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Abstract

This thesis studies the modelling of soft tissue behaviour and whether Bayesian statistical 
techniques can be applied to models of soft tissue deformation in order to quantify the level 
of uncertainty in the values of a model’s parameters. Fibrous soft tissues, such as tendon and 
skin, are ubiquitous in mammals and essential for our daily lives. Changes in the behaviour of 
these soft tissues, which are associated with changes in their microstructures, have a tremen-
dous impact on people. Understanding how microstructure influences the macroscopic be-
haviour we observe in experiments is vital, therefore, and advances in our knowledge of soft 
tissue mechanics have many important applications in wider society. Furthermore, quanti-
fying uncertainty in a model’s estimates of parameters is key to understanding how well it 
can replicate physical behaviour and inform us of the relation between the microscale and the 
macroscale.

Models of fibrous soft tissues can, broadly, follow one of two approaches. Phenomenological 
models can fit experimental data well and be versatile in terms of the scientific software they 
can be implemented in, but the parameters included in these models do not have a physical 
basis for inclusion. Therefore, while these models can be widely used and replicate observed 
data well, we do not learn anything about the relationship between microstructure and physical 
behaviour from their results. Microstructural models, by contrast, can be complex, but they 
enable us to study the effect that the properties and arrangement of tissue constituents have 
on mechanical behaviour.

In this thesis, we complement existing work performed in microstructural modelling by de-
veloping a new microstructural model that, through realistic assumptions about the nature of 
tissue constituents, is tractable and contains only parameters that have a physical basis for in-
clusion. We show that the model fits mechanical experimental data on tendons and skin well 
when subjected to standard non-linear optimisation. Furthermore, by assuming that indepen-
dently and identically distributed noise is present during the collection of the experimental 
data, we derive a Random Walk Metropolis Markov chain Monte Carlo algorithm that can 
be used to accurately sample from the posterior distribution of the model’s parameters. Ad-
ditionally, we obtain from the algorithm probable values for the parameters that are realistic, 
when compared with existing literature values. 
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Chapter 1

Introduction

Fibrous soft tissues such as skin, arteries, and tendons are fundamental components of mam-
malian life and, without them, we would not be able to function properly. These materials 
enable us to move, form the first line of defence against impact injuries and any objects com-
ing into contact with us, and allow blood to flow through the body, continually providing 
oxygenated blood and nutrients to the biological materials that need them to work. During 
the course of these important everyday tasks, fibrous soft tissues are subjected to many dif-
ferent loads that deform them. Soft tissues must neither break nor be damaged when they are 
subjected to these physiological loads. Instead, they must exhibit a certain pattern of stress-
strain behaviour: they must be compliant for smaller loads, enabling the body to function 
as normal, but as the load is placed upon them, and the deformation they are subjected to, 
increases in magnitude, they must stiffen rapidly to protect the integrity of the human body. 
Advances in our understanding of these highly complex behaviours have applications in a 
variety of different fields. Physically accurate models of materials such as skin are important 
for the animation [1] and cosmetics industries [2]. Accurate modelling could also provide 
surgeons with important information on routine and experimental procedures, as soft tissues 
can be subjected to much higher stresses and strains when operated upon than they would nor-
mally be subjected to [3]. It is vital, therefore, that we attempt to understand quantitatively 
how a soft tissue deforms when a given load is placed upon it. To do this, we use the field of 
continuum mechanics and, in particular, the theory of hyperelasticity to construct mathemat-
ical models of soft tissues that relate the stress acting on a soft tissue to the strain it is placed 
under through a strain energy function (SEF).

Fibrous soft tissues are highly complex materials mathematically. As mentioned previously, 
they exhibit non-linear elasticity, being compliant at small strains, but stiffening rapidly at 
larger strains. Furthermore, they are anisotropic, as they are stiffer in certain directions than 
others, and viscoelastic [2], exhibiting creep [4], stress relaxation [5], and hysteresis [6] be-
cause energy is dissipated in the soft tissue during a loading-unloading cycle. As we explain 
later, these complex microscopic phenomena are caused largely by the microstructure, that is, 
the properties of the tissue’s constituents and their arrangement in the material. Consequently, 
the constitutive modelling of soft tissues is a sophisticated multidisciplinary field that incor-
porates multiple mathematical, physical, and biological sciences to accurately model these 
complex materials.

Models of the macroscopic mechanical behaviour of soft tissues broadly fall into two cat-
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egories. Firstly, there are phenomenological models, which are designed to fit stress-strain 
data well with relatively simple, tractable equations. Good fits to experimental data can, and 
certainly have, been achieved in the literature. However, these models do not provide much 
information on how a tissue’s microstructure affects its behaviour on the macroscale, because 
they do not, on the whole, contain physically relevant parameters. The second category of 
soft tissue models is structural modelling. In this approach, we seek to directly incorporate 
properties of the tissue’s constituents in the SEF when describing the stress-strain behaviour 
that is observed. However, accounting for the physics and biology of a soft tissue in the 
SEF increases its complexity, potentially limiting its viability to study physical mechanics. 
In reality, many models incorporate features of both the phenomenological and structural 
approaches to modelling, explicitly accounting for some microstructural phenomena, while 
indirectly modelling other phenomena in order to retain the tractability of the model.

The outline for the rest of this chapter is as follows. Firstly, we introduce some key constituents 
in biological soft tissues. In particular, we explain what each component is, how it is created, 
and what function it serves in biological tissues. Next, we describe non-linear elasticity, 
anisotropy, and viscoelasticity in more detail, focusing particularly on how the properties 
and arrangement of soft tissue constituents cause these macroscopic phenomena. Finally, we 
introduce the soft tissues that we study in the rest of this thesis –tendons and skin. We describe 
the microstructure of each tissue and how it is adapted in order to allow the tissue to perform 
the duties required of it for its normal function. Although ageing, damage, and growth are 
beyond the scope of this thesis, we also examine these phenomena in order to highlight how 
changes in the microstructure affect the behaviour of a tissue on the macroscale.

1.1 Soft tissue biology

Although the term soft tissues comprises many distinct biological materials, there are certain 
constituents that are common to the tissues. These tissues contain cells that help regulate 
bodily functions and synthesise the building blocks from which other constituents are made, 
and we shall discuss them in more detail later when we introduce the soft tissues that we aim 
to analyse in this thesis. However, we focus on the extracellular materials of the tissue for 
the moment. In terms of a soft tissue’s ability to resist a deformation, the most important 
extracellular materials are fibrils of the stiff protein collagen. In the interfibrillar spaces in 
the tissue, there is also a non-collagenous matrix (NCM) that contains fibres of the more 
compliant protein elastin and a ground substance whose components include proteoglycans. 
We now examine these constituents in more detail.

1.1.1 Collagen

In humans, the collagens are a family of 28 proteins that contain three polypeptide chains, 
which, for sections of each chain, contain the repeating Glycine-X-Y amino acid sequence, 
where X and Y are any two amino acids, and are wound into a right-handed triple helix with 
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300 nm65-67 nm

Figure 1.1. A staggered array of collagen molecules, approximately 300 nm in length. The 65-67 nm-long gap 
between adjacent molecules in a layer is called the d-period. The staggered array allows collagen molecules to 
fuse with molecules in adjacent layers of the array, conferring strength on collagen. Figure adapted from Gelse 

et al. [11]

glycine residues present in the centre of the helix and residues X and Y exposed on its surface 
[7]. An amino acid is an organic molecule that contains both an amino (−NH2) and an acidic 
carboxyl (−COOH) group. The basic unit of collagen is the collagen molecule, also known as 
a tropocollagen molecule, approximately 300 nm in length [8]. Non-helical telopeptides, also 
known as the N- and C-termini, are situated at both ends of a tropocollagen molecule. The 
telopeptides are important in the formation of supramolecular collagenous structures because 
cross-links are formed between neighbouring molecules at the telopeptides [9]. To facilitate 
the formation of cross-links, collagen molecules aggregate in a staggered array [10], Figure 
1.1, ensuring telopeptides in different layers of the array are closer to one another than if the 
array was not staggered.

Within the family of collagens in the human body, there are distinct subsets of collagen types 
that aggregate to form different suprastructures. For the purposes of this thesis, we concen-
trate on the collagen types that aggregate to form subunits known as fibrils, as these collagen 
types are the most abundant in the biological soft tissues that we study in this thesis. Col-
lagen’s primary importance to soft tissues is the strength and stiffness it provides to them. 
Collagen possesses a high Young’s modulus that is usually stated as being approximately 
equal to 1 GPa, [12], although values of this property stated in the literature have ranged 
from 32 MPa [13] to 16 GPa [14].

Fibrillar-forming collagen types include types I, II, III, V, and XI [15]. Collagen type I is 
found in many fibrous soft tissues, where it forms the majority of collagen content and where 
it confers mechanical strength on the soft tissues. In contrast, other fibril-forming collagen 
types are found in a more restricted set of soft tissues, and they are less numerous than colla-
gen type I. For example, type II collagen is found in cartilage, and type III collagen is found in 
more elastic soft tissues such as blood vessels and embryonic skin [16]. In addition to fibrillar-
forming collagen types, there are a group of collagen types known as Fibril-associated col-
lagen with interrupted triple helices (FACIT) collagens [17]. FACIT collagen types include 
types IX, XII, and XIV amongst others. Type XII and XIV collagen, for example, play a role 
in fibrillogenesis, regulating the properties of the collagen fibrils [17], [18].

12



Not all types of collagen form fibrils, or help in the formation of fibrils. Collagen type IV, 
for example, is mainly present in basement membranes [15]: specialised structures found at 
tissue boundaries. These structures underlie epithelial, endothelial, fat, muscle, and nerve 
cells. Collagen type VI, on the other hand, is found in tissues, where it has been postulated 
to help in maintaining tissue integrity [16]. Collagen types that do not form fibrils possess 
further differences compared to ones that do. Collagen type IV does not exist in a precursor 
form, that is, a molecule, with telopeptides involved in formation. Non-fibrillar-forming col-
lagens are also different lengths compared to fibrillar-forming collagens: collagen type IV is 
generally longer than fibril-forming collagens; collagen type VII is the longest collagen type; 
but collagen type VI is shorter than fibrillar-forming collagens [16].

Other differences between collagen types are present too. Type XXIV and XXVII are fibrillar-
forming collagens that possess shorter triple-helical regions than collagen type I, II, or III. Fur-
thermore, the length of the ends of the collagen molecule and the composition of the molecule 
outside its triple-helical region are both different between collagen types. Finally, the three 
chains that constitute the triple helix of collagen can be the same, producing homotrimeric 
collagen molecules, or one chain, at least, can be different, creating a heterotrimeric collagen 
molecule. Some collagen types consist of homotrimeric molecules, while others consist of 
heterotrimeric molecules [15]. Through these numerous areas of difference, we obtain many 
different collagen types.

Collagen fibrils in a given soft tissue do not possess a uniform diameter. Instead, soft tis-
sues contain a varied distribution of fibrils [12], with fibrils of a certain diameter possessing 
unique properties compared to differently sized fibrils. This distribution of collagen fibrils 
in a soft tissue enables soft tissues to perform all the complex macroscopic mechanical roles 
required of them. Larger, wider collagen fibrils possess a higher ultimate tensile strength than 
smaller, thinner fibrils [19]. However, multiple thin fibrils will have a larger surface area than 
a larger collagen fibril of equivalent volume and form more cross-links. A soft tissue can fail 
either due to the ultimate tensile strength of the constituents being reached or due to fibrils 
sliding over one another, which causes constituents to disaggregate [12]. Possessing fibrils 
of different diameters protects a soft tissue against failure through either of these processes.

Similar to the benefits of soft tissues containing fibrils of different diameters, there are benefits 
to collagen being distributed into a plethora of smaller subunits. In addition to the aforemen-
tioned benefits of collagen fibrils cross-linking with one another, cracks cannot propagate 
through the tissue as far when collagen is distributed into subunits as opposed to through 
a single homogeneous structure [12]. Furthermore, the existence of collagenous subunits 
allows for more flexibility in the tissue.

1.1.2 Elastin

Elastin is another protein found in soft tissues and is a significant component of the elastic 
fibres that provide soft tissues with elasticity. In the elastic fibres, elastin is situated in the 
core of the fibre and is surrounded by microfibrils of other glycoproteins such as fibrillin 
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and fibulins. As with collagen, elastin is first secreted as molecules of tropoelastin, which 
include hydrophobic domains that contain valine, glycine, and proline, and hydrophilic do-
mains containing lysine [20]. In the soft tissues, these tropoelastin molecules aggregate with 
one another to form the elastin fibrils that are found in elastic fibres.

The most obvious function of the elastic fibres in soft tissues is to provide recoil and elasticity 
to the tissue. This is vital because soft tissues are deformed continually and must be able to 
withstand all of these numerous strains. In aged tissue, where elastic fibres degrade and are 
not sufficiently replaced, the tissue is stiffer and less adept at recovering from deformations. 
Elastic fibres also act as signalling molecules, inhibiting the production of smooth muscle 
cells in the arterial wall, for instance, and regulating the activity of certain growth factors 
[20].

1.1.3 Proteoglycans

Proteoglycans are a type of glycoprotein that contain polysaccharide chains (chains of car-
bohydrates whose molecules consist of sugars bonded together) bonded to a protein at the 
material’s core [21]. Examples of proteoglycans found in soft tissues include versican, bigly-
can, and decorin. Proteoglycans are found between collagen subunits throughout multiple 
levels in the hierarchy of collagenous structures found in soft tissues. While proteoglycans 
may not be a significant constituent of soft tissues, they constitute just 1% by dry weight of 
tendons, for example, they have a significant impact on tissue behaviour [22]. Proteoglycans 
link one collagen fibril to another. Another function of proteoglycans is in fibrillogenesis, in 
which collagen molecules synthesised by fibroblasts are aligned and ordered correctly as the 
molecules mature and aggregate into fibrils. Different proteoglycans play an important role 
in the earlier and later stages of fibrillogenesis: biglycan and decorin in the early phases of 
fibrillogenesis, and decorin and fibromodulin during the later phases [21]. During fibrilloge-
nesis, these proteoglycans ensure that collagen and elastic fibrils possess a consistent shape 
and a range of diameters that ensure soft tissues behave normally [22].

1.2 Macroscopic soft tissue phenomena

We have introduced the core components of soft tissues. Now, we explain how these materials, 
their individual properties and their distribution in the tissue, in particular, are a key factor in 
the macroscopic stress-strain behaviour that we observe in experimental testing.

1.2.1 Anisotropy

If the same stretch is applied to a soft tissue in two distinct directions, the tissue will, gen-
erally, be more compliant in one direction. This directional dependence is caused by the 
alignment of collagen fibrils in soft tissues. Collagen fibrils are key to anisotropy because 
they are significantly stiffer than any component in the NCM. The orientation of collagen 
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fibrils, thus, has a significant impact on both the degree of anisotropy exhibited by the tis-
sue and both the maximum and minimum stiffness exhibited by a sample across all possible 
directions that it can be stretched in. When fibrils are predominantly aligned in parallel to 
one another, the soft tissue is stiff and strong in the same direction as the fibrils are oriented 
in, but at the cost of being compliant and weak in other directions. Conversely, fibrils in a 
soft tissue can be oriented in a mesh with fibrils oriented in many directions and fewer fibrils 
oriented along the modal direction, or directions. Compared to tissues with highly aligned 
collagen fibrils, tissues that possess a mesh of fibrils are more compliant and weaker when 
the deformation coincides with the modal alignment of the fibrils, but they are stronger and 
stiffer when stretched in other directions. For a particular tissue, the distribution of fibril ori-
entations, and hence the degree of anisotropy in the tissue, will be dependent on the profile 
of loading the tissue is subjected to under regular physiological conditions.

1.2.2 Elasticity theory for viscoelastic soft tissues

Collagenous soft tissues are viscous materials. They exhibit creep, the deformation of a ma-
terial under a constant load [4]; stress relaxation, a reduction in the stress experienced by a 
material subjected to a constant deformation [5]; and hysteresis, a change in the mechanical 
behaviour of a material between the loading and unloading phases of a deformation cycle, as 
energy is dissipated in the material during the cycle [6]. For example, between 15-20% of 
the total strain energy input is lost in each cycle of a load when an artery is deformed [23]. 
How the microstructure exactly induces viscoelasticity is unknown. Potential causes include 
the dissipation of energy due to the sliding of collagen fibrils over one another during defor-
mations [24], and molecular relaxations in both collagen and the NCM [25]. As soft tissues 
are viscous materials, we can only apply elasticity theory, including hyperelastic SEFs, to 
study the stress-strain behaviour of the tissues under certain conditions. Consequently, be-
fore experiments are performed, soft tissues are subjected to preconditioning, Figure 1.2. In 
preconditioning, a cyclic load is applied to a soft tissue until the stress-strain behaviour be-
tween adjacent cycles of the load is consistent. At this point, the soft tissue can be treated as 
pseudoelastic [26]. That is, the soft tissue is assumed to obey one elastic loading path and 
another elastic path during unloading. Viscous effects are present, but the material is consid-
ered as elastic along either path. Therefore, if we restrict ourselves to one loading path, for 
example, we can model the soft tissue using a hyperelastic SEF. Furthermore, for quasi-static 
loading, the loading and unloading paths are approximately the same.

At large strains, the yield stresses of microstructural components are reached, resulting in 
plastic deformation for both collagenous structures in the soft tissue and the NCM. As the 
strain acting on the tissue is increased still further, the tissue fails and is unable to resist the 
deformation because its components, which resist the deformation, break. However, damage 
to the structural components of the tissue and the subsequent impact on its mechanical be-
haviour are beyond the scope of this thesis. Similarly to plastic deformation, tissue failure is 
beyond the scope of this project.
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Figure 1.2. An example of the behaviour of a soft tissue when it is subjected to preconditioning. The tissue is 
viscoelastic, even once it is preconditioned, but we can treat it as pseudoelastic along one loading path once it 

is preconditioned.

1.2.3 Non-linear elasticity and collagen crimp

When subjected to mechanical testing, fibrous soft tissues exhibit a particular form of non-
linear stress-strain behaviour, Figure 1.3. At small strains, soft tissues are compliant and 
behave like linearly elastic materials. As the stretch is increased, the stress-strain behaviour 
becomes non-linear. As the stretch is increased still further, however, the tissue returns to 
exhibiting linear stress-strain behaviour, but is much stiffer than it was at small strains. To 
explain this pattern, we assume that collagen fibrils are initially crimped [27], i.e. wavy, 
and subsequently straighten as the tissue is stretched, and that collagen fibrils are slack when 
they are crimped. In tendons, bundles of collagen fibrils have been observed by imaging 
techniques such as microscopy to be crimped. Furthermore, the straightening of fibrils in 
tendons during the initial stretching phase has also been observed. Collagen crimp, and the 
subsequent straightening of the fibrils as the tissue is deformed, has been observed in skin 
[28], too.

In order to capture the initial slackness and eventual tautening of collagen fibrils, some con-
stitutive models have employed a tension-compression switch that assumes fibrils become 
taut and mechanically active only after a critical stretch has been applied to the soft tissue. 
By assuming collagen fibrils only tauten once they become straight, models can assume that 
an individual collagen fibril is linearly elastic, that is, it obeys Hooke’s law, while still captur-
ing the non-linearity of a tissue’s stress-strain response. One example where the non-linear 
stress-strain of soft tissues was captured by the gradual recruitment of linearly elastic colla-
gen fibrils is the Sequential Straightening and Loading (SSL) model developed by Kastelic 
et al. [29]. It is also common in the literature to model the NCM as a neo-Hookean material. 
Therefore, according to models with tension-compression switches for collagen fibrils, a soft 
tissue is linearly elastic at small strains, when no collagen fibrils are taut, and larger strains, 
when every collagen fibril has tautened.
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Figure 1.3. A typical stress-strain (𝜎 and 𝜆, respectively) curve. Region I: this is the toe region where only the 
compliant components are loaded; the collagen fibrils are crimped and slack. Region II: the non-linear, heel 

region, where gradually the stiff collagen fibrils straighten and become taut. Region III: all the collagen fibrils 
are taut; the soft tissue is stiff and linearly elastic. If stretched too far, soft tissues will be damaged and 

eventually fail.

1.3 Soft Tissues

We have introduced the important constituents of soft tissues and the complex macroscopic 
phenomena that they exhibit when loaded. Now we describe the soft tissues that we study, 
namely tendons and skin. In particular, we explain how the microstructural materials are 
oriented and distributed in the soft tissue, and how they affect the material mechanically to 
enable healthy functioning of the tissue.

1.3.1 Tendons (and ligaments)

Tendons are key to human movement because they connect muscle to bone, transmitting 
forces and withstanding tension during muscle contraction. (Ligaments, which connect one 
bone to another, share a similar structure to tendon and are also important to movement.) 
Tendons are not just important in the transmission of forces, but help with joint stabilisation, 
shock absorption, and, because of the presence of mechanoreceptors, provide sensory feed-
back to the muscle [30]. Tendons in the human body are not identical in shape. Instead, they 
are adapted to their position in the body and the loads that are exerted upon them. Tendons 
connected to muscles like the quadriceps that create powerful forces tend to be short and 
thick. Less powerful forces, such as those created by finger muscles, are transmitted by long, 
thin tendons that allow for more delicate movement [31]. Water comprises approximately 
55-70% of the total weight of a tendon, but collagen comprises 60-85% of the dry weight of 
tendons [21]. Elastic fibres, by contrast, constitute approximately 1-10% of the dry weight of 
tendon and are localised to the interfascicular matrix, that is, the matrix located in the regions 
of the tendon that lie between fascicles.

Although cells are not a major constituent of tendons, there are certain types of cells that 
perform important roles in maintaining normal, healthy function. The majority of cells in 
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the tendon are fibroblasts, also known as tenoblasts, that synthesise collagen molecules and 
the building blocks of other components of the NCM [31]. The number of fibroblasts de-
creases with age, reducing the number of new collagen molecules and, thus, fibrils that are 
synthesised. Other cells in the tissue include epithelial cells and chondrocytes, which secrete 
constituents of cartilage. Cells in tendons interact with collagen and the NCM, binding these 
materials using cell surface receptors such as integrins. The cell composition of a tendon 
is influenced by the mechanical behaviour of the tissue [30]. For example, physical activity 
such as exercise, and the subsequent resting periods, has been shown to influence the compo-
sition of soft tissues, with increased activity leading to enhanced rates of collagen synthesis 
in the short- and long-term, and of collagen degradation in the short-term only, with damaged 
fibrils being replaced.

Collagen Type I is the dominant collagen type in tendons, making up approximately 90% of 
the collagen content of tendons. The vast majority of the remainder of the collagenous content 
in tendons is taken up by collagen Type III, which is important for fibrillogenesis as it helps 
regulate the diameter of Type I fibrils [21]. Traces of collagen type V and the non-fibrillar-
forming collagen types XII and XIV are also found in the tendon. These trace collagen types 
possess important roles: type V collagen is found in the centre of Type I fibrils, and it helps to 
provide a template for fibrillogenesis, while collagen Types XII and XIV provide a molecular 
bridge between collagen Type I and the other constituents of the extracellular matrix [21].

Collagen has a multi-level hierarchical structure in tendons, although the exact suprafibril-
lar hierarchy can be different between papers. For example, some studies have posited an 
intermediate structure, the sub-fascicle, between collagen fibrils and the fascicle, [32], [33]. 
However, a basic structure of the hierarchy of collagenous structures in tendons starts with 
molecules aggregating to form fibrils, which possess diameters ranging from 10 to 500 nm 
and themselves aggregate to form fascicles that are typically between 150 and 500 𝜇m in di-
ameter [34], Figure 1.4. Fascicles aggregate to form tendon fibres that run almost parallel to 
the long axis of the tendon [34]. Tendons, themselves, differ in diameter. For example, one 
study found the mean hamstring tendon diameter to be 7.8±0.7 mm for women and 7.9±0.6
mm for men [35]. On the other hand, patellar tendon diameters in active volleyball players 
ranged from 3.4 ± 0.4 mm to 6.5 ± 1.8 mm in men and from 3.2 ± 0.4 to 4.6 ± 0.7 mm in 
women [36]. Tendon thickening was found to be a potential indicator of tendon pathology as 
well [36].

Fibrils within a fascicle are also largely aligned parallel to one another. This ensures that the 
tendons are stiff and possess a large ultimate tensile strength when stretched in the direction 
of the fibrils. This structure best enables tendons to withstand the deformations that they are 
subjected to physiologically and to retain their structural integrity.

Another mechanism that protects the integrity of tendons, by reducing the chance of fibrils be-
coming damaged, is that the strain acting on collagen fibrils is less than the strain experienced 
by the tendons as a whole [37]. Fibril crimp, and the subsequent straightening of the fibrils 
in deformed tendons, is one mechanism that contributes to this. An additional mechanism 
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Figure 1.4. An example of the substructure of tendons, on the cross-section of a tendon fibre, with collagen 
fibrils aggregated into highly regulated fascicles, which themselves aggregate to form tendon fibres. A typical 

range of diameters for the fibrils and fascicles are listed on the diagram. The crimped black lines on the 
fascicle signify collagen fibrils. This diagram is concerned with how collagen fibrils and tendon fascicles are 
situated in tendons, and so that is why we only consider the cross-section of a tendon fibre. In reality, tendon 

fibres are three-dimensional materials that themselves aggregate to form a tendon.

accounting for fibrils extending less than tendons is fibril sliding [37]. Sliding proteoglycan 
links between adjacent collagen fibrils are broken when a load is applied to the tissue.

Similar to the effects of physical activity, damage and healing affect the composition, and thus 
the mechanics, of tendons, with the number of fibroblasts and growth factors in an affected 
tendon increasing during the recovery phase. Consequently, more collagen is synthesised in 
the recovery phase while the tendon attempts to heal as fully as possible [38]. As the recovery 
continues, the collagen present in the tendon changes further, with new cross-links formed 
between fibrils but the overall collagen content decreasing. Imperfect recovery from injury 
can have a profound impact on the tissue, as excessive load applied to an injured tendon can 
cause further damage to tissue constituents [30]. On the other hand, immobilisation of the 
tendon also has negative consequences, mechanically, as collagen fibrils become thinner and 
the tendon becomes less stiff without mechanical stimuli. Ageing is another natural process 
that has a significant impact on the collagen content of tendons. Ageing is associated with 
a slower fibril turnover rate, changes in the pattern of collagen fibril crimp, a thickening of 
collagen fibres, a more disorganised structure of collagen compared to the closely aligned 
collagen fibrils of younger tendons, and an increased number of cross-links between collagen 
molecules [30]. These age-related changes contribute to older tendons becoming stiffer and 
less flexible than younger tendons, reducing tendon performance.
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Figure 1.5. The structure of skin, comprising the epidermis, the dermis, and the hypodermis. The collagen 
content of the skin largely resides in the dermis, which is commonly split into two layers: the papillary dermis 

lies on the boundary of the epidermis and the reticular dermis constitutes the rest of the dermis.

1.3.2 Skin

Skin is the largest organ of the human body and, as such, plays a pivotal role in the integu-
mentary system, protecting the majority of the body from damage or infection when we come 
into contact with external objects like bacteria or items that we can touch. This protective bar-
rier for the body extends to providing mechanical resistance when a load is placed upon the 
skin. This prevents damage to internal blood vessels, tendons, ligaments, muscles, and or-
gans. The structure of skin at a particular point is dependent on the area where it is examined 
[39]. The epidermis, dermis, and hypodermis, the three layers of skin, Figure 1.5, all differ 
in size throughout the body. The epidermis is generally thin, between 70—150 𝜇m thick, 
but thickens considerably to around 600 𝜇m in the palms of hands and the soles of feet [40]. 
The dermis is thicker than the epidermis. The size of the dermis also varies throughout the 
body, ranging in thickness from around 2 mm to 4 mm, in the back, for example [40]. Further 
variation arises as each person’s skin is different. Even ignoring the microstructural varia-
tions of, for example, the number of cross-links in one person’s skin compared to another’s, 
macroscopic variations have been observed. For example, studies by Lee and Hwang [41], 
and Girardeau et al. [42] observed changes between different ethnic groups in the thickness 
of the epidermis compared to the dermis, and the overall thickness of the epidermis and the 
upper part of the dermis.

The first layer of skin that we discuss is the epidermis, which is the uppermost layer of the 
skin and, as mentioned previously, is generally significantly thinner than the dermis. In terms 
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of its microstructure, the epidermis largely consists of cells, the vast majority of which are 
keratinocytes, which produce keratin. The keratins are a family of 30 proteins that constitute 
the majority of the protein mass of the epidermis [43]. The epidermis itself consists of mul-
tiple layers: the basal layer is the stratum germinatum, and the other layers, going outwards, 
are the stratum malpighian, the stratum granulosum, and the stratum corneum [44]. For the 
parts of the body that contain a much thicker epidermis, the epidermis contains an extra layer 
called the stratum lucidum. Cells progress from the stratum germinatum upwards through the 
other layers, creating filaments of keratin to provide strength in the stratum corneum while 
moving through the layers [44]. Blood vessels located at the bottom of the epidermis provide 
nutrients to the epidermis. Keratinocytes can divide in the stratum germinatum, but they lose 
this function and others as they move upwards through the various layers of the epidermis. By 
the time keratinocytes reach the stratum corneum, they have become anucleated, dead cells. 
Other cells in the epidermis include melanocytes, which produce melanin that provides skin 
with both its colour and protection from UV radiation, Langerhans cells, which are immuno-
logical cells that form a body’s first protective barrier against infection from antigens [45], 
and Merkel cells, which play a role in the reception of touch [46]. The collagen content of 
the epidermis is small.

Beneath the epidermis is the dermis. The dermis contains the elastic fibres that provide skin 
with elasticity, hair follicles, sweat glands, sebaceous glands, which coat hair follicles with 
sebum, blood vessels, and collagen fibres, which inhabit a large volume fraction of the dermis 
[44]. Due to the significant, stiff collagen content of the dermis and the size of the dermis, 
it is the most mechanically important layer of the skin. The dermis consists of two layers: 
the superficial papillary dermis is located beneath the dermal-epidermal junction, and the 
reticular dermis is located beneath the papillary dermis.

Collagen fibrils in the dermis, approximately 20-40 nm in diameter in the papillary dermis 
and approximately 60-100 nm in the reticular dermis, aggregate into collagen fibres that are 
roughly 0.3-3 𝜇m in diameter in the papillary dermis and 10-40 𝜇m in the reticular dermis 
[47]. Collagen type III accounts for approximately 15% of the collagen content in the dermis 
and much of it is found in the papillary dermis, whereas the thicker collagen fibres of the 
dermis largely consist of Type I collagen [47], [48]. Due to the comparative largeness of the 
reticular dermis and the thicker fibres located within it, collagen Type I is the most abundant 
collagen type in skin, accounting for approximately 75% of the total collagen content [49]. 
Nevertheless, the small amounts of other collagen types are important to the proper function-
ing of the skin: for example, collagen type IV helps regulate fibre diameter for collagen types 
I and III [50].

In contrast to the aligned collagenous structures of tendons, bundles of collagen fibres in skin 
are distributed in a mesh with a significant number of out-of-plane fibres that resist a variety 
of deformations, including shear deformations. This mesh of collagen fibres occurs in the 
reticular dermis [51], and this mesh is needed because skin is subjected to deformations that 
need to be resisted from a wide range of directions. Within this mesh, however, there is still 
a preferential orientation of the collagen fibrils, which lies parallel to the skin’s surface [50].
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Beneath the epidermis and dermis is a layer of subcutaneous tissue that is sometimes treated 
as the third layer of skin, when it is called the hypodermis. Uses of the hypodermis include 
connecting the skin to the underlying fascia, providing support in wound healing, regulating 
hair follicle development [52], cushioning the internal parts of the body after it has been 
subjected to an impact, and providing insulation to the body in colder temperatures [53]. To 
perform these duties, the hypodermis largely consists of fat tissue, with approximately 80% 
of body fat in healthy adults stored in it [53]. The collagen content in the dermis decreases 
close to the dermal-hypodermal border, making this region more compliant than the other 
regions of the dermis [54]. Due to the lack of collagen situated in the hypodermis, it is not 
considered to significantly contribute to the stress-strain response of skin.

Collagen degeneration in skin tissue has significant consequences for the skin macroscopi-
cally. Likewise, damage to the skin impacts both the microstructure and mechanics of the 
tissue. Deficiencies in collagen synthesis, degradation, and formation contributes to condi-
tions such as scleroderma [55] and Ehlers-Danlos syndrome [56], which are associated with 
thick, hardened skin and stretchy, fragile skin, respectively. Smoking damages skin and leads 
to significant changes within it. For example, smoking affects the balance between the biosyn-
thesis and degradation of dermal fibrous proteins such as elastin and collagen. Additionally, 
cigarette smoke impacts skin wrinkling and accelerates ageing of the skin [57]. Damage 
caused by photo-ageing from ultraviolet radiation also impacts the microstructure of the skin 
and, thus, impacts its macroscopic behaviour. Scarred sections of skin possess a different 
structure to normal skin: collagen fibres in scarred skin are more aligned in a particular di-
rection than in healthy skin [58]. Furthermore, wound healing is affected by the tension acting 
on an area of damaged skin and the direction, and shape, of any cuts to skin. Worse healing 
results have been observed for cuts that lie perpendicular to Langer lines compared to cuts 
parallel to those lines [58], [59]. Langer lines are natural skin tension lines that are named af-
ter the nineteenth-century scientist Karl Langer, and the lines are considered to correspond to 
the lines of greatest tension in the skin [28]. Langer determined these lines of greatest tension 
in skin by making circular incisions in the skin of cadavers that eventually deformed as the 
skin local to each incision possessed greater tension in some directions than others [60], [61]. 
Langer lines constitute just one way of describing the lines of greatest tension in skin. Other 
sets of tension lines, such as relaxed skin tension lines, provide alternative ways to describe 
the lines of greatest tension in skin [62]. Experiments on skin indicate that skin tension lines 
coincide with directions in which collagen is preferentially oriented in, [28], [62].

Intrinsic factors that occur because of ageing also impact the degradation of skin function, 
particularly once a person is over the age of 50. Collagen volume fraction is significantly 
decreased in aged skin, falling from 69% to 46% in the papillary dermis and 81% to 58% in the 
reticular dermis [63]. The effects of ageing are not consistent: the reticular dermis increases 
in size until the age of 50 and decreases after that, and the thickness of collagen bundles 
increases until the age of 45 and decreases after that. Cross-linking of collagen fibrils plays an 
important role in the age-induced changes in the mechanical behaviour of skin. Cross-links 
can be harder to break down than the collagen fibrils themselves, so cross-linked collagen 
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fragments accumulate over time and have been observed more commonly in older individuals 
than younger ones [63]. These collagen cross-linked fragments also contribute to the collagen 
fibril network becoming more disorganised over time.

1.4 Remainder of the thesis

The outline for the remainder of the thesis is as follows. In Chapter 2, we introduce the 
mathematical preliminaries needed to work in the field of soft tissue modelling. We start by 
introducing a tensor, a linear transformation of a particular mathematical object, a vector, for 
example, into another of the same type. Tensors are necessary to describe the deformation 
of soft tissues. Next, we introduce the fields of continuum mechanics and hyperelasticity 
that are used to construct an SEF that quantifies the deformation of a soft tissue. Before 
discussing SEFs, however, we derive the equations governing the conservation and balance 
laws that all deformed materials must obey. We use this set of governing equations to explain 
why we must derive a constitutive equation in order to fully describe the mathematics of 
a deformed biological material. We then derive the constitutive equation in terms of the 
SEF for materials with varying degrees of symmetry. Next, we introduce Bayesian statistics 
and explain how Bayesian statistical techniques can enhance our understanding of soft tissue 
behaviour and identify credible values of structural model parameters. Finally, we introduce 
sampling techniques including Markov chain Monte Carlo (MCMC) that we can use to sample 
from, and estimate the properties of, probability distributions that cannot be sampled directly.

In Chapter 3, we conduct a literature review. We start by discussing key concepts that re-
searchers must take into account when modelling a soft tissue. We then examine existing phe-
nomenological models of soft tissue deformation, analysing their strengths and weaknesses 
and determining how these models can be improved upon. Then we examine microstruc-
tural models of tendons, arteries, and skin, identifying both the microstructural properties 
that these models explicitly account for and gaps in these existing models that future models 
can build upon. Next, we review how the dispersion of collagen fibril orientations has been 
accounted for, both phenomenologically and microstructurally, in the literature. Finally, we 
describe how Bayesian statistical techniques such as MCMC have successfully been imple-
mented in a variety of scientific fields to quantify the uncertainty in model parameters.

In Chapter 4, we construct a new microstructural SEF, valid for finite elasticity, that is tractable 
because of a set of physically reasonable assumptions that we make about the properties of 
the microstructural components. In order to test the validity of the new model, we first use 
non-linear optimisation to fit the model to high- and low-resolution data taken from tendons 
in order to find values for the model’s parameters that produce a local best fit to data. We 
compare the fits obtained using this model of soft tissue deformation to those of a model that 
is widely used in the literature. Then, we create a random walk Metropolis (RWM) MCMC 
algorithm to enable us to sample hundreds of thousands of parameter vectors and calculate 
uncertainty in the values of the model parameters by approximating the marginal posterior 
distribution for each of the parameters. We fit the newly constructed model of soft tissue 
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behaviour first to a noisy, synthetic data set to examine whether the algorithm is working and 
then to the high-resolution experimental tendon data.

In Chapter 5, we fit the microstructural model of soft tissue behaviour to skin. We again fit the 
model to experimental stress-strain data using, first, non-linear optimisation to find parame-
ter values that produce a local best fit to data before quantifying uncertainty in the model’s 
parameters and approximating marginal posterior distributions using the RWM algorithm.

Finally, in Chapter 6, we summarise the work done in this thesis. We first analyse whether 
the aims detailed in this introductory chapter have been met by the work done in this thesis. 
We then identify and briefly describe some logical extensions to the work completed in this 
thesis that could enable our work to be applied to study more-general deformations than are 
considered in this thesis.
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Chapter 2

Mathematical Preliminaries

2.1 Introduction to continuum mechanics

To study the stress-strain behaviour of complex, anisotropic soft tissues, we need to use a 
mathematical framework to construct and analyse constitutive models. The framework we 
use is continuum mechanics. In continuum mechanics, we do not model individual particles 
within a body, but study the bulk properties associated with the body [64]. We shall start by 
introducing tensors, linear operators that transform a particular mathematical object, a scalar 
or vector, for example, into another mathematical object of the same type. Tensors are key 
to the study of finite soft tissue deformation and the bulk properties that we want to study. 
We shall, then, define the important bulk properties such as mass, body force, torque, stress, 
and strain that all deformed materials possess. After defining the bulk properties needed to 
describe soft tissues, we will then examine important measures of deformation, such as the 
deformation-gradient, and the left and right Cauchy-Green deformation tensors.

As well as defining bulk properties, we must derive a system of equations that fully relates 
these properties to one another. These equations belong to two families: conservation and 
balance laws, and constitutive laws. Conservation and balance laws arise from the preserva-
tion of certain parameters, including the net flux of the quantity into or out of the continuum. 
They apply to any continuum. However, conservation laws do not provide us with enough in-
formation to fully describe the physics of a deformed body. In order to obtain this additional, 
necessary information, we need to derive material-specific, constitutive laws that relate the 
stress and strain to each other. The constitutive equations are not universal: their form de-
pends upon both the structure and symmetry properties of the material being studied. In this 
chapter, we will derive the constitutive equation first for isotropic materials and, then, with the 
structure of biological soft tissues in mind, transversely isotropic and orthotropic materials.

Every physical problem that we encounter contains some degree of uncertainty. For exam-
ple, whenever experimental measurements are taken, there will be errors associated with the 
measurements collected. This is inevitable: experimental equipment cannot calculate quan-
tities exactly. It is key, therefore, that we attempt to account for uncertainty when fitting a 
constitutive model to experimental stress-strain data. One way to account for uncertainty in 
a problem is with Bayesian statistics, which seeks to incorporate both our prior knowledge of 
the values of model parameters and the likelihood of a given parameter vector producing the 
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observed experimental data to calculate a posterior probability distribution. We start, there-
fore, by introducing Bayesian statistical methods, and the core concepts of prior and posterior 
probability distributions and the likelihood function. We then introduce Markov chain Monte 
Carlo (MCMC) methods, which are a widely used set of methods for sampling and accurately 
estimating posterior distributions that are not known exactly. Finally, we discuss some alter-
native methods to MCMC for sampling from and estimating complex posteriors and analyse 
their strengths and weaknesses compared to MCMC.

2.2 Tensors

Physical laws are the same in any coordinate system. This is important, otherwise the laws of 
physics would change based on where in the universe an object is being observed. The way 
that we describe these invariant physical laws, however, is dependent on the coordinate system 
we choose to describe them in. A tensor is a linear operator that transforms one mathematical 
object into another of the same form. The object that is transformed is dependent on the order 
of the tensor. For example, a second-order tensor, that is, a matrix, transforms one vector, u, 
into a different vector [64], v. Representing the tensor as A, in equation form we have

v = Au. (2.1)

As with physical laws, A itself is independent of the coordinate system that we use, but the 
components of A are dependent on the coordinate system. For example, in terms of two three-
dimensional coordinate systems, which possess the orthonormal basis vectors {e𝑖, e𝑗, e𝑘} and 
{e𝑝, e𝑞, e𝑟}, respectively, we can write A as

A = 𝐴𝑖𝑗e𝑖 ⊗ e𝑗 = 𝐴𝑝𝑞e𝑝 ⊗ e𝑞, (2.2)

where 𝐴𝑖𝑗 represents the value of the component on the 𝑖th row and 𝑗th column of the tensor, 
and 𝐴𝑖𝑗 ≠ 𝐴𝑝𝑞 in general. In order to transform one set of orthonormal basis vectors into 
another, we rotate the original basis vectors around the origin as follows:

A′ = QAQT, (2.3)

where Q is an orthogonal matrix. A key property of orthogonal matrices is that QQT = I. 
Let us consider the example of Cartesian coordinates and cylindrical polar coordinates. The 
Cartesian coordinate system is an orthonormal, three-dimensional coordinate system in which 
points are described by their position relative to the 𝑥-, 𝑦-, and 𝑧-axes. The cylindrical polar 
coordinate system consists of the 𝑟-, 𝜃-, and 𝑧-axes, where

𝑟 = √𝑥2 + 𝑦2 𝜃 = tan−1 ( 𝑦
𝑥

) 𝑧 = 𝑧. (2.4)
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The individual components of a tensor in cylindrical polar coordinates and Cartesian coordi-
nates obey the following relation [65]:

⎡
⎢⎢
⎣

𝐴𝑟𝑟 𝐴𝑟𝜃 𝐴𝑟𝑧

𝐴𝜃𝑟 𝐴𝜃𝜃 𝐴𝜃𝑧

𝐴𝑧𝑟 𝐴𝑧𝜃 𝐴𝑧𝑧

⎤
⎥⎥
⎦

=
⎡
⎢⎢
⎣

cos 𝜃 sin 𝜃 0
− sin 𝜃 cos 𝜃 0

0 0 1

⎤
⎥⎥
⎦

⎡
⎢⎢
⎣

𝐴𝑥𝑥 𝐴𝑥𝑦 𝐴𝑥𝑧

𝐴𝑦𝑥 𝐴𝑦𝑦 𝐴𝑦𝑧

𝐴𝑧𝑥 𝐴𝑧𝑦 𝐴𝑧𝑧

⎤
⎥⎥
⎦

×
⎡
⎢⎢
⎣

cos 𝜃 − sin 𝜃 0
sin 𝜃 cos 𝜃 0

0 0 1

⎤
⎥⎥
⎦

. (2.5)

2.3 Invariants of second-rank tensors

Ignoring relativistic effects, a material’s mechanical behaviour must be the same in all inertial 
frames of reference. A strain-energy function (SEF), a measure of the energy stored in a 
deformed material due to the deformation [66] that we will discuss in more detail later in this 
chapter, must, therefore, be invariant under a coordinate transformation. Consequently, the 
SEF is an invariant of the deformation and can be written as a function of other invariants of 
the strain. The eigenvalues of a matrix, that is, a second-order tensor, are invariants [65]. To 
prove this, let us assume that 𝜆𝑖 is the 𝑖th eigenvalue associated with the matrix A′ = QAQT. 
The corresponding eigenvector is n′

𝑖. By transformation rules for vectors n′
𝑖 = Qn, where we 

remove the subscript 𝑖 to indicate that the vector n may not necessarily be an eigenvector. By 
the definition of eigenvalues,

A′n′

(𝑖) = 𝜆(𝑖)n
′

(𝑖), (2.6)

where we introduce parentheses around the index 𝑖 to indicate that a summation does not 
occur. We can write (2.6) as

QAQTQn = 𝜆(𝑖)Qn, (2.7)

QAn = 𝜆(𝑖)Qn,

(2.8)

which implies,

QTQAn = 𝜆(𝑖)QTQ, (2.9)

An = 𝜆(𝑖)n. (2.10)
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By comparison of (2.10) with (2.6), 𝜆(𝑖) remains an eigenvalue after a coordinate transforma-
tion.

The eigenvalues of a matrix can be used to define other invariants of A. A common set of 
three invariants [67] are the three coefficients of the characteristic equation of A. To derive 
these invariants, we start with the equation

det(A − 𝜆𝑖I) = 0. (2.11)

Writing A in the form

⎛⎜⎜⎜
⎝

𝐴11 𝐴12 𝐴13

𝐴21 𝐴22 𝐴23

𝐴31 𝐴32 𝐴33

⎞⎟⎟⎟
⎠

, (2.12)

det(A − 𝜆𝑖I) becomes,

det(A − 𝜆𝑖I) = (𝐴11 − 𝜆𝑖)[(𝐴22 − 𝜆𝑖)(𝐴33 − 𝜆𝑖) − 𝐴32𝐴23]−

𝐴12[𝐴21(𝐴33 − 𝜆𝑖) − 𝐴31𝐴23]+

𝐴13[𝐴21𝐴32 − 𝐴31(𝐴22 − 𝜆𝑖)]. (2.13)

By (2.11) and (2.13)

−𝜆3
𝑖 + 𝐼1(A)𝜆2

𝑖 − 𝐼2(A)𝜆𝑖 + 𝐼3(A) = 0, (2.14)

where 𝐼1(A), 𝐼2(A), and 𝐼3(A) are the coefficients of the polynomial in 𝜆𝑖. The quantities 
𝐼1(A), 𝐼2(A), and 𝐼3(A) are all invariants of A too. In terms of A,

𝐼1(A) = trA, (2.15)

𝐼2(A) = 1
2

[(trA)2 − tr(A2)] , (2.16)

𝐼3(A) = detA. (2.17)

For an isotropic material, the value of the strain energy acting on the material is only de-
pendent on the deformation applied to the material. However, for a transversely isotropic 
material, the SEF is, additionally, a function of a preferred direction in the reference config-
uration, M. However, the mechanical behaviour is not dependent on rotations around this 
preferred direction M. Therefore, denoting the SEF by Ψ,

Ψ(C, M ⊗ a0) = Ψ(QCQT, QM ⊗ MQT), (2.18)
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where C is a measure of a deformation known as the right Cauchy-Green deformation tensor 
and will be introduced in more detail later in this chapter. The aforementioned three isotropic 
invariants still satisfy the constraint on C shown in (2.18), but we need a further two invariants 
to satisfy the constraint on M⊗M. We adopt the literature standard [68] and use the following 
two pseudoinvariants:

𝐼4(M, C) = M ⋅ Ca0, (2.19)

𝐼5(M, C) = M ⋅ C2M. (2.20)

The quantities 𝐼4 and 𝐼5 are pseudoinvariants because they do not just depend on C, but on 
the direction M instead. The pseudoinvariants are unchanged by rotations around M, but are 
changed by other rotations.

2.4 Deformation terminology

2.4.1 Mass, volume and density

The first bulk properties that we define are the mass, 𝑚, and volume, 𝑣, of a body Ω. Indi-
vidual objects can increase or decrease in mass, but we do not consider these phenomena in 
this thesis. Instead, we will assume that mass is conserved, that is, we have a closed system. 
Similarly, there are regimes within continuum mechanics where volume is conserved, incom-
pressibility, or not conserved, compressibility. We define the density, 𝜌(x, 𝑡), where x and 𝑡
denote position and time, respectively, to be the amount of mass per unit volume within the 
body. For a mass element 𝛿𝑚 situated within a volume element 𝛿𝑣, the mass-density field is 
defined as

𝜌(x, 𝑡) = lim
𝛿𝑉 →0

𝛿𝑚
𝛿𝑣

. (2.21)

Therefore, an expression for the mass is

𝑚 = ∭
Ω

𝜌(x, 𝑡)d𝑣. (2.22)

2.4.2 Position, velocity and acceleration

The rate of change of position, x, is given by

dx
d𝑡

= v(x, 𝑡), (2.23)

where v(x, 𝑡) is the velocity. Similarly, acceleration, a, is the material derivative of v(x, 𝑡).
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2.4.3 Force, traction and stress

We need to define the forces that act upon a continuum before we can study its kinematics. 
There are two types of forces we must consider: body forces, examples of which include 
gravity and the Coriolis force, which act on the whole of the continuum; and internal forces, 
which account for interactions between neighbouring elements of a deformed body [69].

For body forces, we introduce the body force per unit volume 𝜌b, where b is the body force 
per unit mass. For interior forces, we consider a plane cutting through the deformed body Ω
and passing through the point x within Ω [69]. The force, 𝛿f, acting on the area element 𝛿𝑠
at time 𝑡 at x with unit outward-facing normal of n is,

𝛿f = t(x, 𝑡, n)𝛿𝑠, (2.24)

where t(x, 𝑡, n) is the Cauchy traction vector transmitted through the area element 𝛿𝑠 at the 
point x [65]. Importantly, the traction vector’s only dependence on the surface 𝛿𝑠 is on the 
normal of 𝛿𝑠. This is known as Cauchy’s fundamental postulate [66]. Furthermore, Cauchy’s 
stress theorem states that the Cauchy traction vector depends linearly on the normal to the 
surface 𝛿𝑆. That is, there exists a tensor field, 𝝈 and known as the Cauchy stress tensor, at a 
point x at time 𝑡 such that

t(x, 𝑡, n) = 𝝈(x, 𝑡)n. (2.25)

To prove Cauchy’s stress theorem we can analyse the tractions that act on a tetrahedron that 
contains three faces which possess normals that coincide with the coordinate axes [65], in 
the negative direction, Figure 2.1. Using Cauchy’s law of motion, we also assume that there 
exists a body force and resultant force acting on the tetrahedron, also. Therefore,

−t1𝛿𝑠1 − t2𝛿𝑠2 − t3𝛿𝑠3 + t(𝑛)𝛿𝑠 + 𝜌b𝛿𝑣 = 𝜌f𝛿𝑣, (2.26)

where t𝑖 represents the traction acting on a face with a normal in the 𝑖th coordinate direction 
(the minus sign indicates that the normal to the face is in the direction of decreasing values of 
𝑖), t(𝑛) represents the traction on the fourth face of the tetrahedron, which has a unit outward-
facing normal in the direction n, and 𝑣 represents the volume of the body. We can rewrite
(2.26) as

t(𝑛)𝛿𝑠 = t1𝑛1𝛿𝑠 + t2𝑛2𝛿𝑠 + t3𝑛3𝛿𝑠 + 𝜌(f − b)𝛿𝑣
𝛿𝑠

. (2.27)

Imagine that the tetrahedron is infinitesimally small. For a tetrahedron with an edge length 
of 𝑎, the volume is proportional to the cube of 𝑎 and the surface area is proportional to the 
square of 𝑎. Therefore, when 𝑎 → 0, that is, when the tetrahedron becomes infinitesimally 
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Figure 2.1. A tetrahedron that can be used to prove Cauchy’s stress theorem. Adapted from Spencer [65].

small, (𝛿𝑣/𝛿𝑠) → 0. Therefore, (2.27) becomes

t(x, 𝑡, n) = t1𝑛1 + t2𝑛2 + t3𝑛3. (2.28)

In component form 
𝑡𝑖(x, 𝑡, n) = 𝑛𝑖𝜎𝑖𝑗e𝑗. (2.29)

From (2.25) and (2.28), we can see that t(x, 𝑡, n) = −t(x, 𝑡, −n).

When a force is applied to a material and the material is deformed, there are two important 
configurations to consider. The reference configuration describes the material before it is 
deformed, and the deformed configuration describes the material during the deformation. 
Because we consider multiple configurations, there are also multiple traction vectors and 
stress tensors to consider. The first Piola-Kirchhoff or nominal traction vector is a measure 
of the force per unit reference surface area that acts in the same direction as the Cauchy 
traction vector [69]. Similarly, the first Piola-Kirchhoff traction vector, T(X, 𝑡, N) can be 
written linearly in terms of the reference normal vector of the surface, Nref, in terms of the 
first Piola-Kirchhoff stress tensor, P(X, 𝑡). That is,

T(X, 𝑡, N) = P(X, 𝑡)Nref. (2.30)

The transpose of P(X, 𝑡) is often called the nominal stress tensor, N(X, 𝑡). For the remainder 
of the thesis, it is simply denoted as N.

31



2.4.4 Torque

In addition to linear forces, we need to consider their rotational analogues, torques. When a 
force, ̃F, acts on a particle with position vector r, the torque, 𝝉, about the origin is given by 
[70]

𝝉 = r × F̃. (2.31)

2.4.5 Linear and angular momentum

The linear momentum, p, of an object is the product of its mass and velocity

p = 𝑚v(x, 𝑡). (2.32)

The rotational analogue of linear momentum is angular momentum, which we denote as L. 
The angular momentum around a point z at the point x is given by the cross product of x − z
and 𝑚v(x, 𝑡). That is,

L = (x − z) × 𝑚v(x, 𝑡). (2.33)

2.4.6 Kinematics

When a force acts on an object it can cause an object to move, deform or both. By move, we 
mean that the force induces a rigid-body motion on the body, a motion where the shape of 
the object remains unchanged. Pushing a table or lifting a chair are examples of rigid-body 
motions. On the other hand, we define deformations as occurring when the displacement 
between any two volume elements within, or on the surface of, a body changes. As mentioned 
previously, the reference and deformed configurations describe an object before a deformation 
is applied and during the deformation, respectively.

Imagine that we have a body Ω0, Figure 2.2 with surface 𝜕𝐵 in the reference configuration, 
then we can describe the position of each point in the body by a position vector X. In the 
deformed configuration, Ω, however, we describe each point by the vector x(X, 𝑡). Unless 
otherwise specified, we adopt the convention to denote parameters associated with the refer-
ence configuration in upper-case, and parameters associated with the deformed configuration 
in lower-case.

Let us assume that in the reference configuration there are two points with position vectors 
X and X + dX, respectively, where |dX| ≪ 1. We can approximate an infinitesimal change 
of the position vector when the body is deformed by taking a Taylor series expansion of dx
around X. With this Taylor expansion, we can determine the displacement between the two 
points in the deformed configuration as
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X X + dX x
x + dx

Ω0

Ω

χ(X)

Figure 2.2. The reference and deformed bodies. The deformation mapping 𝜒(X) provides a one-to-one 
relation between the reference and deformed coordinates.

dx = x(X + dX) − x(X), (2.34)

≃ x(X) + ∇X[x(X)] ⋅ (X + dX − X) − x(X), (2.35)

≃ ∇X[x(X)] ⋅ dX. (2.36)

Because of this Taylor expansion, we introduce the deformation-gradient, F, which is given 
by

F = ∇Xx(X). (2.37)

In Cartesian coordinates, the gradient operator is ∇X = ( 𝜕
𝜕𝑋1

, 𝜕
𝜕𝑋2

, 𝜕
𝜕𝑋3

), where X is the 
vector of reference coordinates, that is, X = (𝑋1, 𝑋2, 𝑋3). Writing x = (𝑥1, 𝑥2, 𝑥3), then F
as defined in (2.37) reduces to, in index notation,

𝐹iJ = 𝜕𝑥𝑖
𝜕𝑋𝐽

. (2.38)

We can obtain further deformation tensors by taking the square of the magnitude of a line 
element in the deformed configuration, dx ⋅ dx, and reference configurations, dX ⋅ dX. That 
is,

dx ⋅ dx = (FdX) ⋅ (FdX) = FTFdX ⋅ dX, = CdXdX, (2.39)

dX ⋅ dX = (F−1dx) ⋅ (F−1dx) = (F−TF−1)dx ⋅ dx = B−1dx ⋅ dx. (2.40)
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We define the right and left Cauchy-Green deformation tensor, denoted by C and B, respec-
tively, by

C = FTF, (2.41)

B = FFT. (2.42)

In contrast to the deformation-gradient, both the right and left Cauchy-Green deformation 
tensors are symmetric measures of the deformation. Therefore, B and C consist of only six 
independent components, compared to nine independent components for F.

2.5 Conservation Laws

Now that the relevant terminology has been defined, we derive the conservation and balance 
laws that apply to continua, including when they are deformed.

2.5.1 Conservation of mass

As we do not consider growth or decay in this report, we impose the restriction that the 
total mass, 𝑚, of the deformed body Ω, where we use an upper-case Greek letter as Ω is 
conventionally used to denote a continuum, does not change. Through this restriction on the 
mass of Ω, we require that

D
D𝑡

(𝑚) = D
D𝑡

∭
Ω

𝜌(x, 𝑡)d𝑣 = 0, (2.43)

where 𝑣 represents the volume of the deformed body and D/Dt represents the material time 
derivative. By the Reynolds Transport Theorem, see Appendix 6.3.3, we can bring the time 
derivative inside the integral. So (2.43) becomes

D
D𝑡

(𝑚) = ∭
Ω

(D𝜌
D𝑡

+ 𝜌𝛁𝐱 ⋅ v(x, 𝑡))d𝑣 = 0. (2.44)

Because (2.44) is true for an arbitrary volume 𝑣, the integrand must be equal to zero. That is 
[66],

D𝜌
D𝑡

+ 𝜌𝛁x ⋅ v(x, 𝑡) = 0, (2.45)

which is known as the continuity equation. With the assumption of incompressibility, D𝜌/D𝑡 =
0, and (2.45) reduces to

𝛁𝐱 ⋅ v(x, 𝑡) = 0. (2.46)
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2.5.2 Balance of linear momentum

Newton’s second law states that the resultant force acting on a material is equal to the rate of 
change of its linear momentum. As discussed earlier, the linear momentum of an object is 
the product of its mass and its velocity. By (2.43), we can write the total linear momentum 
acting on an object in the current, or deformed configuration, as

D
D𝑡

∭
Ω

𝜌v(x, 𝑡)d𝑣 = F, (2.47)

where 𝜌 represents the spatial density of the object and v(x, 𝑡) represents the spatial velocity 
field. As we discussed earlier, the resultant force is the sum of body forces that act on the 
body of the deformed material and internal forces. Therefore, we can write (2.47) as [65]

D
D𝑡

∭
Ω

𝜌v(x, 𝑡)d𝑣 = ∭
Ω

𝜌b(x, 𝑡)d𝑣 + ∬
𝜕Ω

t(n)d𝑠. (2.48)

We can write t(n) as 𝝈 ⋅ n, so that 

D
D𝑡

∭
Ω

𝜌v(x, 𝑡)d𝑣 = ∭
Ω

𝜌b(x, 𝑡)d𝑣 + ∬
𝜕Ω

𝝈 ⋅ nd𝑠. (2.49)

By the divergence theorem we can transform the surface integral on the right-hand side of
(2.49) into a volume integral [65]. Thus, we get 

D
D𝑡

∭
Ω

𝜌v(x, 𝑡)d𝑣 = ∭
Ω

𝜌b(x, 𝑡)d𝑣 + ∭
Ω

div𝝈d𝑣, (2.50)

where div represents the divergence. On the left-hand side of (2.50), we can use the Reynolds 
Transport Theorem to insert the material time derivative into the integrand. Doing that, we 
obtain 

D
D𝑡

∭
Ω

𝜌v(x, 𝑡)d𝑣 = ∭
Ω

( D
D𝑡

(𝜌v(x, 𝑡)) + (𝜌v(x, 𝑡))𝛁𝐱 ⋅ v(x, 𝑡)) d𝑣. (2.51)

By the conservation of mass, (2.45), we can simplify (2.51)

∭
Ω

( D
D𝑡

(𝜌v(x, 𝑡)) + (𝜌v(x, 𝑡))𝛁𝐱 ⋅ v(x, 𝑡)) d𝑣 = ∭
Ω

𝜌Dv(x, 𝑡)
D𝑡

d𝑣. (2.52)

By (2.52), we have 

∭
Ω

𝜌Dv(x, 𝑡)
D𝑡

d𝑣 = ∭
Ω

𝜌b(x, 𝑡)d𝑣 + ∭
Ω

div𝝈d𝑣. (2.53)

This is true for an arbitrary volume of a deformed material, so we have the relation 

𝜌a = 𝜌b(x, 𝑡) + div𝝈. (2.54)
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This is known as Cauchy’s first law of motion [66].

2.5.3 Balance of angular momentum

The rotational analogue of Newton’s second law states that the resultant torque acting on a 
body, at any point within the body, is equal to the rate of change of angular momentum around 
a point z at a point x. That is,

D((x − z) × 𝑚v(x, 𝑡))
D𝑡

= 𝝉, (2.55)

where, for brevity, we refer to x − z as r. By (2.22), (2.31), and the definitions of body forces 
and tractions stated previously, the balance of angular momentum is

D
D𝑡

∭
Ω

r × 𝜌v(x, 𝑡)d𝑣 = ∭
Ω

r × 𝜌bd𝑣 + ∬
𝜕Ω

r × t(n)d𝑠. (2.56)

We can apply the Reynolds Transport Theorem to the left-hand side of (2.56) and rewrite the 
traction, to get

∭
Ω

r × 𝜌ad𝑣 = ∭
Ω

r × 𝜌bd𝑣 + ∬
𝜕Ω

r × (𝝈 ⋅ n)d𝑠. (2.57)

Using the divergence theorem on the second term on the right-hand side of (2.57), we get 
[69]

∭
Ω

r × 𝜌ad𝑣 = ∭
Ω

r × 𝜌bd𝑣 + ∬
𝜕Ω

[r × div𝝈 + 𝝐 ∶ 𝝈𝑇]d𝑣. (2.58)

By Cauchy’s first law of motion, most terms cancel out, and we are left with 

0 = ∭
Ω

𝝐 ∶ 𝝈𝑇d𝑣. (2.59)

In component form, (2.59) is 
𝜖𝑖𝑗𝑘𝜎𝑘𝑗 = 0. (2.60)

Therefore, we have, 

𝜎21 − 𝜎12 = 0 𝜎13 − 𝜎31 = 0 𝜎32 − 𝜎23 = 0. (2.61)

Therefore, the Cauchy stress tensor is symmetric by the balance of angular momentum in this 
scenario.
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2.5.4 Conservation of energy

We impose conservation of energy. For a continuum, the kinetic energy, 𝑇, is given by, in 
index notation,

𝑇 = 1
2

∭
Ω

𝜌𝑣𝑖𝑣𝑖d𝑣, (2.62)

where 𝑣𝑖𝑣𝑖 is index notation for the dot product. In addition to kinetic energy, a continuum 
also possesses internal energy, 𝐸, given by

𝐸 = ∭
Ω

𝜌𝑒d𝑣, (2.63)

where 𝑒 is the internal energy density. Mechanical energy, 𝑈, is the sum of the kinetic and 
internal energies. The rate of change of mechanical energy must be equal to the sum of the 
work done by the body and the energy flux in and out of the body. Sources of energy flux 
include radiation and energy lost as sound, but we only consider heat flux, q, as most energy 
is dissipated through heat flux [65]. Consequently, the rate of change of mechanical energy 
is given by

D
D𝑡

∭
Ω

𝜌(1
2

𝑣𝑖𝑣𝑖 + 𝑒)d𝑣 = ∭
Ω

𝜌𝑏𝑖𝑣𝑖d𝑣 + ∬
𝜕Ω

(𝜎𝑗𝑖𝑣𝑖 − 𝑞𝑗)𝑛𝑗d𝑠. (2.64)

The negative sign in front of the heat flux is to signify that we use the outward normal, 𝑛𝑗, 
for the surface element 𝑠, and 𝑞 is a measure of the influx of energy [65]. As previously, 
we apply the Reynolds Transport theorem and the divergence theorem to (2.64). Therefore,
(2.64) becomes

∭
Ω

𝜌 D
D𝑡

(1
2

𝑣𝑖𝑣𝑖 + 𝑒)d𝑣 = ∭
Ω

(𝜌𝑏𝑖𝑣𝑖 + 𝜕
𝜕𝑥𝑗

(𝜎𝑗𝑖𝑣𝑖 − 𝑞𝑗)) d𝑣. (2.65)

This relation must hold for an arbitrary volume, and so

𝜌 D
D𝑡

(1
2

𝑣𝑖𝑣𝑖 + 𝑒) = 𝜌𝑏𝑖𝑣𝑖 + 𝜕
𝜕𝑥𝑗

(𝜎𝑗𝑖𝑣𝑖 − 𝑞𝑗). (2.66)

After expanding the material derivative and rearranging (2.66), we get

−𝑣𝑖(
𝜕𝜎𝑗𝑖

𝜕𝑥𝑗
+ 𝜌𝑏𝑖 − 𝜌𝑎𝑖) + 𝜌D𝑒

D𝑡
− 𝜎𝑗𝑖

𝜕𝑣𝑖
𝜕𝑥𝑗

+
𝜕𝑞𝑗

𝜕𝑥𝑗
= 0. (2.67)

The expression in parentheses equals zero by the conservation of linear momentum. We can 
now rewrite (2.67) as

𝜌D𝑒
D𝑡

= 𝜎𝑗𝑖
𝜕𝑣𝑖
𝜕𝑥𝑗

−
𝜕𝑞𝑗

𝜕𝑥𝑗
. (2.68)

37



Angular-momentum balance means that the Cauchy stress tensor is symmetric, so we can 
rewrite 𝜎𝑗𝑖

𝜕𝑣𝑖
𝜕𝑥𝑗

as 𝜎𝑖𝑗
𝜕𝑣𝑖
𝜕𝑥𝑗

. We can also swap the dummy indices, so 𝜎𝑗𝑖
𝜕𝑣𝑖
𝜕𝑥𝑗

= 𝜎𝑖𝑗
𝜕𝑣𝑗
𝜕𝑥𝑖

. There-
fore, (2.68) can be rewritten as

𝜌D𝑒
D𝑡

= 1
2

𝜎𝑖𝑗(
𝜕𝑣𝑗

𝜕𝑥𝑖
+ 𝜕𝑣𝑖

𝜕𝑥𝑗
) −

𝜕𝑞𝑗

𝜕𝑥𝑗
. (2.69)

We can write (2.69) in terms of the components of D, which is known as the rate-of-deformation 
or rate-of-strain tensor. That is,

𝐷𝑖𝑗 = 1
2

(
𝜕𝑣𝑗

𝜕𝑥𝑖
+ 𝜕𝑣𝑖

𝜕𝑥𝑗
) , (2.70)

𝜌D𝑒
D𝑡

= 𝜎𝑖𝑗𝐷𝑖𝑗 −
𝜕𝑞𝑗

𝜕𝑥𝑗
. (2.71)

In dyadic notation, we have 
𝜌D𝑒

D𝑡
= 𝝈 ∶ D − 𝛁 ⋅ q. (2.72)

In the next section, we neglect thermal effects. Therefore, the only source of internal energy 
that we consider is the internal mechanical energy. We then introduce a strain energy function 
that is a measure of the internal potential energy in a deformed object [69]. This enables us 
to derive a constitutive equation for the material.

2.6 Non-linear elasticity

In total, the conservation and balance laws we derived in the previous subsections provide 
us with a set of equations that relate a continuum’s bulk properties to one another. However, 
the conservation and balance laws do not provide us with enough information to allow us to 
describe the system fully. Consequently, to fully describe the system, we must construct a 
constitutive law, specific to the material, that relates the stress acting on the material to the 
strain experienced by it.

In the small-strain limit, where the theory of linear elasticity is a good approximation to make, 
physical stress-strain behaviour can be modelled well using the following constitutive relation 
[71]:

𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑠𝐸𝑘𝑠, (2.73)

where 𝐶𝑖𝑗𝑘𝑠 is the elasticity tensor. Due to strain energy considerations and its symmetry 
properties, the elasticity tensor can possess up to twenty-one elastic constants [72]. That 
number decreases, however, for a material if it possesses an axis, or axes, of mechanical 
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symmetry [73]. The constraints that the elasticity tensor must satisfy are:

𝐶𝑖𝑗𝑘𝑠 = 𝐶𝑗𝑖𝑘𝑠 𝐶𝑖𝑗𝑘𝑠 = 𝐶𝑖𝑗𝑠𝑘 𝐶𝑖𝑗𝑘𝑠 = 𝐶𝑗𝑖𝑠𝑘. (2.74)

However, under physiological conditions, soft tissues are subjected to strains significantly 
greater than the small-strain limit. In this case, finite elasticity theory better approximates the 
physiological mechanical behaviour of soft tissues. In order to model soft tissue behaviour, 
we need to derive a constitutive relation that is appropriate for finite elasticity. To do this, 
we employ a strain-energy function (SEF), 𝑊, which is a measure of the energy stored in 
the material due to the deformation [66]. We assume that the SEF depends arbitrarily on the 
change in configuration and is, thus, a function of the nine components of the deformation 
gradient tensor [65], 𝑊 = 𝑊(F).

In order to ensure that 𝑊 is objective, we impose the condition that it cannot change value 
under a rigid-body motion. A rigid-body motion can be represented by the orthogonal matrix, 
Q, so 𝑊(F) = 𝑊(QF). By the polar decomposition theorem [66], F can be decomposed 
into the product of an orthogonal tensor, R, a tensor whose inverse is equal to its transpose, 
and a symmetric tensor, U. Thus, F = RU. As 𝑊(F) = 𝑊(QF) for any orthogonal matrix, 
objectivity is satisfied when Q = RT. That is, 𝑊(F) = 𝑊(RTRU) = 𝑊(U). Furthermore, 
C can be rewritten as C = UTRTRU = UTU = U2. Thus, we can write 𝑊 as a function of 
C instead, i.e. 𝑊 = 𝑊(C).

To begin constructing our constitutive equation, we recall the conservation-of-energy con-
straint, (2.72), replace 𝑒 with 𝑊 = 𝜌0𝑒, and neglect heat flux, giving us the relation

𝜌
𝜌0

D𝑊
D𝑡

= 𝜎𝑖𝑗𝐷𝑖𝑗. (2.75)

Rewriting D𝑊/D𝑡, we have

D𝑊
D𝑡

= 𝜕𝑊
𝜕𝐶𝑅𝑆

D𝐶𝑅𝑆
D𝑡

,

= 𝜕𝑊
𝜕𝐶𝑅𝑆

D
D𝑡

( 𝜕𝑥𝑖
𝜕𝑋𝑅

𝜕𝑥𝑖
𝜕𝑋𝑆

),

= 𝜕𝑊
𝜕𝐶𝑅𝑆

( 𝜕𝑣𝑖
𝜕𝑋𝑅

𝜕𝑥𝑖
𝜕𝑋𝑆

+ 𝜕𝑥𝑖
𝜕𝑋𝑅

𝜕𝑣𝑖
𝜕𝑋𝑆

), (2.76)

as the coordinates X do not depend on time. After interchanging the dummy indices 𝑅 and 
𝑆 on the second term of the right-hand side of (2.76), we obtain 

D𝑊
D𝑡

= ( 𝜕𝑊
𝜕𝐶𝑅𝑆

+ 𝜕𝑊
𝜕𝐶𝑆𝑅

) 𝜕𝑣𝑖
𝜕𝑋𝑅

𝜕𝑥𝑖
𝜕𝑋𝑆

. (2.77)

We showed when considering the conservation of energy that, assuming there is no heat flux, 

𝜎𝑖𝑗𝐷𝑖𝑗 = 𝜎𝑖𝑗
𝜕𝑣𝑖
𝜕𝑥𝑗

, (2.78)
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so according to our constitutive law and the symmetry of C

𝜎𝑖𝑗
𝜕𝑣𝑖
𝜕𝑥𝑗

= 𝜌
𝜌0

( 𝜕𝑊
𝜕𝐶𝑅𝑆

+ 𝜕𝑊
𝜕𝐶𝑆𝑅

) 𝜕𝑣𝑖
𝜕𝑋𝑅

𝜕𝑥𝑖
𝜕𝑋𝑆

, (2.79)

= 2 𝜌
𝜌0

𝜕𝑊
𝜕𝐶𝑅𝑆

𝜕𝑣𝑖
𝜕𝑥𝑗

𝜕𝑥𝑗

𝜕𝑋𝑅

𝜕𝑥𝑖
𝜕𝑋𝑆

. (2.80)

This holds for arbitrary 𝜕𝑣𝑖/𝜕𝑥𝑗, so [65] 

𝜎𝑖𝑗 = 2 𝜌
𝜌0

𝜕𝑊
𝜕𝐶𝑅𝑆

𝜕𝑥𝑗

𝜕𝑋𝑅

𝜕𝑥𝑖
𝜕𝑋𝑆

. (2.81)

As the SEF is invariant under coordinate transformation, we can write it in terms of other 
invariants of C. The SEF for isotropic materials can be written in terms of three strain invari-
ants. Recalling (2.15)—(2.17), they are

𝐼1 = 𝐶𝑀𝑀 = trC = 𝜆2
1 + 𝜆2

2 + 𝜆2
3, (2.82)

𝐼2 = 1
2

(𝐶𝑀𝑀𝐶𝑁𝑁 − 𝐶𝑅𝑆𝐶𝑅𝑆), (2.83)

= 1
2

((trC)2 − trC2) = 𝜆2
1𝜆2

2 + 𝜆2
1𝜆2

3 + 𝜆2
2𝜆2

3, (2.84)

𝐼3 = detC =
3

∏
𝑖=1

𝜆2
𝑖 , (2.85)

where 𝜆𝑖 represents the 𝑖th eigenvalue of C. For transversely isotropic materials, the SEF is 
not just a function of the deformation itself, but also of the preferred direction in the reference 
configuration, represented by the unit vector M. To account for this extra dependence, a trans-
versely isotropic SEF is a function of two pseudoinvariants, which account for the material’s 
behaviour in the direction M, in addition to the three isotropic strain invariants. Concentrat-
ing on an isotropic material, first, we previously derived the three strain invariants needed to 
describe the SEF. Physically, the third strain invariant corresponds to the square of the ratio 
of the volume of the deformed body to the volume of the undeformed body, so 𝜌/𝜌0 = √𝐼3. 
As 𝑊 is a function of these three strain invariants, 

𝜕𝑊
𝜕𝐶𝑅𝑆

= 𝜕𝑊
𝜕𝐼𝑖

𝜕𝐼𝑖
𝜕𝐶𝑅𝑆

. (2.86)

The derivatives of 𝐼1 and 𝐼2 with respect to 𝐶𝑅𝑆 are

𝜕𝐼1
𝜕𝐶𝑅𝑆

= 𝜕𝐶𝑀𝑀
𝜕𝐶𝑅𝑆

= 𝛿𝑀𝑅𝛿𝑀𝑆 = 𝛿𝑅𝑆, (2.87)

𝜕𝐼2
𝜕𝐶𝑅𝑆

= 1
2

𝜕𝐼2
𝜕𝐶𝑅𝑆

(𝐶𝑀𝑀𝐶𝑁𝑁 − 𝐶𝐾𝐽𝐶𝐾𝐽), (2.88)

= 1
2

(𝛿𝑀𝑅𝛿𝑀𝑆𝐶𝑁𝑁 + 𝛿𝑁𝑅𝛿𝑁𝑆𝐶𝑀𝑀 − 2𝛿𝐾𝑅𝛿𝐽𝑆𝐶𝐾𝐽), (2.89)

= 1
2

(2𝛿𝑅𝑆𝐼1 − 2𝐶𝑅𝑆), (2.90)
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where we have used the symmetry of C to write 𝐶𝐾𝐽𝐶𝐽𝐾, which is the trace of C2 in index 
notation, as 𝐶𝐾𝐽𝐶𝐾𝐽. For 𝐼3, we take the trace of the Cayley-Hamilton theorem, which states 
that a second-order tensor satisfies its own characteristic equation. Therefore,

𝐼3 = 1
3

(trC3 − 𝐼1trC2 + 𝐼2trC). (2.91)

The trace of C3 can be written in component form as 𝐶𝐿𝑀𝐶𝑀𝑁𝐶𝑁𝐿. Differentiating, we 
obtain

𝜕
𝜕𝐶𝑅𝑆

(𝐶𝐿𝑀𝐶𝑀𝑁𝐶𝑁𝐿) = 𝛿𝐿𝑅𝛿𝑀𝑆𝐶𝑀𝑁𝐶𝑁𝐿 + 𝛿𝑀𝑅𝛿𝑁𝑆𝐶𝐿𝑀𝐶𝑁𝐿 (2.92)

+𝛿𝑁𝑅𝛿𝐿𝑆𝐶𝐿𝑀𝐶𝑀𝑁. (2.93)

= 3𝐶𝑆𝑁𝐶𝑁𝑅, (2.94)

where we swap the dummy indices due to the symmetry of C. Utilising (2.87)—(2.94) and 
simplifying gives us

𝜕𝐼3
𝜕𝐶𝑅𝑆

= 𝐼2𝛿𝑅𝑆 − 𝐼1𝐶𝑅𝑆 + 𝐶𝑅𝑃𝐶𝑆𝑃. (2.95)

The Cauchy stress is, therefore, for an isotropic, non-linear elastic material given by

𝜎𝑖𝑗 = 2 𝜌
𝜌0

𝜕𝑥𝑖
𝜕𝑋𝑅

𝜕𝑥𝑗

𝜕𝑋𝑆
[(𝜕𝑊

𝜕𝐼1
+ 𝐼1

𝜕𝑊
𝜕𝐼2

+ 𝐼2
𝜕𝑊
𝜕𝐼3

)𝛿𝑅𝑆 (2.96)

−(𝜕𝑊
𝜕𝐼2

+ 𝐼1
𝜕𝑊
𝜕𝐼3

)𝐶𝑅𝑆 + 𝜕𝑊
𝜕𝐼3

𝐶𝑅𝑃𝐶𝑆𝑃]. (2.97)

In dyadic notation, and introducing the notation 𝜕𝑊/𝜕𝐼𝑖 = 𝑊𝑖, we have 

𝝈 = 2(𝐼3) 1
2 F[(𝑊1 + 𝐼1𝑊2 + 𝐼2𝑊3)I − (𝑊2 + 𝐼1𝑊3)C + 𝑊3C2]FT. (2.98)

If we write the Cauchy stress in terms of B, we have 

𝝈 = 2(𝐼3) 1
2 [(𝑊1 + 𝐼1𝑊2 + 𝐼2𝑊3)B − (𝑊2 + 𝐼1𝑊3)B2 + 𝑊3B3]. (2.99)

Using the Cayley-Hamilton theorem, we can eliminate B3, and by multiplying the Cayley-
Hamilton theorem by B−1 we can eliminate B2 also. Therefore, we have 

𝝈 = 2(𝐼3) 1
2 [(𝐼2𝑊2 + 𝐼3𝑊3)I + 𝑊1B − 𝐼3𝑊2B−1], (2.100)

If we assume that the material is incompressible, then 𝐼3 = 1. To account for the loss of a 
degree of freedom, we introduce a Lagrange multiplier, 𝑝, to the incompressible SEF, giving 
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us 

𝑊 = 𝑊(𝐼1, 𝐼2) − 𝑝
2

(𝐼3 − 1), (2.101)

𝑊3 = −𝑝
2

. (2.102)

Therefore 
𝝈 = 2[(𝐼2𝑊2 − 𝑝

2
)I + 2𝑊1B − 2𝑊2B−1]. (2.103)

The Lagrange multiplier is undetermined, and so we can incorporate the other term in paren-
theses in (2.103) into the Lagrange multiplier. The constitutive equation for an incompress-
ible, isotropic materials is, therefore,

𝝈 = −𝑝I + 2𝑊1B − 2𝑊2B−1. (2.104)

As mentioned previously, for transversely isotropic materials, we must account for the de-
pendence of the material’s mechanical behaviour on the preferred direction M through the 
inclusion of two pseudoinvariants. Following the convention of the literature, the pseudoin-
variants we choose are

𝐼4 = M ⋅ (CM), (2.105)

𝐼5 = M ⋅ (C2M). (2.106)

To include these pseudoinvariants in our constitutive relation, we need to differentiate them 
with respect to C also. The vector M is only dependent on the initial position X of the contin-
uum, and so its derivative with respect to C is zero. The derivatives of the pseudoinvariants 
with respect to C in component form are, thus,

𝜕𝐼4
𝜕𝐶𝑅𝑆

= 𝑀𝐼 ⋅ 𝛿𝐼𝑅𝛿𝐽𝑆𝑀𝐽 = 𝑀𝑅𝑀𝑆 = (M ⊗ M)𝑅𝑆, (2.107)

𝜕𝐼5
𝜕𝐶𝑅𝑆

= 𝑀𝐼 ⋅ (𝛿𝐼𝑅𝛿𝑆𝐽𝑀𝐽 + 𝐶𝐼𝑅𝛿𝐽𝑆𝑀𝐽),

= 𝑀𝑅𝐶𝑆𝐽𝑀𝐽 + 𝑀𝐼𝐶𝐼𝑅𝑀𝑆,

= (M ⊗ CM + CM ⊗ M)𝑅𝑆. (2.108)

With (2.107) and (2.108), the constitutive law for transverse isotropy is

𝝈 = −𝑝I + 2𝑊1B − 2𝑊2B−1 + 2𝑊4m ⊗ m

+2𝑊5(m ⊗ Cm + Cm ⊗ m), (2.109)

where m = FM is the orientation of the preferred direction in the deformed configuration.
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2.7 Bayesian statistics

In this chapter, we have so far derived deterministic constitutive equations that, for a particu-
lar parameter vector, produce the same relation between the independent variable, the stretch, 
and the dependent variable, the stress. In reality, however, there is noise present in the sys-
tem due to unavoidable errors in the values recorded by experimental equipment and other 
uncontrollable factors that can have an impact on measurements. We would ideally like to 
account for this noise. We can try to quantify the noise in the system, while still determin-
ing the most probable values for the model’s parameters, with the use of statistical methods. 
Therefore, we now introduce the concept of Bayesian statistics, a field which provides intu-
itive methods to quantify uncertainty in the values of parameters. In Bayesian statistics, we 
treat parameters as random variables and seek to determine probability distributions from 
which we can compute credible intervals of the parameter values. To quantify uncertainty 
in Bayesian statistics, we must derive two important terms: the prior probability distribution 
contains the information we wish to include about our parameter values before any data is 
considered; and the likelihood function is a measure of how likely a given parameter vector 
is to produce the experimental data [74]. With these terms, we obtain a posterior probability 
distribution that conditions our prior understanding of the parameter values with the collected 
data.

The key principle of Bayesian statistics was first defined by Reverend Thomas Bayes, who 
gives his name to the field, in a posthumously published 1763 essay on chance [75]. This key 
principle is that posterior probability can be obtained by multiplying our prior probability of 
parameter values with the likelihood of parameter values producing the experimental data. 
By updating our prior knowledge with experimental data, we can hopefully ascertain credible 
intervals for the unknown values of our parameters. In equation form, Bayes’ Rule is

𝜋(𝜽|y) = 𝐿(y|𝜽)𝜋0(𝜽)
𝜋𝑑(y)

, (2.110)

where 𝜋0(𝜽) is the prior distribution of the parameter vector 𝜽, 𝐿(y|𝜽) is the likelihood func-
tion of observing the experimental data y given 𝜽, 𝜋𝑑(y) is the probability of observing the 
experimental data that acts as a normalisation constant in (2.110), and 𝜋(𝜽|y) is the posterior 
probability of 𝜽.

The prior is not objective. We choose an appropriate prior based on our understanding of the 
parameter values before we look at the data. For instance, if a parameter can be negative, we 
would not assign a prior distribution that only has support along the positive real axis. Even 
assigning a uniform prior to a parameter is subjective, as we must define the range that the 
uniform prior extends over and it is a conscious choice to assign equal prior probability to 
each possible value within a specific set. Rules for selecting priors have been developed. For 
example, Harold Jeffreys posited his general rule (1946) for defining a prior [76]. In Jeffreys’s 
general rule, we define a prior for a parameter vector 𝜽 in terms of the Fisher Information 
matrix I(𝜽), which summarises the amount of information in the data that is pertinent to the 

43



model parameters [77], and the log-likelihood 𝑙 as follows:

𝜋0(𝜽) ∝ det(I(𝜽)𝑖𝑗)− 1
2 , (2.111)

where

I(𝜽)𝑖𝑗 = 𝐸 (− 𝜕2𝑙
𝜕𝜃𝑖𝜕𝜃𝑗

) , (2.112)

where 𝑙 is the log-likelihood, 𝐸(⋅) represents the expected value of ⋅, and det(⋅) represents the 
determinant of ⋅. Priors developed according to Jeffreys’s general rule possess the property 
[78] that, for a transformation of parameters from 𝜽 to 𝜸(𝜽),

𝜋0(𝜽) = 𝜋0(𝜸(𝜽)) ⋅ ∣𝜕𝜸
𝜕𝜽

∣ . (2.113)

However, these priors, and other priors derived from a particular rule in an attempt to be 
objective, do possess problems under certain situations and can lead to posteriors with un-
desirable qualities [78], [79]. With priors, we should be inclusive regarding what parameter 
values we assign some probability weight to, as we do not want to preclude parameter values 
that are likely to produce the observed data, according to our likelihood function.

The exact form of the posterior distribution in (2.110) often cannot be determined. This 
is caused by the impracticality of calculating the normalisation term, 𝜋𝑑(y), exactly. An 
alternate form of 𝜋𝑑(y) is

𝜋𝑑(y) = ∫ 𝐿(y|𝜽)𝜋0(𝜽)d𝜽. (2.114)

From (2.114), we see that in order to calculate 𝜋𝑑(y), we must integrate, potentially over 
many dimensions, to calculate the posterior weight of each potential parameter vector. That 
is hard to do, particularly when there are multiple parameters that we wish to identify credible 
intervals for. By (2.114) and (2.110), however, we know that if we multiply either the prior 
or likelihood function by a multiplicative constant, then the posterior will remain unchanged. 
Therefore, we can consider the following alternative form of Bayes’s Rule, where we do not 
need to calculate 𝜋𝑑(y),

𝜋(𝜽|y) ∝ 𝐿(y|𝜽)𝜋0(𝜽). (2.115)

If 𝐿(y|𝜽)𝜋0(𝜽) corresponds to a known distribution, then we can calculate 𝜋𝑑(y) and use
(2.110) to fully characterise the posterior distribution. However, 𝐿(y|𝜽)𝜋0(𝜽) often does not 
correspond to a known distribution, meaning we only know the posterior up to a multiplicative 
constant. Therefore, we seek methods that allow us to characterise, or accurately approximate, 
𝜋(𝜽|y), when we only know 𝐿(y|𝜽) and 𝜋𝑑(y). Fortunately, there are methods that allow us 
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to obtain accurate estimates of the full posterior by sampling a subset of potential parameter 
values that is large enough to represent the entire set. Then, we can use this representative 
sampled subset to make inferences about the population as a whole by using the subset to 
approximate the posterior distribution.

2.8 Markov chain Monte Carlo and the Metropolis-Hastings algorithm

In this section, we introduce one widely used technique to sample from an unknown poste-
rior distribution, Markov chain Monte Carlo (MCMC). Furthermore, in the next section we 
will introduce some alternative Bayesian statistical techniques that can be used to attempt to 
accurately estimate an unknown posterior distribution, or properties associated with the dis-
tribution. In Chapters 4 and 5, we will use MCMC to attempt to predict parameter posteriors. 
By introducing MCMC in this section, therefore, we seek to explain why it is a reasonable 
method to quickly and efficiently sample from posterior distributions. Furthermore, in the 
next section, we will attempt to explain why MCMC is an appropriate choice to measure 
uncertainty in soft-tissue modelling problems compared to the other methods detailed in the 
next section.

MCMC combines the two namesake statistical methods into one technique. Firstly, Monte 
Carlo methods enable us to estimate the expectation values of functions which contain random 
variables that possess a posterior distribution [80]. For example, if we want to calculate the 
expectation value of 𝑓(𝑥), where 𝑥 ∼ 𝜋(𝑥|y), exactly, then we must compute

𝐸[𝑓(𝑥)] = ∫ 𝑓(𝑥)𝜋(𝑥|y)d𝑥. (2.116)

If the integral in (2.116) is impractical to compute, we can obtain a Monte Carlo estimate by 
randomly sampling from the distribution 𝜋(𝑥|y) and computing 𝑓(𝑥) at each of the points 
we sample. In other words, if we take 𝑁 samples, we have the points x̂ = ( ̂𝑥1, … , ̂𝑥𝑁) in the 
support of 𝑥, according to 𝜋(𝑥|y), and we compute 𝑓( ̂𝑥1), … , 𝑓( ̂𝑥𝑁). Therefore,

𝐸[𝑓(𝑥)] = ∫ 𝑓(𝑥)𝜋(𝑥|y)d𝑥 ≈ 1
𝑁

𝑁

∑
𝑖=1

𝑓( ̂𝑥𝑖). (2.117)

By the law of large numbers, the more points we include in the Monte Carlo estimate, the 
better approximation to the true expected value we obtain.

The problem with obtaining Monte Carlo estimates as in (2.117) arises when the distribution 
of 𝑥 is not known and normalised. In that case, we cannot randomly sample from the dis-
tribution to obtain a representative sample of points from which to create our Monte Carlo 
estimate. In that case, we must also employ methods that allow us to obtain a representative 
sample from our unknown full posterior. In MCMC, Markov chains allow us to take repre-
sentative samples from the posterior. Markov chains consist of a sequence of ‘memory-less’ 
states. By ‘memory-less’ we mean that the probability of where the Markov chain moves to 
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at any particular time interval, which we define as the 𝑖 + 1th interval, is only dependent on 
the current position of the Markov chain, that is, the position of the Markov chain at the 𝑖th 
interval. In other words, the history of the chain is not a factor in the future of the chain [80]. 
In terms of the transition matrix, 𝑃, this can be written as

𝑃(𝑋𝑖+1 = 𝜽𝑖+1|𝑋0 = 𝜽0, … , 𝑋𝑖 = 𝜽𝑖) = 𝑃(𝑋𝑖+1 = 𝜽𝑖+1|𝑋𝑖 = 𝜽𝑖), (2.118)

where 𝑋𝑖 represents the 𝑖th position of the chain and 𝜽𝑖 represents the state in which the 
Markov chain resides at the position 𝑖. Markov chains can possess a stationary distribution, 
also known as an equilibrium or invariant distribution, that corresponds to the probability 
distribution of each possible state in the system as 𝑖 → ∞.

The goal of combining Monte Carlo methods and Markov chains in MCMC is, therefore, to 
create a sequence of states, with the probability of choosing each state dependent only on the 
current state of the system, whose invariant density corresponds to the posterior distribution 
𝜋(𝜽|y). Therefore, we sample from the posterior in our chosen MCMC algorithm. For our 
sampling to work, a few conditions must be met. Firstly, the states, that is, parameter vectors, 
chosen must be ergodic, which means that, collectively, the samples must be representative 
of the complete distribution, not just a subset of it. By representative, we mean that both the 
entire range of the distribution must be sampled from and the statistics associated with the 
true posterior, the mean and variance, for example, must be accurately approximated. For a 
particular problem, proving ergodicity is hard. Instead, we analyse the estimated posteriors 
that we obtain at the end of the MCMC algorithm. Quantities such as the acceptance rate 
in the algorithm are indicators of how efficiently the algorithm has sampled from a posterior 
distribution [81]. Visual indicators of smooth sampling include cosmetic qualities like the 
smoothness, the narrowness (or, conversely, the width), and shape of the posterior. Whereas 
if the posterior is very bumpy, with many peaks and troughs, then it suggests that bad sampling 
and more samples need to be taken, or a better algorithm used, in order to accurately represent 
the posterior. There are, however, less subjective diagnostic techniques that can be used to 
determine when it is safe to stop an MCMC algorithm [82].

A commonly used MCMC technique is the general Metropolis-Hastings (MH) algorithm [82], 
Algorithm 1. In the Metropolis-Hastings algorithm, a proposal distribution, 𝑞(∗|#) is used to 
propose a parameter vector ∗ based off the current position of the Markov chains, the parame-
ter vector #. Through this choice of proposal distribution, the key concept of ‘memory-less’ 
chains is satisfied. It has been shown in the literature that the Metropolis-Hastings algorithm 
converges to the target posterior, as long as the algorithm obeys the principle of detailed bal-
ance, otherwise known as the reversibility condition [83]. However, samples obtained from 
an MH algorithm are only guaranteed to converge on the target distribution for an infinite 
number of iterations [84]. There are situations when convergence is slow [85]. Naturally, 
this is not practical, so convergence diagnostics or inspection of the predicted posteriors we 
obtain from running the algorithm are needed to determine whether efficient sampling has 
taken place. If not, more powerful, yet computationally expensive, techniques can be used 
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to sample from the desired posterior instead. Hamiltonian Monte Carlo (HMC) is one such 
method, which we discuss in the next section.

We will now prove that detailed balance is satisfied by the Metropolis-Hastings algorithm. 
Furthermore, it is because of the principle of the detailed balance that the acceptance proba-
bility, 𝜅, is introduced into Algorithm 1. The reversibility condition states that the probability 
of being in a state 𝜽 and moving to the state 𝜽∗ must be the same as being in the state 𝜽∗ and 
moving to 𝜽. In the MH algorithm, we have a posterior distribution represented by 𝜋(∗) and 
a proposal distribution, 𝑞(†|∗). Therefore, the probability of being at 𝜽 and moving to 𝜽∗ is 
[83]

𝑝(𝜽∗|𝜽) = 𝜋0(𝜽)𝑞(𝜽∗|𝜽). (2.119)

Similarly, the probability of being at 𝜽∗ and moving to 𝜽 is 

𝑝(𝜽|𝜽∗) = 𝜋(𝜽∗)𝑞(𝜽|𝜽∗). (2.120)

In general, 𝑝(𝜽∗|𝜽) and 𝑝(𝜽|𝜽∗) may not be equal. For the moment, we assume that 𝑝(𝜽∗|𝜽)
is larger, which means too many moves from 𝜽 to 𝜽∗ are being accepted compared to moves 
from 𝜽∗ to 𝜽. To satisfy detailed balance and equalise the two probabilities, we introduce an 
acceptance probability for moves from 𝜽 to 𝜽∗, 𝜅1(𝜽∗, 𝜽), and an acceptance probability for 
moves from 𝜽∗ to 𝜽, 𝜅2(𝜽, 𝜽∗). Therefore,

𝜋0(𝜽)𝑞(𝜽∗|𝜽)𝜅1(𝜽∗, 𝜽) = 𝜋(𝜽∗)𝑞(𝜽|𝜽∗)𝜅2(𝜽, 𝜽∗). (2.121)

As we assume that 𝜋0(𝜽)𝑞(𝜽∗|𝜽) > 𝜋(𝜽∗)𝑞(𝜽|𝜽∗), then 𝜅2(𝜽, 𝜽∗) > 𝜅1(𝜽∗, 𝜽). We want 
more moves from 𝜽∗ to 𝜽, in relation to the opposite move, than happened previously, so we 
make 𝜅2(𝜽, 𝜽∗) as large as possible for a probability by setting 𝜅2(𝜽, 𝜽∗) = 1. Following 
this, (2.121) becomes

𝜋0(𝜽)𝑞(𝜽∗|𝜽)𝜅1(𝜽∗, 𝜽) = 𝜋(𝜽∗)𝑞(𝜽|𝜽∗). (2.122)

Rearranging (2.122), we find that

𝜅1(𝜽∗, 𝜽) = 𝜋(𝜽∗)𝑞(𝜽|𝜽∗)
𝜋0(𝜽)𝑞(𝜽∗|𝜽)

. (2.123)

If we reverse our initial assumption and state that 𝜋(𝜽∗)𝑞(𝜽|𝜽∗) > 𝜋0(𝜽)𝑞(𝜽∗|𝜽), then our 
argument also holds in reverse and 𝜅1(𝜽∗, 𝜽) = 1. Consequently, we obtain the acceptance 
probability [83], simply denoted as 𝜅, that is used in the MH algorithm, see Algorithm 1. This 
derivation of the acceptance probability still holds if the proposal distribution is symmetric. 
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that is, when 𝑞(𝜽|𝜽∗) = 𝑞(𝜽∗|𝜽).

Algorithm 1: Metropolis-Hastings
Result: Estimate of the posterior distribution, 𝜋0(𝜽)
Input: 𝜋0(𝜃1), …, 𝜋0(𝜃ℎ);
Starting parameter vector, 𝜽0;
for 𝑖 = 1, …, 𝑛 do

Propose 𝜽∗ ∼ 𝑞(𝜽𝑖−1, …);
Calculate 𝜅 = min (1, 𝐿(y|𝜽∗)𝜋0(𝜽∗)𝑞(𝜽𝑖−1|𝜽∗)

𝐿(y|𝜽𝑖−1)𝜋0(𝜽𝑖−1)𝑞(𝜽∗|𝜽𝑖−1));
Generate 𝑢 ∼ 𝒰(0, 1);
if 𝑢 ⩽ 𝜅 then

𝜽𝑖 = 𝜽∗ ;
else

𝜽𝑖 = 𝜽𝑖−1 ;
end
Set 𝑖 = 𝑖 + 1;

end 

In order to improve the results we obtain from the MH algorithm, we can make a couple 
of tweaks to it. Firstly, we can define a burn-in phase that we ignore the results of. The 
burn-in phase constitutes the first 𝑘 simulations of the algorithm, where 𝑘 is subjectively 
chosen by the person running the algorithm. A burn-in phase is introduced into the algorithm 
because it takes a number of simulations before the Markov chain samples from the target, 
stationary distribution [86]. In this initial period, the values proposed in the algorithm are 
dependent on the starting values and are not representative of the target distribution [86]. It is 
preferable to be cautious and overestimate the number of simulations needed for the burn-in 
phase, as it ensures that our end results only contain samples from the stationary distribution. 
Additionally, the required length of the burn-in phase is dependent on the closeness of the 
starting position of the chain to the support of the target distribution. A poor initial guess for 
the parameter values ensures that it takes longer for the Markov chains to sample from the 
target distribution than it would for a good initial choice of the parameter values [80].

Secondly, we can perform adaptive MH [84] in order to make the algorithm more efficient by 
using previous results to tune algorithmic parameters so that they better match the properties 
of the stationary distribution [87]. There are numerous ways to perform adaptive Bayesian 
sampling [88]. For example, if the proposal distribution was a multivariate normal, we might 
tune the covariance matrix of the distribution in order to more accurately capture the true 
covariances of the parameters with one another. Especially in the initial stages of the algo-
rithm, when we do not sample from the target distribution, covariances may not be reflective 
of the true covariances between the parameters. Denoting the covariance matrix of the pro-
posal distribution with 𝜮∗, we would tune it at the end of every block of 𝐿 simulations. In 
particular, 𝜮∗ is amended based on the acceptance rate, 𝛼block, of proposed parameter vectors 
across that particular block. It has been shown in the literature that a random walk Metropolis 
algorithm, which proposes new parameter vectors through a multivariate normal distribution 
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centred around the current position of the chains, best samples the entire target distribution, 
when the acceptance rate is approximately equal to 0.234 [81]. To adapt 𝜮∗, we introduce the 
following relation 𝜮∗ = 𝛽2𝜻, where 𝛽2 is a scaling factor and 𝜻 represents the covariances 
of the parameters. We construct 𝜻 using the parameter vectors accepted in the algorithm for 
each of the last 𝑀 simulations. We can treat 𝑀 > 𝐿, taking the parameter vectors from 
multiple blocks, in order to estimate parameter covariances over a wider range of parameters. 
Similarly, we do not have to include every position in the chain found so far in the algorithm. 
We adapt 𝛽2 based on the value of 𝛼block as follows:

• 𝛼lower < 𝛼block: multiply 𝛽2 by (1 − 𝜖)2,

• 𝛼lower ⩽ 𝛼block ⩽ 𝛼higher: leave 𝛽2 unchanged,

• 𝛼higher < 𝛼block: multiply 𝛽2 by (1 + 𝜖)2.

These values of 𝛽 are chosen in order to improve the efficiency of the algorithm. When the 
acceptance rate is too high, the target distribution is not being sampled from quickly enough, 
as the proposed moves are too small. Conversely, when the acceptance rate is too low, too 
few parameter vectors are being accepted to accurately estimate the target posterior. This is 
true for sampling around both the tails of the distribution and the region, or regions, of high 
posterior probability. Through adaptation, smaller jumps are proposed when 𝛼block is too low 
and larger jumps are proposed when 𝛼block is too high.

We must stop adapting the MH algorithm at some point, however, in order for our MCMC 
estimates to come from samples of the same distribution. Because we discard the values 
found in the burn-in phase and, by definition, sample from the target distribution after the 
end of the burn-in phase, it is a natural choice to stop adapting the MH algorithm at the end 
of the burn-in phase.

2.9 Alternative statistical methods

As well as MCMC, there are other Bayesian statistical techniques that can be used to char-
acterise unknown, potentially complicated posteriors. We shall now discuss a few of these 
methods and examine some of them in relation to MCMC. In particular, we will identify 
reasons why we will use MCMC in later chapters over some of the other methods detailed 
below.

Firstly, Sequential Monte Carlo (SMC), also known as particle filtering, is another common 
method used to characterise posterior distributions [89]. This method works by treating the 
following modified version of Bayes’ Rule

𝜋(𝜽|y)𝜈 ∝ 𝐿(y|𝜽)𝜈𝜋0(𝜽), (2.124)
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where 𝜈 is an exponent that is initially zero, but rises to one by the end of the SMC algorithm. 
By (2.124) and the definition of 𝜈, the SMC randomly samples from the prior at the beginning 
of the algorithm. A weight for each point is calculated based on the prior probability and the 
likelihood of each of the randomly sampled parameter vectors [90]. Next, a resampling is 
conducted that takes into account the weights of the previously selected points. This ensures 
that more samples are taken from the values that produce a higher weight, where the posterior 
probability is greater, and the sampled values are randomly perturbed so that new points are 
analysed. After a number of these iterations have been performed, we obtain the posterior 
probability distribution [91].

A more complex and advanced method of sampling from the posterior distribution is Hamil-
tonian Monte Carlo (HMC), which uses the theory of Hamiltonian mechanics to inform the 
choices of proposed parameter vectors through the gradient of the log-posterior of the model 
parameters [92]. An example HMC algorithm is given in Algorithm 2. When the algorithm is 
tuned correctly, HMC is an efficient and powerful way to sample to take a representative sam-
ple from even complex, high-dimensional probability distributions. This is because, through 
the log-posterior, the choice of proposal vectors are informed by the regions of the parameter 
space that have a relatively large probability mass. With HMC, we spend more iterations 
of the algorithm within these regions of high probability. However, as can be seen with the 
leapfrog algorithm in Algorithm 2, we introduce algorithmic parameters like the step size and 
the number of steps used in the leapfrog algorithm [89]. It is hard to tune these parameters 
correctly to sample optimally in the algorithm. As well as being easier to adapt for efficient 
sampling of the posterior, MCMC is also less computationally intensive than HMC, as mul-
tiple calculations of the gradient of a parameter vector are not required to propose new states 

50



in the system.

Algorithm 2: Hamiltonian Monte Carlo 
Result: Estimate of the posterior distribution, 𝜋0(𝜽)
Input: 𝜋0(𝜃1), …, 𝜋0(𝜃ℎ);
Starting parameter vector, 𝜽0;
Unnormalised log-posterior, 𝜋∗(𝜽|y);
for 𝑖 = 1, …, 𝑛 do

Sample r0 ∼ 𝒩(0, I𝑑);
Set ̃𝜽 = 𝜽𝑖−1, r̃ = r0;
for 𝑗 = 1, …, 𝐿 do

̃𝜽, r̃ = Leapfrog( ̃𝜽, r̃, 𝜖);
end 

Calculate 𝛼 = min (1, exp(𝜋∗( ̃𝜽)− 1
2 ̃r⋅r̃)

exp(𝜋∗(𝜽𝑖−1)− 1
2 r0⋅r0));

Generate 𝑢 ∼ 𝒰(0, 1);
if 𝑢 ⩽ 𝛼 then

𝜽𝑖 = ̃𝜽;
r𝑚 = −r̃ ;

else
𝜽𝑖 = 𝜽𝑖−1 ;
r𝑚 = −r𝑚−1 ;

end
Set 𝑖 = 𝑖 + 1;

end 
Function Leapfrog(𝜽, r, 𝜖)

Set r̃ = r + (𝜖/2)∇𝜽𝜋∗(𝜽);
Set ̃𝜽 = 𝜽 + 𝜖r̃;
Set r̃ = r̃ + (𝜖/2)∇𝜽𝜋∗( ̃𝜽);
Return: ̃𝜽, r̃;

A different approach to estimating posterior distributions is Approximate Bayesian Compu-
tation (ABC). This technique does not use the likelihood [93], but instead samples parameter 
vectors and instantly discards any proposed parameter vectors that do not provide a close 
enough fit to the experimental data [94]. Parameter vectors can be sampled randomly from 
the prior distribution, known as standard ABC, or can be dependent on the previously ac-
cepted vector through a proposal distribution, ABC MCMC, see [95] or Algorithm 3. For 
ABC, we must assign a tolerance that determines the maximum acceptable error between the 
proposed and experimental data. Alternatively, Sequential Monte Carlo can be introduced to 
ABC [94]. In this case, we define a sequence of tolerances, 𝜖𝑖, such that 𝜖0 > 𝜖1 > … > 𝜖𝑛. 
We accept 𝑁 parameter vectors that produce an acceptably close fit, according to 𝜖𝑖, assign a 
weight to each accepted parameter vector based on their closeness of fit and then repeat the 
process, setting the tolerance to 𝜖𝑖+1 and using the parameter vectors accepted in the previous 
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step to propose new parameter values.

Algorithm 3: ABC MCMC 
Result: Estimate of the posterior distribution, 𝜋0(𝜽)
Input: Experimental data y0;
Starting parameter vector, 𝜽0;
Tolerance, 𝜖;
for 𝑖 = 1, …, 𝑛 do

Propose 𝜽∗ ∼ 𝑞(𝜽𝑖−1, …);
Simulate data y∗ from 𝑓(y|𝜽∗);
if 𝑑(y0, y∗) ⩽ 𝜖 then

Calculate 𝛼 = min (1, 𝜋(𝜽∗)𝑞(𝜽𝑖−1|𝜽∗)
𝜋(𝜽𝑖−1)𝑞(𝜽∗|𝜽𝑖−1));

Generate 𝑢 ∼ 𝑈(0, 1);
if 𝑢 ⩽ 𝛼 then

𝜽𝑖 = 𝜽∗;
else

𝜽𝑖 = 𝜽𝑖−1;
end

else
𝜽𝑖 = 𝜽𝑖−1;

end
Set 𝑖 = 𝑖 + 1;

end 

The main benefit of ABC is that it allows Bayesian statistical methods to be applied to prob-
lems where deriving a likelihood function is difficult [93]. For soft tissue modelling, where 
we can derive a likelihood function by assuming that an experimental stress-strain curve is 
a set of stresses and strains produced by inputting a parameter vector into a deterministic 
SEF with IID noise added to each stress in the set, MCMC is preferable to ABC. MCMC 
is better able to explore the entirety of the posterior, especially the tails of the distribution, 
because MCMC does not have a tolerance parameter that enforces a particular closeness of fit 
for a parameter vector to have a chance of being accepted, and MCMC examines the relative 
probability of a move being accepted. Therefore, when the Markov chains are away from the 
modes of the posterior, moves can be proposed with a reasonable chance of being accepted. 
By contrast, it is more difficult to move away from the modes of the posterior in ABC because 
a parameter vector needs to be proposed that satisfies the distance criterion to the experimen-
tal data. For these reasons, the choice of tolerance would be vitally important when using an 
ABC algorithm to quantify uncertainty in a non-linear, multidimensional model of soft tissue 
deformation. Finally, in standard ABC, there is no dependence of our random samples on a 
parameter vector that satisfied the distance criterion [94]. Proposed parameters are dependent 
on the prior probability weight of values only. This reduces efficiency more in the standard 
ABC algorithm.
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Chapter 3

Literature Review

Models of soft tissue behaviour can broadly be classified into two families: phenomenological 
and microstructural models, although many models incorporate aspects of both approaches. 
Phenomenological models are tractable and easy to fit to experimental data, and these models 
can achieve close fits to experimental data. However, as the models’ parameters are not related 
to the properties of the soft tissue’s microstructure, then we cannot derive information about 
how the microstructure influences the tissue’s macroscopic mechanical behaviour from fitting 
the model. Consequently, phenomenological models can only be used to fit to existing stress-
strain or force-strain data: they could not be used to predict the mechanical behaviour of 
untested samples, including in vivo samples, for instance.

Microstructural models, on the other hand, aim to include parameters in the model that have 
a connection to the arrangement and properties of the constituents of the soft tissue. The-
oretically, these models can explain how the constituents of a soft tissue cause the macro-
scopic behaviour that we observe when we perform experiments on tissues. Furthermore, as 
microstructural models contain biologically relevant parameters, it is theoretically possible 
to independently measure values for the model’s parameters via non-destructive testing on 
a soft tissue and then input these values into the model to obtain an estimated stress-strain 
curve, for example. These stress-strain predictions can then be tested against experimental 
data taken from mechanical testing performed on the same tissue samples that were used to 
determine the model’s parameters non-invasively. This demonstrates the potential additional 
usefulness that microstructural models possess in terms of what situations they can be used. 
However, research needs to be done on testing the accuracy of microstructural models by 
comparing mechanical data collected from a soft tissue sample to the model’s predictions 
when the model parameters have been determined through non-destructive methods on the 
same tissue sample. Furthermore, directly incorporating elements of the microstructure into 
an SEF is likely to increase the complexity of the SEF. It is important that microstructural 
models remain tractable if they are to be widely used.

In this literature review, therefore, we seek to introduce and analyse some previously devel-
oped phenomenological, semi-microstructural and microstructural models that demonstrate 
the key features of each approach. In particular, we aim to analyse, firstly, what assumptions 
were made in the construction of the model and what phenomena are accounted for in the 
model. Secondly, we seek to identify strengths and drawbacks of each model and whether 
any gaps in the literature remain to expand upon the current understanding in soft tissue 
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modelling. Next, we examine the different approaches, microstructural and phenomenologi-
cal, that have been used previously in the literature to account for the dispersion of collagen 
fibres in soft tissues. Finally, we examine fields that Bayesian statistical techniques have been 
applied in to produce better estimates for the posterior probability distributions of model pa-
rameters.

3.1 Soft Tissue Modelling

3.1.1 Phenomenological models

To model the stress-strain behaviour of soft tissues, early phenomenological models used 
exponential functions and polynomials. Early examples of exponential functions include the 
models developed by Fung (1967) [96], Tong & Fung (1976) [97] and Chuong & Fung (1983) 
[98].

Fung studied the rabbit mesentery and introduced this theoretical finite elasticity approach 
for a number of reasons. Firstly, the approach was designed to better approximate the phys-
ical behaviour of soft tissue. Applying linear theory to the stress-strain behaviour of a soft 
tissue is unphysical because of the highly non-linear mechanical behaviour that soft tissues 
exhibit. Similarly, definitions of the Young’s modulus of soft tissues are unphysical because 
these materials stiffen with the deformation and, thus, the Young’s modulus of the tissue in-
creases with it. Secondly, Fung sought to introduce this theoretical framework to soft tissue 
mechanics in order to attempt to create a unified model that could be used to model various 
different deformations. The experiments that were attempted to be unified by Fung include 
three-dimensional boundary value problems, which are tough to do experimentally because 
of the network of soft tissues. Fung stated that a goal of theoretical finite models of soft 
tissues would to be able to predict mechanical behaviour [96].

To characterise the SEF, Fung defined the slope d𝑇 /d𝜆, where 𝜆 represents the stretch applied 
to the tissue and 𝑇 represents the ‘Lagrangian’ stress, that is, the tensile force per unit reference 
area. For instance, the first definition of d𝑇 /d𝜆 was

d𝑇
d𝜆

= 𝑎𝑇 , (3.1)

𝑇 = 𝑇 ∗ exp(𝑎(𝜆 − 𝜆∗)), (3.2)

𝑊(𝜆) = 𝑇 ∗

𝑎
[exp(𝑎(𝜆 − 𝜆∗)) − exp(𝑎(𝜆 − 𝜆∗))] , (3.3)

where 𝑎 is an arbitrary constant, and 𝑇 ∗ and 𝜆∗ represent a stretch and a stress value of 
the curve 𝑇. More complicated expressions for d𝑇 /d𝜆 and, ultimately, 𝑇 and 𝑊, were also 
introduced in the paper.

This research was vital, as he acknowledged that models need to account for the change in 
behaviour of the tissue as the tissue is stretched [96]. By considering a feature of the stress-
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strain behaviour, the slope of the d𝑇 /d𝜆, Fung was able to derive a model that can provide 
a close fit to experimental mechanical data. However, the Fung SEF can only model the soft 
tissue behaviour phenomenologically because the parameters in the model cannot be related 
to the microstructure. For instance, the model does not account for the gradual tautening of 
fibrils. Fung suggested that models assume that the elastic modulus of the tissue increases 
with the stretch, which only indirectly accounts for the microstructure and how changes within 
it result in changes to the macroscopic mechanical behaviour of the tissue.

Similarly, the model by Tong & Fung was developed to study skin, and the authors postulated 
the exponential form because of the closeness of the shape of the stress-strain curve to an 
exponential curve [97]. The paper also examined differences between the material behaviour 
of the tissue when strained in two perpendicular directions. The values of the model’s param-
eters, which were obtained through curve-fitting, differed between experiments. The authors 
theorised that may be because of the different preconditioning regimes employed for the ex-
periments [97]. However, parameter identification also poses a problem in phenomenological 
modelling because parameters lack a direct, physical basis for inclusion in the model. There-
fore, phenomenological parameters can only account indirectly for multiple microstructural 
properties, whether in part or in full.

The model developed by Chuong and Fung [98] was designed initially to model arteries under 
the assumption that they are homogeneous and cylindrically orthotropic soft tissues. The 
model assumes that the mechanical behaviour can be governed according to an exponential 
function. The SEF is given by

𝜌0𝑊 = 𝑐
2

exp[𝑏1𝐸2
𝜃 + 𝑏2𝐸2

𝑧 + 𝑏3𝐸2
𝑟 + 2𝑏4𝐸𝜃𝐸𝑧 + 2𝑏5𝐸𝑧𝐸𝑟 + 2𝑏6𝐸𝑟𝐸𝜃], (3.4)

where 𝑊 is the strain energy per unit volume in the undeformed configuration; 𝑏1—𝑏6 and 𝑐
are material parameters; and 𝐸𝑧, 𝐸𝜃 and 𝐸𝑟 are the longitudinal, circumferential and radial 
Green’s strain components. The exponent in (3.4) contains the stretches in the principal di-
rections of the deformation and shear deformations, and each term in the exponent contains 
a material parameter, 𝑏𝑖, that needs to be fitted to experimental data. Furthermore, another 
material parameter is introduced as a coefficient of the exponential term. The effect of the 
deformation on the artery’s constituents is not considered. By reducing the number of terms 
in the exponent to three, the Chuong-Fung model reduces to the model derived by Fung et al. 
(1979) [99]. This simplified Chuong-Fung SEF is

𝜌0𝑊 = 𝑐
2

exp[𝑏1𝐸2
𝜃 + 𝑏2𝐸2

𝑧 + 2𝑏4𝐸𝜃𝐸𝑧]. (3.5)

For the SEF (3.5) to be applicable in a three-dimensional problem, the material must be 
incompressible, so that the strain in one principal direction can be rewritten in terms of the 
stretches in the other two principal directions by the incompressibility constraint. The SEFs
(3.4) and (3.5) demonstrate that tractable phenomenological SEFs can be developed with 
varying degrees of simplicity from considerations of the overall macroscopic behaviour of 
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the tissue.

However, by changing the number of material constants in the model, the remaining param-
eters account, partially or fully, for either more or fewer microstructural phenomena, but 
we cannot ascertain what exactly the phenomena associated with each parameter are. The 
problem of parameter identification also exists for phenomenological power-law SEFs. For 
example, Tong & Fung rejected using a power law of the form developed by Blatz (1969) et 
al. [100] because the SEF contained too many parameters, thereby exacerbating the problem 
of parameter identification [97].

Vaishnav et al. (1972) [101] developed another power law for the stress-strain behaviour of 
curvilinearly orthotropic arteries. Similar to the exponential SEF of Chuong & Fung, each 
term in the polynomial is either dependent on the strains in the principal directions of the 
deformation or on the shear strains. The SEF is

𝑊 = 𝑘1𝛾2
(11)+𝑘2𝛾2

(22) + 𝑘3𝛾2
(33) + 𝑘4𝛾2

(12) + 𝑘5𝛾2
(13) + 𝑘6𝛾2

(23)

+𝑘7𝛾(11)𝛾(22) + 𝑘8𝛾(22)𝛾(33) + 𝑘9𝛾(11)𝛾(33) + … , (3.6)

where 𝛾(𝑖𝑗) is the 𝑖𝑗 component of the Green-St Venant strain tensor, which is a measure of the 
total strain acting on the material, for example 𝜆−1, where 𝜆 is the stretch ratio; 𝑘𝑖 are mate-
rial parameters; and the authors set the first-order terms, with regard to the components of the 
Green strain tensor, to zero. Due to the large number of parameters in (3.6), and the problems 
of parameter identification associated with a model that contains numerous phenomenologi-
cal parameters, the authors used a simplified SEF according to the approximation that arteries 
do not experience shear stresses at physiological strains and are incompressible. Under these 
assumptions, the SEF is a function of two components of the Green-St Venant strain tensor. 
The number of parameters in the model is also dependent on the highest degree of Green-St 
Venant strains that are assumed to have a negligible impact on the tissue’s resistance to the 
deformation. In the paper, the authors derive three-, seven- and twelve-parameter versions of 
the model. The three- and seven-component SEFs are

𝑊3 = 𝐴1𝛾2
(11) + 𝐵1𝛾(11)𝛾(22) + 𝐶1𝛾2

(22), (3.7)

𝑊7 = 𝐴2𝛾2
(11) + 𝐵2𝛾(11)𝛾(22) + 𝐶2𝛾2

(22) + 𝐷2𝛾3
(11) + 𝐸2𝛾2

(11)𝛾(22)

+𝐹2𝛾(11)𝛾2
(22) + 𝐺2𝛾2

(22). (3.8)

The seven- and twelve-parameter models were found to produce very similar fits to data by 
the authors [101], suggesting that the addition of the extra parameters does not capture more 
of the physical behaviour of arteries. Indeed, the extra parameters could be associated with 
problems of overfitting.

Veronda & Westmann (1970) developed a model of finite elasticity in skin. When developing 
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the model, the authors took into consideration previous experimental work that characterised 
soft tissues as non-linearly elastic, viscoelastic, and anisotropic. In order to create a tractable 
model that could fit to data, the authors decided to focus on the non-linear behaviour of the 
tissue and construct an isotropic, elastic model. To consider the elastic behaviour of the 
tissue, the authors looked at one monotonically increasing load on the tissue. Regarding the 
non-linear behaviour of the tissue, the authors cited the work of Ridge and Wright [102]–
[104], who, from in vitro tests performed on human skin, had ascertained that skin is initially 
compliant before stiffening as the tissue is stretched further. Ridge and Wright determined 
that the compliant phase was caused by the collagen fibres straightening, the stiff phase by the 
straight collagen fibres extending, and the yield phase by collagen fibres breaking. Veronda 
& Westmann proposed the SEF for the incompressible version of their model to be of the 
form

𝑊 = 𝑐1[e𝛽(𝐼1−3) − 1] + 𝑐2(𝐼2 − 3) + 𝑔(𝐼3), (3.9)

where 
𝜕𝑔(𝐼3)

𝜕𝐼3
= 𝜕𝑊

𝜕𝐼3
∣
𝐼3=1

= 𝑝, (3.10)

where 𝑝 is a Lagrange multiplier. The SEF was able to fit experimental data closely, but the 
values of the model’s parameters changed between the multiple fits they performed, demon-
strating an issue of including phenomenological parameters in the model.

Early phenomenological exponential SEFs were the inspiration for the independently derived 
Limbert and Middleton (2005) [105] and Itskov-Aksel (2006) models [106]. These models 
use a series of exponential functions to create a class of models that consists of polyconvex 
terms in the SEF. Polyconvexity is a vital property of an SEF because it ensures that, for any 
deformation state, there is a one-to-one relation between the reference and deformed con-
figurations. Not all earlier models were designed to satisfy this criterion, and for particular 
deformations some models are not polyconvex, rendering them unphysical [106]. The sym-
metry properties of the model are accounted for by using what are called generalised structure 
tensors (GSTs) by the authors [106]. The transversely isotropic and orthotropic GSTs, L𝑖, that 
describe the symmetry group of the material are

• Transverse Isotropy: L1 = l1 ⊗ l1, L2 = L3 = 1
2 (I − l1 ⊗ l1).

• Orthotropy: L𝑖 = l𝑖 ⊗ l𝑖, 𝑖 = 1, 2, 3,

where l𝑖 is a base vector in the 𝑖th principal material direction. From these GSTs, Itskov et 
al. defined a class of polyconvex SEFs given by

𝑊 = 1
4

𝑠

∑
𝑟=1

{ 1
𝛼𝑟

(exp[𝛼𝑟( ̃𝐼𝑟 − 1)] − 1) + 1
𝛽𝑟

(exp[𝛼𝑟(�̃�𝑟 − 1)] − 1)}, (3.11)

where �̃�𝑟 = tr(C−1L̃𝑟), ̃𝐼𝑟 = tr(CL̃𝑟), L̃𝑟 = ∑3
𝑖=1 𝑤(𝑟)

𝑖 L𝑖, 𝑖 = 1, 2, 3.
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An alternative approach to phenomenologically modelling soft tissue is the Bischoff-Arruda-
Grosh formulation (2002) [107]. In this model, the authors developed an orthotropic model 
in which a unit cell contains eight chains, corresponding to collagen fibres, that radiate from 
the centre of the cell to the corners. Each chain is freely jointed. The model was incorporated 
into the finite element software package ABAQUS and the model was able to fit experimental 
uniaxial and biaxial data as well as shearing data, at low levels of shear (at higher levels, the 
fit to data was not as good). Being able to fit to data for these varied deformations is a strength 
of this model. However, while the model fits well to data, we cannot learn about the nature 
of collagen fibres in soft tissues using the results of this model because the model does not 
attempt to explain directly how the microstructure drives the macroscopic behaviour.

Lapeer et al. (2010) [108] fitted various models to uniaxial and biaxial stress-strain data 
collected on abdominal skin taken from women in in vitro tests. The models tested included 
first- and second-order general polynomials with SEFs given by

𝑊 inc = (
𝑁

∑
𝑖+𝑗=1

𝑐𝑖𝑗(𝐼1 − 3)𝑖(𝐼2 − 3)𝑗) − 1
2

𝑝(𝐼3 − 1); (3.12)

reduced polynomials of the form 

𝑊 inc = (
𝑁

∑
𝑖=1

𝑐𝑖(𝐼1 − 3)𝑖) − 1
2

𝑝(𝐼3 − 1) (3.13)

up to the sixth-order, and Ogden models with an SEF given by 

𝑊 inc =
𝑁

∑
𝑝=1

𝜇𝑝

𝛼𝑝
(𝜆𝛼𝑝

1 + 𝜆𝛼𝑝
2 + 𝜆𝛼𝑝

3 − 3) (3.14)

up to the sixth-order. To identify the models that would be appropriate to use in finite element 
meshes, the authors selected models that had an 𝑅2 ⩾ 0.9 and passed a Drucker stability 
test [108]. Here, 𝑅2 is the squared correlation coefficient, also known as the coefficient of 
determination, and it is given by

𝑅2 = 1 −
𝑆𝑆reg

𝑆𝑆tot
, (3.15)

𝑆𝑆reg =
𝑛

∑
𝑖=1

(𝜎test
𝑖 − 𝜎model

𝑖 ), (3.16)

𝑆𝑆tot =
𝑛

∑
𝑖=1

(𝜎test
𝑖 − �̄�model

𝑖 ), (3.17)

where �̄�model
𝑖 is the mean stress of the test data [108]. The Drucker stability is a criterion that 

analyses if the deformation is stable by determining whether the work done is positive when 
the deformation is increased incrementally [109]. The given reduced polynomial models, 
mainly of orders three and six, were the only ones to pass these tests. The order three reduced 
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polynomial is the Yeoh model (1993) [110] and is given by

𝑊 inc = 𝑐1(𝐼1 − 3) + 𝑐2(𝐼2 − 3)2 + 𝑐3(𝐼1 − 3)3 − 1
2

𝑝(𝐼3 − 1). (3.18)

These purely phenomenological models are useful. They use established, well-known func-
tions to create a tractable model that is not computationally intensive and is able to fit to 
data well, in terms of the closeness of fit. However, the models lack any understanding of 
the microstructure in their formulation, which means the parameters are purely chosen for 
mathematical reasons. Thus, the choice of the number of parameters in the model is arbi-
trary. Hence, in fits to data, the results from these phenomenological models cannot inform 
us about how the microstructure drives the physical behaviour of a soft tissue.

3.1.2 Phenomenological models with microstructural considerations

In addition to phenomenological models, there are semi-microstructural models that consider 
the structure of a soft tissue in the SEF while including parameters that do not relate directly 
to the microstructure. One example is the widely used HGO model (2001) [111]. The strain 
energy function of the HGO model is

𝑊 a/m = 𝑐
2

(𝐼1 − 3) + 𝑘a/m
1

2𝑘a/m
2

[(exp[𝑘a/m
2 (𝐼a/m

4 − 1)2] − 1)

+(exp[𝑘a/m
2 (𝐼a/m

6 − 1)2] − 1)], (3.19)

where 𝑐 and 𝑘1 are stress-like parameters, 𝑘2 is a dimensionless parameter and the superscript
a/m denotes that the SEF is for the adventitia or the media, the two outermost layers of the 
artery, which the HGO was originally designed to model.

Multiple structural considerations influenced the development of the SEF given in (3.19). 
Firstly, the contribution of the intima, the innermost layer of the artery, to the HGO SEF is 
neglected because of its thinness compared to the media and adventitia in healthy arteries. 
Furthermore, suggested by images of the arteries, the model assumes that collagen fibres in 
the soft tissue are modelled in two distinct families of fibres. The artery is, thus, assumed 
to be orthotropic. The collagen content and orientation of the fibres is assumed to differ in 
the adventitia and media. To reflect that, the stress-like and dimensionless parameters are 
different for each layer. Additionally, the contribution from the collagen fibres to the SEF 
is assumed to be solely anisotropic and is separated from the SEF’s contribution, which is 
considered to be solely isotropic.

However, the model is still semi-microstructural because the parameters 𝑐, 𝑘1 and 𝑘2 do not 
model an exact property of the collagen fibres or ECM, such as the stiffness of collagen 
fibres: they are chosen to replicate microstructural phenomena and to ensure that the SEF 
possesses the required dimensions in each team. Hence, the exponential form of the SEF, 
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as in the models of Tong & Fung and Chuong & Fung, was not derived by the authors from 
the microstructure of arterial tissue, but was chosen in order to replicate experimental arterial 
stress-strain data. Consequently, while the HGO model is analytical and can easily be adapted 
to study the experimental behaviour of multiple fibrous soft tissues, the parameters themselves 
do not elucidate the properties of collagen fibrils or the NCM in the modelled tissue.

Chen et al. (2020) [112] developed a model that assumes collagen fibrils are initially crimped 
and inactive, causing the skin to be linearly elastic and compliant at small strains, where only 
the less stiff NCM resists the deformation. However, the authors first fit the model to the data 
collected for strains less than 2%. This enabled estimation of the parameters associated with 
the NCM’s contribution to the stress only. Then, the remaining data points were fitted to in 
order to ascertain values for the parameters associated with the collagen’s resistance to the 
deformation [112]. In the model, the NCM is modelled as a neo-Hookean material,

𝑊 NCM(FNCM) =
𝑐NCM (trCNCM − 3)

2
. (3.20)

Collagen fibres in the model are treated as exponentially stiffening materials with the SEF

𝑊 (𝑘)(𝜆(𝑘)) =
⎧{
⎨{⎩

𝑐(𝑘)
1

4𝑐(𝑘)
2

[exp(𝑐(𝑘)
2 [(𝜆(𝑘)) − 1]2 − 1]] , 𝜆(𝑘) > 1,

0, 𝜆(𝑘) ⩽ 0,
(3.21)

where the superscript (𝑘) denotes the SEF for collagen fibres in the 𝑘th family. Using his-
tological and imaging techniques, the model groups families of collagen fibres into bundles 
located in the tissue. Each bundle of collagen fibres can possess its own SEF. The stretch 
experienced by a collagen fibre is given by

𝜆(𝑘) = 𝐺𝑞

√
N(𝑘) ⋅ CN(𝑘), (3.22)

where 𝐺𝑞 = 𝑙𝑞/𝐿𝑞is a tortuosity parameter, called a straightness parameter by the authors of 
the paper, that defines the ratio between the two ends of a fibre, 𝑙𝑞, and the fibre’s length, 𝐿𝑞, 
and N(k) is a unit vector that represents the direction of the 𝑘th collagen fibre family.

The model makes use of many structural features of skin. Fibre orientation distribution, 
mass fraction of the collagen fibre network and NCM, and the initial slackness of collagen 
fibres are key features of the model. However, while soft tissue structure is key to the SEF, 
it contains phenomenological parameters such as 𝑐(𝑘)

1 which do not have a physical relevance 
and, therefore, we cannot use the values of the parameters that we obtain when fitting to data 
to infer more about the relationship between the tissue’s microstructure and macroscopic 
behaviour.
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3.1.3 Microstructural models

After having examined some phenomenological and semi-microstructural soft tissue mod-
els, we now analyse some microstructural models of soft tissue behaviour. One model that 
accounts for both the compliance of soft tissues at small strains and the rapid stiffening at 
larger strains is the sequential straightening and loading (SSL) model proposed by Kastelic 
et al. (1980) [29]. The model assumes that collagen fibrils are crimped in a reference soft 
tissue sample and straighten as the sample is deformed. A fibril is only assumed to tauten 
once it has become straight. To capture the non-linear stress-strain behaviour of the soft tis-
sues, the SSL model assumes that collagen fibrils possess different amounts of crimp, so they 
straighten sequentially. The gradual tautening of the fibrils accounts for non-linearity, as an 
individual fibril is assumed to be linearly elastic in the SSL model. The use of an exponential 
SEF in some phenomenological models indirectly replicates the recruitment of fibres and the 
strengthening of the tissue as the deformation is increased.

In the SSL model, a distribution function is used to quantify variation in the recruitment 
stretch, that is, the stretch at which a fibre become straight and tautens, throughout the fibrils 
in the tissue. Kastelic et al. [29] assumes that the fibrils closest to the centre of a tendon 
fascicle straighten and tauten first. Then going radially outwards, fibrils tauten gradually, 
until the fibrils nearest to the fascicle’s edge tauten. The SSL model contained an error in 
its interpretation of Hooke’s law which was rectified in the microstructural tendon model 
developed by Shearer (2015). To derive the SEF, the SSL model of collagen crimp, with a 
different distribution function for collagen crimp, was used to calculate the stress experienced 
by a single collagen fascicle [113]. Through this assumption of gradually recruited collagen 
fibrils, the resulting SEF is a piecewise function, with the three sub-regions of the SEF cor-
responding to none, some, and all of the fibrils in the fascicle being taut. The SEF derived by 
Shearer contained only microstructural parameters which could be independently measured 
via experiment.

Other SEFs that account for the sequential straightening of collagen fibres or fibrils have been 
developed. Zulliger (2004) et al. [114] expanded the HGO SEF to also consider the structural 
composition of the arterial wall in the model. The assumption of uncoupled isotropic-elastin 
and anisotropic-collagen terms remained, but the model introduced new parameters into the 
model corresponding to the volume fraction of elastin and collagen in the arterial wall. Zul-
liger et al. made this alteration because changes in the elastin and collagen content in the 
arterial wall affect the mechanical behaviour of the artery and have been observed in ageing 
and diseased arterial tissue [114]. However, in contrast to the HGO model, the authors did 
not assume that the elastin content of the wall was linearly elastic. Instead, a non-linear term 
involving 𝐼1, the first strain invariant associated with C, the right Cauchy-Green deformation 
tensor, and equal to tr(C), was used to model the elastin fibres’ contribution to the SEF.

In contrast to the SSL model, Zulliger et al. did not assume that an individual collagen fibre 
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obeys Hooke’s law. Instead, the strain energy due to a single collagen fibre is

Ψfibre(𝜖) =
⎧{
⎨{⎩

0 if 𝜖 ⩽ 0,

𝑐coll(𝜖 − ln(𝜖 + 1)) if 𝜖 > 0,
(3.23)

where 𝜖 = 𝜆 − 1 is the fibre engagement strain. Similar to the SSL model, however, Zulliger 
et al. neglected the contribution to the SEF of slack collagen fibres. But in this model the 
recruitment, or critical, stretches of the collagen fibres are governed by the following log-
logistic distribution:

𝜌fibre(𝜖) =
⎧{
⎨{⎩

0 if 𝜖 ⩽ 𝜖0,
𝑘
𝑏

(𝜖−𝜖0/𝑏)𝑘−1

[1+(𝜖−𝜖0/𝑏)𝑘]2 if 𝜖 > 𝜖0,
(3.24)

where 𝑏 > 0 is a scaling parameter and the value of 𝑘 (> 0) determines the shape of the 
distribution. The authors set 𝜖0 equal to zero, as they assumed that there exists at least one 
fibre in a soft tissue sample that is straight but unstressed in the reference configuration and 
immediately tautens when a deformation is applied. The choice of probability distribution for 
the recruitment stretch was not motivated by histological evidence, but was chosen arbitrarily 
[114].

Yang and Sherman (2015) [115] developed a model to examine how collagen in skin, and 
particularly the dermis, helps skin to resist tearing when it is deformed. Skin resists tears 
through the straightening and subsequent tautening of the collagen fibrils, and fibril sliding, 
reorientation, and bonding. To replicate the geometry of collagen fibrils, the model assumes 
fibril waviness can be modelled as possessing the geometry of a succession of connected cir-
cular segments. With this geometry, the model can be solved analytically. To calculate the 
constitutive equation for the model, the model uses Castigliano’s method—which describes 
the deflection from the natural state to the equilibrium state, attained for a particular defor-
mation, as the derivative of the resultant strain energy on the body in terms of the force [116]. 
Consequently, the stress, 𝜎0, and strain increment d𝜖 is given in the model as:

𝜎0 = ∫
𝑟

𝑟𝑐

𝐸′ (csc 𝜃0
𝑟𝑐 ⋅ 𝑟

[𝑟 sin (𝑟𝑐
𝑟

𝜃0) − 𝑟𝑐𝜃0 cos (𝑟𝑐𝜃0
𝑟

)]) d𝑟, 𝜎0 = ∫
𝑟

𝑟𝑐

𝐸′d𝜖, (3.25)

where 𝑟𝑐 is the initial circle radius, 𝜃0 is the initial central angle of the circular segment, and 
𝐸′ is the pseudo-modulus that is dependent on the geometry of the wire. To test the model’s 
predictions against data, steel wires, which represented the tensile stress-strain response of 
skin, were stretched. The model was found to achieve a good fit to data.

Freed and Rajagopal (2016) developed a model that uses a theory of fibrous soft tissues that 
assumes we can model the skin as consisting of a network of crimped collagen fibres, treated 
as strings, attached to straight elastin fibres, which are also treated as springs [117]. The 
stress-strain response in the Freed-Rajagopal model, therefore, is governed by the following 
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pattern. At small strains, the stress-strain response is due to the elastin fibres tautening. This 
initial phase occurs until the microstructure has been reconfigured to the point where collagen 
fibres become straight and start to tauten. At this stretch, the collagen fibres dominate the 
response to the tissue, as they are assumed to be much stiffer than the elastin fibres in the 
tissue. These modelling assumptions replicate the stress-strain response that we typically 
observe in soft tissues: the model’s predictions possess a toe region, where the collagen 
fibres start to straighten under the deformation and only the compliant constituents of the 
ground matrix and the elastin fibres resist the deformation, a heel region, where collagen 
fibres gradually become straight, and a linear region where the stiff, Hookean fibres resist the 
deformation.

For the constitutive equation of the Freed-Rajagopal model, we treat the stretch 𝜆 = 𝜆C𝜆E, 
where 𝜆C = d𝑥/d𝜂 and 𝜆E = d𝜂/d𝑋, and d𝜂 represents an infinitesimal separation between 
particles caused solely by the straightening of collagen fibres. The fibre strain 𝜖 possesses 
the relation 𝜖 = ln 𝜆 = 𝜖C + 𝜖E, where 𝜖C and 𝜖E represent the strains for which the collagen 
fibres and the elastin fibres control the response to the deformation, respectively. The collagen 
fibres are modelled as Hookean elastic fibres. Therefore, in terms of the true stress, 𝜎, we 
have 𝜖C = 𝜎/EC, where EC is the Young’s modulus of the linear region of the stress-strain 
curve. The elastin fibres, by contrast, are modelled as strain-limiting fibres, that is,

𝜖E = 1
𝛽

⎛⎜
⎝

1 − 1
(1 + (𝛽 − 1) 𝜎

EE )
𝛽

(𝛽−1)

⎞⎟
⎠

, (3.26)

where EE is the Young’s modulus of the toe region and 𝛽 = 1/𝜖E
MAX(> 1) denotes the stretch 

at which collagen fascicles have straightened.

The model achieved close fits to experimental data taken from porcine chordae tendon. Fur-
thermore, the model contains three parameters: EC, EE, and 𝛽 that possess a physical basis 
with regard to the microstructure and have been included in the model through microstructural 
considerations incorporated into the model. By contrast, Babu et al. (2015) [118] derived a 
model with the same three constitutive parameters, but derived phenomenologically [117]. 
The HGO model formed the basis of the model for Babu et al. to fit to the biomechanics 
of human ascending thoracic aortic dissections [118]. Additionally, Freed and Rajagopal fit 
to tendon data collected by Freed and Doehring (2005), who themselves modelled the soft 
tissue as a helical spring model that accounts for the geometry of springs [119].

Aparício et al. (2016) [120] introduced a chemo-mechano-biological mathematical model 
to describe how interdependent chemical, mechanical, and biological processes interact to 
influence the behaviour of the arterial wall. From the mechanical perspective, the model ex-
amines growth and remodelling by describing the effect of collagen synthesis and degradation 
in wound healing and in the development of an inflammatory aneurysm in the human aorta, 
modelled by Aparício et al. as a bilayer. The model is analytically tractable through the use of 
a triangular distribution to describe the crimp of collagen fibres in the soft tissue, even though 
the model does not assume that the fibres are linearly elastic. A triangular probability distri-
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bution contains three distribution parameters: the minimum value, 𝑎; the maximum value, 𝑏; 
and the modal value, 𝑐. Probability increases linearly from the point 𝑎 to the point 𝑐, and the 
probability decreases linearly from 𝑐 to 𝑏. The mode does not necessarily need to lie half-way 
between 𝑎 and 𝑏. The use of a triangular distribution introduces three distribution parameters 
into the model, but each one has a physical meaning, as they represent the minimal, modal, 
and maximal recruitment stretch of the collagen fibres.

The model by Martufi and Gasser (2012) [121] also employs a triangular distribution to ac-
count for crimp of the collagen fibres to study the impact of collagen fibre turnover on abdom-
inal aortic aneurysms. In the model, fibrils aggregate into fibres, and it is the undulation of the 
fibrils that is governed according to a triangular probability density function (PDF). Through 
these assumptions, the model produces a piecewise analytical expression for the Cauchy stress 
of a collagen fibre. The model also assumes that the collagen fibres are dispersed. However, 
the model initially assumes that the collagen fibres are isotropically distributed throughout 
the soft tissue, but the orientation density is adjusted over time according to the local stretch 
field. With these features, the model shows that collagen fibre turnover has an impact on 
the macroscopic stress field: through fibre turnover, high stress gradients across the arterial 
wall are avoided [121]. Through the choice of model for collagen fibre turnover, the model 
predicts physically reasonable stress fields in the artery.

Most models of skin deformation ignore the interactions between the non-collagenous ma-
trix (NCM) and the collagen fibrils. Limbert accounted for these interactions as well as the 
volumetric deformation, the deviatoric stretch along the fibrils, and the cross-fibre shear in 
an orthotropic model. Orthotropy was obtained through the addition of a second family of 
fibres, and Limbert’s formulation was built upon the work of Lu and Zhang [122]. The SEF 
for this model is

𝜓 = 𝜓𝜈(𝐽) +
2

∑
𝑖=1

[𝜓�̄�
𝑖 (�̄�𝑖) + ̂𝜓1

𝑖 (𝛼𝑖
1) + ̃𝜓2

𝑖 (𝛼𝑖
2, �̄�𝑖)] , (3.27)

where 𝐽 = √𝐼3 represents the ratio of deformed to undeformed volume; �̄�𝑖 = 𝐼− 1
6

3 √𝐼 𝑖
4 is the 

stretch of the fibres in fibre family 𝑖; 𝛼 ̄𝑖
1 = 𝐼1𝐼 𝑖

4 − 𝐼 𝑖
5 is the cross-fibre shear of fibre family 

𝑖, and 𝛼𝑖
2 = 𝐼𝑖

5
(𝐼𝑖

4)2 represents the interaction between the fibres and the NCM. For Ψ�̄�
𝑖 (�̄�𝑖), 

Limbert assumed that collagen fibres behave like a worm-like chain. This ultimately led 
to a microstructural model with twenty-three physically relevant parameters. The values of 
these parameters were obtained either by direct fits to data, or by using a global optimisation 
program to determine parameter values. The model is also multiscale, as it was developed so 
that nanoscopically important and measurable quantities that impact macroscopic mechanical 
behaviour were included in the SEF.
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3.1.4 Dispersion of collagen fibres

The Gasser-Holzapfel-Ogden (GOH) model (2006) [123] expands upon the HGO model by 
accounting for the dispersion of collagen fibres. A von Mises distribution, Appendix A, the 
projection of the normal distribution onto the unit circle, is used to model the distribution of 
fibre orientations. Therefore, collagen fibres are assumed in the GOH model to be oriented 
with rotational symmetry around a mean fibre direction, a0. The model uses the Generalised 
Structure Tensor (GST) approach, which incorporates dispersion into the model by the intro-
ducing a dispersion parameter 𝜅. With an arbitrary referential fibre orientation M, the GST, 
H, is

H = 1
4𝜋

∫
𝜔

𝜌(Θ, Φ)M(Θ, Φ) ⊗ M(Θ, Φ)d𝜔, (3.28)

where 𝜌(Θ, Φ) represents the orientation distribution function and spherical polar coordinates 
have been used to calculate the GST. In the development of the SEF, the authors assumed 
a0, the mean fibre direction, coincided with the e3 axis and chose M = sin Θ cos Φe1 +
sin Θ sin Φe2 + cos Θe3. Under these assumptions, H simplifies to

H = 𝜅I + (1 − 3𝜅)a0 ⊗ a0, (3.29)

where 
𝜅 = 1

4
∫

𝜋

0
𝜌(Θ) sin3 ΘdΘ (3.30)

and 𝜌(Θ) has lost its dependence on Φ through the authors’ choice of a0 and M [123]. By 
accounting for dispersion, the invariant 𝐼4 is replaced in the SEF by the pseudoinvariant 𝐼∗

4 , 
where

𝐼∗
4 = 𝜅𝐼1 + (1 − 3𝜅)𝐼4. (3.31)

The SEF for an orthotropic artery according to the GOH model is

𝑊 a/m = 𝑐
2

(𝐼1 − 3) + 𝑘a/m
1

2𝑘a/m
2

[(exp[𝑘a/m
2 ((𝐼∗

4)a/m − 1)2] − 1)

+(exp[𝑘a/m
2 ((𝐼∗

6)a/m − 1)2] − 1)]. (3.32)

That is, we have replaced 𝐼4 and 𝐼6 in the SEF for the HGO model, (3.19), with their dispersed-
fibre analogues.

The appeal of the GOH model is, therefore, that with an appropriate choice of M, 𝜌(Θ, Φ) and 
a0, we can account for fibre dispersion while preserving the tractability of the SEF through the 
introduction of a single additional parameter. However, there is a problem with the tension-
compression switch of the GOH model. The model assumes both that fibres oriented at all 
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Figure 3.1. The boundaries of the regions of the Latorre-Montans model of dispersion. The fibres that are 
assumed to be stretched, by the model, and the fibres that are assumed crimped in each region are also shown.

angles become mechanically active and that the soft tissue is incompressible. These two 
properties of the model contradict each other, as for an incompressible material with dispersed 
collagen fibres oriented at all angles, there must exist some collagen fibres that contract. 
Consequently, later models were developed that attempt to retain the tractability of the GOH 
model, but use a different tension-compression switch that correctly identifies, for a given 
deformation, which fibres contract and which extend.

One such model was developed by Latorre & Montans (2016) [124]. Like the GOH model, 
Latorre & Montans assumed that the distribution of collagen fibre orientations in the soft 
tissue sample adheres to the von Mises distribution. To account for crimped, and thus slack, 
fibres, they introduced a piecewise SEF with regions that are defined by the direction of the 
stretched collagen fibres in relation to the mean orientation of the fibres in the reference body. 
To do this, they examined the average stretch along the mean direction of the fibres, 𝜆a, and 
the average stretch in a plane perpendicular to the mean direction of the fibres, 𝜆𝜋. The 
boundaries of the piecewise SEF are defined by the values of 𝜆a and 𝜆𝜋, and thus 𝐼4 − 1 and 
𝐼1 − 3, as follows:

• 𝐼4 −1 < 0 (𝜆a < 1): using the symmetry of the fibre distribution, fibres at a polar angle 
𝜃 ∈ [Θ0, 𝜋 − Θ0] are recruited.

• 𝐼4 − 1 ⩾ 0 and 𝐼4 − 1 ⩾ 𝐼1 − 3 (𝜆a ⩾ 1 and 𝜆𝜋 ⩽ 1): using the symmetry of the fibre 
orientations, fibres at a polar angle 𝜃 ∈ [0, Θ0] and 𝜃 ∈ [𝜋 − Θ0, 𝜋] are recruited.

• 𝐼4 − 1 ⩾ 0 and 𝐼4 − 1 < 𝐼1 − 3 (𝜆a ⩾ 1 and 𝜆𝜋 > 1): every fibre is considered to be 
recruited.

The regions are represented pictorially in Figure 3.1.

As only a subset of collagen fibres in the soft tissue sample are assumed to be mechanically 
active for certain deformations, we must modify the generalised structure tensor defined by
(3.29) and (3.31). Therefore, we define
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𝜅1(Θ0) = 1
2

∫
𝜋
2

Θ0

𝜌(Θ) sin3 ΘdΘ, (3.33)

𝜏1(Θ0) = 1
2

∫
𝜋
2

Θ0

𝜌(Θ) sin ΘdΘ, (3.34)

𝜅2(Θ0) = 1
2

∫
Θ0

0
𝜌(Θ) sin3 ΘdΘ, (3.35)

𝜏2(Θ0) = 1
2

∫
Θ0

0
𝜌(Θ) sin ΘdΘ, (3.36)

where Θ0 is a function of the deformation and, hence, the invariants 𝐼1 and 𝐼4, and we replace 
𝐼∗

4 with the pseudoinvariant 𝜖(Θ0). The value of the pseudoinvariant 𝜖(Θ0) is dependent on 
the aforementioned conditions on 𝐼4 − 1 and 𝐼1 − 3. When 𝐼4 − 1 < 0,

𝜖(Θ0) = 𝜅1(Θ0)(𝐼1 − 3) + [𝜏1(Θ0) − 3𝜅1(Θ0)](𝐼4 − 1). (3.37)

When 𝐼4 − 1 ⩾ 0 and 𝐼4 − 1 ⩾ 𝐼1 − 3, 

𝜖(Θ0) = 𝜅2(Θ0)(𝐼1 − 3) + [𝜏2(Θ0) − 3𝜅2(Θ0)](𝐼4 − 1). (3.38)

And when 𝐼4 − 1 ⩾ 0 and 𝐼4 − 1 < 𝐼1 − 3

𝜖(Θ0) = 𝜅(𝐼1 − 3) + [1 − 3𝜅](𝐼4 − 1). (3.39)

However, there are problems associated with this model too. The authors derived a much 
simpler form of the GST than we do. To calculate the stress, we must compute the GST by 
differentiating 𝜖(Θ0) with respect to C. In terms of 𝐼1 and 𝐼4

HLM = 𝜕𝜖(Θ0)
𝜕C

= 𝜕𝜖(Θ0)
𝜕𝐼1

𝜕𝐼1
𝜕C

+ 𝜕𝜖(Θ0)
𝜕𝐼4

𝜕𝐼4
𝜕C

. (3.40)

If we differentiate the first case of 𝜖(Θ0), (3.37), with respect to 𝐼1, denoted by 𝜕𝜖1(Θ0)
𝜕𝐼1

, then 
we find that

𝜕𝜖1(Θ0)
𝜕𝐼1

= 𝜕𝜅1(Θ0)
𝜕𝐼1

(𝐼1 − 3) + 𝜅1(Θ0) + [𝜕𝜏1(Θ0)
𝜕𝐼1

− 3𝜕𝜅1(Θ0)
𝜕𝐼1

] (𝐼4 − 1). (3.41)

We find similar for the other partial derivatives with respect to 𝐼1 and 𝐼4 for (3.38) and (3.39). 
However, Latorre & Montans found the following much simpler form of the derivative:

𝜕𝜖(Θ0)
𝜕C

= 𝜅∗I + (𝜏 ∗ − 3𝜅∗)a0 ⊗ a0, (3.42)

where 𝜅∗ and 𝜏 ∗ represent expressions of the two quantities given in (3.37)—(3.39). Latorre 
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& Montans stated in their original derivation of the model that the additional terms in (3.41)
and the other partial derivatives of the quantity 𝜖(Θ0) with respect to 𝐼1 and 𝐼4 cancel out 
to produce (3.42) [124]. Cancelling out the additional terms in the partial derivatives is, 
therefore, key to obtaining the analytical form of the SEF given in the paper. However, we 
have not been able to simplify derivatives such as (3.41) to obtain (3.42). Instead, we have 
found discontinuities in the values of the stress at the boundaries of the various regions.

Additionally, the model assumes that there exist deformations for which every fibre in the soft 
tissue sample is stretched. However, the assumptions that the material is incompressible and 
that the distribution of fibre orientations is governed by a von Mises distribution ensure that 
not all fibres can be stretched in the material. The probability distribution function used in 
the paper by Latorre and Montans is

𝜌(Θ) = 2√2𝑟
𝜋

1
erfi(

√
2𝑟)

exp(2𝑟 cos2 Θ), (3.43)

where 𝑟 is a concentration parameter. Consequently, 𝜌(Θ) > 0 for all possible values of Θ, 
and for a given Θ fibres are equally distributed in all directions. By the incompressibility 
constraint, 𝜆1𝜆2𝜆3 = 1, so when one principal direction is stretched, at least one other prin-
cipal direction must be contracted. Hence, any fibres oriented in that principal direction must 
be contracted and slack. This discrepancy arises because the model focuses on the average 
stretch along both the mean fibre direction and in a plane perpendicular to the mean fibre di-
rection, and when the deformation is such that 𝐼4 − 1 ⩾ 0 and 𝐼4 − 1 < 𝐼1 − 3, both average 
stretches are greater than one.

Another model that attempted to rectify the tension-compression switch of the GOH model 
was built by Holzapfel & Ogden (2017) [125]. According to this model, the geometry of 
stretched fibres is governed by the equation (CN) ⋅N = 1, where C is the right Cauchy-Green 
deformation tensor and N is a vector denoting the reference orientation of an arbitrary fibre. 
The authors’ choice of N and, thus, (CN) ⋅ N were

N = sin Θ cos ΦE1 + sin Θ sin ΦE2 + cos ΘE3, (3.44)

(CN) ⋅ N = sin2 Θ(𝐶11 cos2 Φ + 2𝐶12 sin Φ cos Φ + 𝐶22 sin2 Φ)

+2 sin Θ cos Θ(𝐶13 cos Φ + 𝐶23 sin Φ) + 𝐶33 cos2 Θ, (3.45)

where E𝑖, 𝑖 ∈ {1, 2, 3}, represent unit vectors along the three coordinate axes in the refer-
ence configuration, and Θ and Φ still denote the polar and azimuthal angles of the spherical 
coordinate system, respectively.

As with the Latorre-Montans model, the dispersion parameter 𝜅 is modified to account for 
the stretched fibres only. If the fibres are stretched in the mean fibre direction, denoted as M
in the Holzapfel-Ogden model, then

68



𝜅1(Θ0) = 1
4

∫
Θ0

0
𝜌(𝜂) sin3 𝜂d𝜂 + 1

4
∫

𝜋

Θ0

𝜌(𝜂) sin3 𝜂d𝜂, (3.46)

= 1
2

∫
Θ0

0
𝜌(𝜂) sin3 𝜂d𝜂, (3.47)

by the symmetry of the fibre distribution, assuming we use a von Mises distribution, and Θ0

is the angle between M and the boundary of, in this case, the cone defined by (CN) ⋅ N = 1. 
The expression (3.47) is of the same form as 𝜅2(Θ0) in the Latorre-Montans model, (3.35), 
and is crucially different to the quantity, 𝜅, in the structural tensor for the GOH model, (3.30), 
which assumes all collagen fibrils become taut when a tissue is stretched along the mean fibril 
orientation. Conversely, if the fibres are contracted along the mean fibre direction, then the 
dispersion parameter is

𝜅2(Θ0) = 1
2

∫
𝜋
2

Θ0

𝜌(𝜂) sin3 𝜂d𝜂, (3.48)

where the symmetry of the fibre orientations has again been used. Importantly, Θ0 in (3.47)
and (3.48) is a function of the deformation. To avoid the problems of discontinuous stresses 
present in the Latorre-Montans model, Holzapfel and Ogden examined the derivative of 
𝜅1(Θ0), which is [125]

𝜅′
1(Θ) = 1

2
𝜌(Θ) sin3(Θ). (3.49)

In the GOH model, when all fibres are assumed to be active at the same time, 𝜅 is given by

𝜅 = 1
2

∫
𝜋
2

0
𝜌(Θ) sin3 ΘdΘ. (3.50)

Holzapfel & Ogden argue that we can assume 𝜌(Θ) = 0 for Θ ∈ [Θ+
0 , 𝜋

2 ], but 𝜌(Θ) = 0
for this set of angles is not technically correct, as there are fibres oriented in those directions. 
However, they are crimped, so mechanically, the crimped fibres can be treated as not being 
present. Thus, 𝜅′

1(Θ+
0 ) = 0 and we can treat 𝜅1(Θ0) similarly to 𝜅 in the GOH model. That 

is, 𝜅1(Θ0) is treated as being stationary when differentiated with respect to C [125]. A similar 
argument can be made for 𝜌(Θ) for Θ ∈ [0, 𝜋

2 − Θ−
0 ] for 𝜅′

2(Θ0).

Therefore, the problem of derivatives of the dispersion parameter that result in discontinu-
ous stresses is resolved in the Holzapfel-Ogden model. However, there is still one significant 
problem with the model: for a general deformation, it is not possible to calculate the geometry 
of the stretched fibres that is needed to compute the dispersion parameter, 𝜅1,2(Θ, Ψ) analyti-
cally. For a general stretch, we cannot rewrite (3.45) to get a solution for Θ and, thus, identify 
which fibres are stretched and which are not. The GST method’s benefit of tractability only 
applies to the Holzapfel-Ogden model for a limited set of deformations, a stretch along the 
mean fibre direction, for example, which produces a cone of stretched fibres centred around 
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N

M, λ Θ0

Figure 3.2. The cone of collagen fibres that are stretched, according to the Holzapfel-Ogden model, when a 
tissue with dispersed fibres that possess rotational symmetry around the mean direction M are stretched, 

uniaxially, along M. The vector N represents the orientation of an arbitrary collagen fibre within the tissue and 
Θ0 represents the angle made between M and the fibres located at the boundary of the cone.

the mean fibre direction, Figure 3.2

The Angular Integration (AI) approach to dispersion of collagen fibre orientations was pro-
posed by Lanir (1983) [126]. In the AI approach, the contributions to the SEF of collagen 
fibres oriented at all possible polar and azimuthal angles in a reference sphere are computed 
to calculate the total contribution to the tissue’s strain energy from the collagen fibres. Lanir 
assumed that elastic and collagen fibres in soft tissues must have their contributions to the 
SEF calculated separately. Consequently, the strain energy in the collagen and elastic fibres 
per unit volume, as calculated by Lanir, is

𝑊 = ∑
𝑘

∑
𝑢

𝑆𝑘 ⋅ 𝑅𝑘(u) ⋅ 𝑤𝑘(𝜆) ⋅ 𝛿Ω, (3.51)

where 𝑆𝑘 is the volume fraction of fibre type 𝑘, 𝑤𝑘(𝜆) is the strain energy in a single fibre 
at stretch ratio 𝜆, 𝑅𝑘(u) represents the volumetric fraction of fibres oriented in the direction 
u and 𝛿Ω denotes the proportion of the surface of the sphere for which the term is being 
calculated. The load per unit reference cross-sectional area of fibre type 𝑘 is

𝑓𝑘(𝜆) = 𝜕𝑤𝑘(𝜆)
𝜕𝜆

. (3.52)

In this formulation, the deformation and the strain energy due to a single fibre are incorpo-
rated into the model. However, we still need to account for collagen crimp. Therefore, Lanir 
adapted the expression in (3.52) by assuming that fibrous proteins in soft tissues possess 
a non-uniform distribution of crimp and that fibre orientations do not change as the fibres 
straighten [126]. By these assumptions, the load per unit reference cross-sectional area of 
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fibre type 𝑘 becomes

𝑓∗
𝑘,u(𝜆) =

𝜆

∑
𝑋=1.0

𝐷𝑘,u(𝑋) ⋅ 𝑓𝑘 ( 𝜆
𝑋

) 𝛿𝑋, (3.53)

where 𝐷𝑘,u(𝑋) is an undulation density function that defines the distribution of the critical 
stretch, 𝑋, the stretch at which a fibre becomes straight and taut, for fibres of type 𝑘 in the 
direction u.

In contrast to the GST method for modelling dispersion, the Angular Integration approach can 
successfully differentiate between taut and slack fibres throughout the reference sphere for a 
general deformation. However, the analytical form of the SEF is lost in the AI approach and 
we must use numerical integration to calculate the stress, which is a computationally intensive 
process. In the literature, this effect has partially been mitigated by making some simplifying 
assumptions to the model proposed by Lanir. For example, elastin fibres are often considered 
to have a negligible contribution to the tissue’s ability to resist the deformation. Thus, as one 
constituent of a non-collagenous matrix, they are assumed to be linearly elastic. Furthermore, 
rather than including an additional factor corresponding to the undulation density of the fibres, 
collagen crimp can be incorporated into the SEF of a single collagen fibre.

The Flynn-Rubin-Nielsen model (2011) [127] attempts to model dispersion of collagen fi-
bres, co-aligned within a particular bundle, phenomenologically while eradicating the use 
of the costly and time-intensive numerical integrals associated with the Angular Integration
approach. The model assumes that there are six fibrous bundles that consist of an elastin fibre 
in parallel with a collection of undulated collagen fibres that are oriented along two oppos-
ing vertices in a regular icosahedron. In this model a single collagen fibre is assumed to be 
linearly elastic, so analytical forms of the stress and SEF can be derived when collagen fibre 
crimp is governed using a step distribution or a triangular distribution [127].

3.2 Markov chain Monte Carlo

Previously in this chapter, we have examined a representative subset of phenomenological, 
semi-microstructural, and microstructural models of soft tissue behaviour. This analysis has 
enabled us to identify key features that we would like a new model of soft tissue behaviour 
to possess in order to advance the existing field of soft tissue behaviour and, potentially, be 
used in the future to predict tissue behaviour and inform important medical procedures that 
can be performed on tissues. In this section, we briefly detail a history of MCMC and discuss 
some scientific fields that Bayesian statistics has successfully been implemented within in 
the past. These examples come from a wide variety of fields to demonstrate the utility, in 
general science, of accounting for uncertainty in a problem. These examples will include 
instances where MCMC has successfully been applied to sample posterior distributions, or 
properties of the distributions. These examples will also provide motivation for attempting 
to examine soft tissue modelling with a Bayesian approach. We will also include examples of 
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other Bayesian statistical techniques being applied to a problem. This is done in order to show 
the robustness of the Bayesian approach and to demonstrate that, if MCMC does not prove to 
efficiently sample the posteriors of our model parameters in later chapters, that further work 
could be done to apply other statistical techniques to the problem.

The origin of Markov chain Monte Carlo methods can be traced back to Metropolis and Ulam 
(1949) [128]. In the paper, the authors were mainly concerned with applying statistical tech-
niques to study the problem of interacting molecules moving through a medium and being 
involved in collisions that create new molecules. Studying this problem was important for 
the work in the nuclear sciences that was then being done at Los Alamos. At the time, study-
ing this problem without Monte Carlo methods required time-intensive calculations to obtain 
approximate solutions to even the most simple of problems. Using a Monte Carlo approach, 
the authors proposed applying random processes on a set of numbers corresponding to inde-
pendent variables that describe the motion and position of each nuclear particle in order to 
estimate the probability distribution for the independent variables at a later time.

A few years later, Metropolis co-authored a 1953 paper that outlined an alternative method 
to standard Monte Carlo sampling [129] that was used to study the properties of substances 
that consist of interacting molecules. The authors proposed new states by moving one of the 
𝑁 particles, situated at (𝑋, 𝑌 ), to the position (𝑋∗, 𝑌 ∗) in a repeating square as follows:

𝑋∗ → 𝑋 + 𝛼𝜉1, (3.54)

𝑌 ∗ → 𝑌 + 𝛼𝜉2, (3.55)

where 𝛼 is the maximum distance that can be moved by a particle in any given direction 
and 𝜉1,2 ∈ [−1, 1]. The symmetric proposal distribution for this problems proposes moves 
in a square of length 2𝛼. Standard Monte Carlo methods would accept the moves. The 
authors, however, posited that, in their new method, the new position is accepted based on 
the potential energy of the proposed state compared to the potential energy of the current 
state. If the potential energy, 𝐸, of the proposed system is less than that of the current system, 
then exp(−𝐸/𝑘𝑇 )—where 𝑘 is Boltzmann’s constant and T is the temperature in degrees 
Kelvin—is increased and the move is accepted. Conversely, if the potential energy of the 
proposed system is higher than that of the current system, then exp(−𝐸/𝑘𝑇 ) is reduced and 
we accept the move with probability exp(−Δ𝐸/𝑘𝑇 ), where Δ𝐸 represents the increase in 
energy from the current state to the proposed state. Compared to standard Monte Carlo, this 
algorithm enables sampling to be performed more commonly on states with lower potential 
energy while also allowing transitions to less probable states with high potential energies. 
This algorithm is ergodic and for a particular state 𝑟, the posterior probability of the system 
being in state 𝑟 is proportional to exp(−𝐸𝑟/𝑘𝑇 ). This problem is similar to the MCMC 
technique simulated annealing.

In 1970, Hastings generalised the Metropolis algorithm for MCMC problems where the pro-
posal distribution is asymmetric [130]. Due to increased computational power, MCMC has 
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become a well-established and frequently used Bayesian statistical method in a wide variety 
of mathematical fields. For example, MCMC has been applied to flood frequency analysis 
[131] and classification of malignant breast cancer tumours [132]. Additionally, van Raven-
zwaaij (2018) et al. [80] demonstrated how MCMC can be used, according to a Metropolis 
algorithm, to calculate the mean of normally distributed in-class test scores for a known vari-
ance. Through this simplified example, for which there exists an analytical expression for 
the distribution of test scores, 𝑁(100, 15), the necessity of a burn-in phase when the initial 
guesses for the distribution’s parameters are poor can be highlighted. Huang et al. (2006) 
[133] studied the dynamics of HIV in patients undergoing retroviral therapy using Markov 
chain Monte Carlo in hierarchical Bayesian methods for mixed-effect models. This demon-
strates the applicability of Bayesian methods for complex systems with difficult posteriors to 
sample from.

Acquaviva et al. (2011) [134] created an MCMC algorithm to use a galaxy’s spectral energy 
distribution to estimate physical properties of the galaxy like its age, stellar mass, and red-
shift. The construction of the MCMC algorithm was motivated because parameters used in 
the modelling of galaxies are correlated due to the interactions between galactic phenomena 
[134]. The correlation between parameters ensure that the posterior distributions are highly 
non-Gaussian and, thus, 𝜒2 minimisation is not an effective method of parameter estimation 
[134].

Bray (2002) [135] used MCMC methods to study incidence and mortality rates of various 
cancers. With the lack of immediate access to private medical data, Bayesian estimates of 
current incidence and mortality rates aids long-term health planning. Mathew et al. [136] 
used adaptive MCMC methods to estimate the value of genetic parameters. In the model, 
the set of phenotypic observations—the observable characteristics of a person that are de-
pendent on both the individual’s genotype and environmental factors—was considered to be 
a function of environmental, random additive and dominant genetic effects, as well as error 
terms. An adaptive algorithm which used parameter covariances in the algorithm to estimate 
an appropriate multivariate proposal distribution was employed by the authors. This adaptive 
algorithm provided a more efficient process for sampling from the posterior distributions.

Mehta et al. used MCMC techniques to study problems in machining. These problems are 
extremely complex to study without probabilistic sampling due to the multi-physical nature 
of machine cutting or assembling. Additional complexity arises because of the uncertainty 
present in the problem from variation in the geometry of machine parts and in the environ-
ment, temperature, and humidity. The authors avoided having to perform multiple physical 
tests to capture enough data to construct a reliable model by applying Bayesian inference 
to a smaller range of data [137]. This provided a more feasible, less costly, and less time-
intensive test of the model in assessing the ability of the model to approximate physical be-
haviour. Comparisons to experimental data demonstrated that the MCMC approach inferred 
values for the model’s parameters that produced good approximations to experimental data. 
Furthermore, the estimates obtained through Bayesian inference were found to better those 
obtained through least square estimations [137].
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Bayesian statistics has also been applied to phylogenetics, which analyses how groups of or-
ganisms or species have developed and diversified genetically. Phylogenetic models must 
contain many parameters that quantify the evolution of large data sets that correspond to the 
molecular data stored in multiple genes of an organism. Bayesian statistical method simplify 
the study of these complex problems significantly. Baele et al. demonstrated the versatility of 
the MCMC approach by writing an algorithm with a multivariate proposal distribution that 
used multicore processing to update the likelihood function of each block of the large molec-
ular data set simultaneously [138]. With this algorithm, the authors achieved significantly 
faster results than an alternative MCMC approach that used a univariate proposal distribu-
tion to propose new values of the model’s parameters and update the likelihood function of a 
block one at a time. Again, adaptive methods were used to make the algorithm more efficient 
by tuning the proposal distribution so that it better replicated the covariances of the model’s 
parameters with one another [138].
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Chapter 4

A Bayesian Approach to the Hyperelastic 

Modelling of Tendons

4.1 Tendon paper introduction

To start this thesis, we demonstrated both the complex behaviour of fibrous soft tissues and 
how that complexity is a result of tissue microstructure. We then described a continuum me-
chanical framework that describes the behaviour of deformed fibrous soft tissues. Next, we 
introduced Bayesian statistical methods and showed how this field provides a robust group of 
methods to accurately quantify uncertainty in the values of parameters, including in compli-
cated non-linear models. And finally, we have analysed the literature to identify reasons why 
seeking to create tractable, hyperelastic microstructural models of skin deformation is desir-
able, and to elucidate the range of fields that Bayesian statistical methods have been applied 
to.

Now we present a new microstructural model of soft tissue deformation that is tractable and 
only contains parameters that have a physical basis for inclusion. We then fit the model to 
experimental uniaxial tendon tensile data using both non-linear optimisation and a random 
walk Metropolis Markov chain Monte Carlo (RWM MCMC) algorithm. We produce two 
versions of the new microstructural model. One version assumes that the distribution of 
recruitment stretch in the tendon is governed by a symmetric triangular distribution. The 
second version of the model, on the other hand, assumes that a general triangular distribution 
governs the variation of recruitment stretch in the tendon. Furthermore, we derive a RWM 
MCMC algorithm where we fit to experimental data in order to determine credible intervals 
for the values of the parameters in the symmetric-triangular-distribution version of the model. 
We fit to tendon data first because tendons possess a highly regulated structure where collagen 
fibrils are largely aligned with one another. Additionally, tendons are important fibrous tissues 
that are ubiquitous in, and vital to normal physiological function of, humans and animals. 
Advances in our understanding of how tendon microstructure and macroscopic behaviour are 
related have the potential to benefit society greatly.

In its entirety, this work constitutes a significant undertaking that could have been split into 
two papers: one on the model derivation and model fitting using non-linear optimisation; 
and another that focused on deriving a RWM MCMC algorithm that quantifies uncertainty 
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in the parameter values of a model of soft tissue behaviour. However, we decided to submit 
this work as one paper, as the justification for the statistical approach is so closely linked 
to the rest of the paper. This paper has been submitted to the Journal of the Royal Society 
Interface. Also provided in this chapter, after the main paper, is the supplementary material. 
The supplementary material contains a substantial piece of work, in particular, providing full 
derivations of our microstructural model and the RWM MCMC algorithm. This is because, 
the content in the supplementary material did not fit into the main paper submission due to 
the word limit for article submissions in the Journal of the Royal Society Interface. The main 
paper and supplementary material are currently under review. For this paper, I performed the 
following tasks:

• Helped to calculate the exact algebraic form of both versions of the new strain energy 
function (SEF) described in this paper submission, and checked the algebra in both ver-
sions of the SEF to ensure the continuity of the two versions of the SEF and the stress 
measures associated with them.

• Coded both the non-linear optimisation problem and the RWM MCMC algorithm used 
to compute the credible intervals of the model’s parameters. This included helping to 
derive the expressions for the posterior probability distribution and the transition prob-
ability that are detailed in the paper submission.

• Created the figures and plots.

• Wrote the initial draft of the paper, and edited all subsequent drafts.
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Abstract

Microstructural models of soft tissue deformation are important in applications including artificial tissue
design and surgical planning. The basis of these models, and their advantage over their phenomenological
counterparts, is that they incorporate parameters that are directly linked to the tissue’s microscale structure
and constitutive behaviour and can therefore be used to predict the effects of structural changes to the tissue.
Although studies have attempted to determine such parameters using diverse, state-of-the-art, experimental
techniques, values ranging over several orders of magnitude have been reported, leading to uncertainty in the true
parameter values and creating a need for models that can handle such uncertainty. We derive a microstructural,
hyperelastic model for transversely isotropic soft tissues and use it to model the mechanical behaviour of tendons.
To account for parameter uncertainty, we employ a Bayesian approach and apply an adaptive Markov chain
Monte Carlo algorithm to determine posterior probability distributions for the model parameters. The obtained
posterior distributions are consistent with parameter measurements previously reported and enable us to quantify
the uncertainty in their values for each tendon sample that was modelled. This approach could serve as a
prototype for quantifying parameter uncertainty in other soft tissues.

Keywords: tendon, modelling, microstructural, hyperelastic, Bayesian, uncertainty

1 Introduction
Fibrous soft tissues such as tendons, skin, and arteries are vital to life. Tendons and ligaments, for example,
enable movement by transmitting forces around the body [1]. It is critical, therefore, that we understand soft
tissue mechanical behaviour to advance fields such as tissue engineering [2] and surgery [3]. Soft tissues exhibit
complex macroscopic phenomena, including anisotropy and non-linearity, that are induced predominantly by the
microstructure of the tissue. Anisotropy arises from the presence of collagen fibrils, which locally reinforce the tissue
in a preferred direction. Initially, the fibrils are crimped and stress-free, but they straighten as the tissue deforms,
contributing to its resistance to further deformation once taut [4]. This gradual recruitment of collagen fibrils leads
to the non-linear stress-strain profile typical of soft tissues [5], as illustrated in Figure 1a with a plot of the Cauchy
stress, σ, against stretch, λ.

Additionally, soft tissues are viscoelastic, so assuming that their behaviour can be described by an elastic model
is a simplification. Practically speaking, before tests to measure mechanical properties are performed, a tissue is
subjected to cyclic loading until the stress-strain behaviour of the tissue is consistent between consecutive cycles
(see Figure 1b). Then, the tissue can be treated as pseudoelastic and modelled as a particular elastic material upon
loading and a different elastic material upon unloading [6]. In reality, energy is dissipated in the tissue during the
loading-unloading cycle, but we can apply elasticity theory to the tissue as long as we only examine one loading
path. Furthermore, for sufficiently slow (quasi-static) or extremely rapid deformations, the loading and unloading
curves are almost identical.

To model soft tissue deformation, we will use the theory of hyperelasticity, relating the stress to the strain via a
strain-energy function (SEF). There are two approaches to developing a hyperelastic model: the phenomenological
and structural approaches (although any one SEF can incorporate features of both). Phenomenological models seek
to achieve the best quantitative fit to experimental data. They do not attempt to determine how the microstruc-
ture influences the macroscopic behaviour observed in mechanical testing because the model’s parameters do not
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Figure 1: (a) The stress-strain behaviour of soft tissues. Region I: only the compliant components are loaded; the
collagen fibrils are crimped and slack. Region II: gradually, the stiff collagen fibrils straighten and become taut.
Region III: all the collagen fibrils are taut; the soft tissue is stiff and linearly elastic. (b) Successive loading-unloading
cycles of a viscoelastic soft tissue until the tissue can be treated as pseudoelastic.

necessarily have a clear physical interpretation. By contrast, structural models incorporate physically relevant pa-
rameters to elucidate the relationship between the arrangement and properties of the tissue’s constituents and its
mechanical behaviour. Incorporating microstructural information into an SEF often increases its complexity, and it
is important that a structural SEF remains tractable if it is to be viable for studying soft tissue deformation. This
is important when employing a Bayesian framework with Monte Carlo sampling, where we require many solutions
of the forward model. Therefore, simplifying assumptions about the microstructure are often required.

Values for unknown structural parameters can be obtained via imaging methods such as serial block face-
scanning electron microscopy [7], [8] and X-ray computed tomography [9]–[12], and for constitutive parameters
using micromechanical techniques like force spectroscopy [13] and atomic force microscopy [14]. These techniques
are challenging, however, and a wide range of values has been reported for certain quantities. The collagen fibril
Young’s modulus, for example, has been reported to have a value ranging from 32 MPa [13] to 2.8 GPa [14].
This uncertainty makes it difficult to predict soft tissue mechanical behaviour using optimisation techniques alone.
Therefore, in this paper, we take a Bayesian approach to the modelling process to characterise the likely ranges of
values that microstructural and micromechanical parameters can take.

Due to their importance and the fact that they have been studied extensively, we focus on tendons in this paper.
The mechanical properties of different tendons are distinct from one another, with energy-storing tendons being
more extensible than positional tendons due to differences in their microstructures [15], [16]. One feature that is
common to all tendons is that their collagen is structured in a regulated, hierarchical fashion and aligned closely
with the tendon’s axis [1]. Collagen molecules form cross-links and aggregate into fibrils with diameters ranging
from 12 to 500 nm [7]. Collections of fibrils collect into larger structures called fibres, with diameters of 150 to 1000
µm, which themselves form fascicles, with diameters of 1000 to 3000 µm, [17]. In other soft tissues, collagen fibrils
are less strongly aligned and form a network, but by aligning many fibrils in one direction, the tendon is stronger
in that direction [18].

Models such as the Holzapfel-Gasser-Ogden (HGO) model [19], which was initially created to study arteries,
have been adapted to study tendons [20]. This model is structural in the sense that it incorporates a strain invariant
that is directly related to the stretch in the collagen fibres, but phenomenological in the sense that an exponential
function is used to describe collagen recruitment, and the stretches in individual fibrils are not tracked. Other models
have explicitly incorporated the crimp morphology of the fibrils [21]–[25] and produced a good fit to experimental
data. Several probability density functions (PDFs) have been used to describe the distribution of fibril length,
including the Weibull [26] and triangular distributions [27], [28], as summarised in a review article by Thompson et
al. [29].

In this paper, we derive a structural SEF for modelling soft tissues that assumes collagen fibrils are linearly
elastic and have a triangular length distribution. We test the efficacy of the model using non-linear optimisation
to find a parameter vector that produces a local best fit to data. Secondly, we repeat the fitting process using a
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Bayesian framework. This enables us to incorporate prior beliefs about the unknown model parameters, a statistical
model for noisy observations of the stress-strain curves and our non-linear model to obtain posterior distributions
for the model parameters. Through these distributions, we identify and quantify the uncertainty in the parameters,
and the directions in parameter space in which the model is more or less sensitive.

The structure of the paper is as follows. In Section 2, we describe the underpinning continuum mechanical
theory that is required to model the deformation of an anisotropic soft tissue and, using physical considerations,
derive a new constitutive equation to model tendons. In Section 3, we use non-linear optimisation to fit the model
to experimental stress-strain data and compare its quality of fit to that of the widely-used HGO model and a
microstructural tendon model. In Section 4, we account for noise in the experimental data using a likelihood
function that allows us to study the problem under a Bayesian framework. In Section 5, we derive the posterior
distribution for the model’s microstructural and micromechanical parameters. In Section 6, we summarise our
findings and discuss potential ways to expand upon our work.

2 Model derivation
2.1 Preliminaries
Prior to considering the constitutive response of soft tissues, we need to consider kinematics, i.e. how to formulate
the mechanism of deformation. First, we distinguish between two configurations, the reference (initial) configuration
and the deformed configuration. Points on the reference and deformed bodies are described by the vectors X and
x, respectively. The two sets of coordinates are related via the deformation mapping, χ, i.e. x = χ(X). We define
the deformation gradient, F, as

F = ∇Xx, (1)

where ∇X represents the gradient operator with respect to the reference coordinates. From the deformation gradient,
we define two symmetric measures of the deformation, known as the left and right Cauchy-Green deformation
tensors, B = FFT and C = FTF, respectively [30].

The SEF W allows one to define the constitutive equation of a hyperelastic material, relating stress to strain
via derivatives of W . In order to determine the exact form of this constitutive response, we must first identify
the symmetry properties of the material. The mechanical behaviour of transversely isotropic materials, such as
tendons, is only invariant for rotations around a preferred direction, M. Furthermore, the SEF must be objective,
as the laws of physics are the same in any inertial frame of reference. As the SEF is invariant under a coordinate
transformation, we can write it as a function of invariants of the deformation. For an isotropic material, there are
only three invariants, I1 = tr(C), I2 = 1

2 ((tr(C))2 − tr(C2)) and I3 = det(C). For a transversely isotropic material,
we must introduce an additional two pseudoinvariants that depend on M: I4 = M · CM and I5 = M · C2M [30].

2.2 The model
Collagen fibrils in tendons are crimped when the tendon is relaxed, but straighten out as it is stretched [4]. We model
the distribution of fibril lengths using a triangular distribution, which enables us to obtain an explicit, analytical
form for the SEF, as we shall show shortly. When the triangular distribution is symmetric, it approximates the
normal distribution (see Figure 2a). An individual collagen fibril is assumed to be stress-free until becoming taut at
a recruitment stretch λr. Once taut, it is assumed to be linearly elastic. The non-linearity of the SEF arises through
the gradual recruitment of collagen fibrils [31]. Fibrils in the tendon are assumed to be locally coaligned. We follow
the widely-used assumption that we can accurately describe soft tissue mechanics using only the isotropic invariant
I1 to model the tendon’s non-collagenous matrix (NCM) and the anisotropic invariant I4 [19], [22] to model the
fibrils. We decouple the contributions of the collagen fibrils and NCM in the SEF and assume that each component’s
contribution is proportional to its volume fraction. Finally, we assume that tendons are incompressible. Thus, the
SEF, W (I1, I4), is

W (I1, I4) = (1 − ϕ)WNCM(I1) + ϕWcoll(I4), (2)

where ϕ is the collagen volume fraction.
To determine the form of Wcoll(I4), we start by defining the stress exerted upon a single collagen fibril. We

assume the fibrils are slack while crimped and obey Hooke’s law once taut, so that the stress can be expressed as
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Figure 2: (a) The PDFs, f(λr), for a normal distribution and two symmetric triangular distributions, with minimal
value a and maximal value b, that approximate the normal distribution. s.d. = standard deviation. (b) The PDFs,
f(λr), for the symmetric and general triangular distributions.

σfib(λ, λr) =
{

0, λ ⩽ λr,

E
(

λ−λr

λr

)
, λ > λr,

(3)

where E is the Young’s modulus of the collagen fibrils. We can determine the total (Cauchy) stress acting upon
the collagen fibrils that are aligned in a given direction within a representative volume element by calculating the
following integral:

σF (λ) =
∫ λ

0
f(λr)σfib(λ, λr)dλr, (4)

where f(λr) represents the PDF of the recruitment stretch. We derive SEFs for two different triangular distributions:
a symmetric distribution and a general distribution. We refer to them as the symmetric triangular (ST) and general
triangular (GT) models, respectively. For both distributions, the first fibril becomes mechanically active at λ = a,
and the last fibril becomes mechanically active at λ = b. For the ST distribution, the mode is half-way between a
and b, whereas, for the GT distribution, the mode is designated by a third parameter c, with a < c < b. The PDF
for the GT distribution, fgen(λr), is

fgen(λr) =


0, λr < a,

2(λr−a)
(b−a)(c−a) , a ⩽ λr ⩽ c,

2(b−λr)
(b−a)(b−c) , c ⩽ λr ⩽ b,

0, if λr > b.

(5)

The PDF for the ST distribution, fsym(λr), is obtained by setting c = a+b
2 in (5) (see Figure 2b).

Using (3) and the PDF of the fibril recruitment stretch distribution, we can evaluate the integral in (4) analyt-
ically. Exploiting the fact that I4 = λ2, i.e. I4 is equal to the square of the stretch of the fibrils, we obtain

σF (I4) = E

(
A(I4) + B(I4)

√
I4 + C(I4)I4 + D(I4)

2
√

I4 log I4

)
, (6)
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where A(I4), . . . , D(I4) are piecewise constants whose values depend on I4 (see Appendix A). The form of the stress,
σF , acting on the fibrils is the same for both the ST and GT distributions; however, the piecewise constants are
different in each case. In order to convert (6) into an expression for the fibrils’ contribution to the SEF, we use a
technique presented by Shearer [22] to write the left side of (6) in terms of Wcoll(I4). Eventually, we obtain

Wcoll(I4) = E

(
A(I4)

2 log I4 + (B(I4) − D(I4))
√

I4 + C(I4)
2 I4 + D(I4)

2
√

I4 log I4 + G(I4)
)

, (7)

where G(I4) is a piecewise constant that ensures the continuity of Wcoll(I4). We further assume that the mechanical
response of the NCM can be modelled by a neo-Hookean SEF [23], giving

W (I1, I4) =(1 − ϕ)µ

2 (I1 − 3)

+Eϕ

(
A(I4)

2 log I4 + (B(I4) − D(I4))
√

I4 + C(I4)
2 I4 + D(I4)

2
√

I4 log I4 + G(I4)
)

, (8)

where µ is the NCM shear modulus. A full derivation of this SEF is provided in the supplementary material.
For an incompressible, transversely isotropic SEF that is a function of I1 and I4 only, the constitutive equation,

in terms of the Cauchy stress, is

σ = −pI + 2∂W

∂I1
B + 2∂W

∂I4
m ⊗ m, (9)

where p is a Lagrange multiplier associated with the incompressibility constraint, and m = FM is the direction of
the collagen fibrils in the deformed configuration.

3 Non-Linear Optimisation
We now examine the ability of the derived constitutive model to fit experimental data. We fitted to data using stan-
dard, non-linear optimisation, using the software package Mathematica 12 [Mathematica Version 12.3.1.0, Wolfram
Research Inc., https://www.wolfram.com/mathematica, Champaign, IL, 2021] and the function NonlinearModelFit.
We used the Nelder-Mead algorithm within the NMinimize method of NonlinearModelFit. The Nelder-Mead algo-
rithm for an n-dimensional problem constructs a polytope of n + 1 points, x1, x2, . . . , xn+1, and uses the centroid
of the polytope to propose a new vertex xp that is accepted if it provides a closer fit to data than the second-
worst-fitting vertex on the polytope [32]. We set the maximum number of iterations in NonlinearModelFit to be
one thousand.

The first two sets of stress-strain data that we fitted were experiments on mouse tail tendons collected by Goh
et al. [33], [34]. We used two data sets designated as mtt01 1 t5c and mtt01 1 t6b trunc. We shall refer to them
as t5c and t6b for brevity. The second two sets of data were collected by Thorpe et al. [15] and were previously
modelled using a different SEF by Shearer et al. [16]. We used the data sets designated as equine common digital
extensor tendon (CDET) from horse number 39 and equine superficial digital flexor tendon (SDFT) from horse
number 16. These data sets were selected as they have a particularly large elastic region, with the onset of failure
not occurring until around 10% strain. For brevity, we refer to them as CDET and SDFT, respectively.

In this work, we only consider elastic behaviour. Both damage and failure of tendon constituents are beyond the
scope of the models that we study. The data that we model, however, were calculated to study damage and failure
of the tendons. Therefore, we must only consider a limited range of data points, corresponding to the stress-strain
values that are assumed to lie within the region of elasticity. For the data collected by Thorpe et al. we used all
data points up to 10% strain in accordance with [16]. The 10% strain limit was chosen in that work because it
represented a medium between the reported maximum in vivo stretches for equine CDET and SDFT (3% strain
and 16.6% strain, respectively). Furthermore, although 10% strain is over triple the maximum in vivo stretch for
CDETs, the authors of the study declared that they did not observe the effects of damage on the stress-strain
curves of CDET at 10% strain. For the data collected by Goh et al., the authors provided a MATLAB script, [34],
that enabled the experimental data to be analysed. As part of this analysis, the MATLAB script detailed multiple
properties associated with the experimental stress-strain data. One property was the strain at which the maximum
stress-strain gradient was estimated to be at. Therefore, we chose this strain to be the upper limit at which the
studied material did not suffer from damage.
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Figure 3: The tendon sample in the reference configuration (upper left) and face with normal in the Z-direction
(upper right), and the deformed body (lower left) and face (lower right) after a force of Fez is applied to the tissue.

To derive the constitutive equation, we assumed that a cylindrical tendon sample, described using cylindrical
polar coordinates, is stretched along the axis of the aligned fibrils, which are oriented along the Z-axis (see Figure
3). For this deformation, given the assumed incompressibility and symmetry of the material, the reference and
deformed coordinates, X = (R, Θ, Z) and x = (r, θ, z), are related by

(r, θ, z) =
(

R√
λ

, Θ, λZ

)
. (10)

The Cauchy stress, (9), gives the force acting on the deformed material per unit deformed area; however, the
quantity recorded in the experiments being modelled is the engineering stress, the force per unit reference area,
which is denoted as N in Figure 4. Therefore, after substituting our SEF into (9), we divide the resulting expression
through by λ to obtain

N = (1 − ϕ)µ
(

λ − 1
λ2

)
+ ϕE

λ

(
A(λ2) + B(λ2)λ + C(λ2)λ2 + D(λ2)λ log λ

)
, (11)

where I4 = λ2 by (10) and the assumed alignment of the fibrils. While the form of N in (11) is unchanged by
whether the symmetric or general triangular distribution is used to model the fibril recruitment stretch distribution,
the values of A(I4)—D(I4) differ depending on which fibril recruitment stretch distribution is used. See Appendix
A.

To provide a benchmark for the fit of our model to data, we also fitted the tendon data using the commonly-used
HGO model [19]. The HGO model was originally developed for modelling arteries and incorporates two families of
collagen fibres; however, it has been adapted to study an extensive range of biological soft tissues, including tendons,
and has been implemented in several finite element software packages. To model collagen in tendons, which contain
one family of collagen fibres, we use the following transversely isotropic version of the HGO SEF:

W (I1, I4) = cHGO

2 (I1 − 3) + k1

2k2
(exp(k2(I4 − 1)2) − 1), (12)

83



where cHGO and k1 are parameters with dimensions of stress and k2 is a dimensionless model parameter. The
engineering stress produced by this SEF (12) is

NHGO = cHGO

2

(
λ − 1

λ2

)
+ 2k1λ(λ2 − 1) exp(k2(λ2 − 1)). (13)

To test our model against an existing microstructural tendon model, we used the following SEF [22]:

W (I1, I4) = (1 − ϕ)µ (I1 − 3) +


0, I4 < 1,

ϕE
6 sin2 θo

(
4
√

I4 − 3 log I4 − 1
I4

− 3
)

, 1 ⩽ I4 ⩽ 1
cos2 θo

,

ϕE
(

2(1−cos3 θo)
3 sin2 θo

√
I4 − 1

2 log I4 − 1
2 − cos2 θo

sin2 θo
log

(
1

cos θo

))
, I4 > 1

cos2 θo
,

(14)

where θo is the initial crimp angle of the outermost, most-crimped fibrils in the tendon’s fascicles. We adapted
the SEF by including a shifting parameter, γ, that corresponds to the engineering strain at which the first collagen
fibril becomes mechanically active. In (14), this corresponds to replacing λ with λ − γ, that is, replacing I4 = λ2

with I4 = (λ − γ)2. The engineering stress for this modified tendon model is

Ntendon = (1 − ϕ)µ
(

λ − 1
λ2

)
+


0, λ < (1 + γ),

ϕE
3 sin2 θo

(
2 − 3

λ−γ − 1
(λ−γ)3

)
, (1 + γ) ⩽ λ ⩽ ( 1

cos θo
+ γ),

ϕE
(

2(1−cos3 θo)
3 sin2 θo

− 1
λ−γ

)
, λ > ( 1

cos θo
+ γ).

(15)

As ϕ, µ, and E only appear in the SEF (8) in the distinct terms (1 − ϕ)µ and ϕE, we treated (1 − ϕ)µ and
ϕE as two independent fitting parameters. Thus, the ST SEF contains four fitting parameters, (1 − ϕ)µ, ϕE, a,
and b. The GT SEF has an additional fitting parameter, c. In order to obtain physically realistic values for the
parameters, we constrained them as follows: for the ST model, 0 < (1 − ϕ)µ, 0 < ϕE, 1 < a < b, a < λmax, where
λmax represents the maximum stretch in the data; for the GT model, we replaced 1 < a < b with 1 < a < c < b;
for the HGO model, (12), 0 < cHGO, 0 < k1, and 0 < k2; and for the modified tendon model, 0 ⩽ γ < (λmax − 1),
0 < θo < π

2 , (1 − ϕ)µ > 0, ϕE > 0.
The mean absolute error, ∆, between the experimental data, y, and simulated data, ŷ, is

∆ = 1
d

d∑
i=1

|yi − ŷi|, (16)

where d is the length of the data set. Similarly, the mean relative error, δ, is

δ = 1
d

d∑
i=1

|yi − ŷi|
|yi|

. (17)

The values of ∆ and δ when fitting each model to the four data sets are given in Table 1. Furthermore, the values of
the model parameters for the fits are given in Table 2. Both versions of our SEF achieve a closer fit to the data than
the microstructural tendon model for each data set. Additionally, they only perform worse than the HGO model
for the relative fit to the t6b data set. Additionally, the values of the microstructural parameters in Table 2 are
physically reasonable. This highlights that it is possible to find close fits to data with values that lie in the broad
region of parameter values given in the literature. Between the ST and GT models, the mean absolute and relative
errors for the four data sets are similar, with the former surprisingly outperforming and matching the latter for the
t5c and t6b data sets, respectively. This is particularly interesting because the GT model contains an additional
degree of freedom. This is likely because non-linear optimisation only provides a local best fit to data and only 1000
iterations of the Nelder-Mead algorithm were performed. Two examples of the fit of our model to the experimental
data are presented in Figure 4. The supplementary material shows all sixteen fits.

Finally, the NonlinearModelFit algorithm was rerun for the fit of each of the four models to the four data sets.
The parameter values, and average relative and absolute errors for each model, obtained from runs with two sets
of randomly selected starting values, are given in Table 3. Again, the Nelder-Mead algorithm, with a maximum
number of one thousand iterations, was used to fit the models to the data sets. For the ST and GT models, the
values given in Table 3 contain some significantly different parameter values to those listed in Table 2. Furthermore,
some parameter values found are physically unrealistic, such as 13000 MPa for ϕE or a value of 11.7 for b, and some
fits to data are poor. This suggests that in NonlinearModelFit our new models are dependent on the initial guesses
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Model t5c t6b CDET SDFT

HGO δ 0.242 0.169 5.50 1.48
∆ (MPa) 0.396 0.223 4.59 2.54

Tendon δ 0.200 0.276 0.0967 0.173
∆ (MPa) 0.159 0.280 0.290 0.184

ST δ 0.103 0.178 0.0811 0.149
∆ (MPa) 0.100 0.173 0.290 0.182

GT δ 0.110 0.178 0.0725 0.0695
∆ (MPa) 0.101 0.173 0.290 0.113

Table 1: Mean relative and absolute errors for the four models studied against experimental tendon data. All values
are given to three significant figures.

1.00 1.02 1.04 1.06 1.08 1.10
0

5

10

15

20

(a)

1.00 1.02 1.04 1.06 1.08 1.10
0
20
40
60
80
100

(b)

Figure 4: Fits of (a) the ST model to the t5c data, and (b) the GT model to the CDET data. Yellow dots represent
the experimental data and black, dashed lines represent model fits.

to find good fits to data, and it is hard to find a global best fit to data. This could partially explain why the ST
model, even with one fewer fit parameter than the GT model, is able to closely match or beat the fit achieved by
the GT model in some cases. By contrast, the HGO model seems best equipped to find a global best fit to data
in NonlinearModelFit even if the model cannot match the best fit of the ST and GT models to some tendon data
sets. These results provide some important avenues of research to analyse in the future: is this behaviour of the
ST and GT models limited to the Nelder-Mead method of fitting to data in NonlinearModelFit? Is it inherently
easier to find a global best fit to data via standard optimisation techniques using the HGO model? These results
do, however, provide further motivation to use a RWM algorithm to estimate probability distributions for the
parameters. By sampling hundreds of thousands of simulations in that algorithm, we are more likely to sample in
the area of parameter space that produces a global best fit to data when fitting the ST model, in the case of this
paper, to experimental data.

4 Markov chain Monte Carlo (MCMC)
Through non-linear optimisation, we have found the best fit to experimental data local to the algorithm’s initial
guesses for the parameter values; however, this approach does not quantify the uncertainty in the parameter values.
Uncertainties arise for a number of reasons, including observational noise in the experimental stress-strain data.
To address this, we apply a Bayesian framework to the same problem studied with the optimisation approach and
estimate the likely ranges of the true values of the ST model’s parameters. Using the posterior distributions we
obtain from the algorithm, we can estimate likely parameter values and quantify the uncertainty in those estimates.
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Model t5c t6b CDET SDFT

HGO
cHGO (MPa) 0 0 0 0

k1 (MPa) 6.41 9.67 157 43.9
k2 29.6 45.6 8.37 21.7

Tendon

(1 − ϕ)µ (MPa) 10.4 17.6 7.69 17.1
ϕE (MPa) 600 1200 1330 778

θ 0.330 0.382 0.192 0.254
γ 0.058 0.0461 0.0115 0.0248

ST

(1 − ϕ)µ (MPa) 8.36 14.9 5.31 16.2
ϕE (MPa) 950 1760 1360 820

a 1.04 1.03 1.01 1.02
b 1.16 1.15 1.03 1.07

GT

(1 − ϕ)µ (MPa) 8.36 15.1 4.78 12.3
ϕE (MPa) 931 782 1360 828

a 1.04 1.03 1.01 1.01
c 1.10 1.09 1.02 1.06
b 1.16 1.09 1.03 1.06

Table 2: Parameter values (to three significant figures) for each model’s fit to the four data sets. To avoid confusion
with c in the GT model, the stress-like parameter for the HGO model is written as cHGO.

4.1 Markov chain Monte Carlo
The goal of Bayesian statistics is, given new data, to update any prior knowledge about the values of a model’s
parameters via the likelihood of a particular parameter vector θ (the vector of constitutive and structural parameters
in our SEF) producing the observed (experimental) data y. Through this, we obtain what is known as the posterior
probability distribution of θ, π(θ|y), which is related to π0(θ), the prior probability of θ, and the likelihood via
Bayes’ rule:

π(θ|y) ∝ L(y|θ)π0(θ), (18)

where L(y|θ) denotes a function proportional to the likelihood density. The posterior is only known up to a constant
of proportionality, which often cannot be explicitly computed. Under those circumstances, a common method to
characterise the posterior distribution is to sample from it using numerical methods such as Markov chain Monte
Carlo (MCMC).

Monte Carlo methods can be used to estimate expectations with respect to a particular measure, for example
π(θ|y); however, for Bayesian inverse problems, we cannot usually directly sample from the posterior distribution.
Instead, we can indirectly sample from the posterior using MCMC methods, which construct an ergodic Markov
chain whose unique stationary density is equal to the posterior. Monte Carlo estimates taken with respect to this
Markov chain can be shown to converge to expectations taken with respect to the posterior distribution. Initially,
Markov chains do not sample from the stationary distribution and values proposed in the MCMC algorithm are
dependent on the chains’ starting position. This initial period is called the burn-in phase, the size of which depends
on the quality of the initial guess, and the rate of mixing of the Markov chain. We do not include samples from the
burn-in phase when calculating MCMC estimates, or when visualising the posterior distribution.

4.2 Hierarchical Bayesian approach and conjugate priors
In Section 2.2, we derived a deterministic SEF. Now, in order to derive the likelihood function for this modelling
problem, we assume that the observed data is given by the model output perturbed by some noise. We choose the
standard modelling assumption that the noise is additive, mean-zero, Gaussian and independently and identically
distributed (IID), giving us a diagonal covariance matrix for which the diagonal entries are equal to the observational
noise variance σ2. This gives us the following statistical model for our observations:

y = M(θ) + η, η ∼ N (0, σ2Id), (19)

where d is the length of y, Id is a d × d identity matrix, N (0, σ2Id) represents a normal distribution with mean 0
and covariance matrix σ2Id, y ∈ Rd, and M(θ) denotes the output of the model given input values θ. From (19),
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Model t5c t6b CDET SDFT
1 2 1 2 1 2 1 2

HGO

cHGO (MPa) 0 0 0 0 0 0 0 0
k1 (MPa) 6.41 6.41 9.67 9.67 157 157 43.9 43.9

k2 29.6 29.6 45.6 45.6 8.37 8.37 21.7 21.7
δ 0.242 0.242 0.169 0.169 5.50 5.50 1.48 1.48

∆ (MPa) 0.396 0.396 0.223 0.223 4.59 4.59 2.54 2.54

Tendon

(1 − ϕ)µ (MPa) 10.4 13.2 17.6 17.6 97.2 0 0 17.1
ϕE (MPa) 2060 227 723 5040 9660 1350 7350 778

θ 0.664 0.145 0.293 0.868 1.57 0.199 1.41 0.254
γ 0.0580 0.0610 0.0461 0.0461 6.51 × 10−5 0.0105 0.0108 0.0248
δ 0.199 0.422 0.276 0.276 3.04 0.140 0.251 0.172

∆ (MPa) 0.156 1.01 0.280 0.280 3.16 0.301 0.836 0.184

ST

(1 − ϕ)µ (MPa) 8.05 8.36 14.8 14.8 9.90 5.32 1.64 × 10−4 16.2
ϕE (MPa) 2470 950 2690 4270 1350 1360 879 820

a 1.03 1.04 1.03 1.03 1.01 1.01 1.01 1.02
b 1.24 1.08 1.18 1.22 1.03 1.03 1.07 1.07
δ 0.101 0.110 0.178 0.178 0.138 0.0755 0.237 0.149

∆ (MPa) 0.103 0.101 0.103 0.103 0.296 0.289 0.308 0.182

GT

(1 − ϕ)µ (MPa) 38.2 8.05 49.4 14.8 4.78 312 1.56 12.3
ϕE (MPa) 13000 4110 6860 5740 1360 83300 864 828

a 1.11 1.03 1.09 1.03 1.01 1.10 1.00 1.01
c 6.55 1.14 8.05 1.09 1.02 84.6 1.06 1.06
b 11.7 1.38 13.4 1.41 1.03 208 1.06 1.06
δ 2.20 0.101 1.76 0.178 0.0725 8.18 0.157 0.0695

∆ (MPa) 3.11 0.103 2.91 0.173 0.290 8.06 0.182 0.113

Table 3: Parameter values, and average relative and absolute errors (to three significant figures) for the four models
obtained from two additional fits to data. To avoid confusion with c in the GT model, the stress-like parameter for
the HGO model is written as cHGO.

we derive the likelihood, which is the probability of the noise η accounting for the difference in value between the
observed data, y, and the model’s prediction:

L(y|θ, σ2) = 1
(σ

√
2π)d

exp
(

− 1
2σ2 ∥y − M(θ)∥2

2

)
. (20)

This is sufficient if we have a clear idea of the value of the observational noise variance σ2, but in practice this is
rarely the case. The value of σ2 can be very important, potentially causing under- or over-fitting. Therefore, we
take a hierarchical Bayesian approach and assign a prior distribution to σ2. A priori, we assume that the parameters
are independent of one another, so the joint prior distribution is the product of the parameters’ individual prior
distributions. That is,

π0(θ, σ2) = π0(θ)π0(σ2) = π0(θ1) · · · π0(θh)π0(σ2), (21)
where h denotes the length of θ. By (18) and (21),

π(θ, σ2|y) ∝ L(y|θ, σ2)π0(θ1) · · · π0(θh)π0(σ2). (22)
Using a conjugate prior for σ2, we avoid having to infer σ2 explicitly by integrating out the dependence of the

posterior distribution with respect to σ2, since this integral can be computed analytically. In this instance, our
likelihood function is a Gaussian PDF, so an appropriate conjugate prior for the observational noise variance is an
inverse-gamma distribution. After multiplying the likelihood function by the product of prior densities (21), we
arrive at the posterior distribution. The posterior predictive can then be derived by integrating out σ2, giving a
Student’s t-distribution multiplied by the prior density on the remaining unknowns, giving us the target distribution,

π(θ|y) ∝ t2ασ

(
y; M(θ), βσ

ασ
Id

)
π0(θ), (23)
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Figure 5: The inverse-gamma prior for σ2. For this particular distribution, ασ = 3 and βσ = 0.3. The majority
of this probability lies between zero and 0.5, that is, at small positive values, which is reasonable for experimental
noise.

where we define t2ασ
(∗;γ,ψ) as the posterior predictive density of ∗ according to a Student’s t-distribution of 2ασ

degrees of freedom with mean γ and covariance matrix ψ, and where ασ, βσ > 0 are parameters of the hyperprior on
σ2. In the sampling discussed in later sections, we set ασ = 3 and βσ = 0.3. These values for the hyperparameters
on σ2 were chosen because the corresponding inverse-gamma prior for σ2 contained the majority of its probability
mass in the area of reasonable values of σ2, rather than values that are too large for experimental noise. A plot of
the inverse-gamma distribution with ασ = 3 and βσ = 0.3 is found in Figure 5. Other values of the hyperparameters
could have been chosen. In order to ascertain the effect that changing the hyperparameters would have had on the
estimated posteriors of the model parameters, a sensitivity analysis, as has been performed in machine learning
and convolutional neural networks, [35], would need to be performed. Furthermore, keeping the values of the
hyperparameters constant enabled a given distribution to be sampled from in the RWM algorithm that we derive
in this paper. A full derivation of the posterior predictive is provided in the supplementary material.

4.3 Random walk Metropolis algorithm
We cannot integrate (23) analytically and determine the normalisation constant; therefore, we choose to charac-
terise the posterior predictive by sampling from the target distribution using the random walk Metropolis (RWM)
algorithm. This method enables us to construct an ergodic Markov chain with invariant density equal to π(θ|y). We
can then use the computed Markov chain for Monte Carlo estimates and to visualise the target distribution. Lasting
for n simulations and using U(0, 1) to denote a uniform distribution between zero and one, the RWM algorithm is
given in Algorithm 1.
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Algorithm 1: RWM
Result: Estimate of the posterior distribution, π(θ)
Input: π0(θ1), . . . , π0(θh);
Starting parameter vector, θ0;
for i = 1, . . . , n do

Propose θ∗ ∼ N (θi−1, Σ);

Calculate κ = min
(

1,
t2ασ (y;M(θ∗), βσ

ασ
Id)π0(θ∗)

t2ασ (y;M(θi−1), βσ
ασ

Id)π0(θi−1)

)
;

Generate u ∼ U(0, 1);
if u ⩽ κ then

θi = θ∗ ;
else

θi = θi−1 ;
end
Set i = i + 1;

end

The covariance matrix of the proposal distribution, Σ, is a parameter that affects the efficiency of RWM
algorithms. It controls both the scale of the proposal variance, and also the correlations between coordinates in the
sampled vector. Adaptive random walk algorithms allow us to adapt Σ in order to optimise the efficiency of the
algorithm. In order to address both the scale and correlation of the sample vector, we adapt the covariance matrix
to Σ = β2ζ, where β2 is a scaling parameter, with β > 0, and ζ ∈ Rh×h is the covariance matrix of the model
parameters constructed from a chosen set of parameter vectors.

Regarding scale, it has been shown that the optimal acceptance rate for multivariate RWM is 0.234 [36]. For a
given value of ζ, the value of β can be tuned in order to achieve an acceptance rate close to this value. Small values
of β lead to a proposal density closely concentrated around the current state, which leads to a high acceptance
rate but slow exploration. Conversely, large values of β lead to a diffuse proposal density where sampled vectors
are likely to be in the tails of the posterior distribution, leading to low acceptance rates and therefore also slow
exploration.

Efficient proposal distributions reflect the correlation structures in the target density. For instance, if the
probability density is concentrated close to a lower dimensional manifold, then proposal distributions which favour
bigger moves in the directions parallel to the manifold will lead to faster exploration than isotropic proposal
distributions. We do not know the correlation structure of the target a priori, but this can be learned through
initial exploration with an isotropic proposal distribution.

In our simulations, we recalculated Σ after every block of 500 simulations. To construct ζ, we used the position
of the Markov chains over the last 10,000 simulations. To ensure Σ was positive definite during the algorithm, we
regularised by adding the identity matrix multiplied by a small number, 1×10−5, to ζ whenever it was recalculated.
We let the value of β2 depend on the acceptance rate within a block, αblock. The conditions for updating β2 at the
end of each block were

• αblock < αLowerTol: multiply β2 by 0.952;

• αLowerTol ⩽ αblock ⩽ αUpperTol: keep β2 at the same value;

• αUpperTol < αblock: multiply β2 by 1.052,

where αLowerTol and αUpperTol denote the lower and upper bounds of the allowed acceptance rates for the algorithm,
which we set equal to 0.184 and 0.284, respectively (0.234±0.05). The tolerances account for the range of acceptance
rates for which an RWM algorithm is assumed to run efficiently enough. We must stop iterating the values of β2

and ζ at some point in the algorithm, since adaptive MCMC algorithms must satisfy the property of diminishing
adaptation in order to maintain ergodicity [37]. We stopped adaptation of Σ at the end of the burn-in phase, which
consisted of the first 500,000 simulations out of a total of 1.5 million.

5 Application of Bayesian methods to tendon deformation
Before running the RWM algorithm, we transformed the parameters of the ST model so that their support extended
over the whole of R. We did this because sampling parameters whose support matches the support of the proposal
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distributions improves the efficiency of the algorithm. Each element of the untransformed parameter vector, ψ =
[(1 − ϕ)µ, ϕE, a, b], is non-negative, and the uncertain parameters a, b must satisfy a > 1 and a < b. These last two
conditions give rise to the natural choice of parameters for inference given by a − 1 > 0 and b − a > 0. Along with
the other non-negative, uncertain parameters, we assigned log-normal priors to ensure well-posedness. Taking the
logarithm of these parameters, we obtained the parameter vector θ ∈ R4, where

θ =


ν
η
τ
ρ

 =


log((1 − ϕ)µ)

log(ϕE)
log(a − 1)
log(b − a)

 = T(ψ), (24)

where T(ψ) represents an invertible, non-linear transformation of the target parameters ψ. This transformation,
in turn, leads to a transformation of the likelihood and posterior distributions. When performing RWM on the
transformed parameters, ψ, the target density is given by the pullback π̃ of the posterior π(θ|Y ) through the map
T , which has density

π̃(θ) = π(T −1(θ)|Y ).| det DT −1(θ)|, (25)
where DT −1(θ) is the Jacobian of T −1. The value of this additional factor is detailed in the supplementary material.
As we assigned a log-normal prior to their exponents, each parameter in θ has a normal prior distribution. The
supplementary material details how the two parameters of the log-normal prior, and, thus, the mean and variance
of the corresponding normal prior, were chosen for (1 − ϕ)µ, ϕE, a − 1, and b − a.
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Figure 6: Plots of the posterior distributions calculated using the RWM algorithm on synthetic data. Main diagonal:
marginal posteriors. Lower half: two-dimensional contour plots of the joint distributions. Upper half: posterior
correlations between parameters. The parameter values used to create the synthetic data are represented by a red
line on the posteriors and a black dot on the contour plots. For the correlation values, three asterisks represent
p < 0.001. In order to create this figure, the 1 million samples were thinned by a factor of ten.
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Figure 7: The 5σ confidence band (blue) around the mean of the predicted stresses from 50,000 parameter vectors
from the Markov chains against the synthetic data (yellow dots).

5.1 Synthetic data
We ran the algorithm firstly with a synthetic data set created with a chosen parameter vector, and then with the
CDET and SDFT data sets. We also ran the algorithm for the data collected by Goh et al. The results of fitting
to those data sets with the RWM algorithm are discussed in the supplementary material. Fitting to synthetic data
acts as a proof-of-concept for our approach, and the implementation of the MCMC methods, that enables us to
study the posterior distributions when we know the ‘true’ parameter values associated with the data. To create the
synthetic stress values, we inputted the same set of strains as the SDFT data set and parameters corresponding to
[(1 − ϕ)µ, ϕE, a, b] = [7 MPa, 800 MPa, 1.03, 1.13] into the deterministic SEF. In order to replicate experimentally
collected data, we added IID noise to the stresses obtained in the model. In order to test the algorithm rigorously,
we chose to make the synthetic data noisier than the real data sets by choosing a variance of 0.01 for the IID noise.

The marginal posterior distributions and the two-dimensional joint distributions of the parameters that we
obtain when fitting to the synthetic data are shown in Figure 6. Although they do not align exactly with the modes
of their respective posteriors, the parameter values used to create the synthetic data are not located in the tails of
the posterior, but lie in regions of relatively high posterior probability. The smoothness of the empirical distribution
also implies that the algorithm is sampling efficiently.

Figure 7 shows the fit between the synthetic data and a 5σ confidence band around the mean predicted stresses
for a sample of 50,000 parameter vectors from the chains. A close fit is achieved in each region of the J-shaped
stress-strain curve. This synthetic experiment demonstrates that accurate estimates of the constitutive parameters,
and representations of the uncertainty inherent in those estimates, can be derived through a Bayesian framework,
and characterised using our tuned adaptive RWM algorithm.

5.2 SDFT and CDET data
We now analyse the algorithm’s predictions when we fit the ST model to the high-resolution tendon data collected
by Screen et al. For the SDFT data, Figure 8 contains the estimated posteriors and contour plots obtained from
the adaptive RWM algorithm and Figure 9 shows a confidence band of 5σ around the mean stress-strain curve
of 50,000 parameter vectors from the chains plotted against the data. As in the synthetic example, the empirical
posterior distribution is smooth, implying a good level of convergence of the tuned adaptive RWM algorithm. For
the structural parameter ϕE, we have a physically realistic posterior: the 95% credible interval for ϕE is 814-
827 MPa, rounded to the nearest whole number, which is feasible compared to literature values for ϕ and E in
tendon, [14]. The stretches at which the first and last collagen fibrils straighten and tauten are also realistic. There
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Figure 8: Approximate posteriors and contour plots of the parameters for the SDFT data. Samples were thinned
by a factor of ten.

are parameters with large positive correlations: (1 − ϕ)µ and a, and ϕE and b. These indicate that to replicate
the experimental data closely, the NCM must be stiffer if collagen fibrils are slack for longer, and fibrils must be
stiffer if fewer are mechanically active. Likewise, large negative correlations between a and b and (1 − ϕ)µ and ϕE
indicate that all fibrils must be taut sooner if they are all slack for longer, and the fibrils must be stiffer if the
NCM is more compliant. These are all physically reasonable conclusions, demonstrating the benefit of full posterior
characterisation as opposed to the more traditional optimisation approach.

Figure 9 demonstrates that the model can fit the SDFT data closely and that the algorithm, through the posterior
distributions, identifies parameter vectors that produce these close fits. For all stretches, the experimental data lies
close to the posterior mean stress, and either within or close to the 5σ confidence band that is narrower than for
the noisier synthetic data. Again, the confidence band is consistently sized, demonstrating the model’s ability to
quantify how different microstructural components and phenomena (the NCM and the gradual tautening of collagen
fibrils) influence the macroscopic mechanical response of the tendon. As the strain nears 10%, however, the model’s
predicted stresses are slightly higher than the experimental data, indicating a degree of discrepancy between the
model and data. This could be due to damage to some fibrils as the stretch nears 10% strain, contradicting an
assumption of the model. To achieve the best fit to the data overall, while retaining the linearity of the model,
some underestimates of the experimental stress occur at smaller stretches to compensate for the overestimates of
the experimentally observed stress as the strain approaches 10%.

For the CDET data, the parameter (1 − ϕ)µ possesses a high predicted posterior probability mass very close
to zero (see Figure 10), with a long tail as the value of (1 − ϕ)µ increases. Due to the extremely large negative
correlation between (1 − ϕ)µ and ϕE, the shape of the marginal distribution for ϕE is also affected. The shape
of the posterior for (1 − ϕ)µ likely occurs because few data points lie in the toe region, with the proposed values
of a lying close to one, meaning that the stiff collagen fibrils dominate the response to the deformation even at
small stretches. As the density lies close to zero for one of the parameters, taking the logarithm of the posterior
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Figure 9: The 5σ confidence band (blue) around the mean of the predicted stresses from 50,000 parameter vectors
from the Markov chains against the SDFT data (yellow dots).

results in a curved posterior, whose global covariance structure is less informative for making effective proposals.
Therefore, in order to obtain smoother estimated posteriors, 10 million samples were taken, again after a burn-in
phase of 500,000 simulations. An alternative approach would be to use more sophisticated methods, such as the
Metropolis-Adjusted Langevin algorithm or Hamiltonian Monte Carlo [38]. The posteriors for a and b are smooth,
implying a good level of convergence to the posterior distributions. Furthermore, close fits to the data from the
sampled parameters are still achieved (see Figure 11). With a 95% credible interval of 1342-1380 MPa, we obtain
physically reasonable estimates of ϕE from the algorithm [14].

6 Discussion
In this paper, we developed a tractable model of soft tissue mechanical behaviour that only contains microstruc-
turally relevant parameters. When fitted to experimental murine and equine tendon data using non-linear optimi-
sation, our SEF provides a closer fit than a microstructural tendon model to all four data sets studied and a closer
fit than the HGO model to three out of the four data sets, only narrowly providing a worse relative fit to the t6b
data set. However, more work needs to be done to ascertain what parameter vectors we obtain from fitting the ST
and GT models to experimental data in standard non-linear optimisation. In particular, work needs to be done
to determine whether an optimisation algorithm is able to converge on a particular set of parameter vectors for
when the GT and ST models are fit to. We also implemented an adaptive RWM algorithm to characterise posterior
probability distributions to quantify the uncertainty in the values of the fitting parameters. This algorithm samples
effectively when fitting to both synthetic data and high-resolution experimental data. Furthermore, it samples
parameter vectors that provide a close fit to the data, with the 95% credible intervals for the important physical
parameter ϕE containing realistic values when compared with existing estimates of the parameters ϕ and E.

As the model is pseudoelastic, the Young’s and shear moduli predicted by our model are specific to the strain-
rates used in the experiments we fitted. The effective moduli would increase with increasing strain-rate. Our
findings suggest that ϕE differs from sample to sample. Consequently, either the collagen volume fraction varies
between the samples we fitted, or there may not be a universal collagen fibril Young’s modulus. In particular, it
may be wrong to assign a Young’s modulus to collagen on the fibrillar level, as molecular differences may cause some
fibrils to be stiffer than others. If so, our model would need to be modified to allow for variation in the constitutive,
as well as the structural, parameters. The Bayesian approach assumes that our model is ‘correct’ in the sense that
it incorporates all of the physics necessary to predict the microstructural and constitutive parameters accurately.
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Figure 10: Approximate posteriors and contour plots of the parameters for the CDET data. Samples were thinned
by a factor of ten.
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If a significant feature is absent in the model, this would lead to inaccuracies in the predicted parameter values;
however, the quality of fit our model demonstrates and the agreement of the predicated parameter values with
experimental values reported in the literature provide confidence that it does indeed include all of the necessary
physical features.

So far, we have used the triangular distribution to model the distribution of collagen fibril lengths in tendon.
Other tractable SEFs could be derived by modelling fibril lengths with alternative distributions, such as the step
distribution, for example, which would also lead to a convenient analytic representation. Additionally, more-efficient
sampling methods, such as Hamiltonian Monte Carlo, which uses derivatives of the log-posterior with respect to
model parameters to propose parameter vectors in areas of high posterior probability, could be used instead. We
have studied tendons, which possess a more regulated collagen structure than in tissues such as skin, where fibrils
are generally splayed. By applying our model, and the Bayesian approach used here, to deformations of other
soft tissues, we could quantify uncertainty in a broader range of scenarios. A plausible test of the aforementioned
‘correctness’ of the model and its assumptions would be to fit multiple data sets simultaneously, enforcing the
constitutive parameters to be the same between the data sets and varying the structural parameters only. The
estimated posterior probability distributions could quantify the inter-sample variation in the constitutive parameters
within a particular tissue in any given species.
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A The piecewise constants A(I4), B(I4), C(I4), D(I4) and G(I4)
The values of the piecewise constants for the general triangular distribution are

A(I4) =


0, I4 < a2,

− a2

(b−a)(c−a) , a2 ⩽ I4 ⩽ c2,
c2

(c−a)(b−c) − a2

(b−a)(c−a) , c2 < I4 ⩽ b2,

−1, I4 > b2,

, (26)

B(I4) =


0, I4 < a2,

2a log a
(b−a)(c−a) , a2 ⩽ I4 ⩽ c2,

2a log a
(b−a)(c−a) − 2c log c

(c−a)(b−c) , c2 < I4 ⩽ b2,
2a log a

(b−a)(c−a) + 2b log b
(b−a)(b−c) − 2c log c

(c−a)(b−c) , I4 > b2,

(27)

C(I4) =


0, I4 < a2,

1
(b−a)(c−a) , a2 ⩽ I4 ⩽ c2,

− 1
(b−a)(b−c) , c2 < I4 ⩽ b2,

0, I4 > b2,

(28)

D(I4) =


0, I4 < a2,

− 2a
(b−a)(c−a) , a2 ⩽ I4 ⩽ c2,

2b
(b−a)(b−c) , c2 < I4 ⩽ b2,

0, I4 > b2,

(29)

G(I4) =


0, I4 < a2,

a2 log a
(b−a)(c−a) − 5a2

2(b−a)(c−a) , a2 ⩽ I4 ⩽ c2,
2a2 log a

(b−a)(c−a) − c2 log c
(c−a)(b−c) − 5a2

2(b−a)(c−a) + 5c2

2(b−c)(c−a) , c2 ⩽ I4 ⩽ b2,
a2 log a

(b−a)(c−a) − c2 log c
(c−a)(b−c) + b2 log b

(b−c)(b−a) − 5a2

2(b−a)(c−a) + 5c2

2(b−c)(c−a) − 5b2

2(b−a)(c−a) , I4 > b2.

(30)

The corresponding quantities for the symmetric triangular distribution are obtained by setting c = (a + b)/2.
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Bayesian inference on a microstructural, hyperelastic model of tendon
deformation: Supplementary material

1 SEF derivation
For the reasons stated in the main paper, we assume that the SEF, W (I1, I4), is given by

W (I1, I4) = (1 − ϕ)WNCM(I1) + ϕWcoll(I4), (1)
where ϕ is the collagen volume fraction, WNCM(I1) and Wcoll(I4) denote the contributions to the SEF from the
non-collagenous matrix (NCM) and collagen fibrils, respectively, I1 is a strain invariant, and I4 is the square of the
stretch in the direction of the collagen fibrils. As an individual fibril is slack when crimped and obeys Hooke’s law
when it is taut, the non-dimensional stretch experienced by a fibril, λfib, in terms of the recruitment stretch, λr, at
a macroscale stretch λ is

λfib(λ, λr) =
{

1, λ < λr,
λ

λr
, λ ⩾ λr.

(2)

By (2) and the assumptions of the model, the stress in a fibril, σfib(λ, λr), is

σfib(λ, λr) = Eefib =
{

0, λ < λr,

E (λ−λr)
λr

, λ ⩾ λr,
(3)

where E is the Young’s modulus of the fibril and efib = λfib − 1 is the engineering strain experienced by the fibril.
In order to calculate the total stress acting on the collagen fibrils, we must assign a distribution function to model
the different recruitment stretches amongst the collagen fibrils. Consequently, σF (λ), the total stress acting on the
fibrils, is

σF (λ) =
∫ λ

0
σfib(λ, λr)f(λr)dλr, (4)

where f(λr) denotes the recruitment-stretch distribution function.

1.1 General triangular distribution
The probability density function (PDF) for the general triangular distribution is given by

f(λr) =


0, λr < a,

2(λr−a)
(b−a)(c−a) , a ⩽ λr ⩽ c,

2(b−λr)
(b−a)(b−c) , c < λr ⩽ b,

0, λr > b,

(5)

where a, b, and c are the minimal, maximal, and modal recruitment stretches, respectively. Substituting (3) and
(5) into (4), gives

σF (λ) = E(A(λ) + B(λ)λ + C(λ)λ2 + D(λ)λ log λ), (6)
where A(λ), B(λ), C(λ), and D(λ) are piecewise constants that possess the same boundaries as f(λr) in (5). As
the stretch in the direction of the fibrils is λ, then I4 = λ2. Rewriting (6) in terms of I4, we obtain

σF (I4) = E

(
A(I4) + B(I4)

√
I4 + C(I4)I4 + D(I4)

2
√

I4 log I4

)
, (7)
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where

A(I4) =


0, I4 < a2,

− a2

(b−a)(c−a) , a2 ⩽ I4 ⩽ c2,
c2

(c−a)(b−c) − a2

(b−a)(c−a) , c2 < I4 ⩽ b2,

−1, I4 > b2,

, (8)

B(I4) =


0, I4 < a2,

2a log a
(b−a)(c−a) , a2 ⩽ I4 ⩽ c2,

2a log a
(b−a)(c−a) − 2c log c

(c−a)(b−c) , c2 < I4 ⩽ b2,
2a log a

(b−a)(c−a) + 2b log b
(b−a)(b−c) − 2c log c

(c−a)(b−c) , I4 > b2,

(9)

C(I4) =


0, I4 < a2,

1
(b−a)(c−a) , a2 ⩽ I4 ⩽ c2,

− 1
(b−a)(b−c) , c2 < I4 ⩽ b2,

0, I4 > b2,

(10)

D(I4) =


0, I4 < a2,

− 2a
(b−a)(c−a) , a2 ⩽ I4 ⩽ c2,

2b
(b−a)(b−c) , c2 < I4 ⩽ b2,

0, I4 > b2.

(11)

From the main paper, in terms of W (I1, I4), the Cauchy stress, σ, is

σ = −pI + 2∂W

∂I1
B + 2∂W

∂I4
m ⊗ m, (12)

where p is a Lagrange multiplier that accounts for the loss of a degree of freedom that is caused by the assumption of
incompressibility, B is the left Cauchy-Green deformation tensor, and m is the deformed orientation of the collagen
fibrils. By (1) and (12), the fibril contribution to the Cauchy stress, σcoll, is

σcoll = 2∂Wcoll(I4)
∂I4

m ⊗ m. (13)

We can rewrite the right side of (13) in terms of I4 using the method outlined in [1]. First, we calculate the traction,
tcoll, associated with the contribution to the stress from the collagen fibrils that acts on a face normal to the fibrils.
Then we calculate the component of tcoll that acts in the direction of the fibrils. We find(

σcoll ·
(

m
|m|

))
· m

|m|
= tcoll · m

|m|
=
(

2∂Wcoll(I4)
∂I4

|m|m
)

· m
|m|

= 2I4
∂Wcoll(I4)

∂I4
. (14)

By (7) and (14),

2I4
∂Wcoll(I4)

∂I4
= E

(
A(I4) + B(I4)

√
I4 + C(I4)I4 + D(I4)

2
√

I4 log I4

)
. (15)

Consequently,

Wcoll(I4) = E

(
A(I4)

2 log I4 + (B(I4) − D(I4))
√

I4 + C(I4)
2 I4 + D(I4)

2
√

I4 log I4 + G(I4)
)

, (16)

where G(I4) ensures the continuity of Wcoll(I4) across each boundary of A(I4)—D(I4), and is equal to

G(I4) =


0, I4 < a2,

a2 log a
(b−a)(c−a) − 5a2

2(b−a)(c−a) , a2 ⩽ I4 ⩽ c2,
a2 log a

(b−a)(c−a) − c2 log c
(c−a)(b−c) − 5a2

2(b−a)(c−a) + 5c2

2(b−c)(c−a) , c2 ⩽ I4 ⩽ b2,
a2 log a

(b−a)(c−a) − c2 log c
(c−a)(b−c) + b2 log b

(b−c)(b−a) − 5a2

2(b−a)(c−a) + 5c2

2(b−c)(c−a) − 5b2

2(b−a)(b−c) , I4 > b2.

(17)

We assume a neo-Hookean contribution to the SEF from the NCM. Therefore, the new SEF is given by
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W (I1, I4) = (1 − ϕ)µ

2 (I1 − 3)

+ ϕE

(
A(I4)

2 log I4 + (B(I4) − D(I4))
√

I4 + C(I4)
2 I4 + D(I4)

2
√

I4 log I4 + G(I4)
)

. (18)

1.2 Symmetric triangular distribution
We can restrict the triangular distribution to be symmetric. That is, we set the mode, c, to be equal to a+b

2 .
Therefore, (5) becomes

f(λr) =


0, λr < a,
4(λr−a)
(b−a)2 , a ⩽ λr ⩽ a+b

2 ,
4(b−λr)
(b−a)2 , a+b

2 < λr ⩽ b,

0, λr > b.

(19)

We can insert (3) and (19) into (4) to calculate the total contribution to the stress from the fibrils. Similar to (6),
we find that

σ∗(I4) = E

(
A∗(I4) + B∗(I4)

√
I4 + C∗(I4)I4 + D∗(I4)

2
√

I4 log I4

)
, (20)

where I4 = λ2 and

A∗(I4) =


0, I4 < a2,

− 2a2

(b−a)2 , a2 ⩽ I4 ⩽
(

a+b
2
)2

,
(b2−a2+2ab)

(b−a)2 ,
(

a+b
2
)2

< I4 ⩽ b2,

−1, I4 > b2,

, (21)

B∗(I4) =


0, I4 < a2,
4a log a
(b−a)2 , a2 ⩽ I4 ⩽

(
a+b

2
)2

,
4a log a
(b−a)2 − 4(b+a)

(b−a)2 log
(

a+b
2
)

,
(

a+b
2
)2

< I4 ⩽ b2,
4a log a
(b−a)2 + 4b log b

(b−a)2 − 4(b+a)
(b−a)2 log

(
a+b

2
)

, I4 > b2,

(22)

C∗(I4) =


0, I4 < a2,

2
(b−a)2 , a2 ⩽ I4 ⩽

(
a+b

2
)2

,

− 2
(b−a)2 ,

(
a+b

2
)2

< I4 ⩽ b2,

0, I4 > b2,

(23)

D∗(I4) =


0, I4 < a2,

− 4a
(b−a)2 , a2 ⩽ I4 ⩽

(
a+b

2
)2

,
4b

(b−a)2 ,
(

a+b
2
)2

< I4 ⩽ b2,

0, I4 > b2.

(24)

By (20) and (14),

W ∗
coll(I4) = E

(
A∗(I4)

2 log I4 + (B∗(I4) − D∗(I4))
√

I4 + C∗(I4)
2 I4 + D∗(I4)

2
√

I4 log I4 + G∗(I4)
)

, (25)

where G∗ is an integration constant that ensures the continuity of W ∗
coll(I4) at each of the boundaries defined in

A∗(I4)—D∗(I4), and is given by
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G∗(I4) =



0, I4 < a2,
2a2 log a
(b−a)2 − 5a2

(b−a)2 , a2 ⩽ I4 ⩽
(

a+b
2
)2

,

2a2 log a
(b−a)2 − (a+b)2 log( a+b

2 )
(b−a)2 − 5a2

(b−a)2 + 5(a+b)2

2(b−a)2 ,
(

a+b
2
)2

⩽ I4 ⩽ b2,

2a2 log a
(b−a)2 − (a+b)2 log( a+b

2 )
(b−a)2 + 2b2 log b

(b−a)2 − 5a2

(b−a)2 + 5(a+b)2

2(b−a)2 − 5b2

(b−a)2 , I4 > b2.

(26)

Again, we choose to model the contribution to the SEF from the non-collagenous matrix with a neo-Hookean model.
Therefore,

W ∗(I1, I4) = (1 − ϕ)µ

2 (I1 − 3)

+ ϕE

(
A∗(I4)

2 log I4 + (B∗(I4) − D∗(I4))
√

I4 + C∗(I4)
2 I4 + D∗(I4)

2
√

I4 log I4 + G∗(I4)
)

. (27)

2 Mathematica Plots
In the main paper, we analyse the quality of fit achieved by multiple models of soft tissue deformation to two sets
of stress-strain data taken from tendon samples by Goh et al., designated in the paper as t5c and t6b, and two sets
of mechanical equine tendon data collected by Screen et al., designated as superficial digital flexor tendon (SDFT)
and common digital extensor tendon (CDET). These fits were created using the software program Mathematica
12.3.1.0. A couple of the fits achieved are shown in the main paper. In this supplementary material, however, we
provide the fits to each data set from all four of the models that we fit to the data sets. The fits to the four data
sets for the HGO model and the microstructural tendon model are provided in Figure 1 and Figure 2, respectively.
For the ST and GT models, the fits are in Figure 3 and Figure 4, respectively.

3 Hierarchical Bayes and the posterior predictive
In the main paper, we model the noise inherent in the problem with a Gaussian distribution of mean zero and
covariance matrix σ2Id, where d is the length of the data. Therefore, we obtain the following expression for the
likelihood function, L(y|θ, σ2):

L(y|θ, σ2) =
d∏

i=1

1√
2πσ2

exp
(

− 1
2σ2 (yi − M(θ)i)2

)
,

=
(

1
2πσ2

) d
2

exp
(

− 1
2σ2

d∑
i=1

(yi − M(θ)i)2

)
, (28)

where y is the experimental data, θ is the parameter vector, and M(θ) is the predicted stress-strain vector. In
(28), L(y|θ, σ2) possesses the same form for y as a Gaussian distribution with mean M(θ) and variance σ2Id.

To find the posterior distribution, up to a normalisation constant, we multiply the likelihood function in (28)
by the prior distributions of the model’s parameters, θ and σ2. A priori, we assume that the parameters are
independent of one another, and so the joint prior is just a product of the parameters’ individual priors. That is,

π0(θ, σ2) = π0(θ1) · · · π0(θh)π0(σ2), (29)

where π0(∗) represents the prior distribution of ∗ and h denotes the length of θ. With (29) and by Bayes’ rule, the
posterior distribution, π(θ, σ2|y), is

π(θ, σ2|y) ∝ L(y|θ, σ2)π0(θ1) · · · π0(θh)π0(σ2). (30)

To characterise the posterior distribution fully, we must compute the following multidimensional integral

Z =
∫
Rh

∫
R

L(y|θ, σ2)π0(θ1) · · · π0(θh)π0(σ2)dσ2dθ. (31)
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Figure 1: Closest fits (black, dashed lines) to the experimental tendon stress-strain data (yellow circles) using the
HGO model.

To compute Z as defined in (31) would be impractical due to the non-linear nature of the likelihood; however,
because of the form of the likelihood in (28), we can use a technique employed in the literature [2] to simplify the
problem by integrating the posterior with respect to σ2. To enable this integration to be performed, we make an
appropriate choice of π0(σ2), known as a conjugate prior, which ensures that L(y|θ, σ2)π0(σ2) retains the same
functional form as the conjugate prior itself. We choose the conjugate prior, π0(σ2), to be an inverse-gamma
distribution, which possesses the following PDF:

π0(σ2|ασ, βσ) = βασ
σ

Γ(ασ) (σ2)−ασ−1 exp
(

−βσ

σ2

)
, (32)

where Γ(∗) represents the Gamma function of ∗, and ασ and βσ are distribution parameters of the inverse-gamma
distribution, which correspond to the shape and scale of the PDF, respectively. The parameters ασ and βσ are
hyperparameters. In Bayesian statistics, hyperparameters are parameters of the prior distributions that we assign
to the model parameters that we seek to estimate posteriors for. In this case, the hyperparameters ασ and βσ

are associated with the prior we have assigned to the parameter σ2, the variance of the IID noise. We can choose
to assign a prior distribution, known as a hyperprior, to the hyperparameters. However, we do not sample the
hyperparameters in the random walk Metropolis (RWM) algorithm. Instead, we assign values to them, thereby
treating them as constants. We make this choice because we want to integrate the dependence on σ2 out of the
posterior and focus on sampling just the model parameters. Future work could adapt the RWM algorithm we
produce in this work to treat the hyperparameters as unknown variables and examine the impact that change has
on the posterior distributions we obtain for the model parameters. Consequently, by (28) and (32),
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Figure 2: Closest fits (black, dashed lines) to the experimental tendon stress-strain data (yellow circles) using the
modified microstructural tendon model.

∫ ∞

0
L(y|θ, σ2)π0(σ2)dσ2 =

∫ ∞

0

βασ
σ · (σ2)− d

2

(2π) d
2 Γ(ασ)

exp
(

− ∆2

2σ2

)
(σ2)−ασ−1 exp

(
−βσ

σ2

)
dσ2,

∝
∫ ∞

0
(σ2)−( d

2 +ασ)−1 exp
(

−
( ∆2

2 + βσ)
σ2

)
dσ2, (33)

where ∆2 =
∑d

i=1(yi − M(θ)i)2. By choosing an inverse-gamma prior for σ2, L(y|θ, σ2)π0(σ2) shares the same
functional form as π0(σ2), (32) and (33), with ασ replaced by d

2 +ασ, and βσ replaced by ∆2

2 +βσ. Therefore, when
we integrate L(y|θ, σ2)π0(σ2) with respect to σ2, we obtain∫ ∞

0
(σ2)−( d

2 +ασ)−1 exp
(

−
( ∆2

2 + βσ)
σ2

)
dσ2 =

Γ( d
2 + ασ)

( ∆2

2 + βσ) d
2 +ασ

. (34)

By (28), (32) and (34),

L(σ2)(y|θ) =
βασ

σ Γ( d
2 + ασ)

(2π) d
2 Γ(ασ)( ∆2

2 + βσ) d
2 +ασ

. (35)

The quantity L(σ2)(y|θ) is known as the posterior-predictive.
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Figure 3: Closest fits (black, dashed lines) to the experimental tendon stress-strain data (yellow circles) using the
ST model.

For a t-random vector x of length d, the PDF of the Student’s t distribution with mean µ, symmetric matrix
parameter Σ, and ν degrees of freedom is

tν(x;µ,Σ) =
Γ
(

ν+d
2
)

Γ
(

ν
2
) 1

(νπ) d
2

1√
det(Σ)

(
1 + 1

ν
(x − µ)TΣ−1(x − µ)

)− d+ν
2

. (36)

If we set µ = M(θ), Σ = βσ

ασ
Id, x = y, and ν = 2ασ, then we eventually recover (35). To show this, we start with

(36) and make the aforementioned substitutions,

t
(

y; M(θ), βσ

ασ
Id, 2ασ

)
=

Γ
(
ασ + d

2
)

Γ (ασ)
1

(2ασπ) d
2

1√
βd

σ

αd
σ

(
1 + 1

2ασ
(y − M(θ))T

(
βσ

ασ
Id

)−1
(y − M(θ))

)−ω

,

=
Γ(ασ + d

2 )
Γ(ασ)

α
d
2
σ

(2ασπ) d
2

1

β
d
2
σ

(
1 + 1

2βσ

d∑
i=1

(yi − M(θ)i)2

)−ω

,

=
Γ(ασ + d

2 )
Γ(ασ)

βασ
σ

(2π) d
2

(
βσ + 1

2

d∑
i=1

(yi − M(θ)i)2

)−ω

, (37)

where ω = d
2 + ασ. Therefore, the posterior predictive, L(σ2)(y|θ), is t2ασ

(y; M(θ), βσ

ασ
Id), and, by Bayes’ rule,

105



1.00 1.02 1.04 1.06 1.08 1.10
0

5

10

15

20

(a) Goh et al.: t5c

1.00 1.02 1.04 1.06 1.08
0

5

10

15

20

(b) Goh et al.: t6b

1.00 1.02 1.04 1.06 1.08 1.10
0
10
20
30
40

(c) Screen et al.: SDFT

1.00 1.02 1.04 1.06 1.08 1.10
0
20
40
60
80
100

(d) Screen et al.: CDET

Figure 4: Closest fits (black, dashed lines) to the experimental tendon stress-strain data (yellow circles) using the
GT model.

π(θ|y) ∝ L(σ2)(y|θ)π0(θ),

∝ t2ασ

(
y; M(θ), βσ

ασ
Id

)
π0(θ). (38)

In order to obtain the exact form of the posterior distribution, we must compute the following integral:

Z =
∫
Rh

L(σ2)(y|θ)π0(θ1) · · · π0(θh)dθ. (39)

However, with the form of the posterior predictive and the prior distributions we assign to the model parameters,
which are detailed in the main paper, we cannot perform the multidimensional integration needed to characterise
the posterior distribution exactly. Therefore, we use Markov chain Monte Carlo methods to sample from the
distribution instead.

4 Map-induced density
In the main paper, we discuss transforming the unknown parameters in order to sample a set of parameters whose
support stretches over the real numbers, thereby matching the support of the proposal distribution. This improves
the efficiency of the algorithm and, thus, the quality of our results. Because the transformation between the target
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(untransformed) parameters and the reference (transformed) parameter vectors is non-linear, we must account for
the effect that sampling in the reference parameter space has on both the posterior probability for a particular
reference vector (and their corresponding values in the target parameter space) and, ultimately, on which proposed
vectors are accepted. We must do this when the transformation is non-linear because, in the RWM algorithm, we
use a multivariate Gaussian proposal distribution that ensures the probability of moving from a proposed reference
parameter vector, θ∗, to the current position of the Markov chains, θcurr, is the same as moving from θcurr to θ∗.
However, the probability of moving from the corresponding proposed vector in the target space, ψ∗, to ψcurr may
not be the same as the probability of moving from ψcurr to ψ∗. As mentioned in the main paper, we account for this
effect by multiplying the posterior probability associated with θ by the term |detDT −1(θ)|, where T−1(θ) represents
the transformation of θ to ψ, DT −1(θ) represents the Jacobian of T−1(θ), and det denotes the determinant of the
matrix. Writing the target density with respect to the transformed parameters as π̃(∗) and in the original parameter
space as π(∗),

π̃(θ) = π(T −1(θ)|Y ).| det DT −1(θ)|, (40)

The quantity π̃(θ) is also known as the map-induced density. As defined in the main paper,

ψ =


(1 − ϕ)µ

ϕE
a
b

 , T (ψ) = θ =


ν
η
τ
ρ

 =


log ((1 − ϕ)µ)

log (ϕE)
log (a − 1)
log (b − a)

 . (41)

Therefore, the transformation T −1 is given by

T −1(θ) = ψ =


exp(ν)
exp(η)

exp(τ) + 1
exp(ρ) + exp(τ) + 1

 . (42)

Therefore, DT −1(θ) is given by

DT −1(θ) =


exp(ν) 0 0 0

0 exp(η) 0 0
0 0 exp(τ) 0
0 0 exp(τ) exp(ρ)

 . (43)

The determinant of the 4 × 4 matrix DT −1(θ) is thus

det DT −1(θ) = exp(ν + η + τ + ρ). (44)

In the RWM algorithm, the acceptance probability involves the evaluation of the target density at the current and
proposed states, which, in this instance, is given by the map-induced density

π̃(θ) = π(T −1(θ)|Y ). exp(ν + η + τ + ρ). (45)

5 Transformation of the engineering stress using the new parameters
In this section, we rewrite the constitutive equation for the ST model in terms of the transformed parameters, ν,
η, τ , and ρ. Respectively, these parameters are the natural logarithms of (1 − ϕ)µ, ϕE, a − 1, b − a. For a uniaxial
stretch along the z-axis, which coincides with the orientation of the collagen fibrils, and assuming traction-free
boundary conditions on faces that are not normal to the z-axis, the only non-zero component of the Cauchy stress
as defined in (12), σzz, is

σzz = (1 − ϕ)µ
(

λ2 − 1
λ

)
+ ϕE(A∗(λ) + B∗(λ)λ + C∗(λ)λ2 + D∗(λ)λ log λ). (46)

We can use (21)—(24) and (46) to write σzz explicitly in terms of λ and the transformed parameters for each region
specified in the piecewise constants. As discussed in the main paper, the following equations for σzz are divided by
λ and can then be used in the adaptive RWM algorithm to fit to stress-strain data.
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5.1 Region 1
In this region, every collagen fibril is crimped and slack. Only the non-collagenous matrix contributes to the tendon’s
resistance to the deformation. In terms of the transformed parameters, this region is defined as λ < 1 + eτ and the
Cauchy stress is

σzz = eν

(
λ2 − 1

λ

)
. (47)

5.2 Region 2
In this region, collagen fibrils begin to tauten, with the number of fibrils tautening increasing with the stretch. This
region is defined by (1 + eτ ) ⩽ λ ⩽ (2+2eτ +eρ)

2 , and the Cauchy stress is

σzz = eν

(
λ2 − 1

λ

)
+ 4e(η−2ρ)

(
λ2

2 − (1 + eτ )λ log
(

λ

1 + eτ

)
− (1 + eτ )2

2

)
. (48)

5.3 Region 3
In this region, collagen fibrils continue to tauten, but the number of fibrils tautening decreases with the stretch.
This region is defined as (2+2eτ +eρ)

2 < λ ⩽ (1 + eτ + eρ), and the Cauchy stress is

σzz = eν

(
λ2 − 1

λ

)
+ 4e(η−2ρ)

(
(1 + eτ )λ log(1 + eτ ) − (1 + eτ )2

2 − λ2

2 + (1 + eτ + eρ)λ log(λ)

− (2 + 2eτ + eρ)λ log
(

2 + 2eτ + eρ

2

)
+ (2 + 2eτ + eρ)2

4

)
. (49)

5.4 Region 4
In this region, every collagen fibril is taut. The region is defined as (1 + eτ + eρ) < λ, and the Cauchy stress is

σzz = eν

(
λ2 − 1

λ

)
+ 4e(η−2ρ)

(
− (2 + 2eτ + eρ)λ log

(
2 + 2eτ + eρ

2

)
+ (1 + eτ )λ log(1 + eτ )

+ (1 + eτ + eρ)λ log(1 + eτ + eρ) − e2ρ

4

)
. (50)

6 Determining the parameters of the prior distribution
In order to determine the parameters, µ and σ2, used in the log-normal priors of (1 − ϕ)µ, ϕE, a − 1, and b − a, and
the normal priors of their logarithms, we estimated the values at which the cumulative probability density (CPD)
of the prior reached 0.01 and 0.99 for each parameter and then used the quantile function to determine µ and σ2.
For the log-normal distribution, the quantile function is

q = exp(µ +
√

2σ2erf−1(2p − 1)), (51)

where q is the value of the parameter, erf−1 represents the inverse error function, and p is the CPD. The list of
values chosen for 0.01 and 0.99 cumulative density and the reasons for choosing them are listed in Table 1.

7 Additional RWM plots
As mentioned in the main paper, we also estimated parameter posteriors by fitting to the t5c and t6b data sets in
the RWM algorithm. For the t5c data set, the estimated posteriors and the two-dimensional contour plots of the
various joint distributions are given in Figure 5 for the untransformed parameters. The mean and 5σ confidence
band of a set of 50,000 positions from the Markov chains, that is, parameter vectors, are also plotted in Figure 6.
For the t6b data set, we also plotted the estimated parameter posteriors and two-dimensional contour plots of the
joint distributions in Figure 7, and the means and 5σ confidence band of a subset of 50,000 parameter vectors from
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Parameter 0.01 CPD 0.99 CPD Reason
(1 − ϕ)µ (MPa) 0.001 10 Lower: motivated by the values of µ for ten-

don fascicles obtained by Purslow [3]
Higher: inclusive upper bound.

ϕE (MPa) 3.072 13,600 Lower: inclusive lower bound using low esti-
mates of ϕ = 0.096 [4] and E = 32 MPa by
[5].
Higher: inclusive upper bound using an esti-
mate of ϕ = 0.85 and E = 16 GPa given by
[6] and [7], respectively.

a − 1 0.005 0.1 Lower: attempt to provide an inclusive lower
bound.
Higher: assumption that at least one fibril
has tautened by the end of the stress-strain
data we fit to.

b − a 0.005 0.15 Lower: attempt to provide an inclusive lower
bound.
Higher: attempt to provide an inclusive up-
per bound.

Table 1: A table of values used to calculate the mean and variance of the prior distributions of the ST model’s
parameters. In order to allow the posterior parameter space to be fully sampled in the RWM algorithm, the priors
were designed to be inclusive of a wide range of parameter values.

the Markov chains in Figure 8. To create Figures 5 and 7, the samples from the Markov chains were thinned by a
factor of ten, as they were for the higher-resolution data sets discussed in the main paper.

Comparing Figures 5—8 with their counterparts for the higher-resolution data shown in the main paper, the
estimated parameter posteriors are generally broader and, in some cases, possess a long tail in one direction of the
distribution, causing more probability mass to be located in the tail. Furthermore, the confidence bands of the
estimated stress values from parameter vectors in the Markov chains are significantly wider, with the ‘curves’ being
more angular than equivalent curves for the synthetic, SDFT, and CDET data sets due to the lack of data points
we fit to. In order to ensure we sampled from the target distributions, we extended the burn-in phase to be 1
million simulations. Before we attempt to identify why these differences occur, we note that the data collected by
Goh et al. were not intended to be used in the fitting of hyperelastic SEFs, but instead to study tendon behaviour
for elastic and plastic deformation and, then, failure.

The lack of points to fit to likely causes the aforementioned differences in the posteriors for two main reasons.
Firstly, it is harder to distinguish the regions of the SEF from one another when there are fewer points to fit to.
The value of (1 − ϕ)µ is less important, in terms of the overall fit, when there are few data points in the toe region
and collagen fibrils are active for nearly all data points. A wider range of values for (1 − ϕ)µ can be proposed and
accepted, therefore. This has also been shown in the main paper with the high-resolution CDET data. Secondly,
the posterior-predictive is dependent on the difference between the experimental and predicted stresses, and the
acceptance probability κ is dependent on the ratio of the value of the posterior-predictive of the proposed parameter
vector to that of the current position of the Markov chains. Fitting to fewer points means that differences in the
value of the posterior-predictive will be less pronounced between close and relatively poor fits to data. Therefore,
the prior ratio and the posterior-modification ratio have a greater effect on the calculation of κ. The latter ratio is
dependent on the proposed value of ϕE, for instance. Consequently, large values of ϕE are proposed and accepted,
as we see in Figures 5 and 7.

As mentioned previously, the posteriors of parameters such as ϕE and b are broad for these data sets with wide
tails in certain directions. Consequently, the confidence bands, calculated from the predicted stresses of 50,000
positions of the Markov chains, are broader than for the high-resolution data. In contrast to the high-resolution h16
SDFT data and the synthetic data, some two-dimensional contour plots possess contour lines that are not elliptical,
but instead are more complex in shape. This makes it harder for the RWM algorithm to propose enough parameter
vectors that are accepted, which impacts the ability of the algorithm to run efficiently. However, the posteriors are
generally smooth, which suggests that some level of convergence in the posteriors has been reached, and justifies
the use of a longer burn-in phase. Additionally, all the data points lie within the 5σ confidence band and close to
the mean line, demonstrating the ability of the model to replicate experimental data.
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Figure 5: Estimated posteriors and contours of the joint distributions of the untransformed parameters for the fit
to the t5c data.
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Figure 6: The mean (black) and 5σ confidence band (blue) of the fits to the t5c data (yellow dots).
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Figure 7: Estimated posteriors and contours of the joint distributions of the untransformed parameters for the fit
to the t6b data.
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Figure 8: The mean (black) and 5σ confidence band (blue) of the fits to the t6b data (yellow dots).
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Chapter 5

A Bayesian Approach to the Hyperelastic 

Modelling of Skin

5.1 Skin paper introduction

We have fitted two versions of our new microstructural model to experimental mechanical 
data taken from tendons and also fitted one version of the model in a random walk Metropolis 
Markov chain Monte Carlo (RWM MCMC) algorithm. Now we extend the work to studying 
uniaxial mechanical data on skin samples. Skin is a multi-layered material that is required 
to withstand deformations in a much wider set of directions than in tendons. To support 
this task, skin has a distinct microstructure compared to tendons, with collagen fibrils in 
skin demonstrating more-splayed orientations compared to the largely aligned fibrils found in 
tendons, although there are still preferred orientations in skin. This more complex structure 
is a good extension in terms of testing both versions of the new model. Furthermore, like 
tendons, skin performs many tasks vital to normal bodily function and improvements in our 
knowledge of the mechanics of skin could benefit a wide variety of real-world industries.

If more time had been available, work would have been done to modify our microstructural 
model to account for dispersion in the strain energy function. This would have been done 
for a few important and related reasons. Firstly, assuming fibrils in skin are dispersed bet-
ter approximates the microstructure of skin that has been observed by numerous research 
teams. Secondly, it would have been ideal to analyse what effect introducing an additional 
microstructural phenomenon directly to the model would have had on the parameter values 
obtained, particularly in the RWM MCMC algorithm. For instance, with splayed fibrils, 
would the estimated credible interval of the Young’s modulus of the collagen fibrils increase 
in magnitude? Thirdly, introducing dispersion to a model allows it to be used to study more-
general deformations, uniaxial stretches performed on the same skin in two distinct directions, 
for example. Because we have been unable to get dispersion working in the RWM MCMC 
algorithm, some of the material of this chapter is similar to the chapter on tendon modelling. 
This is especially true for Sections 2 and 4 of this chapter.

This chapter has been written in the same style as the paper in the previous chapter, which has 
been submitted to the Journal of the Royal Society Interface. For this paper draft, I performed 
the following tasks:
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• Digitally converted stress-strain and force-strain data sets from digital images into nu-
merical values, as described in the following paper draft, taken from the literature.

• Fitted multiple SEFs to the data sets in Mathematica using standard regression and fit 
one version of our new microstructural SEF to two of the data sets in the RWM MCMC 
algorithm.

• Wrote and edited this paper draft. This includes creating the figures shown in the thesis.
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Abstract
The macroscopic stress-strain behaviour that fibrous soft tissues such as skin exhibit are caused by the

arrangement and properties of the tissue’s constituents. It is of great importance, therefore, to account for the
microstructure in models of soft tissue behaviour. We fitted a tractable microstructural model to extracted
values of experimental skin data. The model fit skin data closely, with it bettering the fits of a much-used
semi-structural model and an existing microstructural tendon model for three out of the four extracted data sets
fit to. Furthermore, we used a random walk Metropolis Markov chain Monte Carlo algorithm to determine both
marginal posterior probability distributions and joint distributions for one version of our microstructural model.
Efficient sampling and smooth, well-defined posteriors were obtained for fits to a synthetic data set extracted
pigskin stress-strain data. However, we were not able to sample efficiently for extracted stress-strain data from
cadaveric human skin.

1 Introduction
Skin is the largest organ in the human body, constituting around 15% of the weight of the body [1]. Skin is a
vital part of the integumentary system, protecting the body from outside materials such as bacteria and viruses,
and playing an important role in perception and regulation of the body [2]. Through contact with outside objects
and interactions with the interior of the body, skin is subjected to many deformations every day. It is vital
that skin withstands these deformations in order to ensure that the body it protects remains intact and healthy.
Understanding how the skin behaves is important. Advances in skin modelling would possess important applications
in such varied fields, amongst others, as cosmetics, surgery and skin regeneration [2], [3]. Our goal, therefore, in
this chapter is to investigate whether a microstructural model that we have previously developed to study tendon
behaviour can also adequately describe uniaxial tensile data taken from skin.

Analysing the ability of our model to fit to skin behaviour is a good extension to the work we have performed on
tendons. Firstly, skin consists of the same constituents as tendons, with the most important mechanical component
in the extracellular matrix (ECM) in both tissues being the stiff protein collagen. Skin is a multi-layer material,
consisting of, from outermost to innermost, the epidermis, the dermis, and the hypodermis (although sometimes the
hypodermis is not considered part of the skin). The dermis contains the vast majority of the skin’s collagen content
and is much thicker than the epidermis, so it is the most mechanically important layer of skin. The microstructures
of tendons and skin differ from each other, as they are adapted so that either tissue can perform the tasks required of
it. Collagen fibrils in tendon have a highly regulated structure, largely aligning with one another to resist high loads
in a particular direction. Collagen fibrils in the dermis, however, aggregate to form collagen fibres that are arranged
in a network [4], which enables the skin to resist deformations from a range of directions. Other constituents of the
ECM include the fibrous protein elastin and various proteoglycans [5].

When skin is deformed, it exhibits similar complex macroscopic behaviour to the tendon behaviour discussed
in the previous chapter. Skin is anisotropic, viscoelastic [6], and exhibits nonlinear stress-strain behaviour. In
particular, when skin is stretched, we observe a J-shaped stress-strain curve that is typical of fibrous human soft
tissues [7]. This behaviour enables skin to be compliant at small strains, but stiffen rapidly as the strain increases.
As with tendons, these macroscopic behaviours are driven by the microstructure of the tissue. Collagen fibrils, when
taut, confer mechanical strength to skin. These fibrils are heterogeneously distributed in skin, causing the tissue
to be anisotropic [8]. Multiple microstructural mechanisms for viscoelasticity have been posited, including friction
caused by constituents such as collagen fibrils rubbing over one another, or energy dissipated due to molecular
relaxations that occur in the ECM [9]–[11].
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Variations in the microstructure between skin and tendons exist, resulting in differences in the mechanical
behaviour of the two tissues. For example, the aforementioned network of collagen fibrils in skin means that the
material can resist large deformations in multiple directions. By contrast, tendons possess largely aligned collagen
fibrils, which confer significant strength in the relatively narrow range of directions that a tendon is commonly
stretched in. Skin can also undergo larger stretches than tendons, generally, as evidenced by the stress-strain
data sets tested in Chapter 4 and later on in this chapter. Skin, therefore, provides a good extension to tendon:
their mechanical behaviours are of a similar form and driven by the same constituents, but skin exhibits different
mechanical behaviour because of a more complicated microstructure.

As we did in the previous chapter for tendons, we model skin as a fibre-reinforced hyperelastic composite in which
the stress acting on a skin sample is related to the strain experienced by the sample via a strain-energy function
(SEF), W . Again, skin is a viscous material, but samples can be preconditioned before experiments are performed
on them in order to allow us to treat the tested sample as pseudoelastic [12]. This enables us to fit a hyperelastic
SEF to experimental stress-strain data taken from skin. Although the arrangement of collagenous structures is
more complex in skin than the highly ordered structure present in tendons, we still desire to accurately model tissue
behaviour with a microstructural model. The reasons for this are the same as in Chapter 4: microstructural models
that consist solely of physically relevant parameters could, in theory, be used in a greater range of applications
than phenomenological models, predicting the behaviour of skin samples, or even in vivo skin. This potential
usage highlights the need to develop accurate microstructural models for future use. We apply the same tests
to the microstructural SEF for skin as we did for modelling to tendon data: fitting the model, using non-linear
optimisation to four experimental stress-strain data sets before estimating parameter posterior distributions using
a Random Walk Metropolis (RWM) Markov chain Monte Carlo algorithm (MCMC).

For the skin problem, we again compare the two versions of our microstructural model, which correspond to the
distribution of collagen fibril recruitment stretches being governed by a symmetric and general triangular distribu-
tion, to the HGO model [13] and a modified tendon model based off a model created by Shearer [14]. The HGO
model still provides a good complement to the new model, as it has been adapted to model skin behaviour before
[3], [15], and, in contrast to our model, it contains phenomenological parameters, although structural considerations
are key to the overall form of the SEF. The modified tendon model of Shearer is also a good benchmark to study
our microstructural model against: both models are microstructural and have been shown to fit tendon data well
in the previous chapter.

Additionally, in this chapter, we attempt to accurately estimate posterior distributions for the model parameters
for similar reasons to those we discussed for tendons. Differences in skin structure have been observed in the
literature [16]. Additionally, skin differs across an individual, with eyelid skin being particularly thin and skin
on the soles of the feet being particularly thick [4]. Smoking and damage, whether from trauma or sunlight, also
affect skin. In these instances, the composition, arrangement, and properties of the constituents, and thus the
mechanics of skin, are also impacted. Models cannot directly measure all of these microstructural variations. If a
model attempted to, it would be too complex for practical use in all but a few situations, at best. Furthermore,
values given in the literature for microstructural properties of soft tissues differ. Values stated for the Young’s
modulus of collagen, for example, have ranged from the orders of tens of megapascals to gigapascals [17], [18]. This
is to be expected with these values calculated using different methods used to study different skin samples from
different subjects. These are all sources of uncertainty in the modelling of skin behaviour and the parameter values
we obtain when fitting to data. Consequently, it is important to attempt to quantify the uncertainty present in
the values of a model’s parameters when it is fitted to experimental data by determining probability distributions
for the values of a model’s parameters. For the tendon problem, we demonstrated that the symmetric-triangular-
distribution version of our model could be used in an RWM MCMC algorithm to estimate posterior distributions
for the model’s parameters when fit to tendon data. We aim, in this chapter, to show the same occurs when skin
data is fitted to.

The outline for the rest of the chapter is as follows. In Section 2, we introduce the continuum mechanical
framework that is used to describe the deformations of soft tissues, and define the SEFs we fit to data. In Section 3,
we fit the models to extracted experimental stress-strain and force-strain data of uniaxial extensions on skin samples
using a standard non-linear optimisation technique in Mathematica 12 [Mathematica Version 12.3.1.0, Wolfram
Research Inc., https://www.wolfram.com/mathematica, Champaign, IL, 2021], and we compare and analyse the
fits of the models to one another. In Section 4, we briefly introduce the field of Bayesian statistics and derive an
RWM MCMC algorithm that can be used to sample from unknown posterior probability distributions. We also
describe adaptive methods that can improve the efficiency of the algorithm. In Section 5, we apply our RWM
MCMC algorithm to fit to synthetic and extracted experimental data sets and examine the result. Finally, in
Section 6 we summarise the main conclusions of the chapter and explain how we had wished to expand upon the
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material covered in this chapter.

2 Continuum mechanics and the microstructural model
2.1 Preliminary notation
As we did for tendons, we consider two configurations in the deformation of skin: the reference configuration, Ω0,
which represents the material before a deformation is applied; and the deformed configuration, Ω, which represents
the material after the deformation is applied. The reference and deformed configurations are described by the
coordinates X and x, respectively, where the two sets of coordinates are described by the deformation mapping
x = χ(X). Again, the key measures of the deformation are the deformation-gradient F, and the left and right
Cauchy-Green deformation tensors, B and C, respectively, which are related by

F = ∇Xx, B = FFT, C = FTF. (1)

As we did for tendons in the previous chapter, we assume that skin is a transversely isotropic material. The
assumption we make to treat skin as transversely isotropic is a base one, and developing the complexity of the model
would be an ideal route for future work, but it is important, as an initial test, to examine how well a transversely
isotropic model can fit to experimental data. By treating skin as transversely isotropic, SEFs used to model it are
dependent on just two things: the deformation applied to the material; and the direction, which we again represent
in the reference configuration by M, around which rotations of a skin sample do not affect material behaviour.
Therefore, W = W (C, M ⊗ M), where M ⊗ M is used because it is a symmetric function of M. As discussed in
the previous chapter, the SEF is objective, and we can, thus, write it in terms of three invariants of C and two
pseudoinvariants of M ⊗ M. These are I1 = tr(C), I2 = 1

2 ((tr(C))2 − tr(C2)) and I3 = det(C), I4 = M · CM and
I5 = M · C2M. However, as we did in the previous chapter, we assume that we can accurately model skin with an
SEF of the form W = W (I1, I4) − p(I3 − 1). With this form of W the constitutive equation in terms of the Cauchy
stress, σ, is

σ = −pI + 2∂W

∂I1
B + 2∂W

∂I4
m ⊗ m, (2)

where m = FM is the direction of the collagen fibrils in the deformed configuration.

2.2 SEFs
For the SEFs we use to model skin behaviour, we make the same assumptions that we did when modelling to tendon.
That is, we assume that a neo-Hookean non-collagenous matrix (NCM) contains collagen fibrils that are initially
slack and crimped, but straighten and become mechanically active as a section of skin is stretched. Furthermore, we
assume that the contributions to the SEF from the NCM and collagen fibrils can be decoupled and are proportional
to the volume fraction of the material. We again consider the distribution of recruitment stretches in the tissue to
adhere to a general triangular distribution, f(λr), and a symmetric triangular distribution, f∗(λr), which are given
by

f(λr) =


0, λr < a,

2(λr−a)
(b−a)(c−a) , a ⩽ λr ⩽ c,

2(b−λr)
(b−a)(b−c) , c < λr ⩽ b,

0, λr > b,

, f∗(λr) =


0, λr < a,
4(λr−a)
(b−a)2 , a ⩽ λr ⩽ a+b

2 ,
4(b−λr)
(b−a)2 , a+b

2 < λr ⩽ b,

0, λr > b.

(3)

By the method introduced in Chapter 4, we eventually find the SEF for the general triangular distribution to be

Wgen(I1, I4) =(1 − ϕ)µ

2 (I1 − 3)

+Eϕ

(
A(I4)

2 log I4 + (B(I4) − D(I4))
√

I4 + C(I4)
2 I4 + D(I4)

2
√

I4 log I4 + G(I4)
)

, (4)
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and for the symmetric triangular distribution to be

Wsym(I1, I4) =(1 − ϕ)µ

2 (I1 − 3)

+Eϕ

(
A∗(I4)

2 log I4 + (B∗(I4) − D∗(I4))
√

I4 + C∗(I4)
2 I4 + D∗(I4)

2
√

I4 log I4 + G∗(I4)
)

. (5)

2.3 The other SEFs
As in Chapter 4, we test our new models against the widely used HGO model and a modified version of a mi-
crostructural model by Shearer. The modification consists of adding a shifting parameter, γ, that shifts the stretch
at which the first fibril is recruited, according to the model. A transversely isotropic, one-layer version of the HGO
SEF is

W (I1, I4) = cHGO

2 (I1 − 3) + k1

2k2
(exp(k2(I4 − 1)2) − 1), (6)

where cHGO and k1 are parameters with dimensions of stress and k2 is a dimensionless model parameter. As with
the tendon problem, the microstructural tendon model originally defined in [14] is modified via the introduction
of a shifting parameter γ. This parameter corresponds to the engineering strain at which the first collagen fibril
becomes mechanically active. Through the inclusion of the shifting parameter γ, the strain on a collagen fibril at
an applied stretch λ is λ − γ. Consequently, the pseudoinvariant I4 is given by (λ − γ)2. With this new definition
of I4, the SEF for this modified version of the microstructural tendon model is

W (I1, I4) = (1 − ϕ)µ (I1 − 3)
2 +


0, I4 < 1,

ϕE
6 sin2 θo

(
4
√

I4 − 3 ln I4 − 1
I4

− 3
)

, 1 ⩽ I4 ⩽ 1
cos2 θo

,

ϕE
(

2(1−cos3 θo)
3 sin2 θo

√
I4 − 1

2 ln I4 − 1
2 − cos2 θo

sin2 θo
log

(
1

cos θo

))
, I4 > 1

cos2 θo
,

(7)

where θo is the initial crimp angle of the outermost, most-crimped fibrils in the tendon’s fascicles.

3 Fitting to experimental uniaxial stress-strain data
As we did in the previous chapter, we fit the models to experimental stress-strain data under the assumption that a
uniaxial stretch is applied in the direction that collagen fibrils are oriented in. We consider this direction to coincide
with one of the coordinate axes. Without loss of generality, we pick the z-axis, as we did when fitting to tendons.
Together, the assumptions we have made provide a base simplification of the multi-axial deformations that skin is
subjected to in vivo. This problem serves, however, as a preliminary test of the accuracy of the SEFs models in
order to ascertain the potential viability of these SEFs for use in studying more complex skin deformations.

As the skin sample studied is incompressible, the reference and deformed coordinates are related as follows:

(x, y, z) =
(

X√
λ

,
Y√
λ

, λZ

)
, (8)

where the reference and deformed coordinates are denoted by the vectors (X, Y , Z) and (x, y, z), respectively.
The behaviour in the X and Y directions is the same because of the symmetry of the problem we study. With this
deformation,

C = B = diag
(
λ−1, λ−1, λ2)

. (9)

The Cauchy stress, (2), gives the force acting on the deformed material per unit deformed area; however, the
quantity recorded in the experiments being modelled is the engineering stress, the force per unit reference area,
which we denote as N . By the deformation we impose, we can obtain the engineering stress by inputting the SEF
we use to model skin behaviour into (2) and then by dividing the resulting expression by λ. For the version of our
SEF created using a general triangular distribution to model the variation of recruitment stretches in the tissue
(GT model), the engineering stress is

Ngen = (1 − ϕ)µ
(

λ − 1
λ2

)
+ ϕE

λ

(
A(λ2) + B(λ2)λ + C(λ2)λ2 + D(λ2)λ ln λ

)
, (10)
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where I4 = λ2. Similarly, for the version of our SEF created using a symmetric triangular distribution to model the
variation of recruitment stretches in the tissue (the ST model), the engineering stress is

Nsym = (1 − ϕ)µ
(

λ − 1
λ2

)
+ ϕE

λ

(
A∗(λ2) + B∗(λ2)λ + C∗(λ2)λ2 + D∗(λ2)λ ln λ

)
. (11)

For the HGO model, the engineering stress is

NHGO = cHGO

2

(
λ − 1

λ2

)
+ 2k1λ(λ2 − 1) exp(k2(λ2 − 1)). (12)

Finally, for the tendon model, the engineering stress is

Ntendon = (1 − ϕ)µ
2

(
λ − 1

λ2

)
+


0, λ < (1 + γ),

ϕE
3 sin2 θo

(
2 − 3

λ−γ − 1
(λ−γ)3

)
, (1 + γ) ⩽ λ ⩽ ( 1

cos θo
+ γ),

ϕE
(

2(1−cos3 θo)
3 sin2 θo

− 1
λ−γ

)
, λ > ( 1

cos θo
+ γ).

(13)

3.1 Data Sets
Now that we have derived the constitutive equation for the four SEFs that we use to fit to data, we introduce the
data sets that we use. The four data sets are as follows:

• Lanir & Fung [19]: force-strain from an in vitro test on rabbit skin,

• Ankersen et al. [20]: stress-strain data from an in vitro test on pigskin,

• Gunner et al. [21]: force-strain data from an in vivo test on a living nine-year-old girl.

• Dunn et al. [22]: stress-strain data from an in vitro test on human chest skin samples taken from cadavers
aged between forty-seven and eighty-six.

It should be noted, however, that each of the data sets have been extracted from the relevant stress-strain curves
plotted in the papers and are not the true data collected in experiments. This is because none of the data from the
four experiments were published. To estimate the data we calculated the pixel number, in Microsoft Paint, in the
x and y directions for the stress-strain and force-strain curves and converted those pixel counts into stretches, and
stresses or forces. Naturally, this adds more uncertainty to the values of the data fit to, further motivating the use
of a Bayesian approach to model uncertainty later in this chapter.

Lanir & Fung and Gunner et al. plotted force against strain. Because Lanir & Fung did not state the dimension
of the samples used and Gunner et al. performed an in vivo test, we cannot convert the existing data into a
stress-strain curve. Because engineering stress is a measure of the force per unit reference area, we fit to these
data sets by multiplying the expressions for the engineering stress, (10)—(13), using a reference-area parameter,
A. Additionally, the orientation of the collagen fibrils was not determined for these experiments. In papers that
uniaxially stretched skin samples in multiple directions, we assumed that the direction in which a skin sample was
found to be stiffest was the direction that the collagen fibrils were oriented in, according to our model.

The general experimental set-up for the data collected by Ankersen et al. and Dunn et al. is shown in Figure
1. Soft tissues consist mainly of water, so clamping to skin samples is tough, as they tend to slip when they are
clamped to [23]. Hence, dumbbell-shaped skin samples are excised and secured to the clamps and measurements
are considered to be taken over the middle portion of the skin sample [24]. This section for which measurements are
taken over is called the gauge length. The data collected by Lanir & Fung were taken from skin samples that were
not dumbbell-shaped, Figure 2. The in vivo test performed by Gunner et al. was performed using an extensometer
on the test subject’s axilla (armpit).

3.2 Results
We fit each of the four models to data using the function NonlinearModelFit from the package Mathematica 12
[Mathematica Version 12.3.1.0, Wolfram Research Inc., https://www.wolfram.com/mathematica, Champaign, IL,
2021]. The Nelder-Mead algorithm is again used because existing literature sources detail the algorithm. We again
restrict the model parameters as follows: for the ST model, 0 < (1 − ϕ)µ, 0 < ϕE, 1 < a < b, a < λmax, where
λmax represents the maximum stretch in the data; for the GT model, we replaced 1 < a < b with 1 < a < c < b;
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Gauge Length

Figure 1: The experimental set-up for the data sets obtained by Ankersen et al. and Dunn et al. The mechanical
behaviour of the skin over the gauge length was measured.

Figure 2: The experimental set-up for the data set obtained by Lanir & Fung [19]. The square face of a cuboidal
skin sample had hooks attached to it that could stretch in one or two directions simultaneously.
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for the HGO model, (6), 0 < cHGO, 0 < k1, and 0 < k2; and for the modified tendon model, 0 ⩽ γ < (λmax − 1),
0 < θo < π

2 , (1 − ϕ)µ > 0, ϕE > 0.
The mean absolute error, ∆, between the experimental data, y, and simulated data, ŷ, is

∆ = 1
d

d∑
i=1

|yi − ŷi|, (14)

where d is the length of the data set. Similarly, the mean relative error, δ, is

δ = 1
d

d∑
i=1

|yi − ŷi|
|yi|

. (15)

The relations (14) and (15) hold for the two data sets where we fit to stress-strain values and the two data sets
where we fit to the force-strain values.
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Figure 3: Closest fits (black, dashed lines) to the experimental tendon data (yellow circles) using the GT model.

The values of ∆ and δ found when fitting each model to the four data sets are given in Table 1. The parameter
values found in these fits are listed in Table 2. Some proposed parameter values for ϕE are lower than we would
expect given the range of values stated in the literature. For the data sets that fit the force rather than stress acting
on the skin sample, this could be due to the area parameter A multiplying ϕE. For instance, for the GT model for
the Ankersen et al. and Dunn et al. data sets, the value of ϕE is physically reasonable at 117 MPa and 176 MPa,
respectively. The ST model achieves a closer fit to the data than the microstructural tendon model for each data
set and to the HGO model for three of the four data sets. Furthermore, the GT model also achieves a closer fit
to data than the microstructural tendon and HGO models for three out of the four data sets studied, although it
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Figure 4: Closest fits (black, dashed lines) to the experimental tendon data (yellow circles) using the ST model.

provides the worst fit out of the four SEFs to the Lanir & Fung data. Only for the data collected by Lanir & Fung
does the HGO model outperform the ST and GT models. Surprisingly, the ST model outperforms the GT model
in every data set other than the data from Ankersen et al. The GT model contains an additional degree of freedom
when it comes to fitting to data, so we would expect that model to outperform the ST model. This surprising
result is likely because non-linear optimisation only provides a local best fit to data and only 1000 iterations of the
Nelder-Mead algorithm were performed. The fits to data for the GT, ST, HGO, and modified tendon models can
be found in Figures 3—6, respectively.

Finally, as we also did in Chapter 4, we produced a table of parameter values achieved from a couple of other
fits, using the same four models, to the four data sets. Again, the starting values for these fits were randomly
chosen. As we did for tendons, we observe that the HGO model is the model for which parameter vectors obtained
at the end of the fits are closest to one another. The parameter vectors for the ST and GT model, for example,
often show significant differences. This is expected for the skin problem because, by virtue of the fact that we work
with extracted data in this problem, the data is lower-resolution and will contain larger errors than the data used
for the tendon problem. Therefore, it is harder for an optimisation method to move into a particularly close-fitting
region of the parameter space.

4 Bayesian Statistics
We have fitted to the experimental stress-strain behaviour of skin using non-linear optimisation. Next, we attempt
to fit to the data via a Random Walk Metropolis (RWM) Markov chain Monte Carlo (MCMC) algorithm in order
to estimate posterior distributions for the model’s parameters. As discussed in Chapter 4, we introduce the RWM
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Figure 5: Closest fits (black, dashed lines) to the experimental tendon data (yellow circles) using the HGO model.

algorithm to sample from the posterior distributions of the parameters because we cannot derive an exact form of
the posteriors. We again start under the assumption that we can account for uncertainty by assuming that the
experimental data is produced via the sum of the deterministic model’s output with independently and identically
distributed (IID) noise. In equation form, that is

y = M(θ) + η, η ∼ N (0, σ2Id), (16)

where d is the length of y, Id is a d × d identity matrix, N (0, σ2Id) represents a normal distribution with mean
0 and covariance matrix σ2Id, and y ∈ Rd. As shown in Chapter 4, we find that the likelihood function for our
problem is

L(y|θ, σ2) = 1
(σ

√
2π)d

exp
(

− 1
2σ2 ∥y − M(θ)∥2

2

)
. (17)

As we were able to do in Chapter 4, we integrate out the posterior’s dependence on σ2 by assigning an inverse-
gamma prior to it that contains the hyperparameters ασ and βσ. We use the same value for the hyperparameters
that we used for the tendon problem. That is, ασ = 3 and βσ = 0.3. This value for the hyperparameters is most
likely less reasonable for the skin problem as for the tendon because, as mentioned previously, the extracted skin
data will contain larger errors than the tendon data did. Therefore, it would be useful to study what impact, if any,
that changing the hyperparameters to values which assign more probability mass for values of σ2 greater than 0.5
would have on the estimated posteriors we obtain at the end of the algorithm. From this we obtain the following
expression for the posterior
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Figure 6: Closest fits (black, dashed lines) to the experimental tendon data (yellow circles) using the modified
tendon model.

π(θ|y) ∝ t2ασ

(
y; M(θ), βσ

ασ
Id

)
π0(θ1) · · · π0(θh), (18)

where t2ασ
represents a Student’s t-distribution with 2ασ degrees of freedom and is known as the posterior-predictive.

4.1 The random walk Metropolis algorithm
The RWM algorithm that we use to sample from the posteriors of the parameters is the same as the one we used
for modelling to tendon and is shown in Algorithm 1. Again, we adapt Σ, the covariance matrix of the proposal
distribution, in order to ensure that the algorithm runs as efficiently as possible. As before, we write Σ = β2ζ,
where β2 is a scaling parameter and ζ is the covariance matrix of the model parameters. The expressions for β2

and ζ remain unchanged from the previous section. That is, ζ is calculated from the covariance of the parameters
over the last ten thousand simulations with β2 initially set equal to one and its value changed at the end of each
block of five hundred simulations. The conditions for changing β2 at the end of a block of simulations are

• αblock < αLowerTol: multiply β2 by 0.952;

• αLowerTol ⩽ αblock ⩽ αUpperTol: keep β2 at the same value;

• αUpperTol < αblock: multiply β2 by 1.052,
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Data GT ST HGO Tendon

L δ 0.372 0.193 0.0386 0.243
∆ (N) 0.0137 0.00930 0.00343 0.0124

A δ 0.0559 0.131 1.20 0.501
∆ (MPa) 0.0389 0.0898 0.690 0.401

G δ 0.0498 0.0468 0.258 0.164
∆ (N) 0.0123 0.0117 0.127 0.0525

D δ 0.0321 0.0181 0.771 0.135
∆ (MPa) 0.0379 0.0211 0.316 0.121

Table 1: Mean relative and absolute errors for the four models studied against experimental skin data. All values
are given to three significant figures. For the data column, L = Lanir & Fung, A = Ankersen et al., G = Gunner
et al., D = Dunn et al.

Model An D G L

HGO

cHGO (MPa) 0 0 0 17.4
k1 (MPa) 7.44 0.286 5.26 0.267

k2 1.11 0.117 1.77 12.2
A (mm2) N/A N/A 0.342 0.00351

Tendon

(1 − ϕ)µ (MPa) 5.73 0.432 0.389 0.296
ϕE (MPa) 72.9 36.1 8.60 53.7

θ 0.126 0.850 0.573 0.334
γ 0.0786 0.0440 0.0909 0.242

A (mm2) N/A N/A 6.04 0.333

ST

(1 − ϕ)µ (MPa) 1.63 0.0143 0.0338 0.231
ϕE (MPa) 117 89.9 18.5 163

a 1 1.17 1 1.23
b 1.18 2.28 1.41 1.38

A (mm2) N/A N/A 4.56 0.403

GT

(1 − ϕ)µ (MPa) 0.518 0 0.0936 1.99
ϕE (MPa) 125 176 5.56 364

a 1.03 1.16 1.00 1.23
c 1.03 2.30 1.20 1.28
b 1.23 2.30 1.47 1.29

A (mm2) N/A N/A 16.9 0.0609

Table 2: Parameter values (to three significant figures) for each model’s fit to the four data sets. To avoid confusion
with c in the GT model, the stress-like parameter for the HGO model is written as cHGO. For the data row, An =
Ankersen et al., G = Gunner et al., D = Dunn et al., and L = Lanir & Fung.

where αLowerTol = 0.184 and αUpperTol = 0.284 again. As occurred when fitting to tendon data in the algorithm,
adaptation of Σ stops at the end of the burn-in phase, which we again consider to consist of the first 500,000
simulations.
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Model An D G L
1 2 1 2 1 2 1 2

HGO

cHGO (MPa) 0 0 0 0 5.28 × 10−9 0 0.00136 0.0676
k1 (MPa) 7.44 7.44 0.286 0.286 2.01 0.00111 2.83 0.0103

k2 1.11 1.11 0.117 0.117 1.77 1.77 9.69 12.2
A (mm2) N/A N/A N/A N/A 0.897 1630 0.00114 0.906

δ 1.2 1.2 0.771 0.771 0.258 0.258 0.386 0.386
∆ (MPa) 0.690 0.690 0.316 0.316 0.127 0.127 0.0121 0.00343

Tendon

(1 − ϕ)µ (MPa) 0.273 0 0.432 0.432 8.54 2.51 0.00831 0.164
ϕE (MPa) 118 427 63.3 36.4 7.3 189 4.74 149

θ 0.511 1.56 1.47 0.854 0.103 1.56 0.621 0.822
γ 0.0214 0.00984 0.0440 0.0440 0.159 0.0909 0.242 0.242

A (mm2) N/A N/A N/A N/A 0.706 0.937 11.9 0.600
δ 0.855 0.194 0.135 0.135 1.10 0.164 0.243 0.243

∆ (MPa) 0.0636 0.191 0.121 0.121 0.655 0.0525 0.0124 0.0124

ST

(1 − ϕ)µ (MPa) 20.1 9.03 0.0143 0.0143 5.38 4.11 0.906 0.417
ϕE (MPa) 1300 240 89.9 89.9 216 1580 490 405

a 1 1 1.33 1.33 1.02 1.00 1.13 1.22
b 5.49 1.43 2.28 2.28 1.37 2.15 2.36 1.41

A (mm2) N/A N/A N/A N/A 0.802 0.402 0.184 0.223
δ 2.51 0.989 0.0181 0.0181 0.802 0.0641 0.923 0.196

∆ (MPa) 1.75 0.578 0.0211 0.0211 0.0181 0.0216 0.0618 0.00930

GT

(1 − ϕ)µ (MPa) 20.3 20.3 3.06 0.0416 2.74 0.433 0.140 0.0772
ϕE (MPa) 4560 583 4615 472 1180 86.9 773 33.2

a 1.26 1.26 1.18 1.25 1.09 1 1.22 1.22
c 2.50 9.87 1.64 2.97 2.41 1.54 1.30 1.30
b 9.96 25.2 66.0 3.38 3.95 1.64 2.48 1.32

A (mm2) N/A N/A N/A N/A 1.95 3.81 0.664 1.20
δ 2.53 2.53 0.0112 3.16 0.922 0.0641 0.192 0.193

∆ (MPa) 1.83 1.82 0.0198 1.73 0.581 0.0216 0.00930 0.00930

Table 3: Parameter values, and average relative and absolute errors (to three significant figures) for the four models
obtained from two additional fits to data. To avoid confusion with c in the GT model, the stress-like parameter for
the HGO model is written as cHGO. For the data row, An = Ankersen et al., G = Gunner et al., D = Dunn et al.,
and L = Lanir & Fung.

Algorithm 1: RWM
Result: Estimate of the posterior distribution, π(θ)
Input: π0(θ1), . . . , π0(θh);
Starting parameter vector, θ0;
for i = 1, . . . , n do

Propose θ∗ ∼ N (θi−1, Σ);

Calculate κ = min
(

1,
t2ασ (y;M(θ∗), βσ

ασ
Id)π0(θ∗)

t2ασ (y;M(θi−1), βσ
ασ

Id)π0(θi−1)

)
;

Generate u ∼ U(0, 1);
if u ⩽ κ then

θi = θ∗ ;
else

θi = θi−1 ;
end
Set i = i + 1;

end
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5 Bayesian inference on the new model
Before we sample from the parameter posteriors with the algorithm detailed in the previous section, we need to
transform the model parameters. As discussed in the previous chapter, we replace our current parameters, ψ,
with a set of transformed parameters, θ, whose support matches that of the proposal distribution, that is, R. The
non-negative and transformed parameter vectors, ψ and θ, respectively, are related to each other as follows

θ =


ν
η
τ
ρ

 =


log((1 − ϕ)µ)

log(ϕE)
log(a − 1)
log(b − a)

 = T(ψ), (19)

where T(ψ) represents the invertible, non-linear transformation of the target parameters ψ. To account for the
non-linear transformation of parameters, we must instead calculate the pullback through the transformation map,
π̃(θ), which has density

π̃(θ) = π(T −1(θ)|Y ).| det DT −1(θ)|, (20)

where, for this problem, | det DT −1(θ)| = exp(ν + η + τ + ρ). Finally, we assign a normal prior to the transformed
parameters, that is, a log-normal prior to their exponents. Table 4 contains the values at which we assign a 0.005
and 99.995 cumulative probability distribution to it.

5.1 Synthetic data
The first run we did for the algorithm involved a synthetic data set. Fitting to synthetic data enables us to study
the posterior distributions when we know the ‘true’ parameter values associated with the data and, thus, the ability
of our algorithm to estimate parameter distributions. To create the synthetic data, we took the stretches used
for the Ankersen data set and input the parameter vector [(1 − ϕ)µ, ϕE, a, b] = [5 MPa, 500 MPa, 1.05, 1.20] into
the model. We then added IID noise to the output of the model. In order to test the algorithm rigorously and
to account for the fact that, with these skin data sets, we have not fit directly to the experimentally measured
values, we chose to make the synthetic data noisy. We chose a variance of 0.1 for the IID noise. To determine
the parameters for the prior distributions of the parameters, we determined the values at which we expected to
find 0.5% and 99.5% cumulative probability distribution (CPD) and used the quantile function of the log-normal
distribution to determine the values of the prior parameters. The values used for an estimate at 0.5% and 99.5%
CPD are listed in Table 4. Finally, for the synthetic data we chose the burn-in length to be 500,000 simulations,
with a total of 1.5 million simulations performed.

To visualise the marginal posterior distributions and the two-dimensional joint distributions that we obtain from
fitting to the synthetic data in the algorithm, we have included these plots, along with valuations of the correlations
between the parameters, in a plot matrix, Figure 7. To analyse the fit to data, we have taken a subset of 50,000
parameter vectors from our samples, that is, positions of the Markov chain, and calculated the mean stress values,
at each stretch in the data set, of this set of vectors. Furthermore, we have added a confidence band that shows all
stress values within 5σ of the mean stress, Figure 8.

From Figure 7, we see that, despite the noisiness of the values we fit to, the values for ϕE, a, and, especially, b
lie in the relatively narrow region of high posterior probability. The parameter (1−ϕ)µ lies more towards the tail of
the distribution, while still having a non-negligible posterior probability. This parameter, however, is much smaller
than ϕE because the collagen fibrils, when taut, dominate the response to the deformation. The importance of
the value of (1 − ϕ)µ to the stress response is lessened, therefore. The contour lines of the joint distributions are
elliptical, and the marginal posteriors are smooth, demonstrating that the algorithm fits well to this synthetic data.
Furthermore, Figure 8 shows that close fits to the synthetic data are achieved in the algorithm. Even though the
data is noisy, the mean stresses of the 50,000 chosen vectors lie close to the data and the confidence band contains
all the data points. This is the case for all stages of the J-shaped curve, demonstrating the ability of the ST model
to describe tissue behaviour when different microstructural phenomena are driving the macroscopic behaviour.

5.2 Ankersen et al. data
We now analyse the algorithm’s predictions when we fit the ST model to the skin data collected by Ankersen et
al. For this data set, we chose the burn-in length to be 500,000 simulations, with a total of 2.5 million simula-
tions performed. Figure 9 contains the estimated posteriors and contour plots obtained from the adaptive RWM
algorithm, and Figure 10 shows a confidence band of 5σ around the mean stress-strain curve of 50,000 parameter
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Figure 7: Approximate posteriors and contour plots of the parameters for the synthetic data. Samples were thinned
by a factor of ten to create this plot matrix.
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Figure 8: The 5σ confidence band (blue) around the mean (black line) of the predicted stresses from 50,000
parameter vectors from the Markov chains against the synthetic data (yellow dots).
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Figure 9: Approximate posteriors and contour plots of the parameters for the Ankersen et al. data. Samples were
thinned by a factor of ten.

vectors from the Markov chains plotted against the data. As in the synthetic example, the empirical posterior
distribution is smooth, implying a good level of convergence of the tuned adaptive RWM algorithm, with narrow
marginal posteriors. The contours of the joint distribution are also approximately elliptical. For the structural
parameter ϕE, we have a physically realistic posterior: the 95% credible interval for ϕE is 107-117 MPa, rounded
to the nearest whole number, which is feasible compared to literature values for ϕ and E in skin, [17], [18], [25], [26].
The stretches at which the first and last collagen fibrils straighten and tauten are also realistic for skin. The large
positive and negative correlations also produce physically realistic conclusions. For instance, the largest negative
correlation is between (1 − ϕ)µ and ϕE, which tells us that if the NCM is more compliant, according to the model,
then the collagen fibrils need to be stiffer to compensate. As with the tendon problem, the RWM MCMC has
given us insights into the parameters that demonstrate the benefit of full posterior characterisation as opposed to
the more traditional optimisation approach. Furthermore, when we plot the stresses of a subset of vectors from
the samples obtained in the algorithm, we can see that the model fits well to data throughout the entirety of the
stress-strain curve. As with the synthetic data, this demonstrates the ability of the ST model to describe elastic
behaviour governed by different microstructural phenomena. The confidence band is narrower for larger stretches,
when the tissue is stiffer, than for smaller stretches.

5.3 Dunn et al. data
Finally, we study the algorithm’s predictions when we fit to the data taken from Dunn et al. For this data set, we
chose the burn-in length to be one million simulations, with a total of three million simulations performed. Figure
11 contains the estimated posteriors and contour plots obtained from the adaptive RWM algorithm, and Figure 12
shows a confidence band of 5σ around the mean stress-strain curve of 50,000 parameter vectors from the Markov
chains plotted against the data. As opposed to when the synthetic and Ankersen et al. data sets were fit to, the

130



0

5

10

15

1.0 1.1 1.2

λ

N
  (

M
P

a)

λ
Figure 10: The 5σ confidence band (blue) around the mean (black line) of the predicted stresses from 50,000
parameter vectors from the Markov chains against the Ankersen et al. data (yellow dots).

marginal posteriors for this data set are much harder to sample from. In particular, the posterior for ϕE is very
broad, with a long tail that stretches over 1 GPa. The marginal for b, which shares a high positive correlation
with ϕE, also possesses a long tail. As soft tissues can be subjected to plastic deformation and failure, the values
of b that lie on the tails of the distribution are physically unrealistic. Additionally, the contour lines of the joint
distributions are not elliptical and are complex in shape. On the other hand, the means of the stress for 50,000
parameter vectors selected from the Markov chain closely match the experimental data. The 5σ confidence band,
however, is broader than for either the synthetic data or the data collected by Ankersen et al. This is to be expected
with the broadness of the posterior for ϕE.

6 Discussion
In this chapter, we have successfully applied a microstructural model that we first tested again mechanical tendon
data to study skin data as well. When fitted to experimental data collected from testing on the skin of humans,
rabbits, and pigs using non-linear optimisation, our microstructural SEF performed favourably when compared
to the fits produced by both a semi-structural model that has been widely used in the literature and another
microstructural model of tendon behaviour. As with tendon data, we have managed to implement, for noisy,
synthetic data and for experimental pigskin data, an adaptive RWM algorithm that efficiently characterises posterior
probability distributions of model parameters. Furthermore, for the pigskin data, the 95% credible intervals for
the important physical parameter ϕE contain realistic values when compared to existing literature values of these
quantities. The parameter vectors sampled in the algorithm also fit closely to experimental data.

If there had been time available, the work currently discussed in this chapter would have been expanded upon.
We would have examined the effect that incorporating dispersion into our microstructural model would have had
on the likely values of the model parameters, according to the RWM algorithm. We would have been particularly
interested in determining whether accounting for dispersion in the model would have led to an increase in the
predicted value of ϕE. This would seem likely as currently all the fibrils are assumed to be oriented in the direction
of stretch, so each fibril extends. However, if the fibrils were dispersed, some fibrils, according to the model, may
remain slack. If fewer fibrils tauten according to the model, then the model will need to compensate in terms of
other microstructural properties in order for the experimental data to be fit to closely. One possible way for the
model to compensate would be for it to predict that the fibrils that do tauten are stiffer than when we do not
account for dispersion. The 95% credible interval for ϕE when the Ankersen et al. data were fit to was found to
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Figure 11: Approximate posteriors and contour plots of the parameters for the Dunn et al. data. Samples were
thinned by a factor of ten.
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Parameter 0.005 CPD 0.995 CPD Motivation
(1 − ϕ)µ (MPa) 0.001 10 Lower: motivated by the values of µ for ten-

don fascicles obtained by Purslow [27]
Higher: inclusive upper bound.

ϕE (MPa) 3.072 13,600 Lower: inclusive lower bound using low esti-
mates of ϕ = 0.096 [9] and E = 32 MPa by
[17].
Higher: inclusive upper bound using an esti-
mate of ϕ = 0.85 and E = 16 GPa given by
[28] and [29], respectively.

a − 1 0.005 0.3 (S, A), 0.8 (D) Lower: attempt to provide an inclusive lower
bound.
Higher: assumption that at least one fibril
has tautened by the end of the stress-strain
data we fit to.

b − a 0.005 0.3 (S, A), 0.8 (D) Lower: attempt to provide an inclusive lower
bound.
Higher: attempt to provide an inclusive up-
per bound.

Table 4: A table of values used to calculate the mean and variance of the prior distributions of the ST model’s
parameters. In order to allow the posterior parameter space to be fully sampled in the RWM algorithm, the priors
were designed to be inclusive of a wide range of parameter values.

be 107-117 MPa. While some reported values of the collagen fibril Young’s modulus would support this credible
interval for ϕE, other literature values would support a higher value for E. Accounting for dispersion in our model
would also allow it to be tested against multi-axial experimental stress-strain data or uniaxial strains performed
in multiple directions on the same skin sample. These more-general data demonstrate the ability of skin to resist
deformations in multiple directions, which is due to skin consisting of a network of fibrils, and they would provide
a more-complicated problem to test our model against.

In addition to dispersion, there may be other microstructural phenomena that our microstructural model does not
account for. The marginal posteriors that we have discussed in this chapter assume that the current microstructural
model is correct. If the model is adapted in the future to include additional phenomena relevant to macroscopic
mechanical behaviour, the current estimates of our model parameters may change, as we discussed in the previous
paragraph about the potential effect that incorporating dispersion into the model could have on the predicted value
of ϕE. However, the quality-of-fit to data of the new microstructural model and the results of the RWM algorithm
when the synthetic and extracted Ankersen et al. data were fit to are encouraging signs that the assumptions of
our current model are not incorrect.

When we attempted to fit the Dunn et al. data set in the RWM algorithm, we encountered problems with
sampling from the parameter posteriors, despite using a longer burn-in period for fitting to this data. The extracted
stress-strain data of Dunn et al. contain fewer points than the extracted data of Ankersen et al., with the first stress
value extracted from the data being calculated at a stretch ratio of around 1.3. The results produced by the RWM
algorithm for the extracted Dunn et al. data were possibly hampered by the low-resolution and poor quality of the
values fit to. The extraction method used for the data fit to in this chapter, counting pixels in Microsoft Paint,
could be replaced with a program that automates more of the pixel-counting process, thereby reducing sources of
human error. Preferably, however, future work would source data that has been made available for general use
by researchers. Higher-resolution skin data would also be a useful test of our model. For the tendon problem,
the high-resolution superficial digital flexor tendon data produced smoother marginal posteriors and more-elliptical
contour lines for the joint distribution than when we fitted to lower-resolution stress-strain data taken from larger
data sets recorded by Goh et al. To better understand the RWM algorithm’s ability to estimate parameter values
when fitting to skin data, it would be an appropriate extension to the work covered in this chapter to fit our model
to high-resolution data recorded in an experiment.

Additionally, in this chapter, we chose to use the Nelder-Mead algorithm to perform nonlinear optimisation.
There may be better methods for finding a global best fit to data contained within the Mathematica function
NonlinearModelFit. This is suggested by fits to data using pseudorandom starting values, which return different
parameter vectors. This fact, however, further motivates our choice of MCMC, where we construct probability
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distributions rather than find a local best fit to data.
Beyond improving the quality of the data fit to, using more-efficient statistical methods, such as Hamiltonian

Monte Carlo, may help to better sample from complex posteriors. As well as potentially affecting the predicted
values of model parameters, incorporating dispersion into the microstructural model would allow us to apply our
model to study the mechanics of multi-axial skin deformations. This would include the potential of fitting to
multiple mechanical tests of the same tissue, which would provide a greater test of the model’s ability to accurately
describe how the microstructure influences the macroscopic behaviour of the tissue.

A The piecewise constants for our microstructural SEF
The values of the piecewise constants for the general triangular distribution are

A(I4) =


0, I4 < a2,

− a2

(b−a)(c−a) , a2 ⩽ I4 ⩽ c2,
c2

(c−a)(b−c) − a2

(b−a)(c−a) , c2 < I4 ⩽ b2,

−1, I4 > b2,

, (21)

B(I4) =


0, I4 < a2,

2a log a
(b−a)(c−a) , a2 ⩽ I4 ⩽ c2,

2a log a
(b−a)(c−a) − 2c log c

(c−a)(b−c) , c2 < I4 ⩽ b2,
2a log a

(b−a)(c−a) + 2b log b
(b−a)(b−c) − 2c log c

(c−a)(b−c) , I4 > b2,

(22)

C(I4) =


0, I4 < a2,

1
(b−a)(c−a) , a2 ⩽ I4 ⩽ c2,

− 1
(b−a)(b−c) , c2 < I4 ⩽ b2,

0, I4 > b2,

(23)

D(I4) =


0, I4 < a2,

− 2a
(b−a)(c−a) , a2 ⩽ I4 ⩽ c2,

2b
(b−a)(b−c) , c2 < I4 ⩽ b2,

0, I4 > b2,

(24)

G(I4) =


0, I4 < a2,

a2 log a
(b−a)(c−a) − 5a2

2(b−a)(c−a) , a2 ⩽ I4 ⩽ c2,
2a2 log a

(b−a)(c−a) − c2 log c
(c−a)(b−c) − 5a2

2(b−a)(c−a) + 5c2

2(b−c)(c−a) , c2 ⩽ I4 ⩽ b2,
a2 log a

(b−a)(c−a) − c2 log c
(c−a)(b−c) + b2 log b

(b−c)(b−a) − 5a2

2(b−a)(c−a) + 5c2

2(b−c)(c−a) − 5b2

2(b−a)(c−a) , I4 > b2.

(25)

The values of the piecewise constants for the symmetric triangular distribution are
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A∗(I4) =


0, I4 < a2,

− 2a2

(b−a)2 , a2 ⩽ I4 ⩽
(

a+b
2

)2
,

(b2−a2+2ab)
(b−a)2 ,

(
a+b

2
)2

< I4 ⩽ b2,

−1, I4 > b2,

, (26)

B∗(I4) =


0, I4 < a2,
4a log a
(b−a)2 , a2 ⩽ I4 ⩽

(
a+b

2
)2

,
4a log a
(b−a)2 − 4(b+a)

(b−a)2 log
(

a+b
2

)
,

(
a+b

2
)2

< I4 ⩽ b2,
4a log a
(b−a)2 + 4b log b

(b−a)2 − 4(b+a)
(b−a)2 log

(
a+b

2
)

, I4 > b2,

(27)

C∗(I4) =


0, I4 < a2,

2
(b−a)2 , a2 ⩽ I4 ⩽

(
a+b

2
)2

,

− 2
(b−a)2 ,

(
a+b

2
)2

< I4 ⩽ b2,

0, I4 > b2,

(28)

D∗(I4) =


0, I4 < a2,

− 4a
(b−a)2 , a2 ⩽ I4 ⩽

(
a+b

2
)2

,
4b

(b−a)2 ,
(

a+b
2

)2
< I4 ⩽ b2,

0, I4 > b2.

(29)

G∗(I4) =



0, I4 < a2,
2a2 log a
(b−a)2 − 5a2

(b−a)2 , a2 ⩽ I4 ⩽
(

a+b
2

)2
,

2a2 log a
(b−a)2 − (a+b)2 log( a+b

2 )
(b−a)2 − 5a2

(b−a)2 + 5(a+b)2

2(b−a)2 ,
(

a+b
2

)2
⩽ I4 ⩽ b2,

2a2 log a
(b−a)2 − (a+b)2 log( a+b

2 )
(b−a)2 + 2b2 log b

(b−a)2 − 5a2

(b−a)2 + 5(a+b)2

2(b−a)2 − 5b2

(b−a)2 , I4 > b2.

(30)

B Approximate Bayesian Computation
Before we used RWM MCMC, we tried to study this problem with a statistical technique called Approximate
Bayesian Computation (ABC). A likelihood function is not used in ABC. Instead, parameter vectors are proposed
by sampling from the prior distribution, inserting the parameter vector into the model, and measuring the closeness
between the model’s output and the observed, experimental data through a distance criterion. For example, the
distance criterion we used was the L2-norm, that is, the Euclidean distance, between the Ankersen et al. data
set and the predicted stress-strain vector created by inserting the proposed parameter vector into the SEF. If the
distance criterion is satisfied, the parameter vector is retained, and if the distance criterion is not satisfied, the
parameter vector is discarded. At the conclusion of the algorithm, the retained parameter vectors are used to
estimate the posterior distribution of the parameters.

ABC, therefore, is applied to problems where a likelihood cannot be determined, or is computationally expensive
to work out for each proposed parameter vector in an algorithm. For soft tissue modelling, we erroneously believed,
at first, that the likelihood could not be derived for the deterministic models that we use. However, we just
needed to introduce IID noise to the system. With the introduction of noise, we derived the likelihood function
for this problem and were able to use standard MCMC instead of ABC. This is preferable because MCMC assigns
some probability of being accepted to any proposed parameter vector, regardless of the quality of fit to data,
assuming that the proposed parameters lie in the support of the prior distributions. This enables the tails of the
posterior distributions to be explored within the algorithm and full characterisation of the posterior to take place.
In ABC, these parameter vectors will fail the distance criterion, or if not, the distance criterion may be too lenient.
Furthermore, the models used in this chapter are highly non-linear, and so relatively small changes in their proposed
values may lead to relatively large changes in the model’s output, that is, the simulated data set. Therefore, there
may be parameter vectors that satisfy the distance criterion, but nearby vectors in the parameter space may not
satisfy the criterion. In that case, the algorithm may only propose new acceptable parameter vectors very slowly.
It is, therefore, preferable to not have a distance criterion that may become stuck in the simulation and which
requires fine-tuning to find the right balance between accepting too many parameter vectors and accepting too few
parameter vectors.
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Figure 13: Trace plots of the values of (a) ϕ and (b) E. These trace plots seem to be correlated, with the value of
one parameter likely to increase if the other decreases. This provides good evidence for combining the parameters
into one, ϕE, to improve the efficiency of our RWM algorithm.
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Figure 14: The posterior distribution of ϕ. The red line represents the prior distribution of ϕ, normalised to the
height of the posterior (in order for the prior line to be visible on the graph). We did this in order to compare the
overall form of the estimated posterior distribution to the prior. In actuality, however, the estimated posterior is
not well-defined.
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To demonstrate the problems with ABC, we present Figure 13, which contains trace plots of the values of firstly
ϕ and E over four million simulations in ABC, and Figure 14, which consists of an estimated posterior distribution
for ϕ based on the four million simulations. Firstly, the sampling in Figure 13 is slow to move around the parameter
space, with only small moves in the parameter space being accepted. In better, more efficient sampling, the posterior
parameter space would be covered in much fewer simulations than this ABC algorithm would take. This makes the
ABC process computationally expensive, negating one potential advantage of ABC. We can see the effect that slow,
inefficient sampling has on the estimated parameter posteriors with the posterior shown in Figure 14. In contrast
to the posteriors found when fitting to synthetic data in the RWM algorithm or the data set from Ankersen et
al., Figures 7 and 9, the posterior in Figure 14 is not well-defined and is likely not to represent the true range of
probable values for the parameter because of the aforementioned inefficient sampling. It should be noted, however,
that these figures were created in 2019. Since then, there will have been improvements that we have made to
our understanding of sampling from the posterior parameter space that will have benefited our RWM algorithm.
However, MCMC is still a much more appropriate technique to use for this problem for the aforementioned reasons.
As the plots were created in 2019, they do not look similar to the rest of the plots in this chapter.
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Chapter 6

Conclusions

6.1 Introduction

We have two aims for the concluding chapter of this thesis. In the first part of the conclusion, 
we analyse the work that has been completed. To do this, we look at the topics covered in each 
chapter and relate them to one another in order to define what has been accomplished and to 
ascertain whether the physical and mathematical motivations developed in the initial chapters 
have been successfully applied to the research. Then, we briefly describe some future areas 
of research that would both build upon the progress made and introduce novel mathematics 
that would advance the field of soft tissue modelling.

6.2 Summary of the thesis

In Chapter 1 of this thesis, we introduced fibrous soft tissues and their constituents. We started 
by describing some of the complex macroscopic phenomena we observe when soft tissues are 
deformed and explaining why the microstructure accounts for these complex macroscale be-
haviours. We provided further evidence of the close relationship between the microscale and 
macroscale in soft tissues by describing how changes to the microstructure, caused by natural 
processes such as ageing or damage, affect the mechanics of tissues on larger length scales. 
Having established that the microstructure influences tissue behaviour on the macroscale, we 
then examined the constituents that are frequently found in fibrous soft tissues in more depth. 
We described how they aggregate and are structured in a tissue, what their functions are, and 
what properties they themselves exhibit. Through this, we determined that collagen, because 
it is much stiffer than the other components of the extracellular matrix, is the constituent that 
confers stiffness to soft tissues. We then introduced the field of soft tissue modelling, using 
our understanding of the importance of the microstructure to explain why it is advantageous 
to incorporate soft tissue microstructure into models of macroscopic mechanical behaviour. 
Finally, we explained why advances in soft tissue modelling have a beneficial impact on wider 
society. Therefore, this introductory chapter provided motivation for the research done in the 
rest of this thesis. It answered both why we want to study soft tissue behaviour and why we 
want to account directly for microstructural phenomena when modelling soft tissues.

In Chapter 2 of this thesis, we described the mathematical preliminaries that we use to de-
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velop hyperelastic microstructural strain-energy functions (SEFs) and quantify uncertainty in 
the estimates of our parameter values. We first defined the mathematical terminology needed 
to describe the bulk properties of continua and quantitatively describe a deformation applied 
to a solid. We then derived the balance and conservation laws that all materials, including 
deformed objects, must adhere to. We used this collection of laws to show why a material-
specific constitutive law is necessary to describe completely the mechanics of a deformed soft 
tissue. Having determined the need for a constitutive equation to describe soft tissue defor-
mation fully, we then used the properties of SEFs and the symmetry properties of materials to 
derive the constitutive equations for isotropic materials, transversely isotropic materials, and 
orthotropic materials. Then, we explained the usefulness of accounting for uncertainty in this 
modelling problem and introduced Bayesian statistical methods. We defined the fundamental 
rule of Bayesian statistics, the prior and posterior probability distributions, and the likelihood 
function, three quantities of particular importance in Bayesian statistics. We then introduced 
some statistical techniques that allow inference to be performed on posterior distributions for 
which the exact form of the distribution is not known. In these introductions, we also ex-
plained why we would infer the values of model parameters using Markov chain Monte Carlo 
(MCMC) methods later in the thesis. Therefore, the work in this chapter provided us with 
the understanding, and motivated our use, of the mathematical expressions and techniques 
we would use later in the thesis to study soft tissue behaviour and calculate uncertainty in the 
values of model parameters.

In Chapter 3 of this thesis, we reviewed the history of soft tissue modelling in the literature. 
Too many models have been created to discuss each one in detail, so we studied a representa-
tive subset that elucidates the results of different modelling approaches. We started by exam-
ining phenomenological models of soft tissues, identifying that they cannot provide us with 
information on the relationship between the microstructure and the macroscale tissue due to 
their use of parameters that do not have a physical basis for inclusion in the model. However, 
we also ascertained that these models are tractable, ease to use, and are able to fit experimen-
tal data well. Next, we discussed semi-structural models, determining that microstructural 
considerations are key to the overall form of semi-structural SEFs, but these SEFs possess 
phenomenological parameters that limit our understanding of tissue microstructure. We then 
examined structural models and their use of parameters that possess a physical basis for in-
clusion. We described how these models have the potential to improve our understanding of 
tissue microstructure through the macroscopic behaviour they describe, and predict. How-
ever, we also demonstrated the need to choose the phenomena incorporated in the tissue and 
make careful assumptions of tissue behaviour in order for microstructural SEFs to retain their 
tractability. Finally, we showcased the versatility of Bayesian statistical methods by introduc-
ing some of the fields that these methods have been applied to in order to investigate uncer-
tainty in model parameters. The work in this chapter reinforced the viability and usefulness 
of our stated direction of research. This chapter also provided insights into how to proceed 
with creating a new microstructural model that is easy to use and how to expand upon the 
work that has previously been described in the literature.
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In Chapter 4, we derived two versions of our microstructural model, the versions differing in 
the form of the triangular distribution used to model the variation in recruitment stretch in the 
collagen fibrils, and a random walk Metropolis Markov chain Monte Carlo (RWM MCMC) 
algorithm that could find probable values for the parameters and construct credible intervals 
around them. We used the introductory chapter and the literature review to motivate the con-
struction of the new model, which, due to simplifying but realistic assumptions about the 
tissue constituents, produced, for both versions of the microstructural model, a tractable SEF 
that contained only physical parameters. Both versions of the model fit experimental tendon 
data well, performing favourably in comparison to a semi-structural, widely used SEF and 
a microstructural SEF developed to fit tendon data. This was true for both low-resolution 
and high-resolution data sets. We introduced independently and identically distributed noise 
to the experimental data and, from this, derived the likelihood function. We were then able 
to find an expression for the posterior distribution, up to a normalisation constant, where 
the dependence of the posterior on the variance of the noise was integrated out, thanks to 
the choice of a conjugate prior for the variance of the noise. After transforming the model 
parameters so that their support extended over the real axis, and accounting for this transfor-
mation, sampling in the algorithm was efficient, especially for high-resolution data, and we 
found realistic values for the model parameters. In this chapter, we applied the motivations 
we received from the work we performed in Chapter 1 and Chapter 3 and the mathematical 
framework we developed in Chapter 2 to create a microstructural model that is tractable, con-
tains physically relevant parameters, and can experimental tendon data well. Furthermore, 
our choice of Bayesian statistics to describe uncertainty was vindicated by the ability to inte-
grate out the dependence of the noise parameter we introduced to account for the uncertainty. 
Thus, we could focus on inferring the model parameters.

In Chapter 5, we extended the use of our model to fit uniaxial tensile test data on skin samples. 
We showed that both versions of the microstructural model fit experimental data on a second 
soft tissue well and that efficient sampling can still occur in the RWM MCMC algorithm when 
mechanical skin data is fitted. Furthermore, we showed that the algorithm still works even for 
the noisier skin data, where the stress-strain values that were fitted were calculated indirectly 
rather than being taken from a data file uploaded by the authors of the research. Finally, we 
used our understanding of the structure of fibrous soft tissues from Chapter 1 to determine 
how the material covered in the chapter needs to be expanded upon. We identified, using 
existing literature models that we reviewed earlier in the thesis, how we could incorporate 
these required extensions into the model microstructurally.

6.3 Future work

Having summarised the work we have completed in this thesis, we can now describe in more 
detail ways to potentially expand upon it. Throughout, we have attempted to relate our re-
search to the fundamentals of microstructural soft tissue modelling, continuum mechanics, 
and Bayesian statistics that we analysed in the first three chapters. Consequently, in this 
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section of the chapter, we also relate the areas of expansion to the key features of these math-
ematical fields.

6.3.1 Furthering the complexity of the model

We have fit a microstructural transversely isotropic model that assumes collagen fibrils are 
co-aligned with one another to uniaxial tensile data on tendons and skin. We have achieved 
close fits to data that compare favourably to fits achieved by a couple of other models that have 
previously been described and used in the literature. However, for more general deformations 
of some soft tissues, such as the skin, for example, a transversely isotropic model would 
not be able to adequately describe the observed behaviour. For instance, if we stretch the 
skin in one direction and assume the collagen fibrils co-align with the direction of stretch, 
then stretch in a direction perpendicular to the first direction, the current model predicts that 
the collagen fibrils contract and the skin is linearly elastic and compliant. This does not 
occur in actuality. Skin may be more compliant in certain directions, but it still stiffens when 
stretched far enough. Therefore, we would need to increase the complexity of the current 
model to account for multi-axial tissue behaviour. For a microstructural model, it would 
be ideal to directly incorporate phenomena that confers non-linear elastic behaviour in an 
arbitrary direction, and there are ways to achieve this.

By assuming that there exists one family of collagen fibrils, where the fibrils are aligned with 
respect to one another, and that the non-collagenous matrix is isotropic, we have produced a 
transversely isotropic model, where the preferred direction aligns with the orientation of the 
collagen fibrils. However, we could introduce a more complicated level of anisotropy, while 
still retaining the other assumptions that we made for the transversely isotropic model, by 
introducing at least one more family of collagen fibrils that possesses a different orientation to 
the first family. We have discussed models that assume multiple fibril families in the literature 
review, and the modifications to the constitutive equation required for a second fibril family 
have been covered in the literature also. The additional fibril family, or families, could be 
modelled using the same SEF as the first family of collagen fibrils or not. By assuming in the 
model that there are collagen fibrils oriented in multiple directions, we increase the number 
of directions where the modelled tissue can be stretched with at least some initially crimped 
collagen fibrils elongating and eventually tautening. It is this feature of collagen fibrils that 
accounts, in the model we have developed in this thesis, for the non-linear elastic behaviour. 
Imaging of tissues such as skin and arteries has shown that collagen fibrils are not all oriented 
in the same direction, so assuming that there are multiple families of fibrils in the tissue would 
be an extension to the model that is justified biologically.

Treating collagen fibrils as being situated in multiple families, with each family of fibrils ori-
ented in a distinct direction, is not the only way that we can model the fact that fibrils are 
splayed in some biological soft tissues. We can also explicitly model the dispersion of fibril 
orientations with, say, a probability distribution. This would also allow for more general de-
formations to be studied, with some fibrils straightening, according to a model that accounts 
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for dispersion, for more deformations than in the non-dispersed transversely isotropic model. 
By making simplifying assumptions about the nature of dispersion in a tissue, we can re-
tain a transversely isotropic model. For example, fibril dispersion could be modelled using 
a Von Mises distribution, with fibrils exhibiting rotational symmetry around the mean fibril 
direction. However, in the literature review, we identified shortcomings in the Generalised 
Structure Tensor approach to modelling dispersion that was described in the GOH model. 
The Latorre-Montans model attempted to fix the tension-compression switch of the GOH 
model, but discontinuities in the stress were identified. The Holzapfel-Ogden model con-
tains a tension-compression switch that allows for fibril dispersion to be described in a single 
parameter that changes the pseudoinvariant 𝐼4 and, thus, features in the SEF. This tension-
compression switch, however, is only tractable for particular deformations, an example being 
a uniaxial stretch along the mean fibril direction, with the fibril dispersion governed by the 
Von Mises distribution. Therefore, to account for dispersion within a single family of fibrils, 
the more computationally expensive Angular Integration (AI) approach can be applied to a 
general deformation. Especially for the RWM MCMC algorithm, code will need to be heav-
ily optimised to run the algorithm for many simulations when the AI approach to dispersion 
is included in the microstructural model.

6.3.2 More advanced Bayesian statistical methods

In this thesis, we have developed an RWM MCMC algorithm that enables uncertainty in 
the parameters of a model of soft tissue deformation to be estimated. We have been able to 
sample efficiently in the algorithm for certain tendon and skin data sets, producing clearly 
defined marginal posteriors for which the majority of the probability mass is situated in a nar-
row region. Furthermore, two-dimensional contour plots have largely shown the correlation 
structure between parameters. This MCMC method is guaranteed to eventually converge on 
the target distribution, that is, the posterior probability distribution for the parameters. That 
convergence, however, can be slow. Especially for higher-resolution data sets, the form of 
the marginal posterior, which is focused on a narrow range of values with smooth estimated 
curves, suggests that convergence has been reached for sampling after the burn-in phase has 
ended. The adaptive methods we employ in the burn-in phase, along with the large length 
of the burn-in phase, help to ensure that the samples we obtain are from the target distri-
bution. However, in other Monte Carlo methods, we can change the proposal distribution 
from a Gaussian centred on the current position of the Markov chains to one that is more 
efficient. Namely, the Metropolis-Adjusted Langevin Algorithm (MALA) and the Hamilto-
nian Monte Carlo (HMC) algorithm have been developed through physical analogues, and 
they efficiently sample from the target posterior distribution because they use the gradient 
of the log-posterior to inform proposal distributions. By introducing information about the 
posterior into the choice of proposed vectors, MALA and HMC will spend more simula-
tions, for a given number of simulations, in regions of high posterior probability than RWM 
MCMC. However, an iteration of MALA or HMC is more computationally intensive than 
RWM MCMC because proposals have to be created using discrete-time methods such as, in 
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HMC, the leapfrog algorithm. Complicating things further, MALA and HMC also contain 
parameters that need tuning correctly for the algorithm to run properly.

Outside of employing a more efficient algorithm to sample the posterior probability space, 
there are other ways that we can apply other Bayesian statistical techniques to the analysis of 
soft tissue modelling. In particular, the RWM MCMC algorithm that we have used in this 
thesis only samples the posterior distribution of one model at a time. Reversible Jump MCMC 
is an established technique that enables models which contain different numbers of unknown 
parameters to be compared against one another when it comes to fitting to a particular data set. 
In this approach, not only can posteriors for model parameters be accurately estimated, but we 
can study the relative effectiveness of a group of models in fitting to the observed data. More 
generally, Bayes’ factors are quantities that analyse the probability of two different models 
being the correct model to explain a particular data set. With the variety of soft tissue models 
that have been described in the literature, plus with more models being created as time goes 
on, model comparisons seem a logical avenue for future research.

6.3.3 Collaboration with experimentalists

Finally, throughout this thesis, we have discussed how accurate microstructural models of tis-
sue behaviour could potentially be used in a wider array of situations than phenomenological 
models. This is because microstructural models are intimately connected to properties that 
can be measured independently via experiments. It is important, therefore, to test this po-
tential. If microstructural models were found to be good predictors, after the microstructural 
parameters of the model have been calculated experimentally and then inserted into the model, 
of physical stress-strain behaviour then it would have ramifications in any real-life situation 
where it would be desirable to estimate the behaviour of in vivo tissue samples. Although, 
we have to note that differences are likely to exist between skin mechanics in vivo and ex 
vivo. Further, independent imaging would be a good test for the validity of the assumptions 
of our model. For example, is a triangle distribution, either symmetric or general, a good 
approximation to the distribution of recruitment stretches amongst the collagen fibrils in a 
tissue sample? Would distributions such as the log distribution, the step distribution, or the 
trapezium distribution, which would also produce tractable microstructural SEFs if the other 
model assumptions remained the same, be a better approximation to the real distribution? For 
these reasons, closer collaboration between model creators, mechanical experimental scien-
tists, and imaging (or non-destructive) experimental scientists working on the same set of soft 
tissue samples would likely be a productive undertaking.
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Appendix A

Reynolds Transport Theorem

Suppose that we want to calculate the material derivative of the quantity Φ(x, 𝑡), which is 
defined by the ‘Φ-density field’ 𝜙(x, 𝑡). We must determine, therefore,

D
D𝑡

∭
𝑉

𝜙(x, 𝑡)d𝑉 . (A.1)

To calculate the rate of change of Φ in a volume 𝑉 at a time 𝑡, we must consider both the 
change of 𝜙 associated with the material instantaneously in 𝑉 at a time t and the influx of 𝜙v
across the surface of 𝑉, 𝑆. Therefore, (A.1) is equal to

𝐷
𝐷𝑡

∭
𝑉

𝜙(x, 𝑡)d𝑉 = ∭
𝑉

𝜕(𝜙(x, 𝑡))
𝜕𝑡

d𝑉 + ∬
𝑆

𝜙(x, 𝑡)v ⋅ nd𝑆, (A.2)

= ∭
𝑉

(𝜕(𝜙(x, 𝑡))
𝜕𝑡

+ 𝛁 ⋅ (𝜙(x, 𝑡)v))d𝑉 , (A.3)

by the divergence theorem, which relates surface and volume integrals to one another. Rewrit-
ing (A.3) in terms of the material derivative of 𝜙(x, 𝑡), we get

𝐷
𝐷𝑡

∭
𝑉

𝜙(x, 𝑡)d𝑉 = ∭
𝑉

[D𝜙(x, 𝑡)
D𝑡

+ 𝜙(x, 𝑡)(𝛁 ⋅ v)] d𝑉 . (A.4)
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Appendix B

Von Mises Distribution

The von Mises distribution is a circular distribution of the form [124], assuming that the mean 
direction is zero,

𝜌(𝜃) = 2√2𝑟
𝜋

1
erfi(

√
2𝑟)

exp(2𝑟 cos2 𝜃),

where 𝑟 is the concentration parameter and erfi denotes the imaginary error function. The 
Von Mises distribution is the circular analogue to the normal distribution [139]. 
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