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ABSTRACT

Evolutionary Finance (EF) explores financial markets as evolving biological systems. Investors
pursuing diverse investment strategies compete for the market capital. Some survive and some
become extinct. A central goal of the study is to identify investment strategies guaranteeing
survival. The problem is examined within a non-traditional game-theoretic framework
combining stochastic dynamic games and evolutionary game theory. Models analysed in this
area employ only objectively observable market data, in contrast to traditional neoclassical
settings relying upon unobservable agents' characteristics: individual utilities and beliefs. The
main results provide effective constructions of survival strategies. The thesis contributes to EF
in three respects: (i) the most general EF model with long-lived dividend-paying assets is
developed; (ii) a new model with endogenous asset dividends is proposed; (iii) a systematic
study of the notion of an unbeatable strategy (a game solution concept playing a key role in
EF) is conducted.
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CHAPTER 1. INTRODUCTION

Evolutionary Finance (EF) aims at improving our understanding of the causes and effects
of the dynamic nature of financial markets through the application of Darwinian ideas. Market
places for risky assets exhibit an unparalleled degree of dynamics and evolution in the behavior
and interaction of its participants. The innovations in investment styles, products, and the
regulatory framework appear to be limitless. All of these changes can be traced back to human
endeavor, which tries to achieve intended aims within an environment characterized by the
adaptive, self-organizational, and endogenous dynamics of the decisions and interaction of all
market participants. With unintended consequences at times. Shiller, in his book Irrational

Exuberance [157], concludes:

In sum, stock prices clearly have a life of their own; they are not simply respond-
ing to earnings or dividends. Nor does it appear that they are determined only by
information about future earnings or dividends. In seeking explanations of stock

price movements, we must look elsewhere.

It is this "life of their own" of financial markets that the EF approach strives to capture.

EF has two defining characteristics: a descriptive approach to the specification of investors
and a focus on the dynamics of the wealth distribution. Investors are allowed to adopt behaviors
driven by heuristic reasoning and /or behavioral biases, e.g., myopic optimization, dependence of
decisions on past performance, and other forms of bounded rationality. For instance, financial
practitioners at the cutting edge of active investment are mainly concerned with beating a
benchmark, which is awarded a bonus, rather than in pursuing more elusive goals. The dynamics
of investors’ wealth is driven by the market interaction of investors and the randomness of asset
payoffs. Successful investors gain wealth, while unsuccessful ones lose wealth and disappear
in the long-run. In the short-run all investors’ wealth levels fluctuate, sometimes violently,
depending on the risk appetite of an investor and her clients’ patience. The focus of this study

will be on investment strategies ensuring long-run stability and survival in crisis environments.



The choice of the equilibrium concept marks another main shift in the paradigm of how mar-
kets can be modeled. Rather than following the neoclassical world in which all of the investors
share the same opinion about the possible future contingencies (and the price of each asset
in every possible state), market equilibrium is only invoked in the short run through market
clearing at the current date. The advantage of this approach is twofold: computational and
conceptual. Heterogeneity of investors represents the diversity of opinions and types of behav-
ior; short-run goals shift the focus from discounted expected utility to the wealth of investors
and its dynamics. A main object of study is the performance of investment styles, in particular
within a specific set of strategies. EF opens the door to the study of this line of inquiry without
invoking a notion of equilibrium that would require the agreement of market participants about
future prices. In EF frameworks, the process of market dynamics is described as a sequence
of consecutive short-run equilibria determining equilibrium asset prices over each time period.
The notion of a short-run price equilibrium is defined directly via the set of investment strate-
gies/portfolio rules of the market players specifying the patterns of their investment behavior.
Moreover, in those EF models that combine evolutionary ideas with behavioural approaches
(see Sect. 2.1 Evolutionary Behavioural Finance) no utility maximization or full rationality of
market players are involved.

Evolutionary ideas have a long history in the social sciences going back to Malthus, who
played an inspirational role for Darwin (see, e.g., Hodgeson [91]). Veblen [172] coined the term
“evolutionary economics" and started a systematic use of the evolutionary approach in the social
sciences [173]. Schumpeter [151] laid the groundwork for Evolutionary Economics in the 20th
century. An important role in the creation of this branch of Economics was played by the works
of Alchian [1], Boulding [32], Downie [48], D. Friedman [66, 67], M. Friedman [68], Hodgson
[91, 92], Penrose [135], Nelson [132], and Nelson and Winter [133].

A powerful momentum to work in this arca was given by the interdisciplinary research
conducted in the 1980s and 1990s under the auspices of the Santa Fe Institute, New Mexico,
USA, where researchers of different backgrounds—economists, mathematicians, physicists and
biologists—combined their efforts to study evolutionary dynamics in biology, economics and

finance; see, e.g., the series of volumes "Economy as an Evolving Complex System": Vol. I,
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Anderson, Arrow and Pines, eds. [9], Vol. II, Arthur, Durlauf and Lane, eds. [12], and Vol.
III, Blume and Durlauf, eds., [21] published in the framework of the Economics Program at the
Santa Fe Institute. The very term "Evolutionary Finance" seems to appear for the first time in
the paper by LeBaron [108] discussing numerical experiments based on the Santa Fe Artificial
Stock Market model (see Palmer et al. [134] and Arthur et al. [13]).

Fundamental contributions to EF and in particular to the analysis of dynamic stochastic
general equilibrium models were made by Blume and Easley [22], [23], [24], Sandroni [145],
Bottazzi et al. [30, 31], Bottazzi and Dindo [28, 29], Brock et al. [35], Coury and Sciubba [42],
Farmer [63], Farmer and Lo [64], Guerdijkova and Sciubba [77], Lo [115, 116, 117, 118], Lo et
al. [119], Sciubba [153, 154], and Zhang et al. [181]. This branch of literature is focused on
the problems of market selection among rational agents with different beliefs. Namely, in [22]
Blume and Easley develop an evolutionary model of a financial market and show that (provided
all the agents have the same saving rule) those who maximize a logarithmic utility function will
accumulate in the long run all the market wealth. However, if no agents are using this rule, then
the agents with the most accurate predictions might be not the most prosperous and agents
with inaccurate predictions are not necessarily driven out of the market.

Sandroni in [145] examines who survives in the market without the assumption of identical
discount factors of all the agents. It turns out that all agents who survive must have the highest
level of “fitness”, which depends on the beliefs and the discount factor. In particular, if all
agents have the same discount factors, then only the agents whose beliefs are “the closest” to
the truth will survive.

Blume and Easley [23] prove that in complete markets survival or extinction of an agent
depends on her beliefs and the discount factor. Moreover, controlling for discount factors,
only traders with the correct beliefs survive. Hence, the market selection hypothesis holds and
supports the observation that “firms behave as if they were secking to maximize their expected
returns” and "unless the behavior of businessmen in some way or other approximated behavior
consistent with the maximization of returns, it seems unlikely that they would remain in business
for long" (Friedman [68]). Therefore, the ability to predict returns correctly is a key to survival

in many DSGE models. A comprehensive review of the seminal papers addressing the market
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selection problem is given in Blume and Easley [24].

The EF models studied in this dissertation invoke ideas of evolutionary game theory (Weibull
[177], Vega-Redondo [174], Samuelson [142], Hofbauer and Sigmund [93], Kojima [103], Gintis
[72], Foster and Young [65], Cabrales [37], Germano [71]) and games of survival (Milnor and
Shapley [129], Shubik and Thompson [160], Borch [25], Karni and Schmeidler [98], and Amir et
al. [6]).

Another important source for the EF models considered in this thesis is capital growth
theory, or the theory of growth-optimal investments: Shannon [155], Kelly [100], Latané [107],
Breiman [34], Algoet and Cover [2], Hakansson and Ziemba [79], Cover [43], Gyorfi et al. [78],
MacLean et al. [121], Kuhn and Luenberger [104], Ziemba and Vickson [182], MacLean and
Ziemba [122], and others. For a textbook presentation of capital growth theory see Evstigneev
et al. [56], Ch. 17. The EF models we deal with may be regarded as capital growth models
with endogenous (formed in the dynamic equilibrium), rather than exogenous as in the classical
theory, asset prices.

A survey describing the state of the art in the field by 2016 and outlining a program for
further research is given in Evstigneev et al. [57]. An elementary textbook treatment of the
subject can be found in Evstigneev et al. [56], Ch. 20. For a most recent review of studies
related to EF, see Holtfort [94].

What has this new paradigm for finance achieved so far? On the one hand, it has improved
our understanding of the dynamics of asset prices since many stylized facts, such as for instance
excess volatility, can be explained by the endogenous dynamics of wealth. Excess volatility was
first pointed out by Shiller [156] who showed that the prices of the S&P 500 index are more
volatile than the fundamental values computed with models of expected utility maximization
given rational expectations. Boswijk et al. [27] showed that a simple Evolutionary Finance
model can explain the excess volatility of the S&P 500. Other stylized facts that are hard
to reconcile with utility maximization include stochastic volatility, autocorrelation and heavy
tails in the return distribution of asset prices (cf. Cont [41] for a more exhaustive list). For
comprehensive treatments of the achievements of Evolutionary Finance in asset pricing we refer

to LeBaron [109] and Hommes [95].
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On the other hand Evolutionary Finance also contributes to portfolio theory, which is not
descriptive but normative. Portfolio theory asks how to invest. The traditional answer (see for
example Markowitz [125]) is that one should maximize an objective function given the return
expectation one has. In this view, returns are taken as exogenous. However, modeling the
financial market via a few investment strategies, the impact of the strategies (not the individual
investors) on the market is obvious and a game theoretic approach would be more suitable. One
should select a strategy that performs well in competition with the other strategies. Performing
well in evolutionary models means at least to stay alive. Thus, in evolutionary portfolio theory
there is a focus on so-called survival strategies. Applying this idea to the evolution of relative
wealth, survival requires that no other strategy achieve a higher growth rate of wealth. Of
course, this criterion has always been criticized by adherents of utility maximization (see e.g.
Samuelson [144]), but as Sciubba [154, p. 125] put it eloquently: a survival strategy “might not
make you happy, but will definitely keep you alive”.

One might suspect that the existence and the characterization of survival strategies de-
pend on the exogenous stochastic process and on the market ecology, i.e. the set of investment
strategies competing for wealth. This is indeed the case when one limits the pool of strategies.
However, since there is always a potential for innovation, it would be risky to do so. Indeed
the most general result on survival strategies that was achieved so far (see Evstigneev et al.
[53]) shows the existence of a survival strategy for any ecology of investment strategies and
any dividend processes. The survival strategy can be characterized as being a well-diversified
fundamental strategy, which is contrarian. As such, it might explain the great success of value
investing in equity markets (cf. Gergaud and Ziemba [70]).

Furthermore, most other results in the literature are based on a limited set of strategies — not
allowing all innovations. Limiting the market ecology has been a successful strategy to better
understand asset prices. For example, the paper of Scholl et al. [150] limits the ecology to a
fundamental, a momentum and a noise trader strategy, and is able to explain many interesting
stylized facts of asset prices. Surely, models explaining stylized facts of asset pricing get stronger
the simpler they are. However, such a limitation is potentially dangerous when one wants to

draw general conclusions for portfolio theory. A strategy that is best in a restricted ecology
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might suffer severe losses when a new strategy from outside the current ecology emerges. A
similar remark applies to the famous Brock and Hommes model (see [95]), which is also based
on a similar set of three types of strategies but enriches the evolution of wealth by allowing
investors to switch between the three strategies. As a result, much richer asset price dynamics
may be achieved. But as Hens and Schenk-Hoppé [87] have shown, introducing a strategy that
stolidly follows the fundamental strategy of Evstigneev et al. [53] would drive out all other
strategies of the Brock and Hommes model.

Finally, results in Evolutionary Finance depend on the market microstructure. In the famous
Santa Fe model (Palmer et al. [134], Arthur et al. [13], LeBaron [109]), strategies are generated
by genetic algorithms and markets are cleared by a market maker. As was shown in Lensberg
and Schenk-Hoppé [110], also using genetic algorithms, the survival strategy of Evstigneev et
al. [53] will evolve when one uses a batch auction as in [53] *.

The remainder of the dissertation consists of three chapters.

Chapter 2. This chapter analyzes a dynamic stochastic equilibrium model of an asset market
based on behavioural and evolutionary principles. The core of the model is a non-traditional
game-theoretic framework integrating stochastic dynamic games and evolutionary game theory.
It relies only on objectively observable market data and does not use unobservable individual
agents’ characteristics (utilities and beliefs), which makes the model amenable for quantitative
applications. A central goal of the study is to find an investment strategy that allows an investor
to survive in the market selection process. The main results show that such a strategy exists,
is asymptotically unique and easily computable.

Chapter 3. In contrast with the majority of EF models where asset dividends are given
exogenously, the model considered in this chapter deals with endogenous dividends. They
depend on the fraction of total market wealth invested in each particular asset. The main
results establish the existence of an evolutionary stable investment strategy and provide its

effective construction.

IThat the asset price dynamics of Evolutionary Finance models depends on the market microstructure is
shown in Bottazzi et al. [31] and Anufriev and Panchenko [10]. The point made in Lensberg and Schenk-Hoppé

[110] is to show that also the outcome of the market selection depends on the market microstructure.
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Chapter 4 conducts a systematic study of the notion of an unbeatable strategy as a game
solution concept. The study is motivated by the applications of this notion in Evolutionary
Finance. In the context of EF models, the concepts of a survival strategy and an unbeatable
strategy are equivalent (see Section 2.4). A general framework (game with relative preferences)
suitable for the analysis of this concept is proposed. Basic facts regarding unbeatable strategies

are presented and a number of examples and applications considered.
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CHAPTER 2. BEHAVIOURAL EQUILIBRIUM AND
EVOLUTIONARY DYNAMICS IN ASSET MARKETS

"Mainstream economic theory is based on the rationality assumption:
that people act as best they can to promote their interests. In contrast,
behavioural economics holds that people act by behavioural rules of
thumb, often with poor results. ... People indeed act by rules, which
usually work well, but may work poorly in exceptional or contrived
scenarios. The reason is that like physical features, behavioural rules
are the product of evolutionary processes; and evolution works on the

usual, the common—not the exception, not the contrived scenario."

R.J. Aumann, A synthesis of behavioural and mainstream economics.

Nat. Hum. Behav. 3, 666-670 (2019).

This chapter, a core part of the thesis, develops a dynamic stochastic equilibrium model of
an asset market combining behavioural and evolutionary principles. The basis of the model is a
non-traditional game-theoretic framework involving elements of stochastic dynamic games and
evolutionary game theory. Its main characteristic feature is that it employs only objectively
observable market data and does not use hidden individual agents’ characteristics (such as their
utilities and beliefs). A central goal of the study is to identify an investment strategy that
allows an investor to survive in the market selection process, i.e., to keep with probability one a
strictly positive, bounded away from zero share of market wealth over an infinite time horizon,
irrespective of the strategies used by the other players. The main results show that under very
general assumptions, such a strategy exists, is asymptotically unique and easily computable.

The results of this chapter are published in Evstigneev et al. [53].
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2.1. Evolutionary Behavioural Finance

In this chapter we develop a dynamic stochastic equilibrium model of an asset market com-
bining evolutionary and behavioural approaches. The classical financial DSGE theory going
back to Kydland and Prescott [106] and Radner [139, 140] (see Magill and Quinzii [123]) re-
lies upon the hypothesis of full rationality of market players, who are assumed to maximize
their utilities or preferences subject to budget constraints, i.e., solve well-defined and precisely
stated constrained optimization problems. The model we consider relaxes these assumptions
and permits traders/investors to have a whole variety of patterns of behaviour determined by
their individual psychology, not necessarily describable in terms of utility maximization. Strate-
gies may involve, for example, mimicking, satisficing, rules of thumb based on experience, etc.
Strategies might be interactive—depending on the behaviour of the others. Objectives might be
of an evolutionary nature: survival (especially in crisis environments), domination in a market
segment, fastest capital growth, etc. They might be relative—taking into account the perfor-
mance of the others.

Models considered in this field—they are referred to as "EBF" (Evolutionary Behavioural
Finance) models—combine elements of the theory of stochastic dynamic games and evolutionary
game theory. The former offers the general notion of a strategy and the latter suggests the game
solution concept: a survival strategy. In EBF frameworks, the process of market dynamics is
described as a sequence of consecutive short-run equilibria determining equilibrium asset prices
over each time period. The notion of a short-run price equilibrium is defined directly via the
set of strategies of the market players specifying the patterns of their investment behaviour
(behavioural equilibrium).

The main focus of EBF is on investment strategies that survive in the market selection
process, i.e., guarantee with probability one a positive, bounded away from zero share of market
wealth over an infinite time horizon. Typical results show that such strategies exist, are asymp-
totically unique and easily computable. The computations do not require, in contrast with the
classical DSGE, the knowledge of hidden agents’ characteristics such as individual utilities and

beliefs.
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Financial DSGE models integrating evolutionary and behavioural approaches were proposed
in Amir et al. [5, 6]. A survey describing the state of the art in EBF by 2016 and outlining
a program for further research was given in Evstigneev et al. [57]. An elementary textbook
treatment of the subject can be found in Evstigneev et al. [56], Ch. 20. For a most recent
review of the development of studies related to this area see Holtfort [94]. General perspectives
of a synthesis of behavioural and mainstream economics based on the evolutionary approach
are discussed in a recent paper by Aumann [15].

EBF models invoke ideas related to behavioural economics and finance (Tversky and Kah-
neman [171], Shiller [158], Bachmann et al. [17]), evolutionary game theory (Weibull [177],
Samuelson [142], Gintis [72], Kojima [103]) and games of survival (Milnor and Shapley [129],
Shubik and Thompson [160])?.

The present study draws on the previous work of Amir et al. [5], where a prototype of the
model studied here was developed and some versions of the results we get in this chapter were
obtained. However, that study was conducted under very restrictive assumptions (equality of
growth rates of the total volumes of all the assets and equality of investment rates of the market
participants). Relaxing these assumptions required overcoming a number of conceptual and
technical difficulties. Even the form of the main result on the existence of a survival strategy
in the present, more general, setting differs substantially from that in Amir et al. [5]. Now this
strategy is defined as a solution to a certain stochastic equation, in contrast with the previous,
more specialized, model where it could be represented in an explicit form as the sum of a
convergent series. For the proof of the existence and uniqueness of this solution we needed to
develop new mathematical tools related to the ergodic theory of random dynamical systems:
non-stationary stochastic Perron-Frobenius theorems (for stationary versions of these results
see, e.g., Babaei et al. [16]).

The structure of the chapter is as follows. Section 2 describes the model. Section 3 states
the main results. Section 4 discusses the EBF modeling approach, its characteristic features

and applications. Section 5 contains some auxiliary propositions needed for the analysis of the

2For a comprehensive discussion of game-theoretic aspects of EBF in a different but closely related model see

Amir et al. [6], Sections 1 and 6.
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model. Section 6 proves the main results. Appendix A includes routine proofs of a number of
lemmas formulated in Section 6. Appendix B derives a non-stationary stochastic version of the

Perron-Frobenius theorem used in this work.

2.2. The model

We consider a market where K > 2 assets are traded. The market is influenced by random
factors modeled in terms of an exogenous stochastic process si, S, ..., where s; is a random
element of a measurable space S; ("state of the world" at date t). The market opens at date
0 and the assets are traded at all moments of time ¢ = 0,1,2,.... At each date t = 1,2, ...
assets k = 1,2, ..., K pay dividends D, x(s") > 0 depending on the history s := (sy,..., ;) of
states of the world up to date ¢t. The functions D; x(s') (as well as all other functions of s* we
will consider) are assumed to be measurable with respect to the product o-algebra in the space

S1 X ... x S and satisfy

K
E Dy 1(s") >0 for all t > 1 and s". (1)
k=1

This condition means that at each date in each random situation at least one asset yields a
strictly positive dividend. The total volume (the number of units) of asset k available in the
market at date ¢ > 0 is V; x(s") > 0, where V} x(s') is a measurable function of s'. For ¢t = 0, the
number V;, = Vi, > 0 is constant.

We denote by p; € R the vector of market prices of the assets. For each k = 1,..., K, the
coordinate p;j of pr = (pt1, ..., prx) stands for the price of one unit of asset k at date ¢ > 0.
There are N > 2 investors (traders) acting in the market. A portfolio of investor i at date ¢ > 0
is specified by a vector 2} = (2, ..., 2} ) € RE, where ], is the amount (the number of units)
of asset k in the portfolio 7. The scalar product (p,, i) = S0 PerTy, expresses the value of
the investor i’s portfolio z} at date ¢ in terms of the prices p, .. The state of the market at each
date t is characterized by the set of vectors (ps, z}, ..., x)V), where p; is the vector of asset prices

N

and z}, ...,z are the traders’ portfolios.

At date t = 0 the investors have initial endowments wi > 0 (i = 1,2, ..., N), that form their
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budgets at date 0. Investor ¢’s budget at date t > 1 is
wi(s") = (Du(s") + pi(s"), 21 (s71)),

where Dy(s') = (D;1(s"), ..., Dy i (s")). Tt consists of two components: the dividends (Dy,xi_;)
paid by the portfolio zi_; and the market value (p;, xi ;) of x_; expressed in terms of the prices
pe = (P, - Pri) at date t.

For each t > 0, every trader ¢ = 1,2, ..., N selects a vector of investment proportions \. =
(Al1, s Al i) according to which i plans to distribute the available budget between assets.

Vectors A! belong to the unit simplex
AR = {(ay,...;ax) >0: ay + ... +ax = 1},

In terms of the game we are going to describe, the vectors ! represent the players’ (investors’)
actions or control variables. The investment proportions at each date t > 0 are selected by the
N traders simultaneously and independently, so that we deal here with a simultaneous-move
N-person dynamic game. For t > 1, players’ actions might depend, generally, on the history
st = (s1,...,5;) of the realized states of the world and the history of the game (p'=%, z'=1 \t71),

where p*~! = (py, ..., p;_1) is the sequence of asset price vectors up to time ¢ — 1, and

o= (20, 21, s 1), T = (7, ...,:r,lN),

N = (Ao ALy ey Aen), A = (/\llv o )‘iv)’

are the sets of vectors describing the portfolios and the investment proportions of all the players
at all the dates up to t — 1. The history of the game contains information about the market
history—the sequence (pg, o), ..., (Pi—1, T¢—1) of the states of the market—and about the actions
Ai of all the players (investors) i = 1,..., N at all the dates [ = 0,....,t — 1. A vector A} € A¥

and a sequence of measurable functions with values in A%
Qifot ot=1 t—1 yt—1y ,
A(s',p 2 N ), t=1,2,

form an investment (trading) strategy A of trader 4, specifying a portfolio rule according to which

trader 7 selects investment proportions at each date ¢ > 0. This is a general game-theoretic
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definition of a strategy, assuming full information about the history of the game, including the
players’ previous actions, and the knowledge of all the past and present states of the world.

Among general portfolio rules, we will distinguish those for which A! depends only on s,
rather than on the whole market history (p'~!, 2'=1, A*=1). We will call such portfolio rules basic.
They play an important role in the present work: the survival strategy we are going to construct
will belong to this class. The essence of the main result (Theorem 2) lies in the fact that it
indicates a relatively simple basic strategy, requiring a very limited volume of information and
guaranteeing survival in competition with any other strategies which might use all theoretically
possible information.

For each k = 1, ..., K, a sequence of functions aq x, vy x(s'), aax(s?), ... is given characterizing
transaction costs for buying asset k£ in the market under consideration. It is assumed that
0 < azp < 1. If an investor 7 allocates wealth wy, to asset k at time ¢, then the value of the
kth position of the 4’s portfolio will be py 2}, = aypwi ;. The amount (1 — oy )wy,, will cover
transaction costs.

Suppose that at date 0 each investor i has selected some investment proportions A\ =
(Ab1s - Abi) € AT, Then the amount allocated to asset k by trader 7 is A ,wj, where wf > 0
is the 4’s initial endowment, so that the value of the holding of asset k in the i’s portfolio is
oAy xwh. Thus the value of the total holding of asset & in all the investors’ portfolios amounts
to ag Zfil 0xwh- It is assumed that the market is always in equilibrium (asset supply is equal
to asset demand), which makes it possible to determine the equilibrium price pyj of each asset

k from the equations

N
PosVor = ook 3 Aogwh, k=1,2,.. K. (2)

i=1
On the left-hand side of (2) we have the total value pgxVp . of all the assets of the type & in the

market (recall that the total amount of asset k at date 0 is Vp ). The investment proportions
Ay = (Xj1: -, Ab k) chosen by the traders at date 0 determine their portfolios xf = (2, ..., () k)
at date 0 by the formula

g ) Ll
= ROk 0 19 K, i=1,..N. (3)
’ Do,k

Assume now that all the investors have chosen their investment proportion vectors \i =
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(Af1,--» A k) at date ¢ > 1. Then the equilibrium of asset supply and demand determines the

market clearing prices

N
PeiVik = 0k N p(Di 4zl ), k=1, K. (4)

i=1
The investment budgets (D;+py, zi ;) of the tradersi = 1,2, ..., N are distributed between assets

in the proportions A; ;, so that the kth position of the trader i’s portfolio x} = (a7, ..., 7} x) is

. N Dy + py, xi
—_— D Potio) 4y g im1 N (5)
’ Dtk

Note that the price vector p; is determined implicitly as the solution to the system of equations

(4).
Define

(') = V() /Vierae(s™ ).
The number ~;; characterizes the speed of growth of the total volume V;j, of asset k. It can be
shown (see Proposition 1 in Section 5) that a non-negative vector p;(s') satisfying equations (4)
exists and is unique (for any s’ and any feasible 2!, and \!) as long as the following condition
holds
app(s") < yx(sh) for all t > 1 and all s (6)

This condition is implied by the basic assumptions under which the results of this chapter are
obtained (see Section 4). Note that if there are no transaction costs, i.e. a;x = 1, then (6)
means that the total volumes of all the assets grow in time at a strictly positive rate. In another
extreme case, when ., = 1, i.e. V,} is constant in ¢, condition (6) requires that o < 1,
i.e. the transaction cost rate is non-zero. This property—termed in Mathematical Finance
"efficient market friction" (see, e.g., Kabanov and Safarian [96], p. 117)—plays an important
role in various models with transaction costs, excluding phenomena like the Saint Petersburg
paradox. In our context it is indispensable since in those cases when this assumption does not
hold, a short-run equilibrium might fail to exist.

Given a strategy profile (A!, ..., AY) of investors and their initial endowments wg, ..., w, we

can generate a path of the market game by setting
=AM, i=1,...,N, (7)
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M= Al(stpt ™ MY, t=1,2,...,i=1,.., N, (8)

and by defining p; and x! recu