outlined below. 

Recruiting appropriate populations in clinical trials in oncology is very challenging. The 

heterogeneity of cancer patients results in a high variability in drug pharmacokinetics (PK), and 

dedicated studies beyond the intended population are usually limited. The high rate of patients 

not responding well to the treatment and the high cost of cancer therapy are also limiting 

factors. Model-informed precision dosing can reduce these limitations via in vitro-in vivo 

extrapolation (IVIVE) techniques and physiologically-based pharmacokinetic (PBPK) 

modelling, which is now gaining wider regulatory acceptance in oncology. IVIVE-PBPK 

strategies require the incorporation of drug data and population-specific systems parameters 

for the accurate prediction of the fate of drugs in patient populations. Some systems parameters 

have been studied, but there are still many unknown areas for several types of cancer that have 

to be defined. This project aims to fill in these gaps with a focus on colorectal cancer liver 

metastasis (CRLM). 

The first step was to comprehensively review the systems parameters that differ in cancer 

patients affecting the pharmacokinetics (PK) of drugs, and the parameters that have not been 

studied sufficiently. The aim for this was to identify the gaps that should be filled in throughout 

this project and set the research aims. Among the less studied parameters, scaling factors 

specific for CRLM population have not been defined, and their characterization is important 

for IVIVE of drug clearance. Perturbations in them can significantly affect drug clearance. 

Additionally, drug-metabolizing enzymes (DMEs) and transporters have not been fully 

investigated in cancer, and perturbed expression of them can result in significantly altered PK. 

LC-MS proteomics can facilitate the elucidation of the expression of DMEs and transporters. 

Therefore, the next step was to comprehensively review the available LC-MS proteomics 

methods and their applications in translational pharmacology. This review assisted with the 

selection of the appropriate quantitative proteomic method for the purpose of this PhD. The 

final step before the experimental work was to compare two widely-used software packages 
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for proteomic analysis, in order to decide which is the most appropriate for the analysis of data 

derived from the samples used in this PhD. 

The steps described above were crucial for defining the research aims that needed to be 

achieved during this PhD. More specifically, the aims of the project were to: 

 Determine for the first time scaling factors specific for colorectal cancer liver metastasis 

(CRLM) population for in vitro-in vivo extrapolation (IVIVE) of drug clearance and apply 

them in PBPK simulations of various metabolically cleared drugs. This is very important 

for proving the necessity of population-specific scaling for model-informed precision 

dosing in oncology and is substantial for accurate predictions of drug PK. 

 Quantify for the first time with the aid of LC-MS proteomics the absolute abundance of 

DMEs and transporters in patients with liver cancer, with a focus on CRLM and assess the 

disease impact on these proteins. DMEs and transporters are crucial for the absorption, 

disposition and metabolism of drugs and any significant decrease or increase in their 

abundance due to cancer could substantially affect the drug exposure. 

 Apply for the first time the experimentally-measured scaling factors and abundance data of 

DMEs on PBPK models to assess their contribution to drug exposure in CRLM patients. 

 Define for the first time the absolute abundance of receptor tyrosine kinases (RTKs) in 

patients with liver cancer, with a focus on CRLM. RTKs are very important clinical 

markers for the diagnosis and treatment of cancer and several RTK inhibitors are widely 

used for cancer therapy. However, their absolute abundance has not been assessed in human 

tissues. This study aims to quantify 21 RTKs for the first time in human liver microsomes 

from CRLM patients, with the aid of the QconCAT technology. For this purpose, a novel 

QconCAT standard (‘KinCAT’) was designed and applied for the first time. 

 Investigate changes in the expression of other proteins affected in CRLM. This study aims 

to quantify for the first time a wide range of pharmacodynamics markers that may be 

affected in CRLM and could be viewed as potential diagnostic and therapeutic biomarkers. 

Overall, this project aims to define for the first time systems parameters specific for CRLM 

population and assess their potential impact on the exposure of several drugs, by creating 

virtual cancer populations.  
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Chapter One: The Quest to Define Cancer-Specific Systems 

Parameters for Pharmacokinetics Predictions  
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1.1 Abstract 

Introduction: Clinical trials in oncology routinely recruit heterogeneous populations, often 

not representative of the target cohort, leading to large variability in pharmacokinetics (PK). 

To address enrolment challenges in clinical trials, PBPK models can be used as an alternative 

to clinical studies to inform dosing guidance for clinical practice. These modelling tools require 

cancer-specific system data, which are scarce with many unknowns that need to be addressed.  

Areas covered: This review explores the system parameters that affect PK in cancer and 

highlights important gaps in data that have not been addressed sufficiently, with liver cancer 

as a case example. Changes in drug-metabolizing enzymes (DMEs) and transporters have not 

been fully investigated in cancer. Impaired expression of these proteins in cancer can have a 

significant impact on the patients’ capacity for drug elimination. The importance of changes in 

DMEs, especially CYP3A, for the effectiveness of anti-cancer tyrosine kinase inhibitors (TKIs) 

is also reviewed. Finally, the review highlights the use of PBPK modelling for precision dosing 

in oncology. 

Expert opinion: PBPK modelling is useful tool for appropriate dosing in cancer populations, 

which are excluded from oncology clinical trials. There is still a lack of fully characterised 

systems parameters in cancer cohorts, which are required in PBPK models. Generation of such 

data and application of cancer models in clinical practice should be encouraged. 
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1.2 Introduction 

Cancer is a leading cause of mortality globally, with rising incidence as life expectancy 

continues to increase (Heron, 2013; Sung et al., 2021). The most prevalent cancer types are 

breast, lung and colorectal cancers, while the most lethal are lung, colorectal and liver cancers 

(Sung et al., 2021). It is important to understand that cancer is not a unique disease, as it has 

multifaceted genetic and epigenetic components, resulting from the dysregulation of cell 

proliferation and apoptosis (Zhang et al., 2009). Surgical resection is the ideal option for 

treatment, resulting in improved survival in patients with solid tumours. However, this is not 

always feasible for many patient cohorts for various reasons, including instability of overall 

health, comorbidities, site of tumour and number of lesions. Other methods are sometimes more 

applicable, such as chemotherapy, immunotherapy, radioembolization, and radiofrequency 

ablation aiming to reduce the tumorous tissue (Chen et al., 2014; Mitchell et al., 2019). 

 

1.2.1 Drug Development in Oncology 

Drug discovery and development is expensive and time-consuming with high attrition rates 

(Zhang and Tang, 2018). The causes of attrition vary, with the most important being clinical 

safety, efficacy, non-clinical toxicology, pharmacokinetics (PK), and commercial viability 

(Waring et al., 2015). A field where the drug development is very challenging is oncology 

(DiMasi and Grabowski, 2007), with attrition rates very high across all tumour sites. Failure of 

anti-cancer agents seems to happen more frequently in the most expensive later phases of 

development (phases 2 and 3), suggesting that improvement in predictions during the early-

phases are needed to increase the success rates in development of anti-cancer agents (Nixon et 

al., 2017). 

While most drugs are initially tested in healthy volunteers, this is not the case in clinical trials 

of anti-cancer agents. Healthy subjects do not participate in these studies for ethical reasons, as 

the anti-cancer agents may be cytotoxic or mutagenic (Faucette et al., 2017). To recruit a 

sufficient number of volunteers, heterogeneous cancer populations with various comorbidities 

are enrolled in Phase 1 first-in-human studies and in initial dose-escalation studies of anticancer 

agents (Pasqualetti et al., 2010; Venkatakrishnan et al., 2010). An example of the devastating 

effects of anticancer agents in healthy subjects is the case of TGN1412 (monoclonal antibody 

against a human lymphocytic antigen), which resulted in systemic organ failure when tested in 

healthy subjects in a first-in-man trial in London in March 2006 (Kenter and Cohen, 2006). 

These studies usually recruit advanced and/or metastatic solid tumour patients who cannot be 
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treated with existing therapies (Senderowicz, 2010), and the dose of new anti-cancer drugs is 

escalated in these patients up to the maximum tolerated dose (Williams & Pazdur, 2006). 

There are significant challenges in oncology drug development, including the recruitment of 

appropriate patient populations, especially when advanced tumour patients are critically ill, 

safety issues when testing highly toxic anti-cancer drugs, and the overall cost (DiMasi and 

Grabowski, 2007; Gutierrez et al., 2009; Bates et al., 2015). Treatment of cancer patients is 

also hindered by the tendency of anti-cancer drugs to be poorly tolerated, as the toxic effects 

are not only targeted at cancer cells (Guan, 2015). In addition, since these drugs are rarely 

tested in their intended target population, appropriate dosage guidance is required. Alternative 

approaches, such as simulations using physiologically-based pharmacokinetic (PBPK) models, 

can be applied for predicting changes in drug exposure and guiding dose adjustment in cancer 

(Darwich et al., 2017). 

 

1.2.2 Physiologically-based pharmacokinetic (PBPK) modelling in Oncology 

Model-informed precision dosing (MIDD), which relies on PBPK modelling and simulation 

has recently been proposed to address the challenges in the area of oncology, and is now 

gaining wider regulatory acceptance (Darwich et al., 2017), with PBPK simulations having 

higher regulatory acceptance in the development of anti-cancer drugs than other types of drugs 

(Yoshida et al., 2017). PBPK models in combination with in vitro–in vivo extrapolation 

(IVIVE) techniques are used to predict absorption, distribution, metabolism, and excretion 

(ADME) of drugs. This approach requires the incorporation of systems parameters (from the 

patients) and drug data to predict PK profiles (Rostami-Hodjegan, 2012). Despite the recent 

success in the application of PBPK models, there are still many gaps in systems parameters in 

oncology. For example, expression data of metabolic enzymes and transporters in these special 

patient populations are scarce, and different types of cancer tend to affect expression levels 

differently (Sharma et al., 2020). Therefore, population-specific systems parameters are 

important to be defined in different types of cancer to improve the performance of PBPK 

models and provide more accurate predictions of drug PK in cancer patients.  

 

1.3 Systems Parameters in Cancer Populations 

Systems parameters including serum albumin, and alpha-1 acid glycoprotein were reviewed in 

the past, compared between cancer and healthy populations and their impact on PK of drugs in 
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cancer populations was assessed (Cheeti et al., 2013). Changes in systems parameters in cancer 

patients may have a significant impact on PK of drugs (anti-cancer agents and other drugs), 

and it is important to shed light to parameters have not been investigated yet. Reviewing, 

updating and defining which parameters need to be assessed in the future is useful for the 

improvement of PBPK models in cancer populations. Figure 1-2 depicts systems parameters 

that are known to be different in cancer leading to altered PK. Table 1-1 presents changes in 

parameters in cancer and their effects on the PK of several drugs as examples. 

 

1.3.1 Parameters that Decrease in Cancer Patients 

 

1.3.1.1 Microsomal Protein per Gram of Liver (MPPGL) 

Microsomal protein per gram of liver (MPPGL) is a scaling factor that is used for IVIVE of 

hepatic drug clearance, and reflects the hepatic metabolic capacity. MPPGL is age-dependant 

in healthy donors (Barter et al., 2008), while data on MPPGL and its covariates in cancer 

patients are limited. Investigation of MPPGL in hepatocellular carcinoma (HCC) showed a 

significant decrease of MPPGL in cancer compared with histologically normal liver tissues, 

which led to significantly reduced hepatic clearance (CLH) of most cytochrome P450 (CYP) 

substrates (Zhang et al., 2015; Gao et al., 2016). MPPGL values have not been defined in other 

types of hepatic cancer, such as colorectal cancer liver metastasis (CRLM), where hepatic 

lesions also affect liver function and metabolic capacity. Disease-specific model 

parameterization requires definition of the level of change in these types of liver cancer, which 

should improve model performance.    

 

1.3.1.2 Serum Albumin 

Albumin is the most abundant protein in the blood, with an average concentration of about 40 

mg/mL in healthy people (Larsen et al., 2016). A positive correlation between albumin levels 

and plasma protein binding was observed for voriconazole in adult intensive care unit patients 

(Vanstraelen et al., 2014) and pazopanib in cancer patients (Imbs et al., 2016), indicating higher 

levels of free drug with decreased albumin concentrations. Lower albumin levels lead to 

increased unbound drug fraction (fu), which is the proportion of systemic drug levels available 

for distribution and clearance (CL) from the body. This results in faster clearance and lower 

drug exposure (Ulldemolins et al., 2011). Additionally, the level of serum albumin is 
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responsible for variability in central volume of distribution (Blair et al., 2006). Cancer patients 

are generally characterized by hypoalbuminemia (Cheeti et al., 2013), which has been 

suggested as a negative prognostic factor for the survival of patients with gastrointestinal (GI) 

(Nazha, 2015) and breast carcinomas (Fijii et al., 2020). Low serum albumin has also been 

associated with aggressive HCC (Carr and Guerra, 2017). In patients with advanced solid 

tumours, higher CL of raltitrexed (highly plasma protein bound anti-cancer drug) was observed 

in patients with lower levels of albumin. On the other hand, hypoalbuminemia was reported to 

lead to longer time to clear methotrexate in patients with non-solid tumours, such as leukaemia 

or lymphoma (Reiss et al., 2016).  

 

1.3.1.3 Haematocrit 

Anaemia is a characteristic symptom in many cancer patients, resulting in lower haematocrit 

levels (Knight et al., 2004). In addition to its impact on the patient’s general health, lower 

haematocrit can impact drug PK. Lower haematocrit levels were correlated with lower CL of 

amikacin in patients who received high-dose cancer chemotherapy (cisplatin, etoposide, and 

cyclophosphamide) (Davis et al., 1991). Varying haematocrit levels are known to affect the 

disposition of drugs that have a high affinity for binding to red blood cells (Størset et al., 2014). 

For example, everolimus is highly bound to erythrocytes, and a decrease in haematocrit in 

cancer patients reduced whole-blood exposure to this drug by half, albeit with no impact on its 

PK (van Erp et al., 2016). 

 

1.3.1.4 Reduced Hepatic Function 

Liver impairment is a common comorbidity in liver cancer patients, which can dramatically 

affect drug absorption, distribution and metabolism due to impaired liver function (Zhao et al., 

2020). For example, the degree of hepatic impairment was reported to affect the exposure of 

everolimus (measured as the area under the plasma concentration-time curve, AUC); dose 

adjustment was recommended for patients with mild and moderate impairment, while its use 

in patients with severe hepatic impairment was not recommended (Peveling-Oberhag et al., 

2013). Plasma exposure (AUC and Cmax) of crizotinib was also affected in patients with a 

variety of advanced cancer (hepatocellular carcinoma, colorectal, pancreatic, lung, bladder 

cancer etc.) depending on the degree of hepatic impairment, requiring dose adjustment for 

patients with moderate and severe hepatic impairment (El-Khoueiry et al., 2018). Afatinib is 
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another drug with higher plasma concentration in advanced non-small cell lung cancer 

(NSCLC) patients with hepatic impairment (Nakao et al., 2019). However, hepatic impairment 

does not affect carfilzomib PK (AUC and Cmax) in patients with advanced malignancies, 

possibly because of its extrahepatic metabolism (Brown et al., 2017). Further, osimertinib 

plasma concentration (Cmax) in patients with malignant solid tumors was lower for patients with 

mild or moderate hepatic impairment compared with those with normal hepatic function, but 

no dose adjustment was required (Grande et al., 2019). 

 

1.3.1.5 Reduced Renal Function 

Renal insufficiency (RI) is as a common characteristic of oncology patients, with chronic 

kidney disease (CKD) affecting a large proportion of patients with solid tumours (Launay-

Vacher et al., 2007). The impact of varying grades of RI on PK of orteronel (predominantly 

renally cleared drug) led to increased AUC and reduced renal CL with the severity of RI (Suri 

et al., 2015). On the contrary, lower exposure to sunitinib was observed in patients with RI 

compared with those with normal renal function, potentially due to lower GI absorption of 

sunitinib in RI patients (Khosravan et al., 2010). General dosing guidance suggests that most 

anti-cancer drugs can be used at the same dose in cancer patients with mild or moderate RI, but 

data on severe impairment are very limited, and this gap in clinical guidance should be 

addressed by future studies (Silvestris et al., 2019). 

 

1.3.2 Parameters that Increase in Cancer Patients 

 

1.3.2.1 Alpha-1 acid glycoprotein (AAG) 

Alpha-1 acid glycoprotein (AAG) is a serum protein that is reported to increase in several 

cancer types (Israili and Dayton, 2001), which can affect drug binding in plasma. Higher AAG 

concentration results in lower levels of free drug in plasma, and therefore less drug available 

for elimination. This decreases the volume of distribution and CL of drugs. Apomine 

(apomorphine) is highly bound to AAG and its apparent CL and Vd in patients with solid 

tumours are reported to be lower relative to healthy subjects (Bonate et al., 2004). Lower 

clearance was also reported in cancer patients for other drugs with high affinity to AAG, 

including tipifarnib, imatinib and saquinavir (Perez-Ruixo et al., 2006; Widmer et al., 2006; 

Cheeti et al., 2013). This trend was confirmed with imatinib in gastrointestinal stromal tumours 
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(GIST) (Haouala et al., 2013) and with erlotinib and docetaxel in NSCLC (Lu et al., 2006; 

Kenmotsu et al., 2017). 

 

1.3.2.2 Inflammation 

Inflammation is a common feature of cancer (Shinko et al., 2017). It affects the production of 

cytokines and increases oxidative stress, which may lead to perturbations in proteins involved 

in drug metabolism and disposition (Shinko et al., 2017; Schwenger et al., 2018). Reduced 

abundance of cytochrome P450 (CYP) enzymes in cancer models was shown to better predict 

PK of anti-cancer drugs (Schwenger et al., 2018). Induced inflammation in mice was reported 

to increase the Cmax and AUC of irinotecan (Chityala et al., 2020). Cachectic cancer patients 

had increased plasma concentration of oxycodone, possibly due to suppressed CYP3A. This 

decrease was associated with elevated levels of the inflammation marker interleukin 6 (IL-6) 

in cachexia (Sato et al., 2016). 

 

1.3.2.3 Gastrointestinal (GI) Complications 

GI complications, such as constipation, diarrhoea and vomiting, are frequent in cancer patients, 

who are subjected to chemotherapy or radiation therapy. They can affect any part of the GI 

tract (GIT), and can sometimes be life-threatening (Davila and Bresalier, 2008). Constipation 

leads to inadequate absorption of orally administered drugs (Mancini and Bruera, 1998), and 

this may affect the efficacy of the drug. Diarrhoea affects drug absorption in two different 

ways. In the case of drugs with low bioavailability, such as ganciclovir and saquinavir, damage 

to the intestinal mucosa causes higher intestinal permeability and increased absorption of drugs, 

leading to higher AUC and lower CL/F (oral clearance). In the case of drugs with high intestinal 

absorption (e.g. stavudine and didanosine), diarrhoea provokes higher elimination from the 

GIT and lower fraction of drug absorbed, resulting in lower bioavailability (Trobec et al., 

2013). Achlorhydria is another GIT complication in cancer patients, where hydrochloric acid 

production in the stomach is impaired. In leukaemia patients treated with dasatinib, 

administration of gastric acid suppressants (e.g. famotidine, nizatidine and lansoprazole) 

resulted in decreased AUC and plasma concentration of dasatinib (Takahashi et al., 2012). Oral 

bioavailability of certain anti-cancer drugs is dependent on stomach pH; for example, reduced 

bioavailability was reported for erlotinib when co-administered with proton pump inhibitors 
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(PPIs), while reducing gastric pH in patients with NSCLC increased AUC of erlotinib 

administered with esomeprazole (van Leeuwen et al., 2016). 

 

Table 1-1 The effects of perturbed systems parameters in cancer on PK of drugs. 

Systems Parameters 
Change in 

Cancer 
Drug PK in Cancer References 

MPPGL ↓  ↓ CLH 
(Zhang et al., 2015; Gao et 

al., 2016) 

Albumin ↓ Voriconazole ↑ fu (Vanstraelen et al., 2014) 
  Pazopanib ↑ fu (Imbs et al., 2016) 
  Raltitrexed ↑ CL, ↑Vd (Blair et al., 2006) 
  Methotrexate longer time to clear (Reiss et al., 2016) 

Haematocrit ↓ Amikacin ↓ CL (Davis et al., 1991) 
  Everolimus ↓ blood exposure (van Erp et al., 2016) 

AAG ↑ Apomine ↓ CL, ↓ Vd (Bonate et al., 2004) 
  Tipifarnib ↓ CL (Perez-Ruixo et al., 2006) 

  Imatnib ↓ CL 
(Widmer et al., 2006; 

Haouala et al., 2013) 
  Saquinavir ↓ CL (Cheeti et al., 2013) 
  Erlotinib ↓ CL (Lu et al., 2006) 
  Docetaxel ↓ CL (Kenmotsu et al., 2017) 

Hepatic function ↓ Everolimus ↑ AUC 
(Peveling-Oberhag et al., 

2013) 
  Crizotinib ↑ AUC, ↑ Cmax (El-Khoueiry et al., 2018) 

  Afatinib ↑ plasma concentration (Nakao et al., 2019) 

  Carfilzomib None (Brown et al., 2017) 
  Osimertinib ↓ Cmax (Grande et al., 2019) 

Renal function ↓ Orteronel ↑ AUC (Suri et al., 2015) 
  Sunitinib ↓ AUC (Khosravan et al., 2010) 

GIT complications ↑    

 Constipation   ↓ drug absorption 
(Mancini and Bruera, 

1998) 

 Diarrhoea  Ganciclovir, 

Saquinavir 

↑ absorption, ↑ AUC, ↓ 

CL/F 
(Trobec et al., 2013) 

  Stavudine, 

Didanosine 

↑ GIT elimination, ↓ 

absorption, ↓ 

bioavailability 

(Trobec et al., 2013) 

 Achlorhydria  Dasatinib 
↓ AUC, ↓ plasma 

concentration 
(Takahashi et al., 2012) 

  Erlotinib ↓ bioavailability (van Leeuwen et al., 2016) 

Inflammation ↑ Oxycodone ↑ plasma exposure (Sato et al., 2016) 

AUC, area under the plasma concentration-time curve; CL, clearance; CL/F, oral clearance; CLH, hepatic 

clearance; Cmax, maximum plasma concentration; fu, fraction unbound; Vd, volume of distribution 
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1.3.3 ADME Proteins Affected in Cancer 

 

1.3.3.1 Drug Metabolizing Enzymes (DMEs) 

CYP enzymes are responsible for the metabolism of the majority of clinically used drugs in all 

therapeutic areas, including oncology, with CYP3A4/5 being the most clinically relevant 

pathway, followed by CYP2D6 (Zanger and Schwab, 2013). CYPs and UDP-

glucurosyltransferases (UGTs) contribute to the metabolism of more 90% of drugs that are 

dependent on hepatic clearance (CLH) for elimination from the body (Rowland et al., 2013). 

Reports on changes in CYP expression in breast cancer are inconsistent, indicating either a 

decrease in CYP1A1, 2E1, and 3A4 abundance in tumours with immunoblotting (El-Rayes et 

al., 2003) or an increase of CYP3A4 with immunohistochemistry (Kapucuoglu et al., 2003). 

Higher expression of CYP1B1 was observed with Western blotting in colorectal 

adenocarcinomas relative to histologically normal human large bowel samples (Gibson et al., 

2003). In addition, immunoblotting data suggested that a set of CYP enzymes (CYP1B1, 

CYP2D6, CYP2S1, CYP2U1, CYP3A5, and CYP51) are upregulated in colorectal cancer 

compared with histologically normal control (Kumarakulasingham, 2005). In the same type of 

cancer, Western blotting also revealed higher expression of CYP2W1 (Karlgren et al., 2006), 

which correlated with the stage of disease (Travica et al., 2013). Expression of UGT1A 

isoforms was found to be downregulated in colon cancer compared with normal colon tissues 

using immunohistochemistry (Giuliani et al., 2005). More recently, CYP3A4, CYP2D6, 

CYP2C8,CYP2C9, CYP1A2, CYP2A6, CYP2E1, UGT1A1, UGT1A4 and UGT2B7 were 

shown to be downregulated, while UGT1A6 and UGT1A9 were unchanged, in HCC tumours 

compared with normal livers analysed by liquid chromatography in conjunction with mass 

spectrometry (LC-MS) (Yan, Gao, et al., 2015; Yan, Lu, et al., 2015). Western blot data also 

demonstrated lower expression of UGT1A1, UGT1A9, UGT1A4 and UGT2B7 in liver cancer 

tissue compared with adjacent normal tissue from HCC patients (Lu et al., 2015).  In NSCLC, 

immunohistochemistry data showed increased CYP3A4 and decreased CYP3A5 levels in 

cancerous lung tissue (Qixing et al., 2017). In ovarian cancer, liver expression of CYP1B1, 

CYP2A/2B, CYP2F1, CYP2R1, CYP2U1, CYP3A5, CYP3A7, CYP3A43, CYP4Z1, 

CYP26A1, and CYP51, quantified by immunohistochemistry, was significantly increased 

compared with normal tissue (Downie et al., 2005). In renal cell carcinoma (RCC), data from 

immunohistochemistry, immunoblotting and reverse transcriptase polymerase chain reaction 

(RT-PCR) indicated similar expression of CYP3A in both tumorous and normal kidney tissue 
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(Murray et al., 1999). Other immunohistochemistry data showed that CYP4A11 levels were 

significantly lower in clear cell renal cell carcinoma (ccRCC) than normal renal tissue (Kim et 

al., 2020). Table 1-2 summarizes literature findings on the expression of DMEs in cancer. 

 

Table 1-2 Impact of cancer on the expression of DMEs (CYPs and UGTs) in different cancer types. 

Cancer Type Impact on DMEs Method References 

Breast cancer ↓ CYP1A1, 2E1, 3A4 Immunoblotting 
(El-Rayes et al., 2003) 

 ↑ CYP3A4 Immunohistochemistry (Kapucuoglu et al., 2003) 

Colorectal 

adenocarcinoma 
↑ CYP1B1 Western blot (Gibson et al., 2003) 

Colorectal 

cancer 

↑ CYP1B1, CYP2D6, 

CYP2S1, CYP2U1, 

CYP3A5, CYP51 

Immunohistochemistry 
(Kumarakulasingham, 

2005) 

Colon cancer ↑ CYP2W1 Western blot (Karlgren et al., 2006) 

 ↓ UGT1A Immunohistochemistry (Giuliani et al., 2005) 

HCC 

↓ CYP3A4, CYP2D6, 

CYP2C8,CYP2C9, 

CYP1A2, CYP2A6, 

CYP2E1 

LC-MS 
(Yan, Gao, et al., 2015; 

Yan, Lu, et al., 2015) 

 

↓ UGT1A1, UGT1A4, 
UGT2B7. 

No change in UGT1A6, 

UGT1A9 

LC-MS 
(Yan, Gao, et al., 2015; 

Yan, Lu, et al., 2015) 

 ↓ UGT1A Western blot (Lu et al., 2015) 

NSCLC ↑ CYP3A4, ↓CYP3A5 Immunohistochemistry (Qixing et al., 2017) 

Ovarian cancer 

↑ CYP1B1, CYP2A/2B, 

CYP2F1, CYP2R1, 

CYP2U1, CYP3A5, 

CYP3A7, CYP3A43, 

CYP4Z1, CYP26A1, 

CYP51 

Immunohistochemistry (Downie et al., 2005) 

RCC No change in CYP3A 
Immunohistochemistry, 

Immunoblotting, RT PCR 
(Murray et al., 1999) 

ccRCC ↓ CYP4A11 Immunohistochemistry (Kim et al., 2020) 

HCC, hepatocellular carcinoma; NSCLC, non-small cell lung cancer, RCC, renal cell cancer; ccRCC, clear cell 

RCC 
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1.3.3.2 Transporters 

Drug transporters have a key role in disposition of drugs, drug-drug interactions (DDIs) (Liang 

et al., 2020), and possibly in resistance to anti-cancer agents (Akhdar et al., 2012). Figure 1-1 

shows the location of important drug transporters in hepatocytes. Literature evidence suggests 

that the expression of transporters is affected in different types of cancer. 

 

 

Figure 1-1 Location of clinically relevant drug transporters expressed in human hepatocytes. Uptake transporters located on 

the basolateral membrane include members of the SLC superfamily, such as OCT1, OCT3, OAT2, OAT7, OATP1B1, 

OATP1B3, OATP2B1, and NTCP. Efflux transporters located on the basolateral membrane include members of the ABC 

superfamily, such as MRP3, MRP4, and MRP6. Efflux transporters are also located in the canalicular membrane and include 

BCRP, BSEP, MATE 1, MDR3, MRP2, and P-gp. 
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In HCC patients, LC-MS proteomics data showed that levels of OATP1B1, OATP1B3, 

OATP2B1, OCT1, BSEP, BCRP, MRP2, MRP3, P-gp, and NTCP were lower in cancerous 

livers, while MATE1 expression was unchanged (Billington et al., 2019). The decrease in 

OATP1B3 is in agreement with Western blotting data (Vavricka et al., 2004), while RT-PCR 

confirmed downregulation of MRP2 in HCC (Bonin et al., 2002). Changes in mRNA 

expression of transporters, measured by RT-PCR, were also observed in colon cancer, 

indicating a reduction in OATP1A2 expression in cancer tissue, while OATP1B1 expression 

was increased and OATP1B3 was unchanged (Ballestero et al., 2006). Similarly, increased 

MRP2 expression was reported in colon cancer (Hinoshita et al., 2000). Northern blot data 

showed that BCRP expression decreased in colon cancer tissue compared with matched normal 

colon (Gupta et al., 2006). Finally, immunohistochemistry showed that P-gp protein levels 

were lower in colorectal cancer tissue relative to matched normal tissue (De Iudicibus et al., 

2008). A summary of these data is provided in Table 1-3. 

 

Table 1-3 Impact of cancer on the expression of transporters. 

Cancer Type Impact on Transporter Method References 

HCC 

↓ OATP1B1, OATP1B3, 

OATP2B1, OCT1, BSEP, BCRP, 

MRP2, MRP3, NTCP, P-gp 

LC-MS 
(Billington et al., 2019) 

 No change in MATE1 LC-MS (Billington et al., 2019) 

 ↓ OATP1B3 Western blotting (Vavricka et al., 2004) 

 ↓ MRP2 RT-PCR (Bonin et al., 2002) 

Colon cancer ↓ OATP1A2 RT-PCR (Ballestero et al., 2006) 

 ↑ OATP1B1 RT-PCR (Ballestero et al., 2006) 

 No change in OATP1B3 RT-PCR (Ballestero et al., 2006) 

 ↑ MRP2 RT-PCR (Hinoshita et al., 2000) 

 ↓ BCRP Northern blotting (Gupta et al., 2006) 

 ↓ P-gp Immunohistochemistry (De Iudicibus et al., 2008) 

 

1.3.4 The Effect of Patient Demographics 

Demographics may also play an important role in defining PK of drugs used in cancer patients. 

For example, sex may affect the PK due to the differences in anatomical and physiological 

parameters between male and female patients, such as body composition, body fat content, 

enzymatic activity, plasma volume, cardiac output, plasma proteins, and pregnancy (Soldin and 

Mattison, 2009). These differences were reported to affect several anti-cancer drugs, including 

paclitaxel, fluorouracil, doxorubicin, imatinib, sunitinib, bevacizumab, and rituximab, with 
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men demonstrating higher elimination capacity and lower susceptibility to toxicity than women 

(Özdemir et al., 2018). Age is another covariate with potential impact on PK due to ontogeny 

(developmental) changes and differences in older patients compared with adults; differences 

include organ function, body composition, co-morbidities, and co-medications (He et al., 

2011). In paediatric populations, the growth and maturation are key contributors to changes in 

metabolic capacity, with the ontogeny of DMEs being a significant contributor to difference in 

drug clearance and exposure across the population and in comparison with populations of 

adults (Kearns et al., 2003; Duan et al., 2019; Matlock et al., 2019). Several studies have 

assessed the impact of age after maturity on PK, but older age itself was not sufficient for PK 

predictions, requiring physiological parameters for each individual patients (Crombag et al., 

2016). Some examples showing decreased clearance of drugs with increasing age are docetaxel 

(Launay-Iliadis et al., 1995), etoposide, cisplatin (Miller et al., 1997), paclitaxel (Smorenburg 

et al., 2003; Lichtman et al., 2006) and omeprazole (Ishizawa et al., 2005). 

Body mass index (BMI) is another factor contributing to PK changes. A study in cabozantinib 

in patients with progressive, metastatic medullary thyroid carcinoma showed decreased CL/F 

with increasing BMI, but no dose adjustment was recommended (Miles et al., 2016). 

Additionally, larger BMI resulted in smaller absorption rate constant (Ka) of heparanase 

endoglycosidase inhibitor PI-88 injected subcutaneously into the abdominal fat showing that 

more adipose tissue leads to slower drug absorption (Hudachek et al., 2010). Body surface area 

(BSA) may also contribute to PK changes. Studies in docetaxel (Launay-Iliadis et al., 1995), 

paclitaxel (Miller et al., 2004) and heparanase endoglycosidase inhibitor, PI-88 (Hudachek et 

al., 2010), showed increased CL with higher BSA. This may be useful when dosing patients 

with obesity or cachexia. 
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Figure 1-2 Physiological parameters affected in cancer that lead to changes in PK metrics. 

 

1.4 Tyrosine Kinase Inhibitors (TKIs) for Cancer Treatment  

Protein tyrosine kinases (PTKs) catalyse the transfer of phosphate groups from ATP to tyrosine 

residues on proteins, and this reaction triggers regulation of cell growth, differentiation, and 

death (Wang and Cole, 2014). PTKs can be divided into receptor PTK (RTK) and non-receptor 

PTK (NRTK). NRTK are cytoplasmic and lack extracellular ligand-binding domain. Of the 

518 identified human kinase genes, 90 are members of the PTK family, which includes 58 RTK 

and 32 NRTK genes (Jiao et al., 2018). Many proto-oncogene and oncogene products have 

PTK activity and their mutations or altered expression affect cell proliferation and cause 

tumorigenesis, metastasis, and resistance to chemotherapeutic agents, highlighting the need for 

developing drugs that target PTKs in all cancer types (Paul and Mukhopadhyay, 2004; Smyth 

and Collins, 2009; Bhullar et al., 2018; Jiao et al., 2018).  

Kinase inhibitors are widely used in oncology, with most of the FDA approved anti-cancer new 

molecular entities in the period 2011-2017 being small molecule kinase inhibitors (Faucette et 

al., 2017). Tyrosine kinase inhibitors (TKIs) are small molecule inhibitors that target cancer 

cells by binding to intracellular tyrosine kinases (Hojjat-Farsangi, 2014). TKIs are ATP 

competitors for the ATP binding site of tyrosine kinases, reducing the level of tyrosine kinase-

mediated phosphorylation and inhibiting tumour cell proliferation. This leads to inhibition of 

cell repair, cell division and angiogenesis, as well as inducing apoptosis. This class of 

molecules has several advantages, including high selectivity, uncommon severe adverse 
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reactions, and oral administration (Wang and Cole, 2014; Jiao et al., 2018). Although TKIs are 

a promising therapeutic class, high heterogeneity and prevalent mutation of kinases cause 

resistance to TKIs, which is a key challenge to effective treatment. This raises the need for 

better understanding of underlying resistance mechanisms and focused investigation of suitable 

predictive biomarkers to facilitate more targeted therapy (Chen et al., 2019; García-Aranda and 

Redondo, 2019). Currently, there are 43 small molecule receptor and non-receptor TKIs 

approved by the US FDA for the treatment of a wide range of cancer types, such as liver, GIT, 

breast, lung, pancreas cancers (Figure 1-3). 

 

 

Figure 1-3 US FDA approved small molecule TKIs for the treatment of various cancer types. Drugs used for more than one 

cancer type: 2 drugs used for both lymphoma and leukaemia, 1 for thyroid, kidney, and liver cancer, 1 for lung and pancreas 

cancer, 1 for leukaemia and gastrointestinal (GIT) cancer, 1 for liver and GIT cancer, 1 for lung and thyroid cancer, 1 for liver, 

kidney and thyroid cancer, and 1 for GIT, kidney and pancreas cancer.  
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The main pathway of metabolism for small molecule TKIs is predominantly CYP3A, 

particularly CYP3A4 (Table 1-4). Other DMEs contribute, to a lower extent, to the metabolism 

of TKIs, and these include mainly CYP2D6, CYP2C8, CYP2C9, CYP2C19, and UGT1A1. 

Data describing the major and minor contributors to the metabolism of TKIs were collated 

from several publications (Shibata and Chiba, 2015; Teo et al., 2015; Giri et al., 2015; Lamb, 

2019; Podoll et al., 2019; Dhillon, 2020a; b; Poggesi et al., 2020; Syed, 2020; Topletz-Erickson 

et al., 2020; Glaenzel et al., 2020; Hoy, 2020; Markham, 2020a; b; Talpaz and Kiladjian, 2021; 

Meneses-Lorente et al., 2021) and are presented in Table 1-4. 

 

Table 1-4 Small molecule TKIs approved for cancer treatment and their pathways of metabolism. 

Drug 

Year of 

approval 

Kinase 

family 

Targeted diseases Metabolism 

    

Major 

contributors 

Minor contributors 

Acalabrutinib 2017 NRTK 

Mantle cell lymphoma, 

CLL, small lymphocytic 

lymphomas 

CYP3A  

Afatinib 2013 RTK NSCLC  Negligible 

Alectinib 2015 RTK ALK-positive NSCLC CYP3A4  

Avapritinib 2020 RTK GIST CYP3A4 CYP2C9 

Axitinib 2012 RTK Advanced RCC CYP3A4/5 
CYP1A2/2C19, 

UGT1A1 

Bosutinib 2012 NRTK CML CYP3A4  

Brigatinib 2017 RTK ALK-positive NSCLC CYP2C8/3A4  

Cabozantinib 2012 RTK 

Advanced medullary 

thyroid cancer, RCC, HCC 

CYP3A4 CYP2C9 

Capmatinib 2020 RTK NSCLC CYP3A4  
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Ceritinib 2014 RTK 

ALK-positive NSCLC 

resistant to crizotinib 

CYP3A4  

Crizotinib 2011 RTK 

ALK or ROS1-postive 

NSCLC 

CYP3A4/3A5  

Dacomitinib 2018 RTK EGFR-mutant NSCLC CYP2D6 CYP3A4 

Dasatinib 2006 NRTK CML CYP3A4 FMO‐3, UGT 

Entrectinib 2019 RTK 

Solid tumours with NTRK 

fusion proteins, ROS1-

positive NSCLC 

CYP3A  

Erdafitinib 2019 RTK Urothelial bladder cancers CYP2C9/3A4  

Erlotinib 2004 RTK NSCLC, pancreatic cancer CYP3A4 CYP1A2/1A1 

Fedratinib 2019 NRTK Myelofibrosis 

CYP3A4/2C19, 

FMO3 

 

Gefitinib 2003 RTK NSCLC CYP3A4/2D6  

Gilteritinib 2018 RTK AML CYP3A4  

Ibrutinib 2013 NRTK 

CLL, mantle cell 

lymphoma, marginal zone 

lymphoma 

CYP3A4 CYP2D6 

Imatinib 2001 NRTK 

Philadelphia chromosome-

positive CML or ALL, 

aggressive systemic 

mastocytosis, chronic 

eosinophilic leukaemia, 

dermatofibrosarcoma 

protuberans, 

hypereosinophilic 

syndrome, GIST, 

CYP3A4 

CYP1A2/2D6/2C9/ 

2C19 
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myelodysplastic/myeloprol

iferative disease 

Lapatinib 2007 RTK 

HER2-positive breast 

cancer 

CYP3A4/3A5 CYP2C19/2C8 

Larotrectinib 2018 RTK 

Solid tumours with NTRK 

fusion proteins 

CYP3A4  

Lenvatinib 2015 RTK 

Differentiated thyroid 

cancer 
CYP3A4, AO  

Lorlatinib 2018 RTK ALK-positive NSCLC 

CYP3A4, 

UGT1A4 

CYP2C8/2C19/3A5, 

UGT1A3 

Midostaurin 2017 RTK 

AML, mastocytosis, mast 

cell leukaemia 

CYP3A4  

Neratinib 2017 RTK 

HER2-positive breast 

cancer 

CYP3A4  

Nilotinib 2007 NRTK 

Philadelphia chromosome-

positive CML 

CYP3A4 CYP2C8 

Osimertinib 2015 RTK NSCLC CYP3A4/3A5  

Pazopanib 2009 RTK RCC, soft tissue sarcomas CYP3A4 CYP1A2/2C8 

Pemigatinib 2020 RTK 

Cholangiocarcinoma with 

FGFR2 fusions or 

rearrangements 

CYP3A4  

Pexidartinib 2019 RTK 

Tenosynovial giant cell 

tumours 

CYP3A4, 

UGT1A4 

 

Ponatinib 2012 NRTK 

Philadelphia chromosome-

positive CML or ALL 

CYP3A4 CYP2C8/2D6/3A5 

Pralsetinib 2020 RTK 

RET-fusion protein 

NSCLC 

CYP3A4 CYP2D6/1A2 
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Regorafenib 2012 RTK CRC, HCC CYP3A4 UGT1A9 

Ripretinib 2020 RTK GIST CYP3A4 CYP2C8,CYP2D6 

Ruxolitinib 2011 NRTK 

Myelofibrosis, 

polycythaemia vera 

CYP3A4/2C9  

Selpercatinib 2020 RTK NSCLC, thydroid cancer CYP3A4  

Sorafenib 2005 RTK 

HCC, RCC, thyroid cancer 

(differentiated) 

CYP3A4 UGT1A9 

Sunitinib 2006 RTK 
GIST, RCC, pancreatic 

neuroendocrine tumours 

CYP3A4  

Tucatinib 2020 RTK 

HER2-positive breast 

cancer 

CYP2C8 CYP3A 

Vandetanib 2011 RTK Medullary thyroid cancer CYP3A4 FMO‐1, FMO-3 

Zanubrutinib 2019 NRTK Mantle cell lymphoma CYP3A  

ALL, acute lymphoblastic leukaemia; ALM, acute myelogenous leukaemia; CLL, chronic lymphocytic  

leukaemia; CML, chronic myelogenous leukaemia; CRC, colorectal cancer; GIST, gastrointestinal stromal 

tumour; HCC; hepatocellular carcinoma; NRTK, non-receptor protein-tyrosine kinase; NSCLC, non-small cell 

lung carcinoma; RCC, renal cell carcinoma; RTK, receptor protein-tyrosine kinase. 

 

Analysis of metabolic data related to TKIs approved by the US FDA for the treatment of cancer 

indicated that 93% of TKIs are predominantly metabolized by CYP3A4/5 (major contributor 

to metabolism), while only 2.3% of TKIs are mainly metabolized by CYP2C8, 2.3% by 

CYP2D6 and 2.3% are not metabolized by DMEs (Figure 1-4A). Focusing on TKIs 

metabolised mainly by CYP3A4, 87% of these TKIs have only CYP3A4/5 as the major 

contributor, while 5% are predominantly metabolized by CYP3A and CYP2C9, 2.5% by 

CYP3A and CYP2C8, 2.5% by CYP3A, CYP2C19 and FMO3, and 2.5% by CYP3A and 

UGT1A4 (Figure 1-4B). These data show the importance of CYP enzymes, especially 

CYP3A4, in the metabolism of TKIs. 
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Figure 1-4 Metabolic pathways involved in the metabolism of TKIs. (A) Major DMEs contributing to the metabolism of TKIs, 

(B) TKIs metabolized by CYP3A4. 

 

1.5 Liver Cancer as a Case Example 

Primary liver cancer is the sixth most common and the third most lethal cancer type (Sung et 

al., 2021), with its prevalent forms being HCC and intrahepatic cholangiocarcinoma (ICC) 

(Bray et al., 2018). Colorectal cancer (CRC) is the third most common and the second most 

lethal type of cancer (Bray et al., 2018). It mainly metastasizes to the liver and, less frequently, 

to the lungs, distant lymph nodes, and peritoneum (Holch et al., 2017). Approximately one 

fourth of the patients have liver metastases at the initial diagnosis of primary cancer, and half 

have liver metastases during the course of the disease (Maher et al., 2017). Metastasis is the 

main cause of mortality (Siegel et al., 2018) and can affect hepatic function through lesions 

that occupy space in liver tissue and lead to abnormal liver function tests (Jiang et al., 2018). 

Although surgical resection of liver cancer (primary or secondary) is the ideal option for 

treatment and long-term survival, this is not always possible and other methods are used, 

including chemotherapy, immunotherapy, radioembolization, and radiofrequency ablation with 

the aim to control tumour growth (Chen et al., 2014; Mitchell et al., 2019). 

Liver is the main organ of drug metabolism, and the presence of tumour lesions can affect the 

PK of drugs in cancer patients. It is crucial to know the PK parameters affected in patients with 

liver cancer. For example, knowing the disease impact on the abundance of DMEs and 

transporters would inform predicting changes in metabolism and disposition in these patients. 

Defining changes in DMEs and transporters in both tumorous and histologically normal peri-
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carcinomatous livers is important. Both sections of tissue may be important for drug 

metabolism and disposition in cancer patients, as the DMEs, especially CYPs and UGTs, in 

the tumour itself are responsible for activation of anti-cancer prodrugs and their subsequent 

metabolism in tissue (Michael and Doherty, 2005). Drug transporters are also very critical for 

drug disposition and anti-cancer drug resistance, which occurs when efflux transporters 

(particularly P-gp and MRPs) are upregulated and uptake transporters (such as OATPs) are 

suppressed (Akhdar et al., 2012). 

The absolute abundance levels of several CYP and some UGT enzymes in histologically 

normal and tumorous liver tissue from HCC patients has previously been reported (Yan, Gao, 

et al., 2015; Yan, Lu, et al., 2015). Based on these data (Yan, Gao, et al., 2015), the relative 

difference in abundance of DMEs in tumour with reference to levels in histologically normal 

tissue was assessed, as shown in Figure 1-5. The figure shows that CYPs decrease by 

approximately 20% in cancer tissue (Figure 1-5A). CYP3A4, the most important contributor 

to the metabolism of TKIs and most other drugs, decreased by 18%. UGTs are also perturbed 

in liver cancer. The data suggest that people with liver cancer may have impaired hepatic 

metabolism, and hence, altered PK of drugs used for their treatment. If CYP3A4 is decreased 

by 18%, the metabolic capacity of the liver against CYP3A4 substrates may decrease by up to 

18% in advanced cancer, where most of the liver is cancerous. This may result in lower 

clearance and potentially higher toxicity. Other non-CYP non-UGT DMEs are perturbed in 

HCC. Expression of sulfotransferases (SULT) 1A1, 1B1, 1E1, 2A1 is lower, whereas that of 

SULT1A3 increased in cancer relative to normal liver tissue, analyzed by LC-MS (Xie et al., 

2017). Alcohol dehydrogenases (ADH), aldehyde dehydrogenase (ALDH), and flavin-

containing monooxygenases (FMOs) were downregulated (Hu et al., 2014). Along with 

enzyme expression, MPPGL is another parameter that decreases in HCC (mean 28.85 mg/g 

tissue) compared with histologically normal livers (mean 39.60 mg/g tissue) (Zhang et al., 

2015; Gao et al., 2016). This can lead to further reduction in the metabolic capacity of cancer 

patients.  

The case of drug transporters reflected significant changes in both histologically normal and 

tumorous tissue compared with healthy livers, analyzed with LC-MS proteomics (Billington et 

al., 2019). The most significant changes were the increase of NTCP levels by almost 2 fold in 

normal livers and the decrease of OCT1 abundance by 88% in cancerous livers (Figure 1-5B). 

These perturbed abundances of transporters may lead to differences in drug exposure and 

distribution. 
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Figure 1-5 Differences in the abundance of DMEs and transporters in HCC. Changes in DMES between histologically normal 

and cancerous livers (A) and in transporters between normal tissue and tumours compared with healthy livers (B). Data are 

extracted from previous publications (Yan, Gao, et al., 2015; Billington et al., 2018). 

 

In contrast to primary liver cancer, to our knowledge, there are no reports of quantitative data 

on the expression of CYP and UGT enzymes in liver tissue from CRLM patients. One previous 

study (Lane et al., 2004) investigated the impact of liver metastasis on the qualitative 

expression profile of CYPs, but did not provide any quantitative data. There are however, 

limited data showing downregulation of microsomal glutathione S-transferases (MGST) in 

CRLM tissue compared with normal liver, analyzed using immunoblotting (Mulder et al., 

1994). Downregulation of aldehyde oxidase 1 (AOX1) and ADH4 and upregulation of 

SULT1B1 were also reported based on LC-MS data (van Huizen et al., 2019). Considering the 

altered expression of these DMEs, the suppressed CYPs and UGTs in primary liver cancer and 

the inflammatory cancerous environment, DMEs may also be affected in the livers of CRLM 

patients, which may lead to perturbed PK. MPPGL is another parameter not yet assessed in 

CRLM. Therefore, we believe that it is important to assess these factors in order to be able to 

accurately predict PK profiles in CRLM patients. Similar to DMEs, studies on transporters are 

quite limited in CRLM. Available mRNA data, such as those of OATPs, may not correlate well 

with proteins abundance (Wlcek et al., 2011). Absolute quantification using LC-MS are 

focused on comparison of several transporters between healthy livers and histologically normal 

livers from CRLM patients, with no measurements in tumorous livers (Kurzawski et al., 2019). 

Such proteomic data showed similar expression of MRP1, MRP2, MRP3, MRP4, BCRP, 

BSEP, MCT1, OCT1, OCT3, OAT2, OATP1B1, OATP1B3, and OATP2B1 between normal 
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and healthy tissue, but significantly higher levels of NTCP and significantly lower levels of P-

gp in normal livers. These data confirm the assumption that the expression of some transporters 

may differ even in normal liver tissue from CRLM patients due to cancerous environment, and 

therefore, we should expect further changes in tumorous liver tissue. Additional studies are 

required for the elucidation of the impact of metastatic cancer on hepatic transporters. 

 

1.5 Precision Dosing in Oncology 

Precision medicine takes into consideration the specific characteristics of a patient, including 

genotype, phenotype, comorbidities and co-medications, in order to define the optimal 

treatment and the best dosage regimen for maximum efficacy and minimum toxicity (Marsousi 

et al., 2017). Its application can be achieved using the knowledge of the mechanisms of the 

disease, its progressive stages, and the inter-individual variability that contributes to response 

to drugs (Schwaederle et al., 2016). 

Traditionally, BSA of the treated patient is the parameter used to decide the dosing of anti-

cancer agents, especially in the first cylce of treatment, assuming that higher BSA contributes 

to higher elimination rate. Under this hypothesis, higher doses should be administered to 

patients with higher BSA. Nevertheless, for most cytotoxic drugs, BSA does not correlate well 

with plasma drug exposure in adults (White-Koning et al., 2018). The risks presented by this 

approach are greater in specific patient populations (e.g. hepatic impairment), where 

suboptimal dosing may cause toxicity and limited efficacy of the treatment. MIPD platforms 

can assist with these issues and guide dose optimization for patients in a stratified manner, by 

using simulations and incorporating systems data from specific cancer cohorts into PBPK 

models (Darwich et al., 2017). 

Several PBPK platforms have been developed for cancer populations. A cancer PBPK model 

is built by incorporation of demographic data and system parameters that are known to differ 

in cancer patients (e.g. albumin, AAG, expression of enzymes and transporters), followed by 

investigating the parameters that may affect PK of drugs in cancer patients (Cheeti et al., 2013). 

PBPK models can be used for different applications; this can be illustrated by the previous use 

of such a model to optimize dosing of docetaxel in a paediatric cancer population (Thai et al., 

2015). The impact of changes in CYP enzymes was assessed in another PBPK model, which 

demonstrated better performance when reducing CYPs in an oncology population for various 
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compounds (Schwenger et al., 2018). Application of PK modelling in precision dosing of 

anticancer compounds has been sufficiently reviewed (Darwich et al., 2017). 

The success of models significantly depends on the availability of systems data specific for the 

target population. Abundance data of ADME proteins are a very important parameter because 

of the impact changes in expression of these proteins can have on PK of drugs. A recent review 

covered the impact of disease on expression of DMEs and transporters in various cancer types 

(Sharma et al., 2020). However, such data are not available for every cancer type and are 

sometimes limited to mRNA or semi-quantitative protein data (immunohistochemistry). A 

systematic literature search highlighted existing gaps in modelling PK in liver cancer. In 

CRLM for example, there is a lack of population-specific scaling factors for IVIVE. For 

predicting hepatic drug clearance, different in vitro systems can be used, 

including recombinantly expressed enzymes, hepatocytes, liver microsomes and cytosol. The 

scalars related to liver microsomes and cytosol are MPPGL and cytosolic protein per gram of 

liver (CPPGL) (Barter et al., 2007), data related both of which are lacking in CRLM.  Proteomic 

data on ADME proteins are also not available, and this impedes accurate PK predictions. 

Advances in LC-MS proteomics have contributed a huge amount of quantitative data in various 

tissues with wide applications in systems pharmacology, which could address the lack of 

abundance data in cancer (Prasad et al., 2017, 2019; El-Khateeb et al., 2019). This approach, 

along with recently developed liquid biopsy technology (Rowland et al., 2019; Achour et al., 

2020), are very promising in the quest towards creating realistic ‘virtual twins’ to achieve 

precision dosing in the clinic. ‘Virtual twins’ are in silico models that represent individual 

patients, generated by the incorporation of system parameters specific for each patient in order 

to simulate personalized drug response (Patel et al., 2018). 

Novel in vitro systems that can further advance IVIVE and application of precision dosing are 

organ-on-chip tools. Although the use of these systems is beyond the scope of this review, it is 

worth mentioning that integration of cancer cultures with microfluidic devices can mimic the 

tumour microenvironment, enabling studies of disease progression and drug response, which 

can offer better understanding of cancer behaviour in vivo (Sun et al., 2019). Past applications 

include studying the microenvironment of lung cancer and testing chemotherapeutic drugs (Xu 

et al., 2013), modelling of cancer metastasis (Caballero et al., 2017), and assessing exposure 

of CRC cells to dynamic anti-cancer drug concentrations (Komen et al., 2020). 
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PBPK modelling can also be applied to biologics, which are protein or peptide drugs with 

complex pharmacokinetics. Biologics, particularly monoclonal antibodies, are a new treatment 

option for cancer, and this area is witnessing an increase in the use of PBPK models to study 

their disposition. Information on the interaction between the Fc-based antibody drugs and the 

neonatal Fc receptor (FcRn) is required for such models; FcRn plays an important role in the 

distribution of antibodies and prolonging their half-lives in the body (Wong and Chow, 2017). 

Despite advances in PBPK modelling applied in biologics, there are still many unknowns to be 

addressed (Kamath, 2016). Recently, a generic PBPK model was developed to simulate the 

distribution and clearance of biologics by incorporating systems data, including those related 

to FcRn; the model provided useful predictions of tissue concentration profiles (Niederalt et 

al., 2018). An application in cancer is a minimal PBPK model developed to predict the impact 

of the perturbation of the FcRn-mediated recycling pathway on drug–disease interactions. The 

model quantified the interaction among M-protein, the characteristic paraprotein of multiple 

myeloma (competitor for FcRn-mediated Immunoglobulin G recycling), and the anti-CD38 

antibody daratumumab indicated for multiple myeloma treatment (Abdallah and Zhu, 2020). 

 

1.6 Conclusion 

Cancer is a leading cause of death, with a large burden on healthcare systems. Clinical trials in 

oncology face difficulty in recruitment of patients, due to serious ethical and toxicity issues. 

This leads to large heterogeneity in enrolled cohorts with variable PK. A promising avenue for 

addressing such heterogeneity is the use of PBPK models, which can provide predictions of 

PK in cancer patients. Such models need population-specific systems parameters, some of 

which are available for several types of cancer, allowing impact of such parameters on PK of 

drugs to be assessed. Such assessment suggests that differences in systems parameters in cancer 

patients, compared with healthy subjects, result in altered PK (including changes in CL and 

drug exposure). However, there are still gaps in parametrization of cancer PBPK models, which 

require further studies, particularly the lack of data on abundance of ADME proteins in liver 

from CRLM patients. Of particular interest are CYP and UGT enzymes, which are very 

important for the metabolism of TKIs and other anti-cancer drugs, with changes in their 

expression leading to perturbed PK. LC-MS proteomics provides reliable quantitative 

measurements, which are used to update ADME protein data in PBPK models, including those 

for cancer populations. Scaling factors specific for cancer populations are also lacking due to 

limited availability of high quality tissue samples. Incorporation of appropriate systems 
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parameters in PBPK models can facilitate precision dosing in oncology, with the main aims of 

preventing toxicity and achieving optimal efficacy. 

 

1.7 Expert Opinion 

Cancer patients are a heterogeneous population with many physiological differences. Key 

parameters that lead to variation in cancer include perturbations in plasma proteins and 

haematocrit, effects of comorbidities and changes in abundance and activity of DMEs and 

transporters. These covariates, along with patient demographics, have a clear impact on the PK 

of drugs in cancer patients. Changes in these parameters lead to altered drug clearance, 

exposure, plasma concentrations, absorption, distribution and elimination in cancer patients. 

Cancer is not one disease, with each type of cancer displaying a range of phenotypes, with 

differences in the highlighted parameters. 

Oncology clinical trials do not routinely recruit patients from the target population, and data 

on sub-populations are not generally available before a drug is marketed. Therefore, there is no 

specific guidance on dosage adjustments for such patients. Including more sub-populations in 

clinical trials with less strict criteria could provide more information on a wider range of true 

patient populations and assist with precision dosing in special populations that are generally 

excluded from clinical trials (Tyson et al., 2020). An alternative approach to addressing 

challenges in recruiting special populations in oncology is the utilization of PBPK modelling. 

PBPK has gained wider acceptance by regulatory agencies in oncology, relative to other areas 

of drug development, due to the highlighted difficulties in oncology clinical trials. It is 

important to mention that PBPK tools are not widely used by clinicians and more action should 

be taken to bring this approach to healthcare, for example through collaboration between 

clinicians, modellers, pharmaceutical companies, and regulatory bodies, as well as appropriate 

training. 

Although PBPK models can potentially improve the drug dosage adjustment in cancer 

populations by reducing toxicity issues and increasing effective treatment, there are still 

limitations in its applicability. For instance, there are still critical gaps in systems data in cancer, 

which are vital for developing robust models and providing accurate PK predictions in cancer 

populations. There is a need to investigate the expression levels of drug metabolising enzymes 

and transporters, and assess the disease impact in order to establish systems parameters. This 

is particularly important for cancer types affecting the main elimination organs (liver, intestine, 
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and kidney). It is critical to assess systems parameters specific for each cancer type and stage 

of cancer, as heterogeneity among cancer types and stages affect system parameters differently. 

Generating the required system data will require access to high quality samples and application 

of state-of-the-art methodology, such as LC-MS proteomics for measuring changes in the 

expression of DMEs and transporters. LC-MS proteomics could also provide quantitative 

measurements of important pharmacology proteins markers targeted by anti-cancer drugs (for 

example, receptor tyrosine kinases) that are not studied extensively. Incorporation of such data 

into models could provide better predictions of not only PK but also pharmacodynamics (PD) 

(e.g. level of receptor binding), and exposure-response relationships. Recent advances, 

particularly liquid biopsy technology as a minimally invasive alternative to tissue biopsies 

together with ‘virtual twin’ models, should take PBPK modelling a step closer towards 

individualization of precision dosing in cancer patients.     
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2.1 Abstract 

Quantitative translation of the fate and action of a drug in the body is facilitated by models that 

allow extrapolation of in vitro measurements (such as the rate of metabolism, active transport 

across membranes, inhibition of enzymes and receptor occupancy) to in vivo consequences 

(intensity and duration of drug effects). These models use various physiological parameters, 

including data that describe the expression levels of pharmacologically relevant enzymes, 

transporters and receptors in tissues and in vitro systems. Immunoquantification approaches 

have traditionally been used to determine protein expression levels, generally providing 

relative quantification data with compromised selectivity and reproducibility. More recently, 

the development of several quantitative proteomic techniques, fuelled by advances in state-of-

the-art mass spectrometry, has led to generating a wealth of qualitative and quantitative data. 

These data are currently used for various quantitative systems pharmacology applications, with 

the ultimate goal of conducting virtual clinical trials to inform clinical studies, especially when 

assessments are difficult to conduct on patients. In this review, we explore available 

quantitative proteomic methods, discuss their main applications in translational pharmacology 

and offer recommendations for selecting and implementing proteomic techniques.    
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2.2 Introduction 

Translational pharmacology requires extrapolation of in vitro observations to predict the 

outcome of therapy in vivo using various scaling factors measured in tissues and relevant in 

vitro systems (Rostami-Hodjegan, 2012). When extrapolating measurements made in vitro 

(e.g. Km, Vmax, Jmax), functional data may be used as scalars when selective probes are 

available, for example in the case of several cytochrome P450 (CYP) (Walsky and Obach, 

2004) and uridine 5′-diphospho-glucuronosyltransferase (UGT) enzymes (Walsky et al., 2012; 

Achour, Dantonio, et al., 2017). However, owing to a lack of specific substrates for many 

enzymes and for the majority of transporters and receptors, the use of abundance data remains 

the preferred approach for in vitro-in vivo extrapolation (IVIVE), facilitated by analytical 

methods that can quantify the levels of individual proteins in heterogeneous biological 

matrices. Over the past two decades, quantitative proteomics based on liquid chromatography 

in conjunction with mass spectrometry (LC-MS) has replaced traditional immunoquantitative 

methods, such as Western blotting and enzyme-linked immunosorbent assays (ELISA) 

(Aebersold et al., 2013), mainly because traditional techniques require purified protein 

standards and specific antibodies for each target, which are not always available.  

Pharmacologically active enzymes and transporters tend to have high sequence homology and 

most of these proteins are found at very low amounts within the membranes of tissues and 

cellular systems (Vildhede et al., 2015). Highly selective and sensitive mass spectrometry 

techniques are therefore ideal for implementation in pharmacology applications (Al Feteisi, 

Achour, Rostami-hodjegan, et al., 2015; Heikkinen et al., 2015). LC-MS analysis offers various 

other advantages including reproducibility, high throughput and the ability to multiplex 

measurements. This allows simultaneous detection and quantification of dilute amounts of a 

large number of proteins (hundreds to thousands) in complex biological systems (Ong and 

Mann, 2005). Quantitative proteomic techniques have therefore been implemented by different 

laboratories worldwide for various pharmacology applications, leading to improved 

extrapolation of drug pharmacokinetics (Doki et al., 2018; Kumar et al., 2018) and better 

understanding of the effects of various factors, including age (van Groen et al., 2018; Ladumor 

et al., 2019), ethnicity (Kawakami et al., 2011; Peng et al., 2015; Ladumor et al., 2019), and 

genetics (Peng et al., 2015; Weiß et al., 2018; Bhatt et al., 2019) on the expression of enzymes 

and transporters.  

The typical aim of a proteomic experiment is to characterize the entire set of proteins expressed 

in a particular system (global proteomics) or to target a specified set of proteins for 
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quantification (targeted proteomics) (Gillet et al., 2016). These two types of proteomic analysis 

require specific considerations for robust analysis to be achieved (Prasad et al., 2019). In this 

review, we explore state-of-the-art mass spectrometry-based proteomic methods, both global 

and targeted, used for the characterization of drug metabolizing and transporting proteins as 

well as drug targets, and discuss their advantages, limitations, caveats for implementation and 

their main applications in translational pharmacokinetics (PK) and pharmacodynamics (PD).  

 

2.3 Overview of a typical quantitative proteomic experiment 

The quantitative proteomic workflow can be customized for the type of biological sample and 

the target proteins to be quantified; however, routinely applied bottom-up methods tend to 

follow generally similar steps (Figure 2-1A). A biological sample (tissues, cell lines or 

biofluids) is processed by cell lysis or homogenization, often followed by enrichment of 

specific fractions (e.g. microsomes, cytosol, S9, plasma membrane, mitochondrial fraction) 

(Figure 2-1B) prior to protein solubilization and digestion (Drozdzik et al., 2014; Harwood et 

al., 2014; Wiśniewski, Wegler, et al., 2016). The variable array of available samples requires 

consideration of the effects of the type of sample and subsequent processing on end-point 

protein abundance (Bhatt and Prasad, 2018).  

Whole cell lysates or tissue homogenates can be used for the quantification of various 

pharmacologically relevant proteins (Wegler et al., 2017). When enriched systems are required, 

the localization of the target protein is critical to the decision of which fraction to use 

(Wiśniewski, Wegler, et al., 2016). Cytosolic proteins (e.g. alcohol/aldehyde dehydrogenases, 

sulfotransferases) are best quantified in cytosol or S9 fractions (Prasad et al., 2018). 

Membrane-bound reticular proteins (e.g. CYPs and UGTs) are enriched in microsomal 

membrane fractions (Chen et al., 2016). Enzymes localized in the reticular lumen (e.g. 

carboxylesterases) can be quantified in microsomes; however, a proportion of these proteins is 

expected to be lost into the cytosol during sample processing and therefore these proteins are 

quantified more accurately in S9 fractions (consisting of microsomes and cytosol) provided the 

target proteins are sufficiently abundant (Prasad et al., 2018; Wang et al., 2019). Transporters 

and PD-relevant targets, such as receptors, protein phosphatases and kinases, can be found in 

the plasma membrane (Ohtsuki et al., 2012; Batth et al., 2018), and therefore cell membrane-

enriched fractions can be used for these applications. Detailed sub-cellular location information 

can be found in various databases, including Gene Ontology (www.geneontology.org) and 

UniProt (www.uniprot.org).    

http://www.geneontology.org/
http://www.uniprot.org/
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Bottom-up proteomic techniques rely on quantitative analysis of unique (proteotypic) peptides 

used as surrogates for target proteins (Gillet et al., 2016). Sample proteins are digested using 

specific proteases, typically trypsin or lysyl endopeptidase (LysC), independently or in 

combination (Wiśniewski and Mann, 2012; Achour and Barber, 2013). Other proteases, such 

as chymotrypsin, can be used for specific applications, such as increased depth and 

reproducibility of analysis (Wiśniewski et al., 2019). Sample digestion can be done in gel, in 

solution or using filter-aided sample preparation (FASP) (Fallon et al., 2008; Langenfeld et al., 

2009; Wiśniewski et al., 2009). Complementary data is expected to be generated when several 

protein preparation workflows are used (Choksawangkarn et al., 2012; Al Feteisi et al., 2018). 

After digestion, peptides are desalted, enriched, separated by liquid chromatography (LC) and 

analyzed using mass spectrometry (MS). Additional separation prior to mass spectrometry can 

be performed using ion mobility (Distler et al., 2014; Achour, Al Feteisi, et al., 2017). Multiple 

quantitative MS and data acquisition approaches can be used (Figure 2-1C), depending on the 

aim of the experiment and the availability of instrumentation (Smith et al., 2019). Targeted and 

global methodologies are routinely used to identify and quantify expression levels of 

pharmacologically-relevant proteins. Standards are added at different stages of the proteomic 

workflow (Figure 2-1A). Data acquisition is followed by data analysis and interpretation, often 

facilitated by vendor or open-source software. Assessment of the performance of various 

software packages used for targeted and global proteomics was previously reported (Cox and 

Mann, 2008; Röst et al., 2014; Välikangas et al., 2017) 

Several quality control (QC) steps are required at certain stages of the experiment. Assessment 

of the quality of sample processing during homogenization and fractionation is required to 

ensure maximum recovery of protein, normally using colorimetric/fluorometric protein assays. 

Assessment of the digestion efficiency is done before LC-MS analysis; this is achieved by 

evaluating time-dependent release of peptides in targeted experiments or by monitoring the rate 

of missed cleavage in global experiments. Finally, the reliability of the proteomic 

quantification technique depends on the performance of the LC-MS system, which can be 

assessed using internal standards and well-characterized QC samples (Bhatt and Prasad, 2018; 

Prasad et al., 2019).  
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Figure 2-1 Overview of the experimental quantitative proteomic workflow. A. Basic proteomic strategy starting from selection 

of targets and sample preparation, followed by LC-MS analysis, and finally data analysis/interpretation. Protein digestion 

relies on proteases, such as trypsin and lysyl endopeptidase (LysC), and can be done in solution, in gel or using filter-aided 

sample preparation (FASP). Standards are added at different stages of sample preparation. SILAC mixtures represent 

isotopically labeled proteomes; QconCAT and PSAQ protein standards are added to samples prior to protein digestion; AQUA 

peptide standards are added before LC-MS analysis. Several quality control (QC) steps are required throughout the workflow. 

B. The two main types of samples used to generate proteomic data, whole cell lysates (cell and tissue homogenates) and 

enriched fractions (e.g. microsomes, plasma membrane, cytosol, mitochondrial fractions or S9 fractions). C. The main types 

of proteomic techniques (targeted and global) and data acquisition methods (MRM/PRM for targeted proteomics and 

DDA/DIA for global proteomics). Red arrows show the steps where standards are introduced. Abbreviations: AQUA, absolute 

quantification peptide standards; DDA, data-dependent acquisition; DIA, data-independent acquisition; MRM; multiple 

reaction monitoring; QC, quality control; QconCAT, quantitative concatemers; PM, plasma membrane; PRM, parallel reaction 

monitoring; PSAQ, protein standards for absolute quantification; SILAC, stable isotope labeling by amino acids in cell culture. 
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2.4 Targeted quantitative proteomic methods 

Targeted methods are in many ways superior to global methods for the quantification of 

specific proteins of interest that are known to be expressed in a particular system. The use of 

targeted proteomics with enriched fractions (e.g. plasma membrane, microsomes) offers highly 

reproducible measurements of proteins expressed at low levels. The workflow of quantification 

using these methods starts with identifying the target proteins of interest, followed by selection 

of proteotypic peptides used as surrogates to quantify the selected targets. These methods 

require stable isotope labeled (SIL) internal standards for absolute quantification. Generally, 

MS platforms used for targeted techniques include triple quadrupole (QqQ), quadrupole/time-

of-flight (Q-TOF) and hybrid Orbitrap mass spectrometers. Table 2-1 summarizes the 

advantages and limitations of targeted proteomic methods. The types of targeted acquisition 

methods are discussed below.  
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Table 2-1 The overall aims, advantages and limitations of various proteomic data acquisition methods: targeted (MRM, PRM), global data-dependent acquisition (DDA) and 

data-independent acquisition (DIA) techniques. 

Method Advantages Disadvantages 

Targeted techniques (MRM, PRM) 

Aim: Robust quantification of a 

selected set of proteins, known to 

be expressed in a particular system 

 High sensitivity and reproducibility  

 Simple data analysis 

 Allows relative and absolute quantification; SIL 

standards address matrix effects 

 High resolution instruments are not required for 

MRM 

 High selectivity with PRM 

 Limited resolution and selectivity with MRM 

 Limited number of target proteins (10-50 targets per 

single analysis) 

 Requirement of prior knowledge of target proteins 

 Requirement for synthesis of internal standards 

 Targeted methods cannot be used for discovery of novel 

targets or pathways 

Global data-dependent acquisition 

(DDA) techniques 

Aim: discovery proteomics and 

proteome-wide quantification 

 Simple method setup  

 High proteome coverage 

 Internal SIL standards are not needed 

 Allows relative and absolute quantification (with 

spiked standards or TPA approach) 

 PTMs can be characterized using global data 

 Bias toward highly expressed proteins and 

compromised reproducibility for low abundance 

proteins 

 Sensitive to changes in LC-MS conditions due to longer 

runs required 

 Absolute quantification is relatively less reliable than 

targeted methods 
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 Data can provide guidance for targeted 

quantification 

 Requirement of instrument with high-end specifications 

 Selectivity and sensitivity are compromised 

Global data-independent 

acquisition (DIA) techniques 

 

Aim: discovery proteomics and 

proteome-wide quantification. In 

the case of sequential window 

methods (SWATH), the aim can 

also be set to the quantification of a 

limited number of target proteins 

 

 Moderate/high precision of peptide 

quantification.  

 Wide breadth of peptide identification and 

quantification leading to high target coverage 

(typically higher than DDA) 

 Amenable to discovery and quantitative 

applications 

 Provides rich data for targeted methods, 

including peptide information, fragment 

information, PTMs and potentially SNPs 

 Complex and convoluted data 

 SWATH requires multiple steps to compile spectral 

libraries, with many parameters to optimize 

 Requirement of instrument with high-end specifications 

 Requirement for specialist software and high 

computational power for analysis 

PTM, post-translational modifications; SNP, single-nucleotide polymorphism; TPA, total protein approach. 
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2.4.1 Selected/multiple reaction monitoring (SRM/MRM) 

Selected or multiple reaction monitoring (SRM/MRM) is the most commonly used targeted 

proteomic method in biological and pharmacological research (Kitteringham et al., 2009; 

Gillette and Carr, 2013). In MRM, a peptide and a selected set of its fragment ions (transitions) 

are monitored by mass filtering on a triple quadrupole instrument (Carr et al., 2014). The 

technique is routinely used with internal SIL standards, and heavy (standard) and light (analyte) 

ions are analyzed simultaneously. This technique offers several advantages including 

multiplexed analysis, high throughput, reproducibility, sensitivity and wide dynamic range 

(Aebersold et al., 2013; Carr et al., 2014). The sensitivity achieved by this method makes it 

ideal when samples are small, e.g. biopsies (Vrana et al., 2017). The limitations of targeted 

techniques include the requirement for extensive method development and the selection of 

suitable targets. Low abundance analyte proteins are not accurately quantifiable and 

interference can occur due to the use of pre-defined mass filters and low resolution mass 

analyzers (Kitteringham et al., 2009; Gillette and Carr, 2013).  

Several applications of this technique have been reported including determination of inter-

individual variability in drug-metabolizing enzymes and transporters (Gröer et al., 2014; 

Kumar et al., 2015; Margaillan et al., 2015), prediction of variability in clearance (Vildhede et 

al., 2016) and drug-drug interactions (DDIs) (Doki et al., 2018), determination of inter-species 

differences of transporter expression at the blood-brain barrier (Hoshi et al., 2013; Al Feteisi 

et al., 2018), characterization of various hepatocyte-based in vitro systems (Schaefer et al., 

2012; Kumar et al., 2019), region-specific transporter expression in the brain (Billington et al., 

2019), kidney (B. Prasad et al., 2016) and intestine (Drozdzik et al., 2014), region-specific 

enzyme expression in the kidney (Knights et al., 2016), quantification of biomarkers in 

biological fluids, such as plasma and urine (Abbatiello et al., 2015) and assessment of the 

effects of disease on different organs (Billington et al., 2018; Prasad et al., 2018; Al-Majdoub 

et al., 2019).  

 

2.4.2 Parallel reaction monitoring (PRM) 

Parallel reaction monitoring (PRM) is a recently introduced targeted method with higher 

specificity than MRM (Gallien et al., 2013; Schiffmann et al., 2014) because of the use of high-

end mass spectrometers, such as Orbitrap (Gallien et al., 2012; Peterson et al., 2012) and 

quadrupole/time-of-flight (Schilling et al., 2015) platforms, offering high resolution and high 

mass accuracy. The principle of PRM is based on simultaneous monitoring of all (precursor 
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ion/fragment ion) transitions of a targeted peptide arising from both standard and sample, in 

parallel at the MS and tandem MS (MS/MS) levels. By contrast, the MRM approach monitors 

only pre-defined fragments. The combination of full scan mode, high resolution and high mass 

accuracy makes PRM a very attractive method, especially for the analysis of complex 

biological matrices. PRM requires less time for method development and is less prone to 

interference than MRM owing to the availability of a higher number of quantifiable fragments 

(Gallien et al., 2014; Ronsein et al., 2015). Because of the large number of monitored 

transitions, the sensitivity of PRM is sometimes reduced relative to MRM, and the requirement 

of high resolving power makes the technique less widely applicable (Gallien et al., 2014). 

Comparable performance by MRM and PRM has recently been demonstrated (Ronsein et al., 

2015; Nakamura et al., 2016). Reported applications of PRM-MS include plasma biomarker 

analysis (Kim et al., 2015), quantification of enzyme variants (Shi et al., 2018), and 

characterization of liver, kidney and intestine pools (Nakamura et al., 2016). 

 

2.4.3 Accurate mass and retention time (AMRT) 

Quantification (relative or absolute) based on accurate mass and retention time (AMRT) is a 

simple and rapid method (Silva et al., 2005). This method is less widely used than MRM and 

PRM techniques and relies on measurement of precursor ion intensity of analyte and standard 

peptides at a predefined mass (m/z ratio) and retention time. Confirmation of the peptides 

identities is carried out after fragmentation at the MS/MS level. This method can be used in 

conjunction with global proteomic methods to quantify selected targets in proteome-wide 

analyses. Because AMRT relies on the parent ion intensity in the MS scan, its efficiency is 

dependent on reproducible peptide separation (by LC) and the use of high resolution mass 

analyzers (MS). In addition, only a limited number of moderate to high abundance proteins can 

be quantified. This technique was applied to measuring protein abundance in human serum 

(Silva et al., 2005) and assessment of disease perturbations in the expression of transporters at 

the blood-brain barrier (Al-Majdoub et al., 2019).  

 

2.5. Standards for targeted proteomics 

Absolute quantification is typically achieved by targeted techniques that use SIL peptides or 

proteins as standards or calibrants (Calderón-Celis et al., 2018). These standards represent 

heavy versions of the surrogate peptides selected to quantify the target proteins. Standards are 

synthesized chemically or biologically and incorporate a heavy isotope (13C, 15N), which allows 

distinction between analyte (light) and standard (heavy) by mass spectrometry. The types of 
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standards routinely used in targeted quantitative proteomics include absolute quantification 

(AQUA) peptides, quantitative concatemers (QconCAT) and protein standards for absolute 

quantification (PSAQ). A summary of the characteristics of these standards is shown in 

Table 2-2.  
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Table 2-2 Characteristics of standards used in targeted proteomic methods (AQUA, QconCAT and PSAQ) and their analytical performance. 

 AQUA QconCAT PSAQ 

Description  Chemically synthesized isotope 

labelled peptides 

Biologically synthesized sequence of 

isotope labelled peptides  

Intact isotopically labelled 

recombinant protein  

Commercial availability Available  Available  Available  

Digestion evaluation  Necessary  Necessary Not Necessary but desirable 

Number of target proteins One for each standard Up to 50 per standard protein One for each standard 

Cost  Low, depending on the number of 

targets  

Moderate  High 

Considerations for synthesis Subject to stability issues during the 

chemical synthesis 

Subject to failure of expression  

 

Subject to failure of expression   

Addition in the experimental 

workflow  

Post-digestion Before solubilization and digestion Before solubilization and digestion 

Compatible proteomic 

techniques  

MRM 

PRM 

MRM 

PRM 

AMRT 

MRM 

PRM 
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Performance of targeted 

methods 

Highly reproducible  

Multiplexed 

Highly reproducible 

Multiplexed 

Ideal for stoichiometric analysis 

Highly reproducible 

Accurate 

SNP and stoichiometric analysis Possible; requires QC Yes No 

Analysis of PTMs Yes No No 

AMRT, accurate mass and retention time mass spectrometry; MRM, multiple reaction monitoring; PRM, parallel reaction monitoring; PTM, post-translational modifications; 

QC, quality control; SNP, single-nucleotide polymorphism.
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The selection of standard peptide sequences is a critical step and follows previously reported 

criteria (Kamiie et al., 2008). These criteria can also be applied to select surrogate peptides in 

global proteomic methods (Prasad et al., 2019). Generally accepted requirements include: 

 Proteotypic sequence: unique to the protein of interest with distinct mass (m/z) and 

fragmentation pattern (MS/MS); isobaric and isomeric sequences are avoided.  

 Cleavable by proteases used in quantitative proteomics: the sequence should not be 

mapped to transmembrane domains; absence of closely occurring cleavage sites in the target 

protein sequence (e.g. arginine (R) and lysine (K) in the case of trypsin). 

 Detectable by LC-MS: optimal hydrophobicity (LC) and ionizability (MS); absence of 

known single nucleotide polymorphism (SNP) and post-translational modification (PTM); 

optimal length (7-25 amino acids depending on the MS platform). 

 Stable: not susceptible to chemical modification during storage and handling including 

oxidation of methionine (M) and deamidation of asparagine/glutamine (N/Q). 

These general selection criteria can be customized for different biological applications. For 

example, peptides with known PTMs and SNPs are targeted if the biological question requires 

such stoichiometric analysis. Allele-specific protein quantification was demonstrated recently 

for the assessment of significant genetic variations in CYP and UGT enzymes (Russell et al., 

2013; Shi et al., 2018). 

  

2.5.1 Absolute quantification (AQUA) peptide standards  

SIL peptides or AQUA standards are chemically synthesized isotope labeled standard peptides 

with sequences specific to the target proteins. High quality and high purity peptides are 

available commercially in isotopically labeled form, making them easily accessible for large 

scale studies (Kirkpatrick et al., 2005; Kettenbach et al., 2011). A known amount of the AQUA 

peptide is introduced into the sample at a late stage of sample preparation, usually after protein 

digestion. AQUA standards can be applied with MRM or PRM techniques, making these 

targeted techniques very useful when screening a specific protein in a large number of samples 

as a clinical test or when the quantification of a small set of proteins is desirable (Smith et al., 

2019). AQUA can also be applied to the elucidation of PTMs, such as phosphorylation 

(Kettenbach et al., 2011). However, synthesis and quantification of standards for large scale 

studies is expensive and time-consuming (Al Feteisi, Achour, Barber, et al., 2015). The need 

to store peptides can be limiting as they tend to precipitate during long-term storage and lead 

to inconsistent quantification (Mirzaei et al., 2008). AQUA peptides are normally added to the 
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sample directly before LC-MS analysis and the accuracy of quantification by the AQUA 

method can therefore be affected by analyte peptide loss during sample preparation (Havliš and 

Shevchenko, 2004). We recommend addition of standards to the samples before pre-

fractionation and desalting so that equal loss of standard and analyte peptides is incurred from 

the mixture. 

The AQUA-MRM approach is the most widely used quantification method in pharmacokinetic 

research and has been used to quantify various enzymes and transporters in different human 

tissues. Quantified enzymes include CYP and UGT enzymes in liver (Ohtsuki et al., 2012; Sato 

et al., 2012, 2014; Fallon et al., 2013; Cieślak et al., 2016; Prasad et al., 2018; Weiß et al., 

2018; Hansen et al., 2019), intestine (Harbourt et al., 2012; Gröer et al., 2014; Sato et al., 2014; 

Drozdzik et al., 2018) and Kidney (Harbourt et al., 2012; Sato et al., 2014; Knights et al., 2016). 

In brain, the AQUA-MRM workflow was used to quantify CYPs, glutathione S-transferases 

(GSTs) and catechol O-methyltransferase (COMT) (Shawahna et al., 2011). Non-CYP and 

non-UGT drug-metabolizing enzymes quantified by this method include liver flavin-

containing monooxygenases (FMOs), sulfotransferases (SULTs), aldehyde oxidase 1 and 

alcohol and aldehyde dehydrogenases (Fu et al., 2013; Chen et al., 2016; Bhatt et al., 2017; 

Yoshitake et al., 2017). In additions, drug transporters were successfully quantified using this 

quantitative strategy in various tissues, including liver (Prasad et al., 2013; Wegler et al., 2017), 

intestine (Gröer et al., 2013; Drozdzik et al., 2014), kidney (B. Prasad et al., 2016), brain 

(Shawahna et al., 2011; Uchida et al., 2011; Billington et al., 2019) and lung (Fallon et al., 

2018).   

 

2.5.2 Quantitative concatemers (QconCAT)  

QconCAT is a concatenated set of peptides expressed recombinantly from an artificial gene.  

The host organism is usually E. coli grown in culture media, supplemented with labeled amino 

acids, usually 13C6-lysine and 13C6-arginine. QconCATs are available commercially but can 

also be expressed in-house at relatively reasonable costs (Russell et al., 2013). The QconCAT 

protein is added to the sample at a known concentration (estimated using an unlabeled peptide 

corresponding to a standard peptide within the QconCAT) prior to digestion and can be used 

with several targeted techniques (MRM, PRM, AMRT). A single QconCAT can be designed 

to quantify several proteins (up to 50), making it amenable to multiplexing and achieving 

higher coverage of protein targets. QconCAT ensures a strict 1:1 stoichiometry making it 

particularly advantageous in determining polymorphisms (Russell et al., 2013; Shi et al., 2018) 
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and establishing protein-protein inter-correlations (Achour, Russell, et al., 2014). The 

development of QconCAT constructs is time-consuming and most worthwhile when a 

significant number of proteins (10-50) are to be quantified in a large number of samples. The 

QconCAT-MRM workflow has been successfully used to quantify hepatic drug-metabolizing 

enzymes (Achour, Russell, et al., 2014; Wang et al., 2015; Shi et al., 2018; Wang et al., 2019) 

as well as transporters in liver (Wegler et al., 2017), intestine (Harwood et al., 2015; Matthew 

D. Harwood, Achour, et al., 2016) and brain microvessels  (Al Feteisi et al., 2018; Al-Majdoub 

et al., 2019).  

Complete cleavage of peptides in the digestion process is, of course, essential, and there has 

been some interest in the use of ‘flanking’ sequences to make the environment of the peptides 

more analyte-like so that incomplete digestion will better resemble digestion efficiency of the 

target proteins (Kito et al., 2007; Cheung et al., 2015).  Although this idea is attractive in theory, 

the claim of comparable digestion efficiency between standard and analyte proteins is yet to be 

tested. We have preferred to optimize the digestion process so that there is complete release of 

peptides from the QconCAT and as far as possible of the target proteins (Al-Majdoub et al., 

2014; Achour et al., 2015).  

There is always the possibility of expression failure of a QconCAT, and this has been addressed 

in several ways (Russell et al., 2013; Achour et al., 2015). Experience indicates that smaller 

QconCATs are generally expressed more efficiently than larger constructs and ideally 

QconCATs should be below 100 kDa in size (Brownridge et al., 2011). The use of a small, 

insoluble tag, such as a ribosomal construct (Al-Majdoub et al., 2014) can force a QconCAT 

to express in insoluble form in inclusion bodies, from which it may be readily isolated (Russell 

et al, 2013). More radically, to address the issue of low yield and expression failure of larger 

QconCATs, multiplexed efficient expression of recombinant QconCATs (MEERCAT) was 

recently introduced to serve as standard for large scale protein quantification. The QconCATs 

are expressed in cell-free medium, with advantages such as expression efficiency, cost-

effectiveness and ability to monitor the number of expressed QconCATs (Takemori et al., 

2017). 

 

2.5.3 Protein standards for absolute quantification (PSAQ) 

A PSAQ standard is similar in concept to a QconCAT, but consists of an intact isotopically 

labeled recombinant protein added at a known concentration to the sample under investigation 

early in the sample preparation workflow. When a PSAQ standard is employed to quantify an 
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unmodified protein, it can control for solubilization efficiency, digestion and LC-MS 

conditions; digestion discrepancies are avoided as PSAQ conserves the native context of the 

target peptides (Chen et al., 2017). This approach is particularly advantageous when 

quantifying low abundance, soluble targets in clinical samples (Dupuis et al., 2008; Adrait et 

al., 2012). However, PSAQ is only applicable to a small number of proteins; the development 

of such standards is prohibitively expensive and requires rigorous quality control (Al Feteisi, 

Achour, Barber, et al., 2015). This technique is not useful for assessing PTMs, identifying inter-

correlations or multiplexed quantification of a large number of targets (Smith et al., 2019). The 

application of PSAQ in the quantification of drug-metabolizing enzymes and drug transporters 

in human tissue is yet to be reported. In biomarker research, this method was successfully used 

to quantify enzymes useful as indicators of cardiovascular disease (Huillet et al., 2012) and 

acute kidney injury (Gilquin et al., 2017) in biological fluids.   

 

2.6 Global quantitative proteomic methods  

Global untargeted proteomic approaches are routinely used for assessment of protein 

expression profiles, biomarker discovery, and identification and quantification of a large 

number of target proteins. Global approaches offer a wide dynamic range and broad proteome 

coverage while targeted approaches offer higher precision and accuracy. Proteome-wide 

quantification by global methods is routinely performed either by stable isotope labeling of 

sample proteins or peptides, e.g. stable isotope labeling by amino acids in cell culture (SILAC) 

and isobaric tags for relative and absolute quantitation (iTRAQ) (Ong et al., 2002; Wiese et al., 

2007), or by label-free analysis of the entire identifiable proteome (Silva et al., 2006; Vildhede 

et al., 2015).  

In metabolic labeling methods, such as SILAC, samples are labeled with amino acids (e.g. 

arginine, lysine or leucine) carrying a stable isotope label (13C, 15N) and pooled before further 

sample processing, thus minimizing bias due to handling. The ratios of light to heavy peptide 

signals at defined retention times are used to relatively quantify protein expression differences 

between control and treatment conditions. Recent developments in labeling technology 

increased the ability of SILAC to multiplex from 2 samples to 6 samples (Merrill et al., 2014). 

SILAC is best suited for induction studies, elucidation of drug effects on protein expression 

(Zhang et al., 2017; Kurokawa et al., 2019), and analysis of post-translational modifications, 

such as relative quantification of phosphorylated proteins and identification of novel 

phosphorylation sites (Ibarrola et al., 2003). In addition, SILAC has been used to prepare 
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labeled standard mixtures for targeted proteomics (Geiger et al., 2010). These labeled standards 

are added to analyte samples before protein digestion (Figure 2-1A), demonstrating similar 

performance to AQUA standards (Prasad and Unadkat, 2014). Metabolic labeling of whole 

animals, such as rodents, represents a recent extension of SILAC, with various applications in 

pharmacology research, such as the direct quantification of liver drug-metabolizing enzymes 

(MacLeod et al., 2015). 

Chemical labeling methods, such as iTRAQ and tandem mass tags (TMT), are used at the 

peptide level after proteolytic digestion of sample proteins. Chemical tags react with amine 

groups and unique reporter ions are released upon fragmentation in MS/MS analysis (Ross et 

al., 2004). Unlike SILAC, chemical labeling can be used to analyze up to 8 samples and 11 

samples in the same pool using iTRAQ and TMT reagents, respectively. Chemical labeling 

methods in conjunction with global proteomics demonstrated comparable performance to 

targeted AQUA-MRM methodology (Vildhede et al., 2018). Applications of chemical labeling 

include quantification of hepatic drug-metabolizing enzymes and drug transporters (Vildhede 

et al., 2018), characterization of plasma proteins in acute renal rejection (Freue et al., 2010), 

biomarker identification for breast cancer (Meiqun et al., 2011), eye disease (Linghu et al., 

2017) and gum disease (Tsuchida et al., 2013), and relative quantification of proteins in 

Alzheimer’s disease (Morales et al., 2017). It is worth noting that proteome-wide labeling 

methods (SILAC/iTRAQ/TMT) are more aligned with applications that require relative 

quantification.  

In label-free methods, normalization of measurements uses either unlabeled exogenous protein 

references or the total protein approach (TPA). Exogenous proteins include various protein 

standards distinct from the target proteome; for example, quantification of human enzymes can 

employ bovine serum albumin or yeast alcohol dehydrogenase at known concentrations (Silva 

et al., 2006). The TPA method uses the total intensity of peptide peaks belonging to a certain 

protein relative to the total intensity of all quantifiable peptides in the proteome (Wiśniewski 

et al., 2012). Both methods have previously been used to quantify human liver enzymes and 

transporters (Vildhede et al., 2015; Achour, Al Feteisi, et al., 2017; Couto et al., 2019).  

Global proteomic techniques are generally carried out using Q-TOF or Orbitrap instruments. 

To correct for changes in MS conditions over long analyses, sophisticated correction and 

chromatographic alignment procedures are used to compensate for retention time shifts and to 

avoid mismatching peptide peaks across runs (Ludwig et al., 2018). Data acquisition methods 
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used in global proteomics include data-dependent acquisition (DDA) and data-independent 

acquisition (DIA). DDA represents the standard shotgun approach widely used for whole-

proteome analysis (Geromanos et al., 2009). On the other hand, the more recent DIA approach 

can generate more depth of analysis and broader proteome coverage, especially when window 

acquisition approaches, such as sequential window acquisition of all theoretical fragment mass 

spectra (SWATH), are used (Hu et al., 2016; Smith et al., 2019). A summary of the advantages 

and limitations of global proteomic methods is presented in Table 2-1.  

 

2.6.1 Data-dependent acquisition (DDA)  

In DDA, the initial scan of peptide peaks is used for the selection of peptides for fragmentation 

depending on their ion intensity, with the most abundant ions being selected preferentially. The 

main advantages of DDA are its flexibility and broad proteome coverage compared with 

targeted methods. DDA proteomics can identify thousands of proteins and provide reliable 

relative quantification across samples (Hu et al., 2016). DDA can also be used for absolute 

quantification using suitable exogenous protein standards (Silva et al., 2006). However, this 

method is less precise in comparison with targeted quantitative methods as low abundance 

peptides are not detected reproducibly, leading to bias toward high abundance proteins 

(Michalski et al., 2011; Hu et al., 2016; Wegler et al., 2017). The performance of this method 

declines as sample complexity increases (Geromanos et al., 2009; Bilbao et al., 2015).  

Q-TOF or Orbitrap mass analyzers are normally used and data are interpreted using software 

packages, such as MaxQuant, Progenesis or Peaks. DDA data analysis can be performed 

either by spectral counting or by ion abundance/intensity (Ishihama et al., 2005; Silva et al., 

2006), with ion intensity preferred owing to its higher accuracy and reproducibility (Distler et 

al., 2014; Prasad et al., 2019). Importantly, to ensure robust quantification, consistency in 

sample preparation and stability of LC-MS conditions are required. DDA shotgun methodology 

was successfully used for the quantification of transporters and receptors at the blood-brain 

barrier (Al-Majdoub et al., 2019) and for profiling various enzymes and transporters in liver 

tissue (Vildhede et al., 2015, 2018; Wegler et al., 2017; Couto et al., 2019; Wiśniewski et al., 

2019) and hepatocyte-based in vitro systems (Vildhede et al., 2015; Wiśniewski, Vildhede, et 

al., 2016).  
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2.6.2 Data-independent acquisition (DIA) 

DIA was proposed to address the limitations of DDA in relation to limited depth of analysis 

and biased quantification. In DIA, all precursor ions within a selected mass range are 

fragmented and analyzed (Hu et al., 2016). Theoretically, this method identifies all detectable 

peptides within the selected mass range and is therefore less biased towards high abundance 

proteins. However, the generated data tend to be highly complex and specialized software is 

required for data deconvolution post-acquisition (Ludwig et al., 2018). DIA combines the 

advantage of broad proteome coverage offered by DDA methods and highly reproducible 

quantification, typically achieved by targeted techniques (Gillet et al., 2016; Hu et al., 2016). 

The most widely used DIA approaches include MSE (Silva et al., 2006; Distler et al., 2014) and 

SWATH (Gillet et al., 2012). MSE is a collision energy alternation method that uses a range of 

collision energies over a m/z window, leading to high- and low-energy fragmentation (Distler 

et al., 2014). The deconvoluted spectra are searched against a protein database for 

identification, while quantification can be done using an unlabeled standard protein. The 

applications of MSE include relative and absolute label-free quantification of proteins (Bilbao 

et al., 2015). For example, this method was successfully used for quantitative profiling of 

various drug-metabolizing enzymes in human liver (Achour, Al Feteisi, et al., 2017).  

In methods that use fragmentation windows, such as SWATH-MS, instead of fragmenting the 

entire set of precursor ions in a particular scan, small m/z windows can be selected for 

fragmentation and acquisition (Gillet et al., 2012). This potentially reduces the complexity of 

data and theoretically improves analytical depth and coverage. SWATH is widely applied using 

Q-TOF and Orbitrap mass analyzers, and data are processed by sophisticated pipelines, such 

as the open-source, cross-platform software OpenSWATH (Röst et al., 2014). The main 

advantages of SWATH are its compatibility with the analysis of low abundance sub-proteomes 

and PTMs, such as acetylation and glycosylation (Keller et al., 2016), and its high 

reproducibility and consistency owing to peptide-centric scoring analysis (Ludwig et al., 2018). 

SWATH is therefore particularly applicable when wide proteome coverage, high consistency 

and accurate quantification are required. Post-acquisition interrogation of selected data yields 

high quality quantification of target proteins comparable to targeted MRM analyses (Gillet et 

al., 2012). SWATH has only recently been introduced and therefore it has not been widely used 

in pharmacology research; reported applications include profiling of hepatic drug-metabolizing 

enzymes (Jamwal et al., 2017) and quantification of enzymes and transporters in pooled liver, 

intestine and kidney microsomes (Nakamura et al., 2016). Importantly, the utility of SWATH 
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has recently been demonstrated in digital biobanking of tissue proteomic maps in health and 

disease (Guo et al., 2015). 

 

2.7 Key pharmacology applications of proteomic data  

The interaction between various intrinsic and extrinsic factors that affect patient populations 

can result in variability in the expression levels of PK-relevant proteins and PD targets, leading 

to variations in drug exposure and response profiles (Figure 2-2A). Proteomic methods are used 

to assess the effects of these factors, including age (B Prasad et al., 2016; Boberg et al., 2017; 

van Groen et al., 2018; Bhatt et al., 2019), disease (Margaillan et al., 2015; Wang et al., 2016; 

Billington et al., 2018; Prasad et al., 2018; Al-Majdoub et al., 2019), ethnicity (Kawakami et 

al., 2011; Peng et al., 2015) and genetics (Prasad et al., 2013; Peng et al., 2015; Bhatt et al., 

2019), individually or in combination, on protein expression profiles. Changes in abundance 

associated with perturbed systems relative to control are then used to predict effects on the fate 

of drugs (Figure 2-2B) (Bi et al., 2013; Vildhede et al., 2014, 2018; Wang et al., 2016; Ishida 

et al., 2018; Prasad et al., 2018).   
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Figure 2-2 The use of proteomic data in PBPK prediction of drug exposure. A. Several intrinsic and extrinsic factors can affect 

the abundance of proteins which in turn can affect drug PK and PD. B. Effects of intrinsic and extrinsic factors can be simulated 

using QSP (PBPK) models that incorporate physiological parameters (e.g. abundance) and drug data. C. The process of 

extrapolation from in vitro measurements in hepatocytes to the prediction of clearance in human liver; the process of IVIVE 

is used in combination with PBPK (or QSP) models (B) to predict drug PK (or PD) in a population of interest.  Scaling factors 

used in IVIVE from hepatocytes are REF = Abundance in tissue/Abundance in the in vitro system, HPGL and liver mass. 

Abbreviations: CLuint, intrinsic clearance of unbound drug; HHEP, human hepatocytes; HPGL, hepatocytes per gram liver; 

IV, intra-venous administration; PBPK, physiology-based pharmacokinetics; PD, pharmacodynamics; PK, pharmacokinetics; 

QSP, quantitative systems pharmacology; REF, relative expression factor measured using abundance data. 

 

Ideally, measurement of the effects on abundance and activity of functional proteins should be 

carried out and used to achieve robust predictions; however, specific substrates and optimized 

functional assays are still lacking for enzymes and transporters, with the exception of several 

CYP and UGT enzymes (Walsky and Obach, 2004; Walsky et al., 2012; den Braver-Sewradj 

et al., 2017). Abundance is commonly used as a surrogate for activity; correlation between 

protein abundance and activity was demonstrated for various hepatic and renal drug-

metabolizing enzymes, such as CYPs, UGTs, carboxylesterase 1, aldehyde oxidase 1, flavin-

containing monooxygenases and sulfotransferases (Venkatakrishnan et al., 2000; Ohtsuki et 

al., 2012; Fu et al., 2013; Margaillan et al., 2015; Chen et al., 2016; Knights et al., 2016; 

Achour, Dantonio, et al., 2017; Xie et al., 2017; Wang et al., 2019). This was also demonstrated 

for certain transporters, such as P-gp and BCRP (Kumar et al., 2015; Harwood, Neuhoff, et al., 

2016). In vitro measurements are therefore routinely extrapolated to in vivo activity (IVIVE) 
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using scaling factors that rely on abundance measurements (Figure 2-2C) (Barter et al., 2007; 

Matthew D. Harwood, Achour, et al., 2016). In addition to scaling, measuring the abundance 

of pharmacologically relevant proteins also allows evaluation of the sources of variability in 

activity rates; inter-individual variation is driven by variability in the level of expression, 

alterations in intrinsic protein activity, or a combination of these factors (Zhang et al., 2016). 

Below is a brief account of the main pharmacology applications of proteomic data. Each 

application requires a different level of proteomic analysis (absolute quantification, relative 

quantification or discovery/identification) as illustrated in Figure 2-3. 

 

 

 

Figure 2-3 The characteristics and applications of absolute quantification, relative quantification and discovery proteomic 

approaches. A. The requirements and characteristics of different levels of quantitative proteomic analysis. Absolute 

quantification requires assays that are accurate and precise; relative quantification requires reproducibility. B. Applications of 

data generated using absolute quantification, relative quantification and exploratory proteomics in translational PK and PD 

research. Several applications overlap between absolute and relative quantification. Abbreviations: DDI, drug-drug interaction; 

PBPK, physiology-based pharmacokinetics; PD, pharmacodynamics; PK, pharmacokinetics; PTM, post-translational 

modification; QSP, quantitative systems pharmacology; QST, quantitative systems toxicology; SIL, stable isotope label; SNP, 

single nucleotide polymorphism. 

 

2.7.1 Physiology-based pharmacokinetic (PBPK) modeling and IVIVE   

The use of PBPK models has now become firmly embedded in practices within the 

pharmaceutical industry and evidence from these models is used in different phases of drug 
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development (Huang et al., 2013; Jamei, 2016). PBPK modeling has gained wide acceptance 

with regulatory agencies (Rowland et al., 2015), with PBPK data being used in the labels of 

21% of new drug applications approved by US Food and Drug Administration (FDA) in 2015 

(Marsousi et al., 2017). Modeling is commonly used for prediction of human pharmacokinetic 

parameters and evaluation of the effects of factors affecting a patient population, such as 

genetics and lifestyle (Heikkinen et al., 2015; Prasad et al., 2017). PBPK models are built by 

integrating drug profiles with physiological data, including blood flow, organ size, protein 

binding, and abundances of enzymes and transporters (Figure 2-2) (Jones and Rowland-Yeo, 

2013). Various commercial and non-commercial platforms, e.g. Simcyp, GastroPlus, and PK‐

Sim, have facilitated the use of PBPK modeling (Kuepfer et al., 2016), but all require data 

describing protein abundance and population variability, and such data are still in short supply 

(Heikkinen et al., 2015). Key areas where PBPK models suffer from limited data include non-

CYP and non-UGT metabolic pathways, extra-hepatic drug-metabolism and disposition, 

effects of differences in special populations (e.g. hepatically/renally-impaired, pediatric and 

geriatric patients) and inter-species variability. These limitations have started to be addressed 

in recent years mainly because of increased availability of (biopsy and surgical) tissue samples, 

advances in sample preparation methods and increased application of LC-MS proteomic 

techniques.  

The use of IVIVE has extended the utility of PBPK modeling and made biosimulation more 

widely usable by linking modeling to in vitro studies using animal and human systems (Sager 

et al., 2015). The application of IVIVE-PBPK requires integration of absolute abundance data 

in tissue relative to the in vitro system and system-specific scaling factors (e.g. microsomal 

protein content or hepatocellularity) with various patient-derived physiological parameters 

(Barter et al., 2007) to predict pharmacokinetic profiles and account for metabolic differences 

among specific populations (Rostami-Hodjegan, 2012). A recent systematic survey of the 

literature showed that the majority of PBPK models are used for the assessment of clinical 

pharmacokinetics and DDIs (Sager et al., 2015). Recently reported PBPK models that used 

proteomic data were developed for an array of applications, such as the prediction of variability 

in clearance (Matthew D Harwood, Achour, et al., 2016; Kumar et al., 2018; Vildhede et al., 

2018), variability in DDIs (Doki et al., 2018), impact of formulation (Johnson et al., 2014), 

effects of liver disease (Wang et al., 2016; Prasad et al., 2018) and kidney impairment (Zhao 

et al., 2012) on drug pharmacokinetics, and predicting drug kinetics in pediatrics (Jiang et al., 

2013; Johnson et al., 2014; Ladumor et al., 2019), older patients (Polasek et al., 2013) and 
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during pregnancy (Gaohua et al., 2012; Ke et al., 2013, 2014). In addition to these applications, 

PBPK models represent a valuable tool for learning and internal decision making in the 

pharmaceutical industry as well as storing and integrating compound-specific information 

throughout drug discovery and development.  

 

2.7.2 Quantitative systems pharmacology (QSP) models 

Models with broader pharmacological applications include QSP models which represent new 

tools for drug development (Danhof, 2016), with several applications, including prediction of 

the effects of therapeutic agents, mechanisms of interaction between therapeutic targets and 

elucidating the biological processes underlying disease and resistance to drugs (Kirouac et al., 

2015; Dimitrova et al., 2017; Kirouac, 2018). The US FDA has recently adopted the use of 

these models and the first case was the assessment of a novel parathyroid hormone replacement 

biologic (Peterson and Riggs, 2015). The use of QSP models for supporting new drug 

submissions is therefore expected to increase (Niu et al., 2019). In particular, a promising 

application of QSP models is the assessment of phamcodynamic DDI potential by probing the 

mechanisms of interaction of a drug combination in the system and exploring the outcomes of 

target perturbations, as reported recently for the interaction between glibenclamide and the 

glucose-insulin-glucagon system in Type 2 diabetes (Choy et al., 2013). The requirement for 

multi-omic data is emphasized for building pharmacology and toxicology models with the 

essential role of pharmaco- and toxico-proteomics in identifying and quantifying critical 

proteins in pathways affected by drug, chemical and environmental exposure (Wetmore and 

Merrick, 2004). This normally follows a strategy consisting of a discovery method followed 

by robust targeted quantification (Gillet et al., 2016). Proteomic data were previously used as 

the basis for developing QSP models to predict the effects of drugs, such as gemcitabine and 

birinapant in pancreatic cancer (Zhu et al., 2018) and 5-flurouracil in colorectal cancer (Hector 

et al., 2012). 

 

2.7.3 Disease perturbation 

 Disease perturbation models are QSP models that aim to simulate disease progression and 

assess the effects of different drug regimens on a diseased population. Modeling disease 

perturbations requires relative abundance data for the diseased tissue compared with a healthy 

set of samples used as control. Disease-scale models have been applied to several disease states, 

including cirrhosis and different types of cancer. Cirrhosis is a disease of the liver that 
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significantly affects drug metabolism and disposition and hence disease modeling can help with 

tailoring dosage regimens that are both safe and efficacious. Liver fibrosis generally leads to a 

reduction in expression of phase I and phase II enzymes (including CYPs, UGTs and 

sulfotransferases), and consequently, progressive decline in their abundance and activity is 

observed as the disease advances (Fisher et al., 2009; Hardwick et al., 2013). Proteomic 

evidence of changes in the abundance of CYPs, UGTs and other hepatic enzymes was reported 

in cirrhotic livers and was shown to be dependent on the cause of cirrhosis (Prasad et al., 2018). 

Phase I metabolizing enzymes are reported to be more influenced by disease progression than 

phase II pathways which can be attributed to shortage in blood supply reaching the scarred 

tissue (Yang et al., 2003). Incorporating proteomic data into disease-scale PBPK models has 

led to improved model performance in cirrhosis as reported for zidovudine, morphine (Prasad 

et al., 2018), repaglinide, bosentan, telmisartan, valsartan and olmesartan (Li et al., 2015; Wang 

et al., 2016).   

Applications of disease models have also been highlighted for different malignancies, 

including breast cancer (Hodgkinson et al., 2012) and colon cancer (Hector et al., 2012). These 

models were mainly used to predict the prognosis in certain populations and assess the effect 

of anti-cancer regimens at different stages of the disease. Because of the difficulty in recruiting 

cancer patient populations in clinical studies and the ethical issues related to the exposure of 

healthy subjects to toxic anti-cancer drugs, PBPK models are better accepted in oncology drug 

development compared with other disease states (Yoshida et al., 2017). There is currently a 

lack of abundance data in cancer, and LC-MS proteomics is set to address this gap by providing 

quantitative measurements of enzymes and transporters from biopsies and archived surgical 

samples (Prasad et al., 2017).  

 

2.7.4 Protein inter-correlations 

Inter-individual variation in drug PK and PD can largely be predicted by integration of known 

sources of variability, including demographic factors (e.g. age and ethnicity) and physiological 

parameters (e.g. blood flow, levels of enzymes and transporters) (Jamei et al., 2009). In silico 

approaches, such as PBPK models, can simulate the interaction between different covariates, 

such as changes in enzyme/transporter abundance, and predict their effects on clearance and 

DDIs (Doki et al., 2018; Melillo et al., 2019). Considering the inter-correlation between the 

expression levels of pharmacologically active proteins, and indeed between other physiological 

parameters (e.g. liver size and blood flow), can lead to more plausible parameter combinations 
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when sampling from a population distribution (Tsamandouras et al., 2015). Multiplexed 

quantitative proteomics can measure multiple enzymes and transporters in individual biological 

samples simultaneously, allowing robust assessment of inter-correlations between these 

proteins (Achour, Barber, et al., 2014; Prasad et al., 2019). Due to the nature of correlation 

analysis, technical bias can in some cases lead to apparent relationships in protein expression 

and therefore caution should be exercised in order to use only verified biological inter-

correlations in modeling applications (Heikkinen et al., 2015).  

While various inter-correlations between drug-metabolizing enzymes and transporters have 

been confirmed both at the RNA (Wortham et al., 2007; Izukawa et al., 2009; Zhang et al., 

2016) and protein levels (Achour, Russell, et al., 2014; Mooij et al., 2016; Cheung et al., 2019; 

Couto et al., 2019), the quantitative impact of such relationships on pharmacokinetic outcomes 

has only recently started to be explored, with models incorporating inter-correlations 

outperforming those that do not (Barter et al., 2010; Doki et al., 2018). It is expected that the 

use of more realistic combinations of physiological parameters will be widely practiced in PK 

and PD modeling and simulation (Melillo et al., 2019).  

 

2.7.5 Precision dosing 

Model-informed precision dosing (MIPD) aims to predict the right dose of a drug for a specific 

patient based on individual characteristics. This is expected to lead to improved efficacy and 

reduced toxicity and pave the way to individualized therapy (Darwich et al., 2017). This 

approach is most applicable to drugs with a narrow therapeutic index and for special 

populations, such as pediatrics, geriatrics and patients with hepatic and renal impairment 

(Polasek et al., 2018). Multi-omic approaches and recent developments in ‘liquid biopsy’ 

assays (Rowland et al., 2019) are expected to facilitate the construction of ‘virtual twins’ as a 

useful strategy to enable precision dosing. A ‘virtual twin’ is an in silico model that represents 

an individual patient, created by integrating system parameters (i.e. demographic, clinical and 

enzyme/transporter abundance data) from the patient in order to simulate individualized drug 

response (Patel et al., 2018). This requires collection of absolute and relative expression data 

(Polasek et al., 2018) measured in individual patients using innovative sampling techniques, 

such as the use of biofluids (Boukouris and Mathivanan, 2015).  
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2.7.6 Ontogeny  

The process of growth and maturation is thought to be the main contributor to observed 

differences in drug PK profiles across the pediatric population age range and when compared 

with adult populations (Fernandez et al., 2011). For example, physiological changes, such as 

gastric pH and emptying and intestinal motility that occur from birth to adulthood affect the 

rate of drug absorption. This is particularly evident in neonates in which absorption is generally 

delayed (Lu and Rosenbaum, 2014; Batchelor and Marriott, 2015). In addition, the ontogeny 

of drug-metabolizing enzymes, such as CYPs and UGTs, and transporter proteins within the 

liver and other organs contributes to variable rates of drug metabolism and excretion (Bhatt et 

al., 2017, 2019; Boberg et al., 2017; van Groen et al., 2018; Badée et al., 2019), with 

consequences for toxicity and efficacy profiles (Batchelor and Marriott, 2015; Elmorsi et al., 

2016). 

Current drug dosing regimens for pediatrics are based on allometric scaling from adult 

populations or reliant on local guidance and clinician experience because of lack of data from 

clinical trials (Calvier et al., 2017). Regulators are increasingly supportive of mechanistic 

PBPK models to inform drug labels in lieu of clinical trials in pediatric applications (Jones et 

al., 2015; Miller et al., 2019). There is still, however, a paucity of data to feed these paediatric 

models, in large part because pediatric samples are obtained opportunistically (Howard et al., 

2018; Templeton et al., 2018).  

Despite the difficulties of sample collection, there is consensus that the abundance and function 

of the majority of enzyme and transporter proteins are comparatively low in fetal and neonatal 

samples, increasing at varying rates as a function of age toward adult equivalent levels (Chen 

et al., 2016; Upreti and Wahlstrom, 2016; Badée et al., 2019; Cheung et al., 2019). For example, 

CYP3A4, UGT2B7 and P-gp are present in small amounts in neonatal samples, increasing 

toward or surpassing adult equivalent levels by 1-3 years of age (Mehrotra et al., 2015; van 

Groen et al., 2018; Bhatt et al., 2019). Conversely, CYP3A7 abundance is relatively high in 

fetal and neonatal samples, decreasing rapidly toward adult equivalent levels within 1 year 

(Mehrotra et al., 2015; Leeder and Meibohm, 2016). Incorporation of ontogeny profiles with 

in silico models led to useful pharmacokinetic predictions for several drugs, such as 

theophylline (Ginsberg et al., 2004), propofol (Michelet et al., 2018), tramadol (T’jollyn et al., 

2015) and valproic acid (Ogungbenro and Aarons, 2014), in children. 

  



|Chapter 2 

102 
 

2.7.7 Characterization of polymorphisms 

Most drug-metabolizing enzymes, particularly CYPs, and transporters, such as organic anion 

transporting polypeptides, are polymorphic with a range of clinical consequences (Zhou et al., 

2017; Oswald, 2018). Various genetic polymorphisms are non-synonymous and can be 

characterized at the protein level, while polymorphisms occurring in the regulatory region of a 

gene can affect gene expression and mRNA stability in a particular tissue but do not result in 

modifications to the protein sequence. The effect of polymorphism becomes significant when 

it causes variability to an extent that necessitates a change in the administered dose of a specific 

drug (Gentry et al., 2002); a case in point is CYP2C9 polymorphism and its effects on the 

required dose of the anti-coagulant warfarin. Our group has previously developed an allele-

specific proteomic workflow that can distinguish different polymorphic variants of CYP2B6 

(Russell et al., 2013; Achour, Russell, et al., 2014). Shi et al. (2018) showed applicability of 

this approach to UGT2B15 with the aim of elucidating the regulatory mechanisms of UGT 

expression. Although relative quantification is as applicable to studying polymorphisms as 

absolute quantification, this application requires accurate and reproducible assessment of the 

stoichiometry of target enzymes (or transporters), and therefore targeted proteomic methods 

that employ a QconCAT standard are especially suitable (Achour et al., 2019).  

 

2.7.8 Disease biomarker discovery 

Identification of biomarkers assists in understanding the pathophysiology of a disease and its 

progression, as well as monitoring patient response during therapy (O’Dwyer et al., 2011; 

Hector et al., 2012). This is applicable not only to traditional drugs but also to testing the 

efficacy of new candidates and comparing them to already available therapeutic agents. Often 

more than one biomarker is necessary to characterize a disease state, where the synergy 

between several targets in the same (or related) disease pathway makes a composite test more 

effective than monitoring a single biomarker of disease (Russell et al., 2017). A rigorous 

discovery proteomics workflow should consist of a preliminary discovery phase using global 

proteomics, such as shotgun DDA or SWATH profiling, followed by verification or validation 

of target proteins using more quantitative targeted techniques, such as MRM or PRM. The 

settings of the targeted experiment will depend on information collected in the discovery phase 

(Prasad et al., 2019). 

The initial step can be performed on a small set of well-characterized samples from patients 

with the relevant disease state relative to control with the aim of identifying differentially 
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expressed proteins (O’Dwyer et al., 2011; Gillet et al., 2016). Global proteomics has led to the 

discovery of various diagnostic biomarkers, such as proteins related to resistance to cancer 

chemotherapy, and biomarkers for monitoring treatment (Russell et al., 2016; Srivastava and 

Creek, 2018). These biomarkers are normally associated with critical cell function pathways, 

such as survival, proliferation (Shruthi et al., 2016), apoptosis (Hector et al., 2012) and post-

translational modification of proteins (Held et al., 2010). After conclusive identification of a 

set of biomarkers, targets are quantified in samples from different populations, such as patients 

at different stages of the disease, and a healthy cohort (Elschenbroich et al., 2011; Sjöström et 

al., 2015).  

A promising application of global proteomics showed differences in expression profiles 

between Crohn’s disease and ulcerative colitis, which are symptomatically very similar but 

require entirely different treatment regimens (Starr et al., 2017). In cancer, a wide range of 

signalling pathways can be perturbed, including the function of protein kinases and 

phosphatases, which can be monitored as disease biomarkers and targeted by novel drug 

therapies (Bollu et al., 2017; Bhullar et al., 2018). Recently characterized cancer biomarkers 

for the assessment of prognosis and therapy-related considerations include HER2 for decision-

making in cancer treatment (Kirouac et al., 2015), cAMP-CREB1 axis as a key mechanism 

associated with resistance to platinum-based therapy (Dimitrova et al., 2017), caspase networks 

associated with prognosis of colorectal cancer (Hector et al., 2012), Stathmin-1 in relation to 

cell migration in colon cancer metastasis (Tan et al., 2012), and protein Z as an early biomarker 

for the detection of ovarian cancer (Russell et al., 2016). 

 

2.8. Recommendations for best practice in applying proteomic techniques 

With the recent expansion in the use of proteomic techniques in clinical and pharmacology 

research, robust guidelines have become crucially required for choosing the most appropriate 

method for a specific application. The decision-making process tends to be complex and will 

depend on multiple factors including the biological question, the type of sample, the number 

of samples, the number of targets, and the available budget. Figure 2-4 shows a simplified 

decision tree intended to guide the choice of proteomic methods used for pharmacology 

applications. In the same line, a workshop was recently held by the International Society for 

the Study of Xenobiotics (ISSX), with the aim of reaching a consensus on the use of proteomics 

in translational pharmacology research. Various recommendations for the choice and 
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application of different techniques were proposed but a general consensus was not achieved 

(Prasad et al., 2019).  

 

 

Figure 2-4 Decision tree for choosing suitable proteomic techniques intended for pharmacology applications. A typical 

number of samples (~30) is used as input for the decision tree. The application can be hypothesis-driven and focused on 

quantification or hypothesis-generating and intended for discovery. If the application is focused on discovery, global 

proteomics are most suitable, with preference for data-independent acquisition when reproducible quantification of differential 

expression is required. When a target or a biomarker is discovered, more accurate quantification is achieved with targeted 

proteomics. If the target proteins are known to be expressed in the system and are well-defined, targeted proteomics are 

preferred. If the number of targets is small (< 10), AQUA-based methods (in conjunction with MRM or PRM techniques) are 

cost-effective. When the number of targets is higher (10-100), QconCAT methodology is preferred. Quantification of larger 

numbers of targets (> 100) and characterization of proteomes is better achieved using global proteomics. Orange boxes denote 

applications and blue boxes represent proteomic methods. 

 

Considerations for choosing a technique will generally differ for targeted and global proteomic 

methods. In targeted analysis, isotopically labeled standards are used to improve precision and 

accuracy of measurements and reduce bias caused by variations in sample preparation and 

matrix effects (Bhatt and Prasad, 2018). This is desirable when accurate quantification of inter-

individual variability is required for QSP models and MIPD. Techniques recommended for 

these applications include MRM applied on triple quadrupole instruments and PRM conducted 
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on higher resolution platforms, such as Orbitraps and Q-TOF instruments. Both methods can 

be used for multiplexed quantification and they offer a wide dynamic range, typically two 

orders of magnitude, and therefore spiking of standards should be guided by the range of 

targeted proteins. One of the main advantages of targeted analysis is possibly its unparalleled 

sensitivity achieved even in the presence of a complex biological matrix (Holman et al., 2012). 

Therefore, recommended practice is to quantify protein expressed at very low abundance in a 

targeted manner. MRM is currently the ‘gold standard’ in clinical and pharmacological 

research (Carr et al., 2014), and recent guidelines by the Clinical Proteomic Tumor Analysis 

Consortium (CPTAC) provides recommendations and standard operating procedures (SOPs) 

for the development, application and reporting of MRM assays (Whiteaker et al., 2014; 

Abbatiello et al., 2017). Large-scale cross-laboratory assessment of plasma proteins showed 

improved quantification when harmonized SOPs are followed (Abbatiello et al., 2015). Triple 

quadrupole instruments used for MRM are less expensive than higher resolution mass 

spectrometers and the use of scheduled MRM improves the reproducibility of the data and 

increases the number of peptides that can be analyzed in one experiment (Oswald et al., 2013), 

thus reducing the cost and time of analysis. PRM methodology offers advantages in selectivity, 

resolution and sensitivity while requiring a lower level of method development compared with 

MRM (Peterson et al., 2012). Orbitrap and Q-TOF instruments tend to be expensive but they 

represent versatile platforms capable of targeted (PRM) and global analyses (Peterson et al., 

2012; Schilling et al., 2015).  

Targeted techniques rely on the use of labeled standards and the choice of suitable standards 

depends on the type of experiment and available budget and expertise. Isotope-labeled internal 

standards tends to be expensive, but they provide better quality quantification (higher precision 

and accuracy) than label-free methods. AQUA peptides are ideal for screening applications 

where a small number of proteins (< 10) are monitored in a large number of samples. 

QconCATs are more applicable when higher numbers of proteins are targeted and for 

applications that require strict stoichiometry, such as allele-specific proteomics (Shi et al., 

2018; Achour et al., 2019). QconCAT standards have the advantage of sustainability and 

transferability across laboratories (Russell et al., 2013); a plasmid can be shared by different 

groups with access to protein expression facilities. We have previously developed a cost-

benefit framework to assess the use of quantitative proteomic methods based on cost and 

application (Al Feteisi, Achour, Barber, et al., 2015). This assessment showed that the high 
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cost of PSAQ standards hinders their application when a considerable set of proteins are 

targeted. 

For applications that aim to identify novel proteins or quantify a large number of targets (> 100 

proteins), the method of choice is global proteomics. Shotgun global proteomics, in conjunction 

with the TPA approach, can be cheaper than targeted methods because they do not require the 

use of labeled standards. This method is applied with Q-TOF and Orbitrap instruments and has 

a wide range of hypothesis-generating applications, including proteome-wide analysis, 

assessment of disease perturbations and biomarker discovery. Data-independent methods, such 

as SWATH, offer increased depth of analysis and quantitative reproducibility (Gillet et al., 

2012), making them very suitable for generating protein network data for systems 

pharmacology applications. Their use is however still restricted to core facilities, and 

sophisticated bioinformatics tools are required for data analysis and interpretation (Distler et 

al., 2014; Röst et al., 2014). A combined discovery-quantification strategy is recommended 

when characterizing a novel target or disease pathway (Gillet et al., 2016). This requires using 

global analysis (e.g. SWATH) on well-defined (disease and control) samples followed by 

targeted (MRM or PRM) quantification.   

The concept of a ‘proteomic map of disease’ has recently been proposed (Guo et al., 2015; Xu 

et al., 2019), supported by highly reproducible sample preparation and global proteomic 

workflows. We recommend that major academic centres should conduct harmonized efforts to 

generate and share similar proteomic maps in health and disease for available biopsy and 

surgical samples from different tissues, as demonstrated recently (Uhlen et al., 2015). This will 

likely require the use of highly reproducible methods capable of wide proteome coverage, such 

as SWATH-MS (Gillet et al., 2012), and these digital maps can be interrogated retrospectively 

by various groups for future applications.  

 

2.9. Conclusion 

Quantitative proteomic measurements can make a significant contribution to the advance of 

quantitative systems pharmacology and can be relatively quickly translated into the clinic, 

where they directly benefit patients. These measurements are powerful, providing selectivity 

and sensitivity unparalleled by other protein-level techniques. The disadvantage of the 

unparalleled sensitivity is that independent orthogonal verification of a measurement is often 

challenging. Further, the cost of these experiments and small sample sizes preclude extensive 

sample sharing and cross-laboratory analyses. Prasad et al. (2019) have highlighted the 



|Chapter 2 

107 
 

difficulty in obtaining consensus as to appropriate protocols for different measurements, 

especially as the most thorough approaches are beyond the budgets of many laboratories. 

We can however make a number of broad observations. Firstly, targeted methods are preferred 

where a specific, poorly expressed set of proteins is to be quantified, whereas global methods 

are better adapted to gaining a general picture of the functional proteome in a cell. Secondly, 

while there is merit in terms of accuracy in analyzing unfractionated samples, the loss of 

precision and sensitivity compared with the use of fractions is often critical. Thirdly, neither 

QconCAT proteins nor AQUA peptides are ideal as standards for targeted proteomics; 

QconCATs are favorable where large numbers of similar samples are to be analyzed for several 

proteins, whereas AQUA peptides are effective for small numbers of target proteins. When a 

decision is made, the minimal requirement is that the use of a particular quantitative proteomic 

technique should be ‘fit for purpose’. Ultimately, the selected method and the level of 

proteomic quantification will have a substantial impact on the quality and validity of model-

informed predictions. 
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3.1 Abstract 

Several software packages are available for the analysis of proteomic LC-MS/MS data, 

including commercial (e.g. Mascot/Progenesis LC-MS) and open access software (e.g. 

MaxQuant). In this study, Progenesis and MaxQuant were used to analyse the same data set 

from human liver microsomes (n = 23). Comparison focussed on the total number of peptides 

and proteins identified by the two packages. For the peptides exclusively identified by each 

software, distribution of peptide length, hydrophobicity, molecular weight, isoelectric point 

and score was compared. At the protein level, we focussed on drug-metabolising enzymes and 

transporters, by comparing the number of unique peptides detected by the two packages. On 

average, there was a 65% overlap in detected peptides, with surprisingly little consistency in 

the characteristics of peptides exclusively detected by each software. Generally, MaxQuant 

detected more peptides than Progenesis, and the additional peptides were short and had 

relatively poor scores. Progenesis-specific peptides tended to be more hydrophilic and basic 

relative to peptides detected only by MaxQuant. In conclusion, in order to maximise the use of 

MS datasets, we recommend processing with more than one software package. Together, 

Progenesis and MaxQuant provided excellent coverage, with a core of common peptides 

identified in a very robust way. 
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3.2 Introduction 

Recent years have witnessed increased use of mass spectrometry-based proteomics for the 

identification and quantification of pharmacologically relevant proteins in different 

populations (Yan, Gao, et al., 2015; Yan, Lu, et al., 2015; Wegler et al., 2017; Billington et al., 

2018; Prasad et al., 2018; Al-Majdoub et al., 2019). This powerful analytical technique allows 

characterisation of complex biological matrices (such as enriched fractions, cell culture lysates, 

tissue extracts, and biopsies) as well as quantification of specific proteins of special interest 

(Al Feteisi et al., 2015; Välikangas et al., 2017). A wide variety of mass spectrometry-based 

strategies are available, taking advantage of the technique’s selectivity, sensitivity and ability 

to detect many proteins simultaneously (Pan et al., 2009; Aebersold and Mann, 2016). 

Drug metabolising enzymes (DMEs), such as cytochrome P450 (CYP450) (Kawakami et al., 

2011; Ohtsuki et al., 2012; Achour et al., 2014; Li et al., 2015; Vildhede et al., 2015; Wang et 

al., 2015; Zhang et al., 2016; Achour, Dantonio, et al., 2017; Couto et al., 2020) and uridine 5'-

diphospho-glucuronosyltransferase (UGT) enzymes, have received significant attention in 

recent years owing to their role in determining the kinetics of the majority of drugs on the 

market (Wienkers and Heath, 2005). However, even with recent advances in technology, 

measuring UGT enzymes remains challenging because of their membrane topology and high 

sequence homology (Harwood et al., 2016). Similarly, transporters are difficult to quantify 

because of low abundance and membrane localization, and therefore their characterization 

requires enrichment of plasma membrane fractions and the use of highly sensitive 

instrumentation (Achour, Al-Majdoub, et al., 2020). 

The increased availability of data, however, has highlighted inter-laboratory and inter-

methodological variation in quantification (Wegler et al., 2017). There is no simple relationship 

between the size of a mass spectrometry signal and the concentration of analyte. Worse, the 

LC-MS/MS workflow does not normally sample every available peptide but selects the most 

intense signals at any time point. Quantification of DMEs and transporters is important – it 

provides numbers used in silico to represent patients in virtual clinical trials (Rostami-

Hodjegan, 2012; Jamei, 2016; Sharma et al., 2020). The community therefore assembled in 

September 2018 to address best practice in proteomic analysis and quantification methods, 

resulting in a white paper (Prasad et al., 2019). 

Differences in quantification can arise from differences in sample preparation (Bhatt and 

Prasad, 2018; Howard et al., 2018), quantification methodology (Gillet et al., 2016; Bhatt and 

Prasad, 2018), including whether measurement is targeted or untargeted (Prasad et al., 2013; 
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Wegler et al., 2017; Couto et al., 2019), LC-MS/MS parameters and instrumentation, even 

when the sample is the same. In practice, we are not especially interested in measuring the 

same sample because biological differences between samples are the main subject of our 

investigations. Multivariate statistical techniques, such as principal components analysis 

(PCA), have been used to discern biological and technical variation within groups of samples 

(Jehmlich et al., 2013; Howard et al., 2018; Leoni et al., 2019) but are of limited utility in 

assessing cross-laboratory measurements. 

At this stage, strategies for overcoming these differences would inevitably involve many 

replicate analyses, which are at best costly, and often impossible where samples are small and 

of human origin.  There is, however, less excuse for differences in quantification resulting from 

data analysis. The commonly used data analysis tools, required to convert RAW data files into 

quantification of proteins, have different algorithms that can generate variable results, and one 

useful idea is to assess their complementarity. Comparative reports for different data analysis 

tools have been generated (Table 3-1) with varied conclusions. A single 2012 study sought to 

compare data processing using complex samples from animal retinas, concluding that the total 

number of proteins identified by MaxQuant and Progenesis is highly comparable (74% 

overlap) (Merl et al., 2012). Another study using five different data analysis tools to identify 

potato and human synthetic peptides concluded that MaxQuant achieved the highest peptide 

coverage based on charge-state merging, while Progenesis was the best based on the obtained 

original data, as a result of all alignment feature and normalization before LC-MS/MS 

(Chawade et al., 2015). Comparison of different tools using a plant-derived standard proteins 

mix demonstrated high variability in protein abundance measured by the different tools, 

suggesting caution should be applied with discovery proteomics data (Al Shweiki et al., 2017). 

Finally, a study using Universal Proteomics Standard Set and yeast concluded that Progenesis 

performed consistently well in differential expression analysis and produced few missing 

intensity values, whereas data filtering or imputation methods improved the performance of 

MaxQuant, Proteios, PEAKS, and OpenMS (Välikangas et al., 2017). 

In the present work, we analysed a dataset obtained by analysing 23 human liver membrane 

samples using two widely used software packages, MaxQuant and Progenesis, commonly used 

for peptide/protein identification and quantification. MaxQuant (Cox and Mann, 2008; Cox et 

al., 2014) uses its own search engine, Andromeda, for identification, which relies on a 

probability calculation for scoring a peptide-spectrum match (Neuhauser et al., 2011). 

Quantification of proteins is based on maximum peptide ratio information from extracted 

peptide ion signal intensities. These are normalised to minimise the overall fold change of all 



|Chapter 3 

137 
 

peptides across all fractions (Al Shweiki et al., 2017). Progenesis uses Mascot for identification 

(Perkins et al., 1999) and quantifies proteins based on peptide ion peak intensity while allowing 

full operator control (Al Shweiki et al., 2017).  
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Table 3-1 A summary of previous investigations that compared data analysis software and the outcomes compared. 

Study Sample 
Compared 

software 

Analysis technique 

(instrument) 
Outcomes compared 

Merl et al. 2012 
Retinal cells (healthy 

animals) 
Progenesis 

MaxQuant 

Label free versus 
SILAC 

(Orbitrap) 

Quantification accuracy 
Dynamic range 

Sensitivity 

Chawade et al. 2015 
Synthetic peptides 

(potato and human) 

Progenesis 

MaxQuant 
Proteios 

Skyline 

Anubis 

DDA and SRM 

(Orbitrap XL ETD) 

Peptide coverage 

F1-Score (harmonic mean of 

precision and sensitivity) 
Mean accuracy (proportion of true 

positive and negative 

identifications) 
Number of unique peptides 

Välikangas et al. 2017 

Universal 
Proteomics Standard 

Set and yeast 

Saccharomyces 
cerevisiae 

Progenesis 
MaxQuant 

Proteios 

PEAKS 
OpenMS 

DDA 
(Orbitrab Velos) 

The number of proteins quantified 
The extent of missing data 

Al Shweiki et al. 2017 
Standard Proteins 

mix (plant) 

Proteome 

Discoverer 
Scaffold 

MaxQuant 

Progenesis 

DDA 

(Orbitrap Velos) 

Biological variability 
Protein abundance estimates 

Protein fold change 

DDA, Data dependent acquisition; SRM, Selected reaction monitoring; SILAC, Stable isotope labelling by amino acids in cell culture.
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3.3 Materials and methods 

 

3.3.1 Dataset 

The dataset analysed in this study was previously generated by Couto et al. (Couto et al., 2019) 

using 23 human liver microsomes (HLM) samples provided by Pfizer (Groton, CT, USA). 

Suppliers of these samples were Vitron (Tucson, AZ, USA) and BD Gentest (San Jose, CA, 

USA). Demographic details, sample preparation, LC-MS/MS analysis workflow and data 

analysis were reported previously (Couto et al., 2019). The primary goal for which these data 

were generated is to evaluate the expression of proteins responsible for the metabolism and 

transport of drugs and xenobiotic in human liver (Couto et al., 2019).  

 

3.3.2 Database Fasta file 

UniProtKB human proteome fasta file containing 71599 entries (May 2017) was used for 

analysis by both Progenesis and MaxQuant (Bateman et al., 2017). 

 

3.3.3 Data processing 

Data analysis was performed using MaxQuant 1.6.1.0 (Max Planck Institute of Biochemistry, 

Munich, Germany) and Progenesis QI 4.0 (Nonlinear Dynamics, Newcastle-upon-Tyne, UK). 

Replicates (two of each sample) were analysed in the same batch. Progenesis LC-MS takes raw 

data of the MS/MS scans and transforms them to peak lists. One sample was selected as a 

reference after checking the two-dimensional mapping (m/z versus retention time), and the 

retention times of the other samples within the batch were aligned. The 2D map uses as visual 

quality control and highlights any problems in a sample run. Default peak-picking settings were 

used and the resulting aggregate spectra were filtered to include + 2, and + 3 charge states only. 

These aligned spectra contain all peak information, allowing the detection of all ions. An .mgf 

file representing the aggregate spectra was exported and searched for peptide identification 

using in-house Mascot server (Matrix Science, London, UK) using human SwissProt and 

Tremble databases containing 75,004 protein sequences. Search parameters used were: 5 ppm 

precursor mass tolerance, 0.5 Da fragment mass tolerance, cysteine carbamidomethylation was 

set as fixed modification, M oxidation,  NQ deamidation, label 13C(6) (K), label 13C(6) were 

used as variable modifications. Trypsin/P was set as the proteolytic enzyme, and one missed 
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cleavage was allowed (for more details on Progenesis and Mascot processing see (Couto et al., 

2019)). The resulting .xml file was re-imported to assign peptides to features using the 

following thresholds: Mascot determined peptides with ion scores of 15 and above and only 

proteins with at least one unique peptide ranked as top candidate were considered and re-

imported into Progenesis. Maximum number of hits was set to “AUTO” to ensure only 

statistically significant and high-quality identification is applied.  Mascot scores corresponding 

to a false discovery rate (FDR) of <0.01 was set as a threshold for peptide identification. FDR 

of <0.01 was also used for protein-level identification. Quantitative analysis was carried out 

using the “Hi3” intensity-based method on Progenesis as previously described (Al-Majdoub et 

al., 2019). The reference protein, in this case bovine serum albumin (BSA), was assigned at a 

known amount. Knowing the spiked amount of BSA and the accession number, abundance of 

all proteins in the sample was quantified from Progenesis output.  

The parameters applied in MaxQuant were changed from default to match their counterparts in 

Progenesis and Mascot as presented in Table 3-2. Full details of all the parameter settings used 

for MaxQuant are listed in Supplementary Table 3-1. No filters were applied for the scores in 

data processing and cut-off scores were applied manually after exporting the data. 

 

Table 3-2 Processing parameters applied in MaxQuant and Progenesis. 

Parameter description Parameter setting 

Label free quantification Yes 

Multiplicity 1 

Digestion Enzyme Trypsin/P 

Variable Modifications Oxidation (M) & Deamidation (NQ) 

Fixed modifications Carbamidomethyl (C) 

Max number of modifications per peptide 11 

Max charge 7 

Main search peptide tolerance 5 ppm 

Min pep length 7 

Min pep length for unspecific 70 

Max peptide mass [Da] 6000 Da 

Peptides for quantification Unique + razor 

MS/MS match tolerance 0.5 Da 

False discovery rate (FDR) 1% 
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3.3.4 Comparison of peptides identified by MaxQuant and Progenesis 

The comparison aimed to identify the differences between performance of the two software 

tools in terms of the number, nature and identity of identified peptides. 

 

3.3.4.1 Peptide score correlation between software tools 

Using Smallvoice v1.0, an in-house tool for sorting assessment data (Ellis and Barber, 2016), 

peptides detected by the two software tools were combined in one sheet with their 

corresponding scores (MaxQuant score, Progenesis score, or both in cases of overlap). Linear 

regression analysis (using Excel 2016) was applied to correlate MaxQuant and Progenesis 

peptide scores for each sample independently, yielding an equation in the form y = m x, where 

y represents the Progenesis score and x represents the MaxQuant score. All peptides with 

MaxQuant scores below 40 were disregarded, as were the equivalent Progenesis peptides. 

 

3.3.4.2 Numbers and sequences of peptides 

Sequences of peptides above the threshold scores were collated for each software, and from 

these data, the total number of peptides identified by either MaxQuant, Progenesis or both were 

calculated. 

 

3.3.4.3 Correlation of peptide signal intensities between software tools 

The signal intensities generated by the two tools were correlated in the same way as the scores, 

yielding for each sample regression equations in the form y = m x. This was used to assess 

reproducibility of quantification across software.  

 

3.3.4.4 Characteristics of identified software-specific peptides 

Software-specific peptides (i.e. peptides only detected by a single package) were characterised 

to identify the effect of algorithm differences on preferentially identified peptides. Lengths, 

scores and number of modifications were calculated in Excel. Hydrophobicity/hydrophilicity 

of each peptide was calculated using GRAVY score calculator (http://www.gravy-

calculator.de/index.php) and isoelectric points were estimated using 

http://isoelectric.org/index.html. Unpaired student’s t-test was used to determine differences 

between means of the estimated characteristics of the peptides.  

 

http://www.gravy-calculator.de/index.php
http://www.gravy-calculator.de/index.php
http://isoelectric.org/index.html
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3.3.4.5 Calculation of percentage identical peptides 

As an indicator of reproducibility, the quality control parameter ‘percentage identical peptides’ 

(PIP) was calculated (Al Feteisi et al., 2018) both between samples for the two processing 

packages. Of particular interest were PIP values for the same samples processed by MaxQuant 

and Progenesis. Principal components analysis (PCA) was performed on R 3.5.1 using PIP 

values to assess proteome-wide similarity data across the 23 samples. 

 

3.3.5 Comparison at the protein level 

All peptide sequences were matched against UniProt human proteome database, and 

accordingly each peptide was assigned to a certain human protein. The numbers of samples, in 

which a specific protein (CYP, UGT, or transporter) was identified based on unique peptides 

by each software, were counted and compared. In order to assign the detected peptides to 

appropriate human proteins, the following approach was applied:  

 All peptides were matched against the UniProt human proteome fasta file (May 2017) 

(The UniProt Consortium, 2019). Proteins were prioritised according to the following 

criteria: (a) full length proteins were preferred over cDNA; (b) characterised sequences 

were prioritised over uncharacterised ones; and (c) longer sequences of the same 

proteins were preferred over shorter ones. The final order was arranged alphabetically. 

 The remaining peptides that did not match any protein were deleted. Single peptides 

that appeared in two or fewer samples and did not appear in the UniProt fasta file were 

also deleted. 

 A best-fit analysis was then run to minimise the number of accession codes that account 

for all the peptides. 

For each sample, the number of proteins identified with at least one unique or razor peptide by 

each software package was determined. The number of CYP450s, UGTs, ABC and SLC 

transporters were calculated separately. Percentage identical proteins (PIPr) was calculated for 

all pairs of results, both inter- and intra-sample. 

 

3.3.6 Software availability and processing time 

MaxQuant is as an open access cross-platform software available online from 

https://www.maxquant.org/, while Progenesis is a commercial software package provided by 

Waters Corporation (NYSE: WAT) and it requires a licence. The average time taken to process 

a sample was determined for both tools in hours and compared. MaxQuant processing time 

https://www.maxquant.org/
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includes only one step from the raw data to the processed Excel sheets, while Progenesis 

requires an additional step to generate and export the mgf file, which represents the post-

alignment aggregate spectrum, then this file is searched using Mascot.  

The raw files were processed by MaxQuant on personal computers that have the following 

specifications: Processor Intel® Core™ i7-6600U CPU @ 2.6 GHz; RAM 20 GB; 64-bit 

operating system; Windows 10. The computer used for Progenesis processing has the following 

specifications: Dell Precision T7600 Tower workstation; Processor 2x Intel Xeon-E5-2643 

CPU @ 3.30 GHz; RAM 128 GB; 64-bit operating system; Windows 7.   

 

3.4 Results 

 

3.4.1 Comparison of peptide scores between Progenesis and MaxQuant 

The scores of peptides identified by the two software packages were plotted against one 

another, as shown in Figure 3-1A for sample HLM76. Linear regression gave rise to a best fit 

equation in the form y = m x, with R2 values (typically around 0.23 – 0.43) reflecting 

considerable scatter; peptide scores were far from consistent between the two software 

packages. Equations linking scores for all samples are shown in Supplementary Table 3-2. 

Peptides with scores below 40 in MaxQuant were disregarded and the corresponding cut-off 

scores in Progenesis were calculated according to these equations. For sample HLM76, the 

Progenesis cut-off score was 13.4. The average for all samples was 14.03, so a cut-off score of 

14 for Progenesis could be used as an ad hoc equivalent to MaxQuant 40. Figure 3-1B depicts 

all the trend lines for all the samples. The red line represents the trend line for collated data 

from all samples. Equation 3-1 represents the fit of data from all of the samples, allowing a 

slope of 0.35 to be used in the general case. 

𝑃𝑟𝑜𝑔𝑒𝑛𝑒𝑠𝑖𝑠 𝑠𝑐𝑜𝑟𝑒 = 0.3508 × 𝑀𝑎𝑥𝑄𝑢𝑎𝑛𝑡 𝑠𝑐𝑜𝑟𝑒…………………………. (Equation 3-1)  
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Figure 3-1 Linear regression of MaxQuant and Progenesis peptide scores. A representative linear regression analysis for one 

sample, HLM76, is shown (A), with the trend lines for the linear regression equations for each sample shown in black and for 

the collated data from all samples shown in red (B). 

 

3.4.2 Total number of peptides and modified peptides 

Prior to filtering, the total number of peptides identified by the two packages averaged 20736 

for Progenesis and 17963 for MaxQuant (Supplementary Table 3-4). Filtering the data led to 

identification of 14870 (range 11490-16126) by Progenesis, compared with 17534 (range 

15991-20129) by MaxQuant. The default parameters in MaxQuant have a cut-off for modified 

peptides of 40, and these are generally the peptides with the lowest scores. Modified peptides 

in this study represent peptides with asparagine/glutamine deamidation and/or methionine 

oxidation. Table 3-3 summarises the numbers of peptides detected by the two software 

packages after data filtering. There was from 52–72% overlap (65% on average) between the 

peptides detected by the two packages; 10% of the peptides identified by Progenesis were 

modified but only 6% of those identified by MaxQuant. 

Sample HLM73 (and to a lesser extent HLM41) is an interesting case, with much higher levels 

of modification than the norm, identified by both software packages.  It is not clear whether 

the high level of modification is the result of technical differences in handling the samples, or 

biological differences (for example in response to ageing). 
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Table 3-3 Comparison of the total number of peptides, peptides specific for each software and modified peptides as identified by MaxQuant and Progenesis. This comparison 

was done after removing the peptides with low scores. 

Sample 

MaxQuant 

total peptides 

Progenesis 

total 

peptides 

MaxQuant only 

peptides 

Progenesis only 

peptides 

Overlap 

MaxQuant 

modified 

Progenesis 

modified 

Number Percent Number Percent Number Percent Number Percent Number Percent 

HLM01 15991 11490 3280 18% 2193 12% 12711 70% 673 4% 1337 9% 

HLM02 20129 14838 7313 33% 2022 9% 12816 58% 1182 6% 1397 9% 

HLM06 18343 14437 6092 30% 2186 11% 12251 60% 892 5% 1405 10% 

HLM08 17563 15876 3906 20% 2219 11% 13657 69% 789 4% 1267 8% 

HLM11 17509 15947 3931 20% 2369 12% 135784 68% 833 5% 1507 9% 

HLM25 18421 15483 5407 26% 2469 12% 13014 62% 961 5% 1553 10% 

HLM38 17480 16126 3735 19% 2381 12% 13745 69% 861 5% 1461 9% 

HLM41 17335 14589 5076 26% 2330 12% 12259 62% 1338 8% 1828 13% 

HLM48 17270 15113 4265 22% 2108 11% 13005 67% 910 5% 1343 9% 

HLM71 16012 15644 2746 15% 2378 13% 13266 72% 786 5% 1522 10% 

HLM72 16883 15406 3637 19% 2160 11% 13246 70% 829 5% 1425 9% 

HLM73 16727 15225 3707 20% 2205 12% 13020 69% 2921 17% 3137 21% 

HLM74 17828 14352 5691 28% 2215 11% 12137 61% 827 5% 1391 10% 
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HLM75 16447 15058 3537 19% 2148 12% 12910 69% 752 5% 1388 9% 

HLM76 18744 14454 6447 31% 2157 10% 12297 59% 1006 5% 1431 10% 

HLM77 16802 14847 3872 21% 1917 10% 12930 69% 907 5% 1285 9% 

HLM78 18361 14256 6294 31% 2189 11% 12067 59% 987 5% 1457 10% 

HLM80 16918 15075 4037 21% 2194 12% 12881 67% 758 4% 1365 9% 

HLM89 17379 15941 3827 19% 2389 12% 13552 69% 1492 9% 2004 13% 

HLM90 17071 12205 4009 20% 2731 14% 13062 66% 931 5% 1140 9% 

HLM91 16812 15111 4045 21% 2344 12% 12767 67% 790 5% 1399 9% 

HLM100 17722 15666 4334 22% 2278 11% 13388 67% 854 5% 1388 9% 

HLM117 19535 14884 6998 32% 2347 11% 12537 57% 921 5% 1517 10% 

Mean 17534 14870 4617 23% 2258 11% 18231 65% 1009 6% 1519 10% 

SD 1027 1102 1273 5% 165 1% 25630 5% 458 3% 394 3% 

CV 6% 7% 28% 23% 7% 8% 141% 7% 45% 47% 26% 26% 
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3.4.3 Correlation between intensities in MaxQuant and Progenesis 

Good correlations were observed between intensities of peptide signals reported by MaxQuant 

and Progenesis, with each sample giving a relationship in the form y = m x, with average R2 of 

0.75 (Figure 3-2B). Although each sample had an independent linear regression equation 

(Figure 3-2A), intensities reported by MaxQuant were always higher than corresponding 

intensities reported by Progenesis. Individual regression equations for intensities for each 

individual sample are shown in Supplementary Table 3-3. The average trend line for all data 

was described by the equation below: 

𝑃𝑟𝑜𝑔𝑒𝑛𝑒𝑠𝑖𝑠 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 = 0.0149 × 𝑀𝑎𝑥𝑄𝑢𝑎𝑛𝑡 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦…………………. (Equation 3-2)  

 

 

Figure 3-2 Linear regression of MaxQuant and Progenesis peptide signal intensities. A representative linear regression 

analysis for one sample, HLM76, is shown (A). The trend lines for the linear regression equations for each sample are shown 

in black and for the collated data from all samples shown in red (B). 
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3.4.5 Peptide characteristics 

Several characteristics of the peptides detected by a single tool were now investigated, as these 

were thought to be indicative of any possible bias by the software algorithm. These are 

illustrated in Figure 3-3, using sample HLM76 as an example. Firstly, any bias towards long 

or short peptides was probed. The median and mode lengths of MaxQuant specific peptides 

(n=6447, non-Gaussian distribution) were 13 and 11, whereas median and mode lengths of 

Progenesis-specific peptides (n=2157, non-Gaussian distribution) were 13 and 7, showing that 

Progenesis favoured relatively shorter peptides. The scores of software-specific peptides were 

treated similarly. The ranges of median and mode scores of the MaxQuant specific peptides for 

all the samples were 74.6 to 199.7 and 46.5 to 367.2, whereas ranges of median and mode 

scores of the Progenesis-specific peptides were 23.9 to 53.1 and 13.6 to 88.6, which, when 

adjusted to be equivalent to the MaxQuant values (using equations in Supplementary Table 3-

2) were 57.9 to 164.7 and 40.4 to 257.2 (Supplementary Table 3-7). Thus, MaxQuant detects 

a higher number of software-specific peptides with relatively greater confidence than 

Progenesis. The same trends were observed across all samples.  

Figure 3-3C shows GRAVY scores for MaxQuant-specific and Progenesis-specific peptides; 

the more negative the value, the more hydrophilic the peptide. Each peptide is represented by 

a line starting from 0 on the y axis and ending either in the positive or the negative side of the 

y axis, depending on the actual value of hydrophobicity (GRAVY score). The median and 

mode GRAVY scores of the MaxQuant specific peptides in all samples ranged  from –0.35 to 

0.09 and from –0.7 to 0.4, respectively, whereas median and mode GRAVY scores of the 

Progenesis-specific peptides were ranging from –0.53 to –0.43 and from –0.9 to 0.1 

(Supplementary Table 3-8). Therefore, the peptides identified by Progenesis (Figure 3-3C) had 

more negative GRAVY scores, indicating higher hydrophilicity than those identified solely by 

MaxQuant (Figure 3-3C). 

Supplementary Table 3-5 provides an example of statistical analysis in relation to the peptide 

length, GRAVY score (hydrophobicity), isoelectric point (PI), and molecular weight of 

peptides from sample HLM76. Comparison of these characteristics showed that Progenesis-

specific peptides were generally shorter, more hydrophilic, and more basic, with lower mass. 
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Figure 3-3 Characteristics of sample HLM76 peptides identified by the two software packages in terms of length (A), score 

(B) and hydrophobicity (C). 

 

3.4.6 Multivariate analysis of peptide and protein data  

PIP (percentage identical peptides) and PIPr (percentage identical proteins) were calculated 

between samples for each software package as previously described (Al Feteisi et al., 2018), 

and the results were analysed by principal components analysis (PCA). PCA results are 

presented in Figure 3-4. PCA on PIP and PIPr values returned two distinct clusters for each 

package. Clustering of PIP and PIPr data generated with Progenesis and MaxQuant were quite 

similar and the % variance explained by each dimension were almost identical. The clusters 

contained the same patient samples and the difference between PIP and PIPr (regardless of the 

software) was the outlier with PIP (sample HLM73) and PIPr (sample HLM2). Sample HLM73 

is different at the peptide level possibly due to extensive modification as shown in Table 3-3. 

Importantly, PCA provides more information in relation to explained variance when technical 

and biological factors are tractable.  
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Figure 3-4 Principal components analysis (PCA) for 23 human liver samples based on percentage identical peptides (PIP) 

identified by Progenesis (A) and MaxQuant (B), and percentage identical proteins (PIPr) identified by Progenesis (C) and 

MaxQuant (D). 

 

3.4.7 Drug-metabolising enzymes and transporters  

We now focused on membrane proteins of particular interest in drug metabolism and 

disposition: CYPs, UGTs, ABC and SLC transporters. For each of these proteins, the number 

of samples in which the protein could be detected (with unique peptides) by each software 

package is shown in Supplementary Table 3-6. Figure 3-5, 3-6 and 3-7 shown the results for 

(CYP and UGT) enzymes, ABC transporters and SLCs, respectively. The more abundant 

proteins (for example, CYP3A4, UGT1A1, ABCD3, SLC3A1) were found in all 23 samples, 

regardless of the software. More interesting in the context of this paper are examples such as 

CYP1A1, CYP2F1, UGT1A7, ABCA2, and many SLC transporters which, in many samples, 

achieve a positive identification using one software package only (Figure 3-5, 3-6, 3-7).  In 

these cases, the use of two software packages permits additional identification and higher 

coverage of important proteins relative to the use of a single package. However, these uniquely 

identified proteins require additional rigour to establish confidence in their identification. The 

most important cases are summarised in Table 3-4. 
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Figure 3-5 The number of samples in which CYPs and UGTs identified by each software tool. Other CYPs and UGTs that 

have been identified by both software (overlap) in all samples are not included. 

 

 

Figure 3-6 The number of samples in which ABC transporters were identified by each software tool. Other ABC transporters 

that have been identified by both software (overlap) in all samples are not included. 
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Figure 3-7 The number of samples in which solute carriers (SLCs) were identified by each software tool. Other SLC 

transporters that have been identified by both software (overlap) in all samples are not included.  

 

Table 3-4 Drug-metabolising enzymes and transporters identified by the two software packages. 

Protein 

Number of 

samples with 

reliable detection 

by Progenesis 

Number of 

samples with 

reliable detection 

by MaxQuant 

Comments 

CYP1A1 7 2 

Involved in steroid hormone biosynthesis 

(Schwarz et al., 2004), fatty acid 

(Schwarz et al., 2004), and retinol 

metabolism (Chen et al., 2000). 

CYP39A1 13 19 
Involved in cholesterol degradation and 

bile acid biosynthesis (Stiles et al., 2014). 

CYP2A7 18 5  

CYP2F1 22 0 
Possibly involved in the metabolism of 

naphthalene (Li et al., 2017). 

CYP4F8 11 23 
Involved in fatty acid metabolism (Bylund 

et al., 2000). 

CYP4F22 16 15 Autosomal recessive loss of function 

mutations associated with congenital 
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ichthyosiform erythroderma (Sugiura et 

al., 2013; Sugiura and Akiyama, 2015). 

CYP2J2 17 21 
Involved in arachidonate metabolism 

(Lucas et al., 2010). 

CYP2S1 10 15 
Involved in fatty acid metabolism (Bui et 

al., 2011). 

ABCA1 

(ABC1) 
16 22 

Involved in the transport of cholesterol 

and high density lipoproteins (Quazi and 

Molday, 2013). Mutations lead to Tangier 

disease (Rust et al., 1999). 

ABCA2 

(ABC2) 
4 16 

Associated with drug resistance in cancer 

cells, and one SNP of ABCA2 is linked to 

early onset of Alzheimer’s disease (Mack 

et al., 2008). 

ABCB5 

(ABCB5 P-

gp) 

4 2 

Associated with drug resistance in 

colorectal cancer and melanoma (Wilson 

et al., 2011, 2014). 

ABCC2 

(MRP2) 
12 22 

Mutations are associated with Dubin-

Johnson syndrome(Schuetz et al., 2014). 

ABCD4 

(PMP70) 
16 23 

Involved in vitamin B12 transport (Deme 

et al., 2014). 

SLC2A1 

(GLUT-1) 
10 5 

Involved in glucose transport and when 

mutated, associated with GLUT1 

deficiency syndrome (Lee et al., 2015). 

SLC29A1 

(ENT1) 
12 17 

Mutations are associated with inherited H 

syndrome, pigmented hypertrichosis with 

insulin-dependent diabetes, and 

Faisalabad histiocytosis (Bolze et al., 

2012). 

SLC29A3 

(ENT3) 
11 5 

Mutations associated with disorders, such 

as H syndrome, pigmented hypertrichotic 

dermatosis with insulin-dependent 

diabetes syndrome, and histiocytosis with 

massive lymphadenopathy (Kang et al., 

2010). 

SLC22A7 

(OAT2) 
14 20 

Acts as sodium–independent organic 

anion/dimethyldicarboxylate exchanger 

(Kobayashi et al., 2005). 
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3.4.8 Processing time 

Although computer specifications were superior with Progenesis, it took approximately 3 hours 

to process 2 raw files (2 replicates of the same sample with average size 1.5 GB) with 

Progenesis and 2-4 hours by MaxQuant. Notably, Progenesis requires an additional step to run 

a search on Mascot in order to generate the final output for identification and quantification of 

the protein targets, which might take 1 extra hour. Both software processing procedures are 

time consuming but being an open access tool, MaxQuant can be used on personal computers 

while commercially available tools (e.g. Progenesis) are expensive and are normally operated 

on dedicated PCs.  

 

3.5 Discussion 

Mass spectrometry-based global proteomics is a powerful tool, allowing thousands of proteins 

to be identified and quantified simultaneously, with very high sensitivity and selectivity. Many 

commentators have noted, however, that such sensitivity and selectivity come at a price – the 

lack of independent verification.  Perhaps the most oft-quoted summary is that of Professor Ian 

Wilson of Imperial College, London “Nuclear magnetic resonance (NMR) is like a mother that 

is reliable and doesn’t lie to you but is often insensitive. LC-MS is like a lover that lies to you.” 

(https://factor.niehs.nih.gov/2013/9/science-metabolomics/index.htm). Sample preparation 

and sampling by the mass spectrometer can lead to reasonably well-understood differences 

between the results reported by different laboratories, even when many replicates are run and/or 

many fractionation steps performed.  It remains, however, somewhat disturbing that different 

processing software, even when (as here) well-respected packages are used, can yield different 

results using the same input. 

There have been a relatively small number of studies devoted to understanding the role of the 

processing package in interpreting global proteomic data and many of these focus on quite 

simple model systems, such as yeast and plants (Nesvizhskii, 2010; Tsai et al., 2012). The real 

importance of differences in processing will only be apparent when different packages are used 

to process clinical samples, especially precious human samples where sample availability is 

limited and where the proteins under study are of low abundance, membrane bound, or show 

high homology and therefore yield few unique peptides. 

Duplicate MS output files, generated from duplicate tryptic digests of 23 human liver samples 

were processed by two different software packages, Progenesis and MaxQuant.  Peptide score 

https://factor.niehs.nih.gov/2013/9/science-metabolomics/index.htm
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correlation obtained for each sample by the two software tools was performed and an average 

trend line was created to establish a score cut-off equivalent to a MaxQuant score of 40. A 

comparison between the remaining sets of peptides was performed. The overlap between the 

peptides detected by the two packages ranged from 52–72% (mean 65%) with the total number 

of peptides identified by MaxQuant typically 18% higher. Progenesis, on average detected 

more modified peptides (10% compared to 6% for MaxQuant). A comparison of the 

characteristics of the software-specific peptides showed that, in general, Progenesis identified 

shorter peptides than MaxQuant, and they tended to be more basic and more hydrophilic.   

We used consistent parameters for both software tools (mass tolerance, enzyme specificity, 

missed cleavages and modifications) and both search engines use a peptide score to match the 

experimental MS/MS data with a theoretical spectrum. The scoring of the peptide-spectrum 

match (PSM) by both tools is based on a probability calculation. The more recently developed 

Andromeda (MaxQuant) tool bases the scores on a binomial distribution probability, taking 

into account peptide fragments, neutral losses (water, ammonia) and diagnostic peaks 

(Neuhauser et al., 2011; Tyanova et al., 2016). Mascot (Progenesis) scoring uses peptide 

fragments for spectral correlation with a probabilistic modelling approach and applies an ion 

score cut-off to filter the PSMs (Tu et al., 2016). Although the scoring systems seem very 

similar, the processes necessary for assigning a PSM can yield different outcomes because the 

algorithms used for peak picking and subsequent peptide sequencing differ between search 

engines (Paulo, 2013). False positive PSMs present a challenge, as the false peptide/protein 

identification interferes with the interpretation of the data. Therefore, ways to measure and 

control the number of false identifications are required. These measures discriminate correct 

PSMs from false identifications and ultimately allow controlling the false discovery rate (FDR) 

(Nesvizhskii, 2010). 

The scoring algorithms aim to describe the match quality, for instance, the number of shared 

fragment ions between a spectrum and a candidate peptide sequence (Perkins et al., 1999) or 

similarity in general. In the case of Mascot/Andromeda the number of shared fragment ions is 

converted into a probabilistic match score using the negative logarithm of the determined 

probability that the computed PSM is an incorrect assignment (Neuhauser et al., 2011). This 

generates a measure of match quality with high scores representing more likely hits and a high 

proportion of matching fragment ions. An expectation value is calculated for all sequence 

candidates based on the score distribution. Low quality peaks can either be used for scoring or 

filtered out by the search engine, leading to differences in the quality of the PSMs. Matches of 
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medium to high quality spectra tend to be scored robustly by the two software, leading to the 

observed significant overlap. 

For the purpose of comparison in this study, the score cut-off values were normalized based on 

a predefined cut-off score of 40 for MaxQuant. An equivalent value was determined for Mascot 

(ranging from 11.9 to 16.5). This finding is in agreement with the literature, which reported 

that MaxQuant score is about three times Mascot score (Neuhauser et al., 2011). The cut-off 

values of ≥ 40 for MaxQuant and ≥ 20 for Mascot were reported to offer a high identification 

probability in proteomics (Tsai et al., 2012; Dudekula and Le, 2016). Higher score was 

associated with unmodified peptides, with a clear indication of higher confidence in 

unmodified peptide identification across the 23 analysed samples; the average proportion of 

unmodified peptides associated with scores ≥ 40 for MaxQuant and Mascot was 94% and 90%, 

respectively. This is in line with a previous assessment reporting 89.1% unmodified peptides 

(in mouse dendritic cells) (Neuhauser et al., 2011). 

At the protein level, our comparison focused on hepatic drug-metabolising enzymes and 

transporters involved in drug metabolism and disposition. There is considerable inter-

individual variability in the expression of these proteins, and this results in different efficacy 

and toxicity of drugs among different patients (Turner et al., 2015). The distribution and 

abundances of these proteins can be used for the prediction of the pharmacokinetics of drugs 

in pharmacologically based pharmacokinetics models. More specifically, they can be used as 

scaling factors for the in vitro to in vivo extrapolation of drug clearance (Rostami-Hodjegan, 

2012). 

In most of the samples, unique peptides corresponding to CYP and UGT proteins were detected 

by both software tools; in general, Progenesis and MaxQuant identified similar numbers of 

CYP and UGT peptides (Chi-squared test, p>0.05). There were some discrepancies, however, 

with the most interesting cases being CYP1A1, 2A7, 2F1, 4F8 and UGT1A7 (Table 3-4 and 

Figure 3-5). These are important for the metabolism of steroids, pneumotoxicants, naphthalene, 

fatty acids, and many other endogenous and xenobiotic substances (Table 3-4) (Tournel et al., 

2007). 

The present study uses label-free proteomics and one of its objectives is to compare the peptides 

unique for MaxQuant and those unique for Progenesis. The peptides are assigned to proteins 

by Uniprot and are unique for the protein group. The expression of UGT1A5 and UGT1A7 in 

human livers has not been reported. The peptides used for the identification of UGT1A5 and 
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UGT1A7 are unique for the group UGT1A, but not for UGT1A5 and UGT1A7. For the purpose 

of this study, this shouldn’t be considered as a limitation as the main aim is the comparison 

between the two software tools. However, further investigation of this observation is required 

using targeted proteomics, in order to confirm the presence or absence of these UGTs in human 

liver samples. 

Transporters are generally expressed at very low levels and in the plasma membrane, rather 

than endoplasmic reticulum, so they are not well enriched in microsomal preparations. We have 

previously demonstrated that microsomes are a crude membrane fraction that comprises 

membranes from various intracellular compartments as well as the plasma membrane (Achour, 

Al Feteisi, et al., 2017; Couto et al., 2019). Endoplasmic reticulum is highly enriched in 

microsomes while plasma membrane tends to be less enriched; enrichment factors are normally 

less than 2 fold for plasma membrane, whereas reticular proteins have higher enrichment (>5 

fold) (Weiß et al., 2018) This is mainly because of different levels of loss of membrane protein; 

in-house data showed 50-80% recovery of reticular protein compared to 30-60% recovery of 

cell membrane protein (Achour, Al‐Majdoub, et al., 2020). Microsomal crude membrane 

extracts are not perfect but they are the best available enriched membrane preparation. 

Extracting purer fractions such as plasma membrane fractions is fraught with unmitigated 

levels of protein loss. Like UGTs, transporters are membrane embedded, and, like UGTs, they 

tended to be more readily detected by MaxQuant. However, count differences (Chi-squared 

statistics) showed non-significant differences. Table 3-4 and Figure 3-5, 3-6 and 3-7 show that 

in some cases, MaxQuant identifies more unique peptides for CYPs, UGTs and transporters, 

whereas in other cases the opposite trend is observed. Table 3-4 also illustrates how the peptides 

detected only by Progenesis (for example, GNGIAFSSGDRWK and KSPAFMPFSAGR from 

CYP2F1) tend to be hydrophilic and basic whereas those detected only in MaxQuant (for 

example, TLDFIDVLLLSEDKNGK and SVINTSDAITDK from CYP4F8) tend to be slightly 

longer, less hydrophilic and weak acids, in line with the characteristics preferred by MaxQuant 

compared to Progenesis. The ABC transporters’ dataset illustrates that any search conditions 

will inevitably lead to some loss of genuine peptides together with the noise.  When this dataset 

was subjected to MaxQuant processing with deamidation not permitted, most of the peptides 

detected here only with Progenesis appeared.   

The PCA analysis of the data shown in Figure 3-4 is gratifying. The two software packages are 

in broad agreement, especially with respect to inter-individual variability. For example, both 

packages agree that sample 75 is similar to 71, and 77 is similar to 89. Where they disagree, 
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we have developed some understanding of the reasons. It is therefore possible carefully to 

augment the data obtained using a Progenesis single package (Couto et al., 2019) with the 

additional data obtained here using MaxQuant. A representative sample of the peptides unique 

to MaxQuant was checked manually. Supplementary Table 3-9 shows quantification of 

transporters, which was only achieved with the contribution of the second software package. 

To conclude, when two software packages (in this case MaxQuant and Progenesis) are used to 

analyse the same proteomic LC-MS/MS dataset, different results are obtained with on average 

65% identical peptides. MaxQuant favours short, hydrophobic, more acidic peptides while 

Progenesis favours shorter, hydrophilic, basic peptides, including those with post-translational 

modification. The overlap gives a set of very robust identifications, and these are sufficient for 

many purposes where abundant proteins from reproducible samples are being detected. The 

present samples, however, are precious, from human donors and the proteins under study are 

of low abundance. In this case, the additional effort of extracting information readily verifiable 

with only one of the software packages is worthwhile.     
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3.7 Supplementary Information 

 

Supplementary Table 3-1 Detailed parameters applied with MaxQuant. 

Group specific Parameters 

1- Type Standard: none  Multiplicity: 1 

2- Digestion mode: Specific Enzyme: Trypsin/P      

 Max. missed: 1 

3- Modifications Variable modifications:  

Oxidation (M) & Deamidation (NQ)                                                        

 Max number of modifications per peptide: 11 

4- Instrument   Orbitrap 

First search peptide tolerance 20 Main search peptide tolerance 5 

Peptide tolerance unit ppm Individual peptide mass tolerance (Checked) 

Isotop match tolerance 2 Isotop match tolerance unit  ppm 

Centroid match tolerance  8 Centroid match tolerance  unit        ppm 

Centroid half width   35 Centroid half width   unit    ppm 

Time Valley Factor   1.4 Isotop Valley factor   1.2 

Isotop time correlation      0.6 Theoretical isotope correlation 0.6 

Recalibration unit      ppm Min Peak length      2 

Max charge      7                                                 Min score for recalibration 70 

Cut peaks     (checked) Gap scans      1 

Intensity threshold        0 Intensity determination   Value at Maximum 

5- Label free quantification: yes  

Global parameters 

1- Sequence include contaminants  (checked) 

Fixed modifications      Carbamidomethyl (C)             Min pep length     7 

Max peptide mass [Da] 4500                                              Min peptide length for unspecific search   8 

Max. peptide length for unspecific search 25  

2- Identification PSM FDR   0.01 

XPSM FDR 0.01  Protein FDR  0.01 

Site decoy fraction 0.01 Min. peptides 1 

Min.razor + unique peptides 1 Min. unique peptides 0 
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Min. score for unmodified peptides 0 Min. score for modified peptides 0   

Min. delta score for unmodified peptides 0 Min. delta score for modified peptides 6 

Main search max. combinations 200 Base FDR calculations on delta score 

(unchecked) 

Razor protein FDR checked  

3- Protein Quantification Label min. ratio count 2 

Peptides for quantification Unique + razor  Use only unmodified peptides  

Modifications used in protein quantification Oxidation (M) & Deamidation (NQ)                                                     

Discard unmodified counterpart peptides (checked) Advanced ratio estimation (checked) 

4- Advanced Calculate peak properties (unchecked)  

Decoy mode Revert  Use for occupancies Normalized ratios 

5- Label free quantification Separate LFQ in parameter groups unchecked 

Stabilize large LFQ ratios (checked) Require MS/MS for LFQ comparisons 

(checked) 

¡BAQ (unchecked) Advanced site intensities (checked) 

LFQ norm for sites and peptides (unchecked) 6- MS/MS FTMS 

FTMS MS/MS match tolerance 20 FTMS MS/MS match tolerance unit ppm 

FTMS MS/MS de novo tolerance 10 FTMS MS/MS de novo tolerance unit ppm 

FTMS MS/MS deisotoping tolerance 7 FTMS MS/MS deisotoping tolerance unit ppm 

FTMS top peaks per Da interval 12 FTMS top x mass window [Da] 100 

FTMS de isotoping (checked) FTMS higher charges (checked) 

 FTMS water loss (checked) FTMS ammonia loss (checked) 

FTMS dependent losses (checked) FTMS recalibration (unchecked) 

7- MS/MS ITMS ITMS MS/MS match tolerance   0.5                                                                     

ITMS MS/MS match tolerance unit Da ITMS MS/MS de novo tolerance 0.25 

ITMS MS/MS de novo tolerance unit Da  ITMS MS/MS deisotoping tolerance 0.15  

ITMS MS/MS deisotoping tolerance unit  Da  ITMS top peaks per Da interval   8 

ITMStop x mass window [Da]    100 ITMS de-isotoping  (unchecked) 

ITMS higher charges  (checked)  ITMS water loss (checked) 

ITMS ammonia loss (checked) ITMS dependent losses checked 

ITMS recalibration  (unchecked) 8- MS/MS- TOF 

TOF MS/MS match tolerance 40 TOF MS/MS match tolerance unit  ppm 

TOF MS/MS de novo tolerance   0.02  TOF MS/MS de novo tolerance unit Da 

TOF MS/MS deisotoping tolerance   0.01  TOF MS/MS deisotoping tolerance unit  Da 

TOF top peaks per Da interval 10 TOF top x mass window [Da] 100 
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TOF de isotoping (checked) TOF higher charges (checked) 

TOF water loss (checked) TOF ammonia loss (checked) 

TOF dependent losses (checked) TOF recalibration (unchecked) 

9- MS/MS unknown Unknown MS/MS match tolerance 0.5                                                                

Unknown MS/MS match tolerance unit Da  Unknown MS/MS de novo tolerance 0.25  

Unknown MS/MS de novo tolerance unit  Da Unknown MS/MS deisotoping tolerance  0.15 

Unknown MS/MS deisotoping tolerance unit Da Unknown top peaks per Da interval 8 

Unknown top x mass window [Da] 100 Unknown de isotoping  (unchecked) 

Unknown higher charges  (checked) Unknown water loss  (checked) 

Unknown ammonia loss (checked) Unknown dependent losses checked 

Unknown recalibration  (unchecked) 10- tables 

Write msScans table  (checked) Write msms Scans table   (checked) 

Write ms3Scans table  (checked) Write all Peptides table   (checked) 

Write mzRange table   (checked) Write pasefMsms Scans table (checked) 

Write accumulatedPasef Msms Scans table  (checked)  
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Supplementary Table 3-2 Range of cut-off scores in Progenesis. The cut-off scores for Progenesis are equivalent 

to a cut-off score of 40 in MaxQuant. The equation represents a mathematical relationship that allows conversion 

of cut-off scores from one software to the other. Progenesis score is represented by y and MaxQuant score by x.  

Sample Equation to convert cut-off scores R2 Cut-off score for Progenesis 

HLM76 y=0.3353x 0.32 13.4 

HLM02 y=0.3445x 0.34 13.8 

HLM25 y=0.3386x 0.35 13.5 

HLM48 y=0.359x 0.41 14.4 

HLM73 y=0.374x 0.43 15.0 

HLM80 y=0.3539x 0.34 14.2 

HLM91 y=0.3617x 0.35 14.5 

HLM06 y=0.3439x 0.32 13.8 

HLM11 y=0.3552x 0.41 14.2 

HLM38 y=0.3673x 0.40 14.7 

HLM41 y=0.3187x 0.25 12.8 

HLM72 y=0.3489x 0.41 14 

HLM75 y=0.3675x 0.37 14.7 

HLM90 y=0.2964x 0.30 11.9 

HLM117 y=0.3215x 0.28 12.9 

HLM08 y = 0.4129x 0.23 16.5 

HLM71 y = 0.3682x 0.32 14.7 

HLM77 y = 0.3651x 0.40 14.6 

HLM78 y = 0.3371x 0.31 13.5 

HLM74 y = 0.3446x 0.33 13.8 

HLM100 y = 0.3561x 0.36 14.2 

HLM89 y = 0.3643x 0.43 14.6 

HLM01 y = 0.363x 0.35 14.5 
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Supplementary Table 3-3 Regression equation for the relationship between Progenesis intensities (y) and 

MaxQuant intensities (x) and the coefficient of determination for each individual human liver microsome (HLM) 

sample. 

Sample Regression equation to convert intensities R2 

HLM01 y=0.0248x 0.68 

HLM02 y=0.012x 0.62 

HLM06 y=0.0123x 0.59 

HLM08 y=0.0145x 0.62 

HLM11 y=0.0162x 0.50 

HLM25 y=0.0146x 0.60 

HLM38 y=0.0118x 0.66 

HLM41 y=0.01242x 0.59 

HLM48 y=0.0144x 0.59 

HLM71 y=0.0132x 0.65 

HLM72 y=0.0171x 0.57 

HLM73 y=0.0151x 0.59 

HLM74 y=0.0123x 0.61 

HLM75 y=0.0115x 0.65 

HLM76 y=0.013x 0.74 

HLM77 y=0.0147x 0.67 

HLM78 y=0.0131x 0.56 

HLM80 y=0.0144x 0.67 

HLM89 y=0.0156x 0.57 

HLM90 y=0.016x 0.57 

HLM91 y=0.025x 0.63 

HLM100 y=0.0127x 0.53 

HLM117 y=0.0149x 0.49 
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Supplementary Table 3-4 Comparison of the total number of peptides, peptides specific for a software and modified peptides identified by MaxQuant and Progenesis. This comparison was 

done before removing peptides with scores lower than 40 in MaxQuant or equivalent for Progenesis. 

Sample 
MaxQuant total 

peptides 

Progenesis total 

peptides 

MaxQuant only 

peptides 

Progenesis only 

peptides 
Overlap MaxQuant modified Progenesis modified 

Number Percent Number Percent Number Percent Number Percent Number Percent 

HLM01 16366 20284 3280 14% 7198 31% 13086 56% 714 4% 5053 25% 

HLM02 20584 19950 7485 27% 6851 25% 13099 48% 1259 6% 4919 24% 

HLM06 18725 19236 6531 25% 7042 27% 12194 47% 937 5% 4784 25% 

HLM08 18169 22645 3934 15% 8410 32% 14235 54% 872 5% 5801 26% 

HLM11 17912 21733 4351 17% 8172 31% 13561 52% 946 5% 5534 26% 

HLM25 18773 20558 5475 21% 7260 28% 13298 51% 1037 6% 5130 25% 

HLM38 17909 22449 4212 16% 8752 33% 13697 51% 929 5% 5841 26% 

HLM41 17789 21019 4580 18% 7810 31% 13209 52% 1470 8% 5656 27% 

HLM48 17743 20701 4388 17% 7346 29% 13355 53% 917 6% 5258 25% 

HLM71 16413 21986 2772 11% 8345 34% 13641 55% 847 5% 5990 27% 

HLM72 17269 21027 4028 16% 7786 31% 13241 53% 936 5% 5305 25% 

HLM73 17393 20847 3946 16% 7400 30% 13447 54% 3236 19% 7199 35% 

HLM74 18170 19150 5741 23% 6721 27% 12429 50% 879 5% 4728 25% 

HLM75 16809 20901 3957 16% 8049 32% 12852 52% 842 5% 5487 26% 

HLM76 19091 19107 6554 26% 6570 26% 12537 49% 1103 6% 4673 24% 

HLM77 17348 20466 3916 16% 7034 29% 13432 55% 1014 6% 5115 25% 

HLM78 18794 18989 6467 25% 6662 26% 12327 48% 1113 6% 4790 25% 

HLM80 17326 20734 4113 17% 7521 30% 13213 53% 839 5% 5366 26% 

HLM89 17801 22059 3853 15% 8111 31% 13948 54% 1603 9% 6258 28% 

HLM90 17497 21586 4142 16% 8231 32% 13355 52% 1030 6% 5693 26% 

HLM91 17149 20650 4061 16% 7562 31% 13088 53% 836 5% 5224 25% 

HLM100 18207 21220 4477 17% 7490 29% 13730 53% 988 5% 5242 25% 

HLM117 19923 19628 7491 28% 7196 27% 12432 46% 1031 5% 4886 25% 

Mean 17963 20736 4772 19% 7544 30% 13192 52% 1103 6% 5388 26% 

SD 1021 1059 1311 5% 611 2% 531 3% 508 3% 581 2% 

CV 6% 5% 27% 25% 8% 8% 4% 5% 46% 47% 11% 8% 
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Supplementary Table 3-5 Statistical comparison between peptide characteristics for sample HLM76 in relation 

to peptide length, GRAVY score (hydrophobicity), isoelectric point (PI), and molecular weight of peptides 

detected by only one software tool MaxQuant (Max.) and Progenesis (Pro.). 

 Length GRAVY score PI Molecular weight 

 Max. Pro. Max. Pro. Max. Pro. Max. Pro. 

Median 13 13 -0.1667 -0.4692 5.848 6.613 1530.69 1450.72 

Mode 11 7 -0.1 -0.3 9.831 9.831 1264.4 785.939 

n 6447 2157 6447 2157 6447 2157 6447 2157 

Mann-Whitney 

test P value 
<0.0001 <0.001 <0.001 <0.001 

 

 

 

 

 

 

 

 

 

 

 

 

 



|Chapter 3 

175 
 

Supplementary Table 3-6 Enzyme and transporter proteins detected in 23 human liver samples by the two 

software tools. 

Gene name 
Number of samples where unique/distinct peptides are identified 

Progenesis only MaxQuant only Both Neither 

CYPs 

CYP1A1 5 0 2 16 

CYP1A2 0 0 23 0 

CYP17A1 0 0 1 22 

CYP20A1 0 0 0 23 

CYP26A1 1 3 1 18 

CYP27A1 0 0 23 0 

CYP39A1 0 6 13 4 

CYP51A1 0 0 23 0 

CYP3A4 0 0 23 0 

CYP3A5 0 0 23 0 

CYP2A6 0 0 23 0 

CYP2A7 13 0 5 5 

CYP3A7 3 0 14 6 

CYP4A11 0 0 23 0 

CYP2A13 1 0 0 22 

CYP4A22 1 0 0 22 

CYP1B1 0 0 2 21 

CYP7B1 0 0 23 0 

CYP8B1 0 0 23 0 

CYP2B6 0 0 23 0 

CYP2C8 0 0 23 0 

CYP2C9 0 0 23 0 

CYP2C18 0 2 20 1 

CYP2C19 0 1 17 5 

CYP2D6 0 0 23 0 

CYP2E1 0 0 23 0 

CYP2F1 22 0 0 1 

CYP4F2 0 0 23 0 
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CYP4F3 0 2 21 0 

CYP4F8 0 12 11 0 

CYP4F11 0 0 23 0 

CYP4F12 0 1 17 5 

CYP4F22 6 5 10 2 

CYP2J2 1 5 16 1 

CYP2S1 2 7 8 6 

CYP4V2 0 1 22 0 

UGTs 

UGT1A1 0 0 23 0 

UGT2A1 0 2 20 1 

UGT3A1 1 3 2 17 

UGT1A3 0 0 23 0 

UGT2A3 0 0 23 0 

UGT1A4 0 0 23 0 

UGT1A5 1 1 0 21 

UGT1A6 0 0 23 0 

UGT1A9 0 0 23 0 

UGT2B4 0 0 23 0 

UGT2B7 0 0 23 0 

UGT2B10 0 0 23 0 

UGT2B11 1 3 0 19 

UGT2B15 0 0 23 0 

UGT2B17 0 2 17 4 

SLC transporters 

SLC1A1 1 11 7 4 

SLC2A1 6 1 4 12 

SLC16A1 0 0 23 0 

SLC22A1 0 1 22 0 

SLC23A1 0 3 0 20 

SLC26A1 0 6 7 10 

SLC27A1 2 3 16 2 

SLC28A1 0 1 0 22 
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SLC29A1 0 5 12 6 

SLC30A1 0 8 9 6 

SLC33A1 0 0 23 0 

SLC40A1 0 6 3 14 

SLC43A1 0 5 10 8 

SLC44A1 0 5 18 0 

SLC48A1 0 1 0 22 

SLC1A2 0 5 1 17 

SLC2A2 0 0 23 0 

SLC7A2 0 3 18 2 

SLC16A2 0 1 18 4 

SLC20A2 0 3 0 20 

SLC23A2 1 0 0 22 

SLC25A2 1 0 0 22 

SLC38A2 0 2 7 14 

SLC43A2 5 0 0 18 

SLC44A2 0 4 1 18 

SLC1A3 1 11 2 9 

SLC2A3 6 1 2 14 

SLC7A3 0 1 0 22 

SLC16A3 0 0 1 22 

SLC19A3 0 9 8 6 

SLC22A3 0 1 0 22 

SLC29A3 7 1 4 11 

SLC35A3 1 1 13 8 

SLC38A3 0 1 22 0 

SLC41A3 3 0 0 20 

SLC43A3 0 0 23 0 

SLC46A3 0 1 1 21 

SLC1A4 0 3 13 7 

SLC38A4 0 0 23 0 

SLC7A5 0 0 1 22 

SLC5A6 0 5 4 14 
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SLC16A7 0 4 2 17 

SLC22A7 0 6 14 3 

SLC26A7 0 2 0 21 

SLC30A7 0 2 20 0 

SLC38A7 0 1 0 22 

SLC39A7 0 0 23 0 

SLC7A8 4 1 2 16 

SLC2A9 0 2 0 21 

SLC22A9 0 4 16 3 

SLC30A9 1 2 1 19 

SLC39A9 0 4 18 1 

SLC2A10 6 4 5 8 

SLC38A10 0 13 9 1 

SLC39A11 2 1 19 1 

SLC2A12 2 0 0 21 

SLC6A12 0 3 6 14 

SLC16A12 0 2 0 21 

SLC2A13 0 0 1 22 

SLC39A14 0 0 23 0 

SLC25A15 0 0 23 0 

SLC22A18 0 0 23 0 

SLC25A40 1 4 0 18 

SLC25A42 0 0 23 0 

SLC25A44 0 4 0 19 

SLC25A46 0 15 2 6 

SLC35B1 0 2 12 9 

SLC35B2 0 3 4 16 

SLC35C1 0 0 4 19 

SLC35C2 0 1 0 22 

SLC35D1 0 1 21 1 

SLC35F6 0 3 18 2 

SLCO1B1 0 0 23 0 

SLCO1B3 0 0 23 0 
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SLCO2B1 0 2 20 1 

ABC transporters 

ABCA1 0 6 16 1 

ABCA2 1 13 3 6 

ABCA6 0 0 23 0 

ABCA8 0 3 14 6 

ABCA10 1 0 0 22 

ABCA13 1 0 0 22 

ABCB1 (MDR1) 0 2 21 0 

ABCB4 (MDR3) 0 3 3 17 

ABCB5 4 2 0 17 

ABCB6 0 4 17 2 

ABCB7 0 1 22 0 

ABCB8 0 0 23 0 

ABCB10 0 0 23 0 

ABCB11 0 2 21 0 

ABCC1 (MRP1) 0 2 0 21 

ABCC2 (MRP2) 0 9 12 2 

ABCC3 (MRP3) 0 3 19 1 

ABCC5 (MRP5) 1 0 0 22 

ABCC6 (MRP6) 0 0 23 0 

ABCD1 0 0 23 0 

ABCD2 1 0 0 22 

ABCD3 0 0 23 0 

ABCD4 0 7 16 0 

ABCE1 1 3 0 19 

ABCG8 1 1 1 20 
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Supplementary Table 3-7 Median and mode scores for software-specific peptides in each sample. 

 

 

 

 

 

 MaxQuant Progenesis 

Sample 
Median 

score 
Mode score 

Median score 

(MaxQuant Equivalent) 

Mode score 

(MaxQuant Equivalent) 

HLM01 78.2 64.3 32.4 (89.3) 15.5 (42.6) 

HLM02 123 114.9 51.4 (149) 88.6 (257.2) 

HLM06 126.9 94.7 53.1 (154.2) 56.3 (163.7) 

HLM08 74.6 60.5 23.9 (57.9) 17.7 (42.9) 

HLM11 124.7 114.5 51.9 (146.1) 30.5 (85.9) 

HLM25 92.8 91.6 30.6 (90.5) 17.5 (51.7) 

HLM38 122.8 108.9 51.9 (141.4) 58.5 (159.2) 

HLM41 123.7 101.6 49.8 (156.1) 61.9 (197.2) 

HLM48 199.7 252.4 29.8 (83.1) 17.5 (48.7) 

HLM71 79.6 58.4 31.7 (86.2) 14.9 (40.4) 

HLM72 128.4 114.5 52.9 (151.6) 37.3 (106.9) 

HLM73 77.7 50 32.3 (86.3) 18.6 (49.8) 

HLM74 96.1 58.9 29.6 (85.9) 14.4 (41.8) 

HLM75 122.6 122.1 52.5 (142.9) 35.3 (96.1) 

HLM76 98.7 367.2 29.5 (87.9) 13.6 (40.4) 

HLM77 79.2 46.5 34.5 (86.3) 16.2 (40.6) 

HLM78 97.3 125.9 29.5 (87.5) 13.6 (40.5) 

HLM80 87.4 47.6 29.8 (84.2) 15.3 (43.2) 

HLM89 77.6 47.2 30.4 (83.5) 15.7 (42.9) 

HLM90 123.1 108.9 45.5 (153.4) 23.2 (78.3) 

HLM91 86.8 110.4 32.4 (89.6) 20.1 (55.5) 

HLM100 86.1 62.5 32.2 (90.4) 14.9 (41.7) 

HLM117 133.1 114.9 52.9 (164.7) 31.5 (98.1) 
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Supplementary Table 3-8 Median and mode Gravy scores for software-specific peptides in each sample. 

 

 

 

 

 

 

 

 MaxQuant Progenesis 

Sample 
Median Gravy 

score 
Mode Gravy score Median Gravy score Mode Gravy score 

HLM01 -0.20 -0.30 -0.49 -0.50 

HLM02 -0.13 0.30 -0.52 -0.70 

HLM06 -0.16 -0.30 -0.48 0.10 

HLM08 -0.12 0.30 -0.49 -0.40 

HLM11 0.09 0.20 -0.51 -0.70 

HLM25 -0.14 -0.10 -0.51 -0.50 

HLM38 -0.17 -0.40 -0.48 -0.52 

HLM41 -0.35 -0.30 -0.50 -0.50 

HLM48 -0.13 0.30 -0.52 -0.70 

HLM71 -0.28 -0.70 -0.47 -0.50 

HLM72 -0.14 -0.60 -0.48 -0.90 

HLM73 -0.09 0.40 -0.47 -0.70 

HLM74 -0.19 -0.20 -0.51 -0.50 

HLM75 -0.21 -0.20 -0.43 -0.70 

HLM76 -0.17 -0.10 -0.47 -0.30 

HLM77 -0.14 0.10 -0.44 0.10 

HLM78 -0.20 -0.20 -0.46 -0.30 

HLM80 -0.20 -0.10 -0.50 -0.70 

HLM89 -0.14 0.30 -0.47 -0.70 

HLM90 -0.09 -0.1 -0.53 -0.50 

HLM91 -0.20 -0.20 -0.43 -0.70 

HLM100 -0.17 -0.10 -0.50 -0.70 

HLM117 -0.16 -0.30 -0.47 -0.20 
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Supplementary Table 3-9 Quantification of transporters only achieved with MaxQuant. 

 

 

 

 

Transporter Sample Abundance (pmol/mg) 

SLC2A9 HLM41 0.37 

 HLM89 0.41 

SLC7A3 HLM75 0.003 

SLC16A12 HLM11 1.75 

 HLM48 3.36 

SLC20A2 HLM76 0.16 

 HLM100 2.87 

 HLM117 0.49 

SLC22A3 HLM06 8.25 

SLC25A44 HLM02 0.16 

 HLM06 1.27 

 HLM77 0.19 

 HLM117 0.31 

SLC26A7 HLM25 0.46 

 HLM77 0.18 

SLC38A7 HLM02 0.75 
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4.1 Abstract 

In vitro-in vivo extrapolation (IVIVE) linked with physiologically based pharmacokinetic 

(PBPK) modelling is used to predict the fates of drugs in patients. Ideally, the IVIVE-PBPK 

models should incorporate “systems” information accounting for characteristics of the specific 

target population. There is a paucity of such scaling factors in cancer, particularly microsomal 

protein per gram of liver (MPPGL) and cytosolic protein per gram of liver (CPPGL). In this 

study, cancerous and histologically normal liver tissue from 16 patients with colorectal liver 

metastasis (CRLM) were fractionated to microsomes and cytosol. Protein content was 

measured in homogenates, microsomes and cytosol. The loss of microsomal protein during 

fractionation was accounted for using corrections based on NADPH cytochrome P450 

reductase activity in different matrices. MPPGL was significantly lower in cancerous tissue 

(24.8 ± 9.8 mg/g) than histologically normal tissue (39.0 ± 13.8 mg/g). CPPGL in cancerous 

tissue was 42.1 ± 12.9 mg/g compared with 56.2 ± 16.9 mg/g in normal tissue. No correlations 

between demographics (sex, age and BMI) and MPPGL or CPPGL were apparent in the data. 

The generated scaling factors together with assumptions regarding the relative volumes of 

cancerous versus non-cancerous tissue were used to simulate plasma exposure of drugs with 

different extraction ratios. The PBPK simulations revealed a substantial difference in drug 

exposure (AUC), up to 3.3-fold, when using typical scaling factors (healthy population) instead 

of disease-related parameters in cancer population. These indicate the importance of using 

population-specific scalars in IVIVE-PBPK for different disease states. 
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4.2 Introduction 

Cancer is a multifaceted disease characterized by deregulated cell growth with the potential to 

invade tissues and form metastases. Colorectal cancer is the third most common type of cancer 

and is associated with the second highest number of deaths caused by cancer (Bray et al., 2018). 

Metastasis to the liver constitutes one of the main causes of mortality in patients with colorectal 

cancer (Siegel et al., 2018) as it accounts for 70% of metastases from colorectal cancer, 

followed by metastasis to the lungs, distant lymph nodes, and peritoneum (Holch et al., 2017). 

Metastasis to the liver can affect hepatic function as the resultant lesions occupy space in liver 

tissue leading to abnormal liver function tests (Jiang et al., 2018). Inflammation is a condition 

that may also affect the hepatic function, as inflammatory markers have been shown to be 

associated positively with the size of metastases (Wong et al., 2007). 

Challenges in the development of new drugs in the area of oncology include the difficulty of 

recruiting from the appropriate patient population and safety issues when testing anti-cancer 

drugs of high toxicity in healthy volunteers (Gutierrez et al., 2009; Bates et al., 2015). Given 

these challenges, and the high medical need, model-informed precision dosing (MIDD) and, in 

particularly, physiologically based pharmacokinetics (PBPK) are widely employed (Darwich 

et al., 2017). PBPK modelling has generally higher regulatory acceptance in the development 

of anti-cancer drugs than other disease areas (Yoshida et al., 2017), and models are used to 

inform dosing of cancer patients. 

In vitro-in vivo extrapolation (IVIVE) employs models that incorporate “systems” information 

and in vitro drug data to predict plasma and tissue concentration-time profiles, which are 

critical components of bottom-up PBPK models (Rostami-Hodjegan, 2012). Data obtained 

using population-specific in vitro systems taking into account potential differences in 

functional activity need to be scaled to in vivo outcomes. For IVIVE of hepatic drug clearance, 

different in vitro systems can be used, including recombinantly expressed enzymes, 

hepatocytes, liver microsomes and cytosol. The scalars related to liver microsomes and cytosol 

are microsomal protein per gram of liver (MPPGL) and cytosolic protein per gram of liver 

(CPPGL), respectively (Barter et al., 2007).  

To obtain microsomal and cytosolic fractions required for in vitro data, it is necessary to 

homogenize liver tissue and fractionate the homogenate using differential centrifugation. 

During tissue fractionation, membrane protein is subject to significant losses (Wilson et al., 

2003). Accounting for protein losses is necessary for obtaining correct MPPGL values and 
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thus, more accurate clearance predictions. For the correction of microsomal protein loss, 

different microsomal markers can be used, such as NADPH cytochrome P450 reductase or 

total P450 content measured in the homogenate and microsomal fractions (Barter et al., 2008). 

Cytosolic markers for the correction of cytosolic protein loss include alcohol dehydrogenase 

and glutathione-S-transferase (Cubitt et al., 2011); however, loss of cytosolic protein is 

expected to be negligible (soluble fraction). MPPGL and CPPGL values have been reported in 

healthy human liver with mean values of 32 mg/g liver and 80.7 mg/g liver, respectively (Barter 

et al., 2007; Cubitt et al., 2011). 

Although scalars have been reported for healthy liver, such data are scarce in disease 

populations, such as cancer. Available scalar data in liver cancer suggest that MPPGL is 

different in livers with hepatocellular carcinoma relative to normal liver tissue (Zhang et al., 

2015; Gao et al., 2016). To our knowledge, there are no reports of scalars or IVIVE-PBPK 

models for colorectal liver metastasis (CRLM) for the prediction of in vivo hepatic drug 

clearance. The aim of this study was to generate MPPGL and CPPGL scaling factors in 

cancerous liver tissue from CRLM patients and compare the values with scalars from matched 

histologically normal tissue. The scalars were applied in PBPK simulations to predict in vivo 

hepatic clearance. This study highlights the importance of applying appropriate population-

specific scalars for IVIVE of metabolic drug clearance in CRLM patients. 

 

4.3 Materials and Methods 

 

4.3.1 Materials and chemicals 

All chemicals were purchased from Sigma-Aldrich (Poole, Dorset, UK) unless otherwise 

stated. EDTA-free protease inhibitor cocktail was obtained from Roche Applied Sciences 

(Mannheim, Germany).  

 

4.3.2 Liver samples 

Matched cancerous and histologically normal liver tissue specimens from 16 adult CRLM 

patients were obtained opportunistically following hepatectomy from the Manchester 

University NHS Foundation Trust (MFT) Biobank, Manchester, UK. The study was covered 

under the MFT Biobank generic ethics approval (NRES 14/NW/1260 and 19/NW/0644). 

Among the 16 donors, 7 were female and 9 were male, and their ages ranged from 34 to 85 
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years. The body mass index (BMI) of the patients ranged from 21.6 to 36.3 kg/m2. 

Supplementary Table 4-1 presents demographic and clinical details of the donors.  

 

4.3.3 Preparation of human liver microsomal and cytosolic fractions 

Microsomal and cytosolic fractions were generated from liver tissue using differential 

centrifugation as previously described (Achour et al., 2017). Liver tissue was homogenized by 

a mechanical homogenizer (Thermo Fisher Scientific, UK) in homogenization buffer (150 mM 

KCl, 2 mM EDTA, 50 mM Tris, 1 mM dithiothreitol, and EDTA-free protease inhibitor 

cocktail, pH 7.4) at 10 ml for each gram of liver tissue. The homogenate was centrifuged at 

10,000 g for 20 min at 4°C using an OptimaTM L-100 ultracentrifuge (Beckman Coulter, 

Fullerton, CA). The first pellet (cell debris) was stored at -80°C and then the supernatant was 

further centrifuged at 100,000 g for 75 min at 4 °C. The cytosol (the supernatant) was stored at 

-80°C and the pellet (microsomes) was re-suspended in 1 ml of storage buffer (0.25 M 

potassium phosphate, pH 7.25) per gram of liver tissue and stored at -80°C. 

 

4.3.4 Measurement of total protein content in homogenates and fractions 

The protein content of liver homogenates, microsomes and cytosolic samples was measured 

using bicinchoninic acid (BCA) protein assay (Pierce® Microplate BCA Protein Assay Kit – 

Reducing Agent Compatible) in triplicate. Absorbance was measured at 562 nm using a 

SpectraMax 190 platereader (Molecular Devices, Sunnyvale, CA) with bovine serum albumin 

used as calibration standard. For the homogenates and the cytosolic samples that contained 

dithiothreitol, a compatibility reagent solution was used. The cytosolic protein per gram of liver 

(CPPGL), and the homogenate protein per gram of liver (HomPPGL) were calculated based on 

the total protein content, and no further correction for loss was required. 

 

4.3.5 Measurement of NADPH cytochrome P450 reductase activity 

In the current study, NADPH P450 reductase activity was used to account for microsomal 

membrane loss during fractionation. The activity of NADPH P450 reductase was measured in 

homogenates and microsomes from the same liver samples in order to estimate loss of 

microsomal protein during fractionation. The protocol was adapted from methods by 

Guengerich et al. (2009) and Achour et al. (2011). In a 1 ml cuvette, oxidised equine 

cytochrome c (0.5 mM, 80 µL) was mixed with potassium phosphate buffer (0.25 M, 980 µl, 

pH 7.25), KCN (1 mM, 10 µl) and homogenates (10 µl, equivalent to 1 mg of tissue) or 1:10 
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diluted microsomes (10 µl, equivalent to 1 mg of tissue). The absorbance of the mixtures was 

measured using a Jenway 7315 UV-Visible spectrophotometer (Thermo Fisher Scientific) at 

550 nm in kinetic mode. The absorbance was monitored for 2 min to establish the baseline, 

followed by addition of reduced NADPH solution (10 mM, 10 µl) to start the reaction of 

cytochrome c reduction, which was monitored for 5 min.  

The slope of the initial linear phase of the reaction is directly proportional to the amount of 

cytochrome P450 reductase in the sample. The enzyme activity (units/mg liver tissue) was 

calculated using Equation 4-1 and fractional loss of microsomal protein was estimated based 

on the ratio of activity in microsomes relative to the homogenate from the same liver sample 

(Equation 4-2), using the ratio of the slope from the microsomal fraction (1 mg of tissue) to the 

slope from the homogenate (1 mg of total protein) for each individual. The ratios also allowed 

calculation of microsomal membrane enrichment. MPPGL for each sample was corrected using 

the recovery factors according to Equation 4-3 (Barter et al., 2008). Recovery factor is equal 

to 1-fractional loss of microsomal protein. 

𝐸𝑛𝑧𝑦𝑚𝑒 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =
∆𝐴550/ 𝑚𝑖𝑛×𝑑𝑖𝑙 ×𝑡𝑜𝑡𝑎𝑙 𝑣𝑜𝑙𝑢𝑚𝑒

21.1 × 𝑉
  (Equation 4-1) 

ΔA550/min: rate of change in the absorbance at 550 nm 

dil: dilution factor of the original enzyme sample 

Total volume: volume of the reaction mixture (ml) 

21.1 is the extinction coefficient for reduced cytochrome c (mM-1 cm-1) 

V: volume of the enzyme sample (ml), corresponding to 1 mg of liver tissue 

𝑀𝑖𝑐𝑟𝑜𝑠𝑜𝑚𝑎𝑙 𝑙𝑜𝑠𝑠 = 1 −  
𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑖𝑛 𝑚𝑖𝑐𝑟𝑜𝑠𝑜𝑚𝑒𝑠

𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑖𝑛 ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑎𝑡𝑒
  (Equation 4-2) 

𝑀𝑃𝑃𝐺𝐿 (𝑚𝑔 𝑔−1) =
𝑌𝑖𝑒𝑙𝑑 𝑜𝑓 𝑚𝑖𝑐𝑟𝑜𝑠𝑜𝑚𝑎𝑙 𝑝𝑟𝑜𝑡𝑒𝑖𝑛 (𝑚𝑔 𝑔−1)

1−𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑙𝑜𝑠𝑠 𝑜𝑓 𝑚𝑖𝑐𝑟𝑜𝑠𝑜𝑚𝑎𝑙 𝑝𝑟𝑜𝑡𝑒𝑖𝑛
 (Equation 4-3) 

 

4.3.6 Statistical data analysis 

Statistical data analysis was performed and graphs were generated using GraphPad Prism 8.1.2 

(La Jolla, California USA). The data is presented as mean ± standard deviation (SD). 

Coefficient of variation (CV) was used to describe variability in datasets and the Kolmogorov-

Smirnov test was used to assess the normality of distribution of the datasets. Several datasets 

did not follow normal distribution, and therefore non-parametric statistical tests for differences 
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were used. Differences in HomPPGL, uncorrected MPPGL and CPPGL values between 

histologically normal and matched cancerous tissues were assessed using Wilcoxon test. 

Differences in MPPGL values between histologically normal and matched cancerous tissues 

were assessed using Mann-Whitney test. This test was also used for the assessment of the effect 

of hepatic lobe of origin and sex of donors on MPPGL and CPPGL in normal and cancerous 

tissues. For the assessment of the effect of BMI and age on MPPGL and CPPGL, Spearman 

correlation and linear regression analysis were used. In each of the above cases, the probability 

cut-off value for statistical significance was set at 0.05.  

 

4.3.7 Physiologically based pharmacokinetic (PBPK) simulations 

The effect of using the generated scaling factors in a cancer population was assessed using 

PBPK modelling on Simcyp V18 Release 1 (Certara, Sheffield, UK) in healthy and cancer 

populations. For the assessment of effects of MPPGL changes on simulated plasma drug 

exposure, four cytochrome P450 substrates with different hepatic extraction ratios (see Table 

4-1) were used: alfentanil (predominantly metabolized by CYP3A4), alprazolam 

(predominantly metabolized by CYP3A4 and CYP3A5), midazolam (predominantly 

metabolized by CYP3A4 and CYP3A5), and desipramine (predominantly metabolized by 

CYP2D6). CYP isoforms are responsible for the metabolism of the majority of clinically used 

drugs in all fields of treatment (anti-cancer and non-anti-cancer drugs), with CYP3A4/5 being 

the most prevalent, followed by CYP2D6. For this reason, we used CYP3A4, CYP3A5 and 

CYP2D6 enzymes for our simulations. The compound files were not changed from those 

provided within the Simcyp simulator. PBPK simulations were performed using system 

parameters already available on the simulator for healthy (“Sim-Healthy Volunteers”) and 

cancer (“Sim-Cancer”) virtual populations, without or with inclusion of MPPGL data measured 

in current study. The effects of MPPGL changes in cancer on drug exposure following oral 

administration were assessed using four different MPPGL models: 

MPPGL model 1 (Healthy; Healthy population): the default MPPGL in Simcyp was used 

for the healthy population; mean MPPGL was 39.8 mg/g tissue (defined by the Simcyp model), 

(Equation 4-4, Barter et al., 2008). 

𝑀𝑒𝑎𝑛 𝑀𝑃𝑃𝐺𝐿 (
𝑚𝑔

𝑔
) = 10^(1.407 +  0.0158 ∗ Age −  0.00038 ∗  Age^2 +  0.000024 ∗  Age^3) 

(Equation 4-4), coefficient of variabilities (CV)% is 26.9   
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MPPGL model 2 (Cancer-D; Cancer-Default population): the default MPPGL in Simcyp 

was used for the cancer population; mean MPPGL was 39.8 mg/g tissue (defined by the Simcyp 

model), (Equation 4-4, Barter et al., 2008). 

These two models were used to assess any effects on drug exposure between healthy and cancer 

populations without changing MPPGL values. The key differences in the systems parameters 

between Healthy and Cancer-D involve age distribution, haematocrit, Alpha-1-acid 

glycoprotein (AAG) and albumin levels.  

MPPGL model 3 (New Cancer-ALN; New Cancer population-assuming liver is obtained 

from cancer patients but entire liver tissue is histologically normal, ALN = All Liver 

Normal): experimentally-derived MPPGL in histologically normal tissue was used for the 

cancer population; mean MPPGL was 39 mg/g tissue, (Equation 4-5, adapted from Barter et 

al., 2008 with revised baseline). 

𝑀𝑒𝑎𝑛 𝑀𝑃𝑃𝐺𝐿 (
𝑚𝑔

𝑔
) = 10^(1.59106462) (Equation 4-5), CV% is 35.36 

Model 3 assumes that the whole liver remains histologically normal, and this implies the 

maximum metabolic capacity of microsomal enzymes. CV% used for this model is 

experimentally-derived based on MPPGL in histologically normal tissue. 

MPPGL model 4 (New Cancer-ALC; New Cancer population-assuming liver is obtained 

from cancer patients and entire liver tissue is histologically cancerous, ALC = All Liver 

Cancerous): experimentally-derived MPPGL in cancerous tissue was used for the cancer 

population; mean MPPGL was 24.8 mg/g tissue, (Equation 4-6, adapted from Barter et al., 

2008 with revised baseline). 

𝑀𝑒𝑎𝑛 𝑀𝑃𝑃𝐺𝐿 (
𝑚𝑔

𝑔
) = 10^(1.3944516) (Equation 4-6), CV% is 39.7 

Model 4 assumes that the whole liver is cancerous and this implies the minimum metabolic 

capacity of microsomal enzymes. It also assumes that the liver mass does not change and that 

each pmol of enzyme has the same activity, irrespective of disease state. CV% used for this 

model is experimentally-derived based on MPPGL in cancerous tissue. 

The size of the liver being normal is important, as this will define how much of the liver will 

be fully functional. If a proportion of liver is not normal, this may lead to decreased scaled 

intrinsic clearance, with effect on clearance being compound dependent. In cases of a surgical 
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resection, clearance should be calculated based on healthy MPPGL and remnant liver size. 

Although surgical resection is the ideal solution for CRLM patients, this is not feasible for 

many patients that have to live with a liver with histologically normal and cancerous parts, with 

unchangeable liver size. Therefore, metabolic capacities of enzymes come from 2 different 

sources: histologically normal and cancerous liver (relative contributions of normal and 

cancerous parts are unknown in the current study). In this case, it is more appropriate to use 

MPPGL for histologically normal tissue with the weight of the liver being histologically normal 

and MPPGL for cancerous tissue with the weight of the liver being cancerous. 

For Equation 4-4, the age was plotted against MPPGL values for Healthy population; for both 

observed and predicted (Barter et al., 2008) values (Supplementary Figure 4-1). For each model 

and for each drug, a generic trial design was used, with the following characteristics. The age 

range of the cancerous donors is 34-85 and the age range in the virtual population is 20 - 50 

years old, which consists a limitation of our study. However, this limitation wouldn’t have any 

effect on the final observations, as the age range is kept consistent in all the models, and 

additionally, age-dependent MPPGL in cancer samples was not apparent (Figure 4-4D). The 

mean (for all 100 virtual subjects) systemic concentration (Csys)-time profiles were plotted and 

the area under the curve from time 0 to infinity (AUC0-inf) and maximum plasma concentration 

(Cmax) values were compared across the four MPPGL methods/ models (Table 4-1). Parameters 

used for PBPK simulations are listed in Supplementary Table 4-2. Oral doses for alfentanil, 

alprazolam, midazolam and desipramine are 0.043 mg/kg, 0.5 mg, 5 mg, and 50 mg 

respectively. 

Lack of differences in CPPGL between normal and cancerous tissue (see Results) meant that 

significant effects on the clearance and systemic concentrations of drugs metabolized by 

cytosolic enzymes were not expected. Therefore, no PBPK simulations were performed to 

assess possible effects on pharmacokinetics of drugs metabolized by cytosolic enzymes. 

 

 

 

 

 



|Chapter 4 

192 
 

4.4 Results 

 

4.4.1 Protein content of liver homogenates and fractions 

Total protein content was measured in homogenates, microsomes, and cytosols from 

histologically normal and matched cancerous (n = 16) liver samples (Figure 4-1; 

Supplementary Table 4-3). The mean HomPPGL was 126.1 ± 46.7 mg/g in histologically 

normal samples and 86.9 ± 50.2 mg/g in matched cancer samples (range: 75.1-266.7 and 37.1-

204.8 mg/g, respectively). The mean CPPGL was 56.2 ± 16.9 mg/g in histologically normal 

samples and 42.1 ± 12.9 mg/g in cancer samples (range: 32.3-80.7 and 24.8-67.2 mg/g, 

respectively). There was no statistically significant difference in HomPPGL (Wilcoxon test, p 

= 0.0654) and CPPGL between histologically normal and cancerous samples (Wilcoxon test, 

p = 0.0654). The mean microsomal protein isolated from liver, before correction for membrane 

loss was 15.8 ± 3.9 mg/g in histologically normal samples and 6.5 ± 3.3 mg/g in matched cancer 

samples (8.8-22.8 and 2.6-15.2 mg/g, respectively), and a 2.4-fold statistically significant 

difference (Wilcoxon test, p < 0.0001). 
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Figure 4-1 Total protein content (mg per gram of liver) in homogenates (HomPPGL, A), microsomal fractions (MPPGL before 

correction for losses, B) and cytosolic fractions (CPPGL, C) from histologically normal and matched tumor samples (n=16). 

The MPPGL values in panel B are not corrected for loss of membrane protein. Blue and red symbols represent normal and 

cancer samples. The lines represent means, error bars represent standard deviations, and percentages represent CVs. The 

asterisks (****) represent statistical differences with p < 0.0001 between histologically normal and cancerous tissues. 

Wilcoxon test was used for comparison of HomPPGL, uncorrected MPPGL, and CPPGL between matched cancerous and 

histologically normal samples. 
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4.4.2 NADPH cytochrome P450 reductase activity in homogenates and microsomes  

Activity of NADPH cytochrome P450 reductase was used to assess recovery and enrichment 

of microsomal membrane. Activity measurements were made in homogenates and microsomal 

fractions of histologically normal (n = 16) and matched cancer samples (n = 11) (Figure 4-2A 

and Supplementary Table 4-4). Activity measurements in 5 tumorous samples were below the 

limit of quantitation and thus, only data for 11 tumorous samples are presented. The mean 

enzymatic activity in homogenates was 2.36 ± 0.73 units/mg in histologically normal tissues, 

and 0.58 ± 0.37 units/mg of tissue in cancer samples (range: 0.8-3.58 and 0.14-1.42 units/mg, 

respectively). In microsomal fractions, activity was 1.03 ± 0.44 units/mg of tissue in 

histologically normal tissues and 0.18 ± 0.19 units/mg of tissue in cancer samples (range: 0.34-

1.72 and 0.03-0.71 units/mg of tissue, respectively).  

Enrichment and recovery of microsomal proteins relative to homogenates were calculated for 

histologically normal (n = 16) and matched cancerous samples (n = 11), as shown in Figure 4-

2B and C, respectively. Mean enrichment was 3.5 ± 1.5 fold (range: 1.5-7.3) for histologically 

normal and 3.3 ± 1.4 (range: 1.4-5.7 fold) for cancerous samples. Microsomal protein recovery 

was 0.4 ± 0.2 (range: 0.2-0.8) for histologically normal and 0.3 ± 0.1 (range: 0.1-0.5), with 

minimal difference in mean recovery for the normal (0.4) and cancerous samples (0.3). 
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Figure 4-2 Activity of NADPH cytochrome P450 reductase in homogenates and microsomes from histologically normal (n = 

16) and tumor samples (n = 11) from CRLM patients (A). Each bar represent the mean value of triplicate measurements of 

each individual sample. Blue open and solid bars correspond to normal homogenates and microsomes, respectively. Red open 

and solid bars correspond to cancer homogenates and microsomes, respectively. Fold-enrichment (B) and recovery (C) of 

microsomal proteins from histologically normal (n = 16) and tumor (n = 13) samples from CRLM patients. Lines represent 

means, error bars represent standard deviations, and percentages represent CVs. Blue and red symbols represent histologically 

normal and tumor samples, respectively. 



|Chapter 4 

196 
 

4.4.3 Corrected microsomal protein per gram of liver (MPPGL) 

The MPPGL values were corrected using the recovery factors for histologically normal (n = 

16) and cancer tissues (n = 11) (Figure 4-3). The mean corrected MPPGL was 39 ± 13.8 mg/g 

histologically normal tissue and 24.8 ± 9.8 mg/g cancerous tissue (range: 16.5-63.1 mg/g and 

8.7-43.9 mg/g, respectively). MPPGL values were significantly lower in tumorous samples 

compared with histologically normal samples (Mann-Whitney test, p = 0.0109).  

 

 

Figure 4-3 Corrected microsomal protein content (mg) per gram tissue (MPPGL) from histologically normal (n = 16) and 

tumor samples (n = 11). Lines represent means, error bars represent standard deviations, and percentages represent CVs. The 

asterisk (*) represent statistical difference (Mann-Whitney test, p < 0.05). 
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4.4.4 Effect of demographics on MPPGL values 

The effects of anatomical origin of liver tissue (left or right liver lobe), sex, BMI and age on 

MPPGL values were tested for histologically normal and cancerous tissues (Figure 4-4). Some 

demographics information are not available for each sample. For example, the liver lobe (right 

or left) from which the sample has been taken is not available for 3 of the patients. Similarly, 

BMI is not available for 3 of the patients. Therefore, only 13 samples are used for the 

correlation of liber lobe or BMI with MPPGL. The mean MPPGL was 38.7 ± 13.1 mg/g in 

histologically normal tissue from the left liver lobe (n = 4; 25.4-56.1 mg/g) and 37.0 ± 14.4 

mg/g in histologically normal tissue from the right liver lobe (n = 9; 16.5-61.0 mg/g). By 

contrast, MPPGL was 29.4 ± 4.3 mg/g in cancerous tissue from the left liver lobe (n = 2; 26.3-

32.4) and 22.4 ± 7.7 mg/g in cancerous tissue from the right liver lobe (n = 7; 8.7-32.7 mg/g). 

The difference in MPPGL from different lobes for histologically normal was not statistically 

significant (Mann-Whitney test, p = 0.9399). The statistical test was not applied to data from 

tumorous samples due to the low sample size from the left liver lobe (n = 2) (Figure 4-4A). 

The MPPGL was 38.3 ± 14.3 mg/g and 39.5 ± 14.3 mg/g for female (n = 7; 6.5-56.1 mg/g) and 

male (n = 9; 25.4-63.1 mg/g) donors of histologically normal tissue, respectively. MPPGL was 

23.3 ± 7.2 mg/g and 26.0 ± 12.2 mg/g for female (n = 5; 12.9-32.7 mg/g) and male (n = 6; 8.7-

43.9 mg/g) donors of cancerous tissues, respectively. No significant differences in MPPGL 

between male and female donors of histologically normal (Mann-Whitney test, p = 0.8371) and 

tumorous tissues were observed (Mann-Whitney test, p > 0.9999) (Figure 4-4B). There was no 

trend in MPPGL values with BMI (Spearman test, p = 0.6338) or age (Spearman test, p = 

0.8711) (Figure 4-4C and D, respectively). 
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Figure 4-4 Effects of liver lobe (A), sex (B), BMI (C) and age (D) on MPPGL values for histologically normal and cancer 

samples. In panels A and B, lines represent means, error bars represent standard deviation values and percentages represent 

CVs. Mann-Whitney test was used to assess the effect of hepatic lobes and sex. Spearman correlation and linear regression 

were used to assess the effect of BMI and age. Blue symbols represent histologically normal samples and red symbols represent 

cancer samples. N.S. means no significant relation (p > 0.05). 
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4.4.5 Effect of demographics on CPPGL values 

The effects of anatomical origin of tissue (left or right liver lobe), sex, BMI and age on CPPGL 

values were tested for histologically normal and cancerous tissues (Figure 4-5). Some 

demographics information are not available for each sample. For example, the liver lobe (right 

or left) from which the sample has been taken is not available for 3 of the patients. Similarly, 

BMI is not available for 3 of the patients. Therefore, only 13 samples are used for the 

correlation of liber lobe or BMI with CPPGL. The mean CPPGL was 47.7 ± 11.1 mg/g in 

histologically normal tissue from the left liver lobe (n = 4; 33.9-57.7 mg/g) and 58.3 ± 18.8 

mg/g in histologically normal tissue from the right lobe (n = 9; 32.3-80.7 mg/g). CPPGL was 

45.2 ± 11.4 mg/g in cancerous tissue from the left liver lobe (n = 4; 30.8-54.6 mg/g) and 38.5 

± 11.5 mg/g in cancerous tissue from the right liver lobe (n = 9; 24.8-58.6 mg/g). There was 

no statistically significant difference in CPPGL from different lobes for histologically normal 

(Mann-Whitney test, p = 0.3301) or tumorous samples (Mann-Whitney test, p = 0.6042) 

(Figure 4-5A). The CPPGL was 61.4 ± 14.9 mg/g and 52.2 ± 18 mg/g for female (n = 7; 34.1-

77.1 mg/g) and male (n = 9; 32.3-80.7 mg/g) donors of histologically normal tissue, 

respectively. CPPGL was 37.8 ± 12.4 mg/g and 45.5 ± 12.9 mg/g for female (n = 7; 24.8-54.8 

mg/g) and male (n = 9; 30.8-67.2 mg/g) donors of cancerous tissues. There was no statistically 

significant difference in CPPGL between male and female donors of histologically normal 

(Mann-Whitney test, p = 0.2991) or tumorous tissues (Mann-Whitney test, p = 0.1738) (Figure 

4-5B). There was no specific correlation between CPPGL values and BMI (Spearman test, p = 

0.2191) or age (Spearman test, p = 0.27415) (Figure 4-5C and D, respectively). 
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Figure 4-5 Effects of liver lobe (A), sex (B), BMI (C) and age (D) on CPPGL values for histologically normal and cancer 

samples. In panels A and B, lines represent means, error bars represent standard deviation values and percentages represent 

CVs. Mann-Whitney test was used to assess the effect of hepatic lobes and sex. Spearman correlation and linear regression 

were used to assess the effect of BMI and age. Blue symbols represent histologically normal samples and red symbols represent 

cancer samples. N.S. means no significant relation (p > 0.05). 
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4.4.6 Physiologically based pharmacokinetic (PBPK) simulations 

Simulations for four different drugs (alfentanil, alprazolam, midazolam, desipramine) were 

performed using four different methods (Figure 4-6); Model 1 (Healthy) used default MPPGL 

(Simcyp) with a healthy population, Model 2 (Cancer-D) used default MPPGL with a cancer 

population, Model 3 (New Cancer-ALN) used MPPGL measured in this study in histologically 

normal tissue with a cancer population, and Model 4 (New Cancer-ALC) used MPPGL 

measured in this study in cancer tissue with a cancer population. Table 4-1 lists 

pharmacokinetic parameter values (Tmax, Cmax, and AUC0-inf) for all simulations. Cmax is the 

maximum drug concentration observed in plasma, and Tmax is the time at which the highest 

drug concentration occurs after drug administration. AUC0-inf is the area under the plasma 

drug concentration-time curve from time 0 to infinity. New Cancer-ALN assumes that the 

whole liver is histologically normal, whereas New Cancer-ALC assumes that the whole liver 

is cancerous. For alfentanil, AUC0-inf predicted using MPPGL of cancerous tissue (New 

Cancer-ALC) was approximately 3.3 fold higher of that obtained using default MPPGL 

(Simcyp) with a healthy population (Healthy), whereas for midazolam, alprazolam and 

desipramine, this value was approximately 1.4 fold higher. 
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Figure 4-6 Mean predicted systemic concentration over time (24 hours) after oral administration of alfentanil (A), midazolam 

(B), alprazolam (C), and desipramine (D) For each drug, four different methods of scaling were used. Healthy: default MPPGL 

(Simcyp) with a healthy population. Cancer-D: default MPPGL with a cancer population. New Cancer-ALN: MPPGL 

measured in this study for histologically normal tissue with a cancer population. New Cancer-ALC: MPPGL measured in this 

study for cancer tissue with a cancer population. Inset graphs show the Relative AUC0-inf (0 to infinity) ratios of Cancer-D, 

New Cancer-ALN, and New Cancer-ALC to Healthy. 
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Table 4-1 Mean predicted EH, Tmax, Cmax, and AUC0-inf for oral alfentanil, alprazolam, midazolam, and 

desipramine using four different scaling methods within PBPK model. AUC0-inf ratios using different methods are 

also provided. 

Drug Model EH Cmax 

(ng/ml) 

AUC0-inf 

(ng/ml.h) 

Tmax 

(h) 

Relative AUC0-inf 

ratios to Healthy 

 

 

Alfentanil 

Healthy 0.36 24 59 0.6  

Cancer-D 0.24 33 120 0.9 2 

New Cancer-ALN 0.25 33 120 0.9 2 

New Cancer-ALC 0.17 39 193 0.9 3.3 

 

 

Alprazolam 

Healthy 0.04 8 144 1.2  

Cancer-D 0.04 8 142 1.2 1 

New Cancer-ALN 0.04 8 140 1.2 1 

New Cancer-ALC 0.03 8 199 1.3 1.4 

 

 

Midazolam 

Healthy 0.43 24 76 0.6  

Cancer-D 0.48 21 65 0.6 0.9 

New Cancer-ALN 0.48 21 65 0.5 0.9 

New Cancer-ALC 0.38 27 104 0.6 1.4 

 

 

Desipramine 

Healthy 0.42 16 1385 5.9  

Cancer-D 0.34 17 1421 5.9 1 

New Cancer-ALN 0.35 17 1406 5.9 1 

New Cancer-ALC 0.27 19 1989 6.4 1.4 

Hepatic extraction ratio = EH, Cmax = maximum plasma concentration, AUC0-inf = Area under the curve from time 

0 to infinity, Tmax = time at which Cmax is observed. For each simulation, ten trials and ten subjects per trial were 

included. 

Healthy: default MPPGL (Simcyp) with a healthy population. Cancer-D: default MPPGL with a cancer 

population. New Cancer-ALN: MPPGL measured in this study for histologically normal tissue with a cancer 

population. New Cancer-ALC: MPPGL measured in this study for cancer tissue with a cancer population. 
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4.5 Discussion 

Scaling factors, including MPPGL and CPPGL, are used for IVIVE of data generated in in 

vitro systems to predict metabolic clearance of drugs (Wilson et al., 2003; Barter et al., 2007; 

Cubitt et al., 2011). Inter-individual variability of MPPGL has been reported previously 

(Wilson et al., 2003; Barter et al., 2008) and may explain part of the variation in metabolic 

clearance in the absence of genetic differences in the abundance and activity of enzymes in 

individuals. The data describing scalars in special populations and in disease states, such as 

cancer, are scarce. In addition, the effects of changes in these scalars (MPPGL, CPPGL) in 

cancer patients on metabolic clearance have not been investigated. As cancer is not a uniform 

disease (for example, drug metabolizing enzymes and transporters may vary in different cancer 

types), the effects in each cancer type should be addressed independently. Changes in MPPGL 

for primary hepatocellular carcinoma compared with histologically normal tissue have been 

reported (Zhang et al., 2015; Gao et al., 2016), but corresponding data for metastatic liver 

cancer are currently lacking. To our knowledge, our study is the first to describe scaling factors 

for CRLM. 

In this study, CPPGL and HomPPGL values were measured as the total protein content of each 

fraction, while MPPGL was calculated by correcting for protein loss during fractionation using 

cytochrome P450 reductase activity, a microsomal membrane marker. MPPGL values for 

histologically normal tissues (39.0 ± 13.8 mg/g of tissue) were consistent with the literature 

(Pelkonen et al., 1973; Wilson et al., 2003; Barter et al., 2007; Zhang et al., 2015), while values 

in cancerous tissues were significantly lower (24.8 ± 12.9 mg/g of tissue). A difference in the 

CV% was also observed between the histologically normal (CV% = 35) and the cancer tissues 

(CV% = 40). Higher CV% in cancer tissues may reflect the heterogeneity of cancer tissues or 

the different number of samples (smaller in cancer) that could increase the variability in cancer. 

The global reduction in microsomal protein content suggests that the abundance (pmol/g liver) 

of microsomal proteins, such as cytochrome P450 enzymes, in liver tissue may decrease in 

CRLM. Reported data on cytochrome P450 are limited to qualitative evidence that identify 

specific enzymes in histologically normal and tumorous tissues from CRLM patients (Lane et 

al., 2004) and therefore, future proteomics studies involving quantification of such enzymes 

would be valuable. Functional activity studies with probe substrates would also be useful but 

require larger samples than are available to us currently. CPPGL and HomPPGL values showed 

little difference between cancerous and histologically normal tissues, and CPPGL in 
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histologically normal tissue (56.2 ± 16.9 mg/g of tissue) was consistent with the literature (45-

134 mg/g) (Boogaard et al., 1996; Renwick et al., 2002; Mutch et al., 2007). 

The potential effects of donor demographics (such as age, sex, BMI) and sampled liver lobe on 

MPPGL and CPPGL values were evaluated. Statistical analysis showed no relationship 

between the examined variables and changes in MPPGL and CPPGL values. Barter et al. 

(2007) performed a meta-analysis of literature data from 114 individuals and reported a 

relationship between age and MPPGL; values decreased with increasing age (40 mg/g liver for 

a 30 years old individual and 31 mg/g liver for a 60 years old individual). This effect of age on 

MPPGL had not been discernible in the component individual studies (Pelkonen et al., 1974; 

Lipscomb et al., 1998, 2003; Wilson et al., 2003; Hakooz et al., 2006). A more recent study by 

Barter et al. (2008) showed that MPPGL values increased from childhood until the age of 28 

years, then decreased thereafter. The small sample size and large underlying variability in the 

data of the present study meant that any correlation of MPPGL with age could not be 

delineated. Likewise, BMI did not affect MPPGL and CPPGL in either normal or cancerous 

tissues based on data from this study. There is no published literature on correlation between 

BMI and MPPGL or CPPGL in cancer. The sex of donors had no discernible effect on MPPGL 

or CPPGL in normal or cancerous tissues, consistent with earlier studies (Wilson et al., 2003; 

Schmucker et al., 1990). In addition, the liver lobe from which the tissues were samples did 

not have an effect on MPPGL or CPPGL values from either normal or cancerous tissues. There 

are no reported data in the literature about regional differences in human liver, but studies in 

mice showed that microsomal P450 activity is variable in different lobes (Rudeck et al., 2018). 

Additionally, there was an effort to correlate the MPPGL values to the disease severity. No 

trend was observed, although the way that the samples were categorized according to the 

disease severity was not completely quantitative. This is a result of the small number of 

samples, and the lack of the information about the disease severity for all the patients. 

The impact of applying different MPPGL values as scalars was studied using PBPK 

simulations on different drugs (alfentanil, alprazolam, midazolam, desipramine) metabolized 

by CYP enzymes with different extraction ratios. Generally, PK profiles of drugs are expected 

to differ in cancer populations compared with profiles in healthy subjects. In many cases, 

clearance of anti-cancer drugs decreases in cancer patients compared with healthy individuals 

(Piotrovsky et al., 1998; Houk et al., 2009; Hudachek et al., 2010) for various reasons, 

including co-morbidities, such as hepatic and renal impairment in cancer patients (Suri et al., 

2015). Another possible reason may be changes in MPPGL or CPPGL and differences in the 
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expression of enzymes and transporters (Gao et al., 2016; Billington et al., 2018). Our data 

showed little difference in CPPGL between normal and cancerous tissues, but significantly 

lower MPPGL in cancer samples. Therefore, only the effect of MPPGL on drug 

pharmacokinetics was assessed in the simulations. MPPGL was used in other studies for scaling 

in hepatocellular carcinoma and glioblastoma (Gao et al., 2016; Li et al., 2017), and the present 

study is the first to assess the effect of changes in MPPGL in CRLM. The results for all the 

drugs showed that the MPPGL value affected drug exposure, suggesting that the proportion of 

the liver affected by cancer affects drug levels reaching the systemic circulation. More 

specifically, when the whole liver was assumed to be tumorous, higher systemic concentration 

was predicted compared with a histologically normal liver. Our simulations show that using 

appropriate MPPGL values for a certain population is important for the prediction of drug 

exposure; however, the applied MPPGL value should be accompanied by the percentage of 

cancerous liver in each patient. Although the percentage of cancerous liver is not known for 

the present study, it is common practice for major hepatectomy to resect up to 70% of the total 

liver for a sufficient liver function, including histologically normal and cancerous tissue 

(Hemming et al., 2003; Jiang et al, 2018). As a result, there may be a significant contribution 

of the tumour to the overall liver activity in CRLM patients. If we know the proportion of 

normal to cancerous tissue for an individual, then such data can be incorporated into the PBPK 

model. Otherwise, sensitivity and uncertainty analysis should be performed between two 

extreme cases (100% normal vs 100% cancerous) to establish worst-case scenario. It is 

important to clarify that the predicted PK profiles are not compared with clinical data, which 

are not available for CRLM patients. Therefore, our simulations are not indicative of which 

method is correct with observations, but they point out the assumption that MPPGL affect the 

PK in cancer patients. Further work is needed to verify this updated PBPK cancer population 

model against clinical data. PK may also depend on cancer stage, starting with a small amount 

of liver being affected (New Cancer-ALN) resulting in a high amount of liver being cancerous 

(New Cancer-ALC). In this study, we assumed that the abundance of CYPs in CRLM was the 

same as for the generic healthy and cancer population in Simcyp. Although there are no 

published data on the abundance in CRLM, potential differences in the abundance of CYPs 

may have additive effects on the PK (Vasilogianni et al., in preparation). 

In summary, this study assessed, for the first time, scaling factors specific for CRLM patients 

and showed significantly lower MPPGL in cancerous tissue compared with histologically 

normal tissue from CRLM patients. HomPPGL and CPPGL did not differ significantly between 
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cancerous and histologically normal samples. Donor demographics (age, sex, BMI) and the 

anatomical origin of samples (liver lobe) had no effect on MPPGL and CPPGL values. PBPK 

simulations on drugs with different extraction ratios metabolized by CYPs revealed substantial 

difference in drug exposure, up to 3.3-fold, when comparing default scaling factors to 

population-specific scalars. It is therefore recommended that appropriate population-specific 

MPPGL values, accounting for percentage of liver/tumorous liver tissue, should be considered 

for prediction of drug exposure in cancer patients. Future studies should quantify enzyme 

abundance differences to improve understanding of metabolic drug clearance in cancer.  
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4.7 Supplementary Information 

 

Supplementary Table 4-1 Demographic and clinical details of CRLM patients. 

Sample 

ID 

Age at 

surgery 

(years) 

Race Sex Body 

mass 

index, 

BMI 

(kg/m
2
) 

Smoking/ 

Alcohol use 

Liver 

lobe 

Diagnosis Medical history Treatment 

389 52 Caucasian Female 30.86 No/ 

Occasionally 

Left Metastatic moderately 

well differentiated 

adenocarcinoma 

Deep vein 

thrombosis, asthma, 

duodenal ulcer, 

thyroid problem, 

liver lesions 

Fragmin, 

levothyroxine, 

betamethasone, 

ventolin, ferrous 

fumarate 

590 72 Caucasian Male 32 Pipe/ 22 units 

per week 

- Metastatic moderate to 

Well differentiated 

adenocarcinoma (dirty 

necrosis) 

Asthma, 

polypectomy, 

tonsillectomy, 

Hemicolectomy 

Dukes B 

Salbutamol, 

tiotropium, 

lansaprozole, 

nasonex 

633 67 Caucasian Male 26.85 Ex-stopped/ - Right Metastatic 

adenocarcinoma & 

fatty liver disease 

Peripheral 

neuropathy 

secondary to 

oxaliplatin, type 2 

diabetes, 

hypercholesterolemia

, valvular heart 

disease, prostate 

cancer with bone 

metastasis, colonic 

Metformin, zoladex, 

oxaplatin and 5FU, 

irinotecan and 5FU 

with cetuximab 
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cancer T3N0, 

colorectal liver 

metastasis 

674 68 Caucasian Female 26.67 No/ - Right Metastatic moderately 

differentiated 

adenocarcinoma 

Rectosigmoid cancer 

10/10 Dukes B 

- 

734 64 Caucasian Female 23.84 No/ 

Occasionally 

Right Moderately to focally 

poorly differentiated 

metastatic 

adenocarcinoma 

Primary colorectal Dalteparin, short 

course of 

radiotherapy, 

adjuvant OXmdG 

and 5FU 

746 85 Caucasian Male 23.67 Ex (40 years)/ 

Moderately 

Right Metastatic papillary 

carcinoma 

Laparoscopic R 

hemicolectomy 

T2M0, Squamous 

cell carcinoma 

(scalp), 

hypothyroidism, 

hypertension, 

Chronic obstructive 

pulmonary disease 

Irbesartan, 

levothyroxine, 

bisoprolol, aspirin, 

omeprazole, 

budesamide, 

formoterol 

794 71 Caucasian Female 22.41 No/ No - Metastatic 

adenocarcinoma with 

extensive intra-acinar 

necrosis 

R hemicolectomy, 

pT3N2, high blood 

pressure, depression 

Tomudex 

chemotherapy 

818 58 Caucasian Male 21.78 Ex (25 years)/ 

18 units per 

week 

- Moderately 

differentiated 

metastatic 

adenocarcinoma 

Sigmoid 

adenocarcinoma 

pT3pN2 

Loperamide, 

carboplatin/5FU and 

modified de Gramont 

and radiotherapy 
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1492 34 - Female 32.53 Ex-stopped/ 

Approximately 

20 units per 

week 

Right Metastatic moderate 

and poorly 

differentiated 

adenocarcinoma 

Bowel resection, 

pilonodal abcess x2, 

grometts (as a child), 

tonsillectomy (as a 

child), egg 

collection, occasional 

palpitations, asthma 

(as a child), reflux, 

joint problems in 

knees, treated for 

Irritable bowel 

syndrome 

Omeprazole, 

amitryptyline, 

microgynon, 

glucosamine 

sulphate, ibuprofen, 

peppermint oil 

1493 75 - Male - No/ No Right Metastatic moderately 

differentiated 

adenocarcinoma 

Sigmoid tumour, 

sleep apnoea, asthma 

Cod liver oil, 

salbutamol inhaler, 

seretide inhaler, 

movicol 

1498 63 Caucasian Male - No/ Rarely Right Metastatic 

adenocarcinoma 

Previous gout, 

anaemia, cataract 

operation 

Doxycycline regime 

completed, Nil 

regular 

1795 63  Male 36.32 Ex - stopped 

(previously 

30cpd)/ 

Approximately 

75 units per 

week 

Left Metastatic well 

differentiated 

adenocarcinoma 

Adenocarcinoma, 

hypertension, 

intermittent 

claudication of left 

leg 

Omeprazole, 

irbesartan, 

simvastatin, 

clopidogrel 

1957 68 - Male 32.16 No/ - Left Metastatic moderately 

differentiated 

adenocarcinoma 

Primary rectal 

cancer, pneumonia 

post-operative, liver 

Nil regular 
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cancer, late lung 

metastasis 

2036 43 - Female - -/ - Right Metastatic moderate to 

poorly differentiated 

adenocarcinoma 

Primary colorectal Omeprazole, 

paracetamol 

2058 79 Caucasian Female 21.6 -/ - Left Metastatic 

adenocarcinoma 

Below the knee 

amputation, primary 

colorectal, lung 

metastasis 

Lansoprazole, 

ferrous sulphate, 

alendronic acid, 

paracetamol, codeine 

phosphate, senna, 

natecal D3 

2095 55 Caucasian Male 28.1 -/ - Right Metastatic moderately 

differentiated 

adenocarcinoma 

Primary colorectal Nil regular 
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Supplementary Table 4-2 Input parameters for PBPK modelling using Simcyp v18 R1 for alfentanil 

(predominantly metabolized by CYP3A4), alprazolam (predominantly metabolized by CYP3A4 and CYP3A5), 

desipramine (predominantly metabolized by CYP2D6), and midazolam (predominantly metabolized by CYP3A4 

and CYP3A5). 

Input Parameters 

Compound Name SV-Alfentanil SV-Alprazolam SV-Desipramine Sim-Midazolam 

Mol Weight (g/mol) 416.520 308.800 266.400 325.800 

log P 2.160 2.120 4.570 3.530 

Compound Type Monoprotic Base Monoprotic Base Monoprotic Base Monoprotic Base 

pKa 1 6.500 2.400 10.260 6.000 

pKa 2 n/a n/a n/a n/a 

B/P 0.630 0.825 1.160 0.603 

Haematocrit 45.000 45.000 45.000 45.000 

fu 0.104 0.290 0.240 0.032 

GI Absorption 

Model 
1st order 1st order 1st order 1st order 

GI Permeability 

Assay 
n/a n/a Entered n/a 

GI Peff,man Regional Regional Regional Regional 

Distribution Model 
Minimal PBPK 

Model 

Minimal PBPK 

Model 

Minimal PBPK 

Model 

Minimal PBPK 

Model 

Vss (L/kg) 0.370 0.760 20.800 0.880 

Prediction Method Entered Entered Entered Entered 

Clearance Type Enzyme Kinetics Enzyme Kinetics Enzyme Kinetics Enzyme Kinetics 

Trial Design 

Population Name 
Sim-Healthy 

Volunteers/Cancer 

Sim-Healthy 

Volunteers/Cancer 

Sim-Healthy 

Volunteers/Cancer 

Sim-Healthy 

Volunteers/Cancer 

Use Pop 

Representative 
No No No No 

Population Size 100.000 100.000 100.000 100.000 

Number of Trials 10.000 10.000 10.000 10.000 

No. of Subjects per 

Trial 
10.000 10.000 10.000 10.000 

Start Day/Time Day 1, 09:00 Day 1, 09:00 Day 1, 09:00 Day 1, 09:00 

End Day/Time Day 2, 09:00 Day 2, 09:00 Day 2, 09:00 Day 2, 09:00 

Study Duration (h) 24.000 24.000 24.000 24.000 

Sampling Time Pre-defined Uniform Pre-defined Uniform Pre-defined Uniform Pre-defined Uniform 

Sampling Site 

Selection 
Off Off Off Off 

Prandial State Fasted Fasted Fasted Fasted 

Route Oral Oral Oral Oral 

Dose Units Dose (mg/kg) Dose (mg) Dose (mg) Dose (mg) 

Dose 0.043 0.500 50.000 5.000 

Start Day/Time Day 1, 09:00 Day 1, 09:00 Day 1, 09:00 Day 1, 09:00 

Dosing Regimen Single Dose Single Dose Single Dose Single Dose 

 

 



|Chapter 4 

217 
 

Supplementary Table 4-3 Protein content (mg/g liver tissue) in homogenates, microsomes, and cytosols from histologically normal and cancerous tissues of CRLM patients. 

 HomPPGL (mg/g liver tissue)    

sample 1957 818 1493 1498 389 734 746 1492 794 674 590 633 1795 2095 2058 2036 mean SD cv 

normal 119.5 150.2 167.9 144.1 83.4 266.7 107.4 156.7 75.1 107.6 109.1 135.7 120.2 104.2 84.4 86.0 126.1 46.7 0.37 

tumor 138.2 89.5 92.0 104.9 184.9 37.1 64.6 70.4 86.6 204.8 77.0 63.7 42.0 43.0 47.3 43.7 86.9 50.2 0.58 

 Uncorrected MPPGL (mg/g liver tissue)    

sample 1957 818 1493 1498 389 734 746 1492 794 674 590 633 1795 2095 2058 2036 mean SD cv 

normal 14.0 22.8 14.1 19.6 20.0 11.8 18.7 20.0 16.7 12.7 12.5 14.6 8.8 15.1 12.5 19.0 15.8 3.9 0.24 

tumor 6.4 15.2 4.3 10.4 11.6 4.7 6.5 5.9 4.5 4.8 6.3 2.6 3.7 6.1 5.8 4.5 6.5 3.3 0.51 

 CPPGL (mg/g liver tissue)    

sample 1957 818 1493 1498 389 734 746 1492 794 674 590 633 1795 2095 2058 2036 mean SD cv 

normal 43.4 67.8 32.3 47.7 55.6 34.1 76.1 70.8 75.6 77.1 41.2 47.0 33.9 80.7 57.7 58.7 56.2 16.9 0.30 

tumor 54.6 67.2 39.9 58.6 54.1 54.8 41.5 29.4 29.2 24.8 50.9 33.8 30.8 32.1 41.1 31.3 42.1 12.9 0.31 
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Supplementary Table 4-4 NADPH cytochrome 450 reductase activities (units/mg tissue) in homogenates and 

microsomes from histologically normal and tumor tissues of CRLM patients. 

 

NADPH CYP450 

reductase activity in 

homogenates 

(unit/mg) 

NADPH CYP450 

reductase activity in 

microsomes (unit/mg) 

NADPH CYP450 

reductase activity in 

homogenates 

(unit/mg) 

NADPH CYP450 

reductase activity in 

microsomes (unit/mg) 

Sample 

ID 

Normal Tumor 

389 2.275 0.811 0.640 0.282 

633 2.844 1.015 0.284 0.085 

674 2.844 1.219 0.569 0.083 

734 0.796 0.570 0.284 0.062 

746 3.318 1.580 0.967 0.211 

794 2.640 1.398 0.427 0.148 

818 2.218 1.232 0.284 0.099 

1492 3.270 1.708 0.640 0.165 

1493 1.479 0.341 0.142 0.030 

1498 2.275 1.719 1.422 0.708 

1957 2.275 0.968 0.758 0.150 

1795 1.479 0.513 - - 

2036 1.919 0.656 - - 

2058 2.275 0.704 - - 

2095 2.204 1.270 - - 

590 3.583 0.711 - - 

Mean 2.356 1.026 0.583 0.184 

SD 0.73 0.44 0.37 0.19 
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Supplementary Figure 4-1 Relationship between observed (current study) and predicted MPPGL values and age (Barter et 

al., 2008), with 95% confidence intervals for the predicted values for Model 1. The observed MPPGL values correspond to 

the histologically normal samples. 
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Chapter Five: Changes in Abundance of Proteins Involved in Drug 

Pharmacokinetics and Pharmacodynamics in Colorectal Cancer 

Liver Metastasis Relative to Healthy Liver 
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5.1 Abstract 

This study aims to quantify drug-metabolising enzymes (DMEs), transporters, receptor 

tyrosine kinases (RTKs) and protein markers (involved in pathways affected in cancer) in 

pooled healthy, histologically normal, and matched cancerous liver microsomes from 

colorectal cancer liver metastasis (CRLM) patients. Microsomal fractionation was performed 

and pooled microsomes were prepared. Global and accurate mass and retention time (AMRT) 

LC-MS proteomics were used to quantify proteins. A QconCAT (‘KinCAT’) for the 

quantification of RTKs was designed and applied for the first time. Physiologically-based 

pharmacokinetic (PBPK) simulations were performed to assess the contribution of altered 

abundance of CYPs to changes in pharmacokinetics (PK). Most CYPs and UGTs were 

downregulated in histologically normal relative to healthy samples, and were further reduced 

in cancer samples (up to 54-fold). The transporters, MRP2/3, OAT2/7 and OATP2B1/1B3/1B1 

were downregulated in CRLM. Application of CYP abundance data in PBPK models for CYP-

substrates (alfentanil, midazolam, and nebivolol) indicated substantially higher (up to 13-fold) 

drug exposure in cancer compared with healthy populations. Liver function markers were 

downregulated, while inflammation proteins were upregulated (by up to 76-fold) in cancer 

samples. Various pharmacodynamics (PD) markers (e.g. RTKs) were altered in CRLM. Using 

global proteomics, we examined proteins in pathways relevant to cancer (such as metastasis 

and desmoplasia), including caveolins and collagen chains, and confirmed general over-

expression of such pathways. This study highlights impaired drug metabolism, perturbed drug 

transport and altered abundance of cancer markers in CRLM, demonstrating the importance of 

population-specific abundance data in PBPK models for cancer. 
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5.2 Introduction 

Colorectal cancer (CRC) is the third most common type of cancer worldwide (Bray et al., 

2018), with half of patients having liver metastasis (Maher et al., 2017). Surgical resection is 

the ideal intervention for colorectal cancer liver metastasis (CRLM), but this is not always 

possible and other adjuvant therapies (e.g. chemotherapy) are available (Mitchell et al., 2019). 

Because liver metastasis is common, pharmacokinetics (PK) of many drugs differ in CRC 

patients due to perturbed system parameters (Cheeti et al., 2013; Yan, Gao, et al., 2015; Shinko 

et al., 2017; Billington et al., 2018; Vasilogianni et al., 2021). Pharmacodynamics (PD) is also 

expected to change due to altered expression of drug targets during cancer progression 

(Adeyinka et al., 2002), which has been reported across different cancer types (Koivunen et 

al., 2006).  

To translate the effects of changes in  expression under disease conditions to in vivo outcomes, 

proteomics data are used within the framework of in vitro-in vivo extrapolation (IVIVE) linked 

to physiologically-based pharmacokinetic/pharmacodynamic (PBPK/PD) modelling (Rostami-

Hodjegan, 2012; Prasad et al., 2017). However, protein abundance data are limited in cancer 

populations. The limited qualitative data available on CRLM on the expression of drug-

metabolising enzymes (DMEs) (Lane et al., 2004) suggest that cancer may alter drug 

metabolism. Quantitative transporter data in CRLM are limited to mRNA measurements 

(Wlcek et al., 2011) or comparison of expression in livers from healthy donors with that in 

histologically normal livers from CRLM patients (Kurzawski et al., 2019). Expression of 

pharmacodynamic targets including receptors is also affected by cancer. Of particular interest 

are receptor tyrosine kinases (RTKs), which regulate cellular processes and many anti-cancer 

drugs, such as regorafenib, inhibit them, thus improving survival of CRLM patients (Lee and 

Oh, 2016; García-Aranda and Redondo, 2019). RTK mRNA and protein expression data have 

been measured in cell lines (Kao et al., 2003; Kim et al., 2016; Potratz et al., 2016) but human 

studies are only limited to immunohistochemistry (Saito et al., 2004; Ljuslinder et al., 2009; 

Steller et al., 2013; Yao et al., 2013). 

This study, therefore, aimed to apply global and QconCAT-based proteomics to quantify PK 

and PD proteins in pooled liver samples from healthy (healthy donors), histologically normal 

(peri-carcinomatous) and matched cancerous liver tissue from CRLM patients. The target 

proteins are involved in drug metabolism, transport and pathways affected in cancer. Notably, 

we designed, for the first time, a QconCAT standard (‘KinCAT’) for absolute quantification of 

RTKs. We additionally assessed the contribution of altered abundance of CYPs using PBPK 
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models. The generated abundance data will fill key gaps in current knowledge about human 

enzymes, transporters and PD targets in CRLM. 

 

5.3 Materials and Methods 

 

5.3.1 Liver samples and donor characteristics 

Matched cancerous and histologically normal liver tissues from adult CRLM patients were 

supplied by the Manchester University NHS Foundation Trust (MFT) Biobank, Manchester, 

UK, following hepatectomy. Ethics were covered under the MFT Biobank generic ethical 

approval (NRES 14/NW/1260 and 19/NW/0644). Healthy human liver microsomal samples 

(tumour-free) from healthy subjects were provided by Pfizer (Groton, CT, USA), and prepared 

previously by Vitron (Tucson, AZ, USA) and BD Gentest (San Jose, CA, USA). 

Supplementary Tables 5-1 and 5-2 present demographic and clinical information about the 

donors of CRLM and healthy samples. 

 

5.3.2 QconCATs standards 

MetCAT and TransCAT standards have been used in this study, as described previously 

(Russell et al., 2013; Harwood et al., 2015). A modified version of the TransCAT was used 

(Supplementary Information). The “KinCAT” is a novel QconCAT for the quantification of 

human RTKs. It consists of concatenated tryptic peptides representative of the following 

proteins: macrophage colony-stimulating factor 1 receptor (CSF1R), epidermal growth factor 

receptor (EGFR), ephrin type-A receptor 2 (EPH2A), erythroblastic oncogene B2 (ERBB2), 

fibroblast growth factor receptors (FGFR1/2/3), FMS-like tyrosine kinase (FLT3), insulin-like 

growth factor 1 receptor (IGF1R), insulin receptor (INSR), mast/stem cell growth factor 

receptor (KIT), hepatocyte growth factor receptor (MET), neurotrophic tyrosine kinase 

receptor type 2 (NTRK2), platelet-derived growth factor receptors (PGFRA/B), proto-

oncogene tyrosine-protein kinase receptor (RET), angiopoietin-1 receptor (TIE2), tyrosine-

protein kinase receptor UFO (AXL), vascular endothelial growth factor receptors 

(VGFR1/2/3). These proteins were selected for their crucial role in cancer biology and 

treatment. Details are provided in Supplementary Information and Figure 5-1. 
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5.3.3 Sample preparation for proteomics  

Liver tissue samples were fractionated to microsomes (Vasilogianni et al., 2021), as described 

in Supplementary Methods. Pooled samples were made up by combining equal volumes of 

individual microsomes from either 15 healthy samples (HP), 16 histologically normal samples 

(NP) from CRLM patients or 16 matched cancerous liver samples (TP) from the same CRLM 

patients. Each pooled sample (70 µg) was spiked with known amounts (Supplementary 

Methods) of each isotopically-labelled QconCAT, and prepared using filter-aided sample 

preparation (FASP) (Al-Majdoub et al., 2019; Couto et al., 2019, 2020). Samples were 

denaturated (sodium dexoycholate, 10% w/v final concentration), reduced (dithiothreitol, 0.1 

M final concentration), alkylated (iodoacetamide, 100 µl of 50 mM), and digested (2 doses of 

LysC 2% w/w, 30°C, 4 h, and trypsin 4% w/w, 37°C, 16 h) (Al-Majdoub et al., 2014). 

Unlabelled peptide standards, GVNDNEEGFFSAR, VGFLPDGVIK and 

SEGVNDNEEGFFSAR, were added to quantify the QconCATs (MetCAT, TransCAT and 

KinCAT, respectively). Samples were lyophilized by vacuum centrifugation after sample 

preparation and stored at -20°C until mass spectrometric analysis. Additional details are 

provided in Supplementary Methods. 

 

5.3.4 Liquid chromatography and tandem mass spectrometry (LC-MS/MS) 

Dried samples were re-suspended in loading buffer and loaded onto an UltiMate® 3000 Rapid 

Separation LC system (RSLC, Dionex Corporation, Sunnyvale, CA) coupled to a Q Exactive 

HF Hybrid Quadrupole-Orbitrap mass spectrometer (Thermo Fisher Scientific, Waltham, MA). 

Details are provided in Supplementary Methods. 

 

5.3.5 Analysis and annotation of proteomic data 

Proteomic data were processed using MaxQuant 1.6.7.0 (Max Planck Institute, Martinsried, 

Germany), and searched against a customized database, comprising human UniprotKB 

database (74,788 sequences) and QconCAT sequences. For targeted accurate mass and 

retention time (AMRT) analysis, light-to-heavy intensity ratios were used with QconCAT 

concentrations to calculate protein amounts based on accurate mass and retention time for each 

peptide (Al-Majdoub et al., 2019; Al-Majdoub, Couto, et al., 2020). Peptides selected for 

quantification of CYPs/UGTs, transporters and RTKs are presented in Supplementary Tables 

5-6, 5-7 and 5-8, respectively. For global analysis, data were processed using the total protein 
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approach (TPA) based on the ratio of individual protein to total proteome MS signal intensity 

(Al-Majdoub, Achour, et al., 2020). 

 

5.3.6 Physiologically-based pharmacokinetic (PBPK) simulations 

The effect of abundance of CYPs on simulated plasma drug exposure was assessed using PBPK 

modelling on Simcyp V20 Release 1 (Certara, Sheffield, UK) on CYP-substrates with different 

hepatic extraction ratios (EH): alfentanil (CYP3A4 substrate, EH=0.36 in healthy), midazolam 

(CYP3A4 and CYP3A5 substrate, EH=0.44), and nebivolol (CYP3A4 and CYP2D6 substrate, 

EH=0.74). The compound files were available in Simcyp library, and PBPK simulations used 

system parameters available on the simulator for healthy and cancer populations. The effects 

of abundance changes (based on TPA) in CRLM were assessed using previously described 

models (Vasilogianni et al., 2021): 

Model 1 (Healthy): default MPPGL and abundance levels for the healthy population (Simcyp). 

Model 2 (Cancer-D): default MPPGL and abundance for the cancer population (Simcyp). 

MPPGL model 3 (New Cancer-ALN): MPPGL of histologically normal tissue (Vasilogianni 

et al., 2021) and abundances of CYPs in histologically normal relative to healthy tissue were 

used for the cancer population, assuming the whole liver is histologically normal (maximum 

metabolic capacity). 

MPPGL model 4 (New Cancer-ALC): MPPGL of cancerous tissue (Vasilogianni et al., 2021) 

and abundance of CYPs in tumor relative to healthy tissue were used for the cancer population, 

assuming the whole liver is cancerous (minimum metabolic capacity) and liver mass is 

unchangeable. 

The mean systemic concentration (Csys)-time profiles were plotted, and the area under the curve 

(AUC) and clearance (dose/AUC) were compared. Supplementary Table 5-5 summarises the 

parameters used in PBPK simulations. 

 

5.3.7 Data analysis  

Ratios were calculated for abundances in histologically normal and tumor samples relative to 

healthy control samples. Expression levels with ratios within 2-fold (0.5-2.0) were considered 
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similar. Graphs were generated using GraphPad Prism 8.1.2 (GraphPad Software, La Jolla, 

California USA). 

 

5.4 Results 

 

5.4.1 Novel QconCAT (KinCAT) for the quantification of kinases   

Kinases regulate cellular processes and are involved in the development and progression of 

cancer. Protein expression levels of kinases have not been quantified in human tissue. We have 

therefore designed, for the first time, a QconCAT (KinCAT) to quantify RTKs (Figure 5-1A 

and C). KinCAT migrated on SDS-PAGE (molecular mass 82 kDa), including N-terminal core 

ribosomal protein to improve expression of the KinCAT (Al-Majdoub et al., 2014) with a 

histidine tag for purification, demonstrating that the intact QconCAT was expressed (Figure 5-

1B) and confirmed by Mascot sequence coverage (88%) (Figure 5-1D). The 13C-labelling 

efficiency was >97% (Figure 5-1E). The LC-MS traces of the digested KinCAT peptides are 

shown in Figure 5-1A, using Skyline (version 19.01.193) 

(www.sciex.com/products/software/skyline-software). More details about the KinCAT are 

provided in the Supplementary Table 5-4. 

http://www.sciex.com/products/software/skyline-software
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Figure 5-1 Design and characterization of the KinCAT. LC-MS traces of peptides included in the KinCAT sequence (A). 

SDS-PAGE gel showing the expression and purity of KinCAT; M = molecular weight marker (B). Sequences of KinCAT 

peptides and the RTK proteins they represent (C). Sequence coverage of the KinCAT protein, showing complete expression 

(D).  Incorporation efficiency of 13C6-lysines (K) and arginines (R) in the KinCAT peptides (E). 

 

5.4.2 Abundance of CYPs and UGTs in healthy, histologically normal, and cancerous 

liver 

 

5.4.2.1 Absolute abundance of CYP and UGT enzymes 

The effect of cancer on the expression of DMEs was evaluated by comparing the expression in 

1 pooled healthy (HP), 1 pooled histologically normal (NP) and 1 pooled tumorous sample 

(TP) from CRLM patients using AMRT. With the exception of CYP2J2, protein expression of 

CYPs (Figure 5-2A) and UGTs (Figure 5-2D) in HP is similar to that in NP. Abundance of 

CYPs and UGTs in HP ranged from 0.16 to 90.2 and 7.7 to 60.7 pmol/mg microsomal protein, 
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respectively. Interestingly, enzyme expression was significantly decreased for all CYPs and 

UGTs in TP (Figure 5-2A and D). The most abundant CYP in HP was CYP3A4 (90.2 pmol/mg 

microsomal protein), followed by 2E1 and 2C9 (79.4 and 76.1 pmol/mg microsomal protein, 

respectively). CYP2C9 was the most abundant (17.4 pmol/mg microsomal protein) in TP, 

followed by 2E1, and 3A4 (9.5 and 9 pmol/mg, respectively). The most abundant UGT was 

UGT2B7 (60.7, 80.9, and 9.1 pmol/mg microsomal protein in HP, NP, and TP, respectively). 

CYP2D6 and UGT1A3 were not detected in HP, whereas, CYP3A5 was not detected in NP 

and TP.  

 

5.4.2.2 Replicate of measurement of CYPs and UGTs 

To confirm the quantification of CYPs and UGTs, we measured replicate samples (HP, NP and 

TP) and assessed the results from the two studies against one another (Supplementary Table 5-

9), which were consistent. 

 

5.4.2.3 Abundance distribution of CYPs and UGTs in HP and TP 

The pie charts in Figure 5-2 represent the abundance distribution (based on targeted analysis) 

of CYPs (Figure 5-2B and C) and UGTs (Figure 5-2E and F) in HP and TP. The overall 

distribution patterns of the enzymes had similarities between the two groups, with some 

differences, particularly for the abundance of CYP3A4 (28%), which was the highest in HP, 

whereas CYP2C9 (30%) was the most abundant in TP. 

 

5.4.2.4 Fold change in the expression of CYPs and UGTs in TP and NP relative to HP 

Fold change in expression of CYPs and UGTs in TP and NP relative to HP was assessed using 

TPA. In Figure 5-2G and 2H, the abundance of enzymes in NP and TP is expressed as relative 

ratios to levels in HP. Most of the CYPs in NP were within 2-fold of levels in HP, except 

CYP3A4 and CYP3A5 (3-fold lower), and CYP2J2 (5-fold lower in NP). Similar trends were 

observed for UGTs, most of which were downregulated by more than 2-fold (up to 7-fold for 

UGT1A1) in NP. CYPs were further downregulated in TP (up to 54-fold). Notably, CYP3A4 

and CYP3A5 were 11 and 10-fold lower in TP, respectively. Similarly, UGT expression levels 

were decreased further in TP (up to 26-fold).  
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Figure 5-2 Protein expression of cytochrome P450 enzymes (CYPs) and UDP-glucuronosyltransferases (UGTs) in healthy 

(HP), histologically normal (NP) and tumorous (TP) pooled HLM samples. Absolute abundance of CYPs (A) and UGTs (D) 

is expressed in pmol per mg of microsomal protein. Pie charts represent the distribution of CYPs (B, C), and UGTs (E, F) in 

HP and TP, respectively, based on their absolute abundance. The relative changes in expression of CYPs (G) and UGTs (H) 

in NP and TP compared with HP. The green and red arrows indicate increased and decreased expression relative to HP, 

respectively. The dotted line represents 2-fold change. 
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5.4.3 Abundance of transporters in healthy, histologically normal and cancerous liver  

Protein expression of ABC and SLC transporters, plasma membrane protein (ATP1A1) and 

cadherin-like transporter (CDH17) was measured using AMRT targeted method (Figure 5-3A 

and B). With the exception of P-gp (0.71 and 0.46 pmol/mg protein in TP and HP), ABC 

transporters were either not detected (BCRP, MRP6 and BSEP) or, in the case of MDR3, MRP2 

and MRP3, lower in cancer (0.14, 0.18 and 0.47 pmol/mg protein, respectively) compared with 

HP (0.52, 0.85, 0.70 pmol/mg protein, respectively) (Figure 5-3A). ATP1A1 was moderately 

abundant in healthy liver, as indicated previously (Couto et al., 2019), and its abundance was 

higher in cancer (16.3 pmol/mg in TP and 7.3 pmol/mg in HP). CDH17 was only quantifiable 

in NP and TP. Expression of SLCs was perturbed in cancer, with lower abundance of OAT7, 

OAT2B1, OATP1B3, OATP1B1 and OAT2 in TP (0.25, 0.69, 0.36, 0.54, and 0.16 pmol/mg, 

respectively) compared with HP (3.3, 2.4, 2.4, 2.0, and 1.5 pmol/mg, respectively). 

 

5.4.3.1 Fold changes in the expression of transporters 

TPA revealed relative changes in the abundance of ABC (Figure 5-3C) and SLC (Figure 5-3D) 

transporters in NP and TP compared with HP. Only MRP2 and MRP3 were lower in NP by 

more than 2-fold. In TP, we observed reduced expression of MRP2 and MRP3, and an increase 

in MRP4, P-gp and MDR3, relative to HP. BCRP was similar in TP and HP. Most SLCs, with 

exception of OATP1A2, were lower by more than 2-fold in NP. Up to 51-fold reduction in 

expression was observed in SLC transporters in TP. The magnitude of change in abundance 

followed the rank order: OAT7>OATP1B3>OAT2 >OCT3>OATP1B1>OATP2B1>MOT1 

(Figure 5-3D).  
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Figure 5-3 Abundance of transporters in healthy (HP), histologically normal (NP) and tumorous (TP) pooled HLM samples. 

Absolute abundance of ABC transporters, plasma membrane marker (ATP1A1) and one adhesion protein (CDH17) (A) and 

solute carriers (SLCs) (B), expressed in pmol of protein per mg of total protein. Relative change in expression of ABC (C) 

and SLC (D) transporters in NP and TP, compared with HP. The green and red arrows indicate increased and decreased 

expression relative to HP, respectively. The dotted line represents 2-fold change. 
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5.4.4 Differential protein abundance of non-CYP non-UGT and anti-oxidant enzymes 

We also assessed the relative change in abundance of non-CYP non-UGT DMEs and anti-

oxidant enzymes using the TPA (Figure 5-4A, B and C), in NP and TP compared with HP. 

Among non-CYP non-UGT enzymes (Figure 5-4A), FMO4, ALDH2, SULT1A2, SULT1B1, 

ADH4, ADH6, ADH1B and AOXA were more abundant in NP compared with HP, whereas 

CES3, POR, MGST2 and MGST3 were less abundant (>2-fold change). The suppressive effect 

of cancer on expression was observed with CES1/2, FMO3/5, MGST1/2/3, POR, MGST1/2/3, 

ALDH1A/1G, ADH6, ADHX, EPHX1, and SULT2A1, with up to 7.3-fold lower levels 

(Figure 5-4A and B).  

Anti-oxidant enzymes (Figure 5-4C) protect cells from oxidative stress, which may lead to 

carcinogenesis. Heme-oxygenase 1 and 2 (heme degradation) (HMOX1 and HMOX2) were 

expressed at lower levels in NP compared with HP (69.7 and 4.1-fold). HMOX1 was not 

detected in TP. Peroxiredoxins (involved in detoxification of peroxides), PRDX4 and PRDX5, 

and HMOX2 were downregulated (up to 4.1-fold), while catalase, CAT (neutralises hydrogen 

peroxide), and PRDX2 were expressed at higher levels in NP. PRDX4, PRDX6, HMOX2, 

superoxide dismutase (dismutation of superoxide) SOD1, and CAT were downregulated, while 

PRDX5 and PRDX2 were up to 12.3-fold higher in TP. 
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Figure 5-4 Relative abundance of non-CYP non-UGT enzymes (A, B), and anti-oxidant enzymes (C) measured in healthy 

(HP), histologically normal (NP) and tumorous (TP) pooled HLM samples. The green and red arrows indicate higher or lower 

expression relative to HP, respectively. The dotted line is set to 2-fold change. (A) ALDH, aldehyde dehydrogenase; CES, 

carboxylesterase; FMO, flavin-containing monooxygenase; MGST, microsomal glutathione S-transferase; POR, NADPH-

cytochrome P450 reductase. (B) ADH, alcohol dehydrogenase; AOX, aldehyde oxidase; EPHX, epoxide hydrolase; SULT, 

sulfotransferase. (C) CAT, catalase; HMOX, heme-oxygenase; PRDX, peroxiredoxin; SOD, Superoxide dismutase. 
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5.4.5 Assessment of changes in expression of kinases in NP and TP compared with HP 

 

5.4.5.1 Expression levels of RTKs 

To assess the expression of RTKs, AMRT targeted analysis using KinCAT was carried out in 

HP, NP and TP liver samples (Figure 5-5A). Expression of VGFR1, TIE2, FGFR3, ERBB2 

and IGF1R was higher in NP relative to HP, whereas AXL and VGFR3 were less abundant in 

NP, and RET was exclusively expressed in NP (at 0.04 pmol/mg protein). Compared with HP, 

expression levels of INSR, EGFR, AXL were lower, and those of NTRK2, ERBB2, IGF1R 

were higher in TP. KIT was only expressed in NP and TP. FGFR1 (0.01 pmol/mg), VGFR2 

(0.02 pmol/mg), FGFR2 (0.04 pmol/mg), and PGFRB (3.8 pmol/mg) were exclusively 

expressed in TP. 

 

5.4.5.2 Non-RTKs exclusively expressed in TP 

Additional kinases expressed in the pooled cancer sample were assessed using global 

proteomics and quantified by the TPA. Figure 5-5B shows kinases involved in various 

biological pathways that were exclusively expressed in TP, including creatine kinases (KCR), 

mitogen-activated protein kinase (MK), STRAP, PAK1 and GAK. 

 

5.4.5.3 Fold change in expression of RTKs between HP to NP and TP 

Fold changes in the abundance of RTKs were assessed by the TPA (Figure 5-5C). The 

abundance of VGFR3/1, FGFR2, INSR and NTRK2 was lower (>2-fold) in NP compared with 

HP, whereas KIT and VGFR2 were higher (>2-fold). In TP, we observed decreased expression 

of TIE2, EGFR, FGFR2, and INSR and increased abundance of KIT, VGFR2 and EPHA2 

compared with HP. 

 

5.4.5.4 RTK-related pathways affected in cancer 

Figure 5-5D describes the role of RTKs (tumor cell survival/proliferation, angiogenesis, 

differentiation/apoptosis, and extracellular matrix formation/metastasis) and biological 

pathways affected by RTKs with altered expression. Compared with HP, our data show an 

increase in expression of phosphatidylinositol 3-kinase (PI3K) and serine/threonine-protein 

kinase mTOR (tumor cell survival). Ras-related protein R-Ras, serine/threonine-protein kinase 

Raf, and extracellular signal-regulated kinases ERK were upregulated (tumor cell 
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proliferation). Additionally, proto-oncogene tyrosine-protein kinase SRC and Ras-related C3 

botulinum toxin substrate 1 (RAC1) (Metastasis) were higher in TP compared with HP. 

 

 

Figure 5-5 Abundance of kinases in healthy (HP), histologically normal (NP) and tumorous (TP) pooled HLM. (A) Absolute 

abundance of receptor tyrosine kinases (RTKs), expressed in pmol of protein per mg of liver microsomal protein using KinCAT 

as standard. (B) Relative abundance of kinases (not RTKs) exclusively identified in TP, expressed as ppm (parts per million) 

using the total protein approach (TPA). (C) Relative change of RTKs in NP and TP compared with HP. When a bar is not 

present, this means that there was no change in NP or TP compared with HP. The crosses indicate the absence of a protein 

from a sample. The green and red arrows indicate increased and decreased expression relative to HP, respectively. The dotted 

line is set to 2-fold change. (D) Functions of RTKs (targeted by anti-cancer tyrosine kinase inhibitors, TKIs) and biological 

pathways that are affected by the altered abundances of RTKs. Green and red arrows show increased and decreased abundance 

of proteins in TP, respectively. The blue line represents exclusive expression (low) in HP, and red font means the target was 

not detected in any of the samples. 

 

5.4.6 Abundance of markers of liver function, inflammation, desmoplasia and metastasis 

By applying the TPA, we assessed fold changes in the abundance of various markers of liver 

function and cancer in NP and TP relative to HP. 
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5.4.6.1 Liver function 

Figure 5-6A shows 3.5-fold higher expression of liver function marker, alanine 

aminotransferase (ALT1), and 4-fold reduction in that of alkaline phosphatase (ALP), in NP 

compared with HP. However, liver function markers, ALT1, ALP, and aspartate 

aminotransferase (AST), were downregulated in TP by 7.6, 2.3, and 1.8-fold, respectively, 

suggesting impaired liver function in CRLM. 

 

5.4.6.2 Inflammation 

Expression of inflammatory markers (Figure 5-6B) showed variable trends. Abundance of 

cytochrome c oxidase (COX1), interferon-induced transmembrane protein 3 (IFM3), catenin 

beta-1 (CTNNB1) was lower in NP compared with HP (up to 6.3-fold), while that of interleukin 

enhancer-binding factor (ILF2) was significantly higher (32-fold). COX1 was downregulated 

and ILF2 was significantly upregulated (76-fold) in TP. ILF3 and macrophage migration 

inhibitory factor (MIF) were not expressed in HP, but had higher levels in TP compared with 

NP. Arachidonate 5-lipoxygenase (LOX5) and nuclear factor NF-kappa-B (NFKB1) were 

exclusively expressed in TP. 

 

5.4.6.3 Desmoplasia 

We also measured desmoplasia markers (Figure 5-6C) involved in the growth of fibrous tissue. 

Consistent with fibrotic appearance of the tumorous samples observed during tissue 

fractionation, we found exclusive expression of GPX3, GPX8, tenascin (TENA) in TP. 

Additionally, glutathione peroxidase (GPX4), and caveolins (CAV) 1 and 2 were expressed at 

higher levels (>2-fold) in TP compared with HP. 

 

5.4.6.4 Metastasis markers 

Expression of metastasis markers was perturbed in CRLM. Collagen chains (Figure 5-6D), 

COIA1 and COEA1 were upregulated (165-fold) in NP, and almost all collagen chains were 

significantly higher (up to 1065-fold) or exclusively expressed (COCA1, COC4A1) in TP 

compared with HP. Cathepsins (Figure 5-6E) were generally unchanged across all samples, 

with only CATG being significantly higher (9.9-fold) in TP relative to HP. Other metastasis 

markers (Figure 5-6F), such as cystatin-N (CYTN), matrix metalloproteinase 12 (MM12), 

desmocollin 2 (DSC2) and metalloproteinase inhibitor (TIMP3), were exclusively expressed 

in TP. Expression of MM8 and MM9 was (up to 3.7-fold) lower in TP compared with HP. 
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Integrin alpha-M (ITAM), vimentin (VIME), clusterin (CLUS), syntenin-1 (SDCB1) and 

TIMP1 were upregulated in TP (up to 38-fold). 

 

 

Figure 5-6 Relative change of markers of liver function (A), inflammation (B), desmoplasia (C), collagen chains (metastasis 

markers) (D), cathepsins (metastasis markers) (E), and other metastasis markers (F) in NP and TP compared with HP. HP is 

set to 1 and NP and TP are expressed as relative changes to HP. When a bar is not present, this means that there was no change 

of expression in NP or TP relative to HP. The crosses indicate absence of a protein from a sample. The green and red arrows 

indicate increased and decreased expression relative to HP, respectively. The dotted line is set to 2-fold change. 

 

5.4.7 Physiologically-based pharmacokinetic (PBPK) simulations 

Simulations for CYP-substrates (alfentanil, midazolam, nebivolol) were performed (Figure 5-

7) using either default healthy population in Simcyp (Healthy), default cancer population in 

Simcyp (Cancer-D), or experimentally-derived data (New Cancer-ALN, New Cancer-ALC). 
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AUC predicted using New Cancer-ALC was 13, 6, 4-fold higher than that obtained using the 

Healthy model for alfentanil, midazolam and nebivolol, respectively. Similarly, when using 

New Cancer-ALC, the clearance (dose/AUC) of alfentanil, midazolam, and nebivolol was 14, 

8 and 4-fold lower than in the Healthy scenario. 

 

Figure 5-7 Mean predicted systemic concentration over time (24 hours) after oral administration of alfentanil (A), midazolam 

(C), and nebivolol (E), and clearance (Dose/AUC) of alfentanil (B), midazolam (D), and nebivolol (E). For each drug, four 

different models were used. Healthy: default MPPGL and abundances of CYPs and UGTs (Simcyp) with a healthy population. 

Cancer-D: default MPPGL and abundances of CYPs and UGTs (Simcyp) with a cancer population. New Cancer-ALN: 

MPPGL (Vasilogianni et al., 2021) and abundance of CYPs and UGTs measured in this study for histologically normal tissue 

with a cancer population. New Cancer-ALC: MPPGL (Vasilogianni et al., 2021) and abundances of CYPs and UGTs measured 

in this study for cancer tissue with a cancer population. 
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5.5 Discussion 

For the first time, this study applied targeted and global LC-MS/MS-based proteomics to 

quantify DMEs, transporters and PD targets (including RTKs, inflammatory markers, 

metastatic markers) in healthy, histologically normal and cancerous livers from CRLM 

patients. For the proteins investigated here, no quantitative data have been reported previously 

in CRLM. Our experimental data were used to optimise PBPK models in cancer population 

(Simcyp) in order to assess the impact of the changes in abundance on PK. 

Of relevance to drug metabolism, CYPs and UGTs were significantly downregulated in cancer 

tissue highlighting that the clearance of CYP-substrates may be significantly lower in patients 

with late-stage liver cancer. Abundance of CYPs and UGTs was also lower in histologically 

normal tissue, meaning that the impact of cancer is not limited to the tumour, affecting the 

metabolic function of the whole liver. Additional DMEs such as ADHs and FMO3 were 

downregulated in tumorous tissue, suggesting impaired capacity in almost all drug clearance 

pathways. Expression of anti-oxidant enzymes was decreased in tumours and normal tissue, 

suggesting impaired detoxification in CRLM. In agreement with our findings, data from HCC 

patients showed a significant impact of cancer on CYPs, UGTs, ADHs, FMO3, and SULTs 

(Hu et al., 2014; Yan, Gao, et al., 2015; Yan, Lu, et al., 2015; Xie et al., 2017). Our data suggest 

that the severity of disease (amount of liver being cancerous) and the change in abundance of 

enzymes are important in predicting the disease effect on metabolism and detoxification. 

Transporters are important for the disposition of drugs and the trafficking of nutrients and 

metabolites. Abundance data on transporters showed significant changes in expression in 

CRLM, suggesting impaired disposition. The majority of SLC transporters were 

downregulated in cancerous tissue. Efflux transporters, MRP2 and MRP3, which are involved 

in drug resistance, were downregulated in histologically normal and tumorous tissue, while 

other efflux transporters involved in drug resistance, such P-gp and MRP4, were increased in 

cancer tissue. The lower expression of OATPs and OCT1 is consistent with data from HCC 

patients, whereas changes in BCRP, MRPs, and P-gp were not consistent (Billington et al., 

2018). Such differences are not surprising considering differences in the type of cancer, and 

further analysis of individual samples is required to assess expression of proteins involved in 

drug resistance. 

The protein expression levels of RTKs is reported for the first time in this study. Our approach 

employed a novel QconCAT, the KinCAT, which was used for the first time in human tissue 

in this study. In histologically normal tissue, expression of VGFR1/3, FGFR2, INSR, and 
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NTRK2 was downregulated, and that of KIT and VGFR2 upregulated. Tumour suppressant 

marker (RET) was exclusively expressed in histologically normal tissue. In tumour tissue, 

expression of markers such as TIE2, EGFR, FGFR2, and INSR was downregulated, while that 

of KIT, VGFR2 and EPHA2 was upregulated. Platelet-derived growth factor receptor 

(PGFRB) was highly and exclusively expressed in tumorous tissue, consistent with literature 

suggesting PGFRB is a metastasis marker (Steller et al., 2013). Desmoplasia markers were 

upregulated in CRLM patients, indicating more extensive growth of fibrous tissue. Consistent 

with previous findings (van Huizen et al., 2019), expression of collagen chains was 

significantly higher in CRLM. The observed perturbations of kinases and cancer-related 

proteins in CRLM suggests a potential effect on cancer-related pathways, such as cell 

survival/proliferation, angiogenesis, differentiation and metastasis (Troiani et al., 2013). In the 

current study, these markers (such as PI3K, mTOR, Ras, Raf, ERK, SRC and RAC1) were 

affected in CRLM. As pathophysiological changes can affect protein expression, these proteins 

can be used as potential markers for monitoring disease prognosis and as therapeutic targets. 

Global proteomic data revealed reduced expression of liver function markers and upregulation 

of inflammatory markers in cancer. LOX5 and NFKB1, were exclusively expressed in cancer 

tissue, and these constitute important targets for anti-inflammatory drugs (Zappavigna et al., 

2020). The severity of inflammation in cancer affects the production of cytokines and increases 

oxidative stress, which leads to perturbations in proteins involved in drug metabolism and 

disposition and can subsequently alter drug PK in cancer patients (Schwenger et al., 2018).  

To assess the impact of the observed changes in expression of CYPs on drug PK, we performed 

PBPK simulations on CYP-substrates at different hepatic extraction levels (alfentanil, 

midazolam, and nebivolol). Decreased clearance of anti-cancer drugs in cancer patients has 

been reported previously (Piotrovsky et al., 1998; Houk et al., 2009; Hudachek and Gustafson, 

2013). In our previous study (Vasilogianni et al., 2021), we assessed the effect of 

experimentally-derived MPPGL values in CRLM on PK by optimising and updating an 

existing cancer population in Simcyp. In the current study, we further updated the cancer 

population with abundance data for CYPs and UGTs. The changes in abundance levels affected 

drug exposure for all the drugs. With the assumption that the whole liver is tumorous (New 

Cancer-ALC model), higher drug exposure was predicted compared with a histologically 

normal liver (New Cancer-ALN model). The PBPK simulations show that appropriate 

abundance data in combination with appropriate MPPGL scalar values can significantly 

improve PK predictions, particularly when used with the percentage of cancerous liver tissue. 

Clinical data for the simulated drugs in CRLM were not available and we only assessed the 
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impact of change in abundance of CYPs on PK. Further simulations could verify these updated 

PBPK cancer models, when clinical data become available. 

In conclusion, our data adds significant findings towards addressing key gaps in knowledge 

about human protein abundance in cancer. DMEs were significantly downregulated and 

transporters were perturbed in CRLM. In addition, RTKs were altered in CRLM, leading to 

perturbations in biological pathways relevant to cancer development and progression. These 

data may be valuable for proposing diagnostic and therapeutic markers. Liver function was 

also impaired and inflammation markers were upregulated in CRLM. Desmoplasia and 

metastasis markers were highly expressed in cancer samples. PBPK simulations on CYP-

substrates revealed higher drug exposure (up to 13-fold) when using cancer population-specific 

abundance of CYPs. Our study suggests that appropriate abundance values for CRLM are 

critical for accurate PK prediction.  
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5.7 Supplementary Information 

 

5.7.1 Supplementary Methods 

 

Materials and chemicals 

All chemicals and solvents (HPLC-grade) were purchased from Sigma-Aldrich (Poole, Dorset, 

UK) unless otherwise stated. EDTA-free protease inhibitor cocktail and trypsin (sequencing 

grade) were obtained from Roche Applied Sciences (Mannheim, Germany). Lysyl 

endopeptidase (Lys-C) was purchased from Wako (Osaka, Japan). All the QconCATs 

(MetCAT, TransCAT and KinCAT) were purchased from PolyQuant GmbH 

(http://www.polyquant.com/) (Germany). Non-naturally occurring peptides (NNOPs) (light 

standard peptides) used for the quantification of QconCATs (MetCAT, TransCAT, KinCAT) 

were purchased from Cambridge Peptides (Cambridge, UK). Bio-Rad based on the Coomassie 

Brilliant Blue G-250 dye (ThermoFisher Scientific, Hemel Hempstead, UK) and bovine serum 

albumin (calibration standard) were used. 

 

Preparation of human liver microsomal fractions 

Samples provided by Pfizer were supplied as microsomal fractions from healthy liver samples. 

Histologically normal and matched tumour liver samples provided by the MFT Biobank as 

tissue, which needed to be fractionated to microsomes by differential centrifugation, as 

previously described (Achour et al., 2017). Each liver tissue was homogenized by a 

Fisherbrand 150 Handheld Homogenizer (Thermo Fisher Scientific, UK) in homogenization 

buffer (150 mM KCl, 2 mM EDTA, 50 mM Tris, 1 mM dithiothreitol, and EDTA-free protease 

inhibitor cocktail, pH 7.4) at 10 ml for each gram of liver tissue. Each homogenate sample was 

centrifuged at 10,000 g for 20 min at 4°C using an OptimaTM L-100 ultracentrifuge (Beckman 

Coulter, Fullerton, CA), and the supernatant was further centrifuged at 100,000 g for 75 min at 

4°C. The cytosol (the supernatant) of each individual sample was stored at -80°C for future 

use, and the pellet (microsomes) from each individual sample was re-suspended in 1 ml of 

storage buffer (0.25 M potassium dihydrogen phosphate, 0.25 M dipotassium phosphate, pH 

7.25) and stored at -80°C. Equal volumes from each of 15 healthy microsomal samples from 

healthy donors were pooled together. Similar pools were made out of 16 histologically normal 

microsomal samples from CRLM patients and 16 matched cancerous liver microsomal samples 

http://www.polyquant.com/
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from CRLM patients. 70 µg of microsomal protein from each pooled sample was used for 

further sample preparation. 

 

QconCATs (MetCAT and TransCAT) standards 

Two QconCAT standards were used in this study, as previously described (Russell et al., 2013). 

The MetCAT consists of peptides for the quantification of 15 CYPs and 10 UGTs. To quantify 

the MetCAT, a [Glu1]-Fibrinopeptide B analogue (GVNNEEGFFSAR), omitting the N-

terminal glutamate residue, was included in the MetCAT sequence. The TransCAT is used for 

the quantification of transporters as previously described (Russell et al., 2013), and a modified 

version of it is used in the present study. The peptides incorporated into the TransCAT 

(Supplementary Table 5-3) belong to ABC transporters (P-gp, BSEP, MDR2, MRP2, MRP3, 

MRP4, MRP6, BCRP), SLC transporters (OST-α, OST-β, OCT1, OCT3, OCTN2, OAT2, 

OAT4, MATE1, OATP1A2, OATP1B1, OATP1B3, OATP2B1 OATP4C1, NTCP, PEPT1, 

ASBT, MCT1, OATP4A1), on plasma membrane marker, sodium/potassium-transporting 

ATPase subunit alpha-1 (ATP1A1),  and two cell junction proteins, cadherin-17 (CDH17) and 

cadherin-23 (CDH23). To quantify the TransCAT, [Glu1]-Fibrinopeptide B peptide 

(EGVNDNEEGFFSAR) and another peptide (VGFLPDGVIK) were included in the 

TransCAT sequence. A bacterial ribosome core was fused upstream of both QconCATs for 

efficient expression of the constructs (Al-Majdoub et al., 2014). 

 

The KinCAT standard 

 

     Design of KinCAT 

A QconCAT (KinCAT) for the quantification of 21 human receptor tyrosine kinases (RTKs) 

was designed and used for the first time, by concatenation of peptides representing: CSF-1R, 

EGFR, EPHA2, ERBB2, FGFR1, FGFR2, FGFR3, FLT3, IGF-1R, INSR, KIT, MET, NTRK2, 

PGFRa, PGFRb, RET, TIE2, UFO (AXL), VGFR1, VGFR2 and VGFR3. In addition to these 

proteins, peptides for the quantification of BCRP, intestinal-type alkaline phosphatase (ALPI), 

and alkaline phosphatase tissue-nonspecific isozyme (ALPL) were incorporated in the 

KinCAT. A bacterial ribosome core was fused upstream of the QconCAT sequence for efficient 

expression of the construct (Al-Majdoub et al., 2014). Finally, the sequences of two NNOPs 

(SEGVNDNEEGFFSAR, GEGVNDNEEGFFSAR) were included in the KinCAT construct 

and the light versions of these peptides were used for the quantification of the KinCAT. 
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Supplementary Table 5-4 provides the peptide sequences and corresponding proteins 

quantifiable by the modified KinCAT, as well as some characterization information. 

For the design of KinCAT, we started with theoretical digestion of each protein target using 

Protein Prospector (MS Digest) (http://prospector.ucsf.edu/prospector/mshome.htm) to select 

of the most suitable peptides. The selection of the peptides was based on the following criteria, 

most of which have already been described (Achour et al., 2015): 

 Uniqueness of the peptide sequence for the target protein. Peptide uniqueness checker 

(https://www.nextprot.org/tools/peptide-uniqueness-checker) was used to check the 

uniqueness of the peptides. 

 Peptide length from 6 to 20 amino acids to be detectable by LC-MS. 

 No dibasic-tribasic forms of K (lysine) and R (arginine) (e.g. KK, RR, KR, RK), 

which tend to be miscleaved. 

 No C- and N-terminal peptides that are prone to exoproteolytic degradation 

 No M (methionine-prone to oxidation) and C (cysteine-prone to alkylation). 

 Exclude peptides with NG, NQ that are prone to deamidation, and DP that is prone to 

hydrolysis. 

 Avoid post-translational modifications using PeptideMass – ExPASy 

(https://web.expasy.org/peptide_mass/). 

 No transmembrane peptides. Phobius (http://phobius.sbc.su.se/) and Uniprot 

(https://www.uniprot.org/) were used to map transmembrane peptides. 

 D or E residues near a cleavage site were considered as disadvantage (prone to missed 

cleavages). 

 Isoelectric point (pI) less than 7. Protein isoelectric point calculator 

(http://isoelectric.org/calculate.php) was used to find the pI and MW of each peptide. 

Uniprot human database was used to find the accession number of the protein, and their cellular 

location. The Human Protein Atlas (Version 18.1) (Uhlen et al., 2015; Thul et al., 2017) was 

used to confirm liver expression of the proteins. 

   

  Expression of KinCAT 

The synthesis and purification of KinCAT was performed by PolyQuant GmbH 

(http://www.polyquant.com/) (Germany), based on the selected peptides after theoretical 

digestion. The expression was achieved as previously described (Pratt et al., 2006), by cloning 

the gene of the QconCAT construct into pET21 vector with optimized codons for improved 

http://prospector.ucsf.edu/prospector/mshome.htm
https://www.nextprot.org/tools/peptide-uniqueness-checker
https://web.expasy.org/peptide_mass/
http://phobius.sbc.su.se/
https://www.uniprot.org/
http://isoelectric.org/calculate.php
http://www.polyquant.com/
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expression and low levels of mRNA secondary structure formation. This construct was 

subsequently transfected into E. coli and expressed in media depleted of Lysine (K) and 

Arginine (R), but enriched with R and K labelled with 13C, resulting in a heavy construct. 

Lastly, the KinCAT was purified with Ni-NTA (Nickel NTA) - His-tag purification. 

 

     Characterization of KinCAT 

The characterization of KinCAT was performed by PolyQuant and in-house to confirm the 

quality of the construct.  

 

SDS-PAGE 

SDS-PAGE was used to confirm the molecular weight and assess the purity of the KinCAT. 6 

µl of KinCAT were diluted in 4 µl of water and then mixed with 10 µl of loading buffer (2 µl 

DTT 500 mM, 5 µl NuPAGE, 3 µl water), and analysed with SDS-PAGE. The sample was 

loaded onto a 5% stacking gel (3.4 ml water, 0.83 ml of 30% acryl-bisacrylamide mix, 0.63 ml 

of 1.5 M Tris pH 6.8, 0.05 ml of 10% SDS, 0.05 ml of 10% ammonium persulfate, and 0.005 

ml TEMED) overlaid on a 12% resolving gel (6.6 ml water, 8 ml of 30% acryl-bisacrylamide 

mix, 5 ml of 1.5 M Tris pH 8.8, 0.2 ml of 10% SDS, 0.2 ml of 10% ammonium persulfate, and 

0.008 ml TEMED), and visualized by staining with Coomassie Brilliant Blue dye (Sigma-

Aldrich). 

 

Digestion 

25 µg of KinCAT was digested using filter-aided sample preparation (FASP), and desalted 

using a C18 column (Nest group, USA), as described below (‘Digestion and preparation of 

samples’). The peptide sample (KinCAT) was dried using a vacuum concentrator and stored at 

−80 °C until mass spectrometric analysis. Before LC-MS, we added 15.6 μl of 3% acetonitrile-

0.1% formic acid and NNOPs (1 nmol/μl stock concentration) at 2.2 μl of 1:250 diluted NNOPs 

for KinCAT. 

 

Liquid chromatography and tandem mass spectrometry (LC-MS/MS) 

Digested KinCAT was analysed by LC-MS/MS using an UltiMate® 3000 Rapid Separation LC 

(RSLC, Dionex Corporation, Sunnyvale, CA) coupled to a QE HF (Thermo Fisher Scientific, 
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Waltham, MA) mass spectrometer, as described below (‘Liquid chromatography and tandem 

mass spectrometry (LC-MS/MS)’). 

 

Measurement of total protein content in pooled microsomal samples 

The protein content of each pooled microsomal sample was determined with the Bradford assay 

(Bradford, 1976) in triplicate, following the manufacturer’s protocol. 

 

Digestion and preparation of samples  

For each pooled microsomal sample, 70 μg of protein was digested. Each sample was mixed 

with known amounts of 13C-labelled QconCATs (MetCAT, TransCAT and KinCAT). The pilot 

study was repeated twice to validate the data: 

o For the main study: 7 μl of undiluted MetCAT (0.028 ug/ul), 2 μl of 1:10 diluted 

TransCAT (1.12 ug/ul), and 3.6 μl of 1:5 diluted KinCAT (0.1954 ug/ul). 

o For the replicate study: 1.5 μl of undiluted MetCAT (0.27 ug/ul), 2 μl of 1:10 diluted 

TransCAT (1.12 ug/ul), and 2.6 μl of 1:5 diluted KinCAT (0.1954 ug/ul). 

The protein mixtures were solubilized by sodium deoxycholate at a final concentration of 

10% (w/v). The mixture was then incubated at room temperature for 10 min. Dithiothreitol 

(DTT) was then added at a final concentration of 0.1 M to reduce disulphide bonds; the 

mixture was incubated at 56o C for 30 min. Filter-aided sample preparation (FASP) was 

used for protein sample preparation, as previously described (Al-Majdoub et al., 2019; 

Couto et al., 2019, 2020), with minor modifications. Before the addition of the samples, 

Amicon Ultra 0.5 mL centrifugal filters, 10 kDa molecular weight cut-off (Merck 

Millipore, Nottingham, UK), were conditioned by centrifugation of 200 μl of 0.1 M Tris 

buffer, pH 8.5, at 14,000 rpm at room temperature for 10 min; this step was repeated twice. 

The reduced protein samples were added to the filters and centrifuged at 13,000 rpm for 20 

min. 200 µl of 8M urea in 0.1 M Tris buffer, pH 8.5, was added and the solution was 

centrifuged at 14,000 rpm for 20 min at room temperature (this step was repeated twice). 

The samples were subsequently alkylated with 100 µl of 50 mM iodoacetamide (IAA) in 

the dark for 30 min at room temperature, and then centrifuged at 14,000 rpm for 10 min. 

The alkylating reagent was washed twice by adding 200 µl of 8 M Urea in 0.1 M Tris pH 

8.5, followed centrifugation at 14,000 rpm for 20 min at room temperature. The 

concentration of urea was reduced with two washes with 1 M urea in 50 mM ammonium 



|Chapter 5 

252 
 

bicarbonate (AmBic), pH 8.0, followed centrifugation at 13,000 rpm for 20 min. To avoid 

the evaporation of the samples, 80 μl of 1 M urea in 50 mM AmBic, pH 8.0, was added to 

each filter unit. Lysyl endopeptidase was added to each sample (enzyme:protein ratio 1:50 

w/w) for two hours at 30oC, and the same step was repeated for an extra two hours. Trypsin 

was added (enzyme/protein ratio 1:25 w/w), followed by incubation for 12 hours at 37oC, 

and the same step was repeated for an extra four hours. The peptide samples were recovered 

by centrifugation at 14,000 rpm for 20 min. 100 μl of 0.5 M NaCl was added to the filter, 

centrifuged at 14,000 rpm for 20 min, followed by an additional 50 μl of 0.5 M NaCl, and 

centrifugation at 14,000 rpm for 10 min. After this step, each sample was split into two 

equal volumes, and each was mixed with sample buffer (3 parts of sample:1 part of sample 

buffer 2% v/v trifluoroacetic acid in 20% v/v acetonitrile in water). Each sample was then 

desalted using a C18 column (Nest group, USA). Finally, the peptide samples were dried 

using a vacuum concentrator and stored at −80 °C until mass spectrometric analysis. 

Before the LC-MS, samples were mixed with 9.3 μl of 3% acetonitrile-0.1% formic acid and 

NNOPs (stock concentration of each NNOP was 1 nmol/μl) using the following 

volumes/dilutions:  

o For the main study: 3.5 μl of 1:10000 diluted NNOP for MetCAT, 2.5 μl of 1:20000 

diluted NNOPs for TransCAT, and 6.1 μl of 1:25000 diluted NNOPs for KinCAT. 

o For the replicate study (addition of unlabelled standards): 2.6 μl of 1:20000 diluted 

NNOP for MetCAT, 2.5 μl of 1:10000 diluted NNOPs for TransCAT, and 4.4 μl of 

1:25000 diluted NNOPs for KinCAT. 

 

Liquid chromatography and tandem mass spectrometry (LC-MS/MS) 

Digested samples were analysed by LC-MS/MS using an UltiMate® 3000 Rapid Separation 

LC (RSLC, Dionex Corporation, Sunnyvale, CA) coupled to a QE HF (Thermo Fisher 

Scientific, Waltham, MA) mass spectrometer. Mobile phase A was 0.1% formic acid in water 

and mobile phase B was 0.1% formic acid in acetonitrile, and the column used was a 75 mm x 

250 μm i.d., 1.7 μM particle size, CSH C18 analytical column (Waters, UK.) 1 µl aliquot of 

the sample was transferred to a 5 µl loop and loaded onto the column at a flow of 300 nl/min 

for 5 min at 5% B. The loop was then taken out of line and the flow was reduced from 300 

nl/min to 200 nl/min in 0.5 min. Peptides were separated using a gradient from 5% to 18% B 

in 63.5 min, then from 18% to 27% B in 8 min and finally from 27% B to 60% B in 1 min. The 
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column was washed by 60% B for 3 min before re-equilibration to 5% B in 1 min. At 85 min, 

the flow is increased back to 300 nl/min until the end of the run at 90 min. Mass spectrometry 

data was acquired in a data-dependent manner for 90 min in positive mode. Peptides were 

selected for fragmentation automatically by data-dependant analysis of the top 12 peptides, at 

m/z between 300 to 1750 Th and a charge state of 2, 3 or 4, with dynamic exclusion set at 15 

sec. The MS resolution was set at 120,000 with an AGC target of 3e6 and a maximum fill time 

set at 20 ms. The MS2 resolution was set to 30,000, with an AGC target of 2e5, a maximum 

fill time of 45 ms, isolation window of 1.3 Th and a collision energy of 28 eV. 

 

5.7.2 Supplementary Results 

 

Ratios of NP/HP and TP/HP in replicate analyses 

The experiments were repeated in the replicate study to confirm the data. Using targeted 

analysis, we compared NP/HP and TP/HP ratios between the data presented here (main study) 

and the data from a replicate experiment (replicate study) for CYPs and UGTs. Supplementary 

Table 5-9 shows that the NP relative to HP ratio values measured in main study and replicate 

study were within 2 fold, except for CYP2J2 (3 fold difference between the two experiments). 

Similarly, the ratios of TP/HP were within 2 fold for most enzymes measured in the two 

experiments, with the exception of UGT1A6 (2.2 fold) and UGT1A9 (2.5 fold). Consistent 

with the main study, the ratios of the vast majority of enzymes measured in the replicate study 

were less abundant in TP than in HP (Supplementary Table 5-9). Overall, the two experiments 

were consistent. 
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5.7.3 Supplementary Tables 

 

Supplementary Table 5-1 Demographic and clinical details of CRLM patients provided by the MFT Biobank. 

Sample 

ID 

Age at 

surgery 

(years) 

Race Sex Body mass 

index, BMI 

(kg/m2) 

Smoking/ 

Alcohol use 

Liver 

lobe 

Diagnosis Medical history Treatment 

389 52 Caucasian Female 30.86 No/ 

Occasionally 

Left Metastatic moderately 

well differentiated 

adenocarcinoma 

Deep vein thrombosis, 

asthma, duodenal ulcer, 

thyroid problem, liver 

lesions 

Fragmin, 

levothyroxine, 

betamethasone, 

ventolin, ferrous 

fumarate 

590 72 Caucasian Male 32 Pipe/ 22 units 
per week 

- Metastatic moderate to 
Well differentiated 

adenocarcinoma (dirty 

necrosis) 

Asthma, polypectomy, 
tonsillectomy, 

Hemicolectomy Dukes 

B 

Salbutamol, tiotropium, 
lansaprozole, nasonex 

633 67 Caucasian Male 26.85 Ex-stopped/ - Right Metastatic 

adenocarcinoma & fatty 

liver disease 

Peripheral neuropathy 

secondary to 

oxaliplatin, type 2 

diabetes, 

hypercholesterolemia, 

valvular heart disease, 

prostate cancer with 

bone metastasis, 

colonic cancer T3N0, 

colorectal liver 
metastasis 

Metformin, zoladex, 

oxaplatin and 5FU, 

irinotecan and 5FU 

with cetuximab 

674 68 Caucasian Female 26.67 No/ - Right Metastatic moderately 

differentiated 

adenocarcinoma 

Rectosigmoid cancer 

10/10 Dukes B 

- 

734 64 Caucasian Female 23.84 No/ 

Occasionally 

Right Moderately to focally 

poorly differentiated 

metastatic 

adenocarcinoma 

Primary colorectal Dalteparin, short 

course of radiotherapy, 

adjuvant OXmdG and 

5FU 

746 85 Caucasian Male 23.67 Ex (40 years)/ 

Moderately 

Right Metastatic papillary 

carcinoma 

Laparoscopic R 

hemicolectomy T2M0, 

Irbesartan, 

levothyroxine, 
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Squamous cell 

carcinoma (scalp), 

hypothyroidism, 

hypertension, Chronic 

obstructive pulmonary 

disease 

bisoprolol, aspirin, 

omeprazole, 

budesamide, 

formoterol 

794 71 Caucasian Female 22.41 No/ No - Metastatic 
adenocarcinoma with 

extensive intra-acinar 

necrosis 

R hemicolectomy, 
pT3N2, high blood 

pressure, depression 

Tomudex 
chemotherapy 

818 58 Caucasian Male 21.78 Ex (25 years)/ 

18 units per 

week 

- Moderately differentiated 

metastatic 

adenocarcinoma 

Sigmoid 

adenocarcinoma 

pT3pN2 

Loperamide, 

carboplatin/5FU and 

modified de Gramont 

and radiotherapy 

1492 34 - Female 32.53 Ex-stopped/ 

Approximately 

20 units per 

week 

Right Metastatic moderate and 

poorly differentiated 

adenocarcinoma 

Bowel resection, 

pilonodal abcess x2, 

grometts (as a child), 

tonsillectomy (as a 

child), egg collection, 

occasional palpitations, 
asthma (as a child), 

reflux, joint problems 

in knees, treated for 

Irritable bowel 

syndrome 

Omeprazole, 

amitryptyline, 

microgynon, 

glucosamine sulphate, 

ibuprofen, peppermint 

oil 

1493 75 - Male - No/ No Right Metastatic moderately 

differentiated 

adenocarcinoma 

Sigmoid tumour, sleep 

apnoea, asthma 

Cod liver oil, 

salbutamol inhaler, 

seretide inhaler, 

movicol 

1498 63 Caucasian Male - No/ Rarely Right Metastatic 

adenocarcinoma 

Previous gout, 

anaemia, cataract 

operation 

Doxycycline regime 

completed, Nil regular 

1795 63  Male 36.32 Ex - stopped 

(previously 

30cpd)/ 
Approximately 

75 units per 

week 

Left Metastatic well 

differentiated 

adenocarcinoma 

Adenocarcinoma, 

hypertension, 

intermittent 
claudication of left leg 

Omeprazole, 

irbesartan, simvastatin, 

clopidogrel 
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1957 68 - Male 32.16 No/ - Left Metastatic moderately 

differentiated 

adenocarcinoma 

Primary rectal cancer, 

pneumonia post-

operative, liver cancer, 

late lung metastasis 

Nil regular 

2036 43 - Female - -/ - Right Metastatic moderate to 

poorly differentiated 

adenocarcinoma 

Primary colorectal Omeprazole, 

paracetamol 

2058 79 Caucasian Female 21.6 -/ - Left Metastatic 
adenocarcinoma 

Below the knee 
amputation, primary 

colorectal, lung 

metastasis 

Lansoprazole, ferrous 
sulphate, alendronic 

acid, paracetamol, 

codeine phosphate, 

senna, natecal D3 

2095 55 Caucasian Male 28.1 -/ - Right Metastatic moderately 

differentiated 

adenocarcinoma 

Primary colorectal Nil regular 
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Supplementary Table 5-2 Demographic and clinical details of healthy subjects provided by Pfizer. 

Sample 

ID 

Age at 

surgery 

(years) 

Race Sex Body mass index, 

BMI (kg/m2) 

Smoking/ 

Alcohol use 

Cause of death Medical history Treatment 

HH83 18 Caucasian Female 20.19 No/ No Head trauma Healthy None 

HH84 53 Caucasian Male 19.94 No/ Social Intracranial 

haemorrhage 

None None 

HH87 54 Caucasian Female 29.79 No/ No Head trauma Healthy None 

HH93 34 Caucasian Male 20.62 No/ No Cerebellar 

haemorrhagic injury 

Healthy Healthy 

HH98 64 Caucasian Male 37.47 No/ No Head Injury Healthy None 

HH99 45 Caucasian Male 31.62 No/ No Head trauma Healthy None 

HH101 54 Caucasian Female 21.95 No/ No Motor vehicle 

accident 

Healthy None 

HH102 52 Caucasian Female 32.26 No/ No Cerebral Aneurysm Healthy None 

HH104 35 African 
American 

Female 25.25 No/ No Cerebral Aneurysm Healthy None 

HH105 50 Caucasian Male 33.47 No/ No Cerebral Aneurysm Healthy None 

HH106 43 Hispanic Male 24.48 No/ No Cerebral Vascular 

Aneurysm 

Healthy None 

HH107 45 Caucasian Female 24.96 No/ No Cerebral Vascular 

Aneurysm 

Healthy None 

HH110 54 Caucasian Female 26.29 No/ Social Cerebral Vascular 

Aneurysm 

Healthy None 

HH111 43 Caucasian Female 28.43 No/ No Intracranial bleeding Healthy None 

HH118 32 Caucasian Male 26.69 No/ Social Gunshot Wound to 

head 

Healthy, Skin Graft 

on right arm in the 

past 

Pepcid AC, Tagamet, Steroids 

in HS and Marines 



|Chapter 5 

258 
 

Supplementary Table 5-3 Re-designed TransCAT; target proteins, peptides and incorporation efficiency. 

Target protein Peptide 
Percent of label 

incorporation 

P-gp AGAVAEEVLAAIR 96.3 

P-gp AGAVAEEVLAAVR 95.1 

P-gp FYDPLAGK 98.7 

BSEP AADTIIGFEHGTAVER 93.5 

BSEP STALQLIQR 96.6 

MDR3 GAAYVIFDIIDNNPK 98.6 

MDR3 IATEAIENIR  

MRP2 AFEHQQR 93.6 

MRP2 LTIIPQDPILFSGSLR 96.3 

MRP2 YLGGDDLDTSAIR 95.2 

MRP3 AEGEISDPFR  

MRP3 IDGLNVADIGLHDLR 96.7 

MRP4 AEAAALTETAK 98.7 

MRP4 APVLFFDR 96.0 

MRP6 APETEPFLR 95.3 

MRP6 SSLASGLLR 96.4 

MRP6 SSLPSALLGELSK 98.7 

BCRP ENLQFSAALR 95.4 

BCRP SSLLDVLAAR 93.7 

BCRP VIQELGLDK 98.7 

ASBT IAGLPWYR 95.4 

ASBT LWIIGTIFPVAGYSLGFLLAR  

ATP1A1 IVEIPFNSTNK 98.7 

ATP1A1 SPDFTNENPLETR 95.3 

Cadherin-17 AENPEPLVFGVK 98.6 

Cadherin-17 QNSRPGK  

Cadherin-23 ATDADEGEFGR 96.2 

Cadherin-23 DAYVGALR  

MCT1 DLHDANTDLIGR 95.9 

MCT1 SITVFFK 98.8 

OATP4A1 ILGGIPGPIAFGWVIDK 98.6 

OATP4A1 YEVELDAGVR  

OST-α VGYETFSSPDLDLNLK 98.7 

OST-α YTADLLEVLK 98.5 

OST-β DHNSLNNLR 96.0 

OST-β ETPEVLHLDEAK 98.6 

PEPT1 GNEVQIK  

PEPT1 HTLLVWAPNHYQVVK 98.7 

PEPT1 TLPVFPK  

NTCP AHLWKPK 98.1 

NTCP GIYDGDLK 98.6 

OCT1 ENTIYLK 98.5 
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OCT1 GVALPETMK 98.8 

OCT1 MLSLEEDVTEK 98.6 

OCT3 FLQGVFGK 98.8 

OCT3 GIALPETVDDVEK 98.7 

OCTN2 DYDEVTAFLGEWGPFQR 95.4 

OCTN2 TWNIR  

OAT2 NVALLALPR 96.3 

OAT2 WLLTQGHVK 98.7 

OAT7 DTLTLEILK 98.6 

OAT7 ISLLSFTR 96.4 

MATE1 DHVGYIFTTDR 96.0 

MATE1 GGPEATLEVR 95.6 

OATP1A2 EGLETNADIIK 98.6 

OATP1A2 IYDSTTFR 95.4 

OATP1B1 MFLAALSLSFIAK  

OATP1B1 LNTVGIAK 98.7 

OATP1B1 YVEQQYGQPSSK 98.8 

OATP1B3 IYNSVFFGR 96.5 

OATP1B3 NVTGFFQSLK 98.6 

OATP2B1 SSPAVEQQLLVSGPGK 98.2 

OATP2B1 VLLQTLR 95.0 

OATP4C1 DFPAALK  

OATP4C1 HLPGTAEIQAGK  
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Supplementary Table 5-4 KinCAT; target proteins, peptides and incorporation efficiency. 

Target protein Peptide 
Percent of label 

incorporation 

ALPI GFYLFVEGGR 98.0 

ALPI NLILFLGDGLGVPTVTATR 97.9 

ALPL LDGLDLVDTWK 98.9 

ALPL ANEGTVGVSAATER 98.1 

BCRP LFDSLTLLASGR 97.1 

CSF-1R ALTFELTLR 97.7 

CSF-1R VVEATAFGLGK 98.9 

EGFR IPLENLQIIR 98.0 

EGFR NYDLSFLK 98.8 

EPHA2 TVSEWLESIK 98.9 

EPHA2 AINDGFR 98.0 

ERBB2 LLDIDETEYHADGGK 98.9 

ERBB2 GIWIPDGENVK 98.9 

FGFR1 DGVQLAESNR 97.9 

FGFR1 IGPDNLPYVQILK 98.9 

FGFR2 YGPDGLPYLK 98.7 

FGFR2 EIEVLYIR 97.9 

FGFR3 DGTGLVPSER 97.9 

FGFR3 TAGANTTDK  

FGFR3 VGPDGTPYVTVLK 98.9 

FLT3 TWTEIFK 98.9 

FLT3 EYEYDLK 98.9 

IGF-1R ASFDER 97.9 

IGF-1R TTINNEYNYR 98.0 

INSR ESLVISGLR 98.0 

INSR TIDSVTSAQELR 98.0 

KIT LVVQSSIDSSAFK 98.9 

KIT VVEATAYGLIK 98.7 

MET LNSELNIEWK 98.9 

MET ETSIFSYR 98.2 

NTRK2 NSNLQHINFTR 98.1 

NTRK2 SNEIPSTDVTDK 98.9 

NTRK2 ITNISSDDSGK 98.8 

PGFRA VEETIAVR 98.0 

PGFRA VVEGTAYGLSR 98.0 

PGFRB EVDSDAYYVYR 97.9 

PGFRB GFSGIFEDR 97.8 

RET LLEGEGLPFR 97.7 

RET DAPEEVPSFR 97.9 

TIE2 NILVGENYVAK 98.9 

TIE2 VPGNLTSVLLNNLHPR 97.9 

UFO(AXL) APLQGTLLGYR 97.9 
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UFO(AXL) YGEVFEPTVER 98.1 

VGFR1 DQEAPYLLR 97.7 

VGFR1 FNSGSSDDVR 97.6 

VGFR2 AASVGLPSVSLDLPR 98.0 

VGFR2 VEAFFIIEGAQEK 98.9 

VGFR3 NILLSESDVVK 98.9 

VGFR3 DSEDTGVVR 97.7 
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Supplementary Table 5-5 Input parameters for PBPK modelling using Simcyp v20 R1 for alfentanil 

(predominantly metabolized by CYP3A4), midazolam (predominantly metabolized by CYP3A4 and CYP3A5), 

and nebivolol (predominantly metabolized by CYP3A4 and CYP2D6). 

Input Parameters 

Compound Name SV-Alfentanil Sim-Midazolam SV-Nebivolol 

Mol Weight 

(g/mol) 
416.52 325.8 405.44 

log P 2.16 3.53 4.18 

Compound Type Monoprotic Base Monoprotic Base Monoprotic Base 

pKa 1 6.5 6 8.9 

pKa 2 n/a n/a n/a 

B/P 0.63 0.603 0.626 

Haematocrit 45 45 45 

fu 0.104 0.032 0.02 

GI Absorption 

Model 
1st order 1st order 1st order 

GI Permeability 

Assay 
n/a n/a n/a 

GI Peff,man Regional Regional Regional 

Distribution 

Model 

Minimal PBPK 

Model 
Minimal PBPK Model Full PBPK Model 

Vss (L/kg) 0.37 0.88 Predicted 

Prediction 

Method 
Entered Entered Method 1 

Clearance Type Enzyme Kinetics Enzyme Kinetics Enzyme Kinetics 

Trial Design 

Population Name 
Sim-Healthy 

Volunteers/Cancer 

Sim-Healthy 

Volunteers/Cancer 

Sim-Healthy 

Volunteers/Cancer 

Use Pop 

Representative 
No No No 

Population Size 100 100 100 

Number of Trials 10 10 10 

No. of Subjects 

per Trial 
10 10 10 

Start Day/Time Day 1, 09:00 Day 1, 09:00 Day 1, 09:00 

End Day/Time Day 2, 09:00 Day 2, 09:00 Day 2, 09:00 

Study Duration 

(h) 
24 24 24 

Sampling Time Pre-defined Uniform Pre-defined Uniform Pre-defined Uniform 

Sampling Site 

Selection 
Off Off Off 

Prandial State Fasted Fasted Fasted 

Route Oral Oral Oral 

Dose Units Dose (mg/kg) Dose (mg) Dose (mg) 

Dose 0.043 5 4.6 

Start Day/Time Day 1, 09:00 Day 1, 09:00 Day 1, 09:00 

Dosing Regimen Single Dose Single Dose Single Dose 
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Supplementary Table 5-6 Quantification of twelve CYP and eight UGT enzymes in human HP, NP and TP liver 

samples. 

  HP NP TP 

Protein target Peptides Absolute abundance (pmol mg
-1

) 

CYP1A2 YLPNPALQR 10.1 20.9 2.0 

CYP2A6 GTGGANIDPTFFLSR 15.8 36.1 4.3 

CYP2B6 GYGVIFANGNR 6.9 4.8 0.2 

CYP2C19 GHFPLAER 1.6 3.3 0.2 

CYP2C8 SFTNFSK 24.2 29.7 4.8 

CYP2C9 GIFPLAER 76.1 113.5 17.4 

CYP2D6 AFLTQLDELLTEHR  116.2 7.2 

CYP2E1 FITLVPSNLPHEATR 79.4 50.2 9.5 

CYP2J2 VIGQGQQPSTAAR 0.2 0.0 -0.1 

CYP3A4 LSLGGLLQPEK 90.2 65.9 9.0 

CYP3A5 YWTEPEEFRPER 11.7   

CYP4F2 HVTQDIVLPDGR 7.7 7.8 3.3 

UGT1A1 TYPVPFQR 17.0 6.3 1.5 

UGT1A3 HVLGHTQLYFETEHFLK  3.3  

UGT1A4/1A5 GTQCPNPSSYIPK 27.4 23.5 1.8 

UGT1A6 VSVWLLR 7.7 5.0 0.7 

UGT1A9 AFAHAQWK 25.7 13.7 1.4 

UGT2B15 SVINDPVYK 33.4 35.9 3.6 

UGT2B4 FSPGYAIEK 29.3 26.4 3.0 

UGT2B7 ADVWLIR 60.7 80.9 9.1 
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Supplementary Table 5-7 Quantification of transporters in human HP, NP and TP liver samples. 

  HP NP TP 

Protein target Peptides Absolute abundance (pmol mg
-1

) 

BCRP VIQELGLDK 0.18   

BSEP AADTIIGFEHGTAVER 0.55 0.51  

MDR3 GAAYVIFDIIDNNPK 0.52 0.76 0.14 

MRP2 LTIIPQDPILFSGSLR 0.85 0.63 0.18 

MRP3 IDGLNVADIGLHDLR 0.70 0.39 0.47 

MRP6 SSLASGLLR 1.34 1.10  

P-gp FYDPLAGK 0.46 0.60 0.71 

ASBT IAGLPWYR 0.01   

MCT1 SITVFFK 2.25 1.77 3.75 

NTCP GIYDGDLK  5.22 0.56 

OAT2 NVALLALPR 1.47 1.57 0.16 

OAT7 DTLTLEILK 3.33 2.08 0.25 

OATP1A2 EGLETNADIIK 5.32 3.84 6.94 

OATP1B1 YVEQQYGQPSSK 2.00 1.41 0.54 

OATP1B3 NVTGFFQSLK 2.35 2.31 0.36 

OATP2B1 SSPAVEQQLLVSGPGK 2.38 2.91 0.69 

OCT1 MLSLEEDVTEK 5.36 2.93  

OST-α YTADLLEVLK 0.03   

PEPT1 HTLLVWAPNHYQVVK  0.11  

ATP1A1 SPDFTNENPLETR 7.33 4.64 16.34 

Cadherin-17 AENPEPLVFGVK  0.18 6.43 
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Supplementary Table 5-8 Quantification of nineteen RTKs in human HP, NP and TP liver samples. 

  HP NP TP 

Protein target Peptides Absolute abundance (pmol mg-1) 

EGFR IPLENLQIIR 0.317 0.419 0.121 

EPHA2 AINDGFR 0.052  0.051 

ERBB2 LLDIDETEYHADGGK 0.033 0.080 0.145 

FGFR1 IGPDNLPYVQILK   0.011 

FGFR2 EIEVLYIR   0.042 

FGFR3 VGPDGTPYVTVLK 0.033 0.093  

IGF-1R TTINNEYNYR 0.008 0.125 0.141 

INSR ESLVISGLR 0.348 0.284 0.130 

KIT VVEATAYGLIK  0.057 0.011 

MET ETSIFSYR 0.185   

NTRK2 NSNLQHINFTR 0.043  0.097 

PGFRA VVEGTAYGLSR 0.038 0.054  

PGFRB GFSGIFEDR   3.793 

RET DAPEEVPSFR  0.045  

TIE2 NILVGENYVAK 0.084 0.320  

UFO(AXL) APLQGTLLGYR 0.094 0.052 0.033 

VGFR1 DQEAPYLLR 0.097 0.161  

VGFR2 AASVGLPSVSLDLPR   0.024 

VGFR3 NILLSESDVVK 0.064 0.002  
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Supplementary Table 5-9 Comparison of histologically normal and tumour to healthy ratios (absolute abundance of CYPs and UGTs) between pilot study 1, and 2 (replicate 

study). 

  Main Pilot Study (1) Repetition Pilot Study (2) Ratio (1)/(2) 

Protein target Surrogate Peptides NP/HP TP/HP NP/HP TP/HP NP/HP TP/HP 

CYP1A2 YLPNPALQR 2.1 0.2 1.5 0.3 1.4 0.7 

CYP2A6 GTGGANIDPTFFLSR 2.3 0.3 1.3 0.3 1.7 0.9 

CYP2B6 GYGVIFANGNR 0.7 0.02 0.4  1.7  

CYP2C18 SLTNFSK   0.5    

CYP2C19 GHFPLAER 2.1 0.1 1.8 0.1 1.1 1.2 

CYP2C8 SFTNFSK 1.2 0.2 0.9 0.3 1.3 0.6 

CYP2C9 GIFPLAER 1.5 0.2 1.1 0.4 1.4 0.6 

CYP2D6 AFLTQLDELLTEHR   0.9 0.1   

CYP2E1 FITLVPSNLPHEATR 0.6 0.1 0.6 0.2 1.1 0.5 

CYP2J2 VIGQGQQPSTAAR 0.3  0.9  0.3  

CYP3A4 LSLGGLLQPEK 0.7 0.1 0.4 0.1 1.8 0.7 

CYP3A5 YWTEPEEFRPER   0.2    

CYP3A7 FNPLDPFVLSIK   0.9 1.6   

CYP4F2 HVTQDIVLPDGR 1.0 0.4 0.9 0.3 1.1 1.3 

UGT1A1 TYPVPFQR 0.4 0.1     

UGT1A3 HVLGHTQLYFETEHFLK   0.7 0.2   

UGT1A4/1A5 GTQCPNPSSYIPK 0.9 0.1 0.4  2.2  

UGT1A6 VSVWLLR 0.7 0.1 0.6 0.2 1.1 0.5 

UGT1A9 AFAHAQWK 0.5 0.1 0.4 0.1 1.5 0.4 

UGT2B15 SVINDPVYK 1.1 0.1 0.8 0.2 1.4 0.6 

UGT2B4 FSPGYAIEK 0.9 0.1 0.7  1.4  

UGT2B7 ADVWLIR 1.3 0.2 0.9 0.2 1.5 0.8 
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6.1 Abstract 

The objectives of this study were to comprehensively assess for first time protein expression 

of 22 drug metabolizing enzymes (DMEs) and 25 transporters in 15 human healthy livers, 18 

cancer (2 primary and 16 colorectal cancer liver metastasis (CRLM)), and 18 paired normal 

liver tissues and investigate the cancer impact on their expression. LC–MS/MS (AMRT) 

targeted quantitative proteomics was used to quantify enzymes and transporters in human liver 

microsomes. We found significantly decreased levels of CYP2B6/2D6/2E1/3A4/3A5 (<6.6-

fold) and UGT1A1/1A6/1A9/2B15/2B4/2B7 (<6.1-fold) in normal liver from cancer patients 

relative to healthy controls. CYPs (CYP3A4/3A5/2D6 etc.) were strongly decreased in tumour 

compared with normal (<10.9-fold) and healthy controls (<21.3-fold). Most of UGTs were 

downregulated in tumours compared with control (<58.1-fold) and normal livers (<19-fold). 

BSEP, MRPs, and P-gp were significantly decreased in normal (<3.1-fold) and tumour (<6.3-

fold) versus healthy, and in tumour versus normal livers (<3.7-fold). Expression of OCT3, 

OAT2/7 and OATPs followed similar significant trends (<2.9-fold in normal, and <16.4-fold 

in tumour relative to healthy). NTCP and OCT1 were significantly lower (<9-fold), and MCT1 

increased (3.3-fold) in tumour compared with normal livers. The inter-individual variability in 

protein expression was substantially high in cancer. The experimentally generated abundance 

data were integrated into PBPK models for CYP substrates (alprazolam, crizotinib, ibrutinib). 

We found substantial increase of drug exposure (AUC) (<9.5-fold) when using cancer-related 

abundance values. In conclusion, our study reveals decrease of DMEs and most transporters, 

with high variability in cancer, and highlights the importance of population-specific abundance 

data in PBPK modelling. 
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6.2 Introduction 

Colorectal cancer (CRC) is the second most lethal type of cancer (Bray et al., 2018), being 

metastasized to liver in half of the patients (Maher et al., 2017), which is the main cause of 

mortality (Siegel et al., 2018). CRC is caused by multiple factors with many genetic and 

epigenetic alterations contributing to its manifestation (Nikolouzakis et al., 2018). Primary 

liver cancer is also leading cause of cancer death mortality, with main types being 

hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC) (Bray et al., 

2018). 

Liver cancer is ideally treated by surgical resection, but this is not possible for most of the 

patients, and chemotherapy is used to decrease the tumour growth (Chen et al., 2014; Mitchell 

et al., 2019). The liver is the main organ of drug metabolism, and the presence of tumour could 

potentially affect the pharmacokinetics (PK) and pharmacodynamics (PD) of drugs in cancer 

patients. Not only histologically normal liver, but also tumorous part of the liver may be 

important for drug metabolism and disposition in cancer patients, as drug metabolizing 

enzymes (DMEs), especially cytochrome P450 enzymes (CYP) and uridine 5′-diphospho-

glucuronosyltransferases (UGT), in tumour are responsible for activation of anti-cancer 

prodrugs and disposition of them to the tissue (Michael and Doherty, 2005). Drug transporters 

are also very critical for drug disposition and anti-cancer drug resistance, which is achieved in 

cases of an increase of efflux transporters (P-gp, MRPs etc.), and decrease of influx transporters 

(OATPs etc.) (Akhdar et al., 2012). 

Physiologically based pharmacokinetic (PBPK) models are gaining wider acceptance in 

regulatory decision making in the area of oncology, where recruitment and ethical/safety issues 

are of high importance in clinical studies (Yoshida et al., 2017). These models require the 

incorporation of system-specific and drug data for accurate prediction of PK of drugs (Rostami-

Hodjegan, 2012). Cancer population is very heterogeneous and the PK profile of drugs 

(clearance, exposure, absorption etc.) may differ between cancer and healthy subjects due to a 

wide range of systems parameters, such as blood protein levels, comorbidities (Cheeti et al., 

2013), renal impairment (Suri et al., 2015), microsomal protein per garm of liver (MPPGL) 

(Vasilogianni et al., 2021), abundance of drug-metabolising enzymes (DMEs) (Yan, Gao, et 

al., 2015), and transporters (Billington et al., 2018), and increased levels of inflammation in 

cancer patients (Shinko et al., 2017). Interestingly, a decrease in the abundance of several CYPs 

in a cancer population gave better PK predictions (Schwenger et al., 2018). 
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Quantitative measurements of CYPs and UGTs in HCC patients using LC-MS proteomics are 

available and highlight perturbations in cancerous tissues (Yan, Gao, et al., 2015; Yan, Lu, et 

al., 2015). LC-MS proteomics have also been used to quantify drug transporters in HCC 

(Billington et al., 2018). Absolute quantification data are limited and most studies report 

immunohistochemistry or mRNA data. Regarding CRLM, despite its high incidence, there is 

a scarcity of quantitative data in human tissues from CRLM patients. Starting with DMEs, the 

impact of CRLM on the qualitative expression profile of CYPs (Lane et al., 2004), and the 

expression of other DMEs in histologically normal and cancerous tissues from CRLM patients 

has been assessed (van Huizen et al., 2019), highlighting a potential impact of cancer on drug 

metabolism. Studies on transport proteins are more scarce in CRLM, focused to mRNA 

measurements of OATPs (Wlcek et al., 2011) or comparing the abundance between healthy 

livers from healthy donors and histologically normal livers from CRLM patients, with no 

measurements in tumorous livers (Kurzawski et al., 2019). Preliminary experiment was 

performed  by measuring the abundance of DMEs and transporters  in CRLM pooled samples 

(Vasilogianni et al., unpublished).  

Based on the above data, the investigation of parameters defining the PK of drugs in cancer is 

necessary. Our study applies targeted accurate mass and retention time (AMRT) proteomics with 

the aim to quantify of DMEs and transporters in healthy donors, histologically normal and 

matched cancerous liver tissues from cancer patients. Cancer patients of the current study are 

mainly CRLM patients, and to our knowledge, this is the most comprehensive report to provide 

absolute and quantitative measurements of DMEs and transporters in CRLM. In addition, we 

were able to scale our abundance data for each individual sample to liver tissue for the first 

time in CRLM using our previously experimentally-derived microsomal protein per gram of 

liver (MPPGL) (Vasilogianni et al., 2021). The proteomics abundance values were also applied 

in PBPK simulations to predict the PK of CYP substrates of different extraction ratios. Our 

data highlight the implication of the abundance of DMEs in CRLM patients on the PK profiles 

of drugs. 
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6.3 Materials and Methods 

 

6.3.1 Materials and chemicals 

All chemicals and solvents (HPLC-grade) were purchased from Sigma-Aldrich (Poole, Dorset, 

UK) unless otherwise stated. EDTA-free protease inhibitor cocktail and Trypsin (sequencing 

grade) were obtained from Roche Applied Sciences (Mannheim, Germany). Lysyl 

endopeptidase (Lys-C) was purchased from Wako (Osaka, Japan). All the QconCATs were 

purchased from PolyQuant GmbH (http://www.polyquant.com/) (Germany).Non-naturally 

occurring peptides (NNOPs) (light peptides) used for the quantification of QconCATs were 

purchased from Cambridge Peptides (Cambridge, UK). 

 

6.3.2 Human liver samples 

Matched cancerous and histologically normal liver tissues from adult cancer patients (n = 18; 

HCC primary cancer (n=1), ICC primary cancer (n = 1), CRLM (n =16)) were purchased from 

the Manchester University NHS Foundation Trust (MFT) Biobank, Manchester, UK, following 

hepatectomy. The ethics was covered under the MFT Biobank generic ethics approval (NRES 

14/NW/1260 and 19/NW/0644). The age of the donors varied from 34 to 85 years, whereas 

their body mass index varied from 21.6 to 36.3 kg/m2. The gender of the patients was mixed; 

7 female and 11 male. Supplementary Table 6-1 presents demographic and clinical details of 

the CRLM patients, provided by the MFT Biobank. Healthy human liver microsomal samples 

(tumour-free) from 15 healthy subjects were provided by Pfizer as microsomes (Groton, CT, 

USA). These samples were supplied by Vitron (Tucson, AZ, USA) and BD Gentest (San Jose, 

CA, USA). Ethical approval was obtained by the suppliers. Among the 15 donors, 8 were 

female and 7 were male, and their ages ranged from 18 to 64 years. The body mass index of 

the patients ranged from 19.9 to 37.5 kg/m2. Supplementary Table 6-2 presents demographic 

and clinical details of the healthy subjects, provided by Pfizer. 

 

6.3.3 Preparation of human liver microsomal fractions 

Liver tissue was prepared as microsomes as previously described (Achour et al., 2017). Briefly, 

liver tissue was homogenized using a Fisherbrand 150 Handheld Homogenizer, (Thermo Fisher 

Scientific, UK) in homogenization buffer (150 mM KCl, 2 mM EDTA, 50 mM Tris, 1 mM 

dithiothreitol, and EDTA-free protease inhibitor cocktail, pH 7.4) at 10 ml for each gram of 

liver tissue. Each homogenate sample was centrifuged at 10,000 g for 20 min at 4°C using an 

http://www.polyquant.com/
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OptimaTM L-100 ultracentrifuge (Beckman Coulter, Fullerton, CA), and the supernatant was 

further centrifuged at 100,000 g for 75 min at 4 °C. The cytosol (the supernatant) of each 

individual sample was stored at -80°C for future use, and the pellet (microsomes) of each 

individual sample was re-suspended in 1 ml of storage buffer (0.25 M potassium dihydrogen 

phosphate, 0.25 M dipotassium phosphate, pH 7.25) and stored at -80°C. 

 

6.3.4 Measurement of total protein content in microsomal samples 

The protein content of liver microsomes was measured using bicinchoninic acid (BCA) protein 

assay (Pierce® Microplate BCA Protein Assay Kit – Reducing Agent Compatible) in triplicate. 

Absorbance was measured at 562 nm using a SpectraMax 190 platereader (Molecular Devices, 

Sunnyvale, CA) with bovine serum albumin used as calibration standard. 

 

6.3.5 QconCATs (MetCAT and TransCAT) standards 

Two QconCAT standards were used in this study, the MetCAT as previously described 

(Russell et al., 2013), concatenated with peptides for the quantification of 15 CYPs and 10 

UGTs. For MetCAT quantification, a [Glu1]-Fibrinopeptide B analog (GVNNEEGFFSAR) 

omitting the N-terminal glutamate residue was included in the MetCAT. This is a non-naturally 

occurring peptide (NNOP) and a light (not labelled) peptide with the same sequence 

(GVNNEEGFFSAR) is used for the quantification of the MetCAT. The TransCAT has 

previously been described (Russell et al., 2013) and a modified version of it is used for the 

present study, as previously described (Vasilogianni et al., unpublished). For the accurate 

quantification of the TransCAT, the sequence of the [Glu1]-Fibrinopeptide B peptide 

(EGVNDNEEGFFSAR) and another peptide (VGFLPDGVIK) were also involved in the 

TransCAT. Light versions of these two peptides were used for the quantification of the 

TransCAT. A bacterial ribosome core has been incorporated in both QconCATs for the 

efficient expression of the peptides incorporated in QconCATs (Al-Majdoub et al., 2014). 

 

6.3.6 Digestion and preparation of samples  

For each microsomal sample, 70 μg of protein were digested. Each sample was firstly mixed 

with known amounts of isotope-labelled QconCATs; 1.5 μl of undiluted MetCAT (0.27 ug/ul), 

and 2 μl of 1:10 diluted TransCAT (initial concentration 1.12 μg/μl). The protein mixtures were 

mixed sodium deoxycholate of a final concentration of 10% (w/v). The mixture was then 

incubated at room temperature for 10 minutes. Then, dithiothreitol (DTT) of a final 
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concentration of 0.1 M was added for the reduction of disulphide bonds and the mixture was 

incubated at 56o C for 30 minutes. For the protein digestion, the filter-aided sample preparation 

(FASP) was used, as previously described (Al-Majdoub et al., 2019; Couto et al., 2019) with 

minor modifications. Amicon Ultra 0.5 mL centrifugal filters at 10 kDa molecular weight cut-

off (Merck Millipore, Nottingham, U.K.) were conditioned with 200 μl of 0.1 M Tris pH 8.5, 

centrifuging at 14,000 rpm at room temperature for 10 minutes, this step was repeated twice. 

The reduced samples were added to the filters and centrifuged at 13,000 rpm for 20 minutes. 

8M urea in 0.1 M Tris pH 8.5 was used as solubilizing solution. This solution should extract 

the aggregated protein efficiently. Centrifugation at 14,000 rpm for 20 minutes at room 

temperature was followed (twice). The samples were subsequently alkylated with 100 µl 50 

mM iodoacetamide (IAA) in the dark for 30 minutes at room temperature, then centrifuged at 

14,000 rpm for 10 minutes. The buffer exchanged was repeated with two washes with 8 M 

Urea in 0.1 M Tris pH 8.5, and centrifugation at 14,000 rpm for 20 minutes at room 

temperature. The concentration of urea was reduced with two washes of 1 M urea in 50 mM 

ammonium bicarbonate (AmBic) pH 8.0 and centrifuged at 13,000 rpm for 20 minutes. To 

avoid the evaporation of the samples, 80 μl of 1 M Urea in 50 mm AmBic pH 8.0 was added 

to each filter unit. Then, lysyl endopeptidase was added to each sample (enzyme/ protein ratio 

1:50) for two hours at 30o C, and the same step was repeated for extra two hours. After 4 hours 

of incubation with lysyl endopeptidase, trypsin was added (enzyme/ protein ratio 1:25) for 12 

hours at 37o C, and the same step was repeated for extra four hours. The samples were 

recovered after centrifugation at 14,000 rpm for 20 minutes, 100 μl of 0.5 M sodium chloride 

was added to the filter, centrifuged at 14,000 rpm for 20 minutes, addition of 50 μl of 0.5 M 

sodium chloride to the filters, then centrifuged at 14,000 rpm for 10 minutes. After this step, 

each sample was split into two equal samples, and each one of them was mixed with sample 

buffer (3 parts of sample: 1 part of sample buffer 2% v/v trifluoroacetic acid in 20% v/v 

acetonitrile in water). Each sample was then desalted using a C18 column (Nest group, USA). 

Finally, the peptide samples were dried using a vacuum concentrator and stored at −80 °C until 

mass spectrometric analysis. Before the LC-MS, we added reconstitution buffer (3% 

acetonitrile-0.1% formic acid) and unlabelled peptides GVNDNEEGFFSAR (0.13 pmol), 

EGVNDNEEGFFSAR (0.25 pmol), VGFLPDGVIK (0.25 pmol) in a final volume of 60 μl. 
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6.3.7 Liquid chromatography and tandem mass spectrometry (LC-MS/MS) 

Digested samples were analysed by LC-MS/MS using an UltiMate® 3000 Rapid Separation 

LC (RSLC, Dionex Corporation, Sunnyvale, CA) coupled to a QE HF (Thermo Fisher 

Scientific, Waltham, MA) mass spectrometer. Mobile phase A was 0.1% formic acid in water 

and mobile phase B was 0.1% formic acid in acetonitrile and the column used was a 75 mm x 

250 μm i.d. 1.7 μM CSH C18, analytical column (Waters, UK). 1 μl aliquot of the sample was 

transferred to a 5ul loop and loaded on to the column at a flow of 300nl/min for 5 minutes at 

5% B. The loop was then taken out of line and the flow was reduced from 300nl/min to 

200nl/min in 0.5 minute.  Peptides were separated using a gradient that went from 5% to 18% 

B in 63.5 minutes, then from 18% to 27% B in 8 minutes and finally from 27% B to 60% B in 

1 minute. The column is washed at 60% B for 3 minutes before re-equilibration to 5% B in 1 

minute. At 85 minutes the flow is increased to 300 nl/min until the end of the run at 90min. 

Mass spectrometry data was acquired in a data directed manner for 90 minutes in positive 

mode. Peptides were selected for fragmentation automatically by data dependant analysis on a 

basis of the top 12 peptides with m/z between 300 to 1750Th and a charge state of 2, 3 or 4 

with a dynamic exclusion set at 15 sec. The MS Resolution was set at 120,000 with an AGC 

target of 3e6 and a maximum fill time set at 20ms. The MS2 Resolution was set to 30,000, with 

an AGC target of 2e5, a maximum fill time of 45 ms, isolation window of 1.3Th and a collision 

energy of 28. 

 

6.3.8 Analysis and annotation of proteomic data 

Proteomic data were processed using MaxQuant 1.6.7.0 (Max Planck Institute, Martinsried, 

Germany), and searched against a customized database, comprising human UniprotKB 

database (74,788 sequences) and QconCAT sequences. For targeted AMRT analysis, light-to-

heavy intensity ratios were used with QconCAT concentrations to calculate protein amounts 

based on accurate mass measurement and retention time for each peptide (Al-Majdoub et al., 

2019, 2020). Peptides selected for quantification of CYPs, UGTs, and transporters are 

presented in Supplementary Tables 6-3 - 6-8. 

 

6.3.9 Statistical data analysis 

Statistical data analysis was performed using GraphPad Prism 8.1.2 (La Jolla, California USA), 

Microsoft Excel 2016 and R v3.6.3. Nonparametric statistics were used since data did not 

follow normal distribution. Differences in absolute abundances between healthy and 
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histologically normal, healthy and tumorous, and histologically normal and tumorous livers 

were assessed using Mann−Whitney U-test. The p-value cut-off for statistical significance was 

set at 0.05. Principal components analysis (PCA) was performed using proteome similarity data 

based on percentage identical peptide (PIP) and percentage identical protein (PIPr). 

 

6.3.10 Physiologically based pharmacokinetic (PBPK) simulations 

The effect of using the experimentally determined abundance of CYPs and UGTs in this study 

in combination with scaling factors previously determined (Vasilogianni et al., 2021) in a 

cancer population was assessed using PBPK modelling on Simcyp V20 Release 1 (Certara, 

Sheffield, UK) in healthy and cancer populations. Three CYP substrates with different hepatic 

extraction ratios (EH) were used: alprazolam (predominantly metabolized by CYP3A4, and 

CYP3A5, low EH), crizotinib (predominantly metabolized by CYP3A4, intermediate EH), and 

ibrutinib (predominantly metabolized by CYP3A4, high EH). The compound files were same 

as those provided within the Simcyp simulator, and PBPK simulations were performed using 

system parameters already available on the simulator for healthy (“Sim-Healthy Volunteers”) 

and cancer (“Sim-Cancer”) virtual populations, without or with changing MPPGL values 

(measured in Vasilogianni et al., 2021) and abundance of CYPs and UGTs measured in this 

study. For the abundance data, relative changes of CYPs, and UGTs between healthy and 

histologically normal or cancerous samples were incorporated. Similarly, relative changes of 

coefficient of variation (CV) percentages between healthy and histologically normal or 

cancerous samples were used. The effects of abundance changes on drug exposure following 

oral administration were assessed using previously described models (Vasilogianni et al., 

2021): 

Model 1 (Healthy): default MPPGL and abundance for healthy population (Simcyp). 

Model 2 (Cancer-D): default MPPGL and abundance for cancer population (Simcyp). 

MPPGL model 3 (New Cancer-ALN): MPPGL in histologically normal tissue (Vasilogianni 

et al., 2021) and abundance of CYPs (relative difference between NP and HP) were used for 

the cancer population, assuming the whole liver histologically normal. 

MPPGL model 4 (New Cancer-ALC): MPPGL in cancerous tissue (Vasilogianni et al., 2021) 

and abundance of CYPs (relative difference between TP and HP) were used for the cancer 

population, assuming the whole liver cancerous, and the liver mass unchangeable. 
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For each model and drug, the trial design had the following parameters: 10 trials with 10 virtual 

individuals each, females to males: 0.5, age range: 20-50 years, duration of study: 24 h. The 

mean (for all 100 virtual subjects) systemic concentration (Csys)-time profiles were plotted and 

the area under the curve (AUC) from time 0 to 24 hours and Clearance (Dose/AUC) values 

were compared. Supplementary Table 6-9 provides the parameters in PBPK simulations. 

 

6.4 Results 

 

6.4.1 Comparison of hepatic CYP and UGT absolute abundance in healthy controls, and 

histologically normal and tumour HLM from cancer patients  

The absolute abundance values for CYPs and UGTs were measured with LC-MS/MS 

proteomics, using a QconCAT standard (MetCAT). These values were expressed as pmol of 

protein per mg of microsomal protein and compared among three groups (healthy and cancer 

paired with normal liver tissues) of human liver microsomes (HLM). We found that the 

expression of CYP2B6, CYP2D6, CYP2E1, CYP3A4 and CYP3A5 (Figure 6-1A) in 

histologically normal samples were significantly lower than in healthy tissues (Mann−Whitney 

test, p < 0.05), while the rest of CYPs were similarly expressed between these two groups.  

We also found that the protein expression of CYP1A2, CYP2A6, CYP2C18, CYP2C19, 

CYP2C8, CYP2C9, CYP2D6, CYP2E1, CYP2J2, CYP3A4, CYP3A5, CYP4F2) in tumour 

tissues were statistically lower than in healthy (p<0.05) and lower (with the exception of 

CYP2C18) than in histologically normal tissues (p<0.05). Similar expression of CYP3A7 was 

observed among the samples. 

Subsequently, we analysed UGT enzymes in the three different groups. The expression of 

UGT1A1, UGT1A6, UGT1A9, UGT2B15, UGT2B4 and UGT2B7 were significantly 

decreased (Figure 6-1B) in histologically normal tissues compared with healthy controls (p < 

0.05), with the rest of UGTs being expressed at similar levels in the two groups. Another 

finding was that UGT1A1, UGT1A3, UGT1A6, UGT1A9, UGT2B15, UGT2B4 and UGT2B7 

were significantly decreased in tumour compared with healthy livers (Mann-Whitney, p < 

0.05). Additionally, UGT1A1, UGT1A3, UGT1A6, UGT1A9, UGT2B11, UGT2B15, 

UGT2B4, and UGT2B7 were significantly decreased in tumour compared with histologically 

normal livers from cancer patients (p < 0.05). 
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The absolute values of the abundance of CYPs and UGTs for individual samples are provided 

in Supplementary Tables 6-3, 6-4, and 6-5 respectively. 

 

 

Figure 6-1 Absolute abundance of cytochrome P450 enzymes (CYPs) (A) and UDP-glucuronosyltransferases (UGTs) (B) in 

healthy, histologically normal and tumorous HLM. Abundances are represented as box and whiskers plots with the whiskers 

showing the minimum and maximum values, the boxes showing the 25th and 75th percentiles, the lines showing the medians, 

and the + signs showing the means. Mann−Whitney test was used to assess statistically significant differences between healthy 

and histologically normal, between healthy and tumorous livers and between histologically normal and tumorous livers for 

each protein.  The asterisk (*) represents statistical difference (*p < 0.05; ** p < 0.01; ***p < 0.001; **** p < 0.0001). 
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6.4.2 Differences in protein expression levels of ABC and SLC transporters between 

tumour, normal and healthy microsomal fractions 

The absolute abundance for ABC and SLC transporters was measured with the aid of 

TransCAT. Figure 6-2A shows that ABC transporters generally tend to decrease in livers from 

cancer patients. Among these, P-gp, BSEP, MRP2, MRP3 and MRP6 expressions were 

downregulated at a very high level of significance (p < 0.05) in tumour and histologically 

normal versus healthy controls. Significant decrease in the abundance of BSEP, and MRP2 was 

also observed in tumour compared with matched histologically normal livers (p < 0.05). BCRP 

and MRP4 were expressed at similar levels in healthy, histologically normal and cancer livers. 

Similarly, the abundance of most SLC transporters was decreased in livers from cancer 

patients. More specifically, Organic cation transporter (OCT) 1, Organic anion transporter 

(OAT) 2, OAT7, Organic anion transporter polypeptide-related protein (OATP) 1B1, and 

OATP2B1 were significantly decreased in histologically normal and tumour livers compared 

with healthy controls (p < 0.05), and in tumour relative to histologically normal livers from 

cancer patients (p < 0.05). The expression levels of OCT3 and OATP1B3 were significantly 

downregulated in normal and tumour compared with healthy livers (p < 0.05). The expression 

of Monocarboxylate transporter 1 MCT1 was significantly lower in normal compared with 

healthy, and higher in tumour than in normal (p < 0.05), while Na(+)/taurocholate transport 

protein NTCP was significantly decreased in normal compared with healthy and in tumour 

compared with normal livers (p < 0.05). However, no differences were observed in the 

abundance of OST-α, OST-β, ASBT, PEPT1, and OATP1A2 in the compared microsomal 

samples. 

The absolute values of the abundance of ABC and SLC transporters for individual livers are 

provided in Supplementary Tables 6-6, 6-7, and 6-8 respectively. 
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Figure 6-2 Absolute abundance of ATP-binding cassette transporters (ABCs), ATP1A1 and Cadherin-17 (CDH17) (A) and 

solute carrier transporters (SLCs) (B) in healthy, histologically normal and tumorous HLM. Absolute abundance is expressed 

in pmol of protein per mg of liver microsomal protein. Abundances are represented as box and whiskers showing the minimum 

and maximum values, the boxes showing the 25th and 75th percentiles, the lines showing the medians, and the + signs showing 

the means. Mann−Whitney test was used to assess statistically significant differences between healthy and histologically 

normal, between healthy and tumorous livers and between histologically normal and tumorous livers for each protein. The 

asterisk (*) represents statistical difference (*p < 0.05; ** p < 0.01; ***p < 0.001; **** p < 0.0001). 
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6.4.3 Relative expression of CYPs and UGTs in the three sets of HLM 

The pie charts represent the relative abundance distribution of CYPs (Figure 6-3A, B, C) and 

UGTs (Figure 6-3D, E, F) in the healthy, histologically normal and tumour HLM. Among the 

quantified CYPs, CYP2C9 was the most abundant of all P450 isoforms in all groups (29% of 

quantified CYPs in healthy, 34% in histologically normal, and 35% in tumour). CYP3A4 was 

the second most abundant, followed by CYP2E1 and CYP2C8, in healthy and histologically 

normal. However, CYP2C8 was the second most abundant CYPs (15%) in tumour, followed 

by CYPE1 (13%), and then CYP3A4 (12%). The least abundant CYPs were CYP2J2 and 

CYP2C18 in all groups. Among UGTs, UGT2B7 was found to be the most abundant in all 

groups (29% in healthy, 44% in histologically normal, and 34% in tumour). The second most 

abundant UGT was UGT1A1 (21%) in healthy, and UGT2B15 in histologically normal (19%) 

and tumour (28%). UGT2B4 was the third most abundant UGT in healthy (19%) and 

histologically normal (15%), and UGT1A1 in tumour (13%). The least abundant UGT was 

UGT1A3 in all groups. 

 

 

Figure 6-3 Pie charts representing the relative abundance distribution of CYPs (A, B, C), and UGTs (D, E, F) in healthy, 

histologically normal and tumorous HLM. 
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6.4.4 Relative abundance distribution of ABC and SLC transporters in healthy controls, 

and histologically normal and tumour HLM from cancer patients 

The pie charts represent the relative abundance distribution of ABC (Figure 6-4A, B, C) and 

SLC (Figure 6-4D, E, F) transporters in healthy controls, and histologically normal and tumour 

HLM from cancer patients. The most abundant ABC transporters quantified with the 

TransCAT in healthy controls and histologically normal livers were MRP6 (28% in healthy, 

21% in normal), followed by MRP2 (21% in healthy and normal), and BSEP (16% in healthy, 

19% in normal). However, the most abundant ABC transporter in tumour livers was P-gp 

(28%), followed by MRP6 (27%), and MRP3 (14%). BCRP and MRP4 were the least abundant 

ABC transporters quantified in all groups. 

The most abundant SLC transporters quantified were the same in healthy and histologically 

normal livers; OCT1 (24% in healthy, 25% in normal), NTCP (23% in healthy, 24% in normal), 

and OATP2B1 (12% in healthy, 14% in normal). The distribution differs in tumour, with 

MCT1 being 47% of SLC transporters, OATP2B1 14%, and OATP1B2 9%. ASBT, OST-α, 

OATP1A2 were the least abundant SLC transporters in all groups. 

 

 

Figure 6-4 Relative abundance distribution of ABCs (A, B, C), and SLCs (D, E, F) in healthy, histologically normal and 

tumorous HLM. 
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6.4.5 Relative abundance of CYPs and UGTs among healthy controls, and histologically 

normal and tumour HLM from cancer patients 

Figures 6-5A depicts the relative abundance of CYPs expressed as ratio of healthy to 

histologically normal (fold changes). The dotted line is set to 1 meaning no difference between 

healthy and normal. For each target, the average abundance in all the healthy livers was divided 

by the average abundance in all normal livers. CYP2B6, CYP2D6, CYP2E1, CYP3A4, 

CYP3A5 were more than 2 fold (range 2.9 - 6.6 fold) higher in healthy controls compare to 

histologically normal livers, showing a decrease of CYPs in histologically normal livers from 

cancer patients compared with healthy controls. Figure 6-5B shows that the ratio of the 

abundance of CYPs in healthy to tumour livers was more than 2 fold, with the exception of 

CYP3A7 (1.4 fold). CYPs were decreased in tumour compared with healthy controls, with a 

decrease ranging from 3.6 fold (CYP2J2) to 21.3 fold (CYP3A4). Figure 6-5C provides the 

ratio of the abundance of CYPs in histologically normal to matched tumour livers, which was 

higher than 2 fold with the exception of CYP2B6 and CYP3A7. This ratio ranges from 2.5 

(CYP2J2) to 10.9 fold (CYP2C19), showing a decrease of CYPs in the tumorous parts of liver 

compared with the adjacent histologically normal parts. 

Figure 6-5D shows a ratio of UGTs in healthy to normal higher than 1. More specifically, 

UGT1A3, UGT2B11 and UGT2B7 were slightly decreased in normal compared with healthy 

(< 2 fold), and the rest UGTs were decreased by 2 fold (UGT2B15) up to 6.1 fold (UGT1A1). 

Ratios of healthy to tumour (Figure 6-5E) range from 4.1 (UGT1A3) to 58.1 (UGT2B4) fold 

showing a significant decrease of UGTs in normal livers from cancer patients compared with 

controls. Ratios of histologically normal to tumour (Figure 6-5F) range from 2.6 (UGT1A3) to 

19 (UGT2B4) fold showing decrease of UGTs in tumour. 
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Figure 6-5 Relative abundances of CYPs, and UGTs in HLM. Panels A, B, C represent the abundance ratios of CYPs in 

healthy to histologically normal (A), healthy to tumour (B), and histologically normal to tumour livers (C). Panels D, E, F 

represent the abundance ratios of UGTs in healthy to histologically normal (D), healthy to tumour (E), and histologically 

normal to tumour livers (F). The dotted line is set to 1 (no change). 

 

6.4.6 Relative abundance of ABC and SLC transporters on healthy controls, histologically 

normal and tumour tissues 

Figure 6-6A depicts the ratios of the abundance of ABC transporters in healthy to histologically 

normal livers, which were higher than 2 fold (up to 3.1) for MRP2, MRP3, MRP4, and MRP6 

showing a decrease of them in normal. Figure 6-6B represents the ratios of ABCs in healthy to 

tumour, and we observe ratios of BSEP, MRPs and MDR3 ranging from 2-6.3 fold showing 

that these transporters were decreased in tumour compared with healthy controls. Conversely, 

ratio of BCRP in healthy to tumour was 0.5, showing 2 fold increase in tumour. Figure 6-6C 

shows that the ratio of P-gp in histologically normal to tumour was 0.5 meaning 2 fold increase 

in tumour, and the ratio of BSEP in histologically normal to tumour was 3.7 fold (decrease in 

tumour). 

Ratios of SLC transporters in healthy to normal (Figure 6-6D) exceed 2 (up to 2.9) for MCT1, 

OAT7, OATP1A2, OATP1B3, and OCT3, showing a decrease of them in normal compared 
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with healthy. Ratios of NTCP, OATs, OATPs and OCTs in healthy to tumour were higher than 

2 (ranging from 3.2 to 16.4) showing a decrease of them in tumour compared with healthy, and 

the ratio for OST-α was 0.5 (2 fold increase in tumour). Lastly, ratios of NTCP, OATs, OCT1, 

OATP1B1 and OATP2B1 in normal to tumour were higher than 2 (up to 9) showing a decrease 

of them in tumour compared with normal, and the ratio for MCT1 was 0.3 (3.3 fold increase in 

tumour). 

 

 

Figure 6-6 Relative abundances of ABC and SLC transporters in HLM. Panels A, B, C represent the abundance ratios of 

ABCs in healthy to histologically normal (A), healthy to tumour (B), and histologically normal to tumour livers. Panels D, E, 

F represent the abundance ratios of SLCs in healthy to histologically normal (D), healthy to tumour (F), and histologically 

normal to tumour livers. The dotted line is set to 1 (no change). 
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6.4.7 Relative abundance of CYPs, UGTs and transporters in paired tumour and normal 

tissues  

Figure 6-7 represents the ratio of abundance in histologically normal to matched tumour livers 

for each individual for CYPs (A), UGTs (B), ABC (C), and SLC (D) transporters. The absence 

of a dot means the absence of the ratio due to the absence of the target in this specific sample. 

The graphs show that there was no consistency in individual ratios normal to tumour (same 

donors) across the liver samples for the quantified targets. The changes of the abundance of 

each target in tumour compared with histologically normal were not consistent across samples, 

showing no trend. 

 

 

Figure 6-7 Relative abundance of CYPs (A), UGTs (B), ABCs (C), and SLCs (D). Relative abundances are expressed as ratios 

of abundance in histologically normal to matched tumour HLM for each 18 individual (n = 18). 

 



|Chapter 6 

288 
 

6.4.8 Normalization of the abundance of CYPs, UGTs and transporters (pmol/mg) to 

gram of liver 

According to the contents of MPPGL determined in our previous work (Vasilogianni et al., 

2021), individual abundance data per pmol/mg microsomal protein in normal and tumour livers 

of CRLM were scaled to gram tissue levels by multiplying the MPPGL with the individual 

abundance values, representing the enzyme and transporter abundance of liver (Figure 6-8). 

However, when calculating the enzyme abundance based on liver tissue (per gram of tissue), 

there was no clear trend between the abundance in microsomal protein level and liver tissue 

level in individual liver samples. For this analysis, we only included 11 cancerous livers, 

because for the rest of the samples the MPPGL values were not available.  

 

 

Figure 6-8 Abundance of CYP2C9, CYP3A4, UGT1A9, UGT2B7, P-gp, MRP3, MCT1, and OATP2B1 in histologically 

normal (graphs on the top, blue bars) and tumour (graphs at the bottom, pink bars). Abundance is expressed as pmol of protein 

per mg of microsomal protein in the left y axis (dark blue bars for histologically normal and dark pink for tumour), and as 

pmol of protein per g of liver in the right y axis (light blue bars for histologically normal and light pink for tumour). 
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6.4.9 Principal component analysis (PCA) 

Percentage identical peptides (PIP) and percentage identical proteins (PIPr) were calculated 

between samples as previously described (Al Feteisi et al., 2018; Al-Majdoub et al., 2019), and 

the results were analysed by principal components analysis (PCA) (Figure 6-9). The healthy 

and the normal liver samples form two distinct clusters, indicating a high homogeneity of each 

one of these groups. However, little clustering was observed for the cancer liver samples 

reflecting the nature of cancer as a disease (a phenotypic range rather than one phenotype). 

PC1 explains the difference between healthy and cancer livers at 62% and 67% of the variance 

for PIP and PIPr. PC2 explains the difference between healthy and histologically normal livers 

at 12% and 15% of the variance for PIP and PIPr. It shows that normal and healthy livers were 

very similar but different from cancer livers. Cancer livers were also different from one 

another. The total explained variance by disease and histology was 74% and 82% for PIP and 

PIPr, which means we can explain most of the variability in phenotype based on only these two 

factors. 

Interestingly, sample T32 clusters with the normal livers in PIP and was between the clusters 

of normal and tumour livers in PIPr. T32 was actually enclosed in the 95% confidence interval 

for normal livers, which means it was most likely normal than cancer. Although sample T32 

was characterised as tumour by the biobank, its colour and texture resembles to be between 

normal and tumour. Samples T46 and T48 were distant from the rest tumour samples, which is 

expected as these were the only primary cancer samples. Samples H57, H61, H62, and H63 

were pooled healthy samples (analytical replicates). Samples N58 and T59 constitute pooled 

histologically normal and pooled tumour samples, respectively. 
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Figure 6-9 Principal components analysis (PCA) of peptide (A) and protein (B) similarity data, using percentage identical 

peptide (PIP) and percentage identical protein (PIPr) values, respectively. 

 

6.4.10 Physiologically-based pharmacokinetic (PBPK) simulations 

Simulations for three CYP substrates with different hepatic extraction ratios (EH); alprazolam 

(low EH = 0.04 in Healthy, CYP3A4, and CYP3A5 substrate), crizotinib (intermediate EH = 

0.44 in Healthy, CYP3A4 substrate), and ibrutinib (high EH = 0.91 in Healthy, CYP3A4 

substrate), were performed. We used four different models (Figure 6-10); Model 1 (Healthy) 

used default MPPGL and abundance of CYPs and UGTs (Simcyp) with a healthy population, 

Model 2 (Cancer-D) used default MPPGL and abundance of CYPs and UGTs (Simcyp) with a 

cancer population, Model 3 (New Cancer-ALN) used MPPGL (Vasilogianni et al., 2021) and 

abundance of CYPs and UGTs measured in this study for histologically normal tissue with a 

cancer population, and Model 4 (New Cancer-ALC) used MPPGL (Vasilogianni et al., 2021) 

and abundance of CYPs and UGTs measured in this study in cancer tissue with a cancer 

population. 

New Cancer-ALN assumes that the whole liver is histologically normal, with maximum 

metabolic capacity of microsomal enzymes, whereas New Cancer-ALC assumes that the whole 

liver is cancerous with minimum metabolic capacity of microsomal enzymes. For alprazolam, 

crizotinib, and ibrutinib AUC predicted using model New Cancer-ALC was 1.8, 2.1, and 9.5-

fold higher of that obtained using model Healthy, showing an increase in the exposure of CYP 

substrates in case of advanced cancer, where most liver is cancerous. 
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Figure 6-10 Mean predicted systemic concentration over time after oral administration of alprazolam (A), crizotinib (B), and 

ibrutinib (C). For each drug, four different methods of scaling were used. Healthy: default MPPGL (Simcyp) with a healthy 

population. Cancer-D: default MPPGL with a cancer population. New Cancer-ALN: MPPGL measured in this study for 

histologically normal tissue with a cancer population. New Cancer-ALC: MPPGL measured in this study for cancer tissue 

with a cancer population. Inset graphs show the Relative AUC ratios of Cancer-D, New Cancer-ALN, and New Cancer-ALC 

to Healthy. 

 

6.5 Discussion 

Quantitative proteomics is useful for PBPK models in cancer and other diseases (Sharma et al., 

2020). However, protein abundance is not always available. To our knowledge, this is the first 

comprehensive study of DMEs and transporters levels in healthy and tumour human liver. Our 

previous pilot study (Vasilogianni et al., unpublished) provided quantitative measurements in 

pooled liver samples. Here, we quantified DMEs and transporters in individual healthy 

controls, histologically normal and matched cancerous liver tissues from cancer patients 

(mainly CRLM), using LC-MS/MS. For these targets, no human liver expression data have 

previously been reported in CRLM, and the abundances of these proteins are reported for the 

first time. The current analysis confirmed our previous findings and quantified proteins in 
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individual liver samples, providing a more comprehensive picture of protein expression and 

inter-individual variability in healthy, cancer and matched normal liver tissues.  

CYPs and UGTs are involved in the clearance of more than 90% of drugs (Rowland et al., 

2013), with CYPs being responsible for the metabolism of 80% of clinically used drugs (Zanger 

and Schwab, 2013). In CRLM treatment, Irinotecan is metabolized by CYP3A4/5, and 

UGT1A1/9 (Ma and McLeod, 2003; de Man et al., 2018), and Regorafenib by CYP3A4, and 

UGT1A9 (Rey et al., 2015). It has been documented in HCC, that most CYPs and UGTs are 

significantly decreased in cancerous compared with peri-carcinomateous tissues (Yan, Gao, et 

al., 2015; Yan, Lu, et al., 2015). Our pilot study (Vasilogianni et al., unpublished) showed 

decrease of DMEs in a cancerous pooled liver sample from CRLM patients compared with 

healthy and histologically normal, in agreement with the current study in individual samples. 

The absolute quantification measurements clearly highlight that CYPs and UGTs are either 

decreased or similarly expressed in histologically normal and significantly decreased in 

cancerous compared with histologically normal and healthy livers. The multiple CYP enzymes 

quantified include most of the major CYPs involved in drug metabolism. Interestingly, DMEs 

levels increased by up to 58.1-fold in cancerous compared with healthy livers implying that 

drug metabolism may be severely affected in patients with a cancerous liver leading to higher 

exposure of CYP and UGT substrates and therefore, high toxicity.   

Drug transport proteins have an important role in drug disposition and drug-drug interactions 

(DDIs) (Liang et al., 2020), and may be involved in resistance to chemotherapeutic drugs 

(Akhdar et al., 2012). Transporters involved in drug disposition in CRLM include OATP1B1, 

Pgp, BCRP, MRP1, and MRP2 for Irinotecan (Ma and McLeod, 2003; de Man et al., 2018) 

and MRP2 and OATP1B1 (Ohya et al., 2015) for Regorafenib. Our data revealed altered 

abundance of a wide range of transporters in cancer, with a decreasing trend of SLCs in 

histologically normal versus healthy, and a more significant decrease in cancerous livers. These 

findings are in agreement with our measurements in pooled samples (Vasilogianni et al., 

unpublished).  

The majority of the studied ABCs (BSEP, MRP2, MRP3, MRP6, P-gp) were downregulated 

in cancer patients, or unchanged (such as BCRP, MDR3 and MRP4) in this study. Our data 

comply with our previous pilot report with regard to the downregulation of MRP2 and MRP3 

as well as the unchangeable expression of BCRP in tumours (Vasilogianni et al., unpublished). 

In contrast to the data of the current study, the pilot study showed an increase of MRP4 in 
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cancer. Transporters are low abundance proteins and thus, more sensitive to technical 

differentiations. Our data are in agreement with a study in HCC, where OATPs, OCT1, and 

ABC transporters decreased in cancerous tissues (Billington et al., 2018). There are no absolute 

quantitative data of the protein levels of transporters in the literature for CRLM to compare 

with. Transporters were decreased by up to 16.4-fold, in cancerous relative to healthy livers. 

These data could be useful for predictions of hepatic drug disposition in cancer patients. 

The relative distribution of DMEs and transporters was also assessed. The most abundant CYPs 

in all liver samples were CYP2C9, CYP3A4, CYP2E1, and CYP2C8, with varying percentage 

of expression across different groups. Moreover, UGT2B7 was the most abundant in all groups. 

Our results were consistent with the literature (Ohtsuki et al., 2011; Achour et al., 2014; Zhang 

et al., 2016; Couto et al., 2019). The most abundant ABC transporters were MRP6, MRP2, and 

BSEP in healthy and normal livers, in agreement with other studies (Vildhede et al., 2015; 

Couto et al., 2019), but P-gp and MRP6 in cancerous livers. OCT1 and NTCP were the most 

abundant SLCs in healthy and normal, while MCT1 in cancerous livers. The increase of MCT1 

in cancer is supported by the literature suggesting that MCT1 is involved in tumour progression 

and could be a useful therapeutic target in oncology (Payen et al., 2020). 

The range of protein abundance levels for DMEs was wider in cancerous samples, indicating 

high heterogeneity in cancer. The maximum inter-individual variation across CYPs, UGTs, 

ABCs and SLCs in healthy samples was 231 (CYP2C19), 11 (UGT1A6), 23 (MRP4), and 16-

fold (ASBT), which is smaller compared with a previous study that used label-free 

quantification method (Couto et al., 2019). On the contrary, the maximum inter-individual 

variation across CYPs, UGTs, ABCs and SLCs in cancer samples was 4063 (CYP2C9), 2784 

(UGT1A9), 190 (BSEP), and 179-fold (OATP1A2), respectively. The PCA indicates that 

healthy, normal and cancerous samples constitute 3 distinct groups, but the cancerous group is 

not homogeneous. Figure 6-7 indicates that the ratio of abundance for each protein target in 

histologically normal to matched tumour livers for each individual is not consistent across the 

samples. Considering that normal livers belong to a homogeneous group (PCA), the lack of a 

specific trend for the expression of each protein target for each individual could be attributed 

to the heterogeneity in cancerous livers. This heterogeneity could be explained by the fact that 

individuals differ in the cancer cell differentiation, severity, type of cancer, previous treatment 

and other characteristics. 
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The absolute abundance values were expressed in units of pmol of protein per mg of 

microsomal protein. It has been suggested that varying abundance of highly abundant proteins 

(not DMEs/transporters) can impact on the abundance of DMEs and transporters, and 

correction factors (e.g. MPPGL) could normalize the abundance and express it as pmol of 

protein per g of liver tissue (Achour et al., 2017). In our study, we multiplied pmol of protein 

per mg of microsomal protein by MPPGL measured in our previous study (Vasilogianni et al., 

2021) to define abundance in pmol of protein per g of liver tissue, and we did not observe any 

trends between them for each protein target across the samples. This is in line with another 

study (Billington et al., 2018) demonstrating that normalization from mg of membrane protein 

to g of liver altered the pattern of expression of drug transporters in some cases. Scaling to 

tissue level may be more appropriate for PK predictions in PBPK models, and thus in our 

simulations we used MPPGL in addition to protein abundance to normalize to tissue level. 

Based on the abundance data from the current study, and in addition to MPPGL values specific 

for cancer (Vasilogianni et al., 2021), we assessed the contribution of the abundance of CYPs 

to drug exposure by PBPK simulations of three CYP substrates available in Simcyp simulator 

(alprazolam, and anti-cancer tyrosine kinase inhibitors crizotinib and ibrutinib). Our 

simulations showed a substantial difference in drug exposure (AUC), when using typical 

parameters from healthy population instead of cancer-specific parameters. This difference in 

AUC increases with increasing EH; 1.8, 2.1 and 9.5-fold higher AUC for alprazolam (low EH), 

crizotinib (intermediate EH), and ibrutinib (high EH) when assume that the whole liver is 

cancerous (New Cancer-ALC). Therefore, abundance data may have a substantial impact on 

PK profiles, especially when high amount of liver is cancerous (advanced cancer). Abundance 

data specific for a cancer population in addition to the amount of liver being cancerous are 

necessary for PBPK models. There are no clinical data for the simulated drugs in CRLM 

patients. Further work could verify our updated models for cancer populations once clinical 

data are available. The aim of the current study is only to assess the impact of the abundance 

of CYPs on PK in cancer. Overall, we show that population specific abundance data for DMEs 

are important in PBPK for cancer and progress of disease. 

To conclude, our study provides for the first time protein abundance data for hepatic DMEs 

and transporters in individual cancer patients with a focus on CRLM. CYPs and UGTs were 

substantially decreased and transporters were altered in cancer. Inter-individual variability was 

high for DMEs and transporters, with higher amounts in cancer. Abundance data were 

normalized to tissue level, highlighting the importance of relating our values to liver by using 
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MPPGL. Lastly, our PBPK simulations on CYP substrates demonstrated higher drug exposure 

in healthy population relative to population-specific abundance of CYPs. Appropriate 

abundance values specific for cancer population may contribute to more accurate predictions 

of PK in cancer. The quantitative data generated in this report  will be used to address data gaps 

in cancer PBPK models. 
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6.7 Supplementary Information 

 

Supplementary Table 6-1 Demographic and clinical details of cancer patients provided by the MFT Biobank. 

Sample 

ID 

Age at 

surgery 

(years) 

Race Sex Body mass 

index, BMI 

(kg/m2) 

Smoking/ 

Alcohol use 

Liver 

lobe 

Diagnosis Medical history Treatment 

389 52 Caucasian Female 30.86 No/ 

Occasionally 

Left Metastatic moderately 

well differentiated 

adenocarcinoma 

Deep vein thrombosis, 

asthma, duodenal ulcer, 

thyroid problem, liver 

lesions 

Fragmin, 

levothyroxine, 

betamethasone, 

ventolin, ferrous 

fumarate 

590 72 Caucasian Male 32 Pipe/ 22 units 

per week 

- Metastatic moderate to 

Well differentiated 

adenocarcinoma (dirty 

necrosis) 

Asthma, polypectomy, 

tonsillectomy, 

Hemicolectomy Dukes 

B 

Salbutamol, tiotropium, 

lansaprozole, nasonex 

633 67 Caucasian Male 26.85 Ex-stopped/ - Right Metastatic 

adenocarcinoma & fatty 

liver disease 

Peripheral neuropathy 

secondary to 

oxaliplatin, type 2 

diabetes, 

hypercholesterolemia, 

valvular heart disease, 

prostate cancer with 

bone metastasis, 

colonic cancer T3N0, 

colorectal liver 

metastasis 

Metformin, zoladex, 

oxaplatin and 5FU, 

irinotecan and 5FU 

with cetuximab 

674 68 Caucasian Female 26.67 No/ - Right Metastatic moderately 

differentiated 

adenocarcinoma 

Rectosigmoid cancer 

10/10 Dukes B 

- 
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734 64 Caucasian Female 23.84 No/ 

Occasionally 

Right Moderately to focally 

poorly differentiated 

metastatic 

adenocarcinoma 

Primary colorectal Dalteparin, short 

course of radiotherapy, 

adjuvant OXmdG and 

5FU 

746 85 Caucasian Male 23.67 Ex (40 years)/ 

Moderately 

Right Metastatic papillary 

carcinoma 

Laparoscopic R 

hemicolectomy T2M0, 

Squamous cell 

carcinoma (scalp), 

hypothyroidism, 

hypertension, Chronic 

obstructive pulmonary 

disease 

Irbesartan, 

levothyroxine, 

bisoprolol, aspirin, 

omeprazole, 

budesamide, 

formoterol 

794 71 Caucasian Female 22.41 No/ No - Metastatic 

adenocarcinoma with 

extensive intra-acinar 

necrosis 

R hemicolectomy, 

pT3N2, high blood 

pressure, depression 

Tomudex 

chemotherapy 

818 58 Caucasian Male 21.78 Ex (25 years)/ 

18 units per 

week 

- Moderately differentiated 

metastatic 

adenocarcinoma 

Sigmoid 

adenocarcinoma 

pT3pN2 

Loperamide, 

carboplatin/5FU and 

modified de Gramont 

and radiotherapy 

1492 34 - Female 32.53 Ex-stopped/ 

Approximately 

20 units per 

week 

Right Metastatic moderate and 

poorly differentiated 

adenocarcinoma 

Bowel resection, 

pilonodal abcess x2, 

grometts (as a child), 

tonsillectomy (as a 

child), egg collection, 

occasional palpitations, 

asthma (as a child), 

reflux, joint problems 

in knees, treated for 

Irritable bowel 

syndrome 

Omeprazole, 

amitryptyline, 

microgynon, 

glucosamine sulphate, 

ibuprofen, peppermint 

oil 
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1493 75 - Male - No/ No Right Metastatic moderately 

differentiated 

adenocarcinoma 

Sigmoid tumour, sleep 

apnoea, asthma 

Cod liver oil, 

salbutamol inhaler, 

seretide inhaler, 

movicol 

1498 63 Caucasian Male - No/ Rarely Right Metastatic 

adenocarcinoma 

Previous gout, 

anaemia, cataract 

operation 

Doxycycline regime 

completed, Nil regular 

1795 63  Male 36.32 Ex - stopped 

(previously 

30cpd)/ 

Approximately 

75 units per 

week 

Left Metastatic well 

differentiated 

adenocarcinoma 

Adenocarcinoma, 

hypertension, 

intermittent 

claudication of left leg 

Omeprazole, 

irbesartan, simvastatin, 

clopidogrel 

1957 68 - Male 32.16 No/ - Left Metastatic moderately 

differentiated 

adenocarcinoma 

Primary rectal cancer, 

pneumonia post-

operative, liver cancer, 

late lung metastasis 

Nil regular 

2036 43 - Female - -/ - Right Metastatic moderate to 

poorly differentiated 

adenocarcinoma 

Primary colorectal Omeprazole, 

paracetamol 

2058 79 Caucasian Female 21.6 -/ - Left Metastatic 

adenocarcinoma 

Below the knee 

amputation, primary 

colorectal, lung 

metastasis 

Lansoprazole, ferrous 

sulphate, alendronic 

acid, paracetamol, 

codeine phosphate, 

senna, natecal D3 

2095 55 Caucasian Male 28.1 -/ - Right Metastatic moderately 

differentiated 

adenocarcinoma 

Primary colorectal Nil regular 
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1063 77 Caucasian Male 26.6 Ex - stopped 20 

years ago/ 15 

units per week 

Right Moderate to poorly 

differentiated 

hepatocellular carcinoma 

Primary hepatocellular 

carcinoma, prostate 

cancer 

- 

1359 68 Caucasian Male 33.4 No/ Whiskey 

(frequency 

unknown) 

Left Poorly differentiated 

intrahepatic 

cholangiocarcinoma 

pT2a, pN1 

Primary liver tumour, 

right elbow surgery, 

patient would have a 

cholecystectomy for 

gallstones but surgery 

was abandoned when 

the liver tumour was 

discovered, hiatus 

hernia, reflux 

Lumigan eye drops, 

brinzolamide, timolol, 

omeprazole, 

bimatoprost 
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Supplementary Table 6-2 Demographic and clinical details of healthy subjects provided by Pfizer. 

Sample 

ID 

Age at 

surgery 

(years) 

Race Sex Body mass index, 

BMI (kg/m2) 

Smoking/ 

Alcohol use 

Cause of death Medical history Treatment 

HH83 18 Caucasian Female 20.19 No/ No Head trauma Healthy None 

HH84 53 Caucasian Male 19.94 No/ Social Intracranial 

haemorrhage 

None None 

HH87 54 Caucasian Female 29.79 No/ No Head trauma Healthy None 

HH93 34 Caucasian Male 20.62 No/ No Cerebellar 

haemorrhagic injury 

Healthy Healthy 

HH98 64 Caucasian Male 37.47 No/ No Head Injury Healthy None 

HH99 45 Caucasian Male 31.62 No/ No Head trauma Healthy None 

HH101 54 Caucasian Female 21.95 No/ No Motor vehicle 

accident 

Healthy None 

HH102 52 Caucasian Female 32.26 No/ No Cerebral Aneurysm Healthy None 

HH104 35 African 

American 

Female 25.25 No/ No Cerebral Aneurysm Healthy None 

HH105 50 Caucasian Male 33.47 No/ No Cerebral Aneurysm Healthy None 

HH106 43 Hispanic Male 24.48 No/ No Cerebral Vascular 

Aneurysm 

Healthy None 

HH107 45 Caucasian Female 24.96 No/ No Cerebral Vascular 

Aneurysm 

Healthy None 

HH110 54 Caucasian Female 26.29 No/ Social Cerebral Vascular 

Aneurysm 

Healthy None 
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HH111 43 Caucasian Female 28.43 No/ No Intracranial bleeding Healthy None 

HH118 32 Caucasian Male 26.69 No/ Social Gunshot Wound to 

head 

Healthy, Skin Graft 

on right arm in the 

past 

Pepcid AC, Tagamet, Steroids 

in HS and Marines 
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Supplementary Table 6-3 Expression levels (pmol mg-1) of 14 CYP and 8 UGT enzymes quantified in human healthy liver controls. 

Sample ID by the provider HH83 HH84 HH87 HH93 HH98 HH99 HH101 HH102 HH104 HH105 HH106 HH107 HH110 HH111 HH118 Pooled healthy 

Sample name  H3 H6 H9 H12 H51 H18 H21 H53 H27 H30 H33 H36 H39 H42 H56 H57 H61 H62 H63 

Protein 

target 

Peptides Absolute abundance (pmol mg-1) 

CYP1A2 YLPNPALQR 35.73 16.10 11.00 10.30 8.38 8.10 7.92 5.54 10.22 5.22 7.80 1.26 3.22 14.49 10.90 6.05 5.96 5.86 5.83 

CYP2A6 GTGGANIDPTFFLSR 44.99 2.17 7.60 3.56 15.75 2.57 10.20 12.26 20.32 72.00 42.38 3.15 22.31 42.21 30.25 12.05 11.99 12.05 12.71 

CYP2B6 GYGVIFANGNR 6.98 1.53 7.60 3.07 3.42 
  

5.59 15.15 26.14 
  

21.53 23.77 28.66 3.35 5.75 5.84 5.03 

CYP2C18 SLTNFSK 0.98 0.73 
 

0.32 0.25 
 

0.31 1.38 
 

0.71 0.74 0.35 0.01 0.33 0.46 0.22 0.18 0.21 0.33 

CYP2C19 GHFPLAER 9.43 2.42 0.86 0.65 2.00 0.12 0.61 4.58 0.04 1.51 6.20 1.07 0.48 1.14 0.20 1.03 0.98 0.96 1.14 

CYP2C8 SFTNFSK 50.75 9.08 19.83 4.46 29.90 16.42 15.52 21.99 30.87 37.90 91.35 6.25 19.57 48.48 26.57 16.60 16.59 16.92 17.09 

CYP2C9 GIFPLAER 195.67 92.38 52.39 27.43 136.05 127.65 34.98 114.94 19.43 145.48 160.22 29.24 57.62 125.04 111.74 46.81 48.05 47.66 47.37 

CYP2D6 DIEVQGFR 
 

7.35 
 

10.93 
 

15.81 
 

5.03 
   

1.93 3.90 
 

9.27 3.06 3.34 3.80 
 

CYP2E1 FITLVPSNLPHEATR 106.10 112.78 31.46 81.91 67.74 164.17 22.94 93.17 41.00 99.57 52.48 24.65 57.26 71.86 115.26 32.05 32.95 33.06 31.93 

CYP2J2 VIGQGQQPSTAAR 0.18 0.43 
 

0.32 0.25 0.69 0.25 0.48 0.12 0.26 0.29 0.08 0.28 0.39 0.51 0.21 0.20 0.13 0.19 

CYP3A4  LSLGGLLQPEK 67.63 35.60 53.80 12.85 103.86 12.65 67.53 50.87 166.71 69.59 332.37 17.81 97.37 224.29 81.98 54.94 54.88 57.40 61.40 

CYP3A5 DTINFLSK 
 

3.51 1.82 2.13 3.23 
 

0.84 20.58 69.59 
 

6.10 31.94 13.48 
  

7.01 7.87 7.53 
 

CYP3A7 FNPLDPFVLSIK 
     

0.73 
  

0.65 0.16 1.85 0.15 2.72 0.23 
 

0.28 0.37 0.39 0.26 

CYP4F2 HVTQDIVLPDGR 23.03 9.88 8.16 7.60 6.00 6.28 5.11 15.57 3.11 17.26 10.39 2.86 2.33 12.80 5.40 4.64 4.56 4.66 4.98 

UGT1A1 DGAFYTLK 101.51 32.86 
 

87.06 
    

30.34 41.95 
  

43.92 80.54 39.57 26.49 27.01 27.08 25.50 

UGT1A3 HVLGHTQLYFETEHFLK 2.23 1.79 0.62 1.58 1.10 0.83 0.44 0.70 2.36 2.03 2.77 0.34 0.69 0.64 1.39 0.94 0.81 0.85 1.07 

UGT1A6 VSVWLLR 8.81 5.24 6.38 6.86 11.12 15.38 3.88 11.82 5.08 17.85 18.80 1.77 6.97 11.21 9.07 4.85 4.87 4.99 4.73 

UGT1A9 AFAHAQWK 53.64 19.93 28.19 23.81 23.37 25.27 11.78 44.89 28.22 50.55 60.39 11.76 22.22 36.37 35.46 16.21 16.69 16.50 17.93 

UGT2B11 DSFWLYFSQEQEILWELYDIFR 
           

0.40 2.16 3.54 2.39 
  

1.31 
 

UGT2B15 SVINDPVYK 91.26 27.46 27.93 29.08 48.67 41.61 
 

46.51 31.53 68.80 62.71 16.52 16.31 42.44 58.76 22.18 22.02 22.57 22.72 

UGT2B4 FSPGYAIEK 57.07 
  

18.68 
     

45.43 140.72 
 

17.72 38.98 41.35 
 

19.95 19.21 18.33 

UGT2B7 ADVWLIR 147.24 45.93 52.77 57.47 92.46 97.85 37.79 69.20 71.34 148.98 97.69 35.84 37.65 94.73 115.57 38.09 39.84 40.41 42.41 
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Supplementary Table 6-4 Expression levels (pmol mg-1) of 14 CYP and 8 UGT enzymes quantified in human histologically normal livers. 

Sample ID by the provider 2095 2058 2036 389 590 746 818 1492 674 1957 1493 1498 633 734 794 1795 1063 1359 Pooled 

normal 

Sample name  N1 N4 N7 N10 N13 N49 N19 N22 N25 N34 N28 N31 N37 N40 N43 N54 N45 N47 N58 

Protein 

target 

Peptides Absolute abundance (pmol mg-1) 

CYP1A2 YLPNPALQR 14.70 10.11 3.34 5.46 24.91 15.38 6.89 8.46 16.56 7.48 6.10 14.15 11.55 18.81 8.23 3.30 5.59 8.88 8.63 

CYP2A6 GTGGANIDPTFFLSR 25.86 23.61 4.67 25.26 15.68 30.43 25.16 12.98 33.63 14.21 14.09 37.11 15.98 27.20 13.10 8.91 10.01 6.48 17.03 

CYP2B6 GYGVIFANGNR 
 

6.56 
    

4.07 
 

3.47 3.06 2.01 3.99 5.78 
 

0.55 
 

2.44 2.07 1.99 

CYP2C18 SLTNFSK 
   

0.10 0.92 0.42 
 

0.20 0.74 0.18 0.12 0.92 0.54 0.74 0.12 0.05 0.07 0.05 0.18 

CYP2C19 GHFPLAER 0.58 
 

1.73 5.04 1.57 1.25 4.24 2.15 7.59 1.37 0.89 0.35 0.10 10.70 1.60 0.14 0.24 0.33 2.10 

CYP2C8 SFTNFSK 22.59 16.27 8.21 12.94 19.98 26.61 18.69 21.12 28.92 11.17 10.32 33.13 18.16 34.67 7.61 6.90 8.98 11.65 16.04 

CYP2C9 GIFPLAER 70.18 52.22 38.05 49.30 118.00 50.64 61.08 86.27 96.06 41.39 45.81 121.91 73.34 91.57 30.80 30.01 20.54 32.14 50.00 

CYP2D6 DIEVQGFR 
 

1.49 1.61 2.79 7.58 
    

1.74 2.26 
   

2.04 0.36 
   

CYP2E1 FITLVPSNLPHEATR 21.17 16.61 14.37 11.51 53.91 40.73 19.98 21.32 35.78 22.68 9.44 41.10 33.17 35.76 7.17 17.47 7.26 15.79 18.16 

CYP2J2 VIGQGQQPSTAAR 0.14 0.22 0.10 0.11 0.27 0.19 0.34 0.49 0.25 0.03 0.15 0.07 0.35 0.42 0.17 0.23 
  

0.16 

CYP3A4  LSLGGLLQPEK 22.27 70.97 16.23 13.70 53.10 50.96 28.06 27.15 46.18 23.82 20.31 61.31 38.02 61.69 12.38 10.66 14.20 14.75 24.87 

CYP3A5 DTINFLSK 1.46 1.60 0.65 1.29 
 

1.98 0.73 1.12 2.32 
 

2.05 
 

1.45 
 

0.78 
  

12.57 2.55 

CYP3A7 FNPLDPFVLSIK 
   

0.05 
 

1.84 
   

0.04 0.12 2.08 0.79 0.05 0.04 
 

0.02 0.01 0.23 

CYP4F2 HVTQDIVLPDGR 6.44 2.51 5.67 3.15 12.02 4.43 5.32 3.54 12.83 6.41 0.37 9.60 3.57 12.15 3.36 3.47 2.70 0.31 4.54 

UGT1A1 DGAFYTLK 2.80 4.37 3.58 0.94 33.39 9.73 3.51 6.74 
 

4.66 10.03 21.37 11.91 17.96 6.71 5.69 
 

6.11 6.89 

UGT1A3 HVLGHTQLYFETEHFLK 1.00 0.99 0.22 0.40 1.03 1.03 
 

1.04 0.65 0.76 0.59 1.86 0.33 1.91 0.82 0.09 0.19 0.93 0.72 

UGT1A6 VSVWLLR 2.93 3.49 3.61 2.16 
  

2.26 
  

3.10 1.52 5.78 
 

5.54 0.98 2.99 1.26 1.30 2.77 

UGT1A9 AFAHAQWK 4.47 11.20 9.09 5.73 24.32 10.13 7.11 6.84 12.57 7.95 5.33 16.07 14.29 11.56 2.18 5.35 2.50 4.53 6.61 

UGT2B11 DSFWLYFSQEQEILWELYDIFR 
             

2.57 1.44 0.89 0.95 1.10 
 

UGT2B15 SVINDPVYK 29.33 14.16 6.88 15.39 45.13 24.04 24.85 31.34 23.15 17.33 14.85 21.99 35.47 35.86 10.39 16.83 6.70 11.99 17.60 

UGT2B4 FSPGYAIEK 
    

38.47 
    

10.59 9.61 21.09 
 

31.35 5.55 9.65 
 

8.08 12.21 

UGT2B7 ADVWLIR 58.16 37.21 32.45 76.07 104.67 55.91 56.51 56.00 58.75 39.21 29.80 46.81 57.80 65.99 21.99 35.26 15.79 26.04 37.10 
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Supplementary Table 6-5 Expression levels (pmol mg-1) of 14 CYP and 8 UGT enzymes quantified in human tumour livers. 

Sample ID by the provider 2095 2058 2036 389 590 746 818 1492 674 1957 1493 1498 633 734 794 1795 1063 1359 Pooled 

tumour 

Sample name  T2 T5 T8 T11 T14 T50 T52 T23 T26 T35 T29 T32 T38 T41 T44 T55 T46 T48 T59 

Protein 

target 

Peptides Absolute abundance (pmol mg-1) 

CYP1A2 YLPNPALQR 0.15 0.28 0.13 1.51 0.08 5.62 0.03 1.73 
 

1.80 0.03 5.46 0.13 0.04 2.98 
 

0.02 
 

1.64 

CYP2A6 GTGGANIDPTFFLSR 0.30 0.49 0.02 4.32 
 

6.46 0.04 1.95 
 

3.31 
 

13.45 
 

0.06 2.98 0.06 0.09 0.22 3.75 

CYP2B6 GYGVIFANGNR 
     

1.29 
     

2.98 
       

CYP2C18 SLTNFSK 
     

0.01 
  

0.06 
  

0.18 
 

0.09 
     

CYP2C19 GHFPLAER 0.04 0.03 
 

0.78 0.03 0.29 0.00 0.25 
 

0.46 
 

0.45 0.04 0.04 0.32 
 

0.05 
 

0.12 

CYP2C8 SFTNFSK 
   

4.08 
 

7.77 
 

4.64 
  

0.05 19.94 
  

3.41 
 

0.17 1.71 5.86 

CYP2C9 GIFPLAER 
 

2.49 
 

17.52 0.18 19.98 0.11 17.94 1.51 9.27 0.02 80.29 0.33 
 

13.97 
 

0.23 
 

18.26 

CYP2D6 DIEVQGFR 
 

0.18 
 

1.08 0.26 
 

0.04 0.76 
     

0.08 1.07 0.05 0.02 
 

0.53 

CYP2E1 FITLVPSNLPHEATR 0.71 1.99 0.72 4.75 0.18 19.09 0.12 5.84 0.07 5.54 0.47 28.62 
 

0.21 7.49 0.13 0.14 0.25 7.29 

CYP2J2 VIGQGQQPSTAAR 
 

0.05 0.16 
 

0.01 0.22 0.08 
   

0.00 0.16 0.01 0.11 
     

CYP3A4  LSLGGLLQPEK 0.26 2.42 0.62 3.98 0.09 18.28 0.04 3.47 
 

4.64 0.27 35.01 0.05 0.13 4.30 0.22 0.24 0.16 8.29 

CYP3A5 DTINFLSK 
   

0.69 0.28 0.86 
 

0.22 
   

1.57 
       

CYP3A7 FNPLDPFVLSIK 
           

1.31 
   

0.002 
  

0.41 

CYP4F2 HVTQDIVLPDGR 0.15 0.13 0.01 1.08 0.32 1.73 0.07 0.56 0.02 0.96 
 

6.79 0.32 0.22 1.10 
  

0.05 1.62 

UGT1A1 DGAFYTLK 
 

0.21 
 

0.46 
    

0.03 0.95 
 

9.66 
 

0.03 3.70 0.01 
  

2.37 

UGT1A3 HVLGHTQLYFETEHFLK 0.08 0.05 
 

0.75 0.13 0.30 
 

0.36 0.35 
 

0.24 0.87 0.21 0.23 0.29 0.24 
 

0.29 0.24 

UGT1A6 VSVWLLR 
   

0.56 0.23 
   

0.06 0.58 0.07 5.20 0.27 0.18 0.48 0.04 
 

0.19 1.00 

UGT1A9 AFAHAQWK 0.00 0.14 
 

1.05 0.07 2.06 0.04 0.54 
 

1.00 0.30 9.72 0.01 0.06 0.95 
 

2.24 
 

2.33 

UGT2B11 DSFWLYFSQEQEILWELYDIFR 
             

0.43 0.76 0.45 0.37 0.54 
 

UGT2B15 SVINDPVYK 
   

4.82 0.11 8.42 0.07 5.44 
 

3.37 
 

14.79 
 

0.06 3.88 
 

0.72 
 

4.31 

UGT2B4 FSPGYAIEK 
         

2.39 0.78 
  

0.14 0.88 0.22 
   

UGT2B7 ADVWLIR 0.98 1.58 0.44 7.56 0.20 18.19 0.14 9.37 0.19 6.90 0.20 30.72 0.08 0.21 9.11 0.05 
 

0.19 8.48 
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Supplementary Table 6-6 Expression levels (pmol mg-1) of 9 ABC, 14 SLC transporters, ATP1, and CDH17 quantified in human healthy liver controls. 

Sample ID by the provider HH83 HH84 HH87 HH93 HH98 HH99 HH101 HH102 HH104 HH105 HH106 HH107 HH110 HH111 HH118 Pooled healthy 

Sample name  H3 H6 H9 H12 H51 H18 H21 H53 H27 H30 H33 H36 H39 H42 H56 H57 H61 H62 H63 

Protein 

target 

Peptides Absolute abundance (pmol mg-1) 

P-gp FYDPLAGK 0.32 0.35 
 

0.32 0.61 
 

0.39 0.59 0.31 0.61 0.38 
 

0.69 0.34 
 

0.27 0.25 0.24 0.21 

BSEP AADTIIGFEHGTAVER 0.74 0.58 1.44 0.30 0.46 0.72 0.63 1.15 0.44 0.84 0.42 1.07 1.10 0.88 1.40 0.39 0.38 0.38 0.35 

MDR3 GAAYVIFDIIDNNPK 0.39 0.32 0.53 0.16 0.24 0.55 0.27 0.48 0.30 0.35 1.97 0.47 0.35 0.30 0.52 0.19 
 

0.35 0.45 

MRP2 LTIIPQDPILFSGSLR 0.94 0.50 0.95 0.15 1.44 1.21 0.67 1.95 0.61 1.09 0.31 0.92 1.38 1.44 2.11 0.66 0.61 0.66 0.66 

MRP3 IDGLNVADIGLHDLR 0.59 0.38 0.86 0.38 0.55 0.76 0.78 1.24 0.49 0.86 0.54 0.25 0.54 0.95 1.29 0.30 0.36 0.37 0.46 

MRP4 APVLFFDR 
  

0.01 0.08 
 

0.05 
      

0.22 
      

MRP6 APETEPFLR 0.93 0.91 1.51 0.82 0.88 1.32 2.06 2.35 0.59 1.65 
 

2.16 1.56 0.83 1.80 0.71 0.53 0.66 0.71 

BCRP SSLLDVLAAR 
  

0.04 0.04 0.06 
  

0.03 
   

0.08 0.03 
   

0.03 0.01 
 

ASBT IAGLPWYR 
 

0.14 
 

0.04 0.01 0.01 0.18 0.09 0.04 
  

0.02 0.17 
  

0.02 
 

0.07 
 

ATP1A1 SPDFTNENPLETR 6.35 5.88 10.35 9.96 6.72 8.01 12.61 11.06 4.45 12.08 6.60 8.10 11.10 6.52 14.55 4.17 3.97 3.77 5.02 

CDH17 AENPEPLVFGVK 
                   

MCT1 SITVFFK 1.63 2.40 3.53 1.91 1.05 
  

2.50 0.91 
   

2.82 1.97 3.97 0.92 1.03 1.10 1.30 

OST-α YTADLLEVLK 
    

0.01 
 

0.02 
      

0.04 
 

0.02 0.01 0.01 
 

OST-β ETPEVLHLDEAK 
 

0.09 0.20 0.13 
 

0.14 
 

0.18 
  

0.25 
   

0.44 0.03 0.06 0.06 
 

PEPT1 HTLLVWAPNHYQVVK 
   

0.06 
   

0.33 
    

0.29 
  

0.13 0.10 0.08 0.11 

NTCP GIYDGDLK 
  

5.52 
    

6.10 
 

5.96 
 

4.04 
   

2.07 1.97 2.05 1.89 

OCT1 GVALPETMK 7.51 4.18 6.37 
 

2.95 
        

7.02 
 

3.61 3.70 3.51 3.90 

OCT3 GIALPETVDDVEK 0.71 0.19 1.07 0.28 0.53 1.18 
 

1.31 0.68 1.79 
 

0.67 0.80 0.72 2.59 0.43 0.40 0.42 0.36 

OAT2 NVALLALPR 1.73 0.56 1.89 0.40 1.59 1.13 2.71 2.58 1.15 2.17 1.45 2.01 2.21 1.69 2.11 0.81 0.98 0.84 0.91 

OAT7 ISLLSFTR 0.23 0.17 0.53 0.20 0.34 0.49 0.63 0.55 0.08 0.40 0.31 0.35 0.36 0.24 0.44 0.12 0.15 0.11 0.06 

MATE1 DHVGYIFTTDR 
                   

OATP1A2 IYDSTTFR 0.06 0.07 0.04 
   

0.06 
 

0.06 
 

0.03 0.03 0.10 0.41 
 

0.03 0.02 0.02 
 

OATP1B1 LNTVGIAK 1.26 0.47 1.22 0.90 1.43 1.47 2.67 0.82 1.07 1.35 0.83 1.23 2.10 1.68 1.89 0.64 0.69 0.64 0.81 

OATP1B3 NVTGFFQSLK 1.25 1.05 2.64 1.66 2.52 2.30 5.83 3.61 
  

1.51 4.11 2.16 
  

1.51 1.51 1.73 
 

OATP2B1 SSPAVEQQLLVSGPGK 2.63 1.73 2.58 0.84 1.97 2.87 3.72 6.19 1.65 5.13 2.76 
 

1.80 2.28 4.49 1.24 1.25 1.21 1.16 
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Supplementary Table 6-7 Expression levels (pmol mg-1) of 9 ABC, 14 SLC transporters, ATP1, and CDH17 quantified in human histologically normal livers. 

Sample ID by the provider 2095 2058 2036 389 590 746 818 1492 674 1957 1493 1498 633 734 794 1795 1063 1359 Pooled 

normal 

Sample name  N1 N4 N7 N10 N13 N49 N19 N22 N25 N34 N28 N31 N37 N40 N43 N54 N45 N47 N58 

Protein 

target 

Peptides Absolute abundance (pmol mg-1) 

P-gp FYDPLAGK 0.18 0.13 0.45 0.24 0.39 1.45 0.14 0.25 0.29 
 

0.22 0.18 0.24 
 

0.13 0.81 0.09 0.12 
 

BSEP AADTIIGFEHGTAVER 0.23 0.41 0.62 0.42 0.90 0.55 0.39 0.52 0.53 0.38 0.28 0.64 0.47 0.82 0.28 0.74 0.22 0.14 0.49 

MDR3 GAAYVIFDIIDNNPK 0.32 
  

0.20 0.23 0.27 0.41 0.27 
  

0.12 0.27 0.54 0.44 0.28 0.74 0.36 
 

0.34 

MRP2 LTIIPQDPILFSGSLR 0.41 0.23 0.91 0.43 0.63 0.54 0.34 0.62 0.53 0.38 0.37 0.59 0.76 0.69 0.28 1.18 0.27 0.46 0.59 

MRP3 IDGLNVADIGLHDLR 0.25 0.10 0.36 0.15 0.29 0.22 0.19 0.22 0.09 0.30 0.18 0.34 0.17 0.19 0.17 1.33 0.08 0.17 0.36 

MRP4 APVLFFDR 
 

0.01 0.01 
 

0.10 
    

0.01 
 

0.01 0.04 0.03 
 

0.04 0.00 
  

MRP6 APETEPFLR 
   

0.52 0.88 
 

0.79 
 

0.77 0.20 0.72 0.14 0.93 
 

0.26 
 

0.31 0.32 0.56 

BCRP SSLLDVLAAR 
    

0.07 
   

0.04 
          

ASBT IAGLPWYR 0.02 
 

0.06 
  

0.03 
 

0.04 
  

0.11 0.02 
 

0.05 0.04 
    

ATP1A1 SPDFTNENPLETR 2.62 1.39 4.02 2.70 3.89 2.75 1.38 2.95 2.05 3.74 3.81 3.15 2.71 4.01 1.14 5.99 1.44 2.22 3.42 

CDH17 AENPEPLVFGVK 
                   

MCT1 SITVFFK 0.79 
  

0.96 
    

0.76 1.44 0.57 1.26 0.42 1.61 0.38 1.28 0.33 0.53 1.13 

OST-α YTADLLEVLK 
   

0.02 
   

0.11 
 

0.02 
   

0.03 0.03 
 

0.04 
  

OST-β ETPEVLHLDEAK 
 

0.06 
 

0.10 
  

0.04 0.25 
  

0.14 
 

0.48 
 

0.08 
 

0.04 
 

0.18 

PEPT1 HTLLVWAPNHYQVVK 
             

0.31 
 

0.25 
  

0.16 

NTCP GIYDGDLK 2.80 1.87 4.98 3.42 3.22 
   

2.59 2.81 2.04 3.75 
 

4.30 1.58 4.62 1.89 1.61 3.09 

OCT1 GVALPETMK 
 

2.71 
 

1.90 2.74 5.07 3.52 
 

3.46 
 

2.36 
 

2.89 
      

OCT3 GIALPETVDDVEK 
 

0.36 
  

0.48 0.41 
  

0.25 
 

0.71 
 

0.57 
 

0.20 
    

OAT2 NVALLALPR 0.96 0.51 1.62 0.92 1.47 0.75 0.76 0.95 0.93 1.45 0.57 0.62 0.96 0.91 0.36 2.28 0.79 0.58 1.08 

OAT7 ISLLSFTR 
 

0.10 0.41 0.17 0.11 0.23 
 

0.12 0.09 0.23 0.06 0.11 
 

0.14 0.05 0.18 
 

0.04 0.16 

MATE1 DHVGYIFTTDR 
              

0.05 
    

OATP1A2 IYDSTTFR 
 

0.04 
   

0.03 
  

0.00 
 

0.11 
  

0.06 0.01 
    

OATP1B1 LNTVGIAK 0.69 0.61 1.15 0.91 0.67 0.58 0.81 0.54 0.70 1.08 0.46 0.80 0.68 1.03 0.21 1.52 0.30 0.49 0.66 

OATP1B3 NVTGFFQSLK 
 

0.96 1.79 0.46 
 

1.64 0.61 0.99 0.95 
 

0.56 
 

0.76 
 

0.32 
 

0.73 
  

OATP2B1 SSPAVEQQLLVSGPGK 1.64 1.19 1.18 1.55 3.08 2.06 1.70 1.52 1.80 2.35 1.71 1.87 1.49 2.34 0.99 2.76 0.81 0.61 1.58 
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Supplementary Table 6-8 Expression levels (pmol mg-1) of 9 ABC, 14 SLC transporters, ATP1, and CDH17 quantified in human tumour livers. 

Sample ID by the provider 2095 2058 2036 389 590 746 818 1492 674 1957 1493 1498 633 734 794 1795 1063 1359 Pooled tumour 

Sample name  T2 T5 T8 T11 T14 T50 T52 T23 T26 T35 T29 T32 T38 T41 T44 T55 T46 T48 T59 

Protein 

target 

Peptides Absolute abundance (pmol mg-1) 

P-gp FYDPLAGK 0.17 
 

0.21 0.16 0.40 
 

0.08 0.30 
   

0.17 3.53 
      

BSEP AADTIIGFEHGTAVER 
 

0.35 
 

0.05 0.03 0.12 0.01 0.06 
 

0.20 
 

0.50 
 

0.00 0.08 
 

0.03 
 

0.04 

MDR3 GAAYVIFDIIDNNPK 
   

0.13 
       

0.25 
       

MRP2 LTIIPQDPILFSGSLR 0.40 
  

0.16 0.07 0.26 0.07 0.22 
 

0.15 0.15 0.44 0.94 0.32 0.17 
 

0.31 
 

0.11 

MRP3 IDGLNVADIGLHDLR 0.69 0.25 0.11 0.20 0.61 0.65 0.39 0.13 0.32 0.48 0.32 0.21 0.16 0.14 0.22 0.46 0.04 0.19 0.38 

MRP4 APVLFFDR 
 

0.03 
   

0.06 
             

MRP6 APETEPFLR 1.21 
  

0.33 0.24 2.91 0.09 
  

0.17 
 

0.76 
 

0.05 0.21 
 

0.11 
 

0.21 

BCRP SSLLDVLAAR 
    

0.05 
   

0.07 
 

0.07 0.04 
 

0.12 
 

0.21 
   

ASBT IAGLPWYR 
   

0.05 0.08 0.02 0.06 0.08 
   

0.05 
 

0.04 0.00 0.01 
   

ATP1A1 SPDFTNENPLETR 17.27 10.63 10.98 5.25 18.61 11.08 9.94 4.25 26.91 10.87 11.55 6.13 19.85 20.08 6.34 19.41 2.50 1.43 16.05 

CDH17 AENPEPLVFGVK 22.23 
 

3.25 
   

2.61 
   

5.52 
 

29.11 8.19 
     

MCT1 SITVFFK 6.70 2.77 3.86 
     

6.53 1.92 2.99 1.21 3.39 5.19 1.79 2.56 0.46 
 

3.99 

OST-α YTADLLEVLK 
        

0.01 
 

0.05 
 

0.15 0.02 0.02 
  

0.04 
 

OST-β ETPEVLHLDEAK 
 

0.29 0.62 0.05 
 

0.04 
     

0.18 
 

0.63 
 

0.20 
 

0.02 
 

PEPT1 HTLLVWAPNHYQVVK 
        

0.27 
    

0.23 
   

0.38 0.18 

NTCP GIYDGDLK 
       

0.88 
     

0.12 
     

OCT1 GVALPETMK 
   

0.26 0.08 0.95 
 

0.36 
         

0.07 
 

OCT3 GIALPETVDDVEK 0.38 0.27 
 

0.14 
  

0.18 0.26 
   

0.53 
     

0.22 0.25 

OAT2 NVALLALPR 
 

0.01 0.02 0.21 0.02 0.35 
 

0.10 0.03 0.13 
 

0.64 
 

0.01 0.20 
   

0.23 

OAT7 ISLLSFTR 
   

0.06 0.02 0.11 
     

0.19 
 

0.04 0.09 
 

0.01 
  

MATE1 DHVGYIFTTDR 
       

0.10 
      

3.32 
    

OATP1A2 IYDSTTFR 
    

0.04 
 

0.04 0.00 
   

0.10 
 

0.01 
 

0.005 0.02 
  

OATP1B1 LNTVGIAK 
 

0.10 
 

0.13 0.04 0.32 
 

0.12 
 

0.17 
 

0.78 
  

0.05 
    

OATP1B3 NVTGFFQSLK 
   

0.26 
       

1.00 
       

OATP2B1 SSPAVEQQLLVSGPGK 0.38 
  

0.61 
 

1.43 0.15 0.38 0.55 0.74 
 

1.94 0.72 
 

0.82 
   

0.96 



|Chapter 6 

313 
 

Supplementary Table 6-9 Input parameters for PBPK modelling using Simcyp v20 R1 for alprazolam 

(predominantly metabolized by CYP3A4, and CYP3A5, low extraction ratio), crizotinib (predominantly 

metabolized by CYP3A4, intermediate extraction ratio), and ibrutinib (predominantly metabolized by CYP3A4, 

high extraction ratio). 

Input Parameters 

Compound Name SV-Alprazolam SV-Crizotinib SV-Ibrutinib 

Mol Weight (g/mol) 308.8 450.34 440.5 

log P 2.12 4.28 3.97 

Compound Type Monoprotic Base Diprotic Base Monoprotic Base 

pKa 1 2.4 9.4 3.78 

pKa 2 n/a 5.6 n/a 

B/P 0.825 1.1 0.73 

Haematocrit 45 45 45 

fu 0.29 0.093 0.025 

GI Absorption Model 1st order ADAM ADAM 

GI Permeability Assay Physicochemical Physicochemical PCaco-2 

GI Peff,man n/a Global Global 

Distribution Model Minimal PBPK Model Full PBPK Model Minimal PBPK Model 

Vss (L/kg) 0.76 Predicted User 

Prediction Method User Method 2 10 

Clearance Type Enzyme Kinetics Enzyme Kinetics Enzyme Kinetics 

Trial Design    

Population Name 
Sim-Healthy 

Volunteers/Cancer 

Sim-Healthy 

Volunteers/Cancer 

Sim-Healthy 

Volunteers/Cancer 

Use Pop Representative No No No 

Population Size 100 100 100 

Number of Trials 10 10 10 

No. of Subjects per 

Trial 
10 10 10 

Start Day/Time Day 1, 09:00 Day 1, 09:00 Day 1, 09:00 

End Day/Time Day 2, 09:00 Day 2, 09:00 Day 2, 09:00 

Study Duration (h) 24 24 24 

Sampling Time Pre-defined Uniform 
Pre-defined 

Uniform 
Pre-defined Uniform 
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Sampling Site Selection Off Off Off 

Prandial State Fasted Fasted Fasted 

Route Oral Oral Oral 

Dose Units Dose (mg) Dose (mg) Dose (mg) 

Dose 0.5 250 560 

Start Day/Time Day 1, 09:00 Day 1, 09:00 Day 1, 09:00 

Dosing Regimen Single Dose Single Dose Single Dose 
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Chapter Seven: Quantitative Proteomics of Receptor Tyrosine 

Kinases in Patients with Colorectal Cancer Liver Metastasis 
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7.1 Abstract 

Defects in human receptor tyrosine kinases (RTKs) expression can have a negative impact on 

the clinical course of tumors and the drug response. Since liver metastases are of increasing 

clinical significance, 21 RTKs expression levels were assessed in 15 human healthy livers, 18 

liver cancer samples (2 primary and 16 colorectal cancer liver metastasis (CRLM)) matched 

with histologically normal tissue, by QconCAT-targeted method. Our study showed, for the 

first time, lower expression of EGFR, INSR, VGFR2, and AXL in cancer, and increased IGF1R 

expression in tumour relative to normal livers. EPHA2 and PGFRB were significantly 

upregulated in tumours. Expression of VGFR1/2, PGFRA, KIT, CSF1R, FLT3, FGFR1/3, 

ERBB2, NTRK2, TIE2, RET, and MET was comparable among healthy, normal and tumour 

livers or not detected in some cases. Strong and significant correlations were observed (Rs > 

0.50, p < 0.05) for EGFR with INSR and KIT, while FGFR2 correlated with PGFRA, and 

VGFR1 with NTRK2 in healthy livers. In histologically normal tissue, there were correlations 

between TIE2 and FGFR1, EPHA2 and VGFR3, FGFR3 and PGFRA. EGFR correlated with 

INSR, ERBB2, KIT and PGFRA, and KIT with AXL and FGFR2. In tumours, CSF1R 

correlated with AXL, EPHA2 with PGFRA, and NTRK2 with PGFRB and AXL. RTKs 

abundance distribution was also assesed. RET was the most abundant in normal and healthy 

livers (~35%), while PGFRB was highest in tumours (~46%). Our study demonstrated 

perturbed expression of several RTKs in cancer and this is of high value for uncovering 

important biomarkers for patients with liver cancer. 
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7.2 Introduction 

Cancer is a leading cause of death globally with increasing incidence (Sung et al., 2021). 

Colorectal cancer (CRC) is the third most common and the second most lethal type of cancer 

(Bray et al., 2018). It mainly metastasizes to the liver followed by the lungs, distant lymph 

nodes, and peritoneum (Holch et al., 2017), with approximately one fourth of the patients 

having liver metastasis at the initial diagnosis of primary cancer, and half of the patients having 

liver metastasis during the course of their disease (Maher et al., 2017). Primary cancer has also 

high rates of mortality, and its main types are hepatocellular carcinoma (HCC) and intrahepatic 

cholangiocarcinoma (ICC) (Bray et al., 2018). Although surgical resection of liver cancer 

(primary or secondary) is the ideal solution for treatment and long-term survival, this is not 

always possible and other methods are used, including chemotherapy, biologic therapy, radio-

embolization, and radiofrequency ablation with the aim to reduce the tumour (Chen et al., 2014; 

Mitchell et al., 2019). 

Protein kinases are important regulators of cell signalling and almost half of the human kinases 

can be mapped to known disease including cancer. Kinases may be mutated or dysregulated 

leading to perturbed signalling pathways, which renders kinases  important disease biomarkers 

and pharmacology targets for cancer treatment (Smyth and Collins, 2009; Bhullar et al., 2018). 

Kinase inhibitors are widely used in oncology, with most of the FDA approved anti-cancer new 

molecular entities in years 2011-2017 being small molecule kinase inhibitors (Faucette et al., 

2017). Receptor tyrosine kinases (RTKs) are important regulators of various cellular processes 

and pathways, and many anti-cancer drugs act as Receptor tyrosine kinase inhibitors (RTKIs) 

for the treatment of colorectal cancer liver metastasis (CRLM) (Lee and Oh, 2016; Goel, 2018) 

and hepatocellular carcinoma (HCC) (Chen et al., 2019). Examples of FDA approved multi-

kinase inhibitors include Regorafenib for the treatment of CRLM, and Cabozantinib and 

Sorafenib for the treatment of HCC by blocking the activity of multiple protein kinases that 

participate in oncogenesis, tumour angiogenesis, and tumour microenvironment formation 

(Wilhelm et al., 2011; García-Aranda and Redondo, 2019). Although RTKIs are promising 

therapeutic tools, high heterogeneity and mutations in kinases cause resistance to RTKIs, which 

is a big challenge for effective treatment. This raises the need for understanding the underlying 

mechanisms better and investigating suitable predictive biomarkers to facilitate personalised 

medicine (Chen et al., 2019; García-Aranda and Redondo, 2019). 

RTKs are cell surface receptors involved in the regulation of important biological pathways 

and include receptors involved in vascularization (vascular endothelial growth factor receptors; 
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VEGFRs), epidermal growth factor receptors (EGFRs), fibroblast growth factor receptors 

(FGFRs), insulin growth factor receptor (IGFR), platelet-derived growth factor receptors 

(PDGFRs), proto-oncogene c-KIT and others (Regad, 2015). RTKs demonstrate an aberrant 

expression in several cancer types that is usually related to poor prognosis in cancer patients 

(Ghosh et al., 2020). The expression levels of kinases vary depending on the stage of cancer 

(primary or metastatic) (Adeyinka et al., 2002) and the cancer type (Koivunen et al., 2006), 

indicating the necessity of investigating thoroughly different disease stages and types.  

Despite the important roles of RTKs in cancer, it is surprising that there is scarcity of 

quantitative measurements in human cancer tissues. RTKs protein quantification data are 

limited to cell lines using multiplexed parallel reaction monitoring assays (Kim et al., 2016), 

whereas gene expression profiles are studied in human gastric cancer cell lines (Kao et al., 

2003), and Ewing sarcoma (Potratz et al., 2016). EGFR and ErbB2 expression data are mainly 

measured by immunohistochemistry methods in primary tumours and metastases of CRC 

patients (Ljuslinder et al., 2009), whereas, ErbB2, and Met expression was measured in 

colorectal cancer cells in the same population (Yao et al., 2013). The EPHA2 expression and 

its correlation with cancer progression and metastasis in CRC tissue was also established (Saito 

et al., 2004). In additions, PGFRB gene expression, and its role in epithelial-to-mesenchymal 

transition (EMT), and metastasis in human CRC cohorts was studied (Steller et al., 2013). 

However, it is important to mention that immunohistochemistry provides semi-quantitative 

protein data, and mRNA data may not correlate well with protein levels. LC-MS proteomics is 

widely used for providing quantitative measurements of proteins and identifying important 

biomarkers in disease states (El-Khateeb et al., 2019) and therefore, it would be useful to utilize 

it for further understanding of the expression of RTKs in cancer. In our previous pilot study 

(Vasilogianni et al, unpublished), we quantified RTKs in pooled healthy and cancer livers using 

LC-MS, but measurements on individual samples were not performed. Studying RTKs and 

provide quantification comparisons, especially for individual patients, will help understand 

these targets better and improve personalized treatment for these patients. 

The aim of the current study was to quantify RTKs that constitute significant targets in cancer 

treatment, and assess the impact of cancer on their expression levels. For this purpose, accurate 

mass and retention time (AMRT) proteomic approach was utilized to provide absolute 

quantification measurements of RTKs in individual healthy human liver microsomes (HLM) 

from healthy donors (controls), and histologically normal and matched cancerous HLM from 

cancer patients. Cancer patients in the current study were mainly CRLM patients, and two of 
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them had primary hepatic cancer. To our knowledge, this is the first time in which RTKs were 

quantified in HLM from individual healthy and CRLM subjects and aimed to assess the disease 

impact and identify biomarkers to contribute to the cancer therapy. In addition, we were able 

to clarify the relative distribution of RTKs and we highlighted significant correlations between 

various RTKs in each group of samples. 

 

7.3 Materials and Methods 

 

7.3.1 Materials and chemicals 

All chemicals and solvents (HPLC-grade) were purchased from Sigma-Aldrich (Poole, Dorset, 

UK) unless otherwise stated. EDTA-free protease inhibitor cocktail and Trypsin (sequencing 

grade) were obtained from Roche Applied Sciences (Mannheim, Germany). Lysyl 

endopeptidase (Lys-C) was purchased from Wako (Osaka, Japan). All the QconCATs were 

purchased from PolyQuant GmbH (http://www.polyquant.com/) (Germany).Non-naturally 

occurring peptides (NNOPs) (light peptides) used for the quantification of QconCATs were 

purchased from Cambridge Peptides (Cambridge, UK). 

 

7.3.2 Liver samples 

Matched cancerous and histologically normal liver tissues from adult cancer patients (n = 18; 

HCC primary cancer (n=1), ICC primary cancer (n = 1), CRLM (n =16)) were purchased from 

the Manchester University NHS Foundation Trust (MFT) Biobank, Manchester, UK, following 

hepatectomy. The ethics was covered under the MFT Biobank generic ethics approval (NRES 

14/NW/1260 and 19/NW/0644). The age of the donors varied from 34 to 85 years, whereas 

their body mass index varied from 21.6 to 36.3 kg/m2. The gender of the patients was mixed; 

7 female and 11 male. Supplementary Table 7-1 presents demographic and clinical details of 

the CRLM patients, provided by the MFT Biobank. Healthy human liver microsomal samples 

(tumour-free) from 15 healthy subjects were provided by Pfizer as microsomes (Groton, CT, 

USA). These samples were supplied by Vitron (Tucson, AZ, USA) and BD Gentest (San Jose, 

CA, USA). Ethical approval was obtained by the suppliers. Among the 15 donors, 8 were 

female and 7 were male, and their ages ranged from 18 to 64 years. The body mass index of 

the patients ranged from 19.9 to 37.5 kg/m2. Supplementary Table 7-2 presents demographic 

and clinical details of the healthy subjects, provided by Pfizer. 

http://www.polyquant.com/
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7.3.3 Preparation of human liver microsomal fractions 

Liver tissue was prepared as microsomes as previously described (Achour et al., 2017). Briefly, 

liver tissue was homogenized using a Fisherbrand 150 Handheld Homogenizer (Thermo Fisher 

Scientific, UK) in homogenization buffer (150 mM KCl, 2 mM EDTA, 50 mM Tris, 1 mM 

dithiothreitol, and EDTA-free protease inhibitor cocktail, pH 7.4) at 10 ml for each gram of 

liver tissue. Each homogenate sample was centrifuged at 10,000 g for 20 min at 4°C using an 

OptimaTM L-100 ultracentrifuge (Beckman Coulter, Fullerton, CA), and the supernatant was 

further centrifuged at 100,000 g for 75 min at 4 °C. The cytosol (the supernatant) of each 

individual sample was stored at -80°C for future use, and the pellet (microsomes) of each 

individual sample was re-suspended in 1 ml of storage buffer (0.25 M potassium dihydrogen 

phosphate, 0.25 M dipotassium phosphate, pH 7.25) and stored at -80°C. 

 

7.3.4 Measurement of total protein content in individual microsomal samples 

The protein content of liver microsomes was measured using bicinchoninic acid (BCA) protein 

assay (Pierce® Microplate BCA Protein Assay Kit – Reducing Agent Compatible) in triplicate. 

Absorbance was measured at 562 nm using a SpectraMax 190 platereader (Molecular Devices, 

Sunnyvale, CA) with bovine serum albumin used as calibration standard. 

 

7.3.5 QconCAT (KinCAT) standard 

A novel QconCAT standard was used in this study, the KinCAT as described in our previous 

pilot study (Vasilogianni et al, unpublished) and consists of peptides for the quantification of 

21 Receptor tyrosine kinases (RTKs). For the quantification of the KinCAT, two [Glu1]-

Fibrinopeptide B analogs (SEGVNNEEGFFSAR and GEGVNNEEGFFSAR) were included 

in the construct of the QconCAT. These are non-naturally occurring peptide (NNOP) and light 

(not labelled) peptides with the same sequences (SEGVNNEEGFFSAR and 

GEGVNNEEGFFSAR) are used for the quantification of the KinCAT. The peptides 

incorporated into the KinCAT belong to the following RTKs: Macrophage colony-stimulating 

factor 1 receptor CSF1R, Epidermal growth factor receptor EGFR, Ephrin type-A receptor 2 

EPH2A, Erythroblastic oncogene B2 ERBB2, Fibroblast growth factor receptors FGFR1/2/3, 

fms like tyrosine kinase FLT3, Insulin-like growth factor 1 receptor IGF1R, Insulin receptor 

INSR, Mast/stem cell growth factor receptor KIT, Hepatocyte growth factor receptor MET, 

Neurotrophic tyrosine kinase receptor type 2 NTRK2, Platelet-derived growth factor receptors 

PGFRA/B, Proto-oncogene tyrosine-protein kinase receptor RET, Angiopoietin-1 receptor 
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TIE2, Tyrosine-protein kinase receptor UFO AXL, and Vascular endothelial growth factor 

receptors VGFR1/2/3). A bacterial ribosome core has been incorporated in both KinCAT for 

the efficient expression of the incorporated peptides (Al-Majdoub et al., 2014). 

 

7.3.6 Digestion and preparation of samples  

For each microsomal sample, 70 μg of protein were digested. Each sample was firstly mixed 

with known amounts of isotope-labelled KinCAT; 2.6 μl of 1:5 diluted KinCAT (initial 

concentration 0.1954 ug/ul). The protein mixtures were mixed sodium deoxycholate of a final 

concentration of 10% (w/v). The mixture was then incubated at room temperature for 10 

minutes. Then, dithiothreitol (DTT) of a final concentration of 0.1 M was added for the 

reduction of disulphide bonds and the mixture was incubated at 56o C for 30 minutes. For the 

protein digestion, the filter-aided sample preparation (FASP) was used, as previously described 

(Couto et al., 2019; Al-Majdoub et al., 2019) with minor modifications. Amicon Ultra 0.5 mL 

centrifugal filters at 10 kDa molecular weight cut-off (Merck Millipore, Nottingham, U.K.) 

were conditioned with 200 μl of 0.1 M Tris pH 8.5, centrifuging at 14,000 rpm at room 

temperature for 10 minutes, this step was repeated twice. The reduced samples were added to 

the filters and centrifuged at 13,000 rpm for 20 minutes. 8M urea in 0.1 M Tris pH 8.5 was 

used as solubilizing solution. This solution should extract the aggregated protein efficiently. 

Centrifugation at 14,000 rpm for 20 minutes at room temperature was followed (twice). The 

samples were subsequently alkylated with 100 µl 50 mM iodoacetamide (IAA) in the dark for 

30 minutes at room temperature,  then centrifuged at 14,000 rpm for 10 minutes. The buffer 

exchanged was repeated with two washes with 8 M Urea in 0.1 M Tris pH 8.5, and 

centrifugation at 14,000 rpm for 20 minutes at room temperature. The concentration of urea 

was reduced with two washes of 1 M urea in 50 mM ammonium bicarbonate (AmBic) pH 8.0 

and centrifuged at 13,000 rpm for 20 minutes. To avoid the evaporation of the samples, 80 μl 

of 1 M Urea in 50 mm AmBic pH 8.0 was added to each filter unit. Then, lysyl endopeptidase 

was added to each sample (enzyme/ protein ratio 1:50) for two hours at 30o C, and the same 

step was repeated for extra two hours. After 4 hours of incubation with lysyl endopeptidase, 

trypsin was added (enzyme/ protein ratio 1:25) for 12 hours at 37o C, and the same step was 

repeated for extra four hours. The samples were recovered after centrifugation at 14,000 rpm 

for 20 minutes, 100 μl of 0.5 M sodium chloride was added to the filter, centrifuged at 14,000 

rpm for 20 minutes, addition of 50 μl of 0.5 M sodium chloride to the filters, then centrifuged 

at 14,000 rpm for 10 minutes. After this step, each sample was split into two equal samples, 

and each one of them was mixed with sample buffer (3 parts of sample: 1 part of sample buffer 
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2% v/v trifluoroacetic acid in 20% v/v acetonitrile in water). Each sample was then desalted 

using a C18 column (Nest group, USA). Finally, the peptide samples were dried using a 

vacuum concentrator and stored at −80 °C until mass spectrometric analysis. Before the LC-

MS, we added reconstitution buffer (3% acetonitrile-0.1% formic acid) and unlabelled peptides 

SEGVNNEEGFFSAR (0.176 pmol) and GEGVNNEEGFFSAR (0.176 pmol) in a final volume 

of 60 μl. 

 

7.3.7 Liquid chromatography and tandem mass spectrometry (LC-MS/MS) 

Digested samples were analysed by LC-MS/MS using an UltiMate® 3000 Rapid Separation 

LC (RSLC, Dionex Corporation, Sunnyvale, CA) coupled to a QE HF (Thermo Fisher 

Scientific, Waltham, MA) mass spectrometer. Mobile phase A was 0.1% formic acid in water 

and mobile phase B was 0.1% formic acid in acetonitrile and the column used was a 75 mm x 

250 μm i.d. 1.7 μM CSH C18, analytical column (Waters, UK). 1 μl aliquot of the sample was 

transferred to a 5ul loop and loaded on to the column at a flow of 300nl/min for 5 minutes at 

5% B. The loop was then taken out of line and the flow was reduced from 300nl/min to 

200nl/min in 0.5 minute.  Peptides were separated using a gradient that went from 5% to 18% 

B in 63.5 minutes, then from 18% to 27% B in 8 minutes and finally from 27% B to 60% B in 

1 minute. The column is washed at 60% B for 3 minutes before re-equilibration to 5% B in 1 

minute. At 85 minutes the flow is increased to 300 nl/min until the end of the run at 90min. 

Mass spectrometry data was acquired in a data directed manner for 90 minutes in positive 

mode. Peptides were selected for fragmentation automatically by data dependant analysis on a 

basis of the top 12 peptides with m/z between 300 to 1750Th and a charge state of 2, 3 or 4 

with a dynamic exclusion set at 15 sec. The MS Resolution was set at 120,000 with an AGC 

target of 3e6 and a maximum fill time set at 20ms. The MS2 Resolution was set to 30,000, with 

an AGC target of 2e5, a maximum fill time of 45 ms, isolation window of 1.3Th and a collision 

energy of 28. 

 

7.3.8 Analysis and annotation of proteomic data 

Proteomic data were processed using MaxQuant 1.6.7.0 (Max Planck Institute, Martinsried, 

Germany), and searched against a customized database, comprising human UniprotKB 

database (74,788 sequences) and QconCAT sequences. For targeted AMRT analysis, light-to-

heavy intensity ratios were used with QconCAT concentrations to calculate protein amounts 
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based on accurate mass measurement and retention time for each peptide (Al-Majdoub et al., 

2019, 2020). Peptides selected for quantification of RTKs are presented in Supplementary 

Tables 7-3 – 7-5. 

 

7.3.9 Statistical data analysis 

Statistical data analysis was performed using GraphPad Prism 8.1.2 (La Jolla, California USA). 

Nonparametric statistics were used since the data did not follow normal distribution. 

Differences in absolute abundances between healthy and histologically normal livers, between 

healthy and tumorous livers, and between histologically normal and tumorous livers were 

assessed using Mann−Whitney U-test. Histologically normal and tumour samples are matched 

but abundance data were not available for all targets in each sample, with some values being 

only available for normal samples and not their matched tumour or the reverse. In this instance, 

Mann−Whitney U-test was used to assess any statistical differences. In additions, differences 

in absolute abundances between histologically normal and matched tumorous livers for 

individuals (same donors) were assessed using Wilcoxon test. In this case, the comparisons 

included abundance data that were available for both normal and paired tissues and the rest of 

the samples were excluded from this comparison. For the assessment of correlations between 

RTKs, Spearman correlation and linear regression analysis were used. In each of the above 

cases, the probability cut-off value for statistical significance was set at p < 0.05. 

 

7.4 Results 

The main objective of this study was to measure the expression of RTKs that play important 

biological roles in CRLM and could be used as biomarkers to improve therapy. The absolute 

abundance of 21 pharmacologically important RTKs was measured for the first time with LC-

MS/MS proteomics using a QconCAT standard (KinCAT), which we previously designed and 

utilized (Vasilogianni et al, unpublished). The abundance of RTKs was expressed as pmol of 

protein per mg of microsomal protein and the expression levels of each RTK protein target was 

compared among human liver microsomes (HLM) generated from healthy livers, histologically 

normal (peri-carcinomatous) livers from cancer patients, and matched (same donors) tumour 

livers from cancer patients.  
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7.4.1 Differential expression of RTKs in HLMs from healthy subjects, and paired 

histologically normal and tumour HLMs 

Figure 7-1 shows that several RTKs were expressed at significantly different levels among 

healthy, histologically normal and tumorous livers. EGFR was significantly lower in 

histologically normal (0.22 ± 0.12 pmol mg-1 microsomal protein) and tumour (0.09 ± 0.06 

pmol mg-1 microsomal protein) compared with healthy controls (0.34 ± 0.15 pmol mg-1 

microsomal protein) (Mann-Whitney test, p < 0.01 and p < 0.0001, respectively), and in tumour 

relative to histologically normal (p < 0.0001) livers. INSR was expressed at significantly lower 

levels in histologically normal (0.14 ± 0.09 pmol mg-1 microsomal protein) and tumour livers 

(0.13 ± 0.06 pmol mg-1 microsomal protein) relative to healthy controls (0.39 ± 0.11 pmol mg-

1 microsomal protein) (p < 0.0001). VGFR3 was significantly downregulated in tumour (0.05 

± 0.08 pmol mg-1 microsomal protein) compared with healthy livers (0.07 ± 0.03 pmol mg-1 

microsomal protein) (p < 0.01). Similarly, we observed a reduction of AXL in tumour (0.06 ± 

0.04 pmol mg-1 microsomal protein) compared with healthy samples (0.03 ± 0.03 pmol mg-1 

microsomal protein) (p < 0.05). Comparing the abundance of FGFR2 in healthy (0.12 ± 0.07 

pmol mg-1 microsomal protein) and histologically normal microsomes (0.05 ± 0.03 pmol mg-1 

microsomal protein), we found a significant decrease in normal livers (p < 0.01), with no 

significant changes in tumour (0.09 ± 0.08 pmol mg-1 microsomal protein). On the contrary, 

IGF1R significantly increased in tumour (0.08 ± 0.04 pmol mg-1 microsomal protein) compared 

with histologically normal (0.04 ± 0.03 pmol mg-1 microsomal protein) livers (p < 0.05). 

Similarly, EPHA2 was expressed in significantly higher levels in tumour (0.09 ± 0.09 pmol 

mg-1 microsomal protein) compared with histologically normal (0.04 ± 0.03 pmol mg-1 

microsomal protein) livers (p < 0.05). Lastly, PGFRB was significantly upregulated in tumour 

(2.2 ± 1.85 pmol mg-1 microsomal protein) compared with healthy (0.11 ± 0.04 pmol mg-1 

microsomal protein) (p < 0.001) and histologically normal livers (0.13 ± 0.06 pmol mg-1 

microsomal protein) (p < 0.01). 
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Figure 7-1 Absolute abundance of receptor tyrosine kinases (RTKs) with different levels of expression in healthy, 

histologically normal and tumorous HLM. Abundances are represented as box and whiskers plots with the whiskers showing 

the minimum and maximum values, the boxes showing the 25th and 75th percentiles, the lines showing the medians, the + 

signs showing the means, and the dots representing individual values. Mann−Whitney test was used to assess statistically 

significant differences between healthy and histologically normal, between healthy and tumorous samples for each protein, 

and between histologically normal and tumorous samples for each protein. The asterisk (*) represents statistical difference (*p 

< 0.05; ** p < 0.01; ***p < 0.001; **** p < 0.0001). 

 

Figure 7-2 depicts the individual RTK abundance values that were collected (detected) from 

paired normal and tumour samples. Each line connects abundance from normal and tumour 

sample from same donor. Figures 7-2A and 7-2G show a significant decrease of EGFR 

(Wilcoxon, p < 0.0001) and a significant increase of EPHA2 (p < 0.05) in the group of tumour 

livers compared with matched histologically normal livers. This is consistent with the data in 

Figure 7-1 when considering all the abundance data for all donors. However, the low number 

of samples did not allow to uncover statistically significant trends for IGFR1 (n = 3) and 

PGFRB (n = 3) as in Figure 7-1. 
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Figure 7-2 Absolute abundance of EGFR (A), INSR (B), VGFR3 (C), AXL (D), FGFR2 (E), IGF1R (F), EPHA2 (G), and 

PGFRB (H) in paired (same donor) histologically normal and tumorous HLM. Each line connects abundance values from 

matched HLM samples. Wilcoxon test was used to assess statistically significant differences between histologically normal 

and matched tumorous samples for each protein. The asterisk (*) represents statistical difference (*p < 0.05; **** p < 0.0001). 

 

7.4.2 Receptor tyrosine kinase absolute expression in healthy and CRLM 

Figure 7-3 provides abundance values for RTK class III (PGFRA, KIT, CSF1R, FLT3) and IV 

(VGFR1, VGFR2) in healthy, histologically normal and tumorous HLM. No statistical 

difference in the expression of VGFR1 was observed between histologically normal (0.11 ± 

0.17 pmol mg-1 microsomal protein) and healthy samples (0.07 ± 0.05 pmol mg-1 microsomal 

protein) but this may be due to the low number of histologically normal liver samples (n = 3) 

where VGFR1 was quantified. VGFR2 was similarly expressed in histologically normal (0.02 

± 0.02 pmol mg-1 microsomal protein) and tumour (0.02 ± 0.01 pmol mg-1 microsomal protein) 

samples, and quantified in a small number of healthy samples (n = 3). Similar abundance for 

PGFRA was observed between healthy, histologically normal, and tumour livers. CSF1R was 

quantified in only 2 histologically normal samples, and its abundance levels were similar 

between healthy (0.22 ± 0.11 pmol mg-1 microsomal protein) and tumour (0.18 ± 0.19 pmol 

mg-1 microsomal protein) samples. The abundance of KIT was similar between healthy (0.19 
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± 0.11 pmol mg-1 microsomal protein) and histologically normal (0.23 ± 0.23 pmol mg-1 

microsomal protein) livers. 

 

 

Figure 7-3 Absolute abundance of VGFR1 (A), VGFR2 (B), PGFRA (C), KIT (D), CSF1R (E), and FLT3 (F) in healthy, 

histologically normal and tumorous HLM. Abundances are represented as box and whiskers plots with the whiskers showing 

the minimum and maximum values, the boxes showing the 25th and 75th percentiles, the lines showing the medians, the + 

signs showing the means, and the dots representing individual values. Mann−Whitney test was used to assess statistically 

significant differences between healthy and histologically normal, between healthy and tumorous samples for each protein, 

and between histologically normal and tumorous samples for each protein, where the number of samples was enough. No 

significant differences were observed (p > 0.05). 
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Various RTKs were also quantified in healthy and paired samples of normal and cancer HLM 

and are depicted in Figure 7-4. FGFR1 was only quantifiable in two tumour samples and 

similarly expressed in healthy (0.58 ± 0.59 pmol mg-1 microsomal protein) and histologically 

normal (0.36 ± 0.51 pmol mg-1 microsomal protein) livers. The expression values of FGFR3 

(0.03 ± 0.01, 0.03 ± 0.03, and 0.04 ± 0.03 pmol mg-1 microsomal protein), ERBB2 (0.05 ± 

0.03, 0.05 ± 0.03, and 0.06 ± 0.04 pmol mg-1 microsomal protein), NTRK2 (0.1 ± 0.15, 0.06 ± 

0.06, and 0.05 ± 0.04 pmol mg-1 microsomal protein), and TIE2 (0.13 ± 0.06, 0.12 ± 0.06, and 

0.24 ± 0.19 pmol mg-1 microsomal protein) were overall similar in the healthy and the paired 

samples of healthy and tumour. However, RET was similarly expressed between healthy (1.48 

± 0.92 pmol mg-1 microsomal protein) and histologically normal (0.98 ± 0.61 pmol mg-1 

microsomal protein) samples, and only detected in two tumour samples. MET was only 

quantified in two tumour samples and no comparison was possible. 
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Figure 7-4 Absolute abundance of FGFR1 (A), FGFR3 (B), ERBB2 (C), NTRK2 (D), TIE2 (E), RET (F) and MET (G). 

Abundances are represented as box and whiskers plots with the whiskers showing the minimum and maximum values, the 

boxes showing the 25th and 75th percentiles, the lines showing the medians, the + signs showing the means, and the dots 

representing individual values. Mann−Whitney test was used to assess statistically significant differences between healthy and 

histologically normal, between healthy and tumorous samples for each protein, and between histologically normal and 

tumorous samples for each protein, where the number of samples was enough. No significant differences were observed (p > 

0.05). 
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Figure 7-5 presents the individual abundance values of RTKs (PGFRA, FGFR3, ERBB2, 

NTRK2, and TIE2) that were detectable in both normal and tumour samples from same donor. 

These proteins were quantified in more than three pairs of samples. Each line connects 

abundance from normal and tumour sample from same donor. There were no significant 

differences for none of the targets between histologically normal and matched tumour samples, 

showing similar abundance values in the two groups. This is in agreement with the data in 

Figures 7-3 and 7-4. 

 

 

Figure 7-5 Absolute abundance of RTKs similarly expressed in paired histologically normal and tumorous HLM. Each line 

connects abundance values from matched HLM samples. Wilcoxon test was used to assess statistically significant differences 

between histologically normal and matched tumorous samples for each protein. No significant differences were observed (p > 

0.05). 

 

Table 7-1 provides the expression levels of 21 RTKs in healthy, histologically normal and 

tumour livers represented by the median, the mean and standard deviation of the mean (SD), 

the coefficient of variation (CV), and the range (minimum to maximum value). The absolute 

values of the abundance of RTKs for individual healthy, histologically normal and tumour 

livers samples and surrogate peptides used for quantification are provided in Supplementary 

Tables 7-3 – 7-5. 
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Table 7-1 Expression levels of 21 RTKs in healthy, histologically normal and tumour livers represented by the median, the mean and standard deviation of the mean (SD), the 

coefficient of variation (CV), and the range (minimum to maximum value). 

RTK Median (pmol mg−1) Mean ± SD (pmol mg−1) CV (%) Range (pmol mg−1) n 

 H N T H N T H N T H N T H N T 

AXL 0.05 0.04 0.02 0.06 ± 0.04 0.04 ± 0.02 0.03 ± 0.03 63.67 66.09 79.18 0.02 - 0.15 0.01 - 0.08 0.003 - 0.1 14 15 15 

CSF1R 0.22 0.10 0.10 0.22 ± 0.11 0.1 ± 0.09 0.18 ± 0.19 48.69 95.24 110.7 0.11 - 0.38 0.03 - 0.16 0.04 - 0.7 5 2 10 

EGFR 0.31 0.19 0.08 0.34 ± 0.15 0.22 ± 0.12 0.09 ± 0.06 42.97 56.13 61.58 0.15 - 0.57 0.02 - 0.61 0.01 - 0.19 15 18 18 

EPHA2 0.04 0.04 0.06 0.05 ± 0.02 0.04 ± 0.03 0.09 ± 0.09 44.97 68.61 90.31 0.04 - 0.08 0.002 - 0.08 0.02 - 0.34 3 9 14 

ERBB2 0.05 0.04 0.05 0.05 ± 0.03 0.05 ± 0.03 0.06 ± 0.04 61.39 68.91 67.54 0.02 - 0.13 0.001 - 0.14 0.02 - 0.14 9 15 10 

FGFR1 0.36 0.17 0.13 0.58 ± 0.59 0.36 ± 0.51 0.13 ± 0.03 102.9 144.3 20.36 0.15 - 1.45 0.05 - 1.69 0.11 - 0.15 4 9 2 

FGFR2 0.12 0.07 0.07 0.12 ± 0.07 0.05 ± 0.03 0.09 ± 0.08 58.12 63.55 82.68 0.01 - 0.25 0.01 - 0.12 0.001 - 0.25 14 13 15 

FGFR3 0.03 0.02 0.03 0.03 ± 0.01 0.03 ± 0.03 0.04 ± 0.03 48.8 94.21 81.59 0.01 - 0.06 0.002 - 0.1 0.0003 - 0.11 8 13 11 

FLT3 - - 0.05 - - - - - - - - - - - 1 

IGF1R 0.06 0.02 0.08 0.09 ± 0.07 0.04 ± 0.03 0.08 ± 0.04 84.11 94.6 45.26 0.03 - 0.23 0.01 - 0.11 0.04 - 0.13 7 8 6 

INSR 0.37 0.12 0.12 0.39 ± 0.11 0.14 ± 0.09 0.13 ± 0.06 29.2 66.51 45.16 0.17 - 0.59 0.03 - 0.35 0.01 - 0.24 15 17 18 

KIT 0.18 0.16 0.44 0.19 ± 0.11 0.23 ± 0.23 - 55.5 100.9 - 0.03 - 0.41 0.003 - 0.77 - 9 10 1 

MET - - 0.39 - - 0.39 ± 0.14 - - 35.86 - - 0.29 - 0.49 - - 2 

NTRK2 0.06 0.04 0.04 0.1 ± 0.15 0.06 ± 0.06 0.05 ± 0.04 144.6 103.1 72.42 0 - 0.54 0.01 - 0.28 0.01 - 0.13 11 16 14 

PGFRA 0.07 0.04 0.03 0.07 ± 0.04 0.04 ± 0.04 0.05 ± 0.04 59.72 81.47 85.99 0.01 - 0.15 0.0004 - 0.14 0.01 - 0.13 15 16 12 
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PGFRB 0.11 0.12 2.18 0.11 ± 0.04 0.13 ± 0.06 2.2 ± 1.85 34.4 42.77 84.2 0.07 - 0.17 0.09 - 0.21 0.6 - 5.91 8 4 7 

RET 1.19 0.98 0.30 1.48 ± 0.92 0.98 ± 0.61 0.3 ± 0.32 62.04 62.17 104.3 0.55 - 2.79 0.03 - 1.73 0.08 - 0.53 5 7 2 

TIE2 0.16 0.11 0.18 0.13 ± 0.06 0.12 ± 0.06 0.24 ± 0.19 42.44 44.33 78.58 0.06 - 0.21 0.05 - 0.22 0.08 - 0.52 9 14 4 

VGFR1 0.06 0.01 0.09 0.07 ± 0.05 0.11 ± 0.17 - 79.86 158.4 - 0.01 - 0.14 0.01 - 0.3 - 8 3 1 

VGFR2 0.09 0.03 0.02 0.14 ± 0.16 0.02 ± 0.02 0.02 ± 0.01 118.6 71.88 73.47 0.01 - 0.32 0.001 - 0.04 0.003 - 0.03 3 6 4 

VGFR3 0.06 0.03 0.03 0.07 ± 0.03 0.05 ± 0.06 0.05 ± 0.08 49.38 111.2 176.6 0.04 - 0.13 0.01 - 0.21 0.004 - 0.28 9 13 11 
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7.4.3 Correlations in liver RTK expression profiles 

The correlation of protein abundance between different RTKs in healthy, histologically, normal 

and tumour samples has been assessed (Figure 7-6) and only significant correlations (p < 0.05) 

are presented. Significant correlations were considered strong when the values correlated well 

(Rs > 0.60) and the scatter was very limited scatter (R2 > 0.30). Significant correlations were 

considered moderate in cases of good correlation (Rs > 0.50) and limited scatter (R2 > 0.25). 

In healthy HLM, strong, significant, and positive correlation was observed between INSR and 

EGFR, between KIT and EGFR, and between FGFR2 and PGFRA. On the contrary, there was 

a significant and negative correlation between VGFR1 and NTRK2. In histologically normal 

HLM, we found strong, significant, and positive correlations between TIE2 and FGFR1, INSR 

and EGFR, ERBB2 and EGFR, KIT and EGFR, KIT and AXL, EPHA2 and VGFR3, FGFR3 

and PGFRA, and KIT and FGFR2. Although significant (p < 0.05) and good (Rs > 0.50) 

correlations were observed between PGFRA and EGFR, and PGFRA and INSR, the scatter 

was too high (R2 < 0.1). In tumour HLM, there was strong, significant and positive correlation 

between PGFRB and NTRK2. Moderate, significant and positive correlation (Rs > 0.60, R2 > 

0.25) was identified between AXL and NTRK2, and CSF1R and AXL. The correlation between 

INSR and EPHA2 was weak, significant, and positive (Rs > 0.50, R2 < 0.25). Lastly, strong, 

significant, and negative correlation was observed between EPHA2 and CSF1R, and moderate, 

significant, and negative correlation between CSF1R and PGFRA. 
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Figure 7-6 Correlation matrix of protein abundance of RTKs in healthy (green), histologically normal (blue) and tumour (purple) HLM. Abundance values are expressed in pmol of protein per 

mg of microsomal protein. Rs is Spearman rank order correlation coefficient. Strong (Rs>0.70, p < 0.05), and moderate and significant correlations (Rs>0.50, p < 0.05) are presented.
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7.4.4 Relative abundance distribution of RTKs in healthy normal and tumour HLM  

Human liver microsomes were used for protein quantification of RTKs to understand their 

distribution at the protein level across the three conditions. The pie charts represent the relative 

abundance distribution of RTKs in healthy controls (Figure 7-7A), and histologically normal 

(Figure 7-7B), and tumour (Figure 7-7C) HLM from cancer patients. The relative distribution 

of the quantified RTKs is similar in healthy and histologically normal samples, with RET being 

the most abundant. The second most abundant RTK in healthy and histologically normal livers 

is FGFR1 (13.4% and 12.7%, respectively), followed by INSR (9.1%) and EGFR (7.9%) in 

healthy, and KIT (8.1%) and EGFR (7.9%) in histologically normal livers. The least abundant 

RTKs in healthy were FGFR3 (0.7%) and EPHA2 and ERBB2 (1.3%), whereas in 

histologically normal VGFR2 (0.8%) and FGFR3 (1%). 

However, the relative distribution of RTKs differs in tumour livers. The most abundant RTK 

was PGFRB, representing almost half of the quantified RTKs (45.7%), followed by KIT 

(9.1%), MET (8.1%), and RET (6.3%). The least abundant RTKs included VGFR2 (0.3%) and 

AXL (0.7%). 
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Figure 7-7 Pie charts illustrating the relative abundance distribution of RTKs in healthy (A), histologically normal (B) and 

tumorous (C) HLM. 

 

7.5 Discussion 

The current study describes, for the first time, expression levels of RTKs in healthy, 

histologically normal and liver metastasis. RTKs are very promising targets for treatment of 

cancer patients and this raises the need to learn more about them. 15 healthy, and tumour with 

paired normal samples from 18 cancer patients were examined for expression of 21 RTKs using 

LC-MS/MS proteomics and AMRT approach. The RTKs relative distribution across the 3 

conditions was also assessed. Additionally, we investigated correlations of different RTKs in 

the 3 groups of samples. 

Our data suggest low expression of EGFR in histologically normal and more significantly in 

tumour compared with healthy livers, and this may dictate high risks of developing cancer. 
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Result from previous group supports the role of EGFR in the regulation of cell proliferation, 

differentiation, and migration (Yarden and Sliwkowski, 2001), and its over-expression has 

been linked with negative prognosis for survival for CRC patients (Huang et al., 2017). This 

decrease was also apparent when comparing matched samples from same donors. This is in 

line with immunohistochemistry data showing that EGFR is lost in several metastasising 

primary colorectal cancer tumours (Ljuslinder et al., 2009). Study has shown that INSR and 

IGF1R are important for energy metabolism, cell growth, and cancer (Nakae et al., 2001) and 

to our knowledge, no quantitative data exist for INSR. In our study, INSR was expressed less 

in histologically normal and tumour livers than in healthy donors. On the contrary, IGF1R 

significantly increased in tumour livers. Literature data on IGF1R are contradictory; showing 

either low IGF1R expression correlated with increased risk of liver metastasis in CRC, or 

absence of correlation or mildly elevated IGF1R mRNA in CRC (Shali et al., 2016). 

Immunohistochemistry data showed that VGFR3 is a protein associated with vascularization 

and presence of hepatic metastasis in CRC patients (Martins et al., 2013). In our study, VGFR3 

was significantly decreased in tumour compared with the healthy livers. Several studies have 

shown that the expression of AXL was enhanced in advanced CRC, which may be associated 

with poor survival (Uribe et al., 2017). We found that AXL was decreased in tumour compared 

with healthy livers. Previously, a study showed the importance of FGFR2 for cell migration, 

invasion, growth and cancer progression in CRC (Matsuda et al., 2012), gene amplification has 

been found in a primary CRC (Carter et al., 2017), and its expression has been associated with 

poor survival (Li et al., 2019). In our data, the abundance of FGFR2 was significantly decreased 

in normal relative to healthy livers. However, we showed increased abundance of EPHA2 and 

PGFRB in tumour compared with histologically normal livers. EPHA2 regulates tumour 

initiation, vascularization, tumour progression and metastasis and immunohistochemistry in 

colorectal tumours indicated significantly higher expression levels of EPHA2 compared with 

matched normal tissue (Saito et al., 2004; Dunne et al., 2016). Increase of PGFRB was in 

agreement with the literature, as PGFRB overexpression is associated with angiogenesis, 

invasion, metastasis, and poor survival in CRC and is a biomarker for diagnosis and treatment  

(Steller et al., 2013; Manzat Saplacan et al., 2017). Decrease in the abundance of EGFR and 

INSR and increase in EPHA2 and PGFRB in tumour was consistent with our previous pilot 

study (Vasilogianni et al, unpublished).  

In addition to the above, 13 other RTKs (VGFR1, VGFR2, PGFRA, KIT, CSF1R, FLT3, 

FGFR1, FGFR3, ERBB2, NTRK2, TIE2, RET, and MET) were measured for first time. These 
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RTKs generally show an overexpression in CRC and are important regulators in metastasis, 

cancer progression, resistance to chemotherapy, angiogenesis, differentiation, growth, cell 

survival and proliferation (García-Aranda and Redondo, 2019). In our study, FGFR3, ERBB2, 

NTRK2, TIE2, VGFR2, and PGFRA displayed similar expression levels among healthy, 

histologically normal, and tumour livers. FGFR1, RET, VGFR1, and KIT were similarly 

expressed between healthy and histologically normal livers, while no comparison was possible 

with tumour samples due to the low number of tumour samples expressing these proteins. 

Similar expression of CSF1R in healthy livers compared with tumour livers was observed. 

FLT3 and MET were only identified in 1 or 2 tumour samples. RTKs are low abundance 

proteins and this may be the cause for not being identified in some samples. 

Although several studies mentioned above show an overexpression of RTKs in primary CRC, 

this does not come in disagreement with our data. We measured RTKs in metastatic tumours, 

and it is possible that these tumours lose the expression of RTKs as described in an 

immunohistochemistry study showing that EGFR is lost in metastasising primary colorectal 

cancer tumours (Ljuslinder et al., 2009). This means that the expression of RTKs may not 

follow the same patterns in primary and secondary tumours. In additions, we measured absolute 

abundance of RTKs for the first time using a QconCAT-targeted approach where a unique 

peptide for each protein target was used. This technique is very sensitive. Recent studies have 

highlighted the mismatch between mRNA and protein abundance for several enzymes and 

transporters in liver and intestine. Therefore, mRNA abundances cannot be used as surrogate 

for protein abundances and direct measurements are required. Our suggestion for further 

studies would be to measure RTKs from matched primary and secondary tumours and assess 

if expression of RTKs is lost in metastatic tumours. For the purpose of treatments, it would be 

recommended to know total expression of both-primary and secondary tumours.  

RTKs are regulators of various complicated pathways in cells and it is suggested to be 

investigated from the perspective of pathways rather than individual proteins. Therefore, it is 

important to elucidate their relationship in the cells and find any possible correlations between 

them, which could suggest important diagnosis and treatment markers.  Interestingly, we found 

positive correlations of EGFR with KIT and INSR, FGFR2 with PGFRA, and negative 

correlations of VGFR1 with NTRK2 in healthy livers. Similarly, in normal livers, EGFR 

positively correlated with INSR and KIT. Additionally, positive correlations were observed 

between TIE2 and FGFR1, ERBB2 and EGFR, KIT and AXL, EPHA2 and VGFR3, FGFR3 

and PGFRA, and KIT and FGFR2. In tumour livers, NTRK2 positively correlated with PGFRB 
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and AXL. AXL positively correlated with CSF1R, and INSR with EPHA2. CSF1R negatively 

correlated with EPHA2 and PGFRA. These correlations are novel and they are not previously 

reported. These data highlight that there is an important interplay among RTKs and these 

correlations may be important for suggesting a panel of diagnostic markers or a set of proteins 

that should be targeted by a multi-kinase inhibitor for appropriate treatment. The number of 

samples in this study may be a limiting factor. RTKs are low abundance proteins and thus, not 

quantifiable in all the samples.  

To our knowledge, this is the first study that determines the relative distributions of RTKs in 

healthy, tumour and matched normal livers. RET was the most abundant RTK (more than one 

third of the quantified RTKs) in healthy and histological normal livers. This is not surprising 

knowing that RET is a tumour suppressor gene. It may promote colon cancer when it is hyper-

methylated and inactivated but lead to apoptosis when restored (Luo et al., 2013). High 

expression of RET in healthy and normal tissues is indicative of no inactivation of the gene 

and thus, no tumour. On the contrary, relative distribution differs in tumour, with PGFRB being 

the most abundant RTK (45.7%). This is in line with the literature data discussed above 

describing PGFRB as diagnostic and therapeutic marker for CRLM patients. 

Overall, our study provides for the first time absolute quantification measurements for RTKs 

in livers from healthy individuals, and cancer patients with a focus on CRLM. Our data showed 

a significant decrease of EGFR, INSR, VGFR2, and AXL in cancer, increase of IGF1R in 

tumour relative to normal, and increase of EPHA2 and PGFRB in cancer. Expression levels of 

other RTKs (VGFR1, VGFR2, PGFRA, KIT, CSF1R, FLT3, FGFR1, FGFR3, ERBB2, 

NTRK2, TIE2, RET, MET) were either expressed at similar levels among the three groups or 

comparisons were not possible due to their identification and quantification in a limited number 

of samples. Samples from CRC primary tumours would be useful to assess if same patterns are 

followed in colon. This would be important for suggesting right treatment for these patients. 

Several correlations among RTKs were observed in all groups of livers showing a potential 

interaction among them and regulation of common pathways. Low abundance of RTKs 

rendered them not quantifiable in several samples, and this may hide other important 

correlations. Therefore, higher number of samples would be useful for further studies. Lastly, 

our data revealed the relative distribution of RTKs in healthy, normal and tumour livers. Our 

data showed perturbed expression of several RTKs in cancerous liver and these results could 

serve as means of suggesting biomarkers for cancer patients with liver cancer, mainly CRLM. 
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7.7 Supplementary Information 

 

Supplementary Table 7-1 Demographic and clinical details of cancer patients provided by the MFT Biobank. 

Sample 

ID 

Age at 

surgery 

(years) 

Race Sex Body mass 

index, BMI 

(kg/m2) 

Smoking/ 

Alcohol use 

Liver 

lobe 

Diagnosis Medical history Treatment 

389 52 Caucasian Female 30.86 No/ 

Occasionally 

Left Metastatic moderately 

well differentiated 

adenocarcinoma 

Deep vein thrombosis, 

asthma, duodenal ulcer, 

thyroid problem, liver 

lesions 

Fragmin, 

levothyroxine, 

betamethasone, 

ventolin, ferrous 

fumarate 

590 72 Caucasian Male 32 Pipe/ 22 units 

per week 

- Metastatic moderate to 

Well differentiated 

adenocarcinoma (dirty 

necrosis) 

Asthma, polypectomy, 

tonsillectomy, 

Hemicolectomy Dukes 

B 

Salbutamol, tiotropium, 

lansaprozole, nasonex 

633 67 Caucasian Male 26.85 Ex-stopped/ - Right Metastatic 

adenocarcinoma & fatty 

liver disease 

Peripheral neuropathy 

secondary to 

oxaliplatin, type 2 

diabetes, 

hypercholesterolemia, 

valvular heart disease, 

prostate cancer with 

bone metastasis, 

colonic cancer T3N0, 

colorectal liver 

metastasis 

Metformin, zoladex, 

oxaplatin and 5FU, 

irinotecan and 5FU 

with cetuximab 

674 68 Caucasian Female 26.67 No/ - Right Metastatic moderately 

differentiated 

adenocarcinoma 

Rectosigmoid cancer 

10/10 Dukes B 

- 
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734 64 Caucasian Female 23.84 No/ 

Occasionally 

Right Moderately to focally 

poorly differentiated 

metastatic 

adenocarcinoma 

Primary colorectal Dalteparin, short 

course of radiotherapy, 

adjuvant OXmdG and 

5FU 

746 85 Caucasian Male 23.67 Ex (40 years)/ 

Moderately 

Right Metastatic papillary 

carcinoma 

Laparoscopic R 

hemicolectomy T2M0, 

Squamous cell 

carcinoma (scalp), 

hypothyroidism, 

hypertension, Chronic 

obstructive pulmonary 

disease 

Irbesartan, 

levothyroxine, 

bisoprolol, aspirin, 

omeprazole, 

budesamide, 

formoterol 

794 71 Caucasian Female 22.41 No/ No - Metastatic 

adenocarcinoma with 

extensive intra-acinar 

necrosis 

R hemicolectomy, 

pT3N2, high blood 

pressure, depression 

Tomudex 

chemotherapy 

818 58 Caucasian Male 21.78 Ex (25 years)/ 

18 units per 

week 

- Moderately differentiated 

metastatic 

adenocarcinoma 

Sigmoid 

adenocarcinoma 

pT3pN2 

Loperamide, 

carboplatin/5FU and 

modified de Gramont 

and radiotherapy 

1492 34 - Female 32.53 Ex-stopped/ 

Approximately 

20 units per 

week 

Right Metastatic moderate and 

poorly differentiated 

adenocarcinoma 

Bowel resection, 

pilonodal abcess x2, 

grometts (as a child), 

tonsillectomy (as a 

child), egg collection, 

occasional palpitations, 

asthma (as a child), 

reflux, joint problems 

in knees, treated for 

Irritable bowel 

syndrome 

Omeprazole, 

amitryptyline, 

microgynon, 

glucosamine sulphate, 

ibuprofen, peppermint 

oil 
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1493 75 - Male - No/ No Right Metastatic moderately 

differentiated 

adenocarcinoma 

Sigmoid tumour, sleep 

apnoea, asthma 

Cod liver oil, 

salbutamol inhaler, 

seretide inhaler, 

movicol 

1498 63 Caucasian Male - No/ Rarely Right Metastatic 

adenocarcinoma 

Previous gout, 

anaemia, cataract 

operation 

Doxycycline regime 

completed, Nil regular 

1795 63  Male 36.32 Ex - stopped 

(previously 

30cpd)/ 

Approximately 

75 units per 

week 

Left Metastatic well 

differentiated 

adenocarcinoma 

Adenocarcinoma, 

hypertension, 

intermittent 

claudication of left leg 

Omeprazole, 

irbesartan, simvastatin, 

clopidogrel 

1957 68 - Male 32.16 No/ - Left Metastatic moderately 

differentiated 

adenocarcinoma 

Primary rectal cancer, 

pneumonia post-

operative, liver cancer, 

late lung metastasis 

Nil regular 

2036 43 - Female - -/ - Right Metastatic moderate to 

poorly differentiated 

adenocarcinoma 

Primary colorectal Omeprazole, 

paracetamol 

2058 79 Caucasian Female 21.6 -/ - Left Metastatic 

adenocarcinoma 

Below the knee 

amputation, primary 

colorectal, lung 

metastasis 

Lansoprazole, ferrous 

sulphate, alendronic 

acid, paracetamol, 

codeine phosphate, 

senna, natecal D3 

2095 55 Caucasian Male 28.1 -/ - Right Metastatic moderately 

differentiated 

adenocarcinoma 

Primary colorectal Nil regular 
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1063 77 Caucasian Male 26.6 Ex - stopped 20 

years ago/ 15 

units per week 

Right Moderate to poorly 

differentiated 

hepatocellular carcinoma 

Primary hepatocellular 

carcinoma, prostate 

cancer 

- 

1359 68 Caucasian Male 33.4 No/ Whiskey 

(frequency 

unknown) 

Left Poorly differentiated 

intrahepatic 

cholangiocarcinoma 

pT2a, pN1 

Primary liver tumour, 

right elbow surgery, 

patient would have a 

cholecystectomy for 

gallstones but surgery 

was abandoned when 

the liver tumour was 

discovered, hiatus 

hernia, reflux 

Lumigan eye drops, 

brinzolamide, timolol, 

omeprazole, 

bimatoprost 
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Supplementary Table 7-2 Demographic and clinical details of healthy subjects provided by Pfizer. 

Sample 

ID 

Age at 

surgery 

(years) 

Race Sex Body mass index, 

BMI (kg/m2) 

Smoking/ 

Alcohol use 

Cause of death Medical history Treatment 

HH83 18 Caucasian Female 20.19 No/ No Head trauma Healthy None 

HH84 53 Caucasian Male 19.94 No/ Social Intracranial 

haemorrhage 

None None 

HH87 54 Caucasian Female 29.79 No/ No Head trauma Healthy None 

HH93 34 Caucasian Male 20.62 No/ No Cerebellar 

haemorrhagic injury 

Healthy Healthy 

HH98 64 Caucasian Male 37.47 No/ No Head Injury Healthy None 

HH99 45 Caucasian Male 31.62 No/ No Head trauma Healthy None 

HH101 54 Caucasian Female 21.95 No/ No Motor vehicle 

accident 

Healthy None 

HH102 52 Caucasian Female 32.26 No/ No Cerebral Aneurysm Healthy None 

HH104 35 African 

American 

Female 25.25 No/ No Cerebral Aneurysm Healthy None 

HH105 50 Caucasian Male 33.47 No/ No Cerebral Aneurysm Healthy None 

HH106 43 Hispanic Male 24.48 No/ No Cerebral Vascular 

Aneurysm 

Healthy None 

HH107 45 Caucasian Female 24.96 No/ No Cerebral Vascular 

Aneurysm 

Healthy None 

HH110 54 Caucasian Female 26.29 No/ Social Cerebral Vascular 

Aneurysm 

Healthy None 
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HH111 43 Caucasian Female 28.43 No/ No Intracranial bleeding Healthy None 

HH118 32 Caucasian Male 26.69 No/ Social Gunshot Wound to 

head 

Healthy, Skin Graft 

on right arm in the 

past 

Pepcid AC, Tagamet, Steroids 

in HS and Marines 
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Supplementary Table 7-3 Targeted quantification of nineteen Receptor tyrosine kinases (RTKs) transporters in 15 human liver microsomes from healthy subjects. 

Sample ID by the provider HH83 HH84 HH87 HH93 HH98 HH99 HH101 HH102 HH104 HH105 HH106 HH107 HH110 HH111 HH118 

Sample name  H3 H6 H9 H12 H51 H18 H21 H53 H27 H30 H33 H36 H39 H42 H56 

Protein target Peptides Absolute abundance (pmol mg-1) 

VGFR2 AASVGLPSVSLDLPR 0.317 0.005     0.087                     

RET LLEGEGLPFR 2.023 1.185 2.793       0.545       0.854         

FGFR1 DGVQLAESNR         0.284     0.426 0.145           1.448 

EGFR IPLENLQIIR 0.211 0.197 0.307 0.314 0.204 0.573 0.569 0.306 0.147 0.502 0.185 0.356 0.549 0.314 0.356 

INSR ESLVISGLR 0.292 0.367 0.372 0.472 0.373 0.435 0.366 0.348 0.165 0.474 0.242 0.297 0.589 0.474 0.539 

NTRK2 NSNLQHINFTR 0.038 0.042     0.002     0.032 0.081 0.063 0.197 0.536 0.058 0.027 0.078 

AXL APLQGTLLGYR 0.076 0.073 0.042 0.047 0.043 0.019 0.133   0.037 0.017 0.023 0.087 0.069 0.145 0.052 

VGFR3 NILLSESDVVK 0.037 0.071   0.102 0.038 0.046   0.132 0.044       0.060 0.057   

PGFRA VVEGTAYGLSR 0.078 0.076 0.092 0.014 0.055 0.154 0.050 0.077 0.043 0.076 0.016 0.034 0.136 0.029 0.073 

FGFR2 EIEVLYIR 0.119 0.114 0.168 0.086 0.181 0.224 0.146 0.136 0.027 0.011 0.063 0.115 0.248 0.051   

CSF1R VVEATAFGLGK   0.133   0.377     0.111   0.220 0.282           

IGF1R TTINNEYNYR       0.228 0.137     0.034 0.027 0.033   0.062 0.090     

ERBB2 LLDIDETEYHADGGK 0.024 0.057 0.046   0.081   0.128 0.054 0.049     0.033 0.018     

FGFR3 VGPDGTPYVTVLK   0.025   0.022 0.031 0.014 0.042 0.030   0.017     0.059     

VGFR1 FNSGSSDDVR       0.120 0.112   0.021 0.142 0.016 0.083 0.005   0.038     

EPHA2 TVSEWLESIK             0.042     0.039     0.083     

TIE2 NILVGENYVAK   0.168 0.159 0.058 0.206 0.193     0.064 0.089 0.095 0.155       

KIT LVVQSSIDSSAFK   0.034 0.177 0.143 0.133   0.413 0.249 0.128   0.233   0.200     

PGFRB GFSGIFEDR       0.169 0.073 0.067 0.145   0.155   0.084 0.114 0.100     

FLT3 TWTEIFK                               

MET LNSELNIEWK                               
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Supplementary Table 7-4 Targeted quantification of nineteen Receptor tyrosine kinases (RTKs) transporters in 18 histologically normal (peri-carcinomateous) liver 

microsomes from cancer patients. 

Sample ID by the provider 2095 2058 2036 389 590 746 818 1492 674 1957 1493 1498 633 734 794 1795 1063 1359 

Sample name  N1 N4 N7 N10 N13 N49 N19 N22 N25 N34 N28 N31 N37 N40 N43 N54 N45 N47 

Protein target Peptides Absolute abundance (pmol mg-1) 

VGFR2 AASVGLPSVSLDLPR     0.022 0.042       0.006 0.035   0.030       0.001       

RET LLEGEGLPFR   1.730   0.723       0.029 1.673   1.131   0.565       0.979   

FGFR1 DGVQLAESNR             0.354 0.168     0.393   0.149 0.193 0.047 1.686 0.064 0.143 

EGFR IPLENLQIIR 0.283 0.145 0.173 0.185 0.249 0.224 0.613 0.265 0.307 0.170 0.138 0.198 0.166 0.345 0.093 0.245 0.024 0.171 

INSR ESLVISGLR 0.132 0.075 0.076 0.135 0.257 0.088 0.352 0.230 0.104 0.063 0.126 0.188 0.057 0.310 0.066   0.119 0.028 

NTRK2 NSNLQHINFTR 0.098 0.011 0.018 0.023   0.276   0.021 0.061 0.023 0.079 0.018 0.043 0.087 0.072 0.099 0.035 0.037 

AXL APLQGTLLGYR   0.052 0.036 0.025 0.082 0.023 0.068 0.030 0.054   0.036 0.016 0.037 0.056 0.005 0.005   0.006 

VGFR3 NILLSESDVVK 0.075 0.010 0.061 0.021 0.209     0.009   0.018 0.127 0.044   0.053 0.026   0.006 0.020 

PGFRA VVEGTAYGLSR 0.081 0.037 0.009 0.042 0.043 0.143 0.049 0.061   0.021 0.028 0.018 0.020 0.085 0.035 0.024   0.000 

FGFR2 EIEVLYIR   0.066 0.085 0.065 0.115 0.072   0.074 0.073 0.022 0.033 0.014   0.008 0.026     0.021 

CSF1R VVEATAFGLGK             0.164               0.032       

IGF1R TTINNEYNYR   0.017     0.108   0.043 0.011 0.014   0.010   0.026   0.052       

ERBB2 LLDIDETEYHADGGK 0.041   0.066 0.061     0.137 0.057 0.050 0.034 0.017 0.014 0.039 0.040 0.001 0.097 0.038 0.039 

FGFR3 VGPDGTPYVTVLK 0.102 0.032   0.020       0.028 0.008 0.023 0.011 0.030 0.014 0.038 0.028   0.002 0.010 

VGFR1 FNSGSSDDVR           0.298             0.012   0.006       

EPHA2 TVSEWLESIK       0.016     0.002   0.021   0.081 0.041 0.040 0.068 0.021 0.042     

TIE2 NILVGENYVAK 0.205 0.060 0.224 0.121   0.054 0.156 0.156 0.084   0.196 0.090   0.118 0.068   0.101 0.108 

KIT LVVQSSIDSSAFK       0.152 0.401 0.309 0.773 0.169     0.160   0.219   0.003   0.064 0.015 

PGFRB GFSGIFEDR       0.208     0.092 0.144     0.086               

FLT3 TWTEIFK                                     

MET LNSELNIEWK                                     
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Supplementary Table 7-5 Targeted quantification of twenty-one Receptor tyrosine kinases (RTKs) transporters in 18 tumorous human liver microsomes from cancer patients. 

Sample ID by the provider 2095 2058 2036 389 590 746 818 1492 674 1957 1493 1498 633 734 794 1795 1063 1359 

Sample name  T2 T5 T8 T11 T14 T50 T52 T23 T26 T35 T29 T32 T38 T41 T44 T55 T46 T48 

Protein target Peptides Absolute abundance (pmol mg-1) 

VGFR2 AASVGLPSVSLDLPR           0.020     0.010     0.029           0.003 

RET LLEGEGLPFR       0.080               0.529             

FGFR1 DGVQLAESNR                   0.151       0.113         

EGFR IPLENLQIIR 0.008 0.067 0.084 0.080 0.108 0.175 0.044 0.136 0.149 0.120 0.018 0.164 0.030 0.054 0.070 0.097 0.033 0.189 

INSR ESLVISGLR 0.171 0.114 0.135 0.095 0.236 0.177 0.110 0.103 0.184 0.200 0.121 0.086 0.211 0.112 0.059 0.218 0.014 0.079 

NTRK2 NSNLQHINFTR       0.063 0.035 0.093 0.033 0.012 0.034 0.006 0.065 0.126 0.042 0.053 0.014 0.096   0.019 

AXL APLQGTLLGYR 0.024 0.011 0.035 0.046 0.022 0.102 0.023 0.016   0.003   0.034 0.034 0.017   0.076 0.011 0.066 

VGFR3 NILLSESDVVK 0.284 0.030   0.028 0.017   0.036   0.016 0.004 0.008     0.025 0.023 0.026     

PGFRA VVEGTAYGLSR 0.024     0.011 0.131 0.128 0.053 0.021     0.024 0.028 0.038 0.039 0.086   0.011   

FGFR2 EIEVLYIR 0.085 0.112 0.249 0.104 0.208 0.198   0.072 0.048 0.001 0.027 0.074 0.130 0.007 0.047     0.019 

CSF1R VVEATAFGLGK   0.080 0.697 0.260 0.087   0.102   0.044   0.103 0.174 0.141 0.063         

IGF1R TTINNEYNYR       0.042 0.118   0.062     0.045   0.092 0.126           

ERBB2 LLDIDETEYHADGGK 0.040 0.128 0.028 0.079 0.139 0.045 0.054 0.031       0.022   0.046         

FGFR3 VGPDGTPYVTVLK 0.107   0.063 0.0003 0.021 0.020 0.018 0.066   0.051 0.001 0.032 0.069           

VGFR1 FNSGSSDDVR               0.094                     

EPHA2 TVSEWLESIK   0.056   0.023 0.117 0.161 0.039 0.049 0.344 0.036 0.055   0.071 0.119 0.027 0.165   0.066 

TIE2 NILVGENYVAK   0.515   0.084     0.205         0.160             

KIT LVVQSSIDSSAFK                       0.438             

PGFRB GFSGIFEDR             0.904 0.598 2.516   5.914   2.181     2.582   0.693 

FLT3 TWTEIFK                   0.054                 

MET LNSELNIEWK         0.487 0.290                         
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Chapter Eight: Conclusions and Future Work    

 

8.1 Setting the Needs for Oncology Populations 

Clinical trials in oncology are very challenging. Recruitment of appropriate populations is not 

always possible and patients constitute a heterogeneous population resulting in a substantial 

variability in drug pharmacokinetics (PK). Model-informed precision dosing can help to 

overcome these obstacles via physiologically-based pharmacokinetic (PBPK) modelling, 

which is gaining wider regulatory acceptance in oncology. IVIVE-PBPK strategies require 

population-specific systems parameters, in order to accurately predict the fate of drugs in 

various patient populations. Although some systems parameters have been defined in cancer, 

there are still many unknown areas. For instance, the abundance of drug metabolising enzymes 

(DMEs) and transporters has not been studied in every cancer type. DMEs and transporters 

have a fundamental role in drug metabolism, absorption and disposition and any perturbation 

in their expression could lead to altered PK profiles, and thus high toxicity or low efficacy of 

the drug. Liver is the main organ of metabolism and hepatic cancer is expected to affect liver 

function. It is therefore important to know if DMEs and transporters are affected in patients 

with liver cancer (primary or metastatic), to what extent, and if the perturbed abundance of 

DMEs and transporters could affect PK profiles. Focusing on colorectal cancer liver metastasis 

(CRLM), there are no quantitative data on the expression levels of liver DMEs and transporters. 

Therefore, the main aim of this project was to fill in this gap. Abundance data in addition to 

population-specific scalars are necessary for the in vitro-in vivo extrapolation of metabolic drug 

clearance. These scalars have not been studied in CRLM and this project attempted to define 

them. The overall aim was to incorporate scalars along with abundance data (DMEs, 

transporters), in order to improve PBPK models for cancer. Lastly, various pathways are 

affected in cancer and proteins involved in them could serve as potential pharmacodynamics 

(PD) markers for diagnosis and treatment. Therefore, this project aimed to quantify a wide 

range of PD markers for the first time in CRLM, with the characteristic example of receptor 

tyrosine kinases (RTKs).  

 

8.2 What this projects adds to the previous knowledge 

The first step of this project was to critically review the available literature for cancer and 

define which systems parameters that could affect drug exposure are already known and which 
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are still missing (chapter 1). Although there are some reviews covering this subject, we focused 

for the first time on the existing gaps for CRLM and highlighted the need for obtaining 

quantitative data on CYPs, UGTs, drug transporters and scalars for accurate predictions of PK 

via modelling in CRLM patients. 

Reliable quantitative measurements of proteins can be obtained with LC-MS/MS proteomics 

that has already been used for the quantification of DMEs and transporters in various tissues. 

Chapter 2 comprehensively reviews the available quantitative proteomic methods, how they 

are applied in translational pharmacology and offers recommendations for the selection of 

proteomic techniques. Taking into consideration the available proteomic techniques, it was 

concluded that the QconCAT methodology is ideal for quantifying the protein targets (CYPs, 

UGTs, transporters, RTKs) of this project, along with the accurate mass and retention time 

(AMRT). The total protein approach (TPA) was used to provide relative abundance of proteins 

involved in biological pathways that may be affected in cancer. 

Various software packages are available for the analysis of LC-MS proteomics data, and it is 

worth knowing if they generate data of similar quantity and quality, and if some can perform 

better than others. Chapter 3 compares two widely used software packages - Mascot/Progenesis 

LC-MS and MaxQuant, utilising proteomics data generated from human liver microsomes 

using global proteomics methods. The two software packages demonstrated some differences 

especially at peptides levels. This suggests that if they are used together, they can maximise 

the use of datasets when using global proteomics. However, both software packages behaved 

well and generated robust common peptides giving confidence that either of them can be 

trusted. Thus, for this PhD project the open access software MaxQuant was used for the data 

analysis. 

Hepatic intrinsic clearance is an important parameter for the prediction of drug exposure. In 

vitro data relevant to metabolic drug clearance of specific pathways need to be extrapolated to 

clearance at liver tissue level (per gram of liver). For this extrapolation, several scaling factors 

are used, such as microsomal protein per gram of liver (MPPGL) in cases that the in vitro data 

are generated from liver microsomes. Scaling values may differ in disease states and need to 

be defined for different diseases. In CRLM, such values were not studied and were not available 

in simulators such as Simcyp. In chapter 4, scaling factors specific for CRLM patients were 

defined for the first time. MPPGL were significantly decreased in cancerous livers from CRLM 

patients compared with histologically normal livers, implying that metabolism may be 
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significantly decreased in cancer. Application of the experimental data on PBPK models 

showed differences in drug exposure when using CRLM-specific scalars instead of scalars for 

healthy subjects. These data are necessary for accurate PK profiles and decrease the parameters 

that should be tested with sensitivity and uncertainty analysis for the improvement of the 

model.  

Limited knowledge on system-specific parameters could be an inhibitory factor for the 

development of models in disease populations. To overcome this obstacle, in chapter 5, the 

abundance of DMEs and transporters was quantified for the first time in pooled liver 

microsomes from cancerous and histologically normal livers from CRLM patients, and 

compared with healthy controls. Most CYPs and UGTs were lower in cancer livers indicating 

that metabolism of CYP or UGT substrates can be affected in CRLM patients. Abundance data 

on CYPs in addition to MPPGL defined in chapter 4 were incorporated into PBPK models for 

CYP substrates and this resulted in significantly higher drug exposure compared with the cases 

where abundance and scaling data from healthy subjects were used. This means that patients 

with cancerous liver may need to be dosed separately due to high risk of toxicity. Other DMEs 

and transporters were also impaired, indicating that drug disposition can be significantly 

affected. Liver markers revealed hepatic impairment in CRLM. Additionally, inflammatory 

markers were increased in cancer and this inflammatory environment may be responsible for 

perturbed expression of DMEs and transporters. Other markers that were quantified for the first 

time and perturbed in CRLM involved markers of desmoplasia, and metastasis. Interestingly, 

we designed for the first time a QconCAT standard (‘KinCAT’) for the quantification of 21 

receptor tyrosine kinases (RTKs) that are widely targeted by anti-cancer agents. Many RTKs 

were altered in CRLM. This study sets the basis on defining systems parameters in CRLM, but 

further experiments are needed on individual samples to validate the data and assess the inter-

individual variability for each target. This will require robust statistical analysis and reveal 

which targets significantly differ in cancer. 

Chapter 6 provides absolute quantification data on DMEs and transporters for the first time in 

individual livers from cancer patients with a focus on CRLM. A substantial decrease of DMEs 

and most transporters was observed in cancer, indicating that the metabolic and disposition of 

drugs may be dramatically impaired in cancer patients. Inter-individual variability was also 

assessed and was higher in cancerous livers. This variability is an important parameter to be 

used for models. Abundance values were scaled to tissue levels with MPPGL and PBPK 

simulations of CYP substrates were performed to assess the impact of downregulated DMEs 
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on PK. Our simulations clearly showed that the decreased abundance of DMEs can 

significantly increase the drug exposure and the use of population-specific abundance data for 

pharmacokinetic predictions is required. 

Chapter 7 focuses on PD protein targets and more specifically on receptor tyrosine kinases. 

These proteins are very important for cancer treatment as they are targeted by several FDA 

approved multi-kinase inhibitors. Although there are some mRNA and immunohistochemistry 

data on RTKs in various types of cancers, there are no absolute quantification data in livers 

from CRLM patients. Knowing any perturbations in the abundance of RTKs in these patients 

could be particularly important to elucidate why some patients do not respond well to treatment 

with kinase inhibitors. Therefore, chapter 7 provides quantification of 21 RTKs in paired 

normal and tumour livers from CRLM patients compared with healthy controls. We found a 

lower expression of EGFR, INSR, VGFR2, AXL, and an increase of IGF1R, EPHA2 and 

PGFRB in tumour livers. The relative distribution was also different in tumour livers, and 

several correlations among RTKs were observed. These data could be valuable towards 

precision medicine in CRLM patients. However, it would be interesting to have relevant 

measurements from primary colorectal cancer tissues, in order to have the whole profile in 

CRLM patients. 

 

8.3 Future perspectives 

Although a wide range of non-CYP non-UGT DMEs were measured in pooled samples, it 

would be useful to assess their inter-individual variability in CRLM patients and compare them 

with healthy controls. The data that have already been generated during this project could be 

further analysed using the label-free approach to provide quantification of non-CYP non-UGT 

DMEs in individual livers. The same approach could be used to further investigate metastasis, 

inflammation and other cancer markers in individual samples. In addition to the quantification 

of RTKs, abundance of non-receptor tyrosine kinases is equally important to be assessed, as 

these are also important pharmacology targets. These are cytosolic proteins and thus, not 

measured in our microsomal fractions used for the purpose of this project. However, during the 

tissue fractionation, the cytosolic fraction was stored and could be used in the future for further 

analysis. The cell debris containing mitochondria and nucleus was also kept as it could 

potentially be analysed to explore cancer markers. Another suggestion for the future would be 

to measure RTKs in primary colorectal cancer and assess if the expression of these markers is 
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being lost in metastasis. Having the whole picture of RTKs in both primary and metastatic 

tissues in CRLM patients is important for facilitating precision medicine, especially in cases 

where patients do not respond to cancer treatment. It would also be interesting to source peri-

carcinomatous normal liver samples at different distances from the tumour (same donor) and 

assess if there is a differential expression of proteins depending on the distance from the 

tumour. This would be an important element to be considered when sourcing samples. 

Extrahepatic impact of cancer on drug exposure could also be assessed by measuring DMEs 

and transporters in the intestine and other tissues of CRLM patients. The application of the data 

generated during this project in PBPK models can improve current models by increasing 

confidence with the use of population-specific systems parameters. When clinical data of drugs 

in CRLM patients are available, our proteomics data along with the scaling factors could 

validate our models. Lastly, a recommendation for the future would be to perform similar 

studies in other cancer types that are less studied, for instance small intestine cancer. All these 

data collected here, in addition to future studies in the same line, could lay the foundation for 

precision dosing in cancer. 


