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“The underlying laws necessary for the mathematical theory of large parts of physics and the 

whole of chemistry are thus completely known, and the difficulty is only that the exact 

application of these laws leads to equations much too complicated to be soluble.”  

 

Paul Dirac, 1929 
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Abstract 

Accurately calculating the Gibbs free energies of biomolecules in aqueous phase solution is an 

important challenge and future goal because most processes take place in aqueous solution. 

Gibbs free energies give the information about the stability and kinetics of biomolecules which 

will be helpful in understanding the structure and functions of biomolecules. We have 

developed a new energy-entropy (EE) method based on multiscale cell correlation (MCC) 

correction theory which is used to calculated the Gibbs free energy values. Firstly, we applied 

our MCC theory to calculate the entropy for the range of important industrial liquids modeled 

with GAFF and OPLS force fields. The calculated entropy values are in good agreement with 

the experimental values having unsigned errors are 8.7 J K–1 mol–1 and 9.8 J K–1 mol–1 for 

GAFF and OPLS force fields respectively. Later we combined our MCC theory with density 

functional theory (DFT) in quantum mechanics/molecular mechanics (QM/MM) formalism to 

develop a new EE-MCC method to calculate the Gibbs free energy barriers. We applied our 

EE-MCC method to calculate the reaction kinetics for the series of nucleophilic substitution 

reactions where one halogen atom is replaced by a hydroxyl ion in aqueous solution. The 

calculated Gibbs free energy barriers agree well with experimental and potentials of mean force 

(PMF) values and with previous computational methods. Furthermore, we applied our EE-

MCC method to calculate the binding free energies directly for molecular dynamics (MD) 

simulations for the series of seven host-guest complexes in SAMPL8 challenge. The EE-MCC 

binding free energies are found in good agreement with the experiment values giving average 

unassigned error of 0.9 kcal mol–1.  

 

We also studied the chemical reactions which are catalyzed by various non-heme iron enzymes 

and cytochrome P450 enzymes. To understand the activities of various enzymes we have used 

either density function theory (DFT), full QM/MM simulations or both of them. For example, 

the activations of L-arginine (L-Arg) by OrfP and VioC have been studied with active site 

cluster model techniques. The activations of syringol by the GcoA enzyme have been 

investigated with the help of computational modeling.  
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Chapter 1.     Introduction 

Both stability and kinetics are important parameters for understanding the structures and 

functions of biomolecules, and are helpful in understanding basic biological phenomena, such 

as enzyme mechanisms, protein-protein interactions, ligand-protein binding, host-guest 

binding and so on. The theoretical modelling of biomolecules to study the thermodynamics and 

the kinetics has gained great attention in the last few decades and has progressed substantially 

but is still a challenging objective in the field of computational chemistry. In fact, the direct 

estimation of kinetics and entropy associated properties needs sampling on prolonged time 

scales, which is quite expensive and limiting in computational viability. Furthermore, various 

biological processes are governed by entropy, for example, protein folding, protein-ligand 

binding, and adsorption and desorption processes [1-5]. In these processes the entropy values 

are calculated indirectly from the free energy calculations [6]. Also, most of the biological 

processes occur in an aqueous environment and so solvent plays an important role in these 

processes, which makes it more complicated [7-9]. Enthalpy and energy values have been 

calculated by means of energy-entropy decomposition methods [10,11] but determination of 

entropy has been long-known as a key challenge [11,12], not only for computational scientists 

but also for experimentalists [13].  

 

1.1 Aims of This Work 

There are some computational models which are used to directly calculate entropy values for 

biomolecules and the surrounding solvent but still there is a trade-off between correctness and 

efficiency. The aim of this project is to develop a general computational method that directly 

calculates entropy for a wide range of systems including liquids, solutions, chemical reactions   

etc. In the first step we developed a new method, Multiscale Cell Correlation (MCC) to 

calculate the entropy values for the range of liquids including the ones that are used as a solvent 

in biological processes such as water, octanol as well as many other important industrial liquids 

[14]. Later we combined MCC theory with density functional theory (DFT) in a quantum 

mechanics/molecular mechanics (QM/MM) formulism to develop a new energy-entropy 

method called as EE-MCC method to study the kinetics of chemical reactions in aqueous 

environment [15]. Furthermore, we investigated the metabolic mechanism and reactions 



 19 

kinetics of various enzymes, particularly cytochrome P450 enzymes and non-heme iron or 

alpha-ketoglutarate enzymes [16-22]. Lastly, we applied our EE-MCC method to investigate 

the binding Gibbs free energy values of host-guest systems.   

 

1.2 Molecular Dynamics Simulations 

In the past half century, simulation methods have been developed with high performance and 

accuracy [23,24]. One of the most commonly and widely used computational methods is 

molecular dynamics (MD) simulation. MD simulation is a computer-based method used to 

determine the physical movements of atoms and molecules [25]. In the system the atoms and 

molecules are allowed to interact with each other at successive periods of time, producing a 

trajectory that gives an understanding of the dynamics of a system. The trajectories of these 

interacting atoms and molecules are determined with the help of Newton’s laws of motion and 

forces are determined from the molecular mechanic force field. Newton’s second law of motion 

for each atom can be written as 

𝐹$ = 𝑚$𝑎$           (1.1) 

𝑎$ =
()*+
(,)

= − .
/+

(0
(*+

=
12+
/+

     (1.2) 

where 𝑎$ is the acceleration of an atom of mass  𝑚$ is calculated by the second derivative of 

motion along one coordinate 𝑥$ with respect to time t. The negative gradient of potential energy 

U with respect to particle position is used to calculate the force acting on the atom at a particular 

position.  A continuous potential considers for forces acting on each particle due to change in 

particle position and positional changes of particles around it. The positions, velocities and 

accelerations for each particle can be determined by various algorithms. In the AMBER 

software package, the velocity Verlet algorithm [26] is used to determine the position and 

velocities of a system at a given interval of time. This algorithm is derived from Taylor’s 

expansion as: 

𝑟(𝑡 + 𝛿𝑡) = 𝑟(𝑡) + 𝛿𝑡𝑣(𝑡) + .
;
𝛿𝑡;𝑎(𝑡)          (1.3) 

𝑣(𝑡 + 𝛿𝑡) = 𝑣(𝑡) + .
;
𝛿𝑡[𝑎(𝑡) + 𝑎(𝑡 + 𝛿𝑡)]          (1.4) 
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where t is the time, r is the position, v is the velocity and a is the acceleration. The 

implementation of this takes place in two steps: the position is calculated using equation 1.3 

and the velocity is calculated at time t from acceleration using the equation 

𝑣 >𝑡 + .
;
𝛿𝑡? = 𝑣(𝑡) + .

;
𝛿𝑡𝑎(𝑡)           (1.5) 

The acceleration is calculated at time 𝑡 + 𝛿𝑡 and velocity cycle is completed using 

𝑣(𝑡 + 𝛿𝑡) = 𝑣 >𝑡 + .
;
𝛿𝑡? + .

;
𝛿𝑡𝑎(𝑡 + .

;
𝛿𝑡)          (1.6) 

When these quantities are evaluated for each atom, the structure of the system is able to be 

visualised at any time. The molecular averaged properties are computed from the trajectory of 

the system.  

 

1.3 Force Fields 

A force field is a set of functions and parameters that are used to calculate the potential energy 

of atoms or particles of a system in molecular mechanics (MM) or molecular dynamics (MD) 

or Monte Carlo (MC) simulations. These functional parameters are calculated experimentally 

or theoretically or using both together. All-atom force fields consider every atom and calculate 

parameters of each atom counting hydrogen atoms while united-atom force fields consider 

hydrogen and carbon as a group and calculate parameters of a molecule i.e. in a methyl group 

it considers hydrogen and carbon as a one. In this work, we used the Assisted Model Building 

with Energy Refinement force field. The total potential energy of a system is calculated with 

the help of force field in terms of bond stretching, bending, torsions and nonbonding 

interactions [27]. The functional form of potential energy is the sum of bonded interactions of 

atoms that are linked by covalent bond and non-bonded interactions or non-covalent 

interactions that are described by electrostatic and van der Waals forces [28]. This 

decomposition depends on the force field but the general form of potential energy is written as  

𝐸ABACD	 = 	𝐸FBGHIH + 𝐸GBGJFBGHIH          (1.7) 

The covalently bonded bond, angle and dihedral terms are represented as 
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𝐸FBGHIH = ∑ 𝑘FM𝑟 − 𝑟INO
;
+ ∑ 𝑘PM𝜑 − 𝜑RSO

;
+ ∑ TU

;
[1 + cos(𝑛ϕ − 𝜗)]H]^IH_CD`CGaDIFBGH

           (1.8) 

 
Figure 1.1. The three types of bonded interaction. 

 

where 𝑘F,  𝑘b and 𝐶G represent the force constants for each motion while r, 𝜃 and 𝜙 represent 

the bond length, bond angle and dihedral angle respectively. On the other hand, the non-bonded 

term is computationally intensive and so is limited to pairwise energies typically up to a long-

range cutoff and is represented as 

𝐸GBGJFBGHIH	 = 	𝐸IDIfA_B`ACA]f + 𝐸gCG	HI_	hCCD`     (1.9) 

 

The van der Waals interaction is calculated by the Lennard-Jones potential and the electrostatic 

interaction is calculated by Coulomb’s law  

𝐸GBGJFBGHIH = ∑ ij+k
l+k
m) −

n+k
l+k
o p + ∑ i S+Sk

qrstl+k
p$u$u        (1.10) 

where 𝑟$u is the distance between non-bonded atoms i and j, 𝑞$ and 𝑞u are the charges on these 

atoms and 𝜀x	is the free space permittivity. The attractive van der Waals interaction between 

atoms are represented by 𝐵$u = 4𝜀𝜎B| and van der Waals repulsion is represented by 𝐴$u =

	4𝜀𝜎B.; term, where 𝜀 is the bonding energy of two atoms and 𝜎x is the distance at which the 

potential energy term between the two particles is zero. These pair-wise calculations depend 

on the square of the number of particles 𝑁; that makes the calculations computationally 

expensive. To solve this problem, a cut-off distance is introduced that limits these interactions 

within this cut-off range which is about 8 Å to 10 Å and beyond this range these pairwise 



 22 

interactions are approximated by an analytical correction for van der Waals and Particle Mesh 

Ewald (PME) for electrostatics.  

 

 
Figure 1.2. The two types of non-bonded interactions. 

The General Amber force field (GAFF) [29] and the Optimized Potentials for Liquid 

Simulations (OPLS) [30] force field are used here. In the GAFF force field, the HF/6-31G* 

method is used as a charge method while the bonds lengths are derived by X-ray and neutron 

diffraction as well by as ab-initio calculation at the MP2/6-31G* level of theory. GAFF applies 

the same empirical rules to calculate the missing parameters of bond-length force constants as 

the Merck molecular force field (MMFF 94) [31], 

𝐾l = 𝐾$u
lR� �

l+k
���

l+k
�
|

     (1.11) 

The functional form of GAFF is different than MMFF 94 and it is represented with a more 

general power law  

𝐾l = 𝐾$u �
.
l+k
�
/

      (1.12) 

log𝐾l = −𝑚 log𝑟$u + log𝐾$u      (1.13) 

where m and Kij are calculated with the help of bond-length parameters. The Kq force constant 

can be estimated using the following functional form 

𝐾$u�� = 143.9 × 𝑍$𝐶u × 𝑍�M𝑟$u
RS + 𝑟u�

RSOJ.𝜃$u�
RS�) exp(−2𝐷)      (1.14) 

𝐷 =
>l+k

��Jlk�
��?

)

>l+k
���lk�

��?
)       (1.15) 

In the case of the OPLS force field these parameters are very similar to that of AMBER. The 

functional form of OPLS force field is only different in the non-bonded term which is similar 

Van der Waals interactions Electrostatics 
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to Equation 1.8 with the addition of combining rules. The combining rules are 𝐴$u = �𝐴$$𝐴uu 

and 𝐶$u = �𝐶$$𝐶uu  and the intermolecular non-bonded interaction is counted only for the atoms 

separated by three or more covalent bonds. There are two charge methods which are mostly 

used for the derivation of changes in AMBER simulation package: the restrained electrostatic 

potential (RESP) fitting procedure [32] and Austin model 1-bond charge corrections (AM1–

BCC) [33]. The RESP fitting method uses ab initio calculation with 6-31G* basis set to 

generate electrostatic charges (ESP) which are then fitted by different conformations of the 

molecules, while the AM1–BCC method is a fast and efficient method to generate high quality 

atomic charges which are used in simulations. It works in two steps: first it captures the 

electronic features of a molecule by AM1 population charges and then bond charge corrections 

are applied to AM1 to produce AM1-BCC charges [33]. The RESP method is originally used 

in the derivation of AMBER force fields while AM1-BCC is used with antechamber tool in the 

AMBER simulation package to generate these charges.   

There are many force fields with good performance and accuracy that have been developed 

in the literature to study different systems including liquids, solutions, biomolecules etc. by 

means of MD simulations. In this work we have used GAFF [29], GAFF2 (second-generation 

GAFF) [34] OPLS-AA (All Atom Optimized Potentials for Liquid Simulations) force field 

with 1.14*CM1A charges [30] and TraPPE (Transferable Potentials for Phase Equilibria) force 

field [35] for pure liquids while for protein systems we have used ff14SB [36] and for water 

TIP3P force field [37] was used. These force fields use different ways of being parameterized 

but generally their outcome is similar.  

 

1.3.1 Limitations of Classical Mechanics Force Field 

The use of classical molecular dynamics simulations still has a number of limitations. The 

molecular mechanics (MM) force fields requires further improvement in parameters and high 

computational demands [38,39]. Furthermore, MM is not suitable to study chemical reaction 

processes since the harmonic potential used for bond stretching and bending which is not 

suitable for bond cleaving reactions. It also ignores electronic effect. Therefore, to study the 

chemical reactions we need quantum mechanics which is used to describe the behavior of a 
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system at electronic level [40]. It is used to determine the properties of molecules, atoms and 

their nuclei [41].  

 

1.4 Quantum Mechanical Calculations 

Quantum mechanical (QM) calculations are used to study the behavior of chemical systems 

and calculate the electronic properties of molecules, atoms and their constituent particles of 

electrons and nuclei. QM methods are divided into three types: ab initio, semiempirical, and 

density functional theory. Each of these are explained next. 

 

1.4.1 Ab Initio Method 

The ab initio or first-principles method is based on the principles of quantum mechanics and is 

used to solve the electronic Schrödinger equation by utilizing various approximations. Ab initio 

method do not need any pre-defined potentials as used in MM methods rather than it uses 

empirical data or independent electronic calculations to define the properties of different 

complex processes including folding of proteins [42-44]. However, it is an expensive method 

as compared to the classical MM methods when used in MD simulations because in the ab 

initio method the forces on each particle printed at each step take much longer to calculate 

using electronic-structure quantum mechanical methods. The most important ab initio 

approximations are the Born-Oppenheimer approximation and Hartee-Fock self-consistent 

field (HF-SCF) or mean-field approximation which are used to solve polyelectronic structural 

problems with good accuracy [45-47]. In HF method the wave function can be expressed with 

a Slater determinant (SD) or configuration state functions which are the linear sum of SDs with 

fixed coefficients [48].  The electronic Schrödinger's equation can be written as  

H�ψ = 𝐸ψ       (1.16) 

where 𝐻� is the Hamiltonian operator and it has four electronic energy terms namely kinetic 

energy of electron T�I, electron-nuclear attraction V�GJI, electron-electron V�IJI and nuclear-

nuclear V�GJG repulsion, written as [45]: 
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H� = T�I + V�GJI + V�IJI + V�GJG    (1.17)   

The Schrödinger is solved using the variational principle which states that the approximate 

wave function will always be higher in energy than the exact wave function so the best wave 

function can be calculated by minimizing the energy [45].  

1.4.2 Semiempirical Method 

Semiempirical quantum methods (SE-QM) are in between QM and MM methods because they 

treat electrons quantum mechanically but only up to valence electrons to speed up QM 

calculations at reduced computational cost. This makes SE-QM methods fast and applicable 

for understating metabolic process like kinetics study of enzymes and proteins and with good 

accuracy [49]. There are many SE-QM methods available in the literature including AM1 [50], 

PM3 [51], OMx [52] and MNDO/d [53]. Another approach that has gained attention in the last 

few decades is the density functional tight binding (DFTB) method, also known as Self-

Consistent Charge DFTB (SCC-DFTB) [54-56]. SCC-DFTB [56,57] is an approximate semi-

empirical method derived from the DFT method by considering the 2nd order expansion of total 

energy functional of the DFT with respect to the fluctuations of charge density 𝛿𝜌 around a 

reference density 𝜌¢. 

𝐸£¤¤J¥¦§¨ = ∑ 〈𝜓$|Η�x|𝜓$〉 −
.
;∬

¯°¯°±

|l⃗Jl⃗±|
+ 𝐸*³[𝜌¢] − ∫𝑉*³[𝜌¢]𝜌¢ + 𝐸$$ +

¶
.

Bff
$

.
;∬ >· .

|l⃗Jl⃗±|
+ ¸)¹2º

¸¯¸¯±
·? 𝛿𝜌𝛿𝜌¶¶

.    (1.18) 

Here 𝛿𝜌 = 𝜌 − 𝜌¢ is the charge fluctuation which is the second order term represented by 

atomic components 𝛿𝜌 = ∑ 𝛿𝜌»¼  and the approximation of 𝛿𝜌» is done by atomic charge 

fluctuations ∆𝑞» = 𝑞» − 𝑞»x . These atomic fluctuations are calculated by Mulliken charge 

analysis. The exchange term 𝐸*³  is approximated by a function 𝛾 which depends on the 

chemical hardness 𝜂», leading to the second order term which is  

𝐸;GH = .
;
∑ 𝛾»À∆𝑞»∆𝑞À»À                   (1.19) 

where 𝛾»À = 𝛾»À(𝑈»,𝑈À,𝑈»À) and 𝑈» =
.
;
Ã)¹ÄÅ
ÃSÄÅ)

 is the second derivative of energy of an atom 

𝛼 with respect to its total charge, and ψ$ are the Kohn-Sham orbitals which are expanded in an 
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optimized linear combination of atomic orbital (LCAO) basis set 𝜙Æ as suggested by Eschrig 

and Bergert [58], ψ$ = ∑ 𝑐Æ$𝜙ÆÆ  and Η�x is Hamiltonian matrix solved by Kohn-Sham theory.  

 

1.4.3 Density Functional Theory 

Density Functional Theory (DFT) [59-61] is used to determine the properties of many-electron 

system with functionals. It is based on two theorems: the Hohenberg-Kohn [60] and the Kohn-

Sham formalism [61]. According to the Hohenberg-Kohn theorem, the total energy of a system 

composed of fixed nuclei and interacting electrons at ground state is a functional 𝐸	(𝜌) of the 

electron density function 𝜌(𝑟) the variational principle to any trial density of a system will 

result in energy higher than or equal to the exact ground state energy 

𝐸	[𝜌¶(𝑟)] 	≥ 𝐸	[𝜌(𝑟)]     (1.20) 

Form the Born-Oppenheimer approximation [62] of the Schrödinger wave equation, the total 

energy of a system is expressed as the combination of three different terms, which are the 

kinetic energy of electrons (T), nuclear electron attraction (𝑉GI) and the electron- electron 

repulsion (𝑉II). It is represented as  

𝐻�Ψ(𝑟., 𝑟;, …𝑟Ë) = 	𝐸Ψ(𝑟., 𝑟;,… 𝑟Ë)		    (1.21) 

𝐸[𝜌(𝑟)] = 𝑇[𝜌(𝑟)] + 𝑉GI[𝜌(𝑟)] + 𝑉II[𝜌(𝑟)]    (1.22) 

 

The electron- electron repulsion consist of two components: one is the classical Coulomb 

repulsion while the other is composed of all non-classical contributions to the electron –

electron repulsion.  

According to the Kohn-Sham formalism, the kinetic energy and electron density comes 

from the orbitals (𝜙$) as shown in Equation. 1.23 and Equation 1.24.  

𝑇Í[𝜌] = − .
;
∑ 〈ϕ$|∇;|ϕ$〉Ë
$          (1.23) 
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Here 𝑇Í is not a true kinetic energy but the energy of a system of non-interacting electrons, 

which reproduce the density of a system at ground state.  

𝜌(𝑟) = ∑ |ϕ$|;Ë
$         (1.24) 

The total energy of a system at ground state according to DFT method is  

𝐸[𝜌] = 𝑇 [𝜌] + 𝑉IÏA[𝜌] + 𝑉Ð[𝜌] + 𝐸Ïf[𝜌]           (1.25) 

where 𝑉IÏA[𝜌] represents the electromagnetic interaction of the electron density with the 

external potential, 𝑉Ð[𝜌] as the classical Coulomb interaction, 𝑇 [𝜌] approximates the kinetic 

energy of electrons and 𝑉Ïf[𝜌] is the exchange correlation functional which corrects the first 

three terms in Equation 1.25. Though DFT can be an accurate method, only approximate 

solutions to the electronic energy can be attained due to the lack of exact expression for the Exc 

term. For this purpose various exchange correlations have been developed [63].    

The Becke, 3-parameter, Lee–Yang–Par (B3LYP) [64-66] is one of the most popular 

and most commonly used hybrid functionals [67], which we have employed during the 

quantum mechanical calculations presented in this work. The exact exchange energy Exc play 

an important role to accurate the density functional theory and is calculated as.  

𝐸*³nÑÒÓÔ = 	𝐸*ÒÕj + 𝑎¢(𝐸*Ð1 − 𝐸*ÒÕj) + 𝑎*(𝐸*ÖÖj − 𝐸*ÒÕj) + 𝐸³ÒÕj + 𝑎³(𝐸³ÖÖj − 𝐸³ÒÕj)  (1.26) 

where ao, ax and ac are semiemprical constants determined by a suitable fitting to experimental 

data and 𝐸*ÒÕj  is the exchange functional according to the local-spin density correlation (LSD) 

[68]. 𝐸*Ð1  is the exact Hartree-Fock (HF) exchange and 𝐸*ÖÖj is the gradient correlation 

proposed by Becke [64,69]. B3LYP is a hybrid functional of local exchange correlation 

functional which overestimate the atomization energy and Hartree-Fock method which 

underestimate this atomization energy. It sits in above the local density approximation (LDA) 

and generalised gradient approximation (GGA) in the Jacob’s ladder interpretation of DFT 

method. The inclusion of HF exchange in hybrid functional increases the accuracy of this DFT 

method because it includes partial self-corrections and thus gives a description of static 

correlation [70]. This makes the hybrid functional more accurate to study the spin states of 

transition metals because bonding of transition metal complexes involves considerable static 

correction. However, there are some problems that affect the accuracy of DFT method. First of 

all, the pure dispersion interaction between unbound chemical species are not well reproduced 
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by these functionals. Second is the poor elimination of the electron self-interaction and 

exchange energies. Third is the large energy errors for an important species even dispersion 

and self-interactions are not involved [71,72]. For example, in chapter 4 we have applied 

different hybrid functionals including B3LYP, PBE0 and B3LYP-D3 to study the 

dihydroxylation of the arginine substrate by a nonheme iron enzyme (OrfP) and we find that 

B3LYP with dispersion correction (B3LYP-D3) gives more accurate activation energy barriers 

close to experiment than other methods. In B3LYP hybrid functional with 25% of exact 

exchange contribution would be expected to favor higher spin ground state, for example during 

the dihydroxylation of arginine by a nonheme iron enzyme (OrfP) shows that quintet state spin 

state is the ground state and is well separated from the triplet spin state by ∆𝐸 + ZPE = 7 kcal 

mol–1 which is in-line with experimentally characterized quintet spin state for nonheme iron 

enzymes [20-21]. 

 

1.4.4 Quantum Mechanical-Cluster Technique 

QM calculation show slow convergence and are quite expensive in terms of computational cost 

with increase in system size. This limits the QM calculations to small systems study and it is 

hard to implement them on larger systems of thousands of atoms such as reactions in solvent, 

proteins and enzymes mechanisms. To study the QM calculation in solution, phase two type of 

solvent techniques have been used: implicit solvent models and explicit solvent models. In 

implicit solvent models the solvent is treated as a structureless continues medium with a 

specific dielectric constant and interfacial properties [73,74]. Thus, the number of interacting 

particles and degree of freedoms of a system is significantly reduces. Implicit solvent models 

include the polarizable continuum model (PCM) [75], the conductor like polarizable continuum 

model (CPCM) [76] the Onsager model [77] and the universal solvent model (SMD) [78]. The 

CPCM and PCM are the most common and widely used implicit solvent models. Both of these 

models define the cavities as envelopes of spheres around the atom and molecules. The 

dielectric constant inside these cavities remains the same as in the gas phase while outside it is 

different, depending on the desired solvent. Although the implicit solvent models are less 

expensive computationally and help to improve sampling, they are not giving the real picture 

of solvent molecules [79]. On the other hand, the explicit solvent models include individual 

solvent molecules, giving a more realistic picture where direct solvent-solvent interactions are 

observed [80,81]. The solvent molecules in explicit solvent models are defined by molecular 
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mechanics force fields such as the TIP3P force field [33]. Inclusion of explicit solvent 

molecules makes the calculations quite expensive. However, this problem is partly addressed 

by using two different techniques, namely the QM-cluster model and a mixed quantum 

mechanics / molecular mechanics method, which are described below [82].   

The quantum mechanical (QM) cluster or only-QM model is the first method used to 

study the reactivity and structure of fairly small systems and also more complex systems 

including enzyme catalytic processes. The QM-cluster approach is used to understand the 

enzymatic reaction mechanisms of the active site along with relevant surrounding amino-acid 

residues. The QM-cluster model is built from an already available X-ray crystal structural [83-

85] but we can only consider a limited number of atoms about few hundred and not the whole 

enzyme which consists of thousands or hundred thousand atoms.  The first QM-cluster model 

was used by Siegbahn and Crabtree to study methane hydroxylation by a non-heme iron 

monooxygenase enzyme [86]. This QM-cluster model consists of 20 atoms and was treated 

with DFT using B3LYP/6-311+G level. Later on, they studied heme peroxidases with 67 atoms 

in the QM-cluster model [87] and the mechanism of nitrogenase enzyme with QM-cluster 

model having 200 atoms treated at the same level of DFT. Recently, work on the mechanism 

of hydration and carboxylation activities of phenolic acid has been done which had up to 312 

atoms in the QM-cluster model at the B3LYP/6-311+G (2d,2p) level of DFT [88,89]. Since the 

whole enzyme is not considered in QM-cluster model some other environmental effects like 

short and long-range electrostatics interactions, steric and polarization effects have been 

ignored.   

 

1.4.5 Quantum Mechanics / Molecular Mechanics method 

The quantum mechanical / molecular mechanical (QM/MM) method is a hybrid method used 

to study the chemical reaction in solutions and other complex reactions including enzymatic 

reaction [90]. In QM/MM the system is divided into two parts: one is the QM region, where 

the chemical reaction takes place and is treated with the more accurate quantum mechanical 

method the second is the MM region, the surrounding part of the QM region which is treated 

with the less expensive force field method [91]. The former region only consists of a small 

number of atoms while the latter region covers the larger area of the system. The schematic 

representation of hybrid QM/MM method is shown in Figure 1.3.   
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Figure 1.3. QM/MM regions of a system [92]. 

There are two approaches used to combine the QM and MM parts: one is the additive scheme 

[93] and the second is the subtractive scheme [94]. In the first approach, the total energy of a 

system is represented as the sum of the QM energy terms (EQM), MM the energy terms (EMM) 

and the energy of QM/MM coupling terms (EQM/MM). 

𝐸ABA = 𝐸ÚÛ + 𝐸ÛÛ + 𝐸ÚÛ/ÛÛ          (1.27) 

The second approach is the subtractive scheme which is also known as integrated molecular 

orbitals molecular mechanics. It divides the system into two layers and subtracts the double 

counted energy of the smaller layer as: 

𝐸ABA = 𝐸_ICDÛÛ + 𝐸ÝBHID
ÚÛ − 𝐸ÝBHIDÛÛ      (1.28) 

𝐸_ICDÛÛ represents the energy of the whole real system, 𝐸ÝBHID
ÚÛ  represents the energy of the QM 

part while 𝐸ÝBHIDÛÛ  represents the energy of MM part. The main advantage of the subtractive 

scheme is that no communication is required between quantum mechanics and molecular 

mechanics which makes its implementation relatively straightforward. The major disadvantage 

of this method is that the force filed parameters are required for the QM part which are not 

always available. Additionally, the force field should be flexible to describe the effect of 

chemical changes during the chemical reactions. Furthermore, this method also ignores the 

polarization effect of QM part by the MM environment. These problems are addressed in the 

additive scheme where the interactions in the MM environment are described by a force field 

and the polarization effect of MM environment on QM region by the electrostatic embedding 

method [92].  
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1.5 Free Energy Methods 

The Gibbs free energy is the principal quantity in thermodynamics under ambient conditions 

which drives the vast majority of chemical processes in nature such as chemical reactions, 

protein folding and protein-ligand binding [95]. The calculation of free energy has been a main 

longstanding goal for computational and theoretical chemists because it enables one to model 

chemical reaction and design new materials and drugs against diseases efficiently [96]. The 

recent development in new methods, algorithms and advancement in technologies has 

improved the efficiency and accuracy of free energy calculations. There are many methods 

available in the literature which are used to calculate the free energy values including 

alchemical free energy methods such as free energy perturbation (FEP) [97], thermodynamic 

integration (TI) [98] and the Bennett acceptance ratio (BAR) [99], which calculate the free 

energy difference between two states along a reaction coordinate. In these methods the reaction 

pathway is divided into small intermediate steps which helps them to achieve the convergence 

between initial and final stages. However, these methods are quite expensive in terms of 

computational cost and time to produce the free energy difference [98]. While the BAR method 

uses the method. 

The Weighted histogram analysis method (WHAM) [100] is another method used along 

with the umbrella sampling technique to calculate the free energy and potential of mean force 

(PMF) for bimolecular simulations. The PMF is calculated along the reaction coordinates by 

using umbrella sampling which divide the whole reaction profile into a number of windows. 

This method allows the multiple overlaps probability distribution and gives the better free 

energy value estimation. Furthermore, it accounts for all the simulations along the reaction 

pathway to calculate the free energy values which reduces the statistical error. However, it still 

has convergence problems which make it computationally expensive [100,101].  

 The other free energy methods are energy-entropy (EE) decomposition methods such as 

the Molecular Mechanics Poisson-Boltzmann and Generalised Born Surface Area continuum 

solvation models known as MM/PBSA [102] and MM/GBSA [103], respectively. These are 

popular methods to determine the binding free energies of small ligands with complex 

biomolecules such as proteins and help in structure-based drug design. These are based on MD 

simulations of ligand-protein structures so they are intermediate in term of accuracy and 

computational cost than FEP and TI methods [104]. These methods calculate the energy values 
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directly from the force field in the MD simulation but for entropy calculation they need 

additional methods which are not so straightforward. To calculate the entropy, various methods 

have been proposed which are as follows.  

1.6 Entropy Calculations  

Calculating and understanding entropy values of liquids and solutions is an important challenge 

because many processes in nature take place in the liquid phase. There are several approaches 

available in the literature to calculate entropy values [105-113]. Amongthe most common 

methods are normal mode analysis (NMA) [114] and quasi-harmonic analysis (QHA) [115] 

which are based on the rigid-harmonic oscillator (RRHA) approximation [116]. Other entropy 

methods are 2-Phase thermodynamic (2PT) [117], the minimal spanning tree (MIST) variant 

[118] and mutual information [119]. 

1.6.1 Normal Mode Analysis 

Normal Mode Analysis (NMA) [114] is one of the most commonly used methods to calculate 

the entropy of systems including liquids and biomolecules. In NMA the entropy is calculated 

from the vibrational frequencies which are derived from multidimensional Gaussian 

distribution using the eigenvalues of Hessian matrix at selected energy minima. The Hessian 

matrix may be articulated in term of normal coordinates using orthonormal transformation 

matrix by diagonalizing Hessian matrix [120]. The eigenvalues from these matrixes represents 

the force constant which is used to calculate the vibrational frequencies using 

𝜈] =
.
;r �𝜆]      (1.29) 

where 𝜈] are the vibration frequencies and 𝜆] are the eigenvalues of the Hessian. The vibrational 

frequency is used in quantum harmonic oscillator equation to calculate the vibration entropy 

as. 

𝑆g]F = 	𝑘¨ ∑ � áâ+/�ãä
Iåæ+ �ãç⁄ J.

− lnM1 − eJáâ+ �ãä⁄ O�Ñê
]ë.    (1.30) 

NMA somewhat underestimates the entropy values compared to experiment because it derives 

frequency values from the energy minimum of the system. Also, NMA in principle needs to be 
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done at every minimum to calculate entropy, which is impractical for larger systems like 

biomolecules that make NMA limited to small molecules only [121,122]. 

1.6.2 Quasiharmonic Analysis 

Quasiharmonic Analysis (QHA) [115] is another method which is widely used to calculate the 

vibrational frequency and absolute entropy values from multidimensional Gaussian probability 

distribution but makes use of the internal coordinates of atoms relative to their average 

positions in an MD simulation [123-125]. The entropy is calculated from the using  

𝜈$u = 𝑘¨𝑇𝜎$uJ.      (1.31) 

where 𝜈$u  are the generalised force constants 𝑘¨ is Boltzmann's constant, and 𝜎 is the mass-

weighted covariance matrix of coordinate fluctuations. These force constants are substituted 

into Equation 1.29 and the resulting frequencies are put into Equation 1.30 to calculate the 

absolute entropy. However, for larger system having many degrees of freedoms, such as 

biomolecules QHA leads to the overestimation of entropy values because of the anharmonicity 

of coordinates. Furthermore, the other disadvantage of QHA is that the system convergence is 

very slow due to the noise in the off-diagonal correlations [126,127] but this noise can be 

reduced by using internal coordinates instead of Cartesian coordinates [128] or a von Mises 

distribution [129].  

 

1.6.3 Force Covariance Method  

The overestimation of QHA method is addressed by the force covariance (FC) method which 

quantifies the shape of potential energy surface of a particle's harmonic motion from forces 

rather than coordinates by using the relationship 𝐹 = −𝑘∆𝑞 [112]. The average potential 

energy of the system in the harmonic approximation is calculated using 

〈𝑈〉 = .
;
𝑘¨𝑇 =

.
;
𝑘〈∆𝑞;〉 = .

;
〈1)〉
�

     (1.32) 

where 〈𝑈〉 is the average potential of a harmonic oscillator, k is the force constant and ∆𝑞 =

𝑞 − 〈𝑞〉 is the particle's position q minus the average position 〈𝑞〉. By converting the mass 



 34 

weighted coordinates 𝑞¶ = 𝑚./;𝑞 and forces 𝐹¶ = 𝑚./;𝐹 and substituting the angular 

frequency 𝜈 for a harmonic oscillator Equation 1.30 becomes 

〈𝑈〉 = .
;
𝜈;〈∆𝑞¶;〉 = .

;
〈1±)〉
ì)

     (1.33) 

For a system of N atoms, a mass weighted forces covariance matric can be constructed as 

𝜎$u1 = 〈𝐹$¶𝐹u¶〉      (1.34) 

By diagonalizing this matrix, 3N eigenvalues are obtained which leads to the calculation of 

force derived angular frequency using  

 𝜈$1 =
.
;r
í î+

ï

�ãä
      (1.35) 

where 𝜈$1  is the force derived frequency which is used in Equation 1.30 to calculate the 

vibration entropy values [130]. The FC method sits in between under and over estimation 

entropy values by NMA and QHA methods.  

 

1.7 Overview of Chapters in the Thesis 

The main results of this thesis are in five chapters which are summarized below. 

Chapter 2. Entropy of Simulated Liquids Using Multiscale Cell Correlation, describes the 

multiscale cell correlation (MCC) method to calculate the entropy of pure liquids from 

molecular dynamics (MD) simulations. The method uses forces and torques from MD 

simulations at two level of length scales i.e. molecular level and united atom level and 

probability distributions of molecular coordinations and conformations. MCC is applied 

broader set of fifty-six (56) important industrial liquids modeled using Generalized AMBER 

Force Field (GAFF) and Optimized Potentials for Liquid Simulations (OPLS) force fields with 

1.14*CM1A charges. The entropy values obtained from MCC are compared with experimental 

values and obtained unsigned errors which are 8.7 J K–1 mol–1 and 9.8 J K–1 mol– for GAFF 

and OPLS respectively. This is significantly better than the 2-Phase Thermodynamics method 

for the subset of molecules in common, which is the only other method that has been applied 
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to such systems. MCC makes clear why the entropy has the value it does by providing a 

decomposition in terms of translational and rotational vibrational entropy and topographical 

entropy at the molecular and united-atom levels. 

 

Chapter 3. Comparison of Free-Energy Methods to Calculate the Barriers for the 

Nucleophilic Substitution of Alkyl Halides by Hydroxide, describes a new proposed energy-

entropy (EE) method to calculate the Gibbs free energy of reactants and transition states of SN2 

type reaction in explicit solvent by combining with quantum mechanics/molecular mechanics 

(QM/MM) molecular dynamics simulations with MCC. The EE-MCC method is applied to six 

nucleophilic substitution reactions of the hydroxide transfer to methyl and ethyl halides in 

water, where the halides are F, Cl, and Br. The Gibbs free energy values are calculated using 

three methods i.e. EE-MCC, EE-NMA, PMF and with two Hamiltonian i.e. self-consistent 

charge density functional based tight-binding (SCC-DFTB), B3LYP/6-31+G* and M06/6-

31+G* density functional theory (DFT), potential of mean force (PMF) in explicit water 

solvent. The EE-NMA values are also calculated using B3LYP/6-31+G* and M06/6-31+G* in 

implicit solvent water model while the experimental values are derived via transition state 

theory (TST). The barriers using SCC-DFTB are found to agree well with the PMF and 

experiment and previous computational studies, being slightly higher but improving on the 

lower values obtained for the implicit solvent.  

 

Chapter 4. What determines the selectivity of arginine dihydroxylation by the nonheme 

iron enzyme OrfP? Describes the use of molecular dynamics simulation and quantum 

mechanical cluster model techniques with density functional theory (DFT) to study the 

dihydroxylation reaction mechanism of L-Arginine catalyzed by a nonheme iron enzyme OrfP. 

The OrfP reacts with L-Arg selectively to form the 3R,4R-dihydroxyarginine product, which 

in mammals can inhibit the nitric oxide synthase enzymes involved in blood pressure control. 

We show that substrate binding and positioning in the active site guides a highly selective 

reaction through C3-H hydrogen atom abstraction. This happens despite the fact that the C3‒H 

and C4‒H bond strengths of L-Arg are very similar. Electronic differences in the two hydrogen 

atom abstraction pathways drive the reaction with an initial C3‒H activation to a low-energy 
5𝜎-pathway, while substrate positioning destabilizes the C4‒H abstraction and sends it over the 
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higher-lying 5𝜋-pathway. We show that substrate and monohydroxylated products are strongly 

bound in the substrate binding pocket and hence product release is difficult and consequently 

its lifetime will be long enough to trigger a second oxygenation cycle. 

 

Chapter 5. Lignin biodegradation by a cytochrome P450 enzyme: A computational study 

into syringol activation by GcoA, uses the large size quantum mechanical cluster model with 

density functional theory to study the lignin biodegradation reaction mechanism catalyzed by 

an isozyme of cytochrome P450 known as GcoA. DFT study of GcoA to investigate syringol 

activation by an iron(IV)-oxo heme cation radical oxidant (Compound I) leading to hemiacetal 

and acetal products. Several substrate-binding positions were tested and full energy landscapes 

calculated. The study shows that substrate positioning determines the product distributions. 

Thus, with the phenol group pointing away from the heme, an O-demethylation is predicted, 

whereas an initial hydrogen-atom abstraction of the weak phenolic O‒H group would trigger a 

pathway leading to ring-closure to form acetal products. Predictions on how to engineer P450 

GcoA to get more selective product distributions are also given.  

 

Chapter 6. Energy-Entropy Method Using Multiscale Cell Correlation to Calculate Host-

Guest Free Energies of Binding, uses the energy-entropy method with MCC to calculate the 

binding Gibbs free energies of host-guest complexes. The seven guest molecules “drug of 

abuse” and a host molecule cucurbit [8]uril (CB8), which can serve as a drug carrier are taken 

from the SAMPL8 challenge. The binding Gibbs free energy values for these host-guest 

systems were calculated by using our energy-entropy method, where energy and entropy are 

calculated directly from molecular dynamics simulations. The mean average error of calculated 

binding free energy versus experimental values is 0.15 kcal mol–1. MCC yields a value of the 

entropy of the system and a decomposition over molecules, level, motion and minima. 
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Abstract 

Accurately calculating the entropy of liquids is an important goal, given that many processes 

take place in the liquid phase. Of almost equal importance is understanding the values obtained. 

However, there are few methods that can calculate the entropy of such systems, and fewer still 

to make sense of the values obtained. We present our multiscale cell correlation (MCC) method 

to calculate the entropy of liquids from molecular dynamics simulations. The method uses 

forces and torques at the molecule and united-atom levels and probability distributions of 

molecular coordinations and conformations. The main differences with previous work are the 

consistent treatment of the mean-field cell approximation to the approriate degrees of freedom, 

the separation of the force and torque covariance matrices, and the inclusion of conformation 

correlation for molecules with multiple dihedrals. MCC is applied to a broader set of 56 

important industrial liquids modeled using the Generalized AMBER Force Field (GAFF) and 

Optimized Potentials for Liquid Simulations (OPLS) force fields with 1.14*CM1A charges. 

Unsigned errors versus experimental entropies are 8.7 J K–1 mol–1 for GAFF and 9.8 J K–1 mol– 

for OPLS. This is significantly better than the 2-Phase Thermodynamics method for the subset 

of molecules in common, which is the only other method that has been applied to such systems. 

MCC makes clear why the entropy has the value it does by providing a decomposition in terms 

of translational and rotational vibrational entropy and topographical entropy at the molecular 

and united-atom levels.  
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2.1 Introduction 

Molecular liquids are present in numerous systems in chemistry and biology. However, 

methods to calculate their entropy are scarce or limited in scope. Entropy quantifies the 

probability distribution of quantum states of a system and, together with energy, determines a 

system’s stability. The most common route used to determine entropy is indirect, being as a 

difference with respect to a reference state, typically the ideal gas or a non-interacting set of 

atoms. The entropy difference may be extracted from integrated heat capacity changes or from 

the Gibbs energy difference, either as its temperature derivative or as a difference with enthalpy 

[1]. While there is a range of methods to compute entropy [2–10], those that use single 

molecular dynamics or Monte Carlo simulations are advantageous because of the ease of using 

standard simulation methods and because such approaches directly yield and explain entropy 

and structure in terms of the full probability distribution of the system of interest. However, 

because the ensemble of molecular configurations generated by standard simulation methods 

is only a tiny fraction of the full ensemble corresponding to a system’s entropy, special 

techniques are required to extrapolate to the full probability distribution and entropy.  

The probability distributions to evaluate entropy are typically over the coordinates of 

the system, which may be Cartesian coordinates, bonds-angles-dihedrals, or interatomic 

distances. Histogram-based methods, because of their arbitrary bin-widths, can only give the 

entropy difference relative to a reference, which is typically the uniform distribution. Even 

then, the entropy difference may be unrealistic for strongly interacting systems such as those 

with covalent bonds because of the omission of quantum effects which necessarily keep the 

entropy non-negative. For this reason, histogram methods are often restricted to softer degrees 

of freedom such as dihedrals or atomic distances. The simplest approach ignores coordinate 

correlations by considering each coordinate separately, for example, in dihedral angles [11]. 

Higher-order correlations can be included such as the radial distribution function [12–14] or a 

mutual-information expansion [15,16] but at greater computational expense and complexity, 

even for second-order, although some correlations are small and can be excluded [17–19]. 

Extensions to higher orders are difficult and do not necessarily lead to more accuracy [15,20]. 

Mutual information in terms of discrete rotamers has been found to converge much faster, 

enabling up to eighth order [21]. An alternative strategy for high-dimensional data sets is the 

k-Nearest Neighbours method [16,22–24] which more adaptively estimates density from the 
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distances between configurations but at the price of having many distances to compute and still 

requiring a lot of data to converge.  

Significant simplification of the theory, greater speed of convergence and a route to the 

direct calculation of entropy is provided by assuming a multivariate Gaussian probability 

distribution [25]. Entropy is directly computed from the quantum states of the set of harmonic-

oscillator eigenvectors [26,27]. The main limitation of the method is the suitability of the 

Gaussian distribution, given that typical potential energy surfaces for flexible molecules [28] 

or liquids [27,29] have multiple minima, compounded by the difficulty of how to specify the 

minima. A hybrid solution to this problem is to replace the diagonal elements of the coordinate 

covariance matrix with the entropy of the probability distributions [30,31]. Another solution is 

to incorporate multiple Gaussians [32]. An approach particularly relevant to the case of liquids 

is the 2-Phase Thermodynamics (2PT) method, which calculates entropy from the spectrum of 

vibrational frequencies derived from the velocity auto-correlation function and the gas-phase 

fluidicity [33]. Another viable method for liquid-phase entropy is the cell approximation which 

maps regions of the potential energy surface into single, representative energy wells, whose 

entropy is determined from the force [34] plus an entropy term for the probability distribution 

of the energy wells [35]. This is the method we have been working to generalise, progressing 

from liquid argon [34] to liquid water with its rotational vibration and orientational degrees of 

freedom [35–37], organic liquids with an internal one-dimensional dihedral entropy [38], 

single molecules with internal entropy based on force correlation [39], and molecular liquids 

in a multiscale framework from atom to united atom to molecule to system [40]. This 

development has been supported by extensive parallel studies on the entropy of aqueous 

solutions [41–47]. With the main ideas now in place to make the method general, to encapsulate 

the main features of the method we name it Multiscale Cell Correlation (MCC).  

Here we extend MCC to calculate the entropy of 56 important industrial liquids. These 

represent a class of system which no other method has been capable of calculating entropy 

except for the 2PT method, which has been tested on a smaller subset of 14 liquids [48], argon 

[33], water [49], carbon dioxide [50], and methanol and hexane including torsional fluidicity 

[51]. The first improvement here in MCC is a more appropriate application of the mean-field 

cell approximation to the weakly correlated non-bonded and dihedral degrees of freedom and 

not to the correlated bonded and angular degrees of freedom as had been done in previous work 

[39,40]. Strong correlations for the bonded atoms invalidate the cell approximation and can be 
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accounted for in the force covariance matrices. Related to this, force and torque covariances 

are evaluated separately because of their weak correlation [40]. The second key improvement 

is a new way to account for correlation between dihedrals by using a covariance matrix of 

conformation correlation, a method that scales with the square of the number of dihedrals. The 

56 liquids are tested using two force fields: OPLS (Optimized Potentials for Liquid 

Simulations) with 1.14*CM1A charges [52] and GAFF [53] (Generalized AMBER Force 

Field), for both of which parameters can be generated in an automated fashion for a wide range 

of molecules. A decomposition of the entropy in six terms gives an insightful and intuitive 

explanation of why molecules have the entropy they do. Compared to our earlier study in which 

a comparison with 2PT was inconclusive because there were few liquids in common, MCC is 

found to be significantly closer to experiment than 2PT, which in most cases underestimates 

experiment. An analysis of entropy components suggests that the internal entropy of 2PT is 

responsible for this underestimation, even when torsional fluidicity is included [51]. The 

findings show that MCC is well placed to scale to complex multi-component systems with 

multiple length scales.  

 

2.2 Theory 

2.2.1 Entropy Decomposition 

The entropy of molecular liquids is well captured at two different length scales [40]: the 

molecule (M) level and the united-atom (UA) level. A united atom is defined here as a non-

hydrogen atom together with any bonded hydrogen atoms and is taken as a rigid body with 

both translational and rotational degrees of freedom rather than only translation as for a point-

particle unless there are no hydrogens. Such an approach captures softer collective dihedral 

motion of hydrogens while ignoring their individual stretching and bending motions which 

have negligible entropy, owing to the low mass of hydrogen and its higher bond and angle 

vibrational frequencies. At the other extreme of the whole system, the entropy of its three 

translational and three rotational degrees of freedom is negligible on a per-molecule basis. 

Coordinate systems at the molecule and united-atom levels are defined as before [40]. For a 

molecule this is its three principal axes with the origin at the centre of mass. For a united atom 

the axes and centre of mass depend on the number of bonded united and hydrogen atoms. All 

non-linear molecules and united atoms have three translational degrees of freedom. Linear 
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molecules in terms of their united atoms or linear united atoms in terms of their hydrogens have 

two rotational degrees of freedom. United atoms with no hydrogens have no rotational degrees 

of freedom.  

In the cell approximation the potential energy surface is partitioned into energy wells, 

and in the multiscale approximation this partitioning is done at the molecule and united-atom 

levels. This brings about two kinds of entropy term: vibrational relating to the average size of 

the energy wells, termed a cell, and topographical relating to the probability of the energy wells. 

The vibrational term at each level is further partitioned according to the translational (transvib) 

and rotational (rovib) degrees of freedom. The translational component of the topographical 

entropy at the molecular level is zero for a pure liquid because exchanging identical molecules 

leads to no change. The rotational topographical entropy (topo) at the molecule level is termed 

the orientational entropy. At the united-atom level the translational topographical entropy is 

the conformational entropy, while the rotational component, corresponding to hydrogen-bond 

arrangements, is negligible for the liquids studied here. The total entropy per molecule for a 

liquid is therefore taken as the sum of six terms  

𝑆ABACD = 𝑆ÛA_CG`g]F + 𝑆Û_BAg]F + 𝑆Û
ABòB + 𝑆óôA_CG`g]F + 𝑆óô_BAg]F + 𝑆óô

ABòB    (2.1) 

 

2.2.2 Molecular Vibrational Entropy  

All	four	vibrational	entropy	terms	are	calculated	in	the	harmonic	approximation	using	the	equation	for	a	

collection	of	Nvib	quantum	harmonic	oscillators	 

𝑆g]F = 	𝑘¨ ∑ � áâ+/�ãä
Iåæ+ �ãç⁄ J.

− lnM1 − eJáâ+ �ãä⁄ O�Ëõö÷
]ë.    (2.2) 

where kB is Boltzmann’s constant, h is Planck’s constant, T is temperature and νi are the 

vibrational frequencies. Different to previous work [40], translational and rotational vibrational 

entropy are evaluated separately, justified by the absence of correlations between the forces 

and torques that are used to evaluate them. For 𝑆ÛA_CG`g]F, Nvib = 3 and vi are calculated using 

[39,40]  

𝜐$ =
.
;r í

î+
�ãä

       (2.3) 
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where λi are the eigenvalues of the 3 × 3 mass-weighted force covariance matrix of the 

molecule with elements ⟨Fi′Fj′⟩, with i and j ranging over the three axes x, y, z and averaging 

over all molecules in all simulation frames. Mean-field, mass-weighted forces are defined as 

𝐹$¶ = 𝐹$ (2√𝑚)⁄  where m is the molecule’s mass, and Fi is half the component of net force on 

all the atoms of the molecule rotated into the molecule’s coordinate frame. In practice, this 

matrix is essentially diagonal because forces along different axes are negligibly correlated. The 

halving is done in the mean-field cell approximation [34,35]. whereby every pairwise energy 

term and therefore its negative coordinate derivative, the force, is partitioned equally between 

the atoms involved. The mean-field cell approximation is justified in liquids because average 

molecular energies and forces in many-body systems are weakly correlated with the position 

of any other neighbouring molecule. Only over the short duration of a repulsive collision is the 

correlation significant. To calculate 𝑆Û_Bg]F with Equation (2.2), Nvib = 3 unless the molecular 

is linear with respect to its united atoms, in which case Nvib = 2. The vibrational frequencies νi 

are calculated using Equation (2.3) with eigenvalues from the 𝑁g]F × 	𝑁g]F moment-of-inertia-

weighted torque covariance matrix of the molecule, whose elements are 〈τ$¶𝜏u¶〉 where 𝜏$¶ =

𝜏$/M2�𝐼$O for each axis i = x, y, z and Ii is the respective moment of inertia, with torque halving 

being done as for the forces.		

 

2.2.3 United-Atom Vibrational Entropy 

The procedure at the united-atom level to evaluate 𝑆óôA_CG`g]F and 𝑆óô_Bg]F in Equation (2.1) is 

similar to that at the molecule-level but with some differences. United atoms are used in place 

of molecules to evaluate the forces, torques, masses and moments of inertia. Nvib in Equation 

(2.2) for united-atom translation equals 3N − 6, where N is the number of united atoms and the 

six vibrations removed correspond to the six largest eigenvalues which are already accounted 

for as molecular translation and rotation. Nvib in Equation (2.2) for united-atom rotation 

depends on the number of non-linear, linear and point united atoms, as well as the linearity of 

the whole molecule. Non-linear and linear united atoms contribute 3 and 2 degrees of freedom, 

respectively, and the largest six or five eigenvalues are removed if the molecule is non-linear 

or linear. A notable difference compared to the molecule level is that the mean-field cell 

approximation is not made for bonded atoms or bonded 1–3 interactions corresponding to 

angles. The forces of such atoms are strongly correlated, a correlation that is accounted for in 
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the covariance matrix. However, the mean-field approximation is still made for united-atom 

rotation and dihedral vibration whose correlations with neighbours are weak relative to the 

overall torque or force or which largely average out to zero because of averaging in different 

reference frames. Consequently, forces in the united-atom matrix are not halved but united-

atom torques are halved. To implement the cell approximation for dihedrals, the Ndih lowest 

eigenvalues of the united-atom force covariance matrix are halved twice (force-squared), where 

Ndih is the number of united-atom dihedrals, because these eigenvalues correspond to the soft 

conformational eigenvectors.  

 

2.2.4 Molecular Topographical Entropy 

The molecular topographical entropy 𝑆Û
ABòB in Equation (2.4) only has a rotational contribution 

for a pure liquid, referred to as the orientational entropy. Based on the idea that neighbouring 

molecules discretize a molecule’s rotational motion, 𝑆Û
ABòB is estimated using an average of the 

number M of orientations weighted by the probability p(Nc) of molecular coordination number 

Nc using [40]  

𝑆Û
ABòB = 𝑘¨ ∑ 𝑝(𝑁f)ln	 !max	(𝑁fÑ𝜋)

m
)/𝜎$Ë%     (2.4) 

where σ is the symmetry number of the molecule according to its united atoms. The max 

function only takes effect for the very small values of Nc which are rare. Thus, there are ~𝑁f
. ;⁄  

orientations per rotational axis, and every orientation is taken to have the same probability, 

𝜎/(𝑁fÑ𝜋). ;⁄ , justified by the weak correlation of these moderately polar molecules with their 

neighbours. For linear molecules with two axes of rotation [40], the equation is 

𝑆Û
ABòB = 𝑘¨ ∑ 𝑝(𝑁f)ln	 !max	(1,

Ë%
'
)$Ë%          (2.5) 

Molecules with a single united atom may still have orientational entropy at the atom-level if 

their hydrogens sufficiently break symmetry, so as to form distinct energy wells. Ammonia is 

included in this category, as water had been earlier [40], but methane and hydrogen sulfide are 

not. Nc is evaluated using the parameter-free relative angular distance (RAD) method [54,55] 

according to the centre of mass of each molecule. RAD determines Nc from a single 

configuration in good agreement with those using a cut-off at the first minimum in the radial 
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distribution function. It avoids the need for a mean-field, spherically-symmetric cut-off that 

must either be chosen arbitrarily or evaluated from the pre-computed radial distribution 

function.  

 

2.2.5 United-Atom Topographical Entropy 

The topographical entropy at the united-atom level, 𝑆óô
ABòB, also called the conformational 

entropy, is derived from the distribution of discrete conformations for all flexible dihedrals 

involving united atoms. Unlike in the previous work on liquid entropy [40] in which the 

molecules only had a maximum of one flexible dihedral, a number of molecules here have 

multiple dihedrals. Given that they may be correlated, we present a new method to account for 

this using a conformation correlation matrix. Each molecule has Ndih dihedrals, taken as four 

consecutives, bonded united atoms. The topographial entropy of dihedrals at the atomic level 

and involving hydrogen are ignored, either because they have only one conformation by 

symmetry, such as a methyl group, or because they have negligibly more than one 

conformation, such as a hydroxyl, owing to limited variable hydrogen-bonding capability to 

neighbour molecules. The molecules considered here have three conformations per dihedral: 

trans (t), gauche− (g−) and gauche+ (g+), defined with boundaries in dihedral angle at 120◦, 0◦ 

and −120◦, respectively. Thus, each molecule has available 3Ndih conformations. Every 

combination of conformations for each molecule is termed a conformer, and the total possible 

number of conformers is 3Ndih. Overall, we ensure there is no double-counting of identical 

conformers by treating g– and g+ as distinct and dividing by the rotational symmetry number 

in Equations (4) and (5). We construct the 3Ndih × 3Ndih correlation matrix ρ which has elements	 

𝜌$u = 𝑝$u𝑟$u/𝑃/($)          (2.6) 

where 𝑝$u  is the probability of simultaneously having the conformation pair i and j, normalised 

such that ∑ ∑ 𝑝$uÑ)�;
uëÑ) = 1Ñ/�;

$ëÑ/  for the square sub-block over all conformation i and j of the 

respective dihedrals m and n, and 𝑟$u is the Pearson correlation coefficient of conformations i 

and j, given by 

𝑟$u =
*+kJ*+*k

!(*+J*+
))(*kJ*k

)$
m/)         (2.7) 
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where pi is the probability of conformation i. Note that rii = 1, pii = pi, and pij = 0 if i and j 

belong to the same dihedral. Pm(i) in Equation (2.6) are normalisation constants, one per dihedral 

m, that are defined to ensure ∑ ∑ 𝑝$u
ÑË+ö,
uë. = 1Ñ/�;

$ëÑ/  for each dihedral m. Thus, ρij represents the 

fraction of correlation that conformation pair ij makes to the total correlation that i's dihedral 

m has with all conformations of all dihedrals. Similar to the von Neumann entropy of the 

density matrix [56], the total conformational entropy is given by  

𝑆óô
ABòB = −𝑘¨ ∑ 𝜆$ln	(𝜆])

ÑË+ö,
]ë.          (2.8) 

where λi, the eigenvalues of ρ, are the probability of each conformer eigenvector, and each 

conformer eigenvector itself comprises the probabilities of each conformation. Unlike the 

density matrix, whose trace equals 1 [56], the trace of ρ ranges from 1, corresponding to full 

correlation between conformations, to a maximum of Ndih, corresponding to fully uncorrelated 

conformations. For a molecule with uncorrelated conformations or with only one dihedral [40], 

its eigenvalues would be the diagonal elements of ρ and the conformer eigenvectors would be 

the individual conformations. At the other extreme of full correlation, as would occur when 

there is only one single conformer, one eigenvalue would equal 1 with its eigenvector being 

that very conformer, while the remaining eigenvalues would be zero. For cases of intermediate 

correlation between conformations, the eigenvector conformers would have various 

contributions from the correlated conformations, with entropy ranging from zero to the fully 

disordered value for all Ndih dihedrals.  

 

2.3 Methodology  

2.3.1 Molecular Dynamics Simulations  

The entropy was calculated for a series of 56 liquids using molecular dynamics simulations. 

All simulations were carried out with the sander module of the AMBER 14 simulation package 

[57]. Each system consists of 500 identical molecules in the liquid phase in a cubic box. The 

force fields used were GAFF [53] with AM1-BCC charges for all molecules and OPLS-AA 

with the 1.14*CM1A charges [52] for all molecules except acetonitrile, carbon dioxide, 

hydrogen sulfide and tetrafluoroethylene for which charges were not available on the 

LigParGen webserver [52]. In place of this for carbon dioxide, a simulation was run with the 
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TraPPE (Transferable Potentials for Phase Equilibria) force field [58]. All molecules were built 

in standard geometry using xleap of AMBER 14. GAFF force-field parameters were generated 

with antechamber [59] and all molecules were placed in a cubic box of side 6 nm using Packmol 

[60]. For OPLS, the GROMACS topology and coordinate files were obtained by uploading a 

pdb of each molecule to the LigParGen webserver [52] with the 1.14*CM1A charges, the 

coordinates of the box of molecules were generated in GROMACS 5.1 [61], and the topology 

and coordinate files were converted into AMBER format using the AMBER ParmEd tool. Note 

that these OPLS charges differ to those in previous work [40] with the OPLS force field which 

had charges fitted to liquid-phase properties [62]. TraPPE parameters for carbon dioxide were 

added directly in by hand.  

For equilibration, each system was minimized with 500 steps of steepest descent 

minimization, thermalized in a 100 ps molecular dynamics simulation at constant volume and 

temperature using a Langevin thermostat with a collision frequency of 5 ps−1, and brought to 

the correct density with 1 ns of molecular dynamics simulation at constant pressure using the 

Berendsen barostat with a time constant of 2 ps. For data collection, forces and coordinates 

were saved every 1 ps in a further 1 ns simulation under the same conditions, which earlier 

work had shown to be easily sufficient for converged values [40], in which as few as ten frames 

was often sufficient to achieve converged integer values in units of J K–1 mol–1. The pressure 

was 1 bar and the temperature was 298 K unless the liquid was gaseous at that temperature, in 

which case the boiling temperature at 1 bar was used as listed in Table 2.1. The exception is 

carbon dioxide, which does not liquefy at ambient pressure and so the pressure was set to 5.99 

bar and temperature 220 K which is in the liquid-phase region, close to the triple point and 

matches conditions used in a 2PT study [50]. Simulations used SHAKE on all bonds involving 

hydrogen atoms, a non-bonded cutoff of 8 Å, periodic boundary conditions, particle-mesh 

Ewald summation with default parameters in AMBER, and a 2 fs timestep. Table 2.4 contains 

all the liquids simulated, for five of which the following abbreviations are used: 

dimethylformamide (DMFA), dimethylsulfoxide (DMSO), N-methyl acetamide (NMA), tert-

butyl alcohol (TBA) and tetrafluoroethylene (TFE). Entropies were calculated with in-house 

C++ and Perl code, reading in the force, coordinate and topology files and writing out 

eigenvalues and coordination numbers.  
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Table 2.1. Boiling Temperature of Liquids [63] that are Gaseous at Ambient Conditions. 

Liquid T/K Liquid T/K Liquid T/K Liquid T/K 

ammonia 240 ethane 185 hydrogen sulfide 213 methylamine 267 

butane 272 ethene 170 methane 112 Propane 231 

carbon dioxide 220a ethylamine 291 methanethiol 279 TFE 197 

diazene 275       

a Pressure is 5.99 bar. 

 

2.4 Results  

2.4.1 Entropy Values  

Figure 2.1 presents the entropy of 50 of the liquids calculated by MCC for the OPLS and GAFF 

force fields plotted against the respective experimental values [63–70]. Table 2.2 gives the 

mean unsigned and signed deviations, slopes, intercepts, Pearson correlation coefficients R2, 

and zero-intercept slopes of entropies by the MCC and 2PT methods with respect to 

experiment. Table 2.4 contains the MCC entropy values for all 56 liquids, together with values 

from experiment, the MCC entropy of carbon dioxide with the TraPPE force field, and values 

using the 2PT method with the OPLS and GAFF force fields for fifteen liquids [48], carbon 

dioxide [50] and methanol and hexane including torsional fluidicity [51]. Statistical errors are 

negligible for the precision given.  

Table 2.2. Statistical Data for MCC and 2-Phase Thermodynamics (2PT) versus Experiment. 

Data Set (Number 

of Liquids) 

〈-𝑺 − 𝑺𝐞𝐱𝐩𝐭-〉/ 

J K–1 mol–1 

〈-𝑺− 𝑺𝐞𝐱𝐩𝐭-〉/ 

J K–1 mol–1 

Slope Y-Intercept/ 

J K–1 mol–1 

R2 Zero-Intercept 

Slope 

MCC OPLSa (46) 9.8 0.6 0.94 11.7 0.95 1.00 

MCC GAFF (50) 8.7 –0.3 0.93 13.0 0.96 0.99 

2PT OPLSb (12) 15.5 –15.6 1.05 –25.3 0.84 0.92 

2PT GAFF (14) 28.0 –24.4 0.97 –19.5 0.55 0.87 

MCC OPLSa (12) 4.9 2.3 0.87 26.7 0.89 1.01 

MCC GAFF (14) 7.6 4.0 0.93 16.5 0.93 1.02 
a OPLS with 1.14*CM1A charges [52]; b OPLS with charges optimised to liquid-phase properties [62].  
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Figure 2.1.	Multiscale cell correlation (MCC) entropy values versus experiment for OPLS 

(blue), GAFF (red), and TraPPE (green), together with the line of perfect agreement (dotted).  

The entropy values calculated by MCC agree well with experiment, with Table 2.2 

showing a mean unsigned error of less than 10 J K–1 mol–1, GAFF being slightly better than 

OPLS. The small mean signed errors, the slopes being marginally less than one, and the 

positive y-intercept suggest that MCC is slightly missing the dependence on molecular size, 

although forcing the line through zero brings about the correct unity slope. The excessive 

entropies seen for larger molecules in the earlier version of the theory [40] no longer occur 

because we no longer halve forces for hard internal degrees of freedom in the mean-field 

approximation.  

The experimental entropies for most liquids were taken from the NIST Chemistry 

Webbook [63]. If more than one value was reported by different authors, all values were 

included, although for acetic acid, ethanol, ethylene glycol, formic acid, propanol and pyridine 

the spread is substantial, exceeding 10 J K–1 mol–1. Entropies were found elsewhere for 

ammonia [64], chloroform [65], methane [66], hydrogen peroxide [67], hydrogen sulfide [68] 

and carbon dioxide [69]. Values for ethylamine and triethylamine were calculated from the 

experimental gas-phase entropy, enthalpy of vaporization, and either heat capacity at constant 

pressure or partial pressure [63,70] in Table 2.3. For the remaining six liquids no values could 

be found in the literature. The experimental entropy is averaged if there is more than one value.  
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Table 2.3. Experimental Data to Calculate Liquid-Phase Entropy 

Molecules Sgas,bp/  

J K–1 mol–1 

∆Hvap/ 

kJ mol–1 

Cp,gas/  

J K–1 mol–1 

Pvap/ 

kPa 

Equation 

ethylamine 284.8b 28.0a 72.6b  𝑆D]NB = 𝑆aC`B + 𝐶òln
𝑇gCò
298 −

∆𝐻gCò
𝑇gCò

 

triethylamine 405.4b 35.1a  7.66a 𝑆D]NB = 𝑆aC`B + 𝑅ln
100
𝑃gCò

−
∆𝐻gCò
298  

a Reference [63]. b Reference [70].  

Comparisons with experiment are affected by the accuracy of the force field. To 

compare MCC with 2PT, Table 2.2 contains the statistical quantities for the liquids studied by 

the 2PT method [48] listed in Table 2.4, comprising 14 with the GAFF force field [53] and 12 

with the OPLS force field [62] together with the corresponding MCC values with GAFF and 

OPLS with 1.14*CM1A charges [52]. For both force fields, the mean unsigned error for 2PT 

is three times that of MCC, largely because the 2PT values are too small, shown by the negative 

mean error, negative y-intercept, and poorer correlation. The slope is close to unity but 

decreases when forced through the origin. The difference between the two methods is unlikely 

solely due to the different OPLS force fields, given the trend is present for GAFF, that the 2PT 

values using the earlier OPLS force field better reproduce liquid-phase entropy, and that the 

same trend was observed earlier when comparing with the same force field [40,71]. The 

variability in experiment for acetic acid and ethanol may affect this comparison, in that MCC 

is closer to the higher value and 2PT closer to the lower value, but this would be insufficient 

to affect the overall trend. The poorer MCC performance of OPLS with 1.14*CM1A charges 

compared to GAFF likely reflects the over-polarization of the charges to optimise their free 

energy of hydration [52]. This also likely explains the better performance of OPLS than GAFF 

for 2PT. Including the localized bond charge corrections, an alternative provided by 

LigParGen, is unlikely to lead to any improvement in entropy, given their mixed performance 

in calculating enthalpies of vaporization and density of liquids [52]. The more positive signed 

error for OPLS indicates that its entropies overall are larger than the GAFF entropies, implying 

that the combined intermolecular and intramolecular OPLS interactions are marginally weaker 

than GAFF. Contrary to this trend, the largest deviations between the force fields are OPLS 

being ∼20 J K–1 mol–1 lower than GAFF for ammonia and DMSO.  
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Table 2.4. Entropy by Experiment, MCC and 2PT (J K–1 mol–1). 

Liquid Experiment a 
MCC 2PT [48] 

OPLS GAFF OPLS GAFF 

acetic acid 158, 194 177 180 147 128 

acetone 200 202 206 198 187 

acetonitrile 150  143  145 

ammonia 87 b 71 92   

aniline 191, 192 205 205   

benzene 173, 175 183 182 172 161 

benzyl alcohol 217 216 208   

benzaldehyde 221 204 204   

butane 227, 230, 231 214 212   

butanol 226, 228 244 235   

2-butaoxyethanol  293 301   

carbon dioxide 118 c 111d 106 112 d  

chloroform 202 e 203 210 193 226 

cyclohexane 204, 206 220 212   

diazene  121 125 116   

dichloromethane 175 190 191   

diethanolamine  248 256   

diethyl ether  253, 254 237 236   

DMFA  214 222   

DMSO 189 183 202 164 159 

1,4-dioxane 197 206 199 179 159 

ethane 127 125 127   

ethanol 160, 161, 177 177 175 141 127 

ethene 118 114 120   

ethyl acetate 259 254 252   

ethylamine 189 f 181 185   

ethylene glycol 167, 180 172 175 141 121 

formamide  151 153   

formic acid 128, 132, 143 156 145   

furan 177 181 186 168 157 
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hexane 290, 295, 296 273 272 251 g  

hexanol 287 288 281   

hydrazine 122 120 116   

hydrogen peroxide 110 h 126 125   

Hydrogen sulfide 106 i  101   

methane 79 j 73 78   

methanethiol 163 177 172   

methanol 127, 130, 136 139 139 117 g,122 109 

methylamine 150 128 133   

NMA  205 206 181 168 

octanol  335 331   

pentane 259, 263 251 250   

pentanol 255, 259 264 257   

piperidine 210 234 222   

propane 171 176 176   

propanol  193, 214 213 206   

pyridine 178, 179, 210 191 189   

styrene 238, 241 223 223   

TBA 190, 198 218 217   

tetrahydrofuran 204 188 192 197 159 

TFE 184  207 195 185 

toluene 219, 221 224 223 204 190 

triethylamine 309 f 292 295   

m-xylene  252, 254 248 248   

o-xylene 246, 248 245 245   

p-xylene  244, 247, 253 243 243   
a Reference [63] Experimental errors < 1 J K−1 mol−1 ; b Reference [64]; c References [50,69]; d TraPPE force 

field [58]; e Reference [65]; f Derived in Table S2 using References [63,70]; g Reference [51]; h Reference [67]; 

i Reference [68]; j Reference [66].  
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2.4.2 Entropy Components  

To give deeper understanding into the values of the entropies, their six components in Equation 

(2.1) are illustrated in Figure 2.2 for the case of GAFF while the numerical values for both 

force fields are shown in Table 2.6. Plotted in Figure 2.3 are the entropy components as a 

function of molecular mass, and Table 2.5 lists data for the lines of best fit. The first observation 

is the dominance of the molecular translational and rotational entropy, being more than half 

the total entropy for all but the largest molecules. 𝑆ÛA_CG`g]F has a weak dependence on mass, 

deviating lower for systems at colder temperatures. 𝑆Û_B`g]Fhas a stronger mass-dependence and 

is lower for colder and linear molecules and those forming hydrogen bonds. One point to 

emphasise about our decomposition is that linear molecules in terms of united atoms, such as 

ethane or acetonitrile, have negligible rotational entropy about their long axis at the molecule 

level. The entropy about this axis including hydrogens is instead assigned to the united-atom 

level.  

 
Figure 2.2. MCC entropy components for GAFF (bottom to top): molecular-translational (dark 

blue), molecular rotational (blue), molecular topographical (cyan), united-atom translational 

(dark red) united-atom rotational (red), and united-atom topographical (orange).  
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𝑆óôA_CG`g]F is slightly smaller, making up about a quarter of the total. It primarily 

comprises the twisting of united atoms such as methyls (∼17 J K–1 mol–1) and hydroxyls (∼13 

J K–1 mol–1) as well as hydrogen bending, such as in benzene, and thus relates more specifically 

to the number of hydrogens. As mentioned earlier, for linear molecules with two united atoms, 

it also includes the entropy of rotation about the long axis because this term would otherwise 

be zero without hydrogen.  For example, for ethene 𝑆Û_B`g]F is smaller than for other molecules, 

and most of its 𝑆óô_B`g]F is rotational entropy about the long axis, leaving about 3 J K–1 mol–1 for 

internal motion. The remaining three terms are more variable and together make up about a 

quarter to a third of the total. The orientational term 𝑆Û
ABòB weakly increases with mass and is 

smaller for molecules with higher symmetry or those that form hydrogen bonds, which tend to 

reduce Nc. 𝑆óôA_CG`g]F  mainly comprises dihedral vibration of united atoms and has a strong 

dependence on mass, as does the conformational term 𝑆óô
ABòB, which is one of the smallest terms 

and only present for 13 liquids. The lines of best fit for each component indicate moderate 

predictability based on mass, but a thorough treatment is beyond the scope of this work. 

Comparing the force fields, GAFF has marginally higher molecular vibrational entropy (1.5 J 

K–1 mol–1) and higher 𝑆óô
ABòB (5.2 J K–1 mol–1) whereas OPLS has more 𝑆óô_Bg]F (2.2 J K–1 mol–

1). Of the most extreme deviations, 𝑆óô
ABòB  of GAFF is 14 J J K–1 mol–1 higher than OPLS for 

2-butoxyethanol and 12 J K–1 mol–1 higher for diethanolamine. Why this is so is revealed by an 

inspection of the probability distributions in Table 2.7 which indicate that the reduced 𝑆óô
ABòB 

for OPLS is because of stronger internal hydrogen-bonding. In more detail than looking at 

overall entropy, these trends imply that GAFF compared to OPLS has weaker intermolecular 

interactions, consistent with the charge over-polarisation of OPLS mentioned earlier [52], more 

evenly occupied conformations, and stronger intramolecular interactions, particularly relating 

to united-atom rotation.  

Table 2.5. Lines of Best Fit for the Entropy Components versus Molecular Mass. 

Components Slope/ 
J K–1 mol–1 

Y-Intercept/ 
J K–1 mol–1 R2 Components Slope/ 

J K–1 mol–1 
Y-Intercept/ 
J K–1 mol–1 R2 

𝑆ÛA_CG`g]F 0.21 50 0.54 𝑆óôA_CG`g]F 0.42 14 0.63 

𝑆Û_Bg]F 0.35 28 0.70 𝑆óô_Bg]F 0.43 6 0.34 

𝑆Û
ABò 0.09 16 0.13 𝑆óô

ABò 0.39 16 0.87 
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Figure 2.3. MCC entropy components for GAFF versus molecular mass for all liquids. 

Molecular-translational (dark blue), molecular rotational (blue), molecular topographical 

(cyan), united-atom translational (dark red) united-atom rotational (red), and united-atom 

topographical (orange). 

A direct comparison of entropy components with 2PT for the 15 liquids in common 

[48] cannot be done because different OPLS force fields are used, but in general the 2PT 

molecular translational and rotational entropies are larger than the equivalent MCC terms, and 

the MCC terms become slightly larger upon inclusion of the orientational term. However, the 

three MCC united-atom terms are larger than the internal vibrational 2PT term, which in that 

work did not include a fluidicity term, as noted earlier [40]. However, later formulation of such 

a term [51] applied to ethane, methanol and hexane shows that the torsional fluidicity is only a 

few percent of the vibrational term, thus not being responsible for the difference with MCC.  

Table 2.6: MCC Entropy Components (J K−1 mol−1) for OPLS and GAFF 

Liquid 
𝑺𝐌𝐭𝐫𝐚𝐧𝐬𝐯𝐢𝐛 𝑺𝐌𝐫𝐨𝐯𝐢𝐛 𝑺𝐌

𝐭𝐨𝐩𝐨 𝑺𝐔𝐀𝐭𝐫𝐚𝐧𝐬𝐯𝐢𝐛 𝑺𝐔𝐀𝐫𝐨𝐭𝐯𝐢𝐛 𝑺𝐔𝐀
𝐭𝐨𝐩𝐨 

OPLS GAFF OPLS GAFF OPLS GAFF OPLS GAFF OPLS GAFF OPLS GAFF 

acetic acid 58.3 58.5 52.0 51.8 30.0 29.5 6.7 12.2 29.6 28.2   

acetone 65.4 67.3 58.3 59.5 25.2 23.5 7.4 11.3 45.9 44.7   

acetonitrile  63.9  38.7  16.0  1.2  22.7   

ammonia 34.8 41.7 14.5 20.4 22.0 21.1       

aniline 66.7 67.0 56.1 56.2 26.6 26.9 16.1 16.8 39.5 38.3   

benzene 73.1 74.1 61.5 61.4 11.7 10.8 7.9 8.6 28.7 27.0   

benzyl alcohol 68.2 66.4 59.4 57.6 22.1 21.9 22.4 22.7 43.6 39.8   

benzaldehyde 70.2 71.6 60.0 59.9 22.9 21.5 21.5 23.6 29.2 27.4   
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butane 67.7 68.5 57.1 58.7 23.7 23.6 10.8 8.7 51.3 45.1 3.7 6.9 

butanol 64.1 62.9 54.8 53.9 28.9 29.2 22.6 20.2 55.7 51.2 17.9 17.9 

2-butaoxyethanol 64.9 65.8 55.3 59.4 24.1 23.6 60.7 54.8 72.6 67.3 15.6 29.7 

carbon dioxide 53.6 50.3 42.3 40.6 13.6 14.2 1.5 1.5     

chloroform 80.6 81.5 77.3 77.4 21.3 21.3 20.7 25.3 3.3 4.4   

cyclohexane 70.2 70.1 64.2 64.2 19.0 19.2 13.3 11.6 53.4 46.8   

diazene 57.6 54.9 32.4 30.8 11.6 12.2 0.0 0.0 23.4 18.2   

dichloromethane 80.3 79.5 71.6 71.4 23.4 23.4 6.8 6.4 8.2 10.2   

diethanolamine 58.4 58.7 48.1 53.2 21.5 18.1 46.7 42.9 65.6 63.7 7.9 19.9 

diethyl ether 69.3 69.7 58.8 59.4 21.9 21.5 23.1 21.9 56.5 55.9 7.7 8.0 

DMFA 64.6 64.8 56.7 57.2 30.6 29.9 13.3 22.3 48.5 47.9   

DMSO 62.1 66.2 54.8 58.5 25.6 25.9 7.9 12.1 32.5 39.6   

1,4-dioxane 66.6 66.5 61.3 61.0 27.6 27.9 13.7 13.0 36.4 30.6   

ethane 55.0 56.6 30.8 32.0 12.2 12.0 0.0 0.0 27.1 26.5   

ethanol 60.7 59.7 48.7 48.2 27.8 28.0 2.9 2.6 36.9 37.0   

ethene 54.5 58.8 29.7 31.8 12.2 11.2 0.0 0.0 17.3 17.8   

ethyl acetate 66.1 67.7 58.7 59.9 28.8 27.5 35.4 33.3 51.0 49.3 14.4 13.9 

ethylamine 59.8 62.0 47.4 50.9 29.8 29.6 2.2 2.3 41.0 40.0   

ethylene glycol 57.0 56.5 45.2 48.5 26.1 24.6 8.7 10.9 35.2 34.1   

formamide 56.7 56.3 44.1 45.8 31.6 31.8 1.1 1.0 17.2 18.4   

formic acid 61.1 56.6 48.3 43.5 30.5 32.1 1.3 1.0 14.8 11.7   

furan 69.5 71.7 60.1 62.2 27.0 25.3 7.5 7.1 18.5 19.3   

hexane 70.7 71.2 60.7 62.2 20.1 20.8 34.9 30.9 75.1 68.7 11.5 18.0 

hexanol 65.7 64.7 56.7 56.2 25.5 26.0 45.8 41.9 73.3 66.5 20.5 26.1 

hydrazine 51.4 50.0 26.4 26.9 12.0 12.1 0.0 0.0 30.4 26.9   

hydrogen peroxide 54.0 53.8 29.0 30.4 24.1 22.7 0.0 0.0 18.7 18.0   

hydrogen sulfide  60.6  40.4         

methane 40.2 42,8 33.0 35.3         

methanethiol 71.0 71.4 43.7 43.6 16.9 16.1 0.0 0.0 45.3 41.3   

methanol 58.9 58.9 32.7 32.7 14.6 14.6 0.0 0.0 33.0 33.0   

methylamine 53.0 55.8 27.6 31.0 15.8 16.4 0.0 0.0 31.3 30.3   

NMA 59.7 61.7 52.3 54.8 28.4 27.6 13.7 13.3 50.5 48.8   

octanol 66.4 65.7 57.3 57.5 22.7 23.4 71.9 66.0 90.6 81.9 26.0 36.3 

pentane 70.8 71.4 60.8 62.2 21.7 22.3 22.9 20.4 66.4 61.2 7.9 12.6 

pentanol 65.1 63.8 56.0 55.2 27.2 27.6 33.8 30.7 64.5 58.9 16.9 21.0 

piperidine 67.8 67.0 61.0 59.6 32.9 32.6 11.8 11.5 60.8 51.5   

propane 62.2 63.3 51.5 52.8 25.6 25.5 1.2 1.0 35.7 33.7   

propanol 62.9 61.6 52.9 51.8 29.5 29.5 12.1 11.1 47.0 43.7 8.9 8.9 

pyridine 69.9 70.5 59.4 60.0 27.2 25.5 8.8 9.6 25.2 23.5   

styrene 73.4 75.7 61.6 61.7 29.6 28.7 19.8 21.7 38.6 35.2   
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TBA 64.1 63.1 57.2 56.3 20.1 19.3 16.8 15.1 60.1 63.7   

TFE  77.0  70.0  18.5  41.6     

tetrahydrofuran 69.5 71.8 60.1 62.3 32.7 31.1 7.5 7.1 18.5 19.3   

toluene 72.7 74.0 61.4 61.8 25.2 23.9 16.9 17.7 47.7 45.8   

triethylamine 69.4 69.9 63.2 63.7 21.9 20.9 38.7 38.6 79.3 75.5 19.2 26.1 

m-xylene 71.8 73.5 61.2 62.1 24.3 22.6 24.6 25.5 66.3 64.3   

o-xylene 73.6 75.1 61.6 62.2 24.9 23.4 23.2 23.9 62.0 58.4   

p-xylene 71.8 73.7 60.8 61.7 18.4 16.5 25.6 26.3 66.2 64.3   

 

2.4.3 Covariance Matrices and Coordination and Dihedral Distributions  

Representative plots in Figure 2.4 and Figure 2.5 show the force and torque covariance matrices 

respectively for the liquids using the GAFF force field. Similar to the combined force-torque 

matrices in earlier work [40], force covariance matrices show maximum auto-correlation along 

the diagonal and strong anti-correlation for bonded atoms. Correlations between more distant 

atoms are only evident for more rigid molecules, consistent with their lower vibrational 

entropy. Torque covariance matrices have weak correlations, most ranging from negligible up 

to a tenth of the diagonal self-correlation, consistent with the mean-field approximation made 

for united-atom rotation. Only very rigid molecules such as ethene display large correlations 

but their associated entropy is very small. Molecule-level matrices are not shown, being near-

purely diagonal.  

Representative p(Nc) distributions of all liquids with the GAFF force field are shown in 

Figure 2.6. As expected for liquids, these distributions are broad and roughly Gaussian, most 

peaking between Nc = 5 and 10. As Equation (2.4) makes clear, larger coordination brings 

about larger orientational entropy. The outliers with higher coordination are the six-membered 

rings such as cyclohexane, piperidine and 1,4-dioxane, and carbon dioxide, versus the 

hydrogen-bonded molecules whose hydrogen-bonds bring about more directed interactions and 

lower Nc, such as methanol, diethanolamine and octanol, the last of which is slightly liquid-

crystalline.  
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Figure 2.4. United-atom (UA) force covariance matrices for each liquid (GAFF), with the 

origin at the lower left. White and black represent correlations of 1 and −1, respectively, with 

grey in between.  

 
Figure 2.5. UA torque covariance matrices for each liquid and otherwise as for Figure 2.4.  
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Table 2.7. Conformation Probabilities a 

Liquid 
p(t) p(g−) p(g+) 

OPLS GAFF OPLS GAFF OPLS GAFF 

butane 0.88 0.69 0.88 0.15 0.06 0.15 

butanol 

(C terminus) 

0.24 

0.27 

0.23 

0.28 

0.43 

0.35 

0.43 

0.35 

0.43 

0.38 

0.34 

0.37 

2-butaoxyethanol 

(C terminus) 

0.79 

0.94 

0.86 

0.84 

1.00 

0.71 

0.51 

0.88 

0.86 

0.04  

0.10 

0.04 

0.07 

0.08 

0.00 

0.15 

0.24 

0.06 

0.07 

0.48 

0.10 

0.03 

0.07 

0.08 

0.00 

0.15 

0.25 

0.06 

0.070 

0.48 

diethanolamine 1.00 

0.88 

0.84 

1.00 

0.10 

0.94 

0.95 

0.09 

0.00 

0.06 

0.09 

0.00 

0.50 

0.03 

0.03 

0.44 

0.00 

0.06 

0.07 

0.00 

0.41 

0.03 

0.03 

0.47 

diethyl ether 0.87 

0.87 

0.86 

0.86  

0.07 

0.07 

0.07 

0.07 

0.06 

0.07 

0.07 

0.07 

ethyl acetate 

(acetate C-terminus) 

1.00 

0.00 

0.51 

1.00 

0.00 

 0.58 

0.00 

0.50 

0.25 

0.00 

0.50 

0.21 

0.00 

0.50 

0.25 

0.00  

0.50 

0.22 

hexane 0.87 

0.87 

0.86 

0.73 

0.73 

0.75  

0.07 

0.07 

0.07 

0.13 

0.12 

0.13 

0.06 

0.07 

0.07 

0.13  

0.11 

0.12 

hexanol 

(C terminus) 

0.86 

0.87 

0.87 

0.43  

 0.75  

0.76 

0.77 

0.51 

0.07 

0.07 

0.07 

0.29  

0.13 

0.12 

0.12 

0.24 

0.07 

0.07 

0.07 

0.28 

0.12 

0.11 

0.11 

0.25 

octanol 

(C terminus) 

0.88 

0.89 

0.90 

0.89 

0.88  

 0.44 

0.75 

0.79 

0.80 

0.78 

0.77 

0.52 

0.06 

0.06 

0.05 

0.06 

0.06  

0.30 

0.13 

0.10 

0.10 

0.11 

0.11 

0.24 

0.06 

0.05 

0.05 

0.06 

0.06 

0.26 

0.13 

0.11 

0.10 

0.11 

 0.12 

0.24 
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pentane 0.86 

0.86 

0.74 

0.73  

0.07 

0.07 

0.13 

0.14  

0.07 

0.07 

0.13 

0.14 

pentanol 

(C terminus) 

0.85 

0.87 

0.44 

0.70 

0.77 

0.50 

0.08 

0.07   

0.28 

0.15 

0.11 

0.24 

0.08 

0.06 

0.28 

0.15 

0.11 

0.25 

propanol  0.24 0.23 0.43 0.44 0.33 0.33 

triethylamine 

(C terminus) 

0.43 

0.43 

0.43 

0.394 

0.389 

0.390 

0.11 

0.09 

0.08 

0.27 

0.25 

0.27 

0.46 

0.49 

0.48 

0.34 

0.36  

0.34 

a Dihedrals are ordered sequentially from the terminus given. 

The dihedral probability distributions pi are given in Table 2.7 for the 13 molecules 

with united-atom dihedrals. Of the 11 molecules with more than one dihedral, the correlation 

matrix brings about only a small reduction in entropy relative to the ideal value for independent 

dihedrals, indicating that conformations in these non-ring systems are weakly correlated. The 

largest reductions are −4.2 and −1.0 J K–1 mol–1 for OPLS and GAFF triethylamine, followed 

by −1.0 and −0.4 J K–1 mol–1 for OPLS and GAFF 2-butoxyethanol and −0.6 J K–1 mol–1 for 

both OPLS and GAFF octanol. However, for the ring molecules, such as cyclohexane, 

piperidine and 1,4-dioxane, which have six fully correlated dihedrals the method correctly 

picks out their two possible conformers as eigenvectors with eigenvalues according to their 

probability, with all other eigenvalues being zero. In the short timescale here, only a few 

molecules in each system convert to the other conformer. Achieving equilibrium is unnecessary 

for cyclohexane and 1,4-dioxane because both conformers are identical and contribute no 

entropy. However, the equatorial and axial conformers of piperidine are distinct, with the 

equatorial hydrogen on the nitrogen being lower in energy by 1.7 K J mol–1 [72], which would 

increase entropy by ∼5 J K–1 mol–1. 

 

2.5 Discussion  

We have extended our MCC method to calculate entropy for a much broader range of 56 liquids 

than the 14 liquids studied previously [40]. To emphasise the advantages of MCC, it is simple 

in its theoretical formulation, informative by giving an entropy decomposition over all degrees 

of freedom, rapidly convergent in the number of simulation frames required, scalable to large 
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systems with its multiscale formulation, near-general and applicable to a huge range of 

molecular systems, and accurate to the level of the thermal energy kBT for the liquids studied 

here.  

 
Figure 2.6. Probability distribution functions p(Nc) of coordination number Nc for each liquid 

(GAFF).  

Of the improvements incorporated in this work, the first is the recognition that the 

force-halving arising from the mean-field cell approximation should not be applied to bonded 

united atoms because of their strong correlation. This leads to lower entropies than previously 

[40], which is especially important for the larger molecules such as toluene or cyclohexane. 

The good agreement obtained earlier for single flexible molecules [39] was likely obtained due 

to a cancellation of errors, with the missing rotational entropy of united atoms offsetting the 

larger entropy due to force halving in the force covariance matrix. Nonetheless, averaged out 

correlations in the force and torque covariance matrices owing to conformational fluctuations 

may account for MCC entropies being lower than experiment for larger molecules. A more 

minor modification from previous work [40] relates to the use of separate force and torque 
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covariance matrices, rather than a combined force-torque covariance matrix, owing to weak 

correlation between forces and torques, a change which improves the computational efficiency 

of the method. This work shows that subunit torques are weakly correlated in most cases, 

meaning that even the torque covariance may be unnecessary.  

The second principle improvement is the correlation matrix to account for the 

correlation of dihedral conformations by expressing the conformational distribution in terms 

of a basis of conformers. A key feature of the correlation-matrix method is that it efficiently 

scales to large systems, with matrix size increasing as 𝑁H]^; . Considering each conformer 

separately goes exponentially as 3Ë+ö,  and would become unfeasible beyond Ndih > 10. The 

traditional approach using correlations in continuously valued dihedral angles has an even 

worse exponential dependence and goes as 𝑁F]G
Ë+ö, , where Nbin is the number of bins. This is 

already problematic for Ndih > 2, but it can be somewhat relieved by nearest-neighbour methods 

[16,22–24]. It is reasonable to assume that dihedral correlations need only be considered for 

local energy wells rather than for the numerical value of the dihedral, given that this correlation 

is unlikely to change on the timescale of molecular vibration.  

A third issue to consider in future work is the multiscale approximation in how different 

levels of hierarchy are defined, how to avoid the double-counting of entropy between different 

levels of hierarchy, and how to streamline the theory further so that it is essentially equivalent 

at every level of hierarchy to maximise generality. Ideally, the determination of each level 

would be automated and dynamic, adjusting to the level of order in the system. Care is needed 

to ensure that the translational or rotational entropy duplicates that at the higher level for every 

level of hierarchy so that it is cleanly removed. The theory for vibrational entropy is already 

quite general for any level of hierarchy, while the topographical terms require more work to 

fuse Equations (2.4) and (2.8) into the same formulation. This would involve generalising the 

orientational entropy to be non-ideal so that orientations have different weightings according 

to the orientations of the neighbouring molecules, as has been already studied for water with 

its strongly directional hydrogen bonds [35,37,42,44]. Including the united-atom orientational 

entropy could be extended to other molecules such as alcohols and amines. Nonetheless, the 

framework is in place to scale the method to simulated systems of greater complexity.  
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2.6 Conclusions  

We have presented the multiscale cell correlation method to calculate the entropy of 56 

molecular liquids from molecular dynamics simulations. The entropies are in excellent 

agreement with experiment for the OPLS and GAFF force field, with GAFF performing 

slightly better. Agreement is better than that of the 2PT method, which can also calculate the 

entropy of molecular liquids. The components of entropy give an insightful and intuitive 

understanding of the values obtained. With suitably chosen levels of hierarchy, the method is 

readily scalable to larger and more complex systems.  
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Abstract 

Calculating the free-energy barriers of liquid-phase chemical reactions with explicit solvent is 

a considerable challenge. Most studies use the energy and entropy of minimized single-point 

geometries of the reactants and transition state in implicit solvent using normal mode analysis 

(NMA). Explicit-solvent methods instead make use of the potential of mean force (PMF). Here, 

we propose a new energy-entropy (EE) method to calculate the Gibbs free energy of reactants 

and transition states in explicit solvent by combining quantum mechanics/molecular mechanics 

(QM/MM) molecular dynamics simulations with multiscale cell correlation (MCC). We apply 

it to six nucleophilic substitution reactions of the hydroxide transfer to methyl and ethyl halides 

in water, where the halides are F, Cl, and Br. We compare EE-MCC Gibbs free energy barriers 

using two Hamiltonians, self-consistent charge density functional based tight-binding (SCC-

DFTB) and B3LYP/6-31+G* density functional theory (DFT) with respective PMF values, 

EE-NMA values using B3LYP/6-31+G* and M06/6-31+G* DFT in implicit solvent and 

experimental values derived via transition state theory. The barriers using SCC-DFTB are 

found to agree well with the PMF and experiment and previous computational studies, being 

slightly higher but improving on the lower values obtained for the implicit solvent. Achieving 

convergence over many degrees of freedom remains a challenge for EE- MCC in explicit 

solvent QM/MM systems, particularly for the more expensive B3LYP/6-31+G* and M06/6 

31+G* DFT methods, but the insightful decomposition of entropy over all degrees of freedom 

should make EE-MCC a valuable tool for deepening the understanding of chemical reactions.  
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3.1 Introduction 

Calculating the kinetics of chemical reactions has been a major ongoing target of theoretical 

and computational chemistry for many decades [1-3]. This is a particular challenge in the liquid 

phase because it involves doing quantum mechanics calculations in a system comprising 

thousands of molecules. A number of different techniques have been developed for 

determining the kinetics of chemical reactions. The most common approach treats the reacting 

atoms by quantum mechanics, often at a high level [4,5], and approximates the solvent 

implicitly as a continuum with a dielectric constant and interfacial properties [6,7]. Implicit-

solvent models include the polarizable continuum model (PCM) [8], the self-consistant 

isodensity PCM (SCIPCM) [9], the Onsager model [10] or the universal solvent model (SMD) 

[11]. Similar to the treatment of gas-phase reactions, energies and Hessians are evaluated at the 

minima of the reactants and transition state, corresponding to absolute zero temperature, the 

internal vibrational energy and entropy at the temperature of interest are accounted for using 

normal mode analysis (NMA), the translational and rotational energy and entropy are 

calculated using the ideal-gas values, and rate constants are evaluated using Transition State 

Theory (TST) [12,13] Energy may be understood via the many energy decomposition methods 

proposed [14] while entropy is commonly interpreted in terms of normal modes for ideal gas 

molecules. 

Two main advances have occurred beyond this standard implicit-solvent approach. First, 

explicit treatment of the surrounding non-reacting atoms was made possible by the Quantum 

Mechanics / Molecular Mechanics (QM/MM) method [15], which treats the small reacting 

region with QM and the rest of the system with MM [16]. Second, moving away from single-

point minimum calculations, extensive sampling of the thermalized ensemble was made 

possible with simulation methods such as molecular dynamics (MD) or Monte Carlo. While 

energy and enthalpy can be directly calculated from the average system Hamiltonian, existing 

entropy methods such as NMA are not easily applicable to multi-molecular systems, given the 

huge number of minima [17], meaning that the direct calculation of free energy from energy 

and entropy has not been possible for explicit-solvent systems. Other free-energy methods are 

used instead, such as Umbrella Sampling (US) [18], which yields the free energy as a function 

of the reaction coordinate, also known as the Potential of Mean Force (PMF). Quantitatively 

accurate free-energy barriers can be extracted from the PMF. Entropy barriers can be obtained 

using the restraint-release method [19], from the temperature dependence of the PMF [20-23], 
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or from the free-energy difference using a number of different formulations [24]. However, 

these methods do not produce absolute entropy over all degrees of freedom and provide little 

direct understanding at the molecular level in the way that the energy-entropy NMA method 

does in implicit-solvent. While energy typically dominates kinetics in gas-phase reactions, 

entropy may make a more comparable contribution in solvent or with catalysts, requiring it to 

be better understood.  

In this work we seek to address this gap in capability of calculating and understanding the 

free energy barrier of a chemical reaction directly from the energy and entropy in explicit 

solvent. We compare implicit-solvent QM and explicit-solvent QM/MM methods to determine 

the reaction kinetics for the model reaction of second-order nucleophilic substitution of alkyl 

halides reacting with hydroxide OH–1 in water. Nucleophilic substitution, having equation 

XJ + RY → RX + YJ where X = halide, R = alkyl group and Y = leaving group, is an 

extensively studied reaction [25-30], via a single transition state with a concerted ligand switch. 

Most theoretical studies have been in the gas phase [25,26], others in implicit solvent [27,28], 

and more recent studies in explicit solvent [31,32]. We employ four different Hamiltonians and 

three free-energy methods. The four Hamiltonians are QM density functional theory (DFT) 

with the B3LYP functional (HIB) and M06 (HIM) in implicit water solvent, QM/MM with 

self-consistent charge density functional based tight-binding (SCC-DFTB) [33,34] in explicit 

solvent (HES) and QM/MM with B3LYP in explicit solvent (HEB). The first free-energy 

method, which we designate the Energy Entropy Normal Mode Analysis (EE-NMA), uses the 

standard energy and entropy evaluated using NMA added to the energy minimum of the 

reactant encounter complex (REC) and transition state (TS). The second method uses the 

barrier of the PMF along a pre-defined reaction coordinate. The third method, newly proposed 

here and termed Energy Entropy Multiscale Cell Correlation (EE-MCC) calculates the barrier 

from the energy and entropy of the REC and TS, where the TS is taken as the maximum of the 

PMF. The energies are calculated from the average of the simulation Hamiltonian and the 

entropies are calculated using MCC [35,36]. Experimental rate constants for the methyl halide 

reactions are converted into free energy barriers using TST as a point of comparison. Both 

PMF methods are found to give the best agreement with experiment, the SCC-DFTB being 

slightly better than B3LYP. EE-MCC SCC-DFTB values are in satisfactory agreement, 

performing better than EE-NMA B3LYP but EE-MCC B3LYP values could not be converged. 

EE-MCC is affected by statistical noise arising from having to calculate free energy of all 

molecules combined with the limited sampling possible in a multimolecular QM/MM system, 
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but it provides substantial detail about the entropic contributions of every degree of freedom 

of the system. 

 

3.2 Methods 

3.2.1 Systems of Interest.  

Six nucleophilic substitution reactions in water are considered. Hydroxide displaces the halide 

atom of CH2XY, where X = F, Cl or Br and Y = H or CH3. Assuming that the binding of 

reactants is not rate-determining, we consider the reactant encounter complex (REC) which 

reacts in a unimolecular process via the transition state (TS) to the product alcohol and halide 

ion as shown in Scheme 3.1: 

 
Scheme 3.1. Reaction mechanism of the nucleophilic substitution of the alkyl halide CH2XY 

where X = F, Cl, Br and Y = H, CH3 with hydroxide. 

 

3.2.2. System Hamiltonians. 

HIB: QM DFT B3LYP in Implicit Solvent. The REC in implicit solvent is illustrated in 

Figure 3.1. 

The B3LYP [37] DFT method with the 6-31+G* basis set was used. The Integral Equation 

Formalism variant of the Polarizable Continuum Model (IEFPCM) [7] was used to model the 

solvent water. The solute molecules were built with GaussView for the REC. Minima and 

transition states were located by full geometry optimizations assisted by initial constraint 

geometry scan calculations in the Gaussian 09 software package [38].  

HIM: QM DFT M06 in Implicit Solvent. This is the same as HIB except that the M06 [39,40] 

DFT method with the 6-31+G* basis set was used. 
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Figure 3.1. QM and MM regions for the implicit-water QM (left) and explicit-water QM/MM 

simulations (right). 

HES: QM/MM SCC-DFTB in Explicit Solvent. The alkyl halide and hydroxide comprise 

the QM region where the chemical reaction takes place and the water solvent comprises the 

MM region, as illustrated in Figure 3.1. The QM region was modeled with the Self-Consistent 

Charge Density Functional based Tight-Binding (SCC-DFTB) [33] method implemented in 

AMBER 16 [41]. SCC-DFTB is less expensive than other methods such as B3LYP and has 

good accuracy for structure and relative energy [42]. The AMBER formulation contained the 

necessary parameters for organic molecules [43] and the halogen-related parameters [44] were 

taken from the DFTB website [45]. The MM region comprises explicit solvent TIP3P water 

molecules [9]. The reactants interact with the MM region using the fixed van der Waals 

parameters from the Generalized AMBER Force Field (GAFF) [46] generated by Antechamber 

[47] and variable configuration-specific RESP (Restrained Electrostatic Potential) charges for 

the electrostatic interaction using the AM1-BCC method. The reactant solute molecules were 

solvated with 1500 water molecules in a cubic 40 Å box using the xleap module of AMBER 

[41].  

Minimization of the REC of each system was done with 500 steps of steepest-descent 

minimization, followed by a 100 ps NVT (constant number, volume temperature) MD 

simulation and a 100 ps NPT simulation (constant pressure) with a 1 ps time constant. The 

resulting structure was used as the starting structure in each window in the US simulations, to 

be discussed in the Free Energy Methods section, enabling the simulations of each window to 

be run in parallel. For each window, there were 2000 steps of minimization, 100 ps of NPT 

MD equilibration, and 1 ns of MD data collection for the PMF calculations. Taking the TS at 

the maximum in this PMF, the REC and TS windows were each run for 10 ns to provide better 
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sampling for the EE method. Forces and coordinates were saved every 1 ps. The simulations 

were performed at 1 bar pressure using the Berendsen barostat [48] and 298.15 K temperature 

using the Langevin thermostat. Periodic boundary conditions were used together with a non-

bonded cut-off of 8 Å, particle-mesh Ewald with default AMBER parameters, and a time step 

of 1 fs.  

HEB: QM/MM B3LYP DFT in Explicit Solvent. The same QM method was used as in HIB, 

namely DFT with the B3LYP hybrid density functional and 6-31+G* basis set for all atoms. 

This is implemented in AMBER with Gaussian as an external tool for the QM part [49]. The 

same GAFF-TIP3P MM force field and simulation protocol are used as in HEB, except that 10 

ps of sampling was used for data collection in the US simulations because this is a much slower 

and computationally demanding method.  

 

3.2.3 Free Energy Methods 

Energy Entropy-Normal Mode Analysis (EE-NMA). The Gibbs free energy barrier was 

calculated using 

∆𝐺 = 𝐻§G − 𝐻HI¤ − 𝑇(𝑆§G − 𝑆HI¤)									    (3.1) 

where 𝑇 is the temperature and 𝐻§G and 𝐻HI¤	are the enthalpies of the TS and REC, and 𝑆§G 

and 𝑆HI¤  are the corresponding entropies. For an ideal-gas molecular complex at the level of 

molecular translation and rotation, all but the rotational entropy cancels in the difference 

between REC and TS, which is given by  

𝑆_BA =
Jr)

'
∏ á

�;rL+�ãä$ë*,M,N      (3.2) 

where 𝜎 is the symmetry number, taken as 1 for all reactions, h is Planck’s constant, 𝐼$ are the 

moments of inertia for the three principal axes 𝑥,𝑦, 𝑧, and 𝑘¨ is Boltzmann’s constant. The 

equations for the intramolecular enthalpy and entropy of the REC are 

𝐻 = 𝐸x + 𝑃𝑉 + ∑ ℎ𝜈$ Rm) +
.

I
åS+
�ãçJ.

TÑËJ|
$ë.     (3.3) 



 88 

and 

𝑆 = ∑ Uáì+
ä
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åS+
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− 𝑘¨ln �1 − e
J
åS+
�ãç�VÑËJ|

$ë.     (3.4) 

where 𝐸x is the energy of the minimum, 𝑃 is pressure, 𝑉 is volume, N is the number of atoms, 

and 𝜈$ are the 3𝑁 − 6 vibrational frequencies, which are calculated using NMA in Gaussian 

09. The six lowest frequencies, being whole-molecule translations and rotations, are excluded, 

having already been accounted for. The same procedure is used for the TS except that there are 

3𝑁 − 7 frequencies because the imaginary frequency along the reaction coordinate is excluded. 

The ideal gas value 	𝑃𝑉 = 𝑘¨𝑇 used by Gaussian cancels between the unimolecular REC and 

TS. 

Potential of Mean Force (PMF). The PMF along the reaction coordinate 𝜉 is given by: 

PMF(𝜉) = −𝑘¨𝑇 ln 𝑝(𝜉)     (3.5) 

where 𝑝(𝜉) is the probability distribution of the system along 𝜉, which for all reactions is 

defined to be 𝜉 = 𝑅¤J[ − 𝑅¤J\, where 𝑅¤J[ and 𝑅¤J\ are the C−X and C−O bond lengths 

respectively. 𝑝(𝜉) was evaluated using Umbrella Sampling (US). 𝜉 was divided into 31 

windows separated by a 0.1 Å spacing over the range of −1.5 Å to 1.5 Å. The system was 

restrained at each value of 𝜉 using a harmonic potential  

𝑈$(𝜉) = 𝑘óG(𝜉 − 𝜉$x);     (3.6) 

with a force constant 𝑘óG of 300 kcal mol‒1 Å‒2 for all reactions [50,51]. The associated 

Gaussian distribution has a standard deviation of 0.03 Å, which is sufficient to span each 

window. MD simulations were used to generate probability distributions of 𝜉 for each window, 

which were converted to the full probability distribution 𝑝(𝜉) using the weighted histogram 

analysis method (WHAM) [52,53] ∆𝐺 was calculated as   

																∆𝐺 = PMF(𝜉§G) − PMF(𝜉HI¤)     (3.7) 

Energy Entropy-Multiscale Cell Correlation (EE-MCC). The Gibbs free energy barrier is 

evaluated from the enthalpy and entropy using Equation 3. 1 as in EE-NMA plus the Gibbs 

free energy ∆𝐺H for adding the restraint on the REC, which is given by 
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∆𝐺H = 𝑘¨𝑇 ln〈exp[𝑈HI¤(𝜉) 𝑘¨𝑇⁄ ]〉] 		    (3.8) 

The TS is at 𝜉 of the maximum in the HES and HEB PMFs. The enthalpy is evaluated using  

𝐻 = 𝐸ÚÛ + 𝐾ÛÛ + 𝑈ÛÛ + 𝑈ÚÛ/ÛÛ + 𝑃𝑉 + ∑ ℎ𝜈$ Rm) +
.

I
åS+
�ãçJ.

T− 𝑁g]F𝑘¨𝑇
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$ë.       (3.9) 

where 𝐸ÚÛ is the average energy of the QM region, 𝐾ÛÛ and 𝑈ÛÛ are the average kinetic and 

potential energy of the MM region, and 𝑈ÚÛ/ÛÛ is the average interaction energy between the 

QM and MM regions. In the harmonic approximation, the classical energy kBT is subtracted 

off for all 𝑁g]F vibrational degrees of freedom and replaced with the quantum energy of a 

harmonic oscillator with frequency 𝜈$, with the exception of the restrained reaction coordinate 

of the TS, for which the quantum energy is not included. Frequencies 𝜈$ are calculated using 

MCC [35,36] at two length scales: the molecule level and the united-atom level, where a united 

atom is each heavy atom together with any bonded hydrogens, treated as a rigid body. Note 

that this approach ignores the negligible entropy in high-frequency covalent bonds involving 

hydrogen atoms. Three vibrations are whole-molecule translations and three are whole-

molecule rotations, termed “transvibrational” and “rovibrational”. Their frequencies are 

derived from the eigenvalues 𝜆$ of the mass-weighted force covariance matrix and moment-

of-inertia-weighted torque covariance matrix for the three principal axes of the solute complex 

using  

																											𝜈$ =
.
;r í

î+
�ãä

       (3.10) 

There are also 3𝑁 − 6 internal vibrations that relate to translation of the 𝑁 united atoms. Their 

frequencies are evaluated using Equation 3.10 with the eigenvalues of the mass-weighted force 

covariance matrix. The remaining vibrations are rotations of the united atoms, being three if 

non-linear, two if linear, and none if a point. All matrices are constructed and diagonalized 

from the force and coordinate trajectories and connectivity information in the topology file 

using in-house C++ code. 

𝑆 is calculated using Equation 3.4 with the same vibrational frequencies as for the 

vibrational energy at molecule and united-atom levels. For the TS the entropy of the vibration 

along the restrained reaction coordinate is excluded. The translational and rotational entropy 
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of the solvent water is evaluated in the same way as the solute, except that the force and torque 

covariance matrices are averaged over all water molecules, and the total entropy is multiplied 

by the number of water molecules. 

The rotational topographical entropy, relating to the number of solute orientations and 

termed “rotopographical”, is calculated for the REC and TS with the equation [35,36] 

						𝑆 = 𝑘¨ ∑ 𝑝(𝑁f) ln ^max �1,
MË%_rO

m/)

'
�`Ë%     (3.11) 

where, 𝑝(𝑁f) is the probability distribution of water coordination number 𝑁f of the solute 

complex, and 𝜎 is its symmetry number, taken as 1 for all reactions. The term inside the 

logarithm is the number of solute orientations, all assumed to have equal probability. 𝑁f is 

evaluated with the Relative Angular Distance (RAD) [54,55] algorithm using the centres of 

mass of the solute complex and each water molecule. A similar procedure is used for the 

rotational topographical entropy of the solvent, with 𝑝(𝑁f) being averaged over all water 

molecules, 𝜎 = 2, and the number of orientations is divided by 4 to account for orientational 

correlations of hydrogen-bonded neighbours [36]. Translational topographical entropy is 

omitted, being constant and canceling between the REC and TS.  

Transition State Theory (TST). Experimental rate constants 𝑘IÏòA from their Arrhenius 

parameters at 298 K for the nucleophilic substitution of methyl halides by hydroxide were 

converted into ∆𝐺 using the unimolecular TST equation [26,56]  

																	𝑘IÏòA =
�ãä
á
exp >J∆Ö

�ãä
?     (3.12) 

This assumes that the chemical step of the reaction (Scheme 3.1) is rate-determining and that 

𝑘IÏòA is not influenced by the rate of reactant binding [56]. 

 

3.2.4 Error Analysis in the Calculation of Gibbs Free Energy Barriers 

The dominant sources of error in the calculation of ∆G in Equation 3.1 are the energy of the 

system E (which enters as E0 in Equation 3.3) and the solvent vibrational Gibbs free energy 
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(Equations 3.3 and 3.4). The solute entropy is negligible, being just one of 1501 molecules and 

the solvent topographical entropy is small.  

Error in Energy: The standard error 𝞭E in the energy of system was calculated using 

    𝛿𝐸 = 'b
√Ë

            (3.13) 

where 𝞼E is the standard deviation of the energy and N is the number of independent data 

points, which was taken as 10000 to match the 1 ps spacing of the forces over 10 ns. The 

standard error for the energy barrier (Equation 3.1) is then given by  

𝛿𝛥𝐸 = �𝛿𝐸§G; + 𝛿𝐸HI¤;      (3.14) 

Values of 𝞼E are found to lie between 68 and 69 kcal mol−1 for the TS and REC for all six 

reactions. This gives an overall error 𝛿𝛥𝐸 of 0.98 kcal mol−1. 

Error in Water Vibrational Gibbs Free Energy: The standard error 𝛿𝐺 in the vibrational 

Gibbs free energy of water was calculated using the relationship 

𝛿𝐺$ ≈
.
;
𝑘¨𝑇

¸⟨1+
)⟩

⟨1+
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      (3.15) 

which can be derived by differentiating the relationship 

𝐺$ = 𝑘¨𝑇lnM1 − eJáì+/�ãäO ≈ 𝑘n𝑇ln
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where the first approximate equality is made in the limit of low frequency, which is valid for 

molecular vibration at room temperature, the second equality uses Equation 3.10 and the third 

equality uses the property of a molecular force covariance matrix that it is near-diagonal, such 

that the eigenvalues are 𝜆$ ≈ 𝐹$;/𝑚. 

It is found from a simulation of water that 𝜎⟨1+)⟩ = 68 kcal2 mol−2 Å−2 and ⟨𝐹$;⟩ = 36 kcal2 

mol−2 Å−2, where 𝐹$ is the isotropic force on the molecule over all orientations. Given that N = 

10000, Equation 3.13 for ⟨𝐹$;⟩ gives 𝛿⟨𝐹$;⟩ = 0.68 kcal mol−1 Å−1, which in Equation 3.15 gives 

𝛿𝐺$ = 0.011 kcal mol−1.  
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Taking the torques to depend linearly on forces and assuming isotropic force and torque, 

this variance applies to all six degrees of freedom, thereby introducing a factor √6 for the 

molecule. Given that 𝐹$ is averaged over 1500 molecules but then scaled multiplicatively to 

1500 molecules, this introduces a further scaling of 1500 √1500⁄ . Thus, the error in 

vibrational Gibbs free energy for all water is given by 𝛿𝐺 = 𝛿𝐺$ × √6× √1500 = 0.53 kcal 

mol−1. Using Equation 3.14 but for Gibbs free energy, 𝛿𝛥𝐺 = 0.75 kcal mol−1. 

 

3.3 Results 

3.3.1 Gibbs Free Energy Barriers.  

∆G values are given in Table 3.1 for the HIB and HIM Hamiltonians using the EE-NMA 

method, both HES and HEB Hamiltonians using the PMF method, the HES Hamiltonian using 

the EE-MCC method, and experimental rate constants converted into ∆G using TST. The value 

of 𝜉 at the TS is not known from experiment but its ∆G value is placed at the HES PMF 

maximum for convenience. The EE-MCC ∆G values for the HEB simulations are not included 

because the associated energies and entropies were not converged over 10 ps. Figure 3.2 shows 

the HES and HEB PMFs for all reactions and both EE Gibbs free energies of the TS relative to 

the REC. The HES EE-MCC ∆G values take the TS at the maximum of the corresponding HES 

PMF, which for each reaction are at 𝜉 =	–0.1, 0.3, 0.5, –0.1, 0.2 and 0.5 Å respectively. 

 The TSs occur at larger values of 𝜉 for the larger halides because of the longer C-X 

bond. They are slightly closer to the REC for HEB than for HES and for HIM than for HIB. 

The most accurate method to calculate ∆G with respect to experiment is HES PMF, whose 

values are only a few kcal mol–1 lower. However, it predicts a slightly higher barrier for CH3Cl 

the CH3F. The barriers by the HEB PMF method are smaller by a few kcal mol–1 and decrease 

in the order F, Cl and Br, which is the same trend as in experiment and as reported elsewhere, 

[56-59] and aligns with the strengths of the C–X bonds: the bond dissociation energies of C–F 

are 110 and 108 kcal mol–1 for the methyl and ethyl halide, respectively, of C–Cl they are 85 

kcal mol–1 and 80 kcal mol–1 and of C–Br they are 71 and 68 kcal mol–1 [60]. 
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Table 3.1. Gibbs Free Energy Barriers for Each Reaction and Method versus Experiment 

(kcal mol–1). 

System 
Implicit Water Explicit Water Experiment/TST [57,58] 

∆𝐺IIJêÛôgh¨  ∆𝐺IIJêÛôghÛ  ∆𝐺iÛ¦gIG  ∆𝐺iÛ¦gI¨ ∆𝐺IIJÛ¤¤gIG  ∆𝐺 

CH3F 16.4 15.1 20.0 18.4 21.6 ± 1.2 25.9 ± 0.1 
CH3Cl 10.1 9.9 22.3 17.0 17.2 ± 1.2 24.5 ± 0.1 

CH3Br 7.5 8.7 19.1 15.3 31.0 ± 1.2 22.7 ± 0.2 

C2H5F 20.5 20.2 21.0 17.6 25.9 ± 1.2 - 

C2H5Cl 10.5 11.9 18.4 14.8 22.1 ± 1.2 - 

C2H5Br 10.1 10.9 18.5 11.3 31.6± 1.2 - 

 

Figure 3.2.  Potentials of Mean Force (PMFs) along the reaction coordinate 𝜉 for OH– reacting 

with CH2XY (X = F, Cl, Br; Y = H, CH3) using HES (blue) or HEB (red). Gibbs free energies 

using EE-NMA for HIB (black circles) or HIM (purple diamonds), EE-MCC for HES (green 

triangles) and experiment via TST (brown squares) of the transition state relative to the reactant 

encounter complex. 

 

The lower barrier for CH3F may be due to F– being more strongly solvated in water than other 

halides [57]. The barriers for the ethyl halides are slightly lower for Cl and Br which is in line 

with the bond dissociation energies above [60] but higher for F. The EE-NMA DG barriers by 
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both the HIB and HIM methods are much lower for methyl halides but higher for ethyl fluoride 

and more comparable to the PMF values. This likely reflects the inaccuracy of the implicit 

solvent model, because water is known to raise the DG for these reactions relative to the gas 

phase [56]. It also highlights the need to explicitly include solvent, despite the greater 

computational cost. The HES EE-MCC barriers are in the appropriate range but are more 

variable and display a different trend, being lower for CH3Cl and higher for both alkyl 

bromides. These trends can be better understood by examining the many component quantities 

on which they depend, examined next. 

Table 3.2. Enthalpy and Entropy Barriers (kcal mol–1) of All Reactions Using the EE Methods. 

 EE-NMA EE-MCC 

HIB HIM HES 

DH TDS DH TDS DH TDS ∆GR 

CH3F 12.5 –4.9 13.4 –3.0 25.6 4.6 0.6 

CH3Cl 6.1 –4.9 7.5 –2.1 23.7 6.4 0.4 

CH3Br 5.7 –1.8 6.7 –2.8 37.2 6.3 0.6 

C2H5F 18.9 –0.8 17.9 –4.0 26.5 1.2 0.7 

C2H5Cl 9.4 –2.1 10.0 –1.1 25.9 4.1 0.7 

C2H5Br 8.1 –1.5 10.4 –1.2 35.9 3.8 0.7 

 

3.3.2 Enthalpy and Entropy Components.  

The enthalpy and entropy components of the TS minus the REC are given in Table 3.2 for each 

reaction and EE method. As expected for most chemical reactions, the enthalpy change 

dominates the entropy change. DH clearly explains the greater DG in explicit solvent, especially 

for both the bromohalides. Table 3.3 shows that the QM energy is large and positive, which is 

consistent with the destabilization of the intramolecular dipole by water [56,59] but it is 

partially compensated by the QM/MM and MM energy which together are negative and 

stabilising. The vibrational energy and DPV contributions are small, as are the Gibbs free 

energies for removing the US restraint on the REC (Table 3.2).  

DS displays opposing trends for the two solvent models, being negative in implicit solvent 

but positive in explicit solvent. An inspection of the entropy terms in Tables 3.4 and 3.5 
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indicates that the dominant contribution to this difference is the rotational entropy of the 

solvent, both vibrational and topographical. This implies that there is a weakening of solvent 

interactions in the TS, possibly because of the more delocalised charge, even though Table 3.3 

indicates that the QM/MM and MM energy is stabilizing [56,59]. For the bromohalides, it is 

not clear what entropy term should compensate for their large DH but it is likely to be an even 

larger gain in solvent entropy, so necessitating a more refined approachs [61-64] than that used 

here.  

Table 3.3. Energy Components of Transition States Relative to Reactant Encounter Complexes 

for Each Reaction by NMA and MCC Methods (kcal mol−1). 

 HIB HIM HES 

 ∆E0 ∆Evib ∆E0 ∆Evib  ∆EQM ∆UQM/MM+ ∆UMM ∆Evib ∆PV 

CH3F 13.6 −1.0 14.7 −1.3  54.0 −29.3 1.1 −0.2 

CH3Cl 7.0 −0.9 7.1 0.3  62.9 −40.0 0.6 −0.1 

CH3Br 5.8 −0.1 7.4 −0.7  78.8 −42.4 0.4 −0.2 

C2H5F 18.1 0.8 17.4 −0.6  47.8 −22.0 0.8 −0.1 

C2H5Cl 10.3 −0.9 9.3 0.8  52.2 −26.0 −0.4 −0.2 

C2H5Br 7.5 0.5 11.1 −0.7  68.4 −32.8 −0.7 −0.1 
∆E0 is the change of energy zero for the HIB and HIM system and ∆Evib is the corresponding change 

in quantum vibrational energy. ∆EQM is the energy change of the QM region in the H2a system, 

∆UQM/MM is the energy change of the QM/MM interaction, ∆UMM is the energy change of the MM 

region, and ∆PV is the change in pressure times volume. 

Table 3.4. Entropy Components of Transition States Relative to Reactant Encounter 

Complexes for Each Reaction by NMA and MCC Methods (cal mol−1 K−1). 

 HIB HIM MCCsolute MCCsolvent 

∆Sint ∆Strans ∆Srot ∆Sint ∆Stran

s 

∆Srot ∆Sint ∆Stran

s 

∆Srot ∆Sint ∆Stran

s 

∆Srot 

CH3F −15.0 0 −1.4 −8.5 0 −1.5 1.8 0.3 −0.9 0 0.7 13.5 

CH3Cl −15.0 0 −1.4 −5.6 

 

0 −1.5 

 

1.5 0.8 −0.9 0 −2.0 22.2 

CH3Br −5.3 0 −0.9 −8.4 0 −0.8 2.6 1.1 −2.0 0 −1.1 20.8 

C2H5F −0.3 0 −2.4 −10.9 0 −2.4 2.5 −1.1 0.7 0 −3.3 5.4 

C2H5Cl −6.3 0 −0.6 −3.5 0 −0.2 3.4 −0.1 1.5 0 0.7 8.5 

C2H5Br −4.0 0 −1.2 −3.6 0 −0.4 2.8 0.5 0.5 0 −3.8 12.7 

HIB and HIM are evaluated by NMA, HES is evaluated by MCC, and ∆Sint, ∆Strans and ∆Srot are the internal 

and molecular translational and rotational entropy changes. 
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Another differing trend in entropy between the implicit and explicit solvent models evident 

in Table 3.4 is that the HIB and HIM internal entropy terms decrease in the TS but slightly 

increase in the HES system. This increase occurs despite the entropy reduction for all systems 

partly owing to the missing degree of freedom along 𝜉 and the formation of covalent bonding 

between the reactants. It would appear that the presence of explicit solvent may dampen this 

reduction, possibly along with the difference in functionals. The other weak but curious trend 

at the molecular level is that the translational entropy increases and rotational entropy decreases 

for the methyl halides, but the other way around for the ethyl halides. 

Table 3.5. Vibrational and Topographical MCC Entropy Components of Transition States 

Relative to Reactant Encounter Complexes for Each Reaction (cal mol−1 K−1). 

 MCCsolute  MCCsolvent 

 ∆Sint ∆Srot  ∆Srot 

 ∆Sint-transvib ∆Sint-rovib ∆Srovib ∆Srotopo  ∆Srovib ∆Srotopo 

CH3F 0.5 1.3 −1.9 1.1  7.1 6.5 

CH3Cl 0.7 0.9 −2.0 1.1  9.3 12.9 

CH3Br 1.1 1.5 −1.4 −0.3  9.6 11.1 

C2H5F 1.1 1.4 −0.04 0.7  2.9 2.5 

C2H5Cl 1.1 2.1 0.6 0.9  4.6 3.9 

C2H5Br 0.9 1.9 0.7 −0.2  7.7 5.0 

∆Sint-transvib and ∆Sint-rovib are the internal vibrational entropy changes for translation 

and rotation, and ∆Srovib and ∆Srotopo are the vibrational and topographical entropy 

changes for molecular rotation, all evaluated for HES. 

 

3.4 Discussion 

The novel insights provided into reaction thermodynamics by EE-MCC come at the price of 

some accuracy and the need for sufficient sampling. There are sizeable errors for the HES 

simulations and converged values could not be obtained for the shorter and more expensive 

HEB simulations, even though reasonable PMFs were still produced. Evidently, it is much 

more difficult to obtain converged probability distributions over all molecular coordinates than 

just one. Figure 3.3 illustrates how G, TS and H using HES vary as a function of 𝜉. The values 

moderately well reproduce the reaction profile but are still with errors of ~5 kcal mol–1, which, 
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being based on 1 ns of sampling, are larger than the errors in Table 1 based on 10 ns. The 

inhomogeneous nature of a solution means that there are many more molecules to average over 

per mole of solute than in a pure liquid as was done in earlier work [35,36] compounded by the 

slower speed of QM/MM simulations. A minimal QM region of the only reacting molecules 

was adopted here to minimise the slow-down but more accurate studies should include 

additional water molecules, particularly for the solvation of OH- [65,66], and possibly in an 

adaptive scheme to account for solvent diffusion [67,68]. 

 

 

Figure 3.3: G (blue), TS (black), and H (red) calculated by MCC and HES versus reaction 

coordinate 𝜉 for each reaction. ∆Evib and ∆PV, being small (Table 3.4), are excluded.   

Another problematic issue is that a PMF calculation is still needed to locate the TS and that 

an umbrella potential must be added to keep the system localized to the TS. However, this 

requirement could be alleviated by running a short series of simulations in the expected region 

to locate the TS followed by a longer simulation at the TS. This may be especially valuable 

when the PMF is difficult to converge due to a long path or there is a difficulty in identifying 

a suitable path. Furthermore, MCC contains a number of approximations, particularly relating 

to the solvent topographical entropy, in order to make tractable the calculation of the full 

probability distribution. However, it represents a more accurate treatment of the solvent as 

explicit molecules compared to a continuum model that ignores the molecular detail of the 

solvent and treats the solute as an ideal-gas molecule. It currently represents the state-of-the-

art in liquid-phase entropy, given the limitations of more accurate methods such as 
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inhomogeneous solvation theory [69] that require many more configurations to converge 

higher-dimensional integrals, limiting them to small rigid molecules. 

 

3.5 Conclusions  

A new free energy method, EE-MCC, has been proposed to calculate the Gibbs free energy 

barriers of chemical reactions in explicit solvent using QM/MM simulations. Energy and 

entropy are evaluated from the system Hamiltonian and entropy using Multiscale Cell 

Correlation together with the system Hamiltonian. EE-MCC has been applied to six 

nucleophilic substitution reactions between alkyl halides and hydroxide modelled with the two 

QM/MM methods SCC-DFTB and B3LYP DFT. EE-MCC SCC-DFTB Gibbs free energy 

barriers using are in reasonable agreement with the corresponding PMF and experiment. 

However, accuracy is affected by the difficulty in obtaining converged entropy and energy over 

many molecules in an expensive QM/MM simulation. EE-MCC values are better than implicit-

solvent values using NMA but this is primarily due to the more accurate explicit-solvent energy. 

EE-MCC still requires the use of a PMF to identify the TS, but its primary advantages for 

chemical reactions are the direct route to Gibbs free energy, as done in implicit solvent, and the 

insightful entropy decomposition that has not previously been available in explicit solvent 

chemical reactions. This capability should be valuable in liquid-phase and catalyzed reactions 

where entropy is expected to play a larger role more comparable to that of enthalpy in 

determining the kinetics of chemical reactions. 

 

3.6 References 

[1]  Schaleger, L.L. and Long, F.A., Entropies of activation and mechanisms of reactions 
in solution. Adv. Phys. Org. Chem. 1963, 1, 1-33. 

[2]  Mardirossian, N. and Head-Gordon, M., Thirty years of density functional theory in 
computational chemistry: An overview and extensive assessment of 200 density 
functionals. Mol. Phys. 2017, 115, 2315-2372. 



 99 

[3]  Hu, H. and Yang, W., Free energies of chemical reactions in solution and in enzymes 
with ab initio quantum mechanics/molecular mechanics methods. Annu. Rev. Phys. Chem. 
2008, 59, 573-601. 

[4]  Zhang, J.,  Zhang, H., Wu, T.,  Wang, Q. and van der Spoel, D., Comparison of implicit 
and explicit solvent models for the calculation of solvation free energy in organic solvents. 
J. Chem. Theory Comput. 2017, 13, 1034-1043. 

[5]  Kundi, V. and Ho, J., Predicting octanol–water partition coefficients: Are quantum 
mechanical implicit solvent models better than empirical fragment-based methods? J. Phys. 
Chem. B 2019, 123, 6810-6822. 

[6]  Ren, P.,  Chun, J.,  Thomas, D.G.,  Schnieders, M.J., Marucho, M., Zhang, J. and Baker, 
N.A., Biomolecular alectrostatics and solvation: A computational perspective. Q. Rev. 
Biophys. 2012, 45, 427-491. 

[7]  Tomasi, J.,  Mennucci, B. and Cammi, R., Quantum mechanical continuum solvation 
models. Chem. Rev. 2005, 105, 2999-3094. 

[8]  Cossi, M. Scalmani, G., Rega, N. and Barone, V., New developments in the polarizable 
continuum model for quantum mechanical and classical calculations on molecules in 
solution. The J. Chem. Phys. 2002, 117, 43-54. 

[9]  Foresman, J.B.,  Keith, T.A.,  Wiberg, K.B.,  Snoonian, J. and Frisch, M. J., Solvent 
effects. Influence of cavity shape, truncation of electrostatics, and electron correlation on 
ab initio reaction field calculations. J. Phys. Chem. 1996, 100, 16098-16104. 

[10] Onsager, L., Electric moments of molecules in liquids. J. Am. Chem. Soc. 1936, 58, 
1486-1493. 

[11] Marenich, A.V.,  Cramer, C.J. and Truhlar, D.G., Universal solvation model based on 
solute electron density and on a continuum model of the solvent defined by the bulk 
dielectric constant and atomic surface tensions. J. Phys. Chem. B 2009, 113, 6378-6396. 

[12] Truhlar, D.G., Garrett, B.C. and Klippenstein, S.J., Current status of transition-state 
theory. J. Phys. Chem. 1996, 100, 12771-12800. 

[13] Laidler, K.J. and King, M.C., Development of transition-state theory. J. Phys. Chem. 
1983, 87, 2657-2664. 

[14] Andrés, J.,  Ayers, P.W.,  Boto, R.A.,  Carbó-Dorca, R.,  Chermette, H.,  Cioslowski, 
J.,  Contreras-García, J., Cooper, D.L., Frenking, G., Gatti C., et al. Nine questions on 
energy decomposition analysis. J. Comput. Chem. 2019, 40, 2248-2283. 



 100 

[15] van der Kamp, M.W. and Mulholland, A.J., Combined quantum mechanics/molecular 
mechanics (QM/MM) methods in computational enzymology. Biochemistry 2013, 52, 
2708-2728. 

[16] Quesne, M.G.,  Borowski, T. and de Visser, S.P., Quantum mechanics/molecular 
mechanics modeling of enzymatic processes: Caveats and breakthroughs. Chem.: Eur. J. 
2016, 22, 2562-2581. 

[17] Grimme, S. and Schreiner, P.R., Computational chemistry: The fate of current methods 
and future challenges. Angew. Chem. 2018, 57, 4170-4176. 

[18] Bernardi, R.C.,  Melo, M.C.R. and Schulten, K., Enhanced sampling techniques in 
molecular dynamics simulations of biological systems. Biochm. Biophy. Acta. 2015, 1850, 
872-877. 

[19] Villà, J.,  Štrajbl, M.,  Glennon, T.M.,  Sham, Y.Y.,  Chu, Z.T. and Warshel, A., How 
important are entropic contributions to enzyme catalysis? Proc. Natl. Acad. Sci. 2000, 97, 
11899. 

[20] Kazemi, M. and Åqvist, J., Chemical reaction mechanisms in solution from brute force 
computational Arrhenius plots. Na. Commun. 2015, 6, 7293. 

[21] Åqvist, J. and Kamerlin, S.C.L., The conformation of a catalytic loop is central to 
GTPase activity on the ribosome. Biochemistry, 2015, 54, 546-556. 

[22] Kazemi, M.,  Himo, F. and Åqvist, J., Enzyme catalysis by entropy without circe effect. 
Proc. Natl. Acad. Sci. 2016, 11, 2406. 

[23] Åqvist, J.,  Kazemi, M.,  Isaksen, G.V. and Brandsdal, B.O., Entropy and enzyme 
catalysis. Acc. Chem. Res. 2017, 50, 199-207. 

[24] Peter, C., Oostenbrink, C., van Dorp, A. and van Gunsteren, W.F., Estimating entropies 
from molecular dynamics simulations. J. Chem. Phys. 2004, 120, 2652-2661. 

[25] Shojaie, F. and Dehestani, M., Vibrational mode analysis for the multichannel reaction 
of CH3Cl + OH. Int. J. Quantum Chem. 2012, 112, 2450-2455. 

[26] Espinosa-García, J., Coitiño, E.L.,  González-Lafont, A. and Lluch, J.M. Reaction-path 
and dual-level dynamics calculations of the CH3F + OH reaction. J. Phys. Chem. A. 1998, 
102, 10715-10722. 

[27] Kim, Y.,  Cramer, C.J. and Truhlar, D.G., Steric effects and solvent effects on SN2 
reactions. J. Phys. Chem. A 2009, 113, 9109-9114. 



 101 

[28] Cai, C.,  Tang, W.,  Qiao, C.,  Jiang, P.,  Lu, C.,  Zhao, S. and Liu, H., A reaction density 
functional theory study of the solvent effect in prototype SN2 reactions in aqueous solution. 
Phys. Chem. Chem. Phys. 2019, 21, 24876-24883. 

[29] Kubelka, J. and Bickelhaupt, F.M., Activation strain analysis of SN2 reactions at C, N, 
O, and F centers. J. Phys. Chem. A 2017, 121, 885-891. 

[30] Giri, S.,  Echegaray, E.,  Ayers, P.W.,  Nuñez, A.S.,  Lund, F. and Toro-Labbé, A., 
Insights into the mechanism of an SN2 reaction from the reaction force and the reaction 
electronic flux. J. Phys. Chem. A 2012, 116, 10015-10026. 

[31] Hamlin, T.A.,  Swart, M. and Bickelhaupt, F.M., Nucleophilic substitution (SN2): 
Dependence on nucleophile, leaving group, central atom, substituents, and solvent. Chem. 
Phys. Chem. 2018, 19, 1315-1330. 

[32] Ensing, B. and Klein, M.L., Perspective on the reactions between F– and CH3CH2F: 
The free energy landscape of the E2 and SN2 reaction channels. Proc. Natl. Acad. Sci. U.S.A. 
2005, 102, 6755. 

[33] Elstner, M., Porezag, D., Jungnickel, G., Elsner, J., Haugk, M., Frauenheim, T., Suhai, 
S. and Seifert, G. Self consistent charge density functional tight binding method for 
simulations of complex materials properties. Phys. Rev. B, 1998, 58, 7260-7268.  

[34] Miriyala, V.M. and Řezáč, J. Description of non-covalent interactions in SCC-DFTB 
methods. J. Compu. Chem. 2017, 38, 688-697. 

[35] Ali, S.H., Higham, J. and Henchman, H.R., Entropy of simulated liquids using 
multiscale cell correlation. Entropy 2019, 21, 750. 

[36] Higham, J.,  Chou, S.Y., Gräter, F. and Henchman, R.H., Entropy of flexible liquids 
from hierarchical force–torque covariance and coordination. Mol. Phys. 2018, 116, 1965-
1976. 

[37] Tirado-Rives, J. and Jorgensen, W.L., Performance of B3LYP density functional 
methods for a large set of organic molecules. J. Chem. Theory Comput. 2008, 4, 297-306. 

[38] Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, 
J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., et al., Fox, Gaussian, Inc., 
Wallingford CT, 2010. 

[39] Zhao, Y. and Truhlar, D.G., The M06 suite of density functionals for main group 
thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and 
transition elements: Two new functionals and systematic testing of four M06-class 
functionals and 12 other functionals. Theor. Chem. Acc. 2008, 120, 215-241. 



 102 

[40] Zhao, Y. and Truhlar, D.G., Density functionals with broad applicability in chemistry. 
Acc. Chem. Res. 2008, 41, 157-167. 

[41] Case, D.A., Ben-Shalom, I.Y., Cerutti, D.S., Cheatham, T.E., III, Darden, T.A., Duke, 
R.E., Giese, T.J., Gohlke, H., Goetz, A.W., Homeyer, N., et al., AMBER 2018. University 
of California, San Francisco. 2018. 

[42] Senn, H.M. and Thiel, W., QM/MM studies of enzymes. Curr. Opin. Chem. Biol. 2007, 
11, 182-187. 

[43] Gaus, M.,  Goez, A. and Elstner, M., Parametrization and benchmark of DFTB3 for 
organic molecules. J. Chem. Theory Comput. 2013, 9, 338-354. 

[44] Kubillus, M.,  Kubař T., Gaus, M., Řezáč, J. and Elstner, M., Parameterization of the 
DFTB3 method for Br, Ca, Cl, F, I, K, and Na in organic and biological systems. J. Chem. 
Theory Comput. 2015, 11, 332-342. 

[45] The DFTB Website. http://www.dftb.org (accessed October 10, 2018) 

[46] Wang, J.,  Wolf, R.M., Caldwell, J.W.,  Kollman, P.A. and Case, D.A., Development 
and testing of a general amber force field. J. Comput. Chem. 2004, 25, 1157-1174. 

[47] Wang, J.,  Wang, W.,  Kollman, P.A. and Case, D.A., Automatic atom type and bond 
type perception in molecular mechanical calculations. J. Mol. Graph. Model. 2006, 25, 
247-260. 

[48] Lin, Y.,  Pan, D.,  Li, J.,  Zhang, L. and Shao, X., Application of Berendsen Barostat in 
Dissipative Particle Dynamics for Nonequilibrium Dynamic Simulation. J. Chem. Phys. 
2017, 146, 124108. 

[49] Götz, A.W., Clark, M.A. and Walker, R.C., An extensible interface for QM/MM 
molecular dynamics simulations with AMBER. J. Comput. Chem. 2014, 35, 95-108. 

[50] Torrie, G.M. and Valleau, J.P., Monte carlo study of a phase-separating liquid mixture 
by umbrella sampling. J. Chem. Phys. 1977, 66, 1402-1408. 

[51] Kästner, J., Umbrella Sampling. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2011, 1, 
932-942. 

[52] Kumar, S., Rosenberg, J.M., Bouzida, D., Swendsen, R.H. and Kollman, P.A., The 
weighted histogram analysis method for free energy calculations on biomolecules. The 
method. J. Comput. Chem. 1992, 13, 1011-1021. 



 103 

[53] Souaille, M. and Roux, B., Extension to the weighted histogram analysis method: 
Combining umbrella sampling with free energy calculations. Comput. Phys. Commun. 
2001, 135, 40-57. 

[54] Higham, J. and Henchman, R.H., Locally adaptive method to define coordination shell. 
J. Chem. Phys. 2016, 145, 084108. 

[55] Higham, J. and Henchman, R.H., Overcoming the limitations of cutoffs for defining 
atomic coordination in multicomponent systems. J. Comput. Chem. 2018, 39, 705-710. 

[56] Yin, H., Wang, D. and Valiev, M., Hybrid quantum mechanical/molecular mechanics 
study of the SN2 reaction of CH3Cl+OH– in water. J. Phys. Chem. A 2011, 115, 12047-
12052. 

[57] Glew, D.N., Moelwyn-Hughes, E.A. and Norrish, R.G.W., The kinetics of the acid and 
alkaline hydrolysis of methyl fluoride in water. P. Roy. Soc. Lond. A. Math. Phys. Sci. 1952, 
211, 254-265. 

[58] Moelwyn-Hughes, E.A. and Norrish, R.G.W., The kinetics of certain reactions between 
methyl halides and anions in water. P. Roy. Soc. Lond. A. Math. Phys. Sci. 1949, 196, 540-
553. 

[59] Chen, J.,  Xu, Y. and Wang, D. A., Multilayered representation, quantum mechanical 
and molecular mechanics study of the CH3F + OH− reaction in water. J. Comput. Chem. 
2014, 35, 445-450. 

[60] McMillen, D.F. and Golden, D.M. Hydrocarbon bond dissociation energies. Annu. Rev. 
Phys. Chem. 1982, 33, 493-532. 

[61] Nguyen, C.N.,  Kurtzman, Y.T. and Gilson, M.K., Grid inhomogeneous solvation 
theory: Hydration structure and thermodynamics of the miniature receptor cucurbit[7]uril. 
J. Chem. Phys. 2012, 137, 044101. 

[62] Gerogiokas, G.,  Southey, M.W.Y., Mazanetz, M.P., Heifetz, A., Bodkin, M., Law, R. 
J., Henchman, R.H. and Michel, J., Assessment of hydration thermodynamics at protein 
interfaces with grid cell theory. J. Phys. Chem. B 2016, 120, 10442-10452. 

[63] Gerogiokas, G., Calabro, G., Henchman, R.H., Southey, M.W.Y.,  Law, R.J. and 
Michel, J., Prediction of small molecule hydration thermodynamics with grid cell theory. 
J. Chem. Theory Compu. 2014, 10, 35-48. 

[64] Pattni, V., Vasilevskaya, T., Thiel, W. and Heyden, M., Distinct protein hydration water 
species defined by spatially resolved spectra of intermolecular vibrations. J. Phys. Chem. 
B 2017, 121, 7431-7442. 



 104 

[65] Choi, T.H., Liang, R., Maupin, C.M. and Voth, G.A. Application of the SCC-DFTB 
method to hydroxide water clusters and aqueous hydroxide solutions. J. Phys. Chem. B 
2013, 117, 5165-5179. 

[66] Goyal, P., Qian, H.J., Irle, S., Lu, X., Roston, D., Mori, T., Elstner, M., Cui, Q., 
Molecular simulation of water and hydration effects in different environments: Challenges 
and developments for DFTB based models. J. Phys. Chem. B 2014, 118, 11007-11027. 

[67] Park, K., Götz, A.W., Walker, R.C. and Paesani, F., Application of adaptive QM/MM 
methods to molecular dynamics simulations of aqueous systems. J. Chem. Theory Comput. 
2012, 8, 2868-2877. 

[68] Duster, A.W., Wang, C.H., Garza, C.M., Miller, D.E. and Lin, H., Adaptive 
quantum/molecular mechanics: What have we learned, where are we, and where do we go 
from here? WIRES Comput. Mol. Sci. 2017, 7, e1310. 

[69] Lazaridis, T., Inhomogeneous fluid approach to solvation thermodynamics. J. Phys. 
Chem. B 1998, 102, 3531−3541.  

 
 
 
 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 



 105 

Chapter 4. What determines the selectivity of arginine 
dihydroxylation by the nonheme iron enzyme OrfP? 

 
 

 
PAPER 3 
 
 
Hafiz Saqib Ali1,2, Richard H. Henchman1,2, and Sam P. de Visser1,3 
 
 
1 Manchester Institute of Biotechnology, The University of Manchester, 131 Princess 
Street, Manchester M1 7DN, UK 
2 School of Chemistry, The University of Manchester, Oxford Road, Manchester M13 
9PL, UK  
3 Department of Chemical Engineering and Analytical Science, The University of 
Manchester, Oxford Road, Manchester M13 9PL, UK 
 

 
 
 
 
 
* Corresponding authors: 

E-mail: sam.devisser@manchester.ac.uk 
 
 
 
 
 
 
Conceptualization, supervision and project administration, S.P.V.; investigation and funding 
acquisition, H.S.A.; validation, visualization and writing—original draft preparation, H.S.A. 
and S.P.V.; formal analysis and writing—review and editing, H.S.A., R.H.H and S.P.V. 
 
 
 
Published in Chemistry — A European Journal, Volume 27, Issue 

5, Page 1795-1809, 23 September 2020. 



 106 

Abstract 

The nonheme iron enzyme OrfP reacts with L-Arg selectively to form the 3R,4R-

dihydroxyarginine product, which in mammals can inhibit the nitric oxide synthase enzymes 

involved in blood pressure control. To understand the mechanisms of dioxygen activation of 

L-Arg by OrfP and how it enables two sequential oxidation cycles on the same substrate, we 

performed a density functional theory study on a large active site cluster model. We show that 

substrate binding and positioning in the active site guides a highly selective reaction through 

C3-H hydrogen atom abstraction. This happens despite the fact that the C3‒H and C4‒H bond 

strengths of L-Arg are very similar. Electronic differences in the two hydrogen atom 

abstraction pathways drive the reaction with an initial C3‒H activation to a low-energy 5𝜎-

pathway, while substrate positioning destabilizes the C4‒H abstraction and sends it over the 

higher-lying 5𝜋-pathway. We show that substrate and monohydroxylated products are strongly 

bound in the substrate binding pocket and hence product release is difficult and consequently 

its lifetime will be long enough to trigger a second oxygenation cycle. 
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4.1 Introduction 

Natural products including antibiotics often are build up from sugar and amino acid 

components [1-6]. Nature utilizes a range of enzymes to modify amino acids to give the natural 

products its structure and function. These biosynthesis processes often require a high regio- 

and chemoselectivity for the reaction, which is difficult to achieve in chemical catalysis. 

Understanding of how the natural product synthesis by enzymes is achieved and how this high 

selectivity is obtained is important for biotechnology and could enable the biosynthesis of 

useful products with high regio-, enantio- and stereoselectivity and minimize waste products. 

A class of metalloenzymes involved in the biosynthesis of many natural products are the 

nonheme iron dioxygenases, which are found in most organisms [7-14]. For instance, in 

humans the biosynthesis of the amino acid analogue 4R-hydroxyproline is performed by 

proline-4-hydroxylase enzymes in an enantio- and stereoselective reaction mechanism, which 

is an essential component of collagen and gives it its functional and structural properties [15-

18]. Many nonheme iron dioxygenases react via a highly selective reaction mechanism, where 

the substrate is tightly bound in the substrate binding pocket near the nonheme iron cofactor. 

Interestingly, several nonheme iron dioxygenases activate an arginine residue as part 

of a natural product synthesis such as in antibiotics in bacteria [1,2,19]. Thus, VioC 

hydroxylates a free arginine molecule selectively at the C3-position as precursor to the 

biosynthesis of viomycin [20-24], while NapI desaturates an arginine substrate at the C3-C4 

bond through two sequential hydrogen atom abstraction reactions [25]. These enzymes were 

studied spectroscopically and kinetically and their substrate specificity tested. Recent studies 

on the nonheme iron enzyme GetI showed it to hydroxylate L-Arg at the C4-position, although 

it was not clear whether arginine is its natural substrate [26]. A similar situation was found in 

the ethylene forming enzyme that apart from catabolizing succinate to three CO2 molecules, 

also appears to bind and activate an arginine residue but hydroxylate it at the C5-position [27-

29]. Therefore, several nonheme iron dioxygenases appear to activate an L-Arg substrate 

differently to give either C3-hydroxylation, C4-hydroxylation, C5-hydroxylation or C3-C4 

desaturation through the use of O2 and 𝛼-ketoglutarate (𝛼KG) on an iron center. 

A recently discovered and characterized nonheme iron dioxygenase from Streptomyces, 

named OrfP, was shown to activate a free arginine amino acid and produce yet another product 

in a reaction with dioxygen, namely the 3R,4R-dihydroxyarginine [30]. Subsequently, the 
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3R,4R-dihydroxoarginine is converted into streptolidine and attached to a glucosamine sugar 

scaffold to form the streptothricin product. OrfP; therefore, performs the dihydroxylation of L-

Arg as a precursor reaction to the biosynthesis of the streptothricin antibiotics. Isolation of 

OrfP and studies of its product distributions showed that the major component was 3R,4R-

dihydroxyarginine; however, small amounts of 3R-hydroxyarginine, 3S-hydroxyarginine and 

4S-hydroxyarginine, are also observed (Figure 4.1), although their origins remain unclear. Note 

that 3R,4R-dihydroxyarginine was found to have inhibitory effects on inducible nitric oxide 

synthase enzymes in mammals; an enzyme involved in blood pressure control and 

inflammation [31]. Hence, its selective biosynthesis pathways are important in medicinal and 

biotechnology work and may have important applications. 

 
Figure 4.1. a) Extract of the crystal structure coordinates (4M2E pdb file) of L-homo-arginine 

(amber) bound OrfP with key residues and iron (light brown) highlighted; b) Products and by-

products formed in OrfP activation of L-Arg. 

 An extract of the active site of OrfP is given in Figure 4.1 as taken from the 4M2E 

protein databank (pdb) file [32,33]. The iron is linked to the protein through interactions with 

the side chains of His154, Glu156 and His303 group in a typical facial 2-His/1-Glu triad, which is 

common for many nonheme iron dioxygenases [34-36]. In the 4M2E pdb [32], the other ligand 

sites of the metal are occupied by water molecules. It is known that OrfP utilizes 𝛼-

ketoglutarate (𝛼KG or also called 2-oxoglutarate) and dioxygen and binds these on its iron 

center and presumably forms an iron(IV)-oxo active species. For several other nonheme iron 

dioxygenases the iron(IV)-oxo species has been characterized with UV-Vis absorption, 

electroparamagnetic resonance and Mössbauer spectroscopic studies and shown to be the 

active species that reacts with substrate [37-42].  

(a) (b)
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How OrfP can perform a double dioxygenation reaction by preventing release of 

hydroxyarginine in favor of a second catalytic cycle is unknown. Although crystal structure 

coordinates of OrfP have been obtained, they do not give a clear understanding on the product 

release and substrate oxidation selectivity, which warrants a detailed computational study. In 

the OrfP pdb structure, the substrate analogue L-homo-arginine (Figure 4.1) binds tightly into 

the substrate-binding pocket and is surrounded by polar groups. In particular, its guanidinium 

group forms a salt bridge with Asp255 and experiences hydrogen bonding interactions from the 

alcohol group of Thr152 and the oxo group of Gln142. The carboxylate group of L-homo-arginine 

forms a salt bridge with Arg321, which is also in hydrogen bonding distance to the iron ligand 

Glu156. The amine group of the substrate is positioned with hydrogen bonding and salt-bridge 

interactions to the side chains of the Gln123, Asp208, Ser210 and His211 residues, which will 

influence the reactivity of the substrate with the cofactor. Hence we reasoned that a large cluster 

model will be needed to describe the OrfP structure and reactivity well. In this work, a large 

cluster model incorporating the substrate and cofactor and their direct environment is studied 

to explore the reaction pathways of L-Arg activation leading to 3S-hydroxyarginine, 3R-

hydroxyarginine, 4S-hydroxyarginine and 3R,4R-dihydroxyarginine products. Moreover, we 

focus on how the hydroxyarginine release is prevented in favor of a second oxygenation cycle. 

 

4.2 Experimental Section 

4.2.1 Model Set-Up 

A density functional theory (DFT) cluster model was created using procedures described 

previously [43-46]. The 4M2E pdb file was used [32,33], whereby we selected chain A and 

replaced L-homo-Arg substrate manually by L-Arg and docked aKG in the structure using the 

SwissDock web server [47]. Subsequently, hydrogen atoms were added in Chimera at pH = 7 

[48], and we made sure to check all polar residues: All Asp and Glu side-chains were 

deprotonated and all Arg and Lys side-chains protonated. The His residues in the protein were 

visually inspected for neighbouring hydrogen bonding donor and acceptor groups and based 

on the analysis all were chosen to be singly protonated on either the Nd or Ne atom. In the active 

site model we replaced the iron(II) ion by an iron(IV)-oxo species with a starting distance of 

1.62 Å and the oxo trans to His303, while aKG was replaced by succinate to create the active 
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oxidant species in the enzyme. These changes kept the overall charge of the model the same, 

which was thereafter solvated with water in Chimera. The protein is solvated in 10 Å cubic box 

of water molecules using the TIP3P force field [49] and the system was neutralized with Na+ 

of Cl- ions.   

 

4.2.2 Molecular Dynamics Simulation 

To check that translational stability of the protein complex, a molecular dynamics (MD) 

simulation was performed. The MD simulation was carried out using the PMEMD (Particle 

Mesh Ewald Molecular Dynamics) module of the AMBER18 simulation package [50]. The 

GAFF [51] force field with AM1-BCC charges were used for the substrate and a-ketoglutarate 

while the ff14SB [52] force field was used for the protein system. The GAFF force field 

parameters were generated using the Antechamber [53] while the parameters for penta 

coordinated Fe(II) active site and its coordinated ligand were generated with the Metal Centre 

Parameter Builder (MCPB) using the MCPB.py [54] tool. The parameter and coordinate files 

of enzyme complex were generated using the xleap module in AMBER18. The equilibration 

of the enzyme structure was started with 500 steps of steepest decent minimization, 100 ps 

controlled heating from 0 to 300 K temperature at a constant volume and temperature molecular 

dynamic simulation with the Langevin thermostat [55] and 5 ps-1 collision frequency. After 

that the equilibration was completed with a 100 ps MD simulation at constant pressure using 

the Berendsen barostat [56] with 2 ps time constant. At the end, for data collection 20 ns MD 

simulation was performed at constant pressure and temperature with the Berendsen barostat 

and 2 ps time constant. The MD simulation gave very little changes to the protein structure and 

kept all features of the active site in tact during the full run. As such, OrfP is a rigid protein, 

where the active site and substrate binding pocket show little changes over time (Figure 4.2). 

Next, we analysed the first and second coordination sphere of the iron and substrate 

environment in detail and included in the model all groups that determine the shape and 

constraints of the substrate and cofactor binding environments and particularly included key 

hydrogen bonding interactions of charged residues and salt-bridges. Thus, the cluster model 

includes two long protein chains that circumvent the cofactor and substrate-binding pocket, 

namely the peptide chains Leu151-Thr152-Trp153-His154-Thr155-Glu156 and Asp208-Glu209-Ser210-

His211. Amino acid residues pointing away from the active site where shortened to Gly residues 
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in the model, i.e. Trp153, Thr155 and Glu209, but their protein backbone was kept in the model. 

The side chains of the residues Gln142-Leu143, Asp255, Phe258, and Arg321 were included in the 

model. A hydrogen atom was added to the positions where a bond was cut to restore the 

valencies of the atoms. The axial histidine ligand (His303) of iron was shortened to 

methylimidazole. Finally, based on the solvated structure we decided to include two water 

molecules in the model: one positioned near the carboxylate group of the substrate and the 

other near the guanidinium group. Overall, our DFT cluster model consists of 275 atoms, has 

overall charge of ‒1 and was calculated with multiplicity singlet, triplet and quintet spin. As 

the model contains many internal hydrogen bonding interactions, no constraints on the system 

were used. An overlay of the optimized reactant structure and the original pdb file (Figure 4.3) 

indeed shows little differences on the overall shape and structure of the chemical system. 

 
Figure 4.2. The overlay of X-ray crystal structure (in amber) and the equilibrated structure (in 

purple) obtained after a 20 ns MD-simulation. 

 

4.2.3 Quantum Mechanical Calculations Procedures 

The Gaussian-09 software package was used for all quantum chemical calculations [57]. 

Following previous experience with cluster models of nonheme iron dioxygenases [58,59], we 

utilized the unrestricted B3LYP density functional method for geometry optimizations, 

constraint geometry scans and frequency calculations. The basis set used was a LANL2DZ 

(with electron core potential, ECP) on the iron and 6-31G on the rest of the atoms (H, C, N, O) 



 112 

designated basis set BS1 [60-62]. Test calculations with alternative density functional methods 

were performed on analogous systems and showed little change in spin-state-ordering, 

optimized geometries and overall reaction mechanism [63]; hence B3LYP/BS1 was used for 

geometry optimizations. All local minima were verified by the presence or absence of negative 

eigenvalues in the vibrational frequency analysis while all the transition state structures were 

found using the Berny algorithm [64], and confirmed by vibrational analysis to have one 

imaginary mode, which was animated and shown to correspond to the reaction coordinate. In 

order to correct the energetics and account for the effect of solvent, single-point energies of the 

optimized geometries were evaluated with the UB3LYP-D3/BS2 level of theory [60-62,65], 

whereby BS2 is 6-311+G* on H, C, O, N and LACV3P+ (with electron core potential) on iron. 

The latter set of calculations included a conductor-like polarizable continuum model (CPCM) 

with a dielectric constant of e = 5.7 mimicking chlorobenzene [66], which has been shown to 

be a good representative of an enzyme active site. For several structures the geometries were 

reoptimized at the UB3LYP/BS3 level of theory (basis set BS3 has LACV3P+ with core 

potential on iron and 6-31G* on the other atoms), but similar geometries and reaction barriers 

were obtained. Therefore, most of the work was done using the UB3LYP/BS2//UB3LYP/BS1 

approach. Since the zero-point energies (ZPE) and vibrational entropy contributions are 

sometimes affected by small real frequencies for internal motions, we excluded vibrations with 

values below 50 cm‒1 and recalculated the ZPE, thermal and entropy corrections. Free energies 

are calculated at 298.15 K and 1 atm, and include the thermal corrections evaluated from the 

unscaled vibrational frequencies at the UB3LYP/BS1 level of theory, with solvent, dispersion 

and entropy contributions. 

Kinetic isotope effects (KIEs) were estimated using the classical Eyring equation 4.1 

based on differences in free energy of activation (DG‡) of the hydrogen and deuterium-

substituted systems as described previously [67,68]. Tunneling corrections (Qt) to the KIE were 

estimated using the Wigner correction as described in equation 4.2 and is based on the change 

in imaginary frequency of the transition state (n), see equations 4.2 and 4.3. In equations 4.1 ‒ 

4.3, R is the gas constant, T is the temperature (298 K), h is Planck’s constant and kB is 

Boltzmann’s constant. 

KIEIl_]Ga = expmM∆𝐺¥
‡ − ∆𝐺g

‡O/𝑅𝑇}    (4.1) 

 KIEh]aGI_ = KIEIl_]Ga ×
QAg

QA¥q     (4.2) 
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 QA = 1 + >ℎ𝑣 𝑘¨𝑇q ?
;
/24     (4.3) 

The substrate binding free energy (BFE) was calculated by taking the optimized geometries of 

the three hydroxyarginine complexes (IM2C4S, IM2C3S and IM2C3R). A single point frequency 

calculation at UB3LYP/BS1 with CPCM included was done on all structures. Thereafter, the 

structures were split into two components, namely the hydroxyarginine and the protein, i.e. 

IM2 minus the hydroxyarginine. We then did a frequency at the same level of theory on both 

the hydroxyarginine and the protein structures. The binding free energy is evaluated from the 

difference in free energy of the three individual components. 

 

4.3 Results 

4.3.1 First Oxygenation Cycle of L-Arg by OrfP 

We created an OrfP cluster model, see Scheme 4.1, from the crystal structure coordinates of 

the OrfP enzyme deposited in the protein databank under the 4M2E pdb file [32,33]. This 

structure represents an OrfP tetramer with L-homo-arginine as substrate mimic bound. We took 

chain A of the protein and replaced L-homo-arginine by L-arginine manually. The structure 

has iron coordinated to the side chains of two histidine groups (His154 and His303) and the 

carboxylate group of Glu126. As 𝛼-ketoglutarate (𝛼KG) is missing from the pdb file, it was 

docked in position with the SwissDock web server bound to iron in the same plane as the side 

chains of His154 and Glu156 [69]. A 20 ns molecular dynamics simulation shows the structure 

to be highly rigid and little changes to the active site and second-coordination sphere structure 

of the iron center was found. Next, a model containing the first and second coordination sphere 

of the metal center was created that included the oxidant with its direct ligands and the main 

components of the substrate (L-Arg) and succinate binding pocket: see Scheme 4.1. 

Subsequently, we explored the first hydroxylation pathway of L-Arg substrate using 

the model described in Scheme 4.2. OrfP enzymes perform two consecutive hydroxylation 

reactions on L-Arg and each of these cycles uses one molecule of O2 and a molecule of 𝛼KG 

to form an iron(IV)-oxo species and succinate. Spectroscopic studies showed this iron(IV)-oxo 

to react with L-Arg [11]. We will start with the substrate activation steps in the first catalytic 

cycle, where L-Arg is bound to an iron(IV)-oxo(succinate) complex and follow the reaction 
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mechanism of substrate hydroxylation leading to 3S-hydroxyarginine, 3R-hydroxyarginine and 

4S-hydroxyarginine products using the cluster model described in Scheme 4.1 (Model A). 

Thereafter, the second hydroxylation cycle was investigated from these mono-hydroxylated 

arginine product complexes by replacing the iron(II) site by an iron(IV)-oxo species (Model 

B). Model A and B; therefore, have the same overall charge. The model type is given in 

subscript after the label of the structure. 

 

Scheme 4.1. DFT cluster model investigated in this work with substrate highlighted in red and 

iron(IV)-oxo in blue. The wiggly lines identify where the protein chain was cut and a hydrogen 

atom inserted. 

 Our cluster model of the iron(IV)-oxo species with L-Arg bound was geometry 

optimized in the low-lying triplet and quintet spin states (3,5ReA) using UB3LYP/BS1, while 

the quintet spin structure was also minimized with a larger basis set at UB3LYP/BS3 

(5ReA,BS3). Figure 4.4 gives optimized geometries of the reactant complexes 3,5ReA as obtained 

with DFT using cluster model A. The Fe-O distance in the quintet spin state is short and typical 

of a double bond, while it is somewhat larger in the triplet spin state. The axial histidine ligand 

is at a distance of 2.078 Å in the quintet spin state and at 2.035 Å in the triplet spin state, while 

a geometry optimization with a larger basis set, i.e. BS3 basis set, elongates it slightly to 2.157 

Å. These structures of the nonheme iron(IV)-oxo species match previous calculations on 
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similar species well [70-79]. Moreover, experimental studies on analogous nonheme iron 

enzymes, such as TauD and P4H established an Fe‒O distance of about 1.62 Å and 

characterized them as quintet spin ground states [37-42]. Therefore, the calculations match 

previously reported experimental structures of enzymatic nonheme iron(IV)-oxo complexes 

well. Furthermore, an overlay of the 5ReA structure with the crystal structure coordinates shows 

that little changes to the structure have occurred during the geometry optimization and the 

model still has all features of the protein (Figure 4.3). 

 

Figure 4.3. Overlay of the UB3LYP/BS1 optimized geometry of 5ReA (in orange) with the 
crystal structure coordinates (in purple). 

The nearest hydrogen atom from the oxo group is the pro-S hydrogen atom at the C3-

position and its distance is about 2.667 Å in the quintet spin state, while the pro-R hydrogen 

atom is located at 4.061 Å and the pro-S hydrogen atom on the C4-position at 5.008 Å. Based 

on the substrate positioning in OrfP; therefore, it appears that the C3-position is located closest 

to the metal center and hence should be the preferred site of activation. The quintet spin state 

is the ground state and is well separated from the triplet spin state by DE+ZPE = 7 kcal mol‒1. 

As such, the triplet spin state plays little role in the reaction mechanism and the reaction takes 

place through single-state-reactivity of the quintet spin state surface only. This is as expected 

for an iron(IV)-oxo species in trigonal bipyramidal configuration that usually gives a high-spin 

ground state [80,81]. The quintet spin state is characterized with a molecular orbital occupation 
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of p*xy1 p*xz1 p*yz1 s*x2-y21, while in the triplet spin state it is is p*xy2 p*xz1 p*yz1. The spin-

state-ordering, spin-state energies and orbital configurations match previous work on nonheme 

iron enzymes and biomimetic models well and show that OrfP has the usual features of the 

first-coordination sphere [70-79,82-89]. 

Figure 4.4. UB3LYP/BS1 optimized geometries of 5,3ReA with bond lengths in angstroms and 

the relative (free) energies in kcal mol‒1. UB3LYP/BS3 optimized geometry 5ReA,BS3 data are 

given in parenthesis. 

Next we considered substrate hydroxylation by the reactant complexes 3,5ReA at the C3 

and C4 positions to produce 3S-hydroxyarginine, 3R-hydroxyarginine and 4S-hydroxyarginine. 

The overall reaction scheme that was investigated with the definition of the various 

intermediate and transition state structures is given in Scheme 4.2. To this end we calculated 

the hydrogen atom abstraction from the two different hydrogen atoms on the C3-position, 

designated the C3R (or pro-R) and C3S (or pro-S) hydrogen atoms, and the nearest hydrogen 

from the C4 group, i.e. the C4S hydrogen atom. Transition states (TS1HA) for all positions were 

located and lead to a radical intermediate (IM1) representing an iron(III)-hydroxo species with 

a nearby substrate radical on either the C3 or C4 position of the substrate. A subsequent OH 

rebound to the substrate (via transition state TS2reb) leads to the mono-hydroxylated products 

(IM2) that are bound to an iron(II) species. The C-H bond that is activated in each step in the 

first substrate hydroxylation mechanism is identified with C3R, C3S and C4S in subscript after 
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the label of the structure for the pathways leading to 3R-hydroxyarginine, 3S-hydroxyarginine 

and 4S-hydroxyarginine. 

 

Scheme 4.2. Reaction mechanisms of arginine hydroxylation by the iron(IV)-oxo species of 

OrfP as studied in this work. 

 The reaction mechanism as described in Scheme 4.2 was calculated for the large cluster 

model A of OrfP for substrate hydroxylation leading to 3S-hydroxyarginine, 3R-

hydroxyarginine and 4S-hydroxyarginine products. The potential energy landscape with key 

optimized geometries is shown in Figure 4.5. As can be seen from Figure 4.5 the lowest 

enthalpy of activation (DE‡+ZPE) for hydrogen atom abstraction is from the pro-S C3-H 

position via 5TS1HA,C3S with a value of DE‡+ZPE = 12.1 kcal mol‒1. Close in enthalpy of 

activation is the pro-R C3-H hydrogen atom abstraction barrier via 5TS1HA,C3R at DE‡+ZPE = 

15.5 kcal mol‒1. The hydrogen atom abstraction barrier from the C4-H position is much higher 

in energy than the one from the C3-H positions, i.e. DE‡+ZPE = 23.2 kcal mol‒1. Based on 

these hydrogen atom abstraction barriers, a selective hydrogen atom abstraction from the C3-H 

position is predicted with the pro-S channel dominant, although small amounts of pro-R cannot 

be excluded. These calculations therefore match experimental observation [30] that singly 

hydroxylated arginine at the C3-position is formed. We also calculated the 5TS1HA,C3S and 
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5TS1HA,C4S structures at UB3LYP/BS3 level of theory and find ∆E‡+ZPE energies at UB3LYP-

D3/BS2//UB3LYP/BS3 of 7.9 and 23.4 kcal mol-1, respectively. As such these barriers predict 

the same trends as seen with UB3LYP/BS1 optimized structures and hence we continued with 

this method only. 

Interestingly, when entropy and thermal corrections are added to the enthalpy, the pro-

R hydrogen atom abstraction barrier becomes the lowest energy pathway: DG‡ = 11.6 kcal mol‒

1 for the pro-R C3-H pathway, while for the pro-S C3-H pathway DG‡ = 13.5 kcal mol‒1 is 

found. Consequently, both hydrogen atoms on the C3 atom of L-arginine can be abstracted by 

the iron(IV)-oxo species and this should give a mixture of 3R-hydroxyarginine and 3S-

hydroxyarginine products. These products have indeed been observed experimentally [30]. To 

understand why entropy and thermal corrections reverse the ordering of 5TS1HA,C3S and 
5TS1HA,C3R, we analyzed the structures in more detail. The transition state geometries 

(5TS1HA,C3S, 5TS1HA,C3R and 5TS1HA,C4S) are shown in Figure 4.5. The two C3-H hydrogen 

atom abstraction barriers are relatively central with similar C3-H and O-H distances. In 

particular, the 5TS1HA,C3R has C3-H and O-H distances of 1.265 and 1.272 Å, respectively, 

while those distances are 1.302 and 1.233 Å for 5TS1HA,C3S. By contrast, the C4-H hydrogen 

atom abstraction barrier is more product-like with considerably longer C4-H distance than 

O-H distance: 1.358 versus 1.187 Å. The interesting difference between the three structures 

relates to the Fe-O-C angle in the transition states. Thus, 5TS1HA,C3S has a large Fe-O-C3 

angle of 167°, whereas in the 5TS1HA,C3R structure it is 139° and in 5TS1HA,C4S the angle is 

127°.  

We also optimized the 5TS1HA,C3S and 5TS1HA,C4S structures with UB3LYP/BS3; 

however, very little changes in the optimized geometries with respect to UB3LYP/BS1 are 

seen. For both structures the C-H and O-H distances are within 0.01Å and only the Fe-O is 

shortened by up to 0.04Å. As such the basis set has little influence on the optimized structures 

and BS1 and BS3 give qualitative similar results. Typically in hydrogen atom abstraction 

transition states by nonheme iron(IV)-oxo species the quintet spin state pathways shows 

approach of the substrate from the top and an almost linear Fe-O-C bond angle [90,91]. 

Despite this large difference in oxidant approach between 5TS1HA,C3S and 5TS1HA,C3R based on 

the Fe-O-C3 angle; actually an overlay of the two optimized geometries does not show major 

differences. However, there are major differences in vibrational entropy between the two 
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structures, whereby 5TS1HA,C3S has a 12.1 cal mol‒1 K‒1 larger vibrational entropy than 
5TS1HA,C3R. Moreover, when all small vibrations with magnitude smaller than 50 cm‒1 are 

removed from the equation, the entropy difference is reversed and 5TS1HA,C3R has a larger 

vibrational entropy by 16.0 cal mol‒1 K‒1. This corresponds to a free energy stabilization of 4.8 

kcal mol‒1 and reverses the individual barrier heights. The large vibrational entropy 

contribution of 5TS1HA,C3R is unrealistic and probably the result of a gas-phase model, where 

the vibrational contributions are overestimated. Thus, previously we did a comparative study 

on experimental and computational enthalpy and free energies of activation for oxygen atom 

transfer reactions and found the entropy to be overestimated by as much as 50% in model [92]. 

Moreover, the enthalpy values predict the experimental product distributions correctly and 

appear to be more realistic. As such, we will focus on DE+ZPE values only. 

To test whether replacement of the transferring hydrogen atom by deuterium would 

have an effect on the barrier heights, we re-evaluated the vibrational frequencies by replacing 

the pro-R and pro-S hydrogen atom on the C3-position by deuterium. Thus, with a deuterium 

atom on the pro-R position and a hydrogen atom at the pro-S position the 5TS1HA,C3R and 
5TS1HA,C3S barriers change to DG‡ = 12.8 and 13.5 kcal mol‒1, respectively. Consequently, the 

order of the hydrogen atom abstraction barriers does not change, but the energy gap narrows 

to within 1 kcal mol‒1. The reverse situation with a deuterium atom on the pro-S position and 

a hydrogen atom at the pro-R position gives free energies of activation of DG‡ = 11.7 and 14.7 

kcal mol‒1 and widens the energy gap. As the hydrogen atom abstraction step is rate-

determining for the first hydroxylation cycle of L-Arg by OrfP, we calculated the kinetic 

isotope effects (KIEs) using the Eyring and Wigner methods. Both C3R and C3S pathways 

give a KIEEyring of about 8, which rises to 14 – 15 when quantum mechanical tunneling 

corrections are added. These are typical values of hydrogen atom abstraction kinetic isotope 

effects that are commonly seen in hydrogen atom abstraction reactions by nonheme iron(IV)-

oxo complexes in enzymatic and biomimetic model complexes [93-95]. 

After the hydrogen atom abstraction transition states all structures relax to a radical 

intermediate IM1; however, the two structures with a radical on C3 (5IM1C3S and 5IM1C3R) are 

very wide apart with 5IM1C3S lower in energy than 5IM1C3R by 7.9 kcal mol‒1. By contrast, the 
5IM1C4S is within 1.1 kcal mol‒1 of 5IM1C3S. Therefore, the ordering of the radical 

intermediates 5IM1 are different from those of the transition states and probably is the result 

of the tight substrate binding and positioning that affect the kinetics dramatically.  
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Figure 4.5. Potential energy landscape for L-arginine hydroxylation at the C3 and C4 positions 

with energies (in kcal mol‒1) relative to 5ReA calculated at UB3LYP-D3/BS2//UB3LYP/BS1. 

Optimized geometries of the transition states are given with bond lengths in angstroms, the 

bond angle in degrees and the imaginary frequency in cm‒1. UB3LYP/BS3 optimized structures 

are given in parenthesis. 

 

Next, an OH rebound step takes place from the IM1 intermediates. The pathway from 5IM1C3 

gives small rebound transition states of less than 3 kcal mol‒1 to give alcohol products with 

large exothermicity. This small rebound barrier will imply that 5IM1C3 has a short lifetime and 

collapse to products without rearrangement and stereochemical scrambling of products. On the 

other hand, the rebound barrier 5TS2reb,C4S is 14.7 kcal mol‒1 above 5IM1C4S and hence the 

radical intermediate 5IM1C4S will have a finite lifetime. Interestingly, the alcohol product 

complexes (IM2) have different ordering than the IM1 states, whereby the most stable 

structure is 5IM2C3R. Overall, the DFT modelling on cycle 1 of OrfP shows that a mixture of 

3S-hydroxyarginine and 3R-hydroxyarginine may be expected as those pathways have 

competing reaction barriers and rate constants. 

5TSHA,C3S

C3-H: 1.302 (1.297)
O-H: 1.233 (1.228)
Fe-O: 1.758 (1.736)
Fe-O-C3: 167° (162°)i1340 (i1453) cm‒1

5TSHA,C4S

C4-H: 1.358 (1.367)
O-H: 1.187 (1.182)
Fe-O: 1.762 (1.729)
Fe-O-C4: 127° (125°)

i1694 (i1910) cm‒1

5TSHA,C3R

C3-H: 1..265
O-H: 1.272
Fe-O: 1.764
Fe-O-C3: 139°

i1182 cm‒1
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Figure 4.6. Electron transfer processes for hydrogen atom abstraction and OH rebound via 5s 

(top) and 5p (bottom) pathways and group spin densities (r) as obtained from the optimized 

transition state geometries. 

To understand the different substrate to oxidant angles (Fe-O-C angle), we show the 

possible electron transfer pathways in the hydrogen atom abstraction and OH rebound steps in 

Figure 4.6. As discussed above the reactant has p*xy1 p*xz1 p*yz1 s*x2-y21 configuration, while 

the substrate C-H bond is occupied with two electrons. Upon hydrogen atom transfer, the C-H 

bond cleaves homolytically and a radical is left on the substrate in orbital fSub. The electron of 

the hydrogen atom moves into the metal 3d-block and generally there are two possibilities 

called the 5s and 5p pathways [96-100]. In the 5s pathway an electron transfer from the 

substrate into the virtual p*z2 orbital takes place to give a radical intermediate 5IM1HA,s with 

configuration p*xy1 p*xz1 p*yz1 s*x2-y21 s*z21 fSub1. As the s*z2 orbital is located along the 

Fe-O axis the substrate will approach from the top and an almost linear Fe-O-C angle is 

obtained in the transition state. In the radical intermediate the five metal-type orbitals are 

antiferromagnetically coupled to a radical on the substrate and are exchange stabilized. The 

alternative mechanism for substrate hydroxylation is via the 5p-pathway, where the initial 

electron transfer from the substrate into the singly occupied p*xy orbital takes place. This then 

gives an intermediate with electronic configuration p*xy2 p*xz1 p*yz1 s*x2-y21 fSub1, where now 

all unpaired electrons are ferromagnetically coupled. The radical rebound pathways brings the 
5s and 5p pathways together into the same alcohol product complex 5IM2 with configuration 

p*xy2 p*xz1 p*yz1 s*x2-y21 s*z21.  Electron transfer into the p*xy orbital gives a side-on approach 



 122 

and a more bent structure (typically around 120°) is found. Based on the electron-transfer 

processes these pathways are called the 5s and 5p-pathways. To find out, whether our hydrogen 

atom abstraction pathways belong to the 5s or 5p-type, we analyzed the molecular orbitals and 

unpaired spin density of the three-hydrogen atom abstraction transition states 5TS1HA. 

Group spin densities of 5TS1HA,C3S, 5TS1HA,C3R and 5TS1HA,C4S transition states are 

given in Figure 4.6. The spin density for the C3-H hydrogen atom abstraction is large on the 

iron (rFe = 3.85 for both), while negative spin density is accumulating on the substrate. 

Consequently, these spin densities characterize both C3-H hydrogen atom abstraction barriers 

as 5s pathway structures. By contrast, the 5TS1HA,C4S transition state has positive spin density 

on the substrate (rSub = 0.50), while the spin on iron is only rFe = 2.76. Therefore, the 
5TS1HA,C4S transition state is of the 5p-pathway rather than of 5s. In an attempt to find the 5s-

pathway structures, some molecular orbitals of the 5p-pathway transition states were swapped; 

however, during the SCF convergence this electronic configuration was not stable and relaxed 

to the 5s electronic configuration and geometry instead. Therefore, the C3-H and C4-H 

hydrogen atom abstraction pathways give differences in electronic configuration and electron 

transfer processes that is forced upon the system through substrate binding and positioning. 

These electronic and stereochemical effects push the reaction to C3-hydroxylation of L-Arg 

selectively. 

 

Scheme 4.3. Reaction mechanisms investigated in this work for hydroxyarginine 

hydroxylation by an iron(IV)-oxo species of OrfP. 
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4.3.2 Second oxygenation cycle of L-Arg by OrfP.  

In the next set of calculations, we explored the second hydroxylation cycle of arginine. 

Experimental studies show that OrfP enzymes are able to incorporate two hydroxyl groups into 

an arginine molecule [6,30,32]. We hypothesized that after the first hydroxylation step of the 

substrate is completed, the hydroxyarginine is not released from the enzyme but only succinate. 

Subsequently, another catalytic cycle starts with binding of a new molecule of 𝛼KG and O2 to 

the iron center that then react to form a second iron(IV)-oxo and succinate species. To this end, 

we took the optimized geometry of the 3S-hydroxyarginine, 3R-hydroxyarginine and 4S-

hydroxyarginine bound iron(II) complexes, i.e. 5IM2C3S, 5IM2C3R and 5IM2C4S, and replaced 

the iron(II) group by iron(IV)-oxo to form 5IM3C3S, 5IM3C3R and 5IM3C4S, which kept the 

overall charge the same. Thereafter, the hydroxylation of the pro-R C4-H group of 3S-

hydroxyarginine in 5IM3C3S and the hydroxylation of the pro-R C3-H group in 4S-

hydroxyarginine was studied to form the 3R,4R-dihydroxyarginine product IM5C3C4 (Scheme 

4.3). Note that the dihydroxylation changes the stereochemistry on atom C3 from 3S in the 

mono-hydroxylated species to 3R in the dihydroxylated arginine. The second hydroxylation 

step starts with a hydrogen atom abstraction via 5TS3HA to form a radical intermediate 5IM4HA. 

A radical rebound via transition state 5TS4reb gives the dihydroxylated arginine product 

complex 5IM5C3C4. Figure 4.7 shows the potential energy landscape for the second 

hydroxylation cycle starting from these 5IM3B. In addition to these two pathways we also 

investigated the hydrogen atom abstraction from the C3-H group in 3R-hydroxyarginine.  

The iron(IV)-oxo species for the second reaction cycle for 3S-hydroxyarginine and 3R-

hydroxyarginine  bound complexes (5IM3B,C3S and 5IM3B,C3R) are shown in Figure 4.7. They 

have similar features as the reactant species of cycle 1 with an Fe‒O distance of 1.656 and 

1.650 Å, respectively, and the same electronic configuration of p*xy1 p*xz1 p*yz1 s*x2-y21. The 

only difference is a hydrogen bonding interaction between the alcohol group of 3S-

hydroxyarginine and the oxo group, which may have elongated the Fe-O bond slightly. 

Nevertheless, the C4-H group is positioned close to the oxo group at a distance of 3.159 Å 
5IM3B,C3S. In contrast, in 5IM3B,C3R the C3-H group is much further away and positioned at a 

distance of 5.019 Å. Therefore, we decided to explore hydrogen atom abstraction from the 

C3-H position instead: the C3H-O distance is 3.985 Å in 5IM3B,C3R. Thereafter, the hydrogen 

atom abstraction by the iron(IV)-oxo species 5IM3B,C3S from the C4-H position was calculated 

and a barrier of DE‡+ZPE = 11.6 kcal mol‒1 is found. This is much lower in energy than the 
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hydrogen atom abstraction from the C4-H position obtained for L-arginine, i.e. 23.2 kcal mol‒

1 see Figure 4.5. An analysis of the group spin densities of 5TS3HA,C4 gives a spin of 3.93 on 

iron and a spin of -0.42 on the C4 atom of the substrate and an orbital occupation of p*xy1 p*xz1 

p*yz1 s*x2-y21 s*z21 fSub1. 

Consequently, 5TS3HA,C4 has a 5s electronic configuration, while 5TS1HA,C4 had a 5p 

configuration. These differences are probably the result of the hydrogen bonding interaction 

from the hydroxo group of substrate to the oxo group that constraints the substrate approach 

and withdraws electron density. Indeed in previous work we showed that hydrogen bonding 

interactions to an iron(IV)-oxo species influence reaction barriers [90,91]. Geometrically, the 

transition state 5TS3HA,C4 is relatively central with almost equal C-H and O-H distances, i.e. 

1.245 Å (C4-H bond) and 1.296 Å (O-H bond). The C4-O-Fe angle, however, is somewhat 

bent (140°) while for the first hydrogen atom abstraction transition states (TS1HA above) have 

an angle close to 180°. Consequently, there is considerable constraint in the structure probably 

due to hydrogen bonding interactions in the substrate binding pocket. 

After the transition state, the system relaxes to a radical intermediate via an almost 

thermoneutral process (DE+ZPE = -1.2 kcal mol‒1 with respect to 5IM3B,C3S). A subsequent 

rebound barrier of 6.1 kcal mol‒1 above 5IM4HA,C4 leads to the dihydroxylated arginine 

products 5IM5C3C4 with large exothermicity. The alternative pathway starting from 5IM3B,C4S 

to form 5IM5C3C4 was also studied. Thus, a transition state of DE‡+ZPE = 12.0 kcal mol‒1 leads 

to a radical intermediate that is 2.6 kcal mol‒1 more stable than 5IM3B,C3S. A small OH rebound 

barrier of 4.3 kcal mol‒1 above 5IM4HA,C3 then leads to the 3R,4R-dihydroxyarginine product. 

The transition state geometry of 5TS3HA,C3 is given in Figure 4.6 and has the transferring the 

hydrogen atom almost midway between the donor and acceptor groups: the C3-H distance is 

1.311 Å and the H-O distance is 1.220 Å. The C3-O-Fe angle is 166° and therefore much 

larger than the corresponding angle in 5TS3HA,C4 of 140°.  

These reaction barriers are low in energy and of the same order of magnitude as the 

first hydrogen atom abstraction from the pro-S position of the C3-H group in Figure 4.5 above. 

Therefore, the dihydroxylated product can be formed from either 3S-hydroxyarginine or 4S-

hydroxyarginine with similar rate constants and reaction barriers. However, as shown in Figure 

4.5 above, the first hydroxylation step is highly selective and will give dominant 3S-

hydroxyarginine through the first oxygen atom transfer cycle. 
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Figure 4.7. Potential energy landscape for 3-hydroxyarginine and 4-hydroxyarginine 

hydroxylation to form the dihydroxoarginine and b-ketoarginine products. Energies calculated 

at UB3LYP-D3/BS2//UB3LYP/BS1. Outside parenthesis are DE+ZPE values, while free 

energies are in parenthesis. Optimized geometries of the transition states are given with bond 

lengths in angstroms, angles in degrees and the imaginary frequency in cm‒1. 

Finally, we explored activation of 3R-hydroxyarginine in a second reaction cycle. As the C4-H 

group is located far away, due to the positioning of 3R-hydroxyarginine in the substrate binding 

pocket we instead studied the C3-H abstraction pathway via transition state 5TS3HA,C3-2. A 

barrier of only 1.3 kcal mol‒1 with respect to 5IM3B,C3S is found, which is not surprising as a 

weak tertiary C-H bond is broken. This transition state is early with a short C3-H distance of 

1.172 Å and a long O-H distance of 1.501 Å. The barrier has a small imaginary frequency of 

i394 cm‒1 with a dominant C3-H-O stretch vibration. However, the transition states also show 

movement for the OH group of the substrate in the direction of the carboxylate group of Glu156. 

Indeed, after the hydrogen atom abstraction barrier the system does not relax to a radical 

intermediate but a rapid second hydrogen atom transfer takes place from the substrate OH 

group to the Glu156 group, which desaturates the C3-O bond of substrate and form the b-keto-

arginine product (5IM6ketone). This product cannot be formed from 3S-hydroxyarginine and 4S-

hydroxyarginine as the tertiary C-H bond points away from the iron-oxo group and hence these 

groups are not accessible for the iron(IV)-oxo species. It is evident from our calculations, 
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5TS3HA,C4 5TS3HA,C3
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C3-H: 1.311
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i1391 cm‒1
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Fe-O: 1.805
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C4-O-Fe: 140°
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therefore, that 3R-hydroxyarginine most likely leads to desaturation of the substrate through a 

very efficient and low-energy reaction process in the first reaction cycle and consequently, 

substrate binding and positioning should block this potential pathway. As such, substrate 

positioning is crucial in OrfP enzymes and the substrate binding pocket is evolved to maximize 

the yield of products and minimize the amount of by-products. In particular, the tertiary C-H 

bonds of the mono-hydroxylated arginine should point away from the metal center so that no 

desaturation pathways become accessible.  

 

Figure 4.8. Overlay of the pdb files of OrfP [30] and VioC [23] with the focus on the aKG 

binding pocket (left) and L-Arg binding pocket (right). 

 

4.4 Discussion 

To understand the details of the dihydroxylation mechanism of L-Arg by OrfP enzymes, we 

analyzed the thermochemical properties of the oxidant and substrate in more detail and made 

a comparison with analogous enzymes. We compared the structures of two arginine activating 

nonheme iron dioxygenases, namely OrfP and VioC. These two nonheme iron dioxygenases 

react differently with L-arginine as a substrate, whereby VioC selectively hydroxylates it at the 

C3-position and OrfP performs the dihydroxylation to form 3R,4R-dihydroxyarginine. A 

structural comparison between the OrfP and VioC crystal structure coordinates (4M2E versus 

6ALM pdb files) [23,30] is given in Figure 4.8 as an overlay of the active site regions of the 
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two enzymes. Both enzymes utilize aKG, dioxygen and L-Arg on a nonheme iron center that 

is bound to the protein through a 2-His/1-Glu facial triad coordination. The overlay on the left 

focuses on the aKG binding area, while the one on the right zooms into the L-Arg binding 

area. As can be seen from Figure 4.8, the two enzymes have an almost identical aKG binding 

loop that starts from the axial histidine ligand (His303 in OrfP and His316 in VioC) and the 

peptide chain continues with HGRXXFQXRYDGXDRWLKR. Hence in this loop of 19 amino 

acids only four residues (labeled as X) do not match between the two proteins and all of those 

amino acids point away from the aKG binding pocket. Clearly, the aKG binding loop is highly 

conserved and may show a similar amino acid chain in most aKG dependent nonheme iron 

dioxygenases. Indeed, it has been reported that a HX13R loop from the axial ligand reaches a 

conserved Arg residue that binds and positions aKG in the substrate binding pocket [102]. The 

overlay on the left-hand-side of Figure 4.8 indeed puts the residues of this loop in virtually the 

same position in both enzymes. In OrfP the Arg317 forms a salt bridge with aKG, while the 

analogous residue Arg330 has that role in VioC. Interestingly, the next Arg in this chain (Arg321 

in OrfP/Arg334 in VioC) locks the carboxylate group of the substrate in a salt bridge. 

Another conserved region between the OrfP and VioC structures relates to the His and 

Glu iron ligands (His168 and Glu170 for OrfP and His154 and Glu156 for VioC) with a peptide 

region WHTEDAFXPY, whereby the Asp residue (Asp171 for OrfP and Asp157 for VioC) forms 

a hydrogen bonding interaction with the NH3+ group of L-Arg. By contrast the guanidinium 

group of L-Arg forms a salt bridge with Asp255 (OrfP) and Asp268 (VioC). In addition, the 

substrate binding pocket is aligned with the conserved residues Asp208/Asp222, Ser210/Ser224 and 

Phe258/Phe271, for OrfP and VioC, respectively. The only difference seen from the overlay of 

the structures appears to be the position of a substrate binding pocket Gln residue (Gln123 in 

OrfP and Gln137 in VioC) that has shifted inside in OrfP. In addition, the replacement of Tyr257 

(OrfP) with Asp in VioC on the edge of the substrate binding pocket is observed. The latter is 

highlighted in green in Figure 4.8 and implicates that VioC has an additional hydrogen bonding 

interaction to the substrate guanidium group that is missing in OrfP. The overlay of the pdb 

structures of VioC and OrfP shown in Figure 4.8; therefore, implies that their active site 

features, and aKG and substrate binding environments are highly alike. As such, the structures 

do not give a clear reason why different reaction products are obtained in the two reaction 

mechanisms. The analysis and comparison of the crystal structure coordinates of OrfP and 

VioC; however, implicates that both enzymes will preferentially activate L-Arg on the C3-
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position as that group appears to be closest to the metal center. Indeed, our lowest energy 

reaction pathways for the first hydroxylation cycle in OrfP give the lowest barriers for 

hydrogen atom abstraction from the C3-H position leading to 3S-hydroxyarginine products. 

Consequently, both VioC and OrfP are C3-activating nonheme iron enzymes of L-Arg substrate 

due to careful substrate positioning in the substrate binding pocket. To gain further insight into 

the differences of the L-Arg activation mechanisms of VioC and OrfP, we created an active 

site cluster model of VioC with 3S-hydroxyarginine bound and optimized its geometry at 

UB3LYP/BS1: 5IM2C3S,VioC. An overlay of the 5IM2C3S,VioC structure with the OrfP optimized 

geometry of 3S-hydroxyarginine, i.e. 5IM2C3S, is shown in Figure 4.9. As can be seen from 

Figure 4.9, most of the protein residues are in a similar position between the two structures. In 

particular, the first coordination sphere ligands, i.e. the 2-His/1-Glu coordinated ligands and 

the succinate are in virtually the same position. Clearly, the differences in reactivity are not the 

result of differences in the coordination environment of the metal and hence come from the 

second coordination sphere and product release. 

 

Figure 4.9. Overlay of UB3LYP/BS1 optimized geometries of 3S-hydroxyarginine bound 

iron(II) complexes of OrfP and VioC. Protein backbone of VioC in grey with 3S-

hydroxyarginine in orange, while the protein backbone for OrfP is in light blue with the 3S-

hydroxyarginine in green. Key differences between the two structures are highlighted in orange 

for VioC and green for OrfP. 

Asp270

Asp268

Gln142Leu143

Leu156Val157
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As discussed in Figure 4.8 above, VioC has an extra carboxylic acid group in the 

substrate binding pocket, namely Asp270, where OrfP has a Tyr residue. The optimized 

geometry of 3S-hydroxyarginine in the VioC model as a result is positioned differently and the 

guanidinium group is twisted with respect of the OrfP structure. This points the hydroxo group 

more towards the iron atom and may prevent further dioxygen binding to the iron center. In 

contrast, in OrfP the guanidinium group of 3S-hydroxyarginine only forms a salt bridge with 

Asp255, which points the hydroxyarginine tail down, while the other terminus is pointed slightly 

up. This means the hydroxyl group is slightly further from the metal center and a gap has 

appeared where O2 can be inserted to trigger a new catalytic cycle. The tight substrate 

positioning in VioC may prevent this. In addition to the extra carboxylic acid group in VioC, 

the row of amino acids Leu156-Val157 is located slightly higher in the substrate binding pocket 

than the corresponding residues (Gln142-Leu143) in OrfP. Therefore, the binding pocket in OrfP 

is tighter and smaller in OrfP than it is in VioC and consequently product release will be slowed 

down. These seemingly small differences between the two enzymes determine the product 

release mechanism and enable a second oxidation cycle in OrfP, which does not happen in 

VioC. 

Next, we did a thermochemical analysis of the substrate, the intermediates and products 

and focused on the C-H bond strengths of the various aliphatic positions of L-Arg and the 

hydroxyarginine isomers in the structure in the protein. To this end, we calculated the bond 

dissociation energy (BDE) of various C-H bonds of L-Arg by calculating an isolated L-Arg 

molecule, a H-atom and the substrate with one hydrogen atom removed, Equation 4.4. 

[101,102] The energy difference between these three structures is then the BDE1CH for that 

particular position. In addition, the C-H bond dissociation energies of several C-H bonds in 

the hydroxyarginine structures from the geometries of the IM2 intermediates were calculated 

(Equation 4.5): BDE2CH. 

L− Arg	 → [L− Arg − H∎] + H∎ + BDE1¤g   (4.4) 

ArgOH	 → [ArgOH− H∎] + H∎ + BDE2¤g    (4.5) 

The BDE1CH and BDE2CH for L-Arg, 3S-hydroxyarginine, 4S-hydroxylarginine and 

3R-hydroxyarginine were calculated for various C-H bonds at the UB3LYP/6-311++G** level 

of theory with solvent corrections included and are summarized in Figure 4.10. As can be seen 

the highlighted three C-H bond strengths of L-Arg are within 3.3 kcal mol‒1 from each other, 
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whereby the BDE1C4S-H and BDE1C3R-H are the lowest in energy at 94.0/94.1 kcal mol‒1, while 

the BDE1C3S-H is slightly higher in energy at 97.3 kcal mol‒1, respectively. Therefore, if the 

aliphatic C-H abstraction reaction from L-Arg by the enzyme is governed by the C-H bond 

strength of the substrate only, the reaction should proceed with dominant hydrogen atom 

abstraction from the pro-R C3 and pro-S C4 position of the substrate with minor amounts of 

pro-S C3 hydroxylation. The DFT calculations shown above in Figure 4.5 on the enzymatic 

model, in contrast, show that the lowest barrier is obtained for C3-H hydrogen atom abstraction 

from the pro-S C3 position. Therefore, the 3S-hydroxyarginine is predicted to be the dominant 

product in the first reaction cycle based on the DFT cluster calculations even though the pro-S 

C3-H bond is not the weakest C‒H bond in the substrate. Thus, under ideal substrate approach, 

i.e. without substrate perturbation from the protein, the C4-hydroxylation should be the 

dominant product. Clearly, substrate positioning and the tightness of the substrate binding 

pocket, guides the reaction to the pro-S C3-H bond selectively. The C4-H pathway, by contrast, 

appears to be higher in energy in the calculations on the enzymatic system as a result of access 

to a higher energy potential energy landscape with 5p configuration. In addition, electrostatic 

interactions from the protein may destabilize its pathway. These wide differences in hydrogen 

atom abstraction barriers must result from the substrate binding and positioning that affects the 

accessibility of the substrate by the oxidant. 

Technically, the first hydrogen atom abstraction step in Figure 4.5 should correlate with 

the energy to break the C-H bond in the substrate minus the energy to form the O-H bond in 

the iron(III)-hydroxo intermediate [101,102]. Previously, for a small cluster model complex 

we calculated a BDEFeO-H value of 93.0 kcal mol‒1[103]. Based on the difference between 

BDE1CH and BDEFeO-H, we would predict a reaction enthalpy from reactants to IM1HA of 4.3, 

1.1 and 1.0 kcal mol‒1 for the pro-S C3, pro-S C4 and pro-R C3 pathways, respectively. These 

values are close to the IM1HA,C3S and IM1HA,C4S energies and shows that the optimized 

structures of the radical intermediates have limited disruption through the protein environment. 

However, the kinetics is strongly affected by the shape and size of the protein pocket and hence 

the transition states (TS1HA) follow a different ordering than the radical intermediates (IM1HA) 

and cover a wider energy range. 
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Figure 4.10. UB3LYP/6-311++G**+ZPE calculated C‒H bond dissociation energies for 

various bonds in L-Arg. Values in kcal mol‒1. 

We also calculated the strength of various possible C-OH bonds that are formed, 

designated BDE1C-O, via a similar procedure as the BDE1CH values, but where we keep the 

geometry of the hydroxyarginine as in the IM2 structures. The three C-O bond strengths in 

3S-hydroxyarginine, 3R-hydroxyarginine and 4S-hydroxyarginine are 95.9, 110.9 and 90.4 

kcal mol‒1, respectively. Consequently, based on the thermodynamics of the reaction there are 

many C-H bonds in the substrate of almost equal strength. Under ideal conditions, where the 

substrate approach is unperturbed; therefore, a mixture of products will be formed. However, 

substrate positioning reduces the number of reaction products and guides the reaction to C3-H 

activation selectively. 

In a final set of calculations, we explored the C-H bond strengths of various C-H bonds 

in the hydroxyarginine complexes, where we keep the hydroxyarginine as in the geometry of 

the IM2 structures. These BDE2CH values are given in Figure 4.10 as well. The C3-H BDE2CH 

values in 4S-hydroxyarginine are 111.8 (pro-S) and 106.9 (pro-R) kcal mol‒1, whereas the 

tertiary C-H bond strength at the C4-position is 107.3 kcal mol‒1. Thus, the weakest C-H bonds 

for 4S-hydroxyarginine are the pro-R C3 and C4 C-H bonds. As such it is important that the 

C4-H bond points away from the reaction center as its abstraction will not lead to 3R,4R-

dihydroxyarginine products. Indeed, our optimized geometry shows this bond to point 

upwards. For 3S-hydroxyarginine we calculated C-H bond energies for the pro-R C4 position 
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of 108.4 kcal mol‒1, while the tertiary C3-H bond has a strength of BDE2CH = 106.6 kcal mol‒

1. Also for 3S-hydroxyarginine it is crucial that the C3-H bond points away from the reaction 

center and also in this case our optimized geometry shows it to point away from the iron atom. 

Finally, the 3R-hydroxyarginine structure (bottom structure in Figure 4.11) has a very weak 

tertiary pro-S C3-H bond of BDE2C3S-H = 91.2 kcal mol‒1 and a well stronger pro-R C4-H bond 

of BDE2C4R-H = 99.8 kcal mol‒1. Clearly, the weakest bond will lead to the 3,3,-dihydroxylated 

product or give desaturation to form b-ketoarginine and hence substrate positioning needs to 

avoid bringing this hydrogen atom close to the active site. Consequently, positioning of 3S-

hydroxyarginine and 4S-hydroxyarginine in the OrfP binding pocket gives orientations where 

the weak tertiary C-H bond is oriented away from the reaction center and it will be unlikely to 

be activated, while that is not possible for 3R-hydroxyarginine bound. 

Finally, we estimated the binding free energy (BFE) of 3S-hydroxyarginine, 3R-

hydroxyarginine and 4S-hydroxyarginine in the substrate binding pockets of OrfP and VioC. 

To this end we took the optimized geometries 5IM2C3S, 5IM2C3R and 5IM2C4S and split the 

system into hydroxyarginine and protein and then did a single point frequency calculation of 

each of the fragments to estimate the binding free energy of the hydroxyarginine in the binding 

pocket. The largest binding free energy (BFE) for OrfP is found for 4S-hydroxyarginine with 

a value of 101 kcal mol‒1, while it is 96 kcal mol‒1 for 3R-hydroxyarginine and 94 kcal mol‒1 

for 3S-hydroxyarginine. These binding free energies implicate that 4S-hydroxyarginine will be 

the strongest bound and it will be difficult to release it from the substrate binding pocket, 

whereas 3S- and 3R-hydroxyarginine form a slightly weaker interaction with the protein 

pocket. Therefore, the binding free energies of the singly hydroxylated products do not give an 

explanation for the dihydroxylation process in OrfP. Optimized geometries of the 5IM2C3S, 
5IM2C3R and 5IM2C4S structures are shown in Figure 4.11. In both 5IM2C3S and 5IM2C3R the 

Fe-O bond between the metal and the product is long (>2.4Å), which is much longer than that 

typically seen for a covalent bond and hence will be a weak intermolecular interaction.  

The structure with hydroxyarginine the strongest bound, i.e. 5IM2C4S, has a very short 

Fe-O interaction of only 2.174 Å. It also has the shortest O-H distance of the hydroxyl group 

of hydroxyarginine with a neighboring oxygen atom donor: in this case a distance of 1.569 Å 

to the carboxylate of Glu156 is found. Thanks to these short distances the 4S-hydroxyarginine 

will bind stronger than 3S- and 3R-hydroxyarginine. 
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Figure 4.11. UB3LYP/BS1 optimized geometries of singly hydroxylated Arg complexes IM2 

with bond lengths in angstroms. Also given are calculated binding free energies (BFE) of singly 

hydroxylated Arg in the binding pocket of OrfP (VioL) in kcal mol‒1. 

To understand substrate binding better we also calculated a VioC model with 3S-

hydroxyarginine and 4S-hydroxyarginine bound. The corresponding BFE values are 115 and 

158 kcal mol‒1, respectively. These values implicate the hydroxyarginine binds stronger in the 

VioC structure than in the OrfP structure, which would contradict the product release seen in 

those enzymes. Probably, the larger binding energy for VioC with respect to OrfP is due to the 

extra carboxylic acid group in the binding area, i.e. Asp270 that forms a strong link with the 

substrate. However, the size of the empty substrate binding pocket we measure from the IM2 

optimized structures in OrfP are 1161 and 1187 Å3 for 5IM2C3S and 5IM2C4S, respectively, 

while the corresponding values for the VioC structures are 1322 and 1291 Å3. Therefore, the 

product binding pocket in VioC is larger and gives the substrate and product more flexibility 

and mobility enable the hydroxyarginine to break free and escape, while the tight 

substrate/product binding pocket in OrfP locks the hydroxyarginine in and prevents it from 

escaping. It appears, therefore, that a single additional amino acid in VioC, namely Asp270, can 

pull the hydroxyarginine product away from the iron center and enable its release from the 

substrate binding pocket. This product-release mechanism appears to be missing in OrfP. It 

would be interesting to see whether the Tyr257Asp or Tyr257Glu mutations in OrfP would 

5IM2C3S

5IM2C3R
5IM2C4S

O-H: 1.827
Fe-O: 2.540

O-H: 1.673
Fe-O: 2.423

O-H: 1.569
Fe-O: 2.174

BFE [kcal mol‒1]

C3S 94 (115)

C3R 96

C4S 101 (158)



 134 

indeed enable release of monohydroxylated arginine from the substrate binding pocket and 

affect the reactivity. 

 

4.5 Conclusion 

The work presented here represents a computational study into the dihydroxylating nonheme 

iron dioxygenase OrfP. Using large active site cluster models we calculated the mechanism on 

all low-lying spin states. We show that the reaction proceeds by two consecutive hydroxylation 

reactions by an iron(IV)-oxo species. The first cycle has a rate-determining hydrogen atom 

abstraction from the C3S-position of substrate and is followed by a small rebound barrier to 

give 3S-hydroxyarginine with a small preference over 3R-hydroxyarginine, while the 4S-

hydroxyarginine pathway is well higher in energy. The second cycle then binds aKG and 

oxygen to form another iron(IV)-oxo species. Also, the second cycle has a rate-determining 

hydrogen atom abstraction step with similar barriers for the pathways starting from 3S-

hydroxyarginine and 4S-hydroxyarginine to form the dihydroxylated product. Interestingly, the 

calculations show that 3R-hydroxyarginine in a second cycle would – via a small reaction 

barrier – be converted into b-ketoarginine through a desaturation step rather than lead to 

hydroxylation. Overall the calculations reveal that the reaction happens through negative 

catalysis, where a low energy pathway, i.e. the breaking of the C4‒H bond, is avoided in favor 

of the breaking of a stronger bond. This selectivity is the result of substrate positioning in a 

very tight binding pocket that guides substrate and oxidant to the C3‒H group for substrate 

hydroxylation in cycle 1. Our calculations highlight the function of an active site Asp residue 

as a hinge to lift the monohydroxylated product out of the binding pocket of VioC, which is 

missing in OrfP. 
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Abstract 

A recently characterized cytochrome P450 isozyme GcoA activates lignin components through 

a selective O-demethylation or alternatively an acetal formation reaction. These are important 

reactions in biotechnology and since lignin is the main component in plant cell walls it is 

readily available. In this work we present a density functional theory study on a large active 

site model of GcoA to investigate syringol activation by an iron(IV)-oxo heme cation radical 

oxidant (Compound I) leading to hemiacetal and acetal products. Several substrate-binding 

positions were tested and full energy landscapes calculated. The study shows that substrate 

positioning determines the product distributions. Thus, with the phenol group pointing away 

from the heme, an O-demethylation is predicted, whereas an initial hydrogen-atom abstraction 

of the weak phenolic O‒H group would trigger a pathway leading to ring-closure to form acetal 

products. Predictions on how to engineer P450 GcoA to get more selective product 

distributions are given. 
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5.1 Introduction 

Lignin is a complex biopolymer that makes up the cell walls and tissues in plants as well as in 

some fungi. It is built up from mainly aromatic and phenolic residues bridged by ether and C‒

C bonds and has a highly branched structure that gives it its chemical and physical strength and 

biological properties. Several enzymes in nature can biodegrade lignin or parts thereof, 

including the lignin peroxidases, which contain a heme active site and utilize H2O2 as an 

oxidant [1-3]. Currently, the agricultural and industrial sectors generate substantial amounts of 

lignocellulose, much of which currently goes to waste. However, lignocellulose has the 

potential to be converted into valuable materials or used as an energy source. Therefore, 

ongoing studies to find biotechnological applications of lignin degrading enzymes are being 

conducted to convert lignin into small aromatic compounds or drugs [4-6].  

Recently, it was found that the cytochromes P450 can also participate in lignin 

degradation pathways [7-9]. These P450 enzymes are heme monoxygenases that utilize 

molecular oxygen, often as a means to hydroxylate aromatic or aliphatic substrates, although 

dealkylation reactions have also been reported [10-18]. In particular, the P450 isozyme 

CYP255A (GcoA) was found to demethylate aromatic compounds such as those originating 

from lignin components, including guaiacol and various alkoxybenzoates [19,20]. The work 

showed that engineered GcoA isozymes with enlarged substrate binding pockets, e.g. through 

replacement of Phe169 by Ala, enhanced the reactivity with these substrates. Furthermore, 

studies with a variety of O-methoxy-aromatic compounds measured product distributions as 

well as substrate binding affinities and constants [21]. A combined experimental and 

computational study looked into the mechanisms and possibilities of guaiacol activation by 

GcoA. Two pathways were considered, namely O-demethylation proposed to start with 

methoxy hydroxylation to form hemiacetal and ring-closure to form acetal (Scheme 5.1), 

whereby the former is expected to release formaldehyde to give catechol. A minimal density 

functional theory (DFT) cluster model was studied that did not consider the substrate-binding 

pocket, but nevertheless gave insights into possible reaction pathways. Recent computational 

studies of us showed that the second coordination sphere has important functions in substrate 

and oxidant positioning and hence affects regio- and chemoselectivities of enzymatic reactions 

[22-24]. Since, the substrate-binding pocket in GcoA is tight with various 𝜋-stacking 

interactions, we felt a more advanced computational study that takes the effect of the protein 
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into consideration would give better model and more insight into the details of the reaction 

mechanism of GcoA enzymes, its substrate range and selectivity. 

 

Scheme 5.1. Possible reaction products of guaiacol and syringol activation by P450 GcoA. 

Moreover, acetal-type structures and particularly cyclic ones are common in 

biomaterials, including corticosteroids and drug molecules like paroxetine. Hence, an enzyme 

that could synthesize cyclic acetal-bound structures selectively would be useful in 

biotechnology. Therefore, we studied the reaction mechanism of the lignin fragment syringol 

(2-6-methoxyphenol) activated by GcoA using a large active-site cluster model of GcoA that 

includes much of the substrate-binding pocket. 

The O-dealkylation of substrates by the P450s has been observed for various isozymes 

and, for instance, is part of the biodegradation and metabolism of drug molecules in the liver 

[25-27]. Computational studies established a mechanism that starts with hydroxylation of the 

methyl group to form a hemiacetal-like intermediate, which in solution, upon addition of 

protons, releases formaldehyde to complete the O-demethylation process [28-31]. As such, the 

O-demethylation reaction shows similarities with aliphatic hydroxylation by P450 enzymes 

that generally proceeds via a stepwise mechanism with an initial hydrogen-atom abstraction by 

Compound I (CpdI; iron(IV)-oxo heme cation radical intermediate) to form an iron(IV)-

hydroxo complex that rebounds its OH group to the substrate to form alcohol products [32-35]. 

Experimental support for this hypothesis came from kinetic isotope effect (KIE) studies that 

established a large change in the rate constant when the transferring hydrogen atom was 

replaced by a deuterium atom [36-38].  
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To gain insight into the lignin biodegradation pathways by P450 isozymes, we 

investigated the mechanism of syringol activation by a large GcoA model structure. In 

particular, we focused the work on the bifurcation pathways leading to O-methoxy 

hydroxylation and acetal formation using two substrate-binding orientations. The work shows 

that the protein environment is important: it sets up substrate approach, guides the reaction in 

a certain direction and leads to different product distributions with the different substrate 

orientations. As the phenol O‒H bond is the weakest bond in the substrate, substrate activation 

preferentially takes place there, but is only possible with a substrate-bound orientation that 

points the phenol group in the direction of the heme. Overall competing pathways to both 

products were identified and analyzed. 

 

5.2 Experimental Section 

The calculations reported in this work were done using density functional theory methods as 

implemented in Gaussian-09 software package [39]. In general, the unrestricted B3LYP hybrid 

density functional method [40,41] was employed in combination with a basis set containing an 

LANL2DZ + ECP on iron and 6-31G* on the rest of the atoms (basis set BS1) [42,43]. Full 

geometry optimization and frequencies were run for all structures at UB3LYP/BS1 in the gas-

phase. Subsequent single-point calculations with the polarized continuum model (CPCM) were 

performed with a dielectric constant mimicking ethylphenylether [44], and a triple-𝜉 quality 

basis set (basis set BS2): LACV3P+ with ECP on iron and 6-311+G* on the rest of the atoms. 

In previous work we extensively tested and benchmarked models and methods for P450 

reaction mechanisms and well reproduced experimental structures and rate constants [45-47]. 

These studies showed that the electronic configuration of CpdI and the general reaction 

mechanisms are little affected by the choice of the density functional method and basis set and 

most methods predict close-lying doublet and quartet spin configurations with similar 

hydrogen atom abstraction barriers. 
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5.3 Results 

Focusing on lignin biodegradation by P450 isozymes, we created a large active-site cluster 

model of GcoA with syringol bound and studied substrate activation. Our model set-up follows 

previously reported procedures from our group [48-50], that start from a deposited crystal 

structure from the protein databank (pdb) [51], and a detailed analysis of the co-factor and 

substrate environment. Based on key local environmental interactions from charged residues 

and hydrogen bonding and stereochemical influences, we created an active site cluster model 

of 302 atoms as shown in Scheme 5.2 (a). The 5OMU protein databank file [21] was used for 

the model as it is a P450 monomer structure of GcoA with syringol bound. The residues 

included in our model are highlighted in Scheme 5.2 (a). We took the heme and kept all side 

chains except the propionate groups, which were replaced by methyl. The axial cysteinate of 

the heme (Cys356) was included as methylmercaptate and iron(III)-heme replaced by iron(IV)-

oxo heme cation radical, i.e. Compound I (CpdI). The substrate-binding pocket was described 

through the residues Ile81 (as butane), Phe169 and Phe395 (as ethylbenzene). In addition, two 

elaborate protein chains were included in the model, namely the chain Val241-Tyr242-Leu243-

Leu244-Gly245-Ala246-Met247-Gln248-Glu249 and Ile292-Trp293-Asn294-Ala295-Thr296. The amino 

acid side chains pointing away from the substrate binding pocket were replaced by Gly, namely 

those of Tyr242, Leu243, Met247, Trp293 and Asn294. The complete model was calculated in the 

doublet and quartet spin states. We decided to explore two different binding conformations of 

the substrate: model A with one of the methoxy groups pointing toward CpdI and model B that 

has both the phenol and one of the methoxy groups in close proximity to CpdI (Scheme 5.2 

(b)). These structures were manually created and are labelled as ReA and ReB, respectively. 

DFT optimized geometries of the reactant complexes ReA and ReB in the doublet and 

quartet spin states are given in Figure 5.1. Both structures have close-lying doublet and quartet 

spin state configurations with three unpaired electrons in the orbitals labelled as p*xz, p*yz and 

a2u. Thus, the metal 3d-orbitals interact with orbitals on the ligands and give the following five 

valence orbitals: dx2‒y2, p*xz, p*yz, s*z2 and s*xy, whereby the z-axis is defined along the S‒Fe‒

O axis and the xy-plane is in the porphyrin plane with the axis through the Fe‒N bonds. The 

two s* orbitals are virtual in CpdI, while the dx2‒y2 is non-bonding and doubly occupied. The 

singly occupied molecular orbitals of the CpdI reactant structures are shown on the left-hand-

side of Figure 5.1 and represent the antibonding interactions of the metal with the oxo group 

(p*xz and p*yz) and a mixed porphyrin-axial ligand orbital labeled a2u [51]. In the quartet spin 
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state these three orbitals are ferromagnetically coupled, while in the doublet spin state the two 

p* orbitals are antiferromagnetically coupled to the a2u electron.  

 

 

Scheme 5.2. (a) DFT cluster model studied in this work. Wiggly lines identify where covalent 

bonds were cut. (b) Substrate orientations A and B. 

Figure 5.1. UB3LYP/BS1 optimized geometries of 4,2ReA and 4,2ReB with bond lengths in 

Angstrom (Å). Singly occupied orbitals shown on the left-hand-side for 2ReA as an example. 

Relative energies (kcal mol‒1) are UB3LYP/BS2//UB3LYP/BS1 values with zero-point energy 

(ZPE) included. 

4ReA (2ReA)

FeO: 1.649 (1.647)
FeS: 2.644 (2.645)

4ReB (2ReB)

FeO: 1.662 (1.663)
FeS: 2.581 (2.584)

1.599 (1.603)

a2u

p*xz

p*yz

DE+ZPE: 7.9 (6.2) DE+ZPE: 0.7 (0.0)
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As before [52-57], the doublet and quartet spin states of CpdI are close in energy as can 

be seen from the pairs of energies for 4,2ReA and 4,2ReB. The structures ReB are the lowest in 

energy, probably due to the additional hydrogen bonding of the phenol group of the substrate 

with the oxo group of CpdI that gives these structures extra stability. Therefore, reactant 

configuration ReB has the substrate the strongest bound and hence represents the more 

favorable binding orientation. 

Geometrically, there are differences between the reactant complexes ReA and ReB, 

mainly due to the hydrogen bond of the phenol group of the substrate to the oxo group in ReB. 

Thus, in ReA the Fe‒O distance is short (1.649 and 1.647 Å for the quartet and doublet spin 

states), while they are elongated to 1.662/1.663 Å for 4ReB/2ReB as a result of the hydrogen 

bond interaction with the phenol group at 1.60 Å. At the same time, the Fe‒S bond has 

shortened from about 2.64 Å in ReA to 2.58 Å in ReB. Overall, the optimized geometries and 

electronic configuration matches previous studies well on CpdI models with either DFT cluster 

models or QM/MM [58-60]. 

Next we calculated the activation of syringol by CpdI using models ReA and ReB as 

starting points, whereby we give the substrate binding orientation with A or B as a subscript 

after the label. Details of the pathways explored with definition of the structures are given in 

Scheme 5.3. Firstly, we tested hydroxylation of the methoxy group of syringol for models A 

and B and calculated the hydrogen-atom abstraction transition state (TSHA) from the methoxy 

C‒H bond by CpdI that leads to an iron-hydroxo complex and substrate radical (IM1HA). 

Radical rebound via TSreb gives the hemiacetal product complex (PHy). Due to substrate 

positioning these pathways are possible for both model A and model B. However, for substrate 

positioning B, we also explored alternative pathways that involve the phenol group of the 

substrate. Thus, for the substrate bound in orientation B we investigated hydrogen-atom 

abstraction from the phenol group via transition state TSHP,B to form the alternative radical 

intermediate IM1HP,B. In substrate orientation A the phenol group points away from CpdI and 

hence O‒H hydrogen-atom abstraction is not feasible in this orientation. From the intermediate 

IM1HP,B a second hydrogen-atom abstraction from the methoxy group of the substrate via 

transition state TSHA2 was tested to give an iron(III)-water complex and a biradical on the 

substrate (IM2HP,B). Of course, IM2HP,B can also be formed from IM2HA,B by hydrogen-atom 

abstraction from the phenol group in IM1HA,B via transition state TSHA3,B. The biradical via a 

ring-closure transition state (TSrc,B) leads to the acetal product complex (Prc,B). 
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Scheme 5.3. Reaction mechanism with definition of individual structures for syringol 

activation by GcoA. 

 

We first consider the substrate activation using model A, where only aliphatic hydroxylation 

of the methoxy group is possible. The calculated potential energy landscape for hydroxylation 

of the methoxy group of syringol by a CpdI model A of GcoA is given in Figure 5.2. The 

hydrogen-atom abstraction barriers (4,2TSHA,A) are relatively high in energy: 22.0 and 23.4 kcal 

mol‒1 in the doublet and quartet spin states, respectively. However, these values are relative to 

the more stable reactant conformation 2ReB, although relative to the reactant in the same 

configuration, ReA, they are still 15.8 and 17.2 kcal mol‒1 in energy. The optimized geometries 

of the transition states are given on the right-hand-side of Figure 5.2. Both structures have a 

characteristic almost linear O—H—C angle ranging from 174° – 178°, which is typical for 

hydrogen atom abstraction transition states [61-64]. The transition states are product-like with 

larger C‒H than O‒H distances. Generally, product-like transition states correspond to higher 

reaction barriers than earlier transition states [63], as confirmed from the relative energies. 
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The aliphatic hydrogen-atom abstraction transition states 4,2TSHA,A are characterized by 

a large imaginary frequency i1221 cm‒1 in the quartet spin state and i864 cm‒1 in the doublet 

spin state. The imaginary frequencies in the transition states represent the C—H—O stretch 

vibration along the reaction coordinate. The large values for the imaginary frequency are 

typical of hydrogen-atom abstraction barriers and implicate a large amount of tunneling and 

that the reaction likely will show a large kinetic isotope effect when the transferring hydrogen 

atom is replaced by deuterium [65-67]. After the transition states, the system relaxes to a radical 

intermediate (4,2IM1HA,A). On both spin-state surfaces an electron transfer from the substrate 

into the a2u orbital takes place to give an iron(IV)-hydroxo(heme) and substrate radical, 

whereby the substrate has up-spin radical in the quartet and down-spin in the doublet. Both 

𝜋*xz and 𝜋*yz orbitals remain singly occupied in the radical intermediates 4,2IM1HA,A. 

The radical intermediates in pathway A, i.e. 4,2IM1HA,A, are characterized as local 

minima on the potential energy surface with real frequencies only. However, the radical 

rebound barriers for both spin states were found to be very low in energy (< 1 kcal mol‒1) and 

hence could not be characterized. Therefore, the radical intermediates will have a short lifetime 

and quickly collapse to form alcohol products. Indeed, the exothermicity from radical 

intermediates to products 4,2PrHy,A is very large. These short radical lifetimes of the 

intermediate complexes also makes unlikely a possible ring-closure to form the acetal products 

for this substrate binding orientation and hence the reaction will be highly selective in 

substrate-binding position A. In previous work it was shown through valence bond 

rationalization that the doublet spin radical rebound barrier correlates with the ionization 

energy of the radical and the electron affinity of the iron(IV)-hydroxo complex [61,65,68,69]. 

In the quartet spin state the radical rebound in addition has a term for the electron excitation 

from the 𝜋*xz to 𝜎*z2 orbital. We calculated the ionization energy of the radical and found 

166.4 kcal mol‒1 and with the reported electron affinity of the iron(IV)-hydroxo species of 88.9 

kcal mol‒1 [70] predict a negligible rebound barrier from valence bond principles and that 

consequently, the rebound will be fast. 
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Figure 5.2. UB3LYP/BS2//UB3LYP/BS1 calculated potential energy surface for syringol 

activation by CpdI model A of GcoA. Energies contain ZPE and are given in kcal mol‒1 relative 

to 2ReB. Optimized geometries of the transition states give bond lengths in angstroms, angles 

in degrees and the imaginary frequency in cm‒1. 

Subsequently, the substrate activation pathways with substrate in binding position B 

were explored, and the results are in Figure 5.3. As can be seen, the lowest barriers are obtained 

for phenolic hydrogen-atom abstraction with a magnitude of ∆E‡+ZPE = 0.9 and 1.6 kcal mol‒

1 in the doublet and quartet spin states. Recent work of ours on the vancomycin biosynthesis 

enzyme OxyB showed that two sequential phenolic hydrogen atom abstraction reactions can 

be performed by CpdI and CpdII (Compound II) to enable the aromatic cross-linking of 

glycopeptide units [71]. For the P450 OxyB system, the two hydrogen atom abstraction barriers 

were found to be very low in energy as the phenolic O‒H bonds are very weak. The values of 

the hydrogen-atom abstraction barriers in GcoA are also extremely low in energy in line with 

the OxyB results. However, both of these sets of barriers are much lower in energy than those 

calculated previously for the abstraction from aliphatic C‒H bonds [61-64]. For instance, using 

the same computational methods as used here, a hydrogen-atom abstraction barrier from the 

benzylic position of ethylbenzene gave a value of 12.6 kcal mol‒1, while for the C5‒H bond 

cleavage in camphor 14.5 kcal mol‒1 was found [61]. Our aliphatic hydrogen-atom abstraction 

barriers from the methoxy group of syringol indeed have values of that size with 2TSHA,B at 

4TSHA,A (2TSHA,A)

i1221 (i864) cm-1

FeO: 1.735 (1.786)
FeS: 2.492 (2.543)

CH: 1.286 (1.448)
OH: 1.193 (1.117)
ÐCHO: 178° (174°)
ÐFeOC: 126° (119°)
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13.6 kcal mol‒1 and 4TSHA,B at 17.4 kcal mol‒1. For pathway A the barrier height with respect 

to ReA is similar as expected because the same C‒H bond is broken and same electron transfer 

takes place. However, since the substrate-bound complex B is more stable, its hydrogen-atom 

abstraction barriers are lower in energy. Nevertheless, the 2,4TSHA,B and 2,4TSHA,A structures 

are strikingly different. Although the substrate binding position A has the substrate in an 

upright position, its transfer of a hydrogen atom happens under an almost linear angle O‒H‒C 

of 178° and 174° for the quartet and doublet spin states, respectively. By contrast, in the 
4,2TSHA,B structures the angles are slightly more bent (169° and 165°) due to the hydrogen bond 

from the phenol group to the oxo that gives the substrate approach lesser flexibility. These 

differences in orientation also affect the C‒H and O‒H distances in the transition states as is 

seen in Figures 5.2 and 5.3. 

After the aliphatic hydrogen-atom abstraction in the quartet spin state, the system 

relaxes to a radical intermediate (4IM1HA,B), which is similar to the one seen for the structure 

in binding position A. However, due to additional hydrogen bonding interactions 4IM1HA,B is 

much lower in energy than 4IM1HA,A: ‒5.0 kcal mol‒1 with respect to 4ReB. Furthermore, the 

reaction is followed by an almost barrierless second hydrogen-atom abstraction, namely 

hydrogen-atom abstraction from the phenol O‒H group leads to 4IM2HA,B with large 

exothermicity. A subsequent, also barrierless ring-closure step gives the acetal products. In 

addition to this pathway, we attempted to calculate the OH rebound from 4IM1HA,B to form the 

hemiacetal products. However, due to hydrogen bonding interactions between the phenol group 

and the iron-hydroxo groups, the radical rebound is hampered. The constraint geometry scan 

for the radical rebound from 4IM1HA,B therefore, gave a barrier of at least 13.7 kcal mol‒1. 

Previously, in nonheme iron halogenases as well as in the P450 decarboxylase OleT and 

synthetic model complexes, we identified hydrogen bonds to an iron-hydroxo intermediate that 

prevented radical rebound and guided the mechanism to a side reaction [69,72,73].  

Consequently, substrate positioning in GcoA enzymes is very important and determines 

the reaction mechanism, whereby substrate binding orientation B can lead to acetal products, 

while we do not see those products resulting from substrate binding position A. On the doublet 

spin-state surface no radical intermediate (2IM1HA,B) could be identified and its geometry 

optimization fell to 2IM2B directly. Similarly to the high-spin this intermediate reverted to the 

acetal product in a barrierless fashion. 
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Figure 5.3. UB3LYP/BS2//UB3LYP/BS1 calculated potential energy surface for syringol 

activation by CpdI model B of GcoA. Energies contain ZPE and are given in kcal mol‒1 relative 

to 2ReB. Optimized geometries of the transition states give bond lengths in angstroms, angles 

in degrees and the imaginary frequency in cm‒1. 

Finally, we also tested phenol activation by our GcoA CpdI model. Phenolic hydrogen-

atom abstraction is possible in substrate binding position B and happens through a very small 

transition state with an imaginary frequency of only i42 (i32) cm‒1 for 4TSHP,B (2TSHP,B), 

respectively. Analysis of the imaginary frequency gives a clear hydrogen-transfer mode 

although part of the substrate displaces as well. Similar to the aliphatic transition states, the 

O—H—O angle around the transferring hydrogen atom is almost linear: 173° in both spin 

states. The transition states are relatively central with slightly shorter FeO‒H distances than 

phenolic H‒O distances. 

After the phenolic hydrogen-atom abstraction, the system relaxes to a radical 

intermediate (4,2IM1HP,B). These structures are much lower in energy than reactants by 14.8 

(15.2) kcal mol‒1 in the doublet (quartet) spin states. As such, these radical intermediates will 

be quickly formed. Since, no OH rebound is possible after phenolic hydrogen-atom abstraction, 

we explored a second hydrogen-atom abstraction from the methoxy CH3 group. On the doublet 

spin state the barrier (2TSHA2,B) is negligible and the system transfers to the iron(III)-water 

complex (2IM2HA,B) with an exothermicity of more than 10 kcal mol‒1. A geometry scan for 

the quartet spin pathway identified a small barrier (4TSHA2,B) about 2.1 kcal mol‒1 above 

FeO: 1.737 (1.811)
FeS: 2.555 (2.482)

CH: 1.210 (1.324)
OH: 1.292 (1.203)
ÐCHO: 169° (164°)
ÐFeOC: 127° (124°)

4TSHA,B (2TSHA,B)

i897 (i1536) cm-1

FeO: 1.688 (1.688)
FeS: 2.512 (2.512)

SubO-H: 1.209 (1.209)
FeO-H: 1.149 (1.149)
ÐOHO: 173° (173°)
ÐFeOO: 152° (152°)

4TSHP,B (2TSHP,B)

i42 (i32) cm-1

(a) (b)
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4IM1HP,B shown in Figure 5.4. As this is a low-barrier transition state that is located close to a 

local minimum our TS search failed to converge and the optimization fell back to the 

intermediate. As discussed above the iron(III)-water complexes 4,2IM2HA,B quickly close the 

acetal ring to form the 4,2Prrc,B products without much of a barrier.  

 

Figure 5.4. UB3LYP/BS1 calculated constraint geometry scan for hydrogen-atom abstraction 

from 4IM1HP as calculated in Gaussian. An estimate for the barrier height from the scan is 2.1 

kcal mol–1 above the energy of 4IM1HP,B. 

Overall, the mechanism for substrate activation in binding position B shows that 

sequentially two hydrogen atoms are abstracted from the substrate, the first one from the phenol 

O‒H group and second one from a methoxy C‒H group. The first reaction barrier is rate-

determining while the subsequent barriers were too small to be fully characterized. Therefore, 

the acetal formation will be a highly efficient and fast process and much faster than the 

substrate-binding and product-release steps in the protein. Consequently, the results on syringol 

activation by a large GcoA model shows that different products are predicted from substrate 

binding positions A and B.  
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5.4 Discussion 

The work described here is focused on syringol activation by a lignin activating P450 isozyme, 

namely GcoA. A large active site model of 302 atoms was considered that contains the heme 

active site and a large part of the substrate binding pocket with the substrate in two specific 

binding poses. The mechanism of substrate activation leading to hemiacetal and acetal products 

for the two binding poses was investigated. In substrate binding position A a rate-determining 

hydrogen-atom abstraction leads to methoxy hydroxylation efficiently, see Scheme 5.4. By 

contrast, in binding pose B the weak phenolic O‒H bond points toward the heme and therefore 

can be abstracted by CpdI easily. In particular, the phenolic O‒H group has a much lower 

barrier for hydrogen-atom abstraction than the aliphatic C‒H abstraction from the methoxy 

group. However, this hydrogen atom can be abstracted in a subsequent step and lead to ring-

closure to form acetal products. As such, the two substrate binding poses (Scheme 5.4) lead to 

different product distributions for syringol activation by GcoA. To understand the key factors 

that determine substrate activation, we analyzed the structures in more detail. 

 

Scheme 5.4. Products obtained for substrate activation by GcoA through substrate orientation 

A and B. 
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Firstly, we calculated the various C‒H and O‒H bond dissociation energies (BDE1s) of 

syringol substrate (SubH) using Equation 5.1. The BDE1 values were estimated from the 

difference in energy of the individually calculated species in the reaction, i.e. we calculated the 

substrate, a hydrogen-atom and the substrate with one hydrogen-atom removed from either the 

phenol or methoxy groups (Sub•). The reaction energy for Equation 5.1 was then evaluated for 

hydrogen-atom abstraction from the phenol group of syringol (BDE1O‒H) and for hydrogen-

atom abstraction from the C‒H group of the methoxy unit (BDE1C‒H), see Figure 5.5. At 

UB3LYP/6-311++G** level of theory we find a BDE1O‒H = 76.7 kcal mol‒1 and a BDE1C‒H = 

93.4 kcal mol‒1, see Figure 5.5. Therefore, the phenolic O‒H bond is considerably weaker than 

the aliphatic C‒H bond of the substrate and it should be easier to abstract the phenolic hydrogen 

atom than the methoxy hydrogen atom. Indeed, the potential energy landscape in Figure 5.3 

for pathway B shows that the phenolic hydrogen-atom abstraction has a much lower barrier 

than the one for aliphatic C‒H abstraction in line with the large differences in BDE values.  

Sub− H → Sub∎ +H∎ + BDEG}FJg    (5.1) 

For a small model complex of CpdI representing [FeIV(O)(Por+•)SCH3], Por = porphyrin 

without side chains, we calculated the BDECpdII as the energy difference between 

[FeIV(OH)(Por)(SCH3)] and CpdI and an isolated hydrogen atom and obtained a value of 

BDECpdII = 87.4 kcal mol‒1. In previous work a slightly smaller model with thiolate rather than 

SCH3‒ as axial ligand was used and gave a BDECpdII = 88.9 kcal mol‒1 in the gas-phase [70,74]. 

Therefore, the change in axial ligand from thiolate to methylmercaptate has little effect on the 

BDE values. The energy differences in Figure 5.2 and 5.3 between the reactant complexes and 

IM1HA and IM1HP should be equal to the difference in energy between the C‒H/O‒H bonds 

broken and formed. The difference in energy between BDE1O‒H and BDECpdII is ‒10.7 kcal 

mol‒1, which is close in energy to the exothermicity to form IM1HP,B from reactants. Hence, 

the potential energy landscape in Figure 5.3 follows for the hydrogen atom abstraction follows 

the strengths of the C‒H and O‒H bonds broken and formed.  

Similar to the phenol hydrogen atom abstraction pathway, we evaluated the difference in 

the bond strengths that are formed and broken for the methoxy hydrogen atom abstraction. 

Thus, the difference in energy between BDE1C‒H and BDECpdII is +6.0 kcal mol‒1. The energy 

difference between 2ReA and 2IM1HA,A is ‒1.9 kcal mol‒1 (Figure 5.2), while the one between 
2ReB and 2IM1HA,B is ‒5.7 kcal mol‒1 (Figure 5.3). These driving forces are, therefore, 



 161 

somewhat lower in energy than what would have been predicted based on the difference in 

bond dissociation energy of the bonds that are broken and formed. To understand these 

differences better, we display in Figure 5.5 the optimized geometries of 4,2IM1HA,A and 
4,2IM1HA,B. The IM1HA,A radical intermediates have the substrate hydrogen bonded to the 

peptide carbonyl of Val241, the amide of Gly245, while the methoxy group hydrogen bonds to 

the carboxylate of Glu249. All of these interactions are well over 1.7 Å in length and hence there 

is only a small stabilization effect with respect to the thermodynamic bond energy differences 

due to hydrogen bonding interactions. By contrast, in the IM1HA,B structures the phenol OH 

group is close to the iron(IV)-hydroxo at a distance of 1.418 (1.591) Å in the quartet (doublet) 

spin state. This is a strong hydrogen bonding interaction that will stabilize these radical 

intermediates considerably. Indeed, the stabilization energy is much more exothermic than the 

difference in bond strength of the bond that is broken and formed implicates. The hydrogen 

bonding interactions of the protein and the iron-hydroxo species, therefore, stabilize the radical 

intermediates and make the reaction more exothermic. Therefore, the first hydrogen-atom 

abstraction barriers follow the thermodynamics of the individual hydrogen-atom abstraction 

processes. 

[Fe(Por)(SCHÑ)]O−H → CpdI+ H∎ + BDE¤òHhh    (5.2) 

Subsequently, we calculated the phenolic O‒H bond strength and the methoxy aliphatic 

C‒H bond strength from the radicals as BDE2O‒H and BDE2C‒H, also shown in Figure 5.4. 

Values of BDE2O‒H = 79.1 kcal mol‒1 and BDE2C‒H = 95.8 kcal mol‒1 were calculated. This 

implies that the second hydrogen-atom abstraction takes a similar energy to break as the first 

hydrogen-atom abstraction. To predict the reaction energy for the second hydrogen-atom 

abstraction step, we calculated the BDE2water for the conversion of an iron(III)-water(heme) 

complex into an iron(IV)-hydroxo(heme) and a hydrogen atom and obtained a value of 87.5 

kcal mol‒1. 

Based on the difference in energy between BDE2O‒H and BDE2water, the aliphatic 

hydrogen-atom abstraction should be followed by an exothermic second hydrogen-atom 

abstraction from the phenol group by ‒8.4 kcal mol‒1 while initial phenol activation should be 

followed by an endothermic aliphatic hydrogen-atom abstraction with energy of 8.3 kcal mol‒

1 (difference in energy between BDE2C‒H and BDE2water). As a matter of fact, the reaction 

energy from 4IM1HA,B to 4IM2HA is highly exothermic (by 18.1 kcal mol‒1) in line with the 
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difference in energy of the BDE values. Moreover, it explains why the second barrier has a 

negligible hydrogen-atom abstraction barrier. The energy difference between 2IM1HP and 
2IM2HA is ‒11.0 kcal mol‒1, which is somewhat lower than the energy predicted based on BDE 

values and shows that the product is highly stabilized through local hydrogen bonds. 

 

Figure 5.5. UB3LYP/6-311++G** calculated bond dissociation and formation energies (kcal 

mol‒1) including ZPE corrections in the substrate syringol. 

 

Figure 5.6. Optimized geometries of 4,2IM1HA,A and 4,2IM1HA,B as obtained at UB3LYP/BS1 

with bond lengths in angstroms. 
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The biradical system was calculated in the triplet and open shell singlet spin states and 

the energy to close the ring to form acetal products gave a BDErc of 47.7 kcal mol‒1. However, 

several hydrogen bonds are lost between the bound water molecule and the product complex 

upon ring-closure, so that the stabilization energy for the ring-closure is much lower than this. 

Therefore, an energy difference of ∆E+ZPE = 28.5 kcal mol‒1 is calculated between 4IM2HA,B 

and 4Prrc,B in line with the energy difference to close the acetal ring and the cost of breaking 

several short hydrogen bonds. 

From the calculations it is clear that when the phenol group of substrate is accessible 

by CpdI, a hydrogen-atom abstraction from the O‒H group will take place as its O‒H bond is 

much weaker than aliphatic C‒H bonds such as those of the methoxy group. If hemiacetal is 

the preferred product, however, the substrate should be positioned with the phenol group 

pointing away from CpdI, while at the same time the methoxy group points to CpdI. 

 

Figure 5.7. Extract of the substrate-bound GcoA structure as taken from the 5OMU pdb file 

and two predicted mutants, namely Gly245Ser and Ala295Ser that position substrate 

differently. 

In order to gain insight into probable product distributions based on substrate 

positioning in the enzyme, we analyzed the substrate binding pocket in more detail. Figure 5.7 

displays the active site structure and key residues in the substrate binding pocket of GcoA. As 

can be seen, the substrate binding pocket is aligned with mostly aromatic and aliphatic amino 

acid residues including Phe75, Ile81, Phe169, Val241, Leu244, Ala295 and Phe395. Therefore, few 

polar interactions are available to position the substrate in a specific orientation. Probably, 

substrate positioning in GcoA enzymes is not important as long as the lignin degradation 

pathways proceed and the selectivity of the enzyme seems limited. 
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To make GcoA more substrate and regioselective, we decided to create two in silico 

mutants, whereby an additional hydroxyl group in the substrate binding pocket is included that 

can position the substrate better and tighter. To this end, we took the 5OMU pdb file, removed 

the substrate and created the Gly245Ser and Ala295Ser mutants. Subsequently, using 

Autodock [75] syringol was docked into the substrate binding pocket. The lowest energy 

syringol bound conformation of the two mutants is shown in Figure 5.7. As can be seen, the 

Gly245Ser mutant gives a hydrogen bond between the Ser245 and phenolic O‒H group of the 

substrate. This positions the methoxy group close to the heme and the phenol group away from 

the heme. We predict that the Gly245Ser mutant, therefore, will give predominantly methoxy 

hydroxylation or O-demethylation products. In contrast, the Ala295Ser mutant has the 

substrate bound with a hydrogen bond between Ser295 and the oxygen atom of one of the 

methoxy groups. This structure has the other methoxy group and the phenol group both 

pointing towards the heme and are likely positioned to convert substrate into acetal products. 

The GcoA wildtype structure, however, has a tight and closed substrate binding pocket 

where the substrate is locked in by bulky aromatic residues such as those of Phe75, Phe169 and 

Phe395. Therefore, GcoA should only be able to bind relatively small substrates such as 

syringol. Actually, experimental studies showed only activity with lignin monomers, which 

indicates that the substrate binding pocket is closed and only accessible to small substrates. In 

particular, slow guaiacol and even slower syringol activation by GcoA was observed [20]. 

Furthermore, mutations of Phe169 by Ala enabled syringol activation with better turnover 

numbers, but only O-demethylation products were obtained. Clearly, substrate binding in 

wildtype GcoA positions the substrate with the phenol group away from the heme center and 

drives the reaction via pathway A to give predominantly methoxy hydroxylation followed by 

deformylation. Based on the structural analysis in this work, it is clear that acetal products from 

syringol activation in GcoA will require further mutations to position the substrate better and 

enhance its selectivity. This also could be done by opening the substrate binding pocket so that 

longer lignin molecules or components can be inserted into the heme active site that will enable 

its oxidation.  

 

 



 165 

5.5 Conclusion 

In this work a computational study is presented on lignin activation by the cytochrome P450 

isozyme GcoA. We tested several substrate-binding orientations and spin-state structures. The 

work shows that syringol activation should predominantly lead to acetal products through two 

sequential hydrogen atom abstraction steps from the phenol and methoxy groups followed by 

radical coupling to close the acetal ring. We then analyzed P450 structures and give suggestions 

on how to engineer the P450 and give higher contribution of hemiacetal and acetal products. 

Overall, the work shows that the P450s are efficient oxidants and should be able to activate 

and degrade lignin molecules easily. The fact that this does not happen regularly in nature 

reflects the point that the substrate binding pocket is accessible to small substrates only and it 

will require some protein engineering to make it bind lignin strands. 

 

5.6 Reference 

[1]  Ahmad, M., Roberts, J.N., Hardiman, E.M., Singh, R., Eltis, L.D. and Bugg, T.D.H., 
Identification of DypB from rhodococcus jostii RHA1 as a lignin peroxidase. Biochemistry 
2011, 50, 5096–5107.  

[2]  Falade, A.O., Nwodo, U.U., Iweriebor, B.C., Green, E., Mabinya, L.V. and Okoh, A.I., 
Lignin peroxidase functionalities and prospective applications. Microbiol. Open 2017, 6, 
e00394. 

[3]  Brown, M.E. and Chang, M.C.Y., Exploring bacterial lignin degradation. Curr. Opin. 
Chem. Biol. 2014, 19, 1–7. 

[4]  Li, X. and Zheng, Y., Biotransformation of lignin: Mechanisms, applications and future 
work. Biotechnol. Pro. 2020, 36, e2922. 

[5]  Granja-Travez, R.S., Persinoti, G.F., Squina, F.M. and Bugg, T.D.H., Functional 
genomic analysis of bacterial lignin degraders: diversity in mechanisms of lignin oxidation 
and metabolism. Appl. Microbiol. Biotechnol. 2020, 104, 3305–3320.  

[6]  Timofeevski, S.L., Nie, G., Reading, N.S. and Aust, S.D., Substrate specificity of lignin 
peroxidase and a S168W variant of manganese peroxidase. Arch. Biochem. Biophys. 2000, 
373, 147–153. 



 166 

[7]  Ichinose, H., Cytochrome P450 of wood-rotting basidiomycetes and biotechnological 
applications. Biotechnol. Appl. Biochem. 2013, 1, 71–81.  

[8]  García-Hidalgo, J., Ravi, K., Kuré, L.L., Lidén, G. and Gorwa-Grauslund, M., Vanillin 
production in pseudomonas: Whole-genome sequencing of pseudomonas sp. strain 9.1 
and reannotation of pseudomonas putida CalA as a vanillin reductase. AMB Expr. 2019, 
9, 34–44.  

[9]  Park, H., Park, G., Jeon, W., Ahn, J.O., Yang, Y.H. and Choi, K.Y., Whole-cell 
biocatalysis using cytochrome P450 monooxygenases for biotransformation of sustainable 
bioresources (fatty acids, fatty alkanes, and aromatic amino acids). Biotechnol. Adv. 2020, 
40, 107504. 

[10]  Sono, M., Roach, M.P., Coulter, E.D. and Dawson, J.H., Heme-containing oxygenases. 
Chem. Rev. 1996, 96, 2841‒2888. 

[11]  Handbook of Porphyrin Science, (Eds.: K. M. Kadish, K. M. Smith, R. Guilard), World 
Scientific Publishing Co., New Jersey, 2010. 

[12]  Iron-containing enzymes: Versatile catalysts of hydroxylation reaction in nature (Eds.: 
S.P. de Visser, D. Kumar), RSC Publishing, Cambridge (UK), 2011. 

[13]  Ortiz de Montellano, P.R., Hydrocarbon hydroxylation by cytochrome P450 enzymes. 
Chem. Rev. 2010, 110, 932‒948;  

[14]  Meunier, B., de Visser, S.P. Shaik, S., Mechanism of oxidation reactions catalyzed by 
cytochrome p450 enzymes. Chem. Rev. 2004, 104, 3947‒3980. 

[15]  Huang, X. and Groves, J.T., Oxygen activation and radical transformations in heme 
proteins and metalloporphyrins. Chem. Rev. 2018, 118, 2491-2553. 

[16]  Girvan, H.M. and Munro, A.W., Applications of microbial cytochrome P450 enzymes 
in biotechnology and synthetic biology. Curr. Opin. Chem. Biol. 2016, 31, 136-45.  

[17]  Denisov, I.G., Makris, T.M., Sligar, S.G. and Schlichting, I., Structure and chemistry 
of cytochrome P450. Chem. Rev. 2005, 105, 2253-77.  

[18]  Green, M.T., C-H bond activation in heme proteins: The role of thiolate ligation in 
cytochrome P450. Curr. Opin. Chem. Biol. 2009, 13, 84–88. 

[19]  Nakano, C., Horinouchi, S. and Ohnishi, Y., Characterization of a novel sesquiterpene 
cyclase involved in (+)-caryolan-1-ol biosynthesis in Streptomyces griseus. J. Biol. Chem. 
2011, 286, 27980–27987. 



 167 

[20]  Machovina, M.M., Mallinson, S.J.B., Knott, B.C., Meyers, A.W., Garcia-Borràs, M., 
Bu, L., Gado, J.E., Oliver, A., Schmidt, G.P., Hinchen, D.J., Crowley, M.F., Johnson, 
C.W., Neidle, E.L., Payne, C.M., Houk, K.N., Beckham, G. T., McGeehan, J.E. and 
DuBois, J.L., Enabling microbial syringol conversion through structure-guided protein 
engineering. Proc. Natl. Acad. Sci. USA 2019,116, 13970-13976. 

[21]  Mallinson, S.J.B., Machovina, M.M., Silveira, R.L., Garcia-Borràs, M., Gallup, N., 
Johnson, C.W., Allen, M.D., Skaf, M.S., Crowley, M.F., Neidle, E.L., Houk, K.N., 
Beckham, G.T.; DuBois, J.L. and McGeehan, J.E., A promiscuous cytochrome P450 
aromatic O-demethylase for lignin bioconversion. Nature Commun. 2018, 9, 2487. 

[22]  Timmins, A., Saint-André, M. and de Visser, S.P., Understanding how prolyl-4-
hydroxylase structure steers a ferryl oxidant toward scission of a strong C–H bond. J. Am. 
Chem. Soc. 2017, 139, 9855-9866. 

[23]  Pickl, M., Kurakin, S., Cantú Reinhard, F.G., Schmid, P., Pöcheim, A., Winkler, C. K., 
Kroutil, W., de Visser, S.P. and Faber, K., Mechanistic studies of fatty acid activation by 
CYP152 peroxygenases reveal unexpected desaturase activity. ACS Catal. 2019, 9, 565-
577. 

[24]  de Visser, S.P., Second-coordination sphere effects on selectivity and specificity of 
heme and nonheme iron enzymes. Chem. Eur. J. 2020, 26, 5308-5327. 

[25]  Kramlinger, V.M., Rojas, A.M., Kanamori, T. and Guengerich, F.P., Introduction: 
Metals in biology: 𝛼-ketoglutarate/iron-dependent dioxygenases. J. Biol. Chem. 2015, 
290, 20200–20210. 

[26]  Podgorski, M.N., Coleman, T., Chao, R.R., De Voss, J.J., Bruning, J.B. and Bell, S.G., 
Investigation of the requirements for efficient and selective cytochrome P450 
monooxygenase catalysis across different reactions. J. Inorg. Biochem. 2020, 203, 110913. 

[27]  Taxak, N., Patel, B. and Bharatam, P.V., Carbene generation by cytochromes and 
electronic structure of heme-iron-porphyrin-carbene complex: A quantum chemical study. 
Inorg. Chem. 2013, 52, 5097-5109.  

[28]  Schyman, P., Lai, W., Chen, H., Wang, Y. and Shaik, S., The directive of the protein: 
How does cytochrome P450 select the mechanism of dopamine formation? J. Am. Chem. 
Soc. 2011, 133, 7977-7984.  

[29]  Oláh, J., Mulholland, A.J. and Harvey, J.N., Understanding the determinants of 
selectivity in drug metabolism through modeling of dextromethorphan oxidation by 
cytochrome P450. Proc. Natl. Acad. Sci. USA 2011, 108, 6050. 

[30]  Rydberg, P., Ryde, U. and Olsen, L., Sulfoxide, sulfur, and nitrogen oxidation and 
dealkylation by cytochrome P450. J. Chem. Theory Comput. 2008, 4, 1369–1377.  



 168 

[31]  Li, D., Wang, Y., Yang, C. and Han, K., Theoretical study of N-dealkylation of N-
cyclopropyl-N-methylaniline catalyzed by cytochrome P450: insight into the origin of the 
regioselectivity. Dalton Trans. 2009, 38, 291-297.  

[32]  Ogliaro, F., Harris, N., Cohen, S., Filatov, M., de Visser, S.P. and Shaik, S., A model 
“rebound” mechanism of hydroxylation by cytochrome P450:  Stepwise and effectively 
concerted pathways, and their reactivity patterns. J. Am. Chem. Soc. 2000, 122, 8977-8989. 

[33]  Kamachi, T., Shestakov, A.F. Yoshizawa, K., How heme metabolism occurs in heme 
oxygenase:  Computational study of oxygen-donation ability of the oxo and hydroperoxo 
species. J. Am. Chem. Soc. 2004, 126, 3672-3673. 

[34]  Olsen, L., Rydberg, P., Rod, T.H. and Ryde, U., Prediction of activation energies for 
hydrogen abstraction by cytochrome P450. J. Med. Chem. 2006, 49, 6489-6499. 

[35]  Kaczmarek, M.A., Malhotra, A., Balan, G.A., Timmins, A. and de Visser, S.P., 
Nitrogen reduction to ammonia on a biomimetic mononuclear iron centre: Insights into the 
nitrogenase enzyme. Chemistry. 2018, 24, 5293-5302.  

[36]  Groves, J.T., Avaria-Neisser, G.E., Fish, K.M., Imachi, M. and Kuczkowski, R.L., 
Hydrogen-deuterium exchange during propylene epoxidation by cytochrome P-450. J. 
Am. Chem. Soc. 1986, 108, 3837-3838. 

[37]  Rittle, J. and Green, M.T., Cytochrome P450 compound I: Capture, characterization, 
and C-H bond activation kinetics. Science 2010, 330, 933-937. 

[38]  Takahashi, A., Kurahashi, T. and Fujii, H., Redox potentials of oxoiron(IV) porphyrin 
π-cation radical complexes: Participation of electron transfer process in oxygenation 
reactions. Inorg. Chem. 2011, 50, 6922-6928. 

[39]  Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, 
J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A.,et al., Fox, Gaussian, Inc., 
Wallingford CT, 2010. 

[40]  Becke, A.D., Density-functional exchange-energy approximation with correct 
asymptotic behavior. Phys. Rev. A 1988, 38, 3098-3100. 

[41]  Lee, C., Yang, W. and Parr, R.G., Development of the colle-salvetti correlation-energy 
formula into a functional of the electron density. Phys. Rev.B 1988, 37, 785-789. 

[42]  Hay, P.J. and Wadt, W.R., Ab initio effective core potentials for molecular calculations. 
potentials for the transition metal atoms Sc to Hg. J. Chem. Phys. 1985, 82, 270-283. 



 169 

[43]  Hehre, W.J., Ditchfield, R. and Pople, J.A., Self—consistent molecular orbital methods. 
XII. Further extensions of gaussian—type basis sets for use in molecular orbital studies of 
organic molecules. J. Chem. Phys. 1972, 56, 2257-2261.  

[44]  Tomasi, J., Mennucci, B. and Cammi, R., Quantum mechanical continuum solvation 
models. Chem. Rev. 2005, 105, 2999-3093.  

[45]  Cantú Reinhard, F.G., Faponle, A.S., de Visser, S.P., Substrate sulfoxidation by an 
iron(IV)-oxo complex: Benchmarking computationally calculated barrier heights to 
experiment. J. Phys. Chem. A 2016, 120, 9805-9814.  

[46]  Cheaib, K., Mubarak, M.Q.E., Sénéchal-David, K., Herrero, C., Guillot, R., 
Clémancey, M., Latour, J.M., de Visser, S.P., Mahy, J.P., Banse, F. and Avenier, F., 
Selective formation of an Fe(IV)-O or an Fe(III) OOH intermediate from iron(II) and H(2) 
O(2):Controlled heterolytic versus homolytic oxygen-oxygen bond cleavage by the second 
coordination sphere. Angew. Chem. Int. Ed. 2019, 58, 854–858. 

[47]  Barman, P., Cantú Reinhard, F.G., Bagha, U.K., Kumar, D., Sastri, C.V. and de Visser, 
S.P., Hydrogen by deuterium substitution in an aldehyde tunes the regioselectivity by a 
nonheme manganese(III)–peroxo complex. Angew. Chem. Int. Ed. 2019, 58, 10639–
10643. 

[48]  Quesne, M.G., Borowski, T. and de Visser, S.P., Quantum mechanics/molecular 
mechanics modeling of enzymatic processes: Caveats and breakthroughs. Chem. Eur. J. 
2016, 22, 2562-2581.  

[49]  Ghafoor, S., Mansha, A. and de Visser, S. P., Selective hydrogen atom abstraction from 
dihydroflavonol by a nonheme iron center is the key step in the enzymatic flavonol 
synthesis and avoids by-products. J. Am. Chem. Soc. 2019, 141, 20278-20292.  

[50]  Lin, Y.T., Stańczak, A., Manchev, Y., Straganz, G.D. and de Visser, S.P., Can a 
mononuclear iron(III)-superoxo active site catalyze the decarboxylation of dodecanoic 
acid in undA to produce biofuels? Chem. Eur. J. 2020, 26, 2233-2242. 

[51]  Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., 
Shindyalov, I.N. and Bourne, P.E., The Protein Data Bank. Nucl. Acids. Res. 2000, 28, 
235-242.  

[52]  Ghosh, A., First-principles quantum chemical studies of porphyrins. Acc. Chem. Res. 
1998, 31, 189-198.  

[53]  Green, M.T., Evidence for sulfur-based radicals in thiolate compound I intermediates. 
J. Am. Chem. Soc. 1999, 121, 7939-7940. 



 170 

[54]  de Visser, S.P., Ogliaro, F., Sharma, P.K. and Shaik, S., What factors affect the 
regioselectivity of oxidation by cytochrome P450? A DFT study of allylic hydroxylation 
and double bond epoxidation in a model reaction. J. Am. Chem. Soc. 2002, 124, 11809-
11826. 

[55]  Bathelt, C.M., Zurek, J., Mulholland, A.J. and Harvey, J.N., Electronic structure of 
compound I in human isoforms of cytochrome P450 from QM/MM modeling. J. Am. 
Chem. Soc. 2005, 127, 12900-12908. 

[56]  Radoń, M., Broclawik, E. and Pierloot, K., DFT and ab Initio study of iron-oxo 
porphyrins: May they have a low-lying iron(V)-oxo electromer? J. Chem. Theory Comput. 
2011, 7, 898-908. 

 [57] Quesne, M.G., Senthilnathan, D., Singh, D., Kumar, D., Maldivi, P., Sorokin, A. B. and 
de Visser, S.P., Origin of the enhanced reactivity of µ-nitrido-bridged diiron(IV)-oxo 
porphyrinoid complexes over cytochrome P450 compound I. ACS Catal. 2016, 6, 2230-
2243. 

[58]  Shaik, S., Kumar, D., de Visser, S.P., Altun, A. and Thiel, W., Theoretical perspective 
on the structure and mechanism of cytochrome P450 enzymes. Chem. Rev. 2005, 105, 
2279-328. 

[59]  Porro, C.S., Sutcliffe, M.J. and de Visser, S.P., Quantum mechanics/molecular 
mechanics studies on the sulfoxidation of dimethyl sulfide by compound I and compound 
0 of cytochrome P450: Which is the better oxidant? J. Phys. Chem. A 2009, 113, 11635-
11642.  

[60]  Cantú Reinhard, F.G., Lin, Y.T., Stańczak, A. and de Visser, S.P., Bioengineering of 
cytochrome P450 OleTJE: How does substrate positioning affect the product distributions? 
Molecules 2020, 25, 2675.  

[61]  Shaik, S., Kumar, D. and de Visser, S.P., A valence bond modeling of trends in 
hydrogen abstraction barriers and transition states of hydroxylation reactions catalyzed by 
cytochrome P450 enzymes. J. Am. Chem. Soc. 2008, 130, 10128-10140.  

[62]  Shaik, S., Cohen, S., Wang, Y., Chen, H., Kumar, D. and Thiel, W., P450 enzymes: 
Their structure, reactivity, and selectivity—modeled by QM/MM calculations. Chem. Rev. 
2010, 110, 949-1017.  

[63]  Latifi, R., Bagherzadeh, M. and de Visser, S.P., Origin of the correlation of the rate 
constant of substrate hydroxylation by nonheme iron(IV)–oxo complexes with the bond-
dissociation energy of the C-H bond of the substrate. Chem. Eur. J. 2009, 15, 6651–6662. 



 171 

[64]  de Visser, S.P., Trends in substrate hydroxylation reactions by heme and nonheme 
iron(IV)-oxo oxidants give correlations between intrinsic properties of the oxidant with 
barrier height. J. Am. Chem. Soc. 2010, 132, 1087-1097. 

[65]  Ji, L., Faponle, A.S., Quesne, M.G., Sainna, M.A., Zhang, J., Franke, A., Kumar, D., 
van Eldik, R., Liu, W. and de Visser, S.P., Drug metabolism by cytochrome P450 
enzymes: What distinguishes the pathways leading to substrate hydroxylation over 
desaturation? Chem. Eur. J. 2015, 21, 9083-9092.  

[66]  Barman, P., Upadhyay, P., Faponle, A.S., Kumar, J., Nag, S.S., Kumar, D., Sastri, C.V. 
and de Visser, S.P., Deformylation reaction by a nonheme manganese(III)–peroxo 
complex via initial hydrogen-atom abstraction. Angew. Chem. Int. Ed. 2016, 55, 11091‒
11095.  

[67]  Cantú Reinhard, F.G., Barman, P., Mukherjee, G., Kumar, J., Kumar, D., Sastri, C.V. 
and de Visser, S.P., Keto-enol tautomerization triggers an electrophilic aldehyde 
deformylation reaction by a nonheme manganese(III)-peroxo complex. J. Am. Chem. Soc. 
2017, 139, 18328-18338.  

[68]  Shaik, S., Cohen, S., de Visser, S.P., Sharma, P.K., Kumar, D., Kozuch, S., Ogliaro, F. 
and Danovich, D., The “rebound controversy”: An overview and theoretical modeling of 
the rebound step in C−H hydroxylation by cytochrome P450. Eur. J. Inorg. Chem. 2004, 
2004, 207-226.  

[69]  Faponle, A.S., Quesne, M.G. and de Visser, S.P., Origin of the regioselective fatty-acid 
hydroxylation versus decarboxylation by a cytochrome P450 peroxygenase: What drives 
the reaction to biofuel production? Chem. Eur. J. 2016, 22, 5478-5483.  

[70]  de Visser, S.P. and Tan, L.S., Hydroxylation reactions catalyzed by cytochrome P450 
enzymes. J. Am. Chem. Soc. 2008, 130, 10128-10140.  

[71]  Ali, H.S., Henchman, R.H. and de Visser, S.P., Cross-linking of aromatic phenolate 
groups by cytochrome P450 enzymes: A model for the biosynthesis of vancomycin by 
OxyB. Org. Biomol. Chem. 2020, 18, 4610-4618.  

[72]  Timmins, A., Fowler, N.J., Warwicker, J., Straganz, G.D. and de Visser, S.P., Does 
substrate positioning affect the selectivity and reactivity in the hectochlorin biosynthesis 
halogenase? Front. Chem. 2018, 6, 513. 

[73]  Latifi, R., Sainna, M.A., Rybak-Akimova, E.V. and de Visser, S.P., Does hydrogen-
bonding donation to manganese(IV)–oxo and iron(IV)–oxo oxidants affect the oxygen-
atom transfer ability? A computational study. Chem. Eur. J. 2013, 19, 4058-4068.  



 172 

[74]  Ogliaro, F., de Visser, S.P., Cohen, S., Kaneti, J. and Shaik, S., The experimentally 
elusive oxidant of cytochrome P450: A theoretical “trapping” defining more closely the 
“real” species. Chem. Bio. Chem. 2001, 2, 848-851.  

[75]  Trott, O. and Olson, A.J. AutoDock Vina: improving the speed and accuracy of docking 
with a new scoring function, efficient optimization, and multithreading. J. comput. Chem. 
2010, 31, 455-461.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 173 

Chapter 6.     Energy-Entropy Method Using Multiscale Cell 
Correlation to Calculate Binding Free Energies in the SAMPL8 
Host-Guest Challenge 

 
 
 
PAPER 5 
 
 
Hafiz Saqib Ali1,2, Arghya Chakravorty, Jas Kalayan1,2, Sam P. de Visser1,3 and 
Richard H. Henchman1,2 
 
 
1 Manchester Institute of Biotechnology, The University of Manchester, 131 Princess 
Street, Manchester M1 7DN, UK 
2 School of Chemistry, The University of Manchester, Oxford Road, Manchester M13 
9PL, UK  
3 Department of Chemical Engineering and Analytical Science, The University of 
Manchester, Oxford Road, Manchester M13 9PL, UK 
 

 
 
 
 
 
* Corresponding author: 

E-mail: henchman@manchester.ac.uk 
 
 
 
Conceptualization, supervision and project administration, R.H.H. investigation and funding 
acquisition, H.S.A.; methodology and software, A.C., J.K. and R.H.H.; validation, 
visualization and writing—original draft preparation, H.S.A., and R.H.H.; formal analysis and 
writing—review and editing, H.S.A., A.C., J.K, S.P.V and R.H.H. 
 
 
 
 

Published in Journal of Computer-Aided Molecular Design, May 2021, 
(accepted/in press). 



 174 

Abstract 

Free energy drives a wide range of molecular processes such as solvation, binding, chemical 

reactions and conformational change. Given the central importance of binding, a wide range of 

methods exist to calculate it, whether based on scoring functions, machine-learning, classical 

or electronic structure methods, alchemy, or explicit evaluation of energy and entropy. Here 

we present a new energy-entropy (EE) method to calculate the host-guest binding free energy 

directly from molecular dynamics (MD) simulation. Entropy is evaluated using Multiscale Cell 

Correlation (MCC) which uses force and torque covariance and contacts at two different length 

scales. The method is tested on a series of seven host-guest complexes in the SAMPL8 

(Statistical Assessment of the Modeling of Proteins and Ligands) “Drugs of Abuse” Blind 

Challenge. The EE-MCC binding free energies are found to agree with experiment with an 

average error of 0.9 kcal mol-1. MCC makes clear the origin of the entropy changes, showing 

that the large loss of positional, orientational, and to a lesser extent conformational entropy of 

each binding guest is compensated for by a gain in orientational entropy of water released to 

bulk, combined with smaller decreases in vibrational entropy of the host, guest and contacting 

water. 
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6.1 Introduction 

The accurate prediction of binding between molecules in solution is a key question in 

theoretical and computational chemistry. It has relevance to much of chemistry but also more 

broadly to fields such as biology, pharmacology, chemical engineering and environmental 

science. Under ambient conditions, binding is governed by the change in Gibbs free energy ΔG 

= −RT ln K where RT is the gas constant times temperature and K is the equilibrium constant, 

which is the ratio of probability of the bound form relative to the unbound form at equilibrium 

for a given concentration of the molecules involved, typically 1 M. 

Many methods have been developed to calculate binding free energy, which feature the 

typical trade-off of speed versus accuracy [1-4]. At the faster end are scoring functions which 

are parametrised to reproduce known binding data, being made ever more accurate by using 

larger data sets and machine-learning methods that resolve the optimal model form at the cost 

of providing molecular insight [5-10]. Simulation methods using classical potentials can 

determine the free energy difference from the relative probability of the bound and free states, 

whether this be by brute-force sampling, biased simulations such as metadynamics [11] or 

umbrella sampling [12,13], or alchemical methods such as free energy perturbation [14,15] or 

thermodynamic integration [16,17] which utilise shorter, unphysical binding paths by varying 

the molecules’ interacting Hamiltonian rather than their positions. Combining these methods 

with more accurate electronic-structure methods is not yet achievable when simulating 

ensembles of solvated systems for multiple states along a path. However, they or regular force 

fields can be used in the energy-entropy (EE) class of methods which evaluate the free energy 

of the bound and free states separately and directly from the system energy and entropy and 

get the binding free energy from their difference. These are sometimes referred to as “end-

point” methods but this is somewhat of a misnomer, given that no reference is required to a 

path or its end.  

EE methods are more approximate and limited than other methods because calculating 

the entropy requires knowing the probability distribution of all quantum states of a system 

involving both solutes and solvent alike. This goes beyond the usual analyses of flexibility in 

MD simulations that typically look at distributions in only one or a few coordinates. The 

evaluation of a system’s energy from the force-field Hamiltonian is much more 

straightforward, subject to getting converged values and to all the approximations inherent in 
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the force field or electronic-structure method used. To make EE methods faster and more 

practical, they often employ an implicit-solvent model to give a solvation free energy [18], as 

is done in the widely used Molecular Mechanics/Poisson-Boltzmann Surface Area 

(MM/PBSA) method and its Generalised-Born variant (MM/GBSA) [19-22]. In addition to the 

approximations in the solvation model, such as the choice of dielectric constant, surface or 

surface tension parameters, their application to explicit-solvent simulations brings about an 

inconsistency between the Hamiltonian used for sampling and that used for free-energy 

evaluation. A frequent approximation is to apply normal mode analysis to a minimised 

configuration under the assumption of a Gaussian distribution [19,23], but this requires 

expensive matrix diagonalization for every minimum considered [24], and even then these 

minimized configurations are only approximately representative of thermalised ensembles. 

Consequently, the entropy contribution is often neglected [25], justified by the assumption that 

it is constant and therefore unimportant for relative binding calculations. A widely used method 

that does use thermalised ensembles is quasiharmonic analysis [26] based on coordinate 

covariance. Its assumption of a single Gaussian probability distribution permits a simple 

implementation, but this is known to over-estimate entropy [27,28]. Alternative ways to use 

ensembles beyond the approximation is to integrate Boltzmann factors over minima 

numerically [28,29], which is limited to a small number of minima, dihedral distributions [30], 

mutual information expansions [31] and the minimal spanning tree (MIST) variant [32], whose 

slowly converging nature limits their accuracy. For all non-Gaussian kinds of method, their 

classical formulation means they are limited to soft degrees of freedom, such as dihedrals or 

non-bonded interactions, and if applied to covalent bonds would give unphysically negative 

entropies, although one recent method includes dihedral correlations in a mutual-information 

manner supplemented by normal mode analysis [33,34]. Moreover, as mentioned earlier, many 

methods use a continuum treatment of solvent. Treating the solutes and solvent differently 

leads to formulations that allocate the ideal-gas translational and rotational entropy to the 

binding molecules, which obscures understanding the entropy loss of binding, with a larger 

proportion being assigned to the binding molecules and a corresponding entropy gain to the 

release of excluded-volume solvent [35]. Explicit solvent entropy has often been considered in 

binding, often to the exclusion of other entropic contributions and mostly in the context of 

inhomogeneous solvation theory [36-38]. Various other binding studies with combination 

terms have appeared such as molecular mechanics energy with the 3D Reference Interaction 

Site Model [39], continuum and explicit solvent [40], or inhomogeneous solvation theory with 

the loss of translational and rotational entropy [41] or with dihedral entropy [42]. 
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To address the above-mentioned deficiencies of EE methods, we adapt the Multiscale 

Cell Correlation (MCC) method [43-45] to calculate the free energy of binding. MCC has been 

developed progressively, first in the context of cell theory for liquids [46,47] and solutions 

[45,48,49], later to account for correlations in flexible molecules [50], and most recently at 

multiple length scales [43,44,51]. A key feature of the theory is that it is applied to all molecules 

in the system equally, which makes it readily extendable, such as to large flexible molecules 

in solution. We calculate the free energy of the unbound and bound molecules in water from 

the energy and entropy in molecular dynamics (MD) simulations, building off earlier work 

addressing the change in molecular rigid-body translational and rotational entropy of binding 

[25,35]. We apply MCC to a series of host-guest complexes in the SAMPL8 “Drugs of Abuse” 

Blind Challenge (Statistical Assessment of the Modeling of Proteins and Ligands). Binding 

free energy has been a long-running quantity to calculate in the SAMPL Blind Challenges [52-

55]. The SAMPL8 challenge involves the prediction of the binding free energies of seven drug 

molecules to the drug-carrier molecule cucurbit[8]uril (CB8), which are illustrated in Figure 

6.1.   

 

Figure 6.1. Chemical structures of the host CB8 and guests G1 to G7. 

 

As well as giving reasonable agreement with experiment binding free energy, MCC is able to 

explain these values by showing how the entropy change is distributed over all molecules in 

the system.  
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6.2 Theory 

6.2.1 Free Energy Theory 

The standard binding free energy (∆𝐺F]GH° ) of the host and guest molecules to form the host-

guest complex in aqueous solution at the standard-state 1 M ligand concentration is determined 

from the Gibbs free energies G calculated directly from simulations of the host in water, the 

guest in water, the host-guest complex in water, and bulk water:  

∆𝐺F]GH° = M𝐺fBÝòDIÏ + 𝐺�CAI_O − (𝐺^B`A + 𝐺a}I`A° )              (6.1) 

as illustrated in Figure 6.2. In energy-entropy methods, G is evaluated from the enthalpy H and 

entropy S using G = H – TS where T is temperature. The pressure-volume PV terms is omitted 

to allow the approximation H ≈ E, where E is the system energy, being small, on the order of 

3 J mol–1 for the solutions studied here and even then almost entirely cancelling in the binding 

difference. 

Figure 6.2.  The four systems simulated to calculate the binding free energy by the EE method.  

In MCC, S is calculated in a multiscale fashion in terms of cells of correlated units. It is the 

sum of four different kinds of term 𝑆$u��  

𝑆 = ∑ ∑ ∑ ∑ 𝑆$u��Ý]G]ÝC
�

ÝBA]BG
�

DIgID
u

ÝBDIf}DI
$                                               (6.2) 

First, S is partitioned over each kind of molecule i, whether host, guest or water. Second, for 

the molecules studied here, S has two levels of hierarchy j: molecule (M) and united atom (UA). 

Third, at each level, S is classified according to the type of motion k: translational or rotational. 

Fourth, for each motion, S is divided into vibrational and topographical terms l, which arise 

from the discretization of the potential energy surface into energy minima.  
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6.2.2 Molecular Entropy 

An important feature of MCC is that the same entropy theory is applied to all molecules in the 

system. However, only the entropy of water molecules in the first hydration shell of the host 

and guest is considered. This is because this reduces statistical noise that scales with the number 

of water molecules, and because the entropy of the remaining water molecules is assumed to 

remain unchanged upon binding. Similarly, the entropy of the single neutralizing Cl– ion is 

neglected in the calculations. To ensure balanced stoichiometry in binding, the number of bulk 

water molecules NWB that contributes to Gwater in Equation 6.1 is chosen to ensure that 

𝑁h¨ + 𝑁hG,gJ� = 𝑁hG,g + 𝑁hG,�     (6.3) 

where NWS,H, NWS,G, and NWS,H-G are the number of water molecules around the host, guest and 

host-guest complex, respectively. Later, NWB is partitioned into water released into bulk from 

the host or guest, NWS,H-G is partitioned into water nearest the host or guest, and NWS,H and 

NWS,G are in turn partitioned into water released into bulk and water staying with the host or 

guest, respectively.  

 

6.2.3 Entropy for Each Level and Motion 

The axes of each molecule are taken as its principal axes with the origin at the molecular center 

of mass. All molecules considered here, treated as non-linear rigid bodies, have three 

translational and three rotational degrees of freedom. At the united-atom level, each united 

atom is defined as each heavy atom and its bonded hydrogen atoms. A united atom has three 

translational degrees of freedom and a number of rotational degrees of freedom depending on 

the number of hydrogens and resulting geometry: 3 for non-linear (>1 hydrogen), 2 for linear 

(one hydrogen) and 0 for a point (no hydrogens). Its origin is taken as the heavy atom and the 

axes are defined with respect to the covalent bonds to the bonded hydrogens [43]. Note that it 

was necessary to use the reference frame of the host-guest complex when evaluating the 

entropy of the bound host at the united-atom level because this ensured a consistent alignment 

of the host with the guest.   
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6.2.4 Vibrational Entropy    

The vibrational entropy is evaluated in the harmonic approximation for the quantum hormonic 

oscillator: 

𝑆g]F = 𝑘¨ ∑ � á�ö/�ãä
Iå�ö/�ãçJ.

− lnM1 − eá�ö/�ãäO�Ëõö÷
]ë.                               (6.4) 

where 𝑘¨ is Boltzmann’s constant, 𝑁g]F is the number of vibrations, T is temperature, h is 

Planck’s constant, and 𝑣] are the vibrational frequencies which are calculated from the 

eigenvalues 𝜆i of the appropriate covariance matrix  

     𝑣] =
.
;r í

îö
�ãä

                                                               

(6.5) 

At the molecular level, Nvib = 6, corresponding to the xyz directions. Two covariance matrices 

are constructed, one from the mass-weighted forces for translation and one from the moment-

of-inertia-weighted torques for rotation, each of these for the whole molecule with forces and 

torques halved in the mean-field approximation [43-47]. Their associated entropies are termed 

“transvibrational” and “rovibrational”. For transvibration at the united-atom level, Nvib = 3N – 

6 where N is the number of united atoms in the molecule, and the six lowest-frequency motions 

have been removed to avoid duplication of transvibrational and rovibrational entropy at the 

molecular level. For rovibration at the united-atom level, Nvib is summed over the number of 

rotational degrees of freedom of each united atom. Covariance matrices are constructed as 

before but over all united atoms in the molecule and with halved torques in the mean-field 

approximation for weakly correlated degrees of freedom.  

 

6.2.5 Topographical Entropy 

For the topographical entropy at the molecular level, the translational term is known as the 

“positional” entropy and the rotational term is known as the “orientational” entropy. The 

positional entropy at the standard 1 M concentration is evaluated as  

𝑆òB`° = 𝑘¨ ln
.
*Ä�°

                                            (6.6) 



 181 

where 𝑥CN°  is the mole fraction of the molecule. For a solute when dilute, this is taken as 1/55.5, 

where 55.5 is the number of water molecules in the standard volume 1661 Å3, while for the 

solvent water 𝑥CN°  ≈ 1. The orientational entropy for a molecule in solution is evaluated as 

𝑆B_ = 𝑘¨ ln
Ë%
(_/))rm/)*%���

'
                                                (6.7) 

where Nc is the coordination number of the molecule, 𝜎 is the symmetry number, and pcorr is 

the probability that the neighboring molecules are oriented suitably for each solute, pcorr = 1 

while for water pcorr = 0.25 to account for hydrogen-bond correlation [43]. For a molecule in 

solution, Nc is the number of solvent molecules in the first hydration shell of the solute 

calculated using RAD [56]. For a guest bound to the CB8 host, 

𝑆B_ = 𝑘¨ ln
',��Å
'����Å

                                                           (6.8) 

where 𝜎^B`A,	the symmetry number of the CB8, equals 16, given its 8-fold and 2-fold rotational 

axes. At the united-atom level, the topographical entropy is known as the “conformational” 

entropy, with the translational term corresponding to dihedrals involving heavy atoms. It is 

calculated from the probability distribution of each set of unique conformations for all 

conformations having dihedrals of united atoms using  

𝑆fBG� = −𝑘¨ ∑ 𝑝] ln 𝑝]
Ë%�U�
]ë.                                              (6.9) 

where 𝑝] and Nconf are the probability and number of each set of conformations, respectively. 

Each conformation is defined adaptively whereby the dihedral is assigned to the nearest peak 

in the dihedral distribution calculated using a histogram with 30◦ bin widths [51]. The united-

atom rotational topographical term is ignored because it corresponds to dihedrals involving 

exclusively hydrogens at one end and is either zero by symmetry, as in methyl groups, or small 

due to strong correlation with the solvent, as for hydroxyl groups. An additional entropic 

contribution to binding of –0.5 kB ln2 was included for guest G5 (Figure 6.1) to account for the 

shift from half protonated when unbound to fully protonated when bound as pointed out in the 

SAMPL8 instructions. 
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6.3 Methodology 

6.3.1 System Preparation 

The structural coordinates of the host and guest molecules were taken from the SAMPL8 

Github website. All guests were built with their amino nitrogen in the protonated state; for 

guests G3, G4 and G7, the S stereochemistry was taken for G3 and G4 and the R 

stereochemistry for G7. The starting structure for the host-guest complex was taken as the 

lowest docked energy in docking of each guest molecule to the host using the AutoDock Vina 

software [57]. Amber Tools 19 [58] was used to create the topology and coordinate files of 

each system. The second-generation General AMBER Force Field (GAFF2) [59] with AM1-

BCC partial charges as implemented in Antechamber [60] was used for the host and guest, 

TIP3P [61] was used for water, and the Joung and Cheatham parameters were used for the one 

chloride ion [62], which was added to neutralize the +1 charge of the guest.  Four kinds of MD 

simulation were set up: (i) 1500 water molecules, (ii) the host molecules solvated in 1500 water 

molecules, (iii) each guest molecule in 1500 water molecules, and (iv) each host-guest complex 

in 1500 water molecules. All simulation boxes were cubic with side ~36 Å. 

 

6.3.2 Molecular Dynamics Simulation Protocol 

The simulations were performed with the GROMACS 2018.4 software package [63]. The 

topology and coordinate files for each system were converted from AMBER into GROMACS 

format using the GROMACS ParmEd tool because the entropy code used later does not yet 

work with AMBER trajectories. For equilibration, each system was minimized for 500 steps 

of steepest-descent minimization and heated gradually from 0 to 300 K for 100 ps of NVT 

molecular dynamics simulation using the V-rescale thermostat [64], followed by 100 ps of NPT 

simulation using the Parrinello-Rahman barostat [65] with a 2 ps time constant and the 

isothermal compressibility of water 4.5×10−5 bar−1. The long-range electrostatic interactions 

were calculated using the Partial Mesh Ewald (PME) method with the Verlet cutoff-scheme, 

the non-bonded cutoff was 10 Å with periodic boundary conditions, and the time step was 2 fs. 

Data collection under the same conditions was run for 100 ns of MD simulation, with forces 

and coordinates saved every 100 ps to give 1000 frames for analysis. Entropies were calculated 

using MCC [44,45] with additional terms for binding [48]. Calculation of all entropy terms 
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was performed with two separate python codes, one code for the solutes (Github) and an in-

house code for the solvent, each reading in the force, coordinate and topology files for each 

simulation. Four simulation were needed for each binding calculation as shown in Figure 6.2 

and each MD simulation was run in triplicate with slightly different starting structures, yielding 

∆𝐺 of binding via equation 6.1.  

 

6.3.3 Error Analysis 

The standard error of the mean (SEM) for G, H and S are calculated from the standard deviation 

𝜎 of the values from those derived from the three separate simulations  

SEM = 	 '
√)

      (6.11)                          

where n = 3 is the number of simulations. The mean average error (MAE) with respect to 

experiment is 

MAE =
∑-∆ÖJ∆Ö���Å-

)
              (6.12) 

where n = 7 is the number of molecules. 

 

6.4 Results and Discussion 

The calculated binding Gibbs free energies together with SEM error bars are plotted in Figure 

6.3 versus experiment. 

 The values of the EE-MCC and experimental [66] binding Gibbs free energies are listed 

in Table 6.1, together with the ∆H and T∆S components. The MAE for ∆G averaged unsigned 

error over all molecules is 0.9 kcal mol–1 and for ∆H and T∆S they are 2.0 and 1.8 kcal mol–1, 

respectively. Evidently, there is some correlation between the enthalpy and entropy that brings 

about a lower error in the binding Gibbs free energy than in these two components, particularly 

for compounds G2, G4 and G5 which have larger but compensating errors in ∆H and T∆S. 
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Figure 6.3. EE-MCC Gibbs free energies of binding (error bars given by the SEM) versus 

experiment. 

Table 6.1. Predicted Binding Free Energies, Enthalpies and Entropies versus Experiment 

[66] 

Guest ∆G / kcal mol–1 ∆H / kcal mol–1 T∆S / kcal mol–1 

EE-MCC Expt EE-MCC Expt          EE-MCC Expt 

G1   –6.3   –7.1   –7.6   –7.8 –1.3 –0.8 

G2   –9.6  –9.9   –5.0 –10.8   4.6 –0.9 

G3 –10.2 –11.6 –11.9 –13.6 –1.7 –2.0 

G4 –12.6 –11.2 –11.7 –15.8   1.0 –4.6 

G5 –12.2 –12.3 –14.0 –17.3 –1.7 –5.0 

G6 –15.33 –14.1 –14.4 –14.9   1.0 –0.8 

G7   –9.0   –7.9 –11.5   –8.3 –2.5  –0.3 

 

6.4.1 Entropy Components with MCC  

MCC yields the entropy of the system and its decomposition over molecules, level, motion and 

minima according to equation 6.2. In figure 6.3 we show plots for the changes in vibrational 
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and topographical entropy components upon binding for the host and guest at molecule and 

united-atom levels of hierarchy. 

The host entropy, which is all vibrational, decreases for all guests but only by a small amount. 

The contributions are slightly larger at the united-atom level and the rovibrational term is 

sometimes weakly positive. The positional and orientational entropy of the host is taken not to 

change, taken as defining the reference frame for the binding process. The decrease in entropy 

of the guest is much larger because it comprises the loss of positional and orientational entropy, 

the former constant for all guests at 1 M concentration and the latter dependent on the size of 

the molecule via the number of first-shell water molecules. There is a smaller but moderate 

decrease in conformational entropy of up to 15 J K–1 mol–1 for the more flexible guests G7, 

G1, G2 and G5 which have more freely rotating dihedrals. The guests have only a small 

decrease in vibrational entropy, as for the host, with the occasional tiny increase at the united-

atom level. The total guest entropy losses of 60-75 J K–1 mol–1 are similar to the values of 71-

73 J K–1 mol–1 from an earlier study on protein-ligand systems with comparatively sized ligands 

that only considered the molecule-level entropy. 

The corresponding changes in water entropy are show in Figure 6.5. There is a fairly 

sizeable decrease in rovibrational entropy for water around the host upon binding, with the 

exception of G6 which has a slight increase, possibly because its cationic nitrogen is fully 

buried inside the host and so cannot constrain water molecules. The changes in water’s 

transvibrational and orientational entropy are smaller and either higher or lower, depending on 

the guest. The changes in water hydrating the guest are smaller, given that the guest has little 

solvent exposure when bound; in most cases the decrease is transvibrational or orientational, 

with some increase rovibrational. For water released into bulk from either host or guest, there 

is a large gain in orientational entropy for all guests, consistent with the larger number of 

hydrogen-bonding neighbours of a water molecule in bulk. There is a larger contribution from 

water around the guest because the guest becomes more buried and releases more water 

molecules. Water released from the host is seen to gain a small amount of transvibrational 

entropy, while the vibrational terms change little for the guest.  
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Figure 6.4. Binding entropy components for the (a) host at molecular level, (b) host at united-

atom level, (c) guest at molecular level, and (d) guest at united-atom level. The components 

are transvibrational (blue), rovibrational (turquoise), positional/conformational (orange), and 

orientational (yellow). 

Table 6.2. Entropy Components of Unbound and Bound Host and Associated Water (J K–1 

mol–1) 

 H H-G1 H-G2 H-G3 H-G4 H-G5 H-G6 H-G7 

𝑆g,ÛA_CG`g]F 70 70 69 69 69 68 69 69 

𝑆g,Û_Bg]F 74 73 73 73 73 73 74 73 

𝑆g,óôA_CG`g]F 662 659 656 660 659 661 658 658 

𝑆g,óô_Bg]F 159 159 160 158 158 159 158 160 

𝑆g,óôfBG�  0 0 0 0 0 0 0 0 

𝑆hG
A_CG`g]F 4079 3566 3440 3505 3526 3583 3555 3507 

𝑆hG
_Bg]F 1515 1310 1253 1275 1290 1312 1232 1270 

𝑆hG
fBG� 251 648 632 638 652 661 647 635 

NWS 87.4 76.4 73.7 75.2 75.4 76.9 76.2 75.3 

(a) (b) 

(c) (d) 
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𝑆h¨
A_CG`g]F  516 644 573 563 491 525 569 

𝑆h¨
_Bg]F  190 238 211 208 181 194 210 

𝑆h¨
fBG�  123 153 136 134 117 125 135 

NWB  11.0 13.7 12.2 12.0 10.5 11.2 12.1 

 

 

Figure 6.5. Changes in binding entropy components for the (a) water staying in the hydration 

shell of the host (WS), (b) water released from the host into bulk water (WB), (c) water staying 

in the hydration shell of the guest (WS), and (d) water released from the guest into bulk water 

(WB). Coloring is as in Figure 6.3.  

The corresponding entropy components for all contributing species when unbound or 

bound are shown in Tables 6.2 and 6.3, together with the number of contributing water 

molecules, either staying bound in the hydration shell of the host or guest (WS) or being 

released into bulk (WB).  

 

 

(a) (b) 

(c) (d) 
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Table 6.3. Entropy Components of Unbound and Bound Guests and Associated Water (J K–1 

mol–1) 

 Component G1 G2 G3 G4 G5 G6 G7 

Unbound 

Guest 

𝑆�,ÛA_CG`g]F 62 68 66 67 66 67 68 

𝑆�,Û_Bg]F 59 67 61 62 65 68 64 

𝑆�,Û
òB` 33 33 33 33 33 33 33 

𝑆�,ÛB_  45 50 48 48 46 48 49 

𝑆�,óôA_CG`g]F 41 137 96 95 84 81 119 

𝑆�,óô_Bg]F 74 118 86 87 72 99 96 

𝑆�,óôfBG�  20 29 0 2 16 7 17 

𝑆hG
A_CG`g]F 1144 1786 1458 1460 1335 1496 1663 

𝑆hG
_Bg]F 419 658 540 538 496 545 610 

𝑆hG
fBG� 72 126 97 278 254 277 311 

NWS 24.3 37.9 30.9 31.1 28.4 31.7 35.4 

Bound 

Guest 

𝑆�,ÛA_CG`g]F 60 66 64 64 62 63 65 

𝑆�,Û_Bg]F 58 64 61 61 62 62 62 

𝑆�,Û
òB` 0 0 0 0 0 0 0 

𝑆�,ÛB_  23 23 23 23 23 23 23 

𝑆�,óôA_CG`g]F 40 138 96 95 82 80 121 

𝑆�,óô_Bg]F 72 116 86 84 70 99 95 

𝑆�,óôfBG�  12 22 0 1 10 6 1 

𝑆h¨
A_CG`g]F 1031 1395 1239 1242 1201 1248 1190 

𝑆h¨
_Bg]F 377 514 459 458 446 454 437 

𝑆h¨
fBG� 198 258 231 236 228 231 223 

NWB 21.9 29.6 26.3 26.5 25.5 26.4 25.3 

𝑆hG
A_CG`g]F 110 390 214 212 129 245 472 

𝑆hG
_Bg]F 45 144 81 82 51 92 179 

𝑆hG
fBG� 16 73 40 40 22 45 82 

NWS 2.4 8.3 4.7 4.6 2.9 5.3 10.1 
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These numbers are consistent with the trends in Figure 6.4 and 6.5. Their most 

insightful revelation is the magnitudes of the entropies involved. Clearly, most of the entropy 

is in the solvent water, and the size of this entropy term scales near linearly with the number 

of water molecules in the first hydration shell. The contributions from the host and guest 

molecules for their respective unbound cases are much smaller at only about 14% and 14-20%, 

respectively. Most of the host entropy, 85%, is at the united atom level, and of that, 80% is 

transvibrational and the rest rovibrational while at the molecule level these two terms are 

comparable in size, as seen in earlier work [34,43,44,48]. For the guest the two levels have 

similar amounts of entropy, depending on the size of the ligand and at the 1 M concentration 

being used here. The numbers of water molecules in each of the four categories makes clear 

that the guest is almost entirely desolvated upon binding and that the host loses comparatively 

fewer water molecules to accommodate the guest, supporting the finding in Figure 6.3 that 

guest desolvation contributes more than host desolvation for the systems studied here. 

 

6.5 Conclusions 

A new energy-entropy method called EE-MCC has been presented to calculate the free energy 

of binding and applied to a series of aqueous host-guest complexes in the SAMPL8 “Drugs of 

Abuse” Blind Challenge. EE-MCC accounts for the entropy of all flexible degrees of freedom 

of the system in a consistent and general manner. The calculated binding Gibbs free energy 

values are in good agreement with experimental results having average standard error of mean 

0.9 kcal mol–1. The main feature of MCC is that it provides the entropy components over all 

molecules and all degrees of freedom in the system at a hierarchy of length scales. There is a 

large loss of positional and orientational entropy that is fairly similar for all guests, with the 

orientational entropy loss larger for larger guests. There is a smaller loss of conformational 

entropy, depending on the flexibility of the guest. There are also smaller decreases in 

vibrational entropy of the host, guest and contacting water. These losses are compensated by a 

large gain in orientational entropy of water released to bulk, with the larger contribution 

coming from water that was hydrating the guest.  
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Chapter 7.     Conclusions and Future Work 

 

7.1 Conclusions 

The present work presents a new, efficient and general method to calculate the free energy 

values of a wide range of systems, spanning liquids, solutions, chemical reactions and host-

guest systems. It also presents detailed studies to investigate the stability and reaction kinetics 

for a number of chemical processes that are catalyzed by various heme and non-heme iron 

enzymes.  

In relation to the new free energy method, we developed the theory Multiscale Cell 

Correlation (MCC) to calculate the entropy from the force and torque covariance matrices and 

probabilities distributions of molecular coordinations and conformations in a molecular 

dynamics simulation. MCC theory was applied to calculate the entropy of 58 important 

industrial liquids which were modelled with the General AMBER Force Field (GAFF) and 

Optimized Potentials for Liquids Simulations (OPLS) force fields. The calculated entropy 

values when compared with experiment had values with unsigned errors of 8.7 J K–1 mol–1 and 

9.8 J K–1 mol–1 for the GAFF and OPLS force fields, making GAFF slightly better than OPLS 

for these liquids, and showing thatMCC is also better than the 2-Phase Thermodynamics (2PT) 

method which is currently the only other method available to calculate the entropy of such 

liquids.  

 Next, we combined the MCC theory with the density functional theory (DFT) method 

in the quantum mechanics / molecular mechanics (QM/MM) formalism to develop a new 

energy-entropy (EE) method (EE-MCC). The EE-MCC method is applied to a series of six SN2 

chemical reactions where a halogen atom is replaced by a hydroxyl group in aqueous solution. 

The EE-MCC is used to calculate the Gibbs free energy barriers for six reactions and compared 

with experimental values. We also calculated the Gibbs free energy barriers for these six 

reactions in implicit solvent using the EE-NMA method with B3LYP/6-31+G* and M06/6-

31+G* level of DFT where entropy is calculated with Normal Mode Analysis (NMA) and in 

explicit solvent using the Potential Mean Force (PMF). We have used two Hamiltonians, self-

consistent charge density functional tight binding (SCC-DFTB) method and DFT method with 
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B3LYP/6-31+G* in explicit solvent model with respective PMF values while experimental 

free energy barriers are derived from rate constants. The EE-MCC free energy barriers 

calculated using the SCC-DFTB method are in good agreement with experimental and PMF 

values.   

 Most recently, we also applied the EE-MCC method to calculate the binding Gibbs free 

energies of host-guest systems directly from MD simulations. The binding free energy values 

calculated by EE-MCC method are in good agreement with experimental values and a standard 

error of mean is 0.9 kcal mol-1. It also gives us detailed insight into other thermodynamic 

quantities such as entropy and enthalpy values which are directly calculated from MD 

simulations. The entropy and enthalpy calculated by the EE-MCC method are also in 

reasonable agreement with the experimental values, having a mean average error 2.0 kcal mol-

1 and 1.8 kcal mol–1. 

This work studied a range of P450 isozymes by using either a large model quantum 

mechanics (QM) cluster technique or full QM/MM method or both. GcoA is an isozyme of 

cytochrome P450 and used to convert lignin units into useful products. We studied the syringol 

activation by an iron(IV)-oxo heme cation radical oxidant using QM-cluster model on a large 

active site cluster model of GcoA enzyme. We studied the detailed reaction free energy profile 

which leads to the selective o-demethylation and acetal formation. We also provided 

information about selective product formation by doing in-silico mutations. OxyB is another 

isozyme of P450 which is used to catalyze aromatic cross-linking of two glycopeptide units for 

the biosynthesis of vancomycin. Similarly, OleTJE and TxtE are isozymes of cytochrome P450 

and the former is used to convert fatty acids into a range of hydroxylation, desaturation and 

decarboxylation products while the later one is used for the aromatic nitration of L-tryptophan 

(L-Trp).   

 We also studied the dihydroxylation of L-arginine (L-Arg) catalyzed by OrfP enzyme. 

We have used large active site cluster model consist of 278 atoms and run the density functional 

theory method to explore the full potential energy profile. We show that the dihydroxylation 

of L-Arg occurs via a two-step hydroxylation reaction. We also studied the different product 

distributions of L-Arg and L-homoarginine (L-hArg) which are catalyzed by another non-heme 

iron enzyme known as viomycin (VioC). Interestingly, selective hydroxylation of L-arginine 

at the C3-position for antibiotics biosynthesis while experimental studies showed that using the 

substrate analogue, namely L-homo-arginine, a mixture of products was obtained originating 
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from C3-hydroxylation, C4-hydroxylation and C3‒C4 desaturation. To understand how the 

addition of one CH2 group to a substrate can lead to such a dramatic change in selectivity and 

activity, we did a computational study using QM cluster models. We set up a large active-site 

cluster model of 245 atoms that includes the oxidant with its first- and second-coordination 

sphere influence as well as the substrate-binding pocket. The model was validated against 

experimental work on related enzymes and previous computational studies. Thereafter, 

possible pathways leading to products and byproducts were investigated for a model containing 

L-Arg and one for L-homo-Arg as substrate. The calculated free energies of activation 

predicted product distributions that matched experimental observation and gave a low-energy 

C3-hydroxylation pathway for L-Arg, while for L-homo-Arg several barriers were found to be 

close in energy, leading to a mixture of different products. 

 

7.2 Future Work 

We will extend our EE-MCC method to calculate the ligand-protein binding Gibbs free 

energies which will be helpful in computational biophysics and structure-based drug design. 

Furthermore, we are working on some other nonheme iron dioxygenases enzymes. One such 

enzyme, namely HygX performs an oxidative ring-closure reaction to form the ortho-ether 

linkage. Another one is Taurine/a-ketoglutarate dioxygenase (TauD) which is an important 

enzyme that takes part in the cysteine catabolism process in the human body and hydroxylates 

taurine. The activation of substrate by TauD is highly stereo- and regioselective and only takes 

place on the pro-R C1-position. To understand the regio- and stereoselectivity of TauD and 

HygX enzymes we performed a detailed density functional theory study on large active site 

cluster models with 244 and 302 atoms respectively that include the first- and second-

coordination sphere of the nonheme iron center and substrate binding pockets. For further 

investigation of kinetics of the enzymatic reaction mechanisms, we are also using full QM/MM 

simulations to understand the activities of these enzymes. Both these projects are still in 

progress and I am running some additional QM/MM simulations.   
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