
COMPUTING MATRIX FUNCTIONS IN
ARBITRARY PRECISION ARITHMETIC

A thesis submitted to The University of Manchester
for the degree of Doctor of Philosophy

in the Faculty of Science and Engineering

2022

Xiaobo Liu
School of Mathematics

CONTENTS

list of figures 4
list of tables 6
abstract 7
declaration 9
copyright statement 10
acknowledgements 11
publications 12

1 Introduction 13
References 18

2 Background Material 26
2.1 Matrix theory 26
2.2 Functions of matrices 33
2.3 Floating-point arithmetic 38
References 42

3 A Multiprecision Schur–Parlett Algorithm 43
3.1 Introduction 44
3.2 Schur–Parlett algorithm 46
3.3 Approximate diagonalization 47
3.4 Evaluating a function of a triangular matrix 50
3.5 Overall algorithm for computing f pAq 66
3.6 An application to the matrix Mittag–Leffler function 72
3.7 Concluding remarks 77
References 79

4 Arbitrary Precision Algorithms for Matrix Cosine 84
4.1 Introduction 85
4.2 Previous work 87
4.3 Forward error analysis for the matrix cosine 89
4.4 A multiprecision algorithm for the matrix cosine 91
4.5 Computing the Fréchet derivative 98
4.6 Numerical experiments 106
4.7 Concluding remarks 115
References 116

5 Roots of Low-Rank Perturbations of Scaled Identity 120
5.1 Introduction 120
5.2 Applications 127
5.3 Newton iterations 129
5.4 Schur methods 133
5.5 Cost comparison of the methods 139
5.6 Numerical experiments 140
5.7 Concluding remarks 150
References 151

6 Conclusions 155
References 157

2

contents 3

Word count: 48 023

L I ST OF F IGURES

Figure 3.1 Maximal normwise relative errors for Algorithm 3.1 with dif-
ferent θd over 10 executions, the working precisions are 7, 64,
and 256 decimal digits. 58

Figure 3.2 Normwise relative errors for Algorithm 3.1 with θd “ 0.4 for T
with different size m, the working precisions are 7, 16, 64, and
256 decimal digits. 59

Figure 3.3 Maximal relative errors for Algorithm 3.1 with θd “ 0.4 and
different δ1 among 100 different matrices of each class; f “

exp, the working precisions are 7, 16, 34, and 64 decimal dig-
its. 61

Figure 3.4 Forward normwise relative errors for funm_nd_0.1, funm_nd_0.2,
funm_nd_norm, and funm_nd_8 on the test set of 35 matrices,
for the matrix sine. 69

Figure 3.5 Forward normwise relative errors for funm, funm_nd_8, and
funm_nd on the test set of 35 matrices. 70

Figure 3.6 Normwise relative errors in the computed Eα,βp´Rq for the
Redheffer matrix R and different α and β. 75

Figure 3.7 Normwise relative errors in the computed Eα,βpAq for α “ 0.8
and different β for the matrices in Table 3.8. 76

Figure 3.8 Normwise relative errors in the computed Eα,βpAq for A of
size 10 ˆ 10 from the set of 32 matrices from the MATLAB
gallery. 77

Figure 4.1 Left: forward errors of the algorithms on the matrices in F
in double precision. Right: corresponding performance pro-
files. 109

Figure 4.2 Left: forward errors of the algorithms on the matrices in F
in d digits of precision. Right: corresponding performance
profiles. 110

Figure 4.3 Execution times (in seconds) and the corresponding perfor-
mance profile of the algorithms for matrices of different size
in V in double precision. 111

Figure 4.4 Execution times (in seconds) and corresponding performance
profiles of the algorithms in 256 digits of precision on matrices
of different sizes. 112

Figure 4.5 Left: forward errors in LcospA, Eq on the matrices in F in dou-
ble precision. Right: corresponding performance profiles. 113

Figure 4.6 Left: forward errors in LcospA, Eq on the matrices in F in 256
digits of precision. Right: corresponding performance pro-
files. 114

Figure 5.1 Relative residuals of (5.4) and (5.9) in the 2-norm. 124
Figure 5.2 Relative residuals of algorithms for computing the square root. 143
Figure 5.3 Relative residuals of algorithms for computing the square root. 144
Figure 5.4 Execution times (in seconds) of algorithms for computing the

square root. 145

4

list of figures 5

Figure 5.5 Execution times (in seconds) of algorithms for computing the
square root. 146

Figure 5.6 Relative residual (left) and execution time in seconds (right)
of algorithms for computing the square root. The matrices are
those in Table 5.2; they are grouped by value of α in the plot on
the left, and by matrix in the plot on the right, where the two
values of t for a matrix Bi are separated by a dotted line. 150

L I ST OF TABLES

Table 2.1 Parameters for four IEEE floating-point arithmetics. 41
Table 3.1 Relative errors for approximation from randomized approxi-

mate diagonalization to the square root of the Jordan block. 49
Table 3.2 Values of }L f pAq}F corresponding to the results in Table 3.1. 49
Table 3.3 The largest group size k, digits of the higher precision uh, and

relative error for Algorithm 3.1 with θd “ 0.4 and different
δ1. 60

Table 3.4 Equivalent number of decimal digits for the higher precision
uh used by Algorithm 3.1 in the computation. 63

Table 3.5 Maximal normwise relative errors for Algorithm 3.1 with a
diagonal E (Alg_diag) and the method of approximate diago-
nalization with full perturbation (Alg_full). 64

Table 3.6 Asymptotic costs in flops of funm, funm_nd, and funm_nd_8. 70
Table 3.7 Mean execution times (in seconds) and the maximal normwise

relative errors over ten runs for funm, funm_nd, and funm_nd_8,
and the maximal block size and the maximal number of equiv-
alent decimal digits used by funm_nd. 71

Table 3.8 Eigenvalues (with multiplicities/numbers) for the matrices in
Example 2. 76

Table 5.1 Asymptotic cost of methods for computing pαI ` UV˚q1{2 for
U, V P Cnˆk. 140

Table 5.2 Characteristics of the test matrices provided as part of the
Lingvo framework and our approximations to them. For the
test matrices Bi we report the size, n, the smallest and the
largest eigenvalues λmin and λmax computed by the MATLAB
eig function using binary32 arithmetic, and the numerical rank
r as returned by the MATLAB function rank. For the approxi-
mations rBi we report the order ti of Σt in the truncated spectral
decomposition with tolerance ε i, as discussed in section 5.6.3.
147

Table 5.3 Relative residual and execution time (in seconds) of algorithms
for computing the square root. The matrices are those in Ta-
ble 5.2. 149

6

ABSTRACT

Functions of matrices play an important role in many applications in science and
engineering. Their reliable computation has been a topic of interest in numerical lin-
ear algebra over the decades, and a wide variety of methods for computing different
functions have been studied. Meanwhile, the interest in multiple precision computing
environments has been growing in recent years and nowadays there is an explosion
of floating-point arithmetics beyond the most widely used standard IEEE binary32
and binary64 formats. Under such background, there are several works dedicated to
the computation of matrix functions in arbitrary precision arithmetic, but overall this
research topic has not yet attracted much attention. In this thesis, we study methods
for computing functions of matrices in arbitrary precision arithmetic. Unlike many
existing algorithms that are tightly coupled to a specific precision of floating-point
arithmetic, the algorithms we develop take the unit roundoff of the working preci-
sion as an input argument since this is known only at runtime, and so works in an
arbitrary precision.

First, we provide a version of the Schur–Parlett algorithm that requires only func-
tion values and not derivatives. The algorithm requires access to arithmetic of a
matrix-dependent precision at least double the working precision, which is used to
evaluate the function on the diagonal blocks of order greater than 2 (if there are any)
of the reordered and blocked Schur form. The key idea is to compute by diagonal-
ization the function of a small random diagonal perturbation of each diagonal block,
where the perturbation ensures that diagonalization will succeed. The algorithm is in-
spired by Davies’s randomized approximate diagonalization method, but we explain
why that is not a reliable numerical method for computing matrix functions. This
multiprecision Schur–Parlett algorithm is applicable to arbitrary analytic functions f
and, like the original Schur–Parlett algorithm, it generally behaves in a numerically
stable fashion. The algorithm is especially useful when the derivatives of f are not
readily available or accurately computable. We apply our algorithm to the matrix
Mittag–Leffler function and show that it yields results of accuracy similar to, and in
some cases much greater than, the state-of-the-art algorithm for this function.

Second, we develop an algorithm for computing the matrix cosine in arbitrary
precision. The algorithm employs a Taylor approximation with scaling and recov-
ering and it can be used with a Schur decomposition or in a decomposition-free
manner. We also derive a framework for computing the Fréchet derivative, construct
an efficient evaluation scheme for computing the cosine and its Fréchet derivative
simultaneously in arbitrary precision, and show how this scheme can be extended
to compute the matrix sine, cosine, and their Fréchet derivatives all together. Nu-
merical experiments show that the new algorithms behave in a forward stable way
over a wide range of precisions. The transformation-free version of the algorithm for
computing the cosine is competitive in accuracy with the state-of-the-art algorithms
in double precision and surpasses existing alternatives in both speed and accuracy in
working precisions higher than double.

Finally, we consider the problem of computing the square root of a perturbation of
the scaled identity matrix, A “ αIn ` UV˚, where U and V are n ˆ k matrices with
k ď n. This problem arises in various applications, including computer vision and

7

8

optimization methods for machine learning. We derive a new formula for the pth
root of A that involves a weighted sum of powers of the pth root of the k ˆ k matrix
αIk ` V˚U. This formula is particularly attractive for the square root, since the sum
has just one term when p “ 2. We derive a new class of Newton iterations for com-
puting the square root that exploit the low-rank structure. Theses methods can be
employed in arbitrary precision by simply executing all elementary scalar operations
in arbitrary precision, and, additionally, for the iterative algorithms, by properly ad-
justing the internal tolerance that is used as stopping criterion. We also proposed
several Schur-based methods that can utilize the structure of A. In particular, we es-
tablished a scheme to obtain the Schur decomposition of the n ˆ n matrix UV˚ from
the Schur decomposition of the k ˆ k matrix V˚U. We test these new methods on
random matrices and on positive definite matrices arising in applications. Numerical
experiments show that the new approaches can yield much smaller residual than ex-
isting alternatives and can be significantly faster when the perturbation UV˚ has low
rank.

DECLARAT ION

No portion of the work referred to in the thesis has been submitted in support of an
application for another degree or qualification of this or any other university or other
institute of learning.

9

COPYR IGHT STATEMENT

i. The author of this thesis (including any appendices and/or schedules to this
thesis) owns certain copyright or related rights in it (the “Copyright”) and s/he
has given The University of Manchester certain rights to use such Copyright,
including for administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard or elec-
tronic copy, may be made only in accordance with the Copyright, Designs and
Patents Act 1988 (as amended) and regulations issued under it or, where appro-
priate, in accordance with licensing agreements which the University has from
time to time. This page must form part of any such copies made.

iii. The ownership of certain Copyright, patents, designs, trade marks and other in-
tellectual property (the “Intellectual Property”) and any reproductions of copy-
right works in the thesis, for example graphs and tables (“Reproductions”),
which may be described in this thesis, may not be owned by the author and
may be owned by third parties. Such Intellectual Property and Reproductions
cannot and must not be made available for use without the prior written permis-
sion of the owner(s) of the relevant Intellectual Property and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication and
commercialisation of this thesis, the Copyright and any Intellectual Property
and/or Reproductions described in it may take place is available in the Univer-
sity IP Policy (see http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=
24420), in any relevant Thesis restriction declarations deposited in the Uni-
versity Library, The University Library’s regulations (see http://www.library.

manchester.ac.uk/about/regulations) and in The University’s Policy on Pre-
sentation of Theses.

10

http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=24420
http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=24420
http://www.library.manchester.ac.uk/about/regulations
http://www.library.manchester.ac.uk/about/regulations

ACKNOWLEDGEMENTS

First, I would like to express my most sincere gratitude to my supervisor, Prof.
Nicholas J. Higham, for his expert guidance and unfailing support over the past
three-and-a-half years during my doctoral studies. I could not have wished for a
more professional and knowledgeable mentor like Nick, who always carefully reads
manuscripts and constantly offers insightful feedback. Without his efforts this thesis
would not have been possible.

I would like to thank Prof. Françoise Tisseur, Prof. Stefan Güttel, Dr. Marcus Webb,
and all the other members of the Manchester Numerical Linear Algebra group, a truly
exceptional research group, where there are friendly scholars and engaging research
environment; it has been my privilege to be a part of it.

Many thanks to Prof. Awad H. Al-Mohy and Dr. Massimiliano Fasi for useful dis-
cussions that makes our collaboration a success.

Thanks should also go to my fantastic officemates of Office 2.111. Thank you
Michael P. Connolly, Xinye Chen, Thomas McSweeney, and Gian Maria Negri Porzio
for our interesting discussions and distractions. A special thank you goes to Dr.
Massimiliano Fasi, who was a role model postgraduate student to me and generously
shared his knowledge and experience with me. I still recall the many discussions and
meals we had together.

There are many other fellow students and friends that I would like to thank.
Thank you Lingshu Lei, Dr. Xiannan Meng, Mansell Lin, Ying Liu, Jiaming Shen,
and Chunyu Wang for all the enjoyable time we spent together.

I gratefully acknowledge the funding I received from the Department of Mathemat-
ics at The University of Manchester for my postgraduate studies.

Last but not least, I thank my parents, Zhengliang Liu and Dongju Huang, for
their unconditional love and unwavering support to me. Without them I would by
no means have made it this far.

11

PUBL ICAT IONS

‚ Chapter 3 is based on the journal article: Nicholas J. Higham and Xiaobo Liu. A
Multiprecision Derivative-Free Schur–Parlett Algorithm for Computing Matrix
Functions. SIAM J. Matrix Anal. Appl. 42.3 (2021), pp. 1401–1422.

‚ Chapter 4 is based on the journal article: A. H. Al-Mohy, Nicholas J. Higham,
and Xiaobo Liu. Arbitrary Precision Algorithms for Computing the Matrix
Cosine and its Fréchet Derivative. SIAM J. Matrix Anal. Appl. 43.1 (2022), pp.
233–256.

‚ Chapter 5 is based on the preprint: Massimiliano Fasi, Nicholas J. Higham,
and Xiaobo Liu. Computing the square root of a low-rank perturbation of
the scaled identity matrix. MIMS EPrint 2022.1. UK: Manchester Institute for
Mathematical Sciences, The University of Manchester, Jan. 2022. Revised May
2022, p. 19. Submitted to SIAM J. Matrix Anal. Appl.

12

https://doi.org/10.1137/20M1365326
https://doi.org/10.1137/20M1365326
https://doi.org/10.1137/20M1365326
https://doi.org/10.1137/21M1441043
https://doi.org/10.1137/21M1441043
http://eprints.maths.manchester.ac.uk/2856/
http://eprints.maths.manchester.ac.uk/2856/

1 I NTRODUCT ION

The term “matrix” was coined by James Joseph Sylvester in 1850 [77], but, long before

that, the mathematical object, in its guise of arrays, had been used in solving system

of linear equations. The Nine Chapters on the Mathematical Arts,1 a Chinese mathemat-

ics book written from the 10th to the 2nd century B.C.E., first used a method that is

similar to Gaussian elimination to find the solution of linear equations [75]. Arthur

Cayley, who was the pioneer to study matrices in their own right, investigated alge-

braic properties of matrices and also began the study of functions of matrices in his

1858 paper “A Memoir on the Theory of Matrices” [13], where he treated the square

roots of 2 ˆ 2 and 3 ˆ 3 matrices.

The study of theory of matrix functions thrived over the succeeding hundred years

and many mathematicians contributed to this research field. Laguerre first defined

in 1867 [50] via the power series the exponential of a square matrix, which was subse-

quently shown by Peano [64] to be capable of representing the solution of systems of

homogeneous differential equations. Metzler [55] defined the matrix exponential, the

matrix sine, and their inverse functions all via power series. Weyr [80] was the first

to give a convergence criterion for matrix functions defined by a matrix power series.

In addition to the power series definition, functions of matrices can be defined via

many other equivalent means. In 1883 Sylvester [76] derived an interpolating poly-

nomial formula for functions of square matrices that have distinct eigenvalues; the

same formula was also derived [11] by Buchheim who later generalized it to multiple

eigenvalues using Hermite interpolation [10]. The Cauchy integral representation of

functions of matrices is due to Frobenius [21] and Giorgi [22], and the latter also

stated the Jordan canonical form definition of matrix functions [22]. The equivalence

of all the above definitions of matrix functions was then proved by Rinehart [66]

1 《九章算術》.

13

14 introduction

in 1955. See [31, sect. 1.10] for an informative and more thorough survey of the

historical development of matrix functions.

Matrix functions were purely of theoretical interest in their early stage of develop-

ment, and the theory is treated in a number of books. The first research monograph

written on matrix functions, by Schwerdtfeger [72], was published in 1938, though

there were many books with substantial materials on the topic before. The landmark

of matrix functions being utilized in practical applications is the book Elementary

Matrices and Some Applications to Dynamics and Differential Equations [20] published

in the same year by Frazer, Duncan, and Collar, which accentuates the importance

of matrix exponential in solving differential equations. Since then matrix functions

have gradually broadened into a flourishing subject of study in applied mathematics

from their root in pure mathematics, with new applications constantly being found

in science and engineering. Examples include the matrix exponential and the ma-

trix trigonometric sine and cosine, whose archetypal application is in expressing the

solution of matrix differential equations [23]; the matrix logarithm, which arises in

computer graphics [68], [70], image recognition [5], [38], and optical systems repre-

sentation [28]; the matrix roots, which are frequently used in machine learning [27],

[65], [74]; and other matrix functions; we refer the readers to [31, Chap. 2] for many

more applications of various matrix functions.

Driven by the constantly emerging and widespread new applications of functions

of matrices, the interest in the numerical computation of matrix functions is grow-

ing rapidly over the decades. Various methods have been developed for evaluating

matrix functions, and there is now a tremendous literature on them, for example,

the scaling and squaring algorithm for the matrix exponential [1], [57], the Schur

methods [9], [30] and Newton’s method [31, sect. 6.3] for the matrix square root, the

Schur–Padé algorithm for the real matrix power [37], the inverse scaling and squaring

algorithm for the matrix logarithm [2]; and routines of many functions have been im-

plemented in prevalent languages and libraries including the NAG library [60], The

Matrix Function Toolbox [33] of MATLAB, Python’s SymPy [56], and Armadillo [71]

introduction 15

for C++. A catalogue of software for various matrix functions available in different

languages and packages is given in the recent work [36].

Nowadays, we are seeing increasing use of binary floating-point arithmetics be-

yond the 32-bit IEEE single precision and the 64-bit IEEE double precision arithmetics

[42], where most floating-point calculations in scientific computing have been carried

out since their launch in 1985. The interest in low precision arithmetic (and in particu-

lar, the 16-bit half precision, also called binary16) has exploded in recent years due to

its satisfactory performance and energy efficiency in climate modelling [62], [61] and

in training and running neural networks in deep learning [14]. On the other hand,

the need for higher precisions has emerged in various area including analytic num-

ber theory [7], cryptography [19], high-performance computing [29], optimization

[52], and physics applications [6], [49]. The 2008 IEEE standard revision [43] added a

128-bit quadruple precision floating-point format and a 16-bit half precision format,

the latter defined as a storage format only rather than for computation. The former

floating-point format is now supported on the IBM z13 processor [51] and the IBM

Power9 processor [79] and available in software, while the latter has been adopted

by various manufacturers for computation. For example, binary16 is supported by

the NVIDIA V100 and A100 GPUs, and the AMD Radeon Instinct MI250X GPU, as

well as the A64FX Arm processor that powers the top-ranked2 Fujitsu Post-K exascale

computer. Worth mentioning, the newly released NVIDIA H100 GPU even supports

calculations in an 8-bit quarter precision format. Arbitrary precision arithmetic is

available in a wide range of software, including Maple [53], Mathematica [54], PAR-

I/GP [63], Sage [69], Python’s mpmath [45] and SymPy [56], Julia [8], [46] through

its built-in data type BigFloat, and MATLAB with the Symbolic Math Toolbox [78]

or the Multiprecision Computing Toolbox [58].

Associated with the broadening of the precision landscape, there is a growing

amount of research literature focusing on the development and efficient implementa-

tion of linear algebra subroutines for arbitrary precision arithmetic, including those

on the computation of functions of matrices. Given that the computation of matrix

functions in double precision has been well-studied, it might be plausible to think if

2 This is from the 58th TOP500 list https://www.top500.org/lists/top500/2021/11/.

 https://www.top500.org/lists/top500/2021/11/

16 introduction

we can modify existing algorithms to arbitrary precision environments with little or

no modifications. At least two classes of algorithms fall into this category. Iterative

methods can often be run in arbitrary precision by simply perform all elementary

scaler operations in arbitrary precision and adjusting the prescribed tolerance which

is used as stopping criterion; for instance, the Newton’s method for the matrix sign

function [48], [47], [67], the matrix square root [32], [34], [40], the matrix pth root

[25], [26], [39], and the matrix Lambert W function [18]. Another typical example is

substitution methods, such as the algorithms for the matrix square root [9], [30] and

the matrix pth root [24], [41], [73], whose mechanism resembles that of the forward

and backward substitution for the solution of linear systems.

Many advanced algorithms, howbeit, cannot conveniently extend to an arbitrary

precision environment. These algorithms typically approximate the matrix function

by a polynomial or rational approximant at a matrix argument, and require precom-

puting symbolically or in high precision a set of precision-dependent constants that

are crucial for selecting algorithmic parameters since they appear in the truncation

error bounds or as the coefficients of the approximating functions. This strategy,

proposed by Higham [35] for computing the matrix exponential in double precision,

proves very efficient and is adopted in the state-of-the-art algorithms for various ma-

trix functions including the matrix exponential [1], the matrix logarithm [2], the ma-

trix fractional powers [37], the matrix sine and cosine [3], the matrix inverse trigono-

metric and inverse hyperbolic functions [4], and the wave-kernel matrix functions

[59]. The algorithmic design of these algorithms significantly depends on the knowl-

edge of the working precision which is only to be known at runtime and therefore is

impractical to be carried out in arbitrary precision environments.

Several algorithms for computing matrix functions that work in arbitrary precision

have been developed, inclusive of the ones for matrix exponential [12], [16] and the

matrix logarithm [17], which take the working precision at which the algorithm is

to be executed as an input argument to the algorithm, to minimize the impact of

the working precision on the design stage. Besides, there are many computer alge-

bra systems that offer functions for evaluating in arbitrary precision a wide range of

introduction 17

matrix functions, including Maple [53], Mathematica [54], Python’s mpmath library

[45], MATLAB with the Symbolic Math Toolbox [78] and the Multiprecision Comput-

ing Toolbox [58], and the ArbFloats package, a wrapper to the C library Arb [44].

However, we are not aware of the underlying algorithms implemented in the above

software as well as details of the implementations, which in some cases may involve

symbolic arithmetic.

This thesis mainly explores the computation of matrix functions in arbitrary pre-

cision and possesses both theoretical and computational contributions to the area

of matrix functions. Firstly, we build a multiprecision derivative-free version of the

Schur–Parlett algorithm that greatly expands the class of readily computable ma-

trix functions; we explain why Davies’s randomized approximate diagonalization

method [15], which is widely used for calculating reference solutions in higher pre-

cision when the forward error of algorithms for matrix functions is estimated, is not

reliable and show how to estimate the condition number of the eigenvector matrix

of a triangular matrix based on its elements, so increase accordingly the precision at

which to carry out the diagonalization to guarantee accuracy. Secondly, we develop

an arbitrary precision algorithm for computing the matrix cosine and its Fréchet

derivative simultaneously. We also generalize the algorithmic framework to evaluate

the matrix the matrix sine, cosine, and their Fréchet derivatives all together. Thirdly,

we derive a new formula for the pth root of a perturbation of the scaled identity

matrix, and focus on the case of p “ 2 when the formula is of most computational

interest and derive a new class of Newton iterations for computing the square root

that exploit the possible low-rank structure.

In the next chapter we revise basic definitions and preliminary results in general

matrix theory, functions of matrices, and floating-point arithmetic that build the foun-

dation of our research. The thesis is in the journal format, with Chapters 3, 4, and

5 presented in a format suitable for publication and based on the preprints and jour-

nal papers listed on page 12; the authors of the papers on which these chapters are

based contributed equally to the final manuscripts, and therefore it is not necessary

18 introduction

to further discriminate their specific contribution. Conclusions and remarks on future

work are offered in Chapter 6.

references

[1] A. H. Al-Mohy and N. J. Higham. “A new scaling and squaring algorithm

for the matrix exponential.” SIAM J. Matrix Anal. Appl. 31.3 (2009), pp. 970–989

(cited on pp. 14, 16).

[2] A. H. Al-Mohy and N. J. Higham. “Improved inverse scaling and squaring

algorithms for the matrix logarithm.” SIAM J. Sci. Comput. 34.4 (2012), pp. C153–

C169 (cited on pp. 14, 16).

[3] A. H. Al-Mohy, N. J. Higham, and S. D. Relton. “New algorithms for com-

puting the matrix sine and cosine separately or simultaneously.” SIAM J. Sci.

Comput. 37.1 (2015), A456–A487 (cited on p. 16).

[4] M. Aprahamian and N. J. Higham. “Matrix inverse trigonometric and inverse

hyperbolic functions: Theory and algorithms.” SIAM J. Matrix Anal. Appl. 37.4

(2016), pp. 1453–1477 (cited on p. 16).

[5] V. Arsigny, O. Commowick, N. Ayache, and X. Pennec. “A fast and log-euclidean

polyaffine framework for locally linear registration.” J. Math. Imaging Vis. 33

(2009), pp. 222–238 (cited on p. 14).

[6] D. H. Bailey, R. Barrio, and J. M. Borwein. “High-precision computation: math-

ematical physics and dynamics.” Appl. Math. Comput. 218.20 (2012), pp. 10106–

10121 (cited on p. 15).

[7] G. Beliakov and Y. Matiyasevich. “A parallel algorithm for calculation of deter-

minants and minors using arbitrary precision arithmetic.” BIT Numer. Math. 56

(2016), pp. 33–50 (cited on p. 15).

[8] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah. “Julia: a fresh approach

to numerical computing.” SIAM Rev. 59.1 (Jan. 2017), pp. 65–98 (cited on p. 15).

https://doi.org/10.1137/09074721X
https://doi.org/10.1137/09074721X
https://doi.org/10.1137/110852553
https://doi.org/10.1137/110852553
https://doi.org/10.1137/140973979
https://doi.org/10.1137/140973979
https://doi.org/10.1137/16M1057577
https://doi.org/10.1137/16M1057577
https://doi.org/10.1007/s10851-008-0135-9
https://doi.org/10.1007/s10851-008-0135-9
https://doi.org/10.1016/j.amc.2012.03.087
https://doi.org/10.1016/j.amc.2012.03.087
https://doi.org/10.1007/s10543-015-0547-z
https://doi.org/10.1007/s10543-015-0547-z
https://doi.org/10.1137/141000671
https://doi.org/10.1137/141000671

references 19

[9] Å. Björck and S. Hammarling. “A Schur method for the square root of a ma-

trix.” Linear Algebra Appl. 52/53 (1983), pp. 127–140 (cited on pp. 14, 16).

[10] A. Buchheim. “An extension of a theorem of Professor Sylvester’s relating to

matrices.” London, Edinburgh, Dublin Philos. Mag. J. Sci. 22.135 (1886), pp. 173–

174 (cited on p. 13).

[11] A. Buchheim. “On the theory of matrics.” Proc. London Math. Soc. 16 (1884),

pp. 63–82 (cited on p. 13).

[12] M. Caliari and F. Zivcovich. “On-the-fly backward error estimate for matrix

exponential approximation by Taylor algorithm.” J. Comput. Appl. Math. 346

(2019), pp. 532–548 (cited on p. 16).

[13] A. Cayley. “A memoir on the theory of matrices.” Philos. Trans. Roy. Soc. London

148 (Jan. 1858), pp. 17–37 (cited on p. 13).

[14] M. Courbariaux, Y. Bengio, and J.-P. David. Training Deep Neural Networks with

Low Precision Multiplications. 2015. ArXiv preprint 1412.7024v5 (cited on p. 15).

[15] E. B. Davies. “Approximate diagonalization.” SIAM J. Matrix Anal. Appl. 29.4

(2008), pp. 1051–1064 (cited on p. 17).

[16] M. Fasi and N. J. Higham. “An arbitrary precision scaling and squaring al-

gorithm for the matrix exponential.” SIAM J. Matrix Anal. Appl. 40.4 (2019),

pp. 1233–1256 (cited on p. 16).

[17] M. Fasi and N. J. Higham. “Multiprecision algorithms for computing the ma-

trix logarithm.” SIAM J. Matrix Anal. Appl. 39.1 (2018), pp. 472–491 (cited on

p. 16).

[18] M. Fasi, N. J. Higham, and B. Iannazzo. “An algorithm for the matrix Lambert

W function.” SIAM J. Matrix Anal. Appl. 36.2 (2015), pp. 669–685 (cited on p. 16).

[19] A. Flores-Vergara, E. E. García-Guerrero, E. Inzunza-González, O. R. López-

Bonilla, E. Rodríguez-Orozco, J. R. Cárdenas-Valdez, and E. Tlelo-Cuautle. “Im-

plementing a chaotic cryptosystem in a 64-bit embedded system by using multiple-

precision arithmetic.” Nonlinear Dyn. 96 (2019), pp. 497–516 (cited on p. 15).

https://doi.org/10.1016/0024-3795(83)80010-X
https://doi.org/10.1016/0024-3795(83)80010-X
https://doi.org/10.1080/14786448608627914
https://doi.org/10.1080/14786448608627914
https://doi.org/10.1112/plms/s1-16.1.63
https://doi.org/10.1016/j.cam.2018.07.042
https://doi.org/10.1016/j.cam.2018.07.042
https://doi.org/10.1098/rstl.1858.0002
https://arxiv.org/abs/1412.7024v5
https://arxiv.org/abs/1412.7024v5
https://doi.org/10.1137/060659909
https://doi.org/10.1137/18M1228876
https://doi.org/10.1137/18M1228876
https://doi.org/10.1137/17M1129866
https://doi.org/10.1137/17M1129866
https://doi.org/10.1137/140997610
https://doi.org/10.1137/140997610
https://doi.org/10.1007/s11071-019-04802-3
https://doi.org/10.1007/s11071-019-04802-3
https://doi.org/10.1007/s11071-019-04802-3

20 introduction

[20] R. A. Frazer, W. J. Duncan, and A. R. Collar. Elementary Matrices and Some

Applications to Dynamics and Differential Equations. Cambridge University Press,

1938, pp. xviii+416. 1963 printing (cited on p. 14).

[21] G. Frobenius. “Über die cogredienten transformationen der bilinearen formen”.

Sitzungsber K. Preuss. Akad. Wiss. Berlin 16 (1896), pp. 7–16 (cited on p. 13).

[22] G. Giorgi. “Nuove osservazioni sulle funzioni delle matrici”. Atti Accad. Lincei

Rend. 6.8 (1928), pp. 3–8 (cited on p. 13).

[23] S. K. Godunov. Ordinary differential equations with constant coefficient. Americal

Mathematical Society, Providence, RI, USA: volume 169 of Translations of Math-

ematical Monographs, 1997, pp. ix+282 (cited on p. 14).

[24] F. Greco and B. Iannazzo. “A binary powering Schur algorithm for computing

primary matrix roots.” Numer. Algorithms 55.1 (2010), pp. 59–78 (cited on p. 16).

[25] C.-H. Guo. “On Newton’s method and Halley’s method for the principal pth

root of a matrix.” Linear Algebra Appl. 432.8 (2010), pp. 1905–1922 (cited on

p. 16).

[26] C.-H. Guo and N. J. Higham. “A Schur–Newton method for the matrix pth

root and its inverse.” SIAM J. Matrix Anal. Appl. 28.3 (2006), pp. 788–804 (cited

on p. 16).

[27] V. Gupta, T. Koren, and Y. Singer. “Shampoo: Preconditioned Stochastic Ten-

sor Optimization.” In: Proceedings of the 35th International Conference on Machine

Learning. Ed. by J. Dy and A. Krause. Vol. 80. Proceedings of Machine Learning

Research. Stockholmsmässan, Stockholm Sweden, 2018, pp. 1842–1850 (cited on

p. 14).

[28] W. F. Harris. “The average eye.” Opthal. Physiol. Opt. 24.6 (2004), pp. 580–585

(cited on p. 14).

[29] Y. He and C. H. Q. Ding. “Using accurate arithmetics to improve numerical

reproducibility and stability in parallel applications.” The Journal of Supercom-

puting 18 (2001), pp. 259–277 (cited on p. 15).

https://doi.org/10.1007/s11075-009-9357-1
https://doi.org/10.1007/s11075-009-9357-1
https://doi.org/10.1016/j.laa.2009.02.030
https://doi.org/10.1016/j.laa.2009.02.030
https://doi.org/10.1137/050643374
https://doi.org/10.1137/050643374
https://doi.org/10.1111/j.1475-1313.2004.00239.x
https://doi.org/10.1023/A:1008153532043
https://doi.org/10.1023/A:1008153532043

references 21

[30] N. J. Higham. “Computing real square roots of a real matrix.” Linear Algebra

Appl. 88/89 (1987), pp. 405–430 (cited on pp. 14, 16).

[31] N. J. Higham. Functions of Matrices: Theory and Computation. Philadelphia, PA,

USA: Society for Industrial and Applied Mathematics, 2008, pp. xx+425 (cited

on p. 14).

[32] N. J. Higham. “Newton’s method for the matrix square root.” Math. Comp.

46.174 (Apr. 1986), pp. 537–549 (cited on p. 16).

[33] N. J. Higham. The Matrix Function Toolbox. http://www.maths.manchester.ac.

uk/~higham/mftoolbox (cited on p. 14).

[34] N. J. Higham. “The matrix sign decomposition and its relation to the polar

decomposition.” Linear Algebra Appl. 212/213 (1994), pp. 3–20 (cited on p. 16).

[35] N. J. Higham. “The scaling and squaring method for the matrix exponential

revisited.” SIAM J. Matrix Anal. Appl. 26.4 (2005), pp. 1179–1193 (cited on p. 16).

[36] N. J. Higham and E. Hopkins. A Catalogue of Software for Matrix Functions.

Version 3.0. MIMS EPrint 2020.7. UK: Manchester Institute for Mathematical

Sciences, The University of Manchester, Mar. 2020, p. 24 (cited on p. 15).

[37] N. J. Higham and L. Lin. “An improved Schur–Padé algorithm for fractional

powers of a matrix and their Fréchet derivatives.” SIAM J. Matrix Anal. Appl.

34.3 (2013), pp. 1341–1360 (cited on pp. 14, 16).

[38] W. Hu, H. Zuo, O. Wu, Y. Chen, Z. Zhang, and D. Suter. “Recognition of adult

images, videos, and web page bags.” ACM Trans. Multimedia Comput. Commun.

Appl. 7S (2011), 28:1–28:24 (cited on p. 14).

[39] B. Iannazzo. “A family of rational iterations and its application to the com-

putation of the matrix pth root.” SIAM J. Matrix Anal. Appl. 30.4 (Jan. 2009),

pp. 1445–1462 (cited on p. 16).

[40] B. Iannazzo. “A note on computing the matrix square root.” Calcolo 40.4 (2003),

pp. 273–283 (cited on p. 16).

https://doi.org/10.1016/0024-3795(87)90118-2
https://doi.org/10.1137/1.9780898717778
https://doi.org/10.1090/S0025-5718-1986-0829624-5
http://www.maths.manchester.ac.uk/~higham/mftoolbox
http://www.maths.manchester.ac.uk/~higham/mftoolbox
https://doi.org/10.1016/0024-3795(94)90393-X
https://doi.org/10.1016/0024-3795(94)90393-X
https://doi.org/10.1137/04061101X
https://doi.org/10.1137/04061101X
http://eprints.maths.manchester.ac.uk/2754/
http://eprints.maths.manchester.ac.uk/2754/
https://doi.org/10.1137/130906118
https://doi.org/10.1137/130906118
https://doi.org/10.1145/2037676.2037685
https://doi.org/10.1145/2037676.2037685
https://doi.org/10.1137/070694351
https://doi.org/10.1137/070694351
https://doi.org/10.1007/s10092-003-0079-9

22 introduction

[41] B. Iannazzo and C. Manasse. “A Schur logarithmic algorithm for fractional

powers of matrices.” SIAM J. Matrix Anal. Appl. 34.2 (2013), pp. 794–813 (cited

on p. 16).

[42] IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Standard 754-1985.

IEEE, 1985. Reprinted in SIGPLAN Notices, 22(2):9–25, 1987 (cited on p. 15).

[43] IEEE Standard for Floating-Point Arithmetic, IEEE Std 754-2019 (revision of IEEE

Std 754-2008). IEEE, 2019, p. 84 (cited on p. 15).

[44] F. Johansson. “Arb: efficient arbitrary-precision midpoint-radius interval arith-

metic.” IEEE Trans. Comput. 66.8 (2017), pp. 1281–1292 (cited on p. 17).

[45] F. Johansson et al. Mpmath: A Python Library for Arbitrary-Precision Floating-Point

Arithmetic. 2013. http://mpmath.org (cited on pp. 15, 17).

[46] Julia. http://julialang.org (cited on p. 15).

[47] C. Kenney and A. J. Laub. “On scaling Newton’s method for polar decomposi-

tion and the matrix sign function.” SIAM J. Matrix Anal. Appl. 13.3 (July 1992),

pp. 688–706 (cited on p. 16).

[48] C. Kenney and A. J. Laub. “Rational iterative methods for the matrix sign

function.” SIAM J. Matrix Anal. Appl. 12.2 (Apr. 1991), pp. 273–291 (cited on

p. 16).

[49] G. Khanna. “High-precision numerical simulations on a CUDA GPU: Kerr

black hole tails.” J. Sci. Comput. 56 (2013), pp. 366–380 (cited on p. 15).

[50] E. N. Laguerre. “Le Calcul des Systèmes Linéaires, Extrait d’Une Lettre Adressé

à M. Hermite.” In: Oeuvres de Laguerre. Ed. by C. Hermite, H. Poincaré, and E.

Rouché. Vol. 1. Gauthier–Villars, Paris, 1898, pp. 221–267. The article is dated

1867 and is “Extrait du Journal de l’École Polytechnique, LXIIe Cahier” (cited

on p. 13).

[51] C. Lichtenau, S. Carlough, and S. M. Mueller. “Quad Precision Floating Point

on the IBM z13.” In: 2016 IEEE 23nd Symposium on Computer Arithmetic (ARITH).

2016, pp. 87–94 (cited on p. 15).

https://doi.org/10.1137/120877398
https://doi.org/10.1137/120877398
https://doi.org/10.1109/IEEESTD.1985.82928
https://doi.org/10.1109/IEEESTD.2019.8766229
https://doi.org/10.1109/IEEESTD.2019.8766229
https://doi.org/10.1109/TC.2017.2690633
https://doi.org/10.1109/TC.2017.2690633
http://mpmath.org
http://julialang.org
https://doi.org/10.1137/0613044
https://doi.org/10.1137/0613044
https://doi.org/10.1137/0612020
https://doi.org/10.1137/0612020
https://doi.org/10.1007/s10915-012-9679-3
https://doi.org/10.1007/s10915-012-9679-3
http://gallica.bnf.fr/ark:/12148/bpt6k90210p/f242.table
http://gallica.bnf.fr/ark:/12148/bpt6k90210p/f242.table

references 23

[52] D. Ma and M. A. Saunders. “Solving Multiscale Linear Programs Using the Sim-

plex Method in Quadruple Precision.” In: Numerical Analysis and Optimization.

Ed. by M. Al-Baali, L. Grandinetti, and A. Purnama. Vol. 134. Springer Proceed-

ings in Mathematics & Statistics. Springer, Cham, 2015, pp. 223–235 (cited on

p. 15).

[53] Maple. Waterloo Maple Inc., Waterloo, Ontario, Canada. http://www.maplesoft.

com (cited on pp. 15, 17).

[54] Mathematica. Wolfram Research, Inc., Champaign, IL, USA. http://www.wolfram.

com (cited on pp. 15, 17).

[55] W. H. Metzler. On the roots of matrices. Friedenwald, Baltimore, 1892 (cited on

p. 13).

[56] A. Meurer, C. P. Smith, M. Paprocki, et al. “SymPy: Symbolic computing in

Python.” PeerJ Comput. Sci. 3 (Jan. 2017), e103 (cited on pp. 14, 15).

[57] C. B. Moler and C. F. Van Loan. “Nineteen dubious ways to compute the

exponential of a matrix, twenty-five years later.” SIAM Rev. 45.1 (2003), pp. 3–

49 (cited on p. 14).

[58] Multiprecision Computing Toolbox. Advanpix, Tokyo, Japan. http://www.advanpix.

com (cited on pp. 15, 17).

[59] P. Nadukandi and N. J. Higham. “Computing the wave-kernel matrix func-

tions.” SIAM J. Sci. Comput. 40.6 (2018), A4060–A4082 (cited on p. 16).

[60] NAG Library. NAG Ltd., Oxford, UK. https://www.nag.co.uk (cited on p. 14).

[61] T. N. Palmer. “Modelling: build imprecise supercomputers.” Nature 526 (2015),

pp. 32–33 (cited on p. 15).

[62] T. N. Palmer. “More reliable forecasts with less precise computations: a fast-

track route to cloud-resolved weather and climate simulators?” Philos. Trans.

Roy. Soc. A372.2018 (2014) (cited on p. 15).

[63] PARI/GP. The PARI Group, Bordeaux. http://pari.math.u-bordeaux.fr (cited

on p. 15).

http://www.maplesoft.com
http://www.maplesoft.com
http://www.wolfram.com
http://www.wolfram.com
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.1137/S00361445024180
https://doi.org/10.1137/S00361445024180
http://www.advanpix.com
http://www.advanpix.com
https://doi.org/10.1137/18M1170352
https://doi.org/10.1137/18M1170352
https://www.nag.co.uk
https://doi.org/10.1038/526032a
https://doi.org/10.1098/rsta.2013.0391
https://doi.org/10.1098/rsta.2013.0391
http://pari.math.u-bordeaux.fr

24 introduction

[64] G. Peano. “Intégration par séries des équations différentielles linéaires.” Math.

Annalen 32.3 (Sept. 1888), pp. 450–456 (cited on p. 13).

[65] G. Pleiss, M. Jankowiak, D. Eriksson, A. Damle, and J. Gardner. “Fast matrix

square roots with applications to Gaussian processes and Bayesian optimiza-

tion.” In: Advances in Neural Information Processing Systems. Ed. by H. Larochelle,

M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin. Vol. 33. Stockholmsmässan,

Stockholm Sweden, 2020, pp. 22268–22281 (cited on p. 14).

[66] R. F. Rinehart. “The equivalence of definitions of a matric function”. Amer. Math.

Monthly 62.6 (1955), pp. 395–414 (cited on p. 13).

[67] J. D. Roberts. “Linear model reduction and solution of the algebraic Ricca-

tiq equation by use of the sign function.” Internat. J. Control 32.4 (Oct. 1980),

pp. 677–687 (cited on p. 16).

[68] J. Rossignac and Á. Vinacua. “Steady affine motions and morphs.” ACM Trans.

Graph. 30.5 (2011), 116:1–116:16 (cited on p. 14).

[69] The Sage Developers. Sage Mathematics Software. http://www.sagemath.org

(cited on p. 15).

[70] P. Sanan. “Geometric elasticity for graphics, simulation, and computation.” PhD

thesis. Pasadena, California, USA: California Institute of Technology, 2014 (cited

on p. 14).

[71] C. Sanderson and R. Curtin. “Armadillo: a template-based C++ library for

linear algebra.” Journal of Open Source software 1.2 (2016). 26 pp (cited on p. 14).

[72] H. Schwerdtfeger. Les Fonctions de Matrices. I. Les Fonctions Univalentes. Her-

mann, Paris, France: Number 649 in Actualités Scientifiques et Industrielles, 1938,

p. 58 (cited on p. 14).

[73] M. I. Smith. “A Schur algorithm for computing matrix pth roots.” SIAM J.

Matrix Anal. Appl. 24.4 (2003), pp. 971–989 (cited on p. 16).

[74] Y. Song, N. Sebe, and W. Wang. Fast Differentiable Matrix Square Root. ArXiv:1209.5145.

2022 (cited on p. 14).

https://doi.org/10.1007/bf01443609
https://doi.org/10.1080/00207178008922881
https://doi.org/10.1080/00207178008922881
https://doi.org/10.1145/2019627.2019635
http://www.sagemath.org
https://doi.org/10.21105/joss.00026
https://doi.org/10.21105/joss.00026
https://doi.org/10.1137/S0895479801392697
https://arxiv.org/abs/2201.08663

references 25

[75] P. D. Straffin. “Liu Hui and the first golden age of Chinese mathematics.” Math.

Mag. 71.3 (June 1998), p. 163 (cited on p. 13).

[76] J. J. Sylvester. “On the equation to the secular inequalities in the planetary

theory.” Phil. Mag. J. Sci. 16.100 (1883), pp. 267–269 (cited on p. 13).

[77] J. J. Sylvester. “XLVII. Additions to the articles in the September number of

this journal, “On a new class of theorems,” and on Pascal’s theorem.” London,

Edinburgh Dublin Philos. Mag. J. Sci. 37.251 (Nov. 1850), pp. 363–370 (cited on

p. 13).

[78] Symbolic Math Toolbox. The MathWorks, Inc., Natick, MA, USA. http://www.

mathworks.co.uk/products/symbolic/ (cited on pp. 15, 17).

[79] T. Trader. IBM advances against x86 with Power9. https://www.hpcwire.com/

2016/08/30/ibm-unveils-power9-details/. Aug. 2016. Accessed March 14,

2022 (cited on p. 15).

[80] E. Weyr. “Note sur la théorie de quantités complexes formées avec n unités

principales”. Bull. Sci. Math. II 11 (1887), pp. 205–215 (cited on p. 13).

https://doi.org/10.2307/2691200
https://doi.org/10.1080/14786448308627430
https://doi.org/10.1080/14786448308627430
https://doi.org/10.1080/14786445008646629
https://doi.org/10.1080/14786445008646629
http://www.mathworks.co.uk/products/symbolic/
http://www.mathworks.co.uk/products/symbolic/
https://www.hpcwire.com/2016/ 08/30/ibm-unveils-power9-details/
https://www.hpcwire.com/2016/ 08/30/ibm-unveils-power9-details/

2 BACKGROUND MATER IAL

This chapter summarizes many useful definitions and facts in matrix theory, func-

tions of matrices, and floating-point arithmetic. The review only contains a minimal

set of fundamental results that are most relevant to the material in the subsequent

chapters, and by no means thoroughly covers all important aspects. General sources

of complementary references and a more detailed coverage include [2], [5] for general

matrix theory, [4] for functions of matrices, and [3], [9] for floating-point arthmetic.

2.1 matrix theory

We assume that the reader is familiar with the fundamental concepts of linear algebra

and with basic matrix operations, such as matrix transpose, matrix multiplication,

and matrix inverse.

Matrices and vectors. Let F be a field [1, Def. 3.2.2] and m and n be positive

integers. A matrix is an m-by-n array of scalars from F. If m “ n, the matrix is said to

be square. The set of all m-by-n matrices over F is denoted by Fmˆn. Matrices in F1ˆn

and Fmˆ1 are called row and column vectors, respectively. In the latter case we often

write Fmˆ1 as Fm as their are identical. Throughout the thesis, we focus on square

matrices with the underlying field being either the real numbers R or the complex

numbers C. We typically denote matrices by capital letters, and their elements by

doubly subscripted lowercase letters.

Block matrices. A block matrix (or partitioned matrix) is a matrix whose elements

are themselves matrices, which are called submatrices. There are different ways of par-

26

2.1 matrix theory 27

titioning a matrix, but we are most interested in the case where the rows and columns

follow the same partitioning so the submatrices along the diagonal are square.

Special matrices. A zero matrix is a matrix all of whose entries are zero, and the

zero matrix of size m ˆ n is denoted by 0mˆn or 0 if the dimension is clear from

the context. A matrix A P Fnˆn is a diagonal matrix if aij “ 0 when i ‰ j, and,

if, additionally, aii “ 1 for i “ 1, 2, . . . , n, the matrix is the identity matrix of size n,

denoted by In or just I if the dimension is obvious. If aij “ 0 when i ą j or i ă j, the

matrix A is upper triangular or lower triangular, respectively; the definitions extend to

non-square matrix A P Fmˆn, and if aij “ 0 when i ą j or i ă j, the matrix A is upper

trapezoidal or lower trapezoidal, respectively. Block diagonal, block triangular, and

block trapezoidal matrices can be defined analogously, by replacing elements with

blocks in the definitions above. A block triangular matrix A P Fnˆn is quasi-triangular

if its diagonal blocks have size at most 2.

A matrix A P Rnˆn is symmetric if AT “ A and skew-symmetric if AT “ ´A, and

likewise, a matrix A P Cnˆn is Hermitian if A˚ “ A and skew-Hermitian if A˚ “ ´A.

A matrix A P Cnˆn is normal if AA˚ “ A˚ A. An orthogonal matrix Q P Rnˆn satisfies

QQT “ QTQ “ I, and likewise, a unitary matrix U P Cnˆn satisfies UU˚ “ U˚U “

I. Note that, among real matrices, all symmetric, skew-symmetric, and orthogonal

matrices are normal, and likewise, among complex matrices, all Hermitian, skew-

Hermitian, and unitary matrices are normal.

A Hermitian matrix A P Cnˆn is positive definite if x˚ Ax ą 0 for all x P Cnzt0u and

positive semidefinite if x˚ Ax ě 0 for all x P Cn. Definitions for a symmetric matrix to

be positive definite and positive semidefinite follow similarly.

Eigenvalues and eigenvectors. Let A P Cnˆn. If there is a λ P C such that

Ax “ λx, x P Cnzt0u, (2.1)

28 background material

then λ is called an eigenvalue of A, x is an eigenvector of A associated with λ, and the

pair pλ, xq is an eigenpair of A. The set of eigenvalues of A, denoted by ΛpAq, is called

the spectrum of A. The spectral radius of A is ρpAq “ max t|λ| : λ P ΛpAqu.

We can rewrite (2.1) in the form pλI ´ Aqx “ 0, x ‰ 0 showing that λI ´ A is a singu-

lar matrix and hence any eigenvalue λ must satisfy detpλI ´ Aq “ 0, which is called

the characteristic equation. The left-hand side detpλI ´ Aq “: ppλq is a polynomial of

degree n in λ and is known as the characteristic polynomial of A. The Cayley–Hamilton

theorem states that every complex square matrix satisfies its own characteristic equa-

tion, that is, ppAq “ 0. However, there can be some other polynomial q of lower

degree such that qpAq “ 0; we call the unique monic polynomial ψ of lowest degree

such that ψpAq “ 0 the minimal polynomial of A.

Two matrices A, B P Cnˆn are similar if there exists a nonsingular matrix P P Cnˆn

such that B “ P´1AP, where P is the transforming matrix, and it can be shown that

similar matrices have the same spectrum. If a matrix A P Cnˆn is similar to a diagonal

matrix then A is said to be diagonalizable. It can be shown that A P Cnˆn is diago-

nalizable if and only if A has n linearly independent eigenvectors. This implies that

a matrix with distinct eigenvalues is diagonalizable because eigenvectors associated

with different eigenvalues are linearly independent.

Matrix norms. A norm is a function } ¨ } : Cmˆn Ñ R satisfying the following

conditions:

(i) }A} ě 0 for all A P Cmˆn, with }A} “ 0 if and only if A “ 0;

(ii) }αA} “ |α|}A} for all α P C, A P Cmˆn;

(iii) }A ` B} ď }A} ` }B} for all A, B P Cmˆn.

We refer to a vector norm if the argument of the norm is a vector, and to a matrix norm

if the argument is a matrix. For the case n “ 1, the most relevant is the vector p-norm,

which is defined, for p ě 1, by

}x}p “

˜

m
ÿ

i“1

|xi|
p

¸1{p

, x P Cm,

2.1 matrix theory 29

and, in particular, }x}8 “ max1ďiďm |xi|.

An important class of matrix norms is the operator norms (often called subordinate or

induced matrix norms); given a vector norm } ¨ } : Cm Ñ R, the corresponding operator

norm on Cmˆn is defined by

}A} “ max
xPCmzt0u

}Ax}

}x}
“ max

xPCm,}x}“1
}Ax}.

When the vector norm is the p-norm then the subordinate matrix norm }A}p “

maxxPCmzt0u }Ax}p{}x}p is called the matrix p-norm. For the 1, 2, and 8 vector norms

it can be shown that

}A}1 “ max
1ďjďn

m
ÿ

i“1

|aij|,

}A}2 “ ρpA˚ Aq1{2,

}A}8 “ max
1ďiďm

n
ÿ

j“1

|aij|.

An example of matrix norm that is not induced by a vector norm yet very useful in

numerical linear algebra is the Frobenius norm, which is defined, for A P Cmˆn, by

}A}F “

˜

m
ÿ

i“1

n
ÿ

j“1

|aij|
2

¸1{2

.

All norms on Cmˆn are equivalent: for any two norms } ¨ }α and } ¨ }β, we have that

ν1}A}α ď }A}β ď ν2}A}α for some ν1, ν2 ą 0, for all matrices A P Cmˆn. A norm

is consistent if it has the property of sub-multiplicativity, namely, it satisfies }AB} ď

}A}}B} for all A P Cmˆn and B P Cnˆp. The Frobenius norm and all subordinate

norms are consistent. It is easy to show that, for A P Cnˆn, one has that ρpAq ď }A}

for any consistent norm.

For nonsingular A P Cnˆn and any matrix norm, the quantity κpAq “ }A}}A´1} is

the normwise condition number (with respect to inversion) of A; for any subordinate

matrix norm } ¨ } we have }A}}A´1} ě }AA´1} “ }I} “ 1 and hence κpAq ě 1.

The condition number can be arbitrarily large, and if A is singular we regard the

30 background material

condition number as infinite. We denote by κFpAq the condition number with respect

to the Frobenius norm, and by κppAq that with respect to the operator norm induced

by the vector p-norm. It is not hard to see from the definitions that if A P Cnˆn is

unitary then κ2pAq “ 1, which shows that unitary matrices are a class of extremely

well-conditioned matrix.

Jordan canonical form. Any matrix A P Cnˆn with p linearly independent eigen-

vectors is similar to a block diagonal matrix

J “ X´1AX “ diagpJ1, J2, . . . , Jpq, (2.2)

where X P Cnˆn is nonsingular, the diagonal blocks are called Jordan blocks and are

upper triangular matrix of the form

Jk :“ Jkpλkq :“

»

—

—

—

—

–

λk 1

λk
. . .
. . . 1

λk

fi

ffi

ffi

ffi

ffi

fl

P Cmkˆmk ,

and m1 ` m2 ` ¨ ¨ ¨ ` mp “ n. The matrix J is called the Jordan canonical form of A

and is unique up to the ordering of the blocks Jk, but the transforming matrix X

is not unique. If A is diagonalizable then the Jordan canonical form reduces to an

eigendecomposition A “ XDX´1, with D “ diagpλ1, λ2, . . . , λnq and the columns of X

being eigenvectors of A.

The Jordan canonical form is an invaluable tool from a theoretical standpoint de-

spite the fact that it cannot be reliably computed in finite precision arithmetic except

in special cases such as when A is Hermitian or normal. It is the basis for an elegant

definition of matrix functions and provides a concrete way to prove and understand

many results.

QR factorization. For every A P Cmˆn, there exist a unitary matrix Q P Cmˆm

and an upper trapezoidal matrix R P Cmˆn such that A “ QR. This factorization is

2.1 matrix theory 31

referred to as the QR factorization of A, and if m ě n and A has full column rank, by

partitioning

Q “
“

Q1 Q2
‰

, Q1 P Cmˆn, Q2 P Cmˆpm´nq,

R “

„

R1

0

ȷ

, R1 P Cnˆn, 0 P Cpm´nqˆn,

then A “ Q1R1 is called the reduced QR factorizatoin or the thin QR factorization. If A

is real, then the factors Q and R may be taken to be real.

There are three standard means of computing a QR factorization, which are via

Householder reflections, Givens rotations, and Gram–Schmidt orthogonalization; see [2,

sect. 5.2] for details.

Schur decomposition. Let A P Cnˆn. Then there exists a unitary matrix U P Cnˆn

and an upper triangular matrix T P Cnˆn such that

T “ U´1AU “ U˚ AU,

that is, A “ UTU˚, which is called a Schur decomposition of A. The Schur decomposi-

tion is not unique as the eigenvalues of T can be made to appear in any order on the

diagonal by choosing different transforming matrix U.

For A P Rnˆn we can restrict the transforming matrix to be real and obtain a

real analogue of the Schur decomposition, the real Schur decomposition A “ QTQT,

where Q P Rnˆn is orthogonal and T P Rnˆn is upper quasi-triangular with each of

the diagonal blocks being either 1 ˆ 1 or 2 ˆ 2 with complex conjugate eigenvalues.

The matrices A and T have the same spectrum as they are similar; for the Schur

decomposition the diagonal elements of T are the eigenvalues of A, and, for the real

Schur decomposition, any diagonal block of size 1 ˆ 1 is a real eigenvalue of A and

the eigenvalues of a 2 ˆ 2 diagonal block of T coincide with a complex conjugate pair

of eigenvalues of A.

For normal matrices Schur decomposition reduces to spectral decomposition, derived

from the spectral theorem: A P Cnˆn is normal if and only if there exists a unitary

32 background material

matrix U P Cnˆn and a diagonal matrix D P Cnˆn such that A “ UDU´1 “ UDU˚.

It follows immediately that a normal matrix has n orthonormal eigenvectors so its

spectral decomposition is exceedingly well conditioned.

The Schur decomposition of a dense general matrix can be computed with perfect

backward stability via the QR algorithm and its variants [2, sect. 7.5], and hence it is

a standard tool in numerical linear algebra.

SVD decomposition. For any A P Cmˆn there exists unitary matrices U P Cmˆm

and V P Cnˆn such that

A “ UΣV˚, Σ “ diagpσ1, σ2, . . . , σpq P Rmˆn, p “ minpm, nq,

where σ1 ě σ2 ě ¨ ¨ ¨ ě σp ě 0. This is called the SVD decomposition of the matrix A.

The σi are the singular values of A, and the columns of U and V are called the left and

right singular vectors of A, respectively. If A is real, U and V can be taken to be real.

By partitioning, for m ě n,

U “
“

U1 U2
‰

, U1 P Cmˆn, U2 P Cmˆpm´nq,

Σ “

„

Σ1

0

ȷ

, Σ1 P Rnˆn, 0 P Rpm´nqˆn,

V “ V1,

and for m ă n,

U “ U1,

Σ “
“

Σ1 0
‰

, Σ1 P Rmˆm, 0 P Rmˆpn´mq,

V “
“

V1 V2
‰

, V1 P Cmˆn, V2 P Cpn´mqˆn,

we obtain an abbreviated version of the SVD, A “ U1Σ1V1̊ , which is referred to as

the thin SVD decomposition. The rank of A is equal to the number of its nonzero

singular values. If the matrix A is not full rank, the thin SVD decomposition can

be further reduced by dropping the left and right singular vectors corresponding to

2.2 functions of matrices 33

zero singular values and we arrive at the compact SVD decomposition which contains

the essential SVD information: A “ UΣV˚, where U P Cmˆr, Σ “ diagpσ1, σ2, . . . , σrq P

Rrˆr, V P Cnˆr, and r “ rankpAq.

Algorithms for computing the SVD decomposition are discussed in [2, sect. 8.6].

Sherman–Morrison–Woodbury formula. For any nonsingular matrix A P Cnˆn

if U, V P Cnˆk and I ` V˚ A´1U is nonsingular then A ` UV˚ is nonsingular and

pA ` UV˚q´1 “ A´1 ´ A´1UpI ` V˚ A´1Uq´1V˚ A´1,

which is the Sherman–Morrison–Woodbury formula. The matrix I ` V˚ A´1U is k ˆ k,

so if k ! n and A´1 is already known then this formula provides a cheap way to

evaluate the inverse of A corrected by the matrix UV˚, which has rank at most k.

The Sherman–Morrison–Woodbury formula generalizes the well-known Sherman–Morrison

formula, which computes the inverse of A perturbed by a rank-1 matrix (the case

k “ 1).

2.2 functions of matrices

The concept of functions of matrices can have different meaning in the literature. Com-

mon functions with a matrix input include the rank, the determinant, the spectral

radius, and the norms of a matrix. Within the scope of this thesis we study functions

of matrices that stem from a scalar function and map Cnˆn to Cnˆn.

Matrix function via Jordan canonical form. Let A have the Jordan canonical

form (2.2) and let f be defined on the spectrum of A P Cnˆn, that is, for distinct

eigenvalues λ1, λ2, . . . , λs of A the values f pjqpλiq, j “ 0 : ni ´ 1, i “ 1 : s exist, where

34 background material

ni, which is called the index of λi, is the order of the largest Jordan block in which λi

appears. Then

f pAq :“ Z f pJqZ´1 “ Z diagp f pJ1q, f pJ2q, . . . , f pJpqqqZ´1,

where

f pJkq :“

»

—

—

—

—

—

–

f pλkq f 1pλkq . . . f pmk´1qpλkq
pmk´1q!

f pλkq
. . .

...
. . . f 1pλkq

f pλkq

fi

ffi

ffi

ffi

ffi

ffi

fl

. (2.3)

For multivalued functions such as the square root and logarithm it is implicit in the

above definition that a single branch has been chosen in (2.3). Furthermore, if A has

a repeated eigenvalue occurring in more than one Jordan block, we will choose the

same branch in each block; the resulting function is called a primary matrix functrion,

which is the one that appears in most applications and is what the thesis is exclusively

concerned with. If a different choice of branch is made for the same eigenvalue in two

different Jordan blocks then a nonprimary matrix function is obtained; see [4, sect. 1.4]

for more on nonprimary matrix functions.

The definition yields an f pAq that is independent of the particular Jordan canonical

form that is chosen. An intuition we get from the Jordan canonical form definition

of f pAq is that f needs to be sufficiently differentiable on the spectrum of A and the

differentiability requirement relies on the Jordan structure of A: an eigenvalue that

appears in a larger Jordan block needs higher derivatives of f to be defined at the

point.

Matrix function via Hermite interpolation. Let f be defined on the spectrum of

A P Cnˆn and let ψ be the minimal polynomial of A. Then f pAq :“ ppAq, where

p is the polynomial of degree less than
řs

k“1 ni (namely, the degree of the minimal

polynomial) that satisfies the interpolation conditions

ppjqpλiq “ f pjqpλiq, j “ 0 : ni ´ 1, i “ 1 : s.

2.2 functions of matrices 35

There is a unique such p and it is known as the Hermite interpolating polynomial.

It follows immediately from the definition that f pAq is a polynomial in A that is

completely determined by the spectrum of A. It is worth noting, however, that the

polynomial p depends on A, so we do not have f pAq ” qpAq for some fixed polynomial

q in dependent of A.

There are alternative means of defining f pAq in addition to the two mentioned

above, such as the Cauchy integral definition, and it has been shown that these def-

initions are equivalent, modulo the requirement on analyticity of f in the Cauchy

integral definition; we refer the readers to [4, sect. 1.2] for details.

Matrix Taylor series. Suppose f has a Taylor series expansion

f pzq “

8
ÿ

k“0

akpz ´ αqk, ak “
f pkqpαq

k!

with radius of convergence r. If A P Cnˆn then f pAq is defined and is given by

f pAq “

8
ÿ

k“0

akpA ´ αIqk

if and only if each of the distinct eigenvalues λ1, λ2, . . . , λs of A satisfies one of the

conditions [4, Thm. 4.7]

(i) |λi ´ α| ă r,

(ii) |λi ´ α| “ r and the series for f pni´1qpλq (where ni is the index of λi) is conver-

gent at the point λ “ λi, i “ 1 : s.

Functions of matrices therefore can be defined everywhere from the Taylor series

if the respective functions have a Taylor series with an infinite radius of convergence.

Hence we can define, for example, the matrix cosine and sine by

cos A “ I ´
A2

2!
`

A4

4!
´

A6

6!
` ¨ ¨ ¨ ,

sin A “ A ´
A3

3!
`

A5

5!
´

A7

7!
` ¨ ¨ ¨ .

36 background material

The Taylor series representation of matrix functions is a useful tool for approximating

matrix functions applicable to general functions, by summing a suitable finite number

of terms.

Basic properties of matrix functions. Let A P Cnˆn and let f be defined on the

spectrum of A. Then [4, Thm. 1.13]

(i) f pAq commutes with A;

(ii) f pATq= f pAqT;

(iii) f pXAX´1q “ X f pAqX´1;

(iv) the eigenvalues of f pAq are f pλiq, where the λi are the eigenvalues of A;

(v) if X commutes with A then X commutes with f pAq;

(vi) if A “ pAijq is block triangular then F “ f pAq is block triangular with the same

block structure as A, and Fii “ f pAiiq;

(vii) if A “ diagpA11, A22, . . . , Ammq is block diagonal then

f pAq “ diagp f pA11q, f pA22q, . . . , f pAmmqq.

The above properties follow from the definitions of f pAq or can be easily proved,

and will be employed repeatedly throughout the thesis.

Fréchet derivatives. The Fréchet derivative of a matrix function f at A P Cnˆn is a

linear mapping L f pA, ¨q : Cnˆn Ñ Cnˆn such that

f pA ` Eq ´ f pAq ´ L f pA, Eq “ op∥E∥q (2.4)

for all E P Cnˆn. The notation L f pA, Eq can be read as “the Fréchet derivative of f at

A in the direction E”. The Fréchet derivative may not exist, but if it does then it is

unique and we say f is Fréchet differentiable.

2.2 functions of matrices 37

Like the scalar derivative, the Fréchet derivative satisfies sum, product, and chain

rules. If g and h are Fréchet differentiable at A then [4, Thm. 3.2–3.4]

(i) Lαg`βhpA, Eq “ αLgpA, Eq ` βLhpA, Eq for all α, β P C;

(ii) LghpA, Eq “ LgpA, EqhpAq ` gpAqLhpA, Eq;

(iii) Lg˝hpA, Eq “ LgphpAq, LhpA, Eqq if g is Fréchet differentiable at hpAq.

We also point out that if A “ UTU˚ is a Schur decomposition then L f pA, Eq “

UL f pT, U˚EUqU˚ [4, Prob. 3.2].

Condition numbers. Let A P Cnˆn and let f be defined in a neighbourhood of A.

Then the relative condition number is defined by, for any matrix norm,1

condp f , Aq :“ lim
ϵÑ0

sup
∥E∥ďϵ∥A∥

∥ f pA ` Eq ´ f pAq∥
ϵ∥ f pAq∥ .

This definition implies that

∥ f pA ` Eq ´ f pAq∥
∥ f pAq∥ ď condp f , Aq

∥E∥
∥A∥ ` op∥E∥q,

which is valid for A ` E in the neighbourhood where f is defined, and so provides a

first order perturbation bound for small perturbations E. An absolute condition number,

in which the change in the data and the function are measured in an absolute sense,

can be defined correspondingly, but often we are more interested in measuring the

sensitivity in the relative sense.

The condition number of f is essentially the norm of the Fréchet derivative (when

it exists) as it can be expressed as [4, Thm. 3.1]

condp f , Aq “
∥L f pAq∥∥A∥

∥ f pAq∥ ,

where

∥L f pAq∥ :“ max
ZPCnˆnzt0u

∥L f pA, Zq∥
∥Z∥ “ max

ZPCnˆn,∥Z∥“1
∥L f pA, Zq∥.

1 The definition follows the style of Rice [11].

38 background material

2.3 floating-point arithmetic

Floating-point arithmetic is thus far the most widely used way of approximately rep-

resenting real-number arithmetic for performing numerical computations in modern

computers. In this section we recall the floating-point number system and the basic

model of arithmetic that underlies rounding error analysis, with particular attention

drawn to the IEEE arithmetics and arbitrary precision arithmetic.

Floating-point number system. A floating-point number system F is a finite sub-

set of the real numbers R comprising numbers of the form

y “ p´1qs ¨ m ¨ βe´p`1,

where β P Nzt0, 1u is the base (or radix), p P Nzt0, 1u is the precision, m P N is the

significand satisfying 0 ď m ď βp ´ 1, e P N is the exponent, which lies in the range

emin ď e ď emax, and the sign bit s is 0 for y ě 0 or 1 for y ă 0. The system is fully

characterized by the four integer parameters β, p, emin, and emax.

To ensure a unique representation for each nonzero y P F , it is assumed that if

y ą βemin´p`1 then βp´1 ď m ď βp ´ 1, so that the system is normalized. In such

systems, a nonzero number y P F is normal if m ě βp´1, and those with 0 ă m ă βp´1

and e “ emin are called subnormal numbers (or denormalized numbers), which have the

minimal exponent and fewer than p digits of precision. The number 0 is special in

that it does not have a normalized representation. We also note that any nonzero

y P F can be alternatively expressed as

y “ p´1qs ¨

ˆ

d0 `
d1

β
` ¨ ¨ ¨ `

dp´1

βp´1

˙

¨ βe,

where each digit di satisfies 0 ď di ď β ´ 1 and d0 ‰ 0 for normalized numbers.

The largest positive number in the system is ymax “ βemaxpβ ´ β1´pq, while the small-

est positive normalized and subnormal numbers are ymin “ βemin and ys
min “ βemin´p`1,

respectively, the latter being the smallest nonzero representable number. Note that F

2.3 floating-point arithmetic 39

is a subset of the closed interval r´ymax, ymaxs, which is called the range of F . Two

other important quantities are u “ 1
2 β1´p, the unit roundoff, and ϵ “ β1´p, the machine

epsilon, which is the distance from 1 to the next larger floating-point number.

It is in general highly desirable to have a closed floating-point number system, by

the inclusion of two special floating-point numbers: infinity (8) and NaN (Not a

Number), so every arithmetic operation is well defined in the system; any number

lies out of the range of the system is represented by a signed infinity, and NaN is

used for representing the result of invalid operations over the real numbers, such as

dividing any numbers by 0.

Rounding. Any real number x can be mapped into F by rounding, and the op-

erator that performs this mapping is denoted by flp¨q. We say that flpxq overflows if

|flpxq| ą ymax and underflows if x ‰ 0 and flpxq “ 0. When subnormal numbers are

included in F , underflow is said to be gradual.

We are exclusively interested in the cases where flpxq does not overflow or un-

derflow for the input x. If x P F then flpxq “ x; otherwise, x lies between two

floating-point numbers and there are many possible rounding functions. It is custom-

ary to take flpxq to be the element in F nearest to x P R in absolute value, and this

rule is known as round to nearest. If x is equidistant from two floating-point numbers,

there are several usual ways to break ties, including rounding to the number with an

even last digit; see [3, sect. 2.12] for more discussion on tie-breaking strategies. Note

that flpxq with round to nearest is monotonic: x1 ě x2 implies flpx1q ě flpx2q.

For round to nearest it can be shown that if x P R lies in the range of F then [3,

Thm. 2.2]

flpxq “ xp1 ` δq, |δ| ă u. (2.5)

This result shows that, for every real number x lying in the range of F , round to

nearest introduces a relative error no larger than the unit roundoff.

40 background material

Model of arithmetic. The standard model of floating-point arithmetic [3, sect. 2.2]

states that, for x, y P F ,

flpx op yq “ px op yqp1 ` δq, |δ| ď u, op “ `, ´, ˚, {. (2.6)

It is normal to assume that (2.6) holds also for the square root operation. The four el-

ementary operations of addition, subtraction, multiplication, and division of floating-

point numbers are known as floating-point operations (flops). We will use the total

number of flops required by a numerical algorithm to measure its algorithmic com-

plexity.

Errors caused by the potentially inexact representation of real numbers in F and

the arithmetic operations performed with floating-point numbers are referred to

as rounding errors. The accumulation of these errors in the standard floating-point

model (2.6) is unavoidably due to the use of finite precision arithmetic, and is the

subject of research in rounding error analysis.

IEEE arithmetics. The IEEE Standard 754, published in 1985 [6] and revised in

2008 [7] and 2019 [8], is a standard for binary and decimal floating-point arithmetics,

which specifies floating-point number formats and precise rules for carrying out arith-

metic on them. The standard for decimal arithmetic was included with the binary

standard from the 2008 revision, but here we focus on the binary part as decimal

formats are currently of limited practical interest.

The widely used IEEE standard binary arithmetic has β “ 2 and now prescribes

four precisions. The 32-bit single precision format (binary32) has p “ 24, emin “ ´126,

and emax “ 127. The 64-bit double precision format (binary64) has p “ 53, emin “ ´1022,

and emax “ 1023. The 128-bit quadruple precision format (binary128) and the 16-bit half

precision format (binary16), which are introduced in the 2008 revision of the standard,

have p “ 113, emin “ ´16382, and emax “ 16383 and p “ 11, emin “ ´14, and emax “ 15,

respectively, the latter defined only as a storage format despite its broad use for

computation. The key parameters for these formats are summarized in Table 2.1.

2.3 floating-point arithmetic 41

Table 2.1: Parameters for four IEEE floating-point arithmetics: number of bits in significand (including
implicit most significant bit) and exponent psig, expq; unit roundoff u; smallest positive (sub-
normal) number ys

min; smallest positive normalized number ymin; and largest finite number
ymax. The last four columns are given to three significant figures.

psig, expq u ys
min ymin ymax

binary16 p11, 5q 4.88 ˆ 10´4 5.96 ˆ 10´8 6.10 ˆ 10´5 6.55 ˆ 104

binary32 p24, 8q 5.96 ˆ 10´8 1.40 ˆ 10´45 1.11 ˆ 10´38 3.40 ˆ 1038

binary64 p53, 11q 1.11 ˆ 10´16 4.94 ˆ 10´324 2.22 ˆ 10´308 1.80 ˆ 10308

binary128 p113, 15q 9.63 ˆ 10´35 6.48 ˆ 10´4966 3.36 ˆ 10´4932 1.19 ˆ 104932

These IEEE floating-point formats have fixed parameters and are highly standard-

ized, which enables highly optimized hardware implementations of the logic circuits

that operate on these numbers as well as fine-tuned numerical algorithms to be de-

signed for a specific working precision. This feature, however, can be undesirable in

some cases when a flexible computational environment is needed.

Arbitrary precision arithmetic. In arbitrary precision arithmetic the user is al-

lowed to prescribe the precision of each floating-point operation, where floating-point

calculations are performed on numbers whose digits of precision are limited only by

the available memory of the host system. This is made possible through software

libraries and contrasts with the potentially much faster fixed precision floating-point

arithmetics that are usually implemented in hardware. It is for this reason that arbi-

trary precision arithmetic is mainly of interest in applications where one is willing to

sacrifice some computational efficiency in exchange for the ability to compute with

any number of digits.

In the following chapters, we simulate arbitrary precision floating-point arithmetic

by MATLAB with the Multiprecision Computing Toolbox [10], where the required

precision is specified by the user in terms of decimal digits.

42 background material

references

[1] M. Artin. Algebra. Upper Saddle River, NJ, USA: Prentice-Hall, 1991 (cited on

p. 26).

[2] G. H. Golub and C. F. Van Loan. Matrix Computations. 4th ed., Baltimore, MD,

USA: Johns Hopkins University Press, 2013, pp. xxi+756 (cited on pp. 26, 31–

33).

[3] N. J. Higham. Accuracy and Stability of Numerical Algorithms. 2nd ed., Philadel-

phia, PA, USA: Society for Industrial and Applied Mathematics, 2002, pp. xxx+680

(cited on pp. 26, 39, 40).

[4] N. J. Higham. Functions of Matrices: Theory and Computation. Philadelphia, PA,

USA: Society for Industrial and Applied Mathematics, 2008, pp. xx+425 (cited

on pp. 26, 34–37).

[5] R. A. Horn and C. R. Johnson. Matrix Analysis. 2nd ed., Cambridge University

Press, 2012, pp. xiii+662 (cited on p. 26).

[6] IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Standard 754-1985.

IEEE, 1985. Reprinted in SIGPLAN Notices, 22(2):9–25, 1987 (cited on p. 40).

[7] IEEE Standard for Floating-Point Arithmetic, IEEE Std 754-2008 (revision of IEEE

Std 754-1985). IEEE, 2008, p. 58 (cited on p. 40).

[8] IEEE Standard for Floating-Point Arithmetic, IEEE Std 754-2019 (revision of IEEE

Std 754-2008). IEEE, 2019, p. 84 (cited on p. 40).

[9] J.-M. Muller, N. Brunie, F. de Dinechin, C.-P. Jeannerod, M. Joldes, V. Lefèvre,

G. Melquiond, N. Revol, and S. Torres. Handbook of Floating-Point Arithmetic.

2nd ed., Boston, MA, USA: Birkhäuser, 2018, pp. xxv+627 (cited on p. 26).

[10] Multiprecision Computing Toolbox. Advanpix, Tokyo, Japan. http://www.advanpix.

com (cited on p. 41).

[11] J. R. Rice. “A theory of condition.” SIAM J. Numer. Anal. 3.2 (1966), pp. 287–310

(cited on p. 37).

https://doi.org/10.1137/1.9780898718027
https://doi.org/10.1137/1.9780898717778
https://doi.org/10.1109/IEEESTD.1985.82928
https://doi.org/10.1109/IEEESTD.2008.4610935
https://doi.org/10.1109/IEEESTD.2008.4610935
https://doi.org/10.1109/IEEESTD.2019.8766229
https://doi.org/10.1109/IEEESTD.2019.8766229
https://doi.org/10.1007/978-3-319-76526-6
http://www.advanpix.com
http://www.advanpix.com
https://doi.org/10.1137/0703023

3 A MULT IPREC I S ION DER IVAT IVE - FREE

SCHUR–PARLETT ALGOR ITHM FOR

COMPUT ING MATR IX FUNCT IONS

Abstract. The Schur–Parlett algorithm, implemented in MATLAB as funm, evaluates

an analytic function f at an n ˆ n matrix argument by using the Schur decomposition

and a block recurrence of Parlett. The algorithm requires the ability to compute f

and its derivatives, and it requires that f has a Taylor series expansion with a suit-

ably large radius of convergence. We develop a version of the Schur–Parlett algorithm

that requires only function values and not derivatives. The algorithm requires access

to arithmetic of a matrix-dependent precision at least double the working precision,

which is used to evaluate f on the diagonal blocks of order greater than 2 (if there

are any) of the reordered and blocked Schur form. The key idea is to compute by di-

agonalization the function of a small random diagonal perturbation of each diagonal

block, where the perturbation ensures that diagonalization will succeed. Our algo-

rithm is inspired by Davies’s randomized approximate diagonalization method, but

we explain why that is not a reliable numerical method for computing matrix func-

tions. This multiprecision Schur–Parlett algorithm is applicable to arbitrary analytic

functions f and, like the original Schur–Parlett algorithm, it generally behaves in a

numerically stable fashion. The algorithm is especially useful when the derivatives of

f are not readily available or accurately computable. We apply our algorithm to the

matrix Mittag–Leffler function and show that it yields results of accuracy similar to,

and in some cases much greater than, the state-of-the-art algorithm for this function.

Keywords: multiprecision algorithm, multiprecision arithmetic, matrix function,

Schur decomposition, Schur–Parlett algorithm, Parlett recurrence, randomized ap-

proximate diagonalization, matrix Mittag–Leffler function.

43

44 a multiprecision schur–parlett algorithm

2010 MSC: 65F60.

3.1 introduction

In this work we are concerned with functions mapping Cnˆn to Cnˆn that are defined

in terms of an underlying scalar function f and a Cauchy integral formula, a Her-

mite interpolating polynomial, or the Jordan canonical form (see, for example, [24,

Chap. 1] for details). We assume that f is analytic on a closed convex set whose

interior contains the eigenvalues of the matrix argument. The need to compute such

matrix functions arises in numerous applications in science and engineering. Special-

ized methods exist for evaluating particular matrix functions, including the scaling

and squaring algorithm for the matrix exponential [1], [34], Newton’s method for ma-

trix sign function [24, Chap. 5], [39], and the inverse scaling and squaring method for

the matrix logarithm [2], [32]. See [28] for a survey and [29] for links to software for

these and other methods. For some functions a specialized method is not available, in

which case a general purpose algorithm is needed. The Schur–Parlett algorithm [11]

computes a general function f of a matrix, with the function dependence restricted to

the evaluation of f on the diagonal blocks of the reordered and blocked Schur form.

It evaluates f on the nontrivial diagonal blocks via a Taylor series, so it requires the

derivatives of f and it also requires the Taylor series to have a sufficiently large ra-

dius of convergence. However, the derivatives are not always available or accurately

computable.

We develop a new version of the Schur–Parlett algorithm that requires only the

ability to evaluate f itself and can be used whatever the distribution of the eigen-

values. Our algorithm handles close or repeated eigenvalues by an idea inspired by

Davies’s idea of randomized approximate diagonalization [10] together with higher

precision arithmetic. We therefore assume that we can compute not only at the work-

ing precision, with unit roundoff u, but also at a higher precision with unit roundoff

uh ă u, where uh can be arbitrarily chosen. Higher precisions will necessarily be

3.1 introduction 45

implemented in software, and so will be expensive, but we aim to use them as little

as possible.

We note that multiprecision algorithms have already been developed for the matrix

exponential [14] and the matrix logarithm [15]. Those algorithms are tightly coupled

to the functions in question, whereas here we place no restrictions on the function.

Indeed the new algorithm greatly expands the range of functions f for which we can

reliably compute f pAq. A numerically stable algorithm for evaluating the Lambert

W function of a matrix was only recently developed [16]. Our algorithm can readily

compute this function, as well as other special functions and multivalued functions

for which the Schur–Parlett algorithm is not readily applicable.

In section 3.2 we review the Schur–Parlett algorithm. In section 3.3 we describe

Davies’s randomized approximate diagonalization and explain why it cannot be the

basis of a reliable numerical algorithm. In section 3.4 we describe our new algorithm

for evaluating a function of a triangular matrix using only function values. In sec-

tion 3.5 we use this algorithm to build a new Schur–Parlett algorithm that requires

only function values and we illustrate its performance on a variety of test problems.

We apply the algorithm to the matrix Mittag–Leffler function in section 3.6 and com-

pare it with a special purpose algorithm for this function. Conclusions are given in

section 3.7.

We will write “standard Gaussian matrix” to mean a random matrix with en-

tries independently drawn from a standard normal distribution (mean 0, variance

1). A diagonal or triangular standard Gaussian matrix has the entries on the diag-

onal or in the triangle drawn in the same way. We will use the Frobenius norm,

}A}F “ p
ř

i,j |aij|
2q1{2, and the p-norms }A}p “ maxt }Ax}p : }x}p “ 1 u, where

}x}p “ p
ř

i |xi|
pq1{p. We will also need the condition number κpAq “ }A}}A´1}, and

we indicate the norm with a subscript on κpAq.

46 a multiprecision schur–parlett algorithm

3.2 schur–parlett algorithm

The Schur–Parlett algorithm [11] for computing a general matrix function f pAq is

based on the Schur decomposition A “ QTQ˚ P Cnˆn, with Q P Cnˆn unitary and

T P Cnˆn upper triangular. Since f pAq “ Q f pTqQ˚, computing f pAq reduces to

computing f pTq, the same function evaluated at a triangular matrix. Let T “ pTijq

be partitioned to be block upper triangular with square diagonal blocks, possibly of

different sizes. Then F “ f pTq has the same block structure and if the function of the

square diagonal blocks Fii “ f pTiiq can be computed then the off-diagonal blocks Fij

can be obtained using the block form of Parlett’s recurrence [37]. To be more specific,

by equating pi, jq blocks in TF “ FT, we obtain a triangular Sylvester equation for Fij,

TiiFij ´ FijTjj “ FiiTij ´ TijFjj `

j´1
ÿ

k“i`1

pFikTkj ´ TikFkjq, i ă j, (3.1)

from which Fij can be computed either a block superdiagonal at a time or a block

row or block column at a time. To address the potential problems caused by close

or equal eigenvalues in two diagonal blocks of T, Davies and Higham [11] devised

a scheme with a blocking parameter δ ą 0 to reorder T into a partitioned upper

triangular matrix rT “ U˚TU “ prTijq by a unitary similarity transformation such that

‚ eigenvalues λ and µ from any two distinct diagonal blocks rTii and rTjj satisfy

|λ ´ µ| ą δ, and

‚ the eigenvalues of every block rTii of size larger than 1 are well clustered in the

sense that either all the eigenvalues of rTii are equal or for every eigenvalue λ1

of rTii there is an eigenvalue λ2 of rTii with λ1 ‰ λ2 such that |λ1 ´ λ2| ď δ.

To evaluate f prTiiq, the Schur–Parlett algorithm expands f in a Taylor series about

σ “ traceprTiiq{mi, the mean of the eigenvalues of rTii P Cmiˆmi ,

f prTiiq “

8
ÿ

k“0

f pkqpσq

k!
prTii ´ σIqk, (3.2)

3.3 approximate diagonalization 47

truncating the series after an appropriate number of terms. All the derivatives of f up

to a certain order are required in (3.2), where that order depends on how quickly the

powers of rTii ´ σI decay. Moreover, for the series (3.2) to converge we need λ ´ σ to lie

in the radius of convergence of the series for every eigenvalue λ of rTii. Obviously, this

procedure for evaluating f prTq may not be appropriate if it is difficult or expensive to

accurately evaluate the derivatives of f or if the Taylor series has a finite radius of

convergence.

3.3 approximate diagonalization

If A P Cnˆn is diagonalizable then A “ VDV´1, where D “ diagpdiq is diagonal and

V is nonsingular, so f pAq “ V f pDqV´1 “ V diagp f pdiqqV´1 is trivially obtained. For

normal matrices, V can be chosen to be unitary and this approach is an excellent

way to compute f pAq. However, for nonnormal A the eigenvector matrix V can

be ill-conditioned, in which case an inaccurate computed f pAq can be expected in

floating-point arithmetic [24, sect. 4.5].

A way to handle a nonnormal matrix is to perturb it before diagonalizing it. Davies

[10] suggested perturbing A to rA “ A ` E, computing the diagonalization rA “

VDV´1, and approximating f pAq by f p rAq “ V f pDqV´1. This approach relies on the

fact that even if A is defective, A ` E is likely to be diagonalizable because the diago-

nalizable matrices are dense in Cnˆn. Davies measured the quality of the approximate

diagonalization by the quantity

σpA, V, E, ϵq “ κ2pVqϵ ` }E}2, (3.3)

where ϵ measures the accuracy of the finite precision computations and so can be

taken as the unit roundoff. Minimizing over E and V (since V is not unique) gives

σpA, ϵq “ inf
E,V

σpA, V, E, ϵq,

48 a multiprecision schur–parlett algorithm

which is a measure of the best approximate diagonalization that this approach can

achieve. Davies conjectured that

σpA, ϵq ď cnϵ1{2 (3.4)

for some constant cn, where }A}2 ď 1 is assumed, and he proved the conjecture for

Jordan blocks and triangular Toeplitz matrices (both with cn “ 2) and for arbitrary 3 ˆ

3 matrices (with c3 “ 4). Davies’s conjecture was recently proved by Banks, Kulkarni,

Mukherjee, and Srivastava [7, Thm. 1.1] with cn “ 4n3{2 ` 4n3{4 ď 8n3{2. Building on

the solution of Davies’ conjecture a randomized algorithm with low computational

complexity is developed in [5], [6] for approximately computing the eigensystem.

Note that (3.4) suggests it is sufficient to choose E such that }E}2 « ϵ1{2 in order to

obtain σpA, ϵq of order ϵ1{2.

As we have stated it, the conjecture is over Cnˆn. Davies’s proofs of the conjecture

for Jordan blocks and triangular Toeplitz matrices have E real when A is real, which

is desirable. In the proof in [7], E is not necessarily real when A is real. However,

Jain, Sah, and Sawhney [31, Thm 1.1] have proved the conjecture for real A and real

perturbations E up to an extra factor of plogp1{ϵqq1{4, while a weaker bound for which

the extra factor is ϵ1{4 was independently derived by Banks et al. [8, Thm. 1.7G].

The matrix E can be thought of as a regularizing perturbation for the diagonal-

ization. For computing matrix functions, Davies suggests taking E as a random

matrix and gives empirical evidence that standard Gaussian matrices E scaled so that

}E}2 « u1{2 are effective at delivering a computed result with error of order u1{2

when }A}2 ď 1. Nick Higham published a short MATLAB code to implement this

idea [25],1 as a way of computing f pAq with error of order u1{2. However, this ap-

proach does not give a reliable numerical method for approximating matrix functions.

The reason is that (3.3) does not correctly measure the effect on f pAq of perturbing A

by E. For small E, for any matrix norm we have

} f pA ` Eq ´ f pAq} À }L f pA, Eq} ď }L f pAq}}E}, (3.5)

1 https://gist.github.com/higham/6c00f62e48c1b0116f2e9a8f43f2e02a

https://gist.github.com/higham/6c00f62e48c1b0116f2e9a8f43f2e02a

3.3 approximate diagonalization 49

Table 3.1: Relative errors } f p rAq ´ f pAq}F{} f pAq}F for approximation from randomized approximate
diagonalization to the square root of the Jordan block Jpλq P Rnˆn, where rA “ A ` E and
}E}F “ u1{2}A}F.

λ n “ 10 n “ 20 n “ 30

1.0 7.46 ˆ 10´9 7.22 ˆ 10´9 9.45 ˆ 10´9

0.5 1.22 ˆ 10´7 3.42 ˆ 10´4 1.44
0.1 1.14 1.00 1.00

Table 3.2: Values of }L f pAq}F corresponding to the results in Table 3.1.

λ n “ 10 n “ 20 n “ 30

1.0 1.41 2.01 2.46
0.5 2.62 ˆ 103 8.55 ˆ 108 4.75 ˆ 1014

0.1 1.13 ˆ 1016 4.99 ˆ 1030 3.24 ˆ 1054

where L f pA, Eq is the Fréchet derivative of f at A in the direction E and }L f pAq} “

maxt }L f pA, Eq} : }E} “ 1 u [24, sect. 3.1]. Hence while σ in (3.3) includes }E}2, the

change in f induced by E is as much as }L f pAq}2}E}2, and the factor }L f pAq}2 can

greatly exceed 1.

A simple experiment with ϵ “ u illustrates this point. Unless otherwise stated,

all the experiments in this paper are carried out in MATLAB R2020b with a work-

ing precision of double (u « 1.1 ˆ 10´16). We take A to be an n ˆ n Jordan block

with eigenvalue λ and f pAq “ A1{2 (the principal matrix square root), for which

}L f pAq}F “ }pI b A1{2 ` pA1{2qT b Iq´1}2 [23]. The diagonalization and evaluation

of f p rAq is done at the working precision. In Table 3.1 we show the relative errors

} f pAq ´ f p rAq}F{} f pAq}F, where E is a (full) standard Gaussian matrix scaled so that

}E}F “ u1{2}A}F and the reference solution f pAq is computed in 200 digit precision

using the function sqrtm from the Multiprecision Computing Toolbox [36]. For λ “ 1

we obtain an error of order u1{2, but the errors grow as λ decreases and we achieve

no correct digits for λ “ 0.1. The reason is clear from Table 3.2, which shows the

values of the term that multiplies }E}F in (3.5), which are very large for small λ. We

stress that increasing the precision at which f p rAq is evaluated does not reduce the

errors; the damage done by the perturbation E cannot be recovered.

50 a multiprecision schur–parlett algorithm

In this work we adapt the idea of diagonalizing after a regularizing perturbation,

but we take a new approach that does not depend on Davies’s theory.

3.4 evaluating a function of a triangular ma-

trix

Our new algorithm uses the same blocked and reordered Schur form as the Schur–

Parlett algorithm. The key difference from that algorithm is how it evaluates f on the

(upper triangular) diagonal blocks. Given a diagonal block T P Cmˆm of the blocked

and reordered Schur form and an arbitrary function f we apply a regularizing per-

turbation with norm of order u and evaluate f pTq at precision uh ă u. We expect

m generally to be small, in which case the overhead of using higher precision arith-

metic is small. In the worst case this approach should be competitive with the worst

case for the Schur–Parlett algorithm [11, Alg. 2.6], since (3.2) requires up to Opm4q

(working precision) flops.

We will consider two different approaches.

3.4.1 Approximate diagonalization with full perturbation

Our first approach is a direct application of approximate diagonalization, with ϵ “ u2.

Here, E is a multiple of a standard Gaussian matrix with norm of order ϵ1{2 “ u.

Whereas Davies considered only matrices A of 2-norm 1, we wish to allow any norm,

and the norm of E should scale with that of A. We will scale E so that

}E}F “ u max
i,j

|tij|. (3.6)

We evaluate f pT ` Eq by diagonalization at precision uh “ u2 and hope to obtain

a computed result with relative error of order u. Diagonalization requires us to

3.4 evaluating a function of a triangular matrix 51

compute the Schur decomposition of a full matrix T ` E, and it costs about 28 2
3 m3

flops in precision uh.

Although we do not expect this approach to provide a numerical method that

works well for all problems, in view of the discussion and example in section 3.3, it

is a useful basis for comparison with the new method in the next section.

3.4.2 Approximate diagonalization with triangular perturbation

Instead of regularizing by a full perturbation, we now take the perturbation E to

be an upper triangular standard Gaussian matrix, normalized by (3.6). An obvious

advantage of taking E triangular is that rT “ T ` E is triangular and we can compute

the eigenvectors (needed for diagonalization) by substitution, which is substantially

more efficient than computing the complete eigensystem of a full matrix. Note that

the diagonal entries of rT are distinct with probability 1, albeit perhaps differing by

as little as order }E}F.

This approach can be thought of as indirectly approximating the derivatives by

finite differences. Indeed for m “ 2 we have

f pTq “

« f pt11q t12 f rt11, t22s

0 f pt22q

ff

, f rt11, t22s “

$

’

’

&

’

’

%

f pt22q ´ f pt11q

t22 ´ t11
, t11 ‰ t22,

f 1pt11q, t11 “ t22,
(3.7)

so when t11 “ t22, perturbing to rt11 ‰ rt22 results in a first order finite difference

approximation to f 1pt11q. If m “ 2 we can simply use (3.7) at the working precision,

so the rest of this section is aimed at the case m ě 3.

In order to find the eigenvector matrix V of the perturbed triangular matrix rT “

T ` E we need to compute a set of m linearly independent eigenvectors vi, i “ 1 : m.

This can be done by solving at precision uh the m triangular systems

prT ´rtii Iqvi “ 0, i “ 1 : m, (3.8)

52 a multiprecision schur–parlett algorithm

where we set vi to be 1 in its ith component, zero in components i ` 1 : m, and solve

for the first i ´ 1 components by substitution. Thus the matrix V is upper triangular.

To summarize, we compute in precision uh the diagonalization

rT “ VDV´1, D “ diagpλiq, (3.9)

where in practice the λi will be distinct. We then form f prTq “ V f pDqV´1 in precision

uh, which involves solving a multiple right-hand side triangular system with a trian-

gular right-hand side. The cost of the computation is
řm

k“1 k2 ` m3{3 “ 2m3{3 ` Opm2q

flops in precision uh.

3.4.2.1 Determining the precision

Now we determine the precision at which to carry out the diagonalization.

We expect the error in the computed approximation pF to F “ f prTq to be bounded

approximately by (cf. [24, p. 82])

}F ´ pF}1

}F}1
À κ1pVq

} f pDq}1

} f prTq}1
uh. (3.10)

(The choice of norm is not crucial; the 1-norm is convenient here.) We will use this

bound to determine uh. We do not know } f prTq}1 a priori, but we have the bound

} f pDq}1

} f prTq}1
ď 1, (3.11)

which follows from the fact that the spectral radius of a matrix is bounded above by

any norm. Hence we can certainly expect that

}F ´ pF}1

}F}1
À κ1pVquh. (3.12)

Since we need to know how to choose uh before we compute V, we need an estimate

of κpVq based only on rT. Since we are using a triangular perturbation its regularizing

effect will be less than that of a full perturbation, so we expect that we may need a

precision higher than double the working precision.

3.4 evaluating a function of a triangular matrix 53

Demmel [4, sect. 5.3], [12] showed that κ2pVq is within a factor m of maxi }Pi}2,

where Pi is the spectral projector corresponding to the eigenvalue λi. Writing

rT “

«

rt11 rt1̊2
0 rT22

ff

,

the spectral projector for the eigenvalue λ1 “ rt11 is, with the same partitioning,

P1 “

„

1 p˚
0 0

ȷ

, p˚ “ rt1̊2prt11 I ´ rT22q´1. (3.13)

From (3.13) we have

}P1}1 “ maxp1, }p}8q ď max
`

1, }rt12}8}prt11 I ´ rT22q´1}1
˘

.

Now for any m ˆ m upper triangular matrix U we have the bound [22, Thm. 8.12,

Prob. 8.5]

}U´1}1 ď
1
α

ˆ

β

α
` 1

˙m´1

, α “ min
i

|uii|, β “ max
iăj

|uij|. (3.14)

This bound will be very pessimistic if we apply it to rt11 I ´ rT22, because for the bound

to be a good approximation it is necessary that many diagonal elements of U are of

order α, yet rt11 I ´ rT22 will typically have only a few (if any) small elements. Let us

group the rtii according to the Schur–Parlett blocking criteria described in section 3.2,

with blocking parameter δ “ δ1. Suppose the largest block has size k ě 2 and suppose,

without loss of generality, that it comprises the first k diagonal elements of rT. Then we

will approximate }prt11 I ´ rT22q´1}1 by }prt11 I ´ rT22p1 : k ´ 1, 1 : k ´ 1qq´1}1, and bound

it by (3.14), leading to the approximation

max
i

}Pi}1 «
maxiăj |rtij|

cmu

´maxiăj |rtij|

cmu
` 1

¯k´2
,

where the parameter cm is such that cmu « mini |wii|, where the wii are the diagonal

elements of rt11 I ´ rT22p1 : k ´ 1, 1 : k ´ 1q, and hence this is an estimate of κ1pVq by

Demmel’s result.

54 a multiprecision schur–parlett algorithm

We are aiming for an error of order u, so from (3.12) we need κ1pVquh À u, which

gives the requirement

uh À
cmu2

maxiăj |rtij|
´maxiăj |rtij|

cmu
` 1

¯k´2
, k ě 2. (3.15)

In the case k “ 2, the bound (3.15) is uh À cmu2{ maxiăj |rtij| “ Opu2q. If the largest

block size is k “ 1, we use uh “ u2 (corresponding to Davies’s conjecture (3.4)) since

we do not expect κpVq to be so large that a precision higher than double the working

precision is required.

3.4.2.2 The algorithm

We summarize this algorithm, based on a triangular perturbation, in Algorithm 3.1,

where we have

uh “

$

’

’

&

’

’

%

u2, k “ 1,

min
`

u2, right-hand side of (3.15)
˘

, k ě 2.
(3.16)

In summary, we make an upper triangular perturbation E of norm Opu}T}1q to T

and evaluate f pT ` Eq. We choose the precision of the evaluation in order to be sure

of obtaining an accurate evaluation of f pT ` Eq. Our approach differs fundamen-

tally from Davies’s randomized approximate diagonalization. Our triangular E has a

lesser regularizing effect (on the condition number of the eigenvector matrices) than

a full one, so it results in a potentially larger κpVq, but our choice of uh takes this

into account. On the other hand, since our perturbation E is upper triangular and of

order u}T}1, it corresponds to a backward error of order u and so is harmless. A full

perturbation E cannot be interpreted as a backward error for the f pTq evaluation as

it perturbs the zeros in the lower triangle of T.

The analysis above is unchanged if E is diagonal, so we allow E to be chosen

as diagonal or upper triangular in Algorithm 3.1 and will compare the two choices

experimentally in later section.

3.4 evaluating a function of a triangular matrix 55

Algorithm 3.1 Multiprecision algorithm for function of a triangular matrix.
Given a triangular matrix T P Cmˆm and a function f , this algorithm computes F “

f pTq. It uses arithmetics of unit roundoff u (the working precision), u2, and possibly a
higher precision uh ď u2. Lines 11–13 are to be executed at precision u2 and lines 14–
18 are to be executed at precision uh, as indicated to the right of the line numbers.

1 if m “ 1
2 f11 “ f pt11q, quit
3 end
4 if m “ 2 and t11 ‰ t22
5 f11 “ f pt11q, f22 “ f pt22q

6 f12 “ t12p f22 ´ f11q{pt22 ´ t11q

7 quit
8 end
9 Form an m ˆ m diagonal or upper triangular standard Gaussian matrix N.

10 E “ upmaxi,j |tij|{}N}FqN
11 u2

rT “ T ` E
12 u2 D “ diagprTq

13 u2 Evaluate uh by (3.16).
14 uh if uh ă u2, convert rT and D to precision uh, end
15 for i “ 1: m
16 uh Set pviqi “ 1 and pviqk “ 0 for k ą i and solve the triangular system

prT ´rtii Iqvi “ 0 for the first i ´ 1 components of vi.
17 end
18 uh Form F “ V f pDqV´1, where V “ rv1, . . . , vms.
19 Round F to precision u.

In practice, overflow could occur when solving the triangular systems (3.8), espe-

cially when there is a large cluster of eigenvalues. However, we solve (3.8) in high

precision arithmetic, and these arithmetics have a very large exponent range, which

reduces the likelihood of overflow. For example, IEEE quadruple precision arithmetic

has largest element of order 104932 [30]. In any case, scaling techniques are available

that avoid overflow [3], [42] (and likewise for the Sylvester equations (3.1) in the

Schur–Parlett algorithm [41]).

3.4.2.3 Specifying the parameters

We now discuss the choice of the parameters δ1 and cm in Algorithm 3.1. The pa-

rameter cm is such that cmu « mini |wii|, where the wii are the diagonal elements of

rt11 I ´ rT22p1 : k ´ 1, 1 : k ´ 1q. We will determine cm by considering the extreme case

56 a multiprecision schur–parlett algorithm

when mini |wii| is extremely small, which is when all rtii in the largest block of size

k ď m differ only by the perturbation we added (in which case the tii are exactly re-

peated) and thus rt11 I ´ rT22p1 : k ´ 1, 1 : k ´ 1q is extremely ill-conditioned. This choice

of cm makes the chosen higher precision uh ă u2 pessimistic when some of the rtii are

close in the sense they are partitioned in the same block by δ “ δ1 but not all of them

are exactly repeated, but it helps to ensure the accuracy of the algorithm in all cases.

However, since the algorithm is to be employed in the next section for computing a

function of T P Cmˆm where generally m (and hence k) is expected to be small, we

do not expect this approach to seriously affect the efficiency of the overall algorithm.

In the case we are considering we have |wii| “ |rt11 ´rtii| “ |e11 ´ eii|. The matrix E on

line 10 of Algorithm 3.1 has entries upmaxi,j |tij|q|rnij|, where } rN}F “ 1, and we expect

that |rnij| « 1{
?

m if N is chosen to be diagonal, or |rnij| «
?

2{m if N is triangular [33].

This suggests taking

cm “

$

’

’

&

’

’

%

θd maxi,j |tij|{
?

m, if N is diagonal,

θt maxi,j |tij|{m, if N is triangular,

for some constants θd and θt. The constants are introduced to empirically quantify

the uncertainty caused by the stochasticity of the left-hand side in the approximation

mini |e11 ´ eii| « cmu. In our experiments with different choices of θd and θt we found

θd “ 0.4 and θt “ 0.5 to be good choices.

The blocking parameter δ “ δ1 is important in determining the largest group size k

in (3.15). A smaller δ can potentially group fewer eigenvalues and decrease k, causing

a larger uh to be used. Yet too large a δ can result in a uh that is much smaller than

necessary to achieve the desired accuracy. We have found experimentally that δ1 “

5 ˆ 10´3 is a good choice in a working precision of double, which worked well for the

experiments presented in this work. In general there is no optimal (fixed) value for δ1

as this blocking parameter controls the size k in the approximation }prt11 I ´ rT22q´1}1 «

}prt11 I ´ rT22p1 : k ´ 1, 1 : k ´ 1qq´1}1 used in section 3.4.2.1 for determining the precision

uh, and a suitable value for k that results in a good approximation is clearly problem-

dependent. In general a larger δ1 is more likely to produce a larger k and thus result

3.4 evaluating a function of a triangular matrix 57

in a higher precision to be used, so an overestimated δ1 does no harm to accuracy but

may impair the efficiency.

3.4.2.4 The parameters in arbitrary precision

In this section we investigate how to choose in arbitrary precision the two parameters

δ1 and cm, which may depend on the working precision u so should be considered

as some functions of u. The general framework for selecting δ1 and cm remains the

same as in double precision. We will test the diagonal perturbation case since it

requires slightly less computation, and for the case of triangular perturbation the

same procedure can be used.

We set different values to θd and run the algorithm 10 times in different working

precisions for computing f pTq, where f “ exp, and T has only one eigenvalue of

multiplicity m:

‚ T1 “ gallery('jordbloc',m,5),

‚ T2 “ gallery('triw',m).

The maximal error over the 10 executions is reported in Figure 3.1. We repeated this

experiment with f “ log and the behaviour of errors were similar.

Figure 3.1 shows that θd ď 0.4 effectively enables Algorithm 3.1 to produce an error

of order u in all tested cases, independent of the working precision. Then we can take

θd “ 0.4 as the experiment suggests that this choice is small enough for the algorithm

to provide an error of Opuq for matrices whose multiplicity of eigenvalues is up to 100.

In fact, we have found that the chosen digits of precision uh is not sensitive to changes

in θd, for example, in a working precision of 64 digits for m “ 100 Algorithm 3.1 with

θd “ 0.4 employs 6442 digits, and the digits used will increase by only 10 if θd “ 0.3 is

used. The choice is also confirmed by Figure 3.2, which shows the errors delivered by

Algorithm 3.1 with θd “ 0.4 for T of different size m in various working precisions.

On the other hand, the blocking parameter δ1 is important in determining the

largest group size k in (3.15). As discussed in the previous section, a smaller δ1 can

potentially group fewer eigenvalues and decrease k, causing a larger uh to be used

58 a multiprecision schur–parlett algorithm

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
3

10-5

100

105
u = 2!23 (97 digits)

m = 10
m = 40
m = 70
m = 100

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
3

10-5

100

105
u = 2!23 (97 digits)

m = 10
m = 40
m = 70
m = 100

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
3

10-65

10-60

10-55

u = 2!212 (964 digits)

m = 10
m = 40
m = 70
m = 100

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
3

10-65

10-60

10-55

u = 2!212 (964 digits)

m = 10
m = 40
m = 70
m = 100

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
3

10-255

10-250

10-245

10-240
u = 2!850 (9256 digits)

m = 10
m = 40
m = 70
m = 100

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
3

10-255

10-250

10-245

10-240
u = 2!850 (9256 digits)

m = 10
m = 40
m = 70
m = 100

Figure 3.1: Maximal normwise relative errors for Algorithm 3.1 with different θd over 10 executions, the
working precisions are 7, 64, and 256 decimal digits. Left: T “ T1; right: T “ T2. f “ exp.

(for a fixed working precision u). It can happen that when T has close eigenvalues

too small a δ1 will fail to choose a sufficiently small uh for the large κpVq, and thus

cause loss of accuracy. Yet too large a δ1 can result in a uh that is much smaller than

necessary to achieve the desired accuracy. We note that it is not guaranteed that the

uh chosen by the algorithm is always exactly as small as it needs to just cancel the

loss of digits caused by large κpVq, and this is due to our pessimistic approach of

determining cm, but we aims to reduce the number of unnecessary digits as much

3.4 evaluating a function of a triangular matrix 59

0 20 40 60 80 100
m

10-10

10-8

10-6

10-4

10-2

100
u = 2!23 (97 digits)

T = T1; f = exp
T = T1; f = log
T = T2; f = exp
T = T2; f = log

0 20 40 60 80 100
m

10-20

10-18

10-16

10-14

10-12

10-10
u = 2!53 (916 digits)

T = T1; f = exp
T = T1; f = log
T = T2; f = exp
T = T2; f = log

0 20 40 60 80 100
m

10-66

10-64

10-62

10-60
u = 2!212 (964 digits)

T = T1; f = exp
T = T1; f = log
T = T2; f = exp
T = T2; f = log

0 20 40 60 80 100
m

10-258

10-256

10-254

10-252

10-250
u = 2!850 (9256 digits)

T = T1; f = exp
T = T1; f = log
T = T2; f = exp
T = T2; f = log

Figure 3.2: Normwise relative errors for Algorithm 3.1 with θd “ 0.4 for T with different size m, the
working precisions are 7, 16, 64, and 256 decimal digits.

as possible. Following this commitment, for a given matrix there must exist a feasible

interval ra, bq in the sense that δ1 P ra, bq enables the algorithm to provide an error

of order u, and any δ1 ă a will reduce the largest group size k and ruin the desired

accuracy, and any δ1 ě b will increase k while the algorithm will give the same level

of accuracy. For a triangular matrix whose spectra are available we still cannot tell

whether a chosen δ1 is in its feasible interval ra, bq without knowing κpVq (the order

of the resulting error will be predictable if κpVq is known), or actually computing the

error. In general such an feasible interval ra, bq for δ1 is different for different matrices,

and this is illustrated by the simple experiments reported in Table 3.3, where we

also report the quantity κexppTqu, where κexppTq is the Frobenius norm condition

number [24, Chap. 3] of the matrix exponential at T, which we estimate using the

funm_condest1 function provided by [27].

60 a multiprecision schur–parlett algorithm

Table 3.3: The largest group size k, digits of the higher precision uh, and relative error } exppTq ´

pF}F{} exppTq}F for Algorithm 3.1 with θd “ 0.4 and different δ1. The working precision is
double (u “ 2´53).

matrix δ1 k digits error κexppTqu

triu(randn(100)) 2 ˆ 10´3 2 34 2.3e-5 8.8e-15
5 ˆ 10´3 3 51 5.7e-17 8.8e-15

triu(rand(100)) 2 ˆ 10´3 5 86 5.7e-17 6.2e-14
gallery('kahan',100) 1 ˆ 10´5 1 32 2.6e-16 3.1e-16

5 ˆ 10´3 62 1048 6.6e-17 3.1e-16
gallery('kahan',20) 0.01 1 32 6.0e-17 1.6e-16

For T “ triu(randn(100)) the precision chosen by δ1 ď 2 ˆ 10´3 is not sufficiently

high, which leads to loss of accuracy, while if δ1 is increased to 5 ˆ 10´3, the largest

group size k will increase by 1 and the algorithm can provide the desired level of

accuracy. Corresponding to our definition of the feasible interval it is obvious that

2 ˆ 10´3 ă a ď 5 ˆ 10´3 ă b for this matrix. But for T “ triu(rand(100)) we can

deduce that δ1 “ 2 ˆ 10´3 ě a. For T “ gallery('kahan',100) whose eigenvalues are

distinct and on the interval p0, 1s using the default precision with 32 digits achieves

the targeted level of accuracy, and a suitable δ1 ą 0 can be chosen arbitrarily close to 0

such that no eigenvalues are grouped together; δ1 “ 5 ˆ 10´3 results in a much higher

precision being used to deliver the same level of accuracy, so it is larger than necessary.

Hence, for T “ gallery('kahan',100) we have a “ 0 and 1 ˆ 10´5 ă b ă 5 ˆ 10´3.

Intuitively, it is not surprising to see that, for the same class of matrices the upper

bound b to δ1 will in general increase as size of the matrix decrease, for example, for

T “ gallery('kahan',20) we have a “ 0 and b ą 0.01.

We have shown that it is not possible to choose an optimal δ1 for general matrices,

and in general its choice is a balance between accuracy and efficiency: a smaller δ1 can

reduce the chance or extent of unnecessarily high digits being used but the algorithm

is more likely to be inaccurate, while a larger δ1 enables the algorithm to produce

accurate results for more cases but it is more often to have some digits wasted. For

the sake of accuracy it is inevitable that in some cases a fixed δ1 will be overestimated,

especially for matrices of large size. However, this should not be too problematic

since Algorithm 3.1 will be employed in next section for computing the reordered

3.4 evaluating a function of a triangular matrix 61

0.02 0.022 0.024 0.026 0.028 0.03 0.032 0.034 0.036
/1

10-8

10-7

10-6

10-5

10-4

10-3
u = 2!23 (97 digits)

T = T1

T = T2

T = T3

T = T4

0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
/1

10-20

10-15

10-10

10-5

100

105
u = 2!53 (916 digits)

T = T1

T = T2

T = T3

T = T4

1 2 3 4 5 6 7 8 9
/1 #10-3

10-35

10-30

10-25

10-20

10-15
u = 2!112 (934 digits)

T = T1

T = T2

T = T3

T = T4

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
/1 #10-3

10-65

10-64

10-63

10-62

10-61

10-60
u = 2!212 (964 digits)

T = T1

T = T2

T = T3

T = T4

Figure 3.3: Maximal relative errors for Algorithm 3.1 with θd “ 0.4 and different δ1 among 100 different
matrices of each class; f “ exp, the working precisions are 7, 16, 34, and 64 decimal digits.

Schur matrix on the diagonal whose size is generally small, and computation in

precision higher than double is done in software so its speed is not massively affected

if only few more digits are used. Next, we will seek suitable values for δ1 based on

experiments with 100 different random matrices of the following kinds:

‚ T1 “ triu(rand(m)).

‚ T2 “ triu(randn(m)).

‚ T3 “ schur(rand(m),'complex').

‚ T4 “ schur(randn(m),'complex').

Then we set f “ exp (we found that the choice of f is not crucial here), and use

Algorithm 3.1 with θ “ 0.4 and different δ1 for computing f of above matrices of size

100 ˆ 100 in different working precisions, and show in Figure 3.3 the maximal error

among the 100 different matrices of each class.

62 a multiprecision schur–parlett algorithm

From Figure 3.3 the ‘optimal’ values for the blocking parameter, denoted as δ1̊ , are

obvious, which are the smallest δ1 such that the algorithm gives an error of order u for

all tested matrices, and we observe that δ1̊ is distinct in different working precisions,

for example, δ1̊ “ 0.022 in single precision (u “ 2´23), δ1̊ “ 0.010 in double precision

(u “ 2´53), and δ1̊ “ 0.004 in quadruple precision (u “ 2´112). We see that δ1̊ is

decreasing as u becomes smaller, and this is because the way we determine cm in

the bound (3.15) becomes more pessimistic as the working precision increases: for a

matrix T the higher precision uh being used will have one more factor of the working

precision u if the largest block size k increases by 1, so for the same matrix in a higher

working precision ru ă u the algorithm might tolerate a smaller δ1 (and hence smaller

k) to give an error of order ru. Indeed, we have found that for a working precision of

64 digits or higher, a higher precision uh “ u2 ensures targeted accuracy for all the

matrices tested in the experiments, in which case we have δ1̊ “ 0. Due to this property

of the blocking parameter δ1 we could use δ1 “ 0.022 for any working precisions

higher than single, but this choice is increasingly pessimistic as the working precision

increases. Instead, in arbitrary precision one can use

δ1 “
c

rlog10p1{uqs
, c “ 0.16,

where the denominator is the approximated decimal digits of the working preci-

sion u, and c « 0.16 is obtained from linear interpolation of the values of δ1̊ and

rlog10p1{uqs
´1 in single, double, and quadruple precisions.

3.4.3 Numerical experiments

In this section we describe a numerical experiment with the methods of sections 3.4.1

and 3.4.2 for computing a function of a triangular matrix. Precisions higher than

double precision are implemented with the Multiprecision Computing Toolbox [36].

We set the function f to be the exponential, the square root, the sign function, the

logarithm, the cosine, and the sine. The algorithms for computing f pTq to be tested

are

3.4 evaluating a function of a triangular matrix 63

Table 3.4: Equivalent number of decimal digits for the higher precision uh used by Algorithm 3.1 in the
computation. 32 digits corresponds to uh “ u2.

m “ 35 m “ 75

T1 “ gallery('kahan',m) 32 623
T2 “ schur(gallery('smoke',m),'complex') 32 32
T3 “ schur(randn(m),'complex') 32 32
T4 “ schur(rand(m),'complex') 32 32
T5 “ triu(randn(m)) 34 68
T6 “ triu(rand(m)) 51 68
T7 “ gallery('jordbloc',m,0.5) 599 1296

‚ Alg_full: approximate diagonalization with a full perturbation and uh “ u2, as

described in section 3.4.1,

‚ Alg_diag: Algorithm 3.1 with diagonal E, cm “ 0.4 maxi,j |tij|{
?

m, and δ1 “

5 ˆ 10´3.

We use the following matrices, generated from built-in MATLAB functions.

‚ T1 “ gallery('kahan',m): upper triangular with distinct diagonal elements on

the interval p0, 1s.

‚ T2 “ schur(gallery('smoke',m),'complex'): Schur factor of the complex ma-

trix whose eigenvalues are the mth roots of unity times 21{m.

‚ T3 “ schur(randn(m),'complex').

‚ T4 “ schur(rand(m),'complex').

‚ T5 “ triu(randn(m)).

‚ T6 “ triu(rand(m)).

‚ T7 “ gallery('jordbloc',m,0.5): a Jordan block with eigenvalue 0.5.

Since we are computing the principal matrix square root and the principal loga-

rithm we multiply matrices T3, T4, and T5 by 1 ` i for these functions to avoid their

eigenvalues being on the negative real axis, where i is the imaginary unit.

We report the equivalent number of decimal digits for the higher precision uh

used by Algorithm 3.1 for each test matrix in the computation in Table 3.4. Since

64 a multiprecision schur–parlett algorithm

Table 3.5: Maximal normwise relative errors for Algorithm 3.1 with a diagonal E (Alg_diag) and the
method of approximate diagonalization with full perturbation (Alg_full). Exceptionally
large errors are highlighted in bold red text.

f “ exp f “ sqrt

Alg_diag Alg_full κ f pAqu Alg_diag Alg_full κ f pAqu
T1, m “ 35 5.6e-17 3.3e-17 6.4e-15 2.7e-16 3.1e-13 5.4e-11
T1, m “ 75 5.4e-17 2.5e-17 1.2e-14 2.1e-15 8.2e-7 3.2e-11
T2, m “ 35 5.2e-17 4.2e-17 1.9e-15 5.9e-16 3.9e-13 5.6e-11
T2, m “ 75 3.0e-17 2.2e-17 3.6e-15 5.5e-16 1.0e-7 4.5e-12
T3, m “ 35 1.7e-16 9.2e-17 1.9e-14 1.4e-16 1.4e-16 3.3e-14
T3, m “ 75 1.1e-16 6.2e-17 1.1e-13 1.8e-16 1.3e-16 1.5e-13
T4, m “ 35 6.6e-16 2.2e-16 3.2e-15 1.4e-15 1.3e-15 4.9e-14
T4, m “ 75 1.1e-15 2.1e-17 2.6e-14 1.4e-15 1.7e-15 1.5e-13
T5, m “ 35 8.9e-17 7.7e-17 1.0e-14 1.5e-15 9.7e-9 3.8e-10
T5, m “ 75 5.5e-17 6.7e-17 5.6e-14 2.5e-14 1.0 4.3e-22
T6, m “ 35 4.6e-17 4.8e-17 3.7e-14 1.0e-15 6.7e-12 5.6e-9
T6, m “ 75 2.8e-17 5.4e-17 2.6e-13 1.9e-15 1.0 2.7e-14
T7, m “ 35 5.8e-17 1.8e-16 5.7e-15 4.1e-16 8.5e-8 3.9e-12
T7, m “ 75 1.1e-19 3.6e-16 1.2e-14 3.4e-16 1.0 6.6e-18

f “ sign f “ log

Alg_diag Alg_full κ f pAqu Alg_diag Alg_full κ f pAqu
T1, m “ 35 0 1.6e-25 7.7e-22 2.3e-16 5.1e-13 7.9e-11
T1, m “ 75 0 5.2e-20 1.3e2 4.1e-15 1.1e-6 3.1e-12
T2, m “ 35 3.6e-16 3.8e-13 4.2e-11 5.1e-16 6.3e-13 5.7e-11
T2, m “ 75 5.1e-16 1.2e-7 5.6e-12 8.8e-16 1.7e-7 2.5e-12
T3, m “ 35 1.6e-16 1.4e-16 4.1e-14 2.0e-16 1.9e-16 3.2e-14
T3, m “ 75 8.6e-17 9.1e-17 4.2e-14 1.9e-16 1.8e-16 1.2e-13
T4, m “ 35 9.4e-16 9.2e-16 3.7e-14 1.3e-15 2.2e-15 6.1e-14
T4, m “ 75 1.2e-15 2.2e-15 9.8e-14 1.5e-15 3.1e-15 1.5e-13
T5, m “ 35 1.8e-15 7.2e-9 8.9e-11 1.6e-15 1.1e-8 1.0e-10
T5, m “ 75 1.8e-14 1.0 5.8e-23 3.6e-14 1.0 6.0e-23
T6, m “ 35 0 3.0e-17 4.1e-21 1.9e-15 8.8e-12 2.1e-9
T6, m “ 75 0 1.0 3.8e3 3.0e-15 1.0 3.4e-15
T7, m “ 35 0 1.1e-16 2.3e1 2.3e-16 1.4e-7 7.2e-13
T7, m “ 75 0 1.0 1.4e2 7.1e-16 1.0 1.0e-18

f “ cos f “ sin

Alg_diag Alg_full κ f pAqu Alg_diag Alg_full κ f pAqu
T1, m “ 35 3.8e-17 3.5e-17 7.9e-15 4.6e-17 4.7e-17 8.3e-15
T1, m “ 75 3.2e-17 2.6e-17 1.7e-14 3.6e-17 4.4e-17 3.7e-14
T2, m “ 35 5.4e-17 4.4e-17 3.5e-15 4.1e-17 3.4e-17 4.3e-15
T2, m “ 75 4.1e-17 3.0e-17 7.1e-15 3.8e-17 1.7e-17 8.3e-15
T3, m “ 35 1.8e-16 8.6e-17 1.6e-14 1.4e-16 9.7e-17 1.6e-14
T3, m “ 75 1.3e-16 6.8e-17 6.6e-14 1.7e-16 6.6e-17 5.6e-14
T4, m “ 35 3.4e-16 2.5e-16 8.7e-15 3.3e-16 2.4e-16 8.1e-15
T4, m “ 75 4.8e-16 3.0e-16 2.1e-14 4.5e-16 2.9e-16 1.9e-14
T5, m “ 35 7.0e-17 7.5e-17 1.3e-14 7.0e-17 7.4e-17 1.5e-14
T5, m “ 75 5.1e-17 6.1e-17 5.2e-9 4.9e-17 5.9e-17 4.0e-9
T6, m “ 35 3.8e-17 4.1e-17 2.1e-11 3.8e-17 4.8e-17 8.4e-11
T6, m “ 75 4.0e-17 7.2e-17 1.1e-13 2.2e-17 3.5e-17 1.1e-13
T7, m “ 35 4.0e-17 4.8e-16 3.0e-15 3.7e-17 4.7e-16 2.9e-15
T7, m “ 75 2.0e-17 9.3e-16 6.5e-15 1.5e-17 1.4e-15 6.3e-15

3.4 evaluating a function of a triangular matrix 65

the outputs of Alg_full and Alg_diag depend on the random perturbation E, we

compute the function of each matrix 10 times and report in Table 3.5 the maximum

relative error }F ´ pF}F{}F}F, where F is a reference solution computed by the func-

tions expm, sqrtm, logm, cosm, and sinm provided by the Multiprecision Computing

Toolbox running at 200 digit precision, and rounded back to double precision. For the

reference solution of the matrix sign function, we run signm from the Matrix Function

Toolbox [27] at 200 digit precision, and round back to double precision. The same

procedure is followed in the experiments in the following sections.

We also show in Table 3.5 the quantity κ f pAqu, where κ f pAq is the 1-norm con-

dition number [24, Chap. 3] of f at A, which we estimate using the funm_condest1

function provided by [27]. A numerically stable algorithm will produce forward er-

rors bounded by a modest multiple of κ f pAqu.

The results show that Algorithm 3.1 behaves in a numerically stable fashion in

every case, typically requiring a higher precision with unit roundoff uh equal to or

not much smaller than u2. We see that for the same class of matrices the number

of digits of precision used is nondecreasing with the matrix size m, which is to be

expected since we expect a larger maximum block size (equal to k in (3.15)) for a

larger matrix.

On the other hand, as expected in view of the discussion in section 3.3, the random-

ized approximate diagonalization method Alg_full is less reliable and sometimes

not accurate at all. The failure of the method occurs for the square root, sign, and

logarithm functions, all of which have singularities.

Note that our test matrices here are more general than will arise in the algorithm

of the next section, for which the diagonal blocks will have clustered eigenvalues.

We repeated this experiment with an upper triangular E in Algorithm 3.1. The

errors were of the same order of magnitude as for diagonal E. Since a diagonal E

requires slightly less computation, we will take E diagonal in the rest of this paper.

66 a multiprecision schur–parlett algorithm

Algorithm 3.2 Multiprecision Schur–Parlett algorithm for function of a full matrix.
Given A P Cnˆn and a function f this algorithm computes F “ f pAq. It uses arith-
metics of unit roundoff u (the working precision), u2, and possibly higher precisions
uh ď u2 (chosen in Algorithm 3.1). It requires only function values, not derivatives.

1 Compute the Schur decomposition of A “ QTQ˚.
2 if T is diagonal, F “ Q f pTqQ˚, quit, end
3 Use Algorithms 4.1 and 4.2 in [11, sect. 4] with δ ą 0 to reorder T into

a block m ˆ m upper triangular matrix rT “ U˚TU.
4 for i “ 1: m
5 Use Algorithm 3.1 (with a diagonal E) to evaluate Fii “ f prTiiq.
6 for j “ i ´ 1: ´1: 1
7 Solve the Sylvester equation (3.1) for Fij.
8 end
9 end

10 F “ QUFU˚Q˚

3.5 overall algorithm for computing f p Aq

Our algorithm for computing f pAq follows the framework of the Schur–Parlett al-

gorithm [11]. First the Schur decomposition A “ QTQ˚ is computed. Then the

triangular matrix T is reordered to a partitioned upper triangular matrix rT by a uni-

tary similarity transformation, which is achieved by Algorithms 4.1 and 4.2 in [11,

sect. 4]. The function is evaluated on the diagonal blocks rTii by Algorithm 3.1 instead

of by a Taylor expansion as in the Schur–Parlett algorithm, and the precision uh used

in Algorithm 3.1 is potentially different for each diagonal block. The off-diagonal

blocks of f prTq are computed using the block form (3.1) of the Parlett recurrence. Fi-

nally, we undo the unitary similarity transformations from the Schur decomposition

and the reordering. This gives Algorithm 3.2.

In Algorithm 3.2 we distinguish a special case: if A is normal, the Schur decom-

position becomes A “ QDQ˚ with D diagonal, and the algorithm simply computes

f pAq “ Q f pDqQ˚. We note that the algorithm preserves the advantages of the Schur–

Parlett algorithm that if one wants to compute f pAq “
ř

i fipAq then it is not necessary

to compute each fipAq separately because the Schur decomposition and its reordering

can be reused.

3.5 overall algorithm for computing f p Aq 67

In the reordering and blocking of the Schur–Parlett framework the blocking param-

eter δ ą 0, described in section 3.2, needs to be specified. A large δ leads to greater

separation of the eigenvalues of the diagonal blocks, which improves the accuracy of

the solutions to the Sylvester equations. In this respect, there is a significant differ-

ence between Algorithm 3.2 and the standard Schur–Parlett algorithm: the latter al-

gorithm cannot tolerate too large a δ because it slows down convergence of the Taylor

series expansion, meaning that more terms may be needed (or the series may simply

not converge). Since Algorithm 3.1 performs well irrespective of the eigenvalue dis-

tribution we can choose δ without consideration of the accuracy of the evaluation of

f on the diagonal blocks and larger δ will in general do no harm to accuracy. In the

extreme case where δ is so large that one block is employed, Algorithm 3.2 does not

solve Sylvester equations and thus avoids the potential error incurred in the process,

and in general this is when our algorithm attains its optimal accuracy, but the price

to pay is that it becomes very expensive because higher precision arithmetic is being

used on an n ˆ n matrix. We investigate the choice of δ experimentally in the next

subsection.

3.5.1 Numerical experiments

In the Schur–Parlett algorithm [11] the blocking parameter δ “ 0.1 is chosen, which

is shown there to perform well most of the time. In order to investigate a suitable

value for δ in Algorithm 3.2, we compare the following four algorithms, where “nd”

stands for “no derivative”.

‚ funm_nd_0.1, Algorithm 3.2 with δ “ 0.1;

‚ funm_nd_0.2, Algorithm 3.2 with δ “ 0.2;

‚ funm_nd_norm, Algorithm 3.2 with δ “ 0.1 maxi |tii|; and

‚ funm_nd_8, Algorithm 3.2 with δ “ 8 (no blocking, so the whole Schur factor

T is computed by Algorithm 3.1).

The 35 tested matrices are nonnormal taken from

68 a multiprecision schur–parlett algorithm

‚ the MATLAB gallery;

‚ the Matrix Computation Toolbox [26];

‚ other MATLAB matrices: magic, rand, and randn.

We set their size to be 32 ˆ 32, and we also test the above matrices multiplied by 10˘2

to examine the robustness of the algorithms under scaling. We set the function f to

be the matrix sine; similar results were obtained with the other functions. Figure 3.4,

in which the solid line is κ f pAqu, shows that Algorithm 3.2 with a constant δ is fairly

stable under scaling while using a δ that scales with the matrix A (funm_nd_norm)

can produce large errors when }A} is small. This is not unexpected since a smaller

δ results in a smaller separation of the blocks and more ill-conditioned Sylvester

equations.

In most cases there is no difference in accuracy between the algorithms. The results

show no significant benefit of δ “ 0.2 over δ “ 0.1, and the former produces larger

blocks in general, so it increases the cost.

In general, the choice δ in Algorithm 3.2 must be a balance between speed and

accuracy, and the optimal choice of δ will be problem dependent. We suggest taking

δ “ 0.1 as the default blocking parameter in Algorithm 3.2.

Next we set the function f to the sine, the cosine, the hyperbolic sine, and the hy-

perbolic cosine and use the same set of 35 test matrices as in the previous experiment.

We compare the following three algorithms:

‚ funm, the built-in MATLAB function implementing the standard Schur–Parlett

algorithm [11] with δ “ 0.1;

‚ funm_nd, Algorithm 3.2 with δ “ 0.1.

‚ funm_nd_8, Algorithm 3.2 with δ “ 8 (no blocking, so the whole Schur factor

T is computed by Algorithm 3.1).

Note that since we are comparing with the Schur–Parlett algorithm funm we are re-

stricted to functions f having a Taylor expansion with an infinite radius of conver-

gence and for which derivatives of all orders can be computed. Also, we exclude the

3.5 overall algorithm for computing f p Aq 69

0 5 10 15 20 25 30 35

10
-16

10
-12

10
-8

10
-4

10
0

funm_nd_0.1

funm_nd_0.2

funm_nd_norm

funm_nd_

0 5 10 15 20 25 30 35

10
-16

10
-12

10
-8

10
-4

10
0

funm_nd_0.1

funm_nd_0.2

funm_nd_norm

funm_nd_

0 5 10 15 20 25 30 35

10
-16

10
-12

10
-8

10
-4

10
0

funm_nd_0.1

funm_nd_0.2

funm_nd_norm

funm_nd_

Figure 3.4: Forward normwise relative errors for funm_nd_0.1, funm_nd_0.2, funm_nd_norm, and
funm_nd_8 on the test set of 35 matrices, for the matrix sine. The solid line is κsinpAqu.

exponential, square root, and logarithm because for these functions the specialized

MATLAB codes expm, sqrtm, and logm are preferred to funm.

70 a multiprecision schur–parlett algorithm

0 5 10 15 20 25 30 35

10
-16

10
-12

10
-8

10
-4

10
0

funm

funm_nd

funm_nd_

0 5 10 15 20 25 30 35

10
-16

10
-12

10
-8

10
-4

10
0

funm

funm_nd

funm_nd_

0 5 10 15 20 25 30 35

10
-16

10
-12

10
-8

10
-4

10
0

funm

funm_nd

funm_nd_

0 5 10 15 20 25 30 35

10
-16

10
-12

10
-8

10
-4

10
0

funm

funm_nd

funm_nd_

Figure 3.5: Forward normwise relative errors for funm, funm_nd_8, and funm_nd on the test set of 35
matrices. The solid line is κ f pAqu.

Table 3.6: Asymptotic costs in flops of funm, funm_nd, and funm_nd_8. Here, n “
řs

i“1 mi is the size of
the original matrix A, s is the number of diagonal blocks in the Schur form after reordering
and blocking, and mi is the size of the ith block.

funm funm_nd funm_nd_8

Precision u u uh u uh

Flops 28n3 to n4{3 28n3 2{3
řs

i“1 m3
i 28n3 2n3{3

From Figure 3.5 we observe that, overall, there is no significant difference between

funm_nd and funm in accuracy, and funm_nd_8 is superior to the other algorithms in

accuracy, as expected.

We list the computational cost of the three algorithms in flops in Table 3.6. We

note that the cost of reordering and blocking, and solving the Sylvester equations

that are executed in precision u, is usually negligible compared with the overall cost.

For more details of the reordering and partitioning processes of T and evaluating the

upper triangular part of f pAq via the block Parlett recurrence, see [11]. In most cases

3.5 overall algorithm for computing f p Aq 71

Table 3.7: Mean execution times (in seconds) and the maximal normwise relative errors over ten runs
for funm, funm_nd, and funm_nd_8, and the maximal block size and the maximal number of
equivalent decimal digits used by funm_nd.

Maximal relative error Mean execution time (secs)

f “ sin funm funm_nd funm_nd_8 funm funm_nd funm_nd_8 size digits

A1, n “ 40 4.6e-15 4.6e-15 4.6e-15 2.1e-2 4.5e-2 1.4e-1 8 32
A2, n “ 40 4.0e-15 4.0e-15 3.9e-15 2.2e-2 2.4e-2 1.4e-1 3 32
A3, n “ 40 1.5e-14 7.1e-17 6.8e-17 1.8e-3 4.1e-2 4.1e-2 40 685
A1, n “ 100 6.7e-15 6.7e-15 6.7e-15 6.6e-2 1.6e-1 9.7e-1 13 32
A2, n “ 100 6.3e-15 6.4e-15 6.3e-15 1.9e-1 1.9e-1 1.0 4 32
A3, n “ 100 1.0e-12 5.8e-17 5.8e-17 2.7e-2 7.3e-1 7.4e-1 100 1734

f “ cosh funm funm_nd funm_nd_8 funm funm_nd funm_nd_8 size digits

A1, n “ 40 7.1e-15 7.1e-15 7.1e-15 2.1e-2 4.6e-2 1.4e-1 8 32
A2, n “ 40 3.0e-15 2.9e-15 2.9e-15 2.2e-2 2.3e-2 1.4e-1 3 32
A3, n “ 40 8.3e-16 9.0e-17 8.0e-17 2.0e-3 4.3e-2 4.3e-2 40 685
A1, n “ 100 1.4e-14 1.4e-14 1.4e-14 6.8e-2 1.6e-1 9.9e-1 13 32
A2, n “ 100 5.9e-15 5.9e-15 5.9e-15 2.0e-1 2.0e-1 1.0 4 32
A3, n “ 100 8.0e-16 5.7e-17 5.8e-17 2.9e-2 7.6e-1 7.6e-1 100 1734

the blocks are expected to be of much smaller dimension than A, especially when

n is large. Obviously, funm_nd is not more expensive than funm_nd_8 and it can be

substantially cheaper; indeed funm_nd requires no higher than the working precision

to evaluate the function on the 1 ˆ 1 and 2 ˆ 2 diagonal blocks in the Schur form.

Table 3.7 compares in a working precision of double the mean execution times in

seconds and the maximal normwise relative errors of funm, funm_nd, and funm_nd_8

over ten runs, and reports the maximal block size in the reordered and blocked Schur

form for each matrix and the maximal number of equivalent decimal digits used by

funm_nd. We choose f “ sin and f “ cosh and consider the following matrices,

generated from built-in MATLAB functions and scaled to different degrees to have

nontrivial blocks of the reordered and blocked Schur form in the Schur–Parlett algo-

rithms.

‚ A1 “ rand(n){5.

‚ A2 “ randn(n){10.

‚ A3 “ gallery('triw',n,-5): upper triangular with 1s on the diagonal and ´5s

off the diagonal.

72 a multiprecision schur–parlett algorithm

We see from Table 3.7 that funm, funm_nd, and funm_nd_8 provide the same level of

accuracy except for one case: f “ sin and A3. In this case funm requires about n Taylor

series terms and produces an error several orders of magnitude larger than that of

other algorithms. For the matrix A3 with repeated eigenvalues, funm_nd is much

slower than funm due to the use of higher precision arithmetic in a large block, and

in this case there is no noticeable difference in execution time between funm_nd and

funm_nd_8, which confirms that the cost of the reordering and blocking in funm_nd

is negligible. For the randomly generated matrices (A1 and A2) funm can be up to

about 2.4 times faster than funm_nd (f “ sin and A1 with n “ 100), but in some cases

when the block size is small funm_nd is competitive with funm in speed. For these

matrices, funm_nd is much faster than funm_nd_8.

Finally, we note that Algorithm 3.2 is not restricted only to a working precision of

double since its framework is precision independent. For other working precisions

suitable values for the parameters cm, δ1 and δ may be different, but they can be

determined in an approach similar to the one used in this work. The reason for

developing Algorithm 3.2 is that it requires only accurate function values and not

derivative values. In the next section we consider a function for which accurate

derivative values are not easy to compute.

3.6 an application to the matrix mittag–leffler

function

For A P Cnˆn, the matrix Mittag–Leffler with two parameters α, β P C, Repαq ą 0, is

defined by the convergent series

Eα,βpAq “

8
ÿ

k“0

Ak

Γpαk ` βq
,

where Γpγq, γ P Czt0, ´1, ´2, . . . u is the Euler gamma function. Analogously to the

matrix exponential in the solution of systems of linear differential equations, the

3.6 an application to the matrix mittag–leffler function 73

Mittag–Leffler function plays an important role in the solution of linear systems of

fractional differential equations [21], [40], including time-fractional Schrödinger equa-

tions [19], [18] and multiterm fractional differential equations [38]. Despite the im-

portance of the matrix Mittag–Leffler function, little work has been devoted to its nu-

merical computation. In [35], the computation of the action of matrix Mittag–Leffler

functions based on Krylov methods is analyzed. The Jordan canonical form and min-

imal polynomial or characteristic polynomial are considered in [13] for computing

the matrix Mittag–Leffler function, but this approach is unstable in floating-point

arithmetic.

The work by Garrappa and Popolizio [20] employs the Schur–Parlett algorithm to

compute the matrix Mittag–Leffler function. For z P C, the derivatives of the scalar

Mittag–Leffler function are given by

Epkq
α,βpzq “

8
ÿ

j“k

pjqk

Γpαj ` βq
zj´k, k P N,

where pjqk “ jpj ´ 1q ¨ ¨ ¨ pj ´ k ` 1q is the falling factorial, and are difficult to compute

accurately. Garrappa and Popolizio use three approaches, based on series expansion,

numerical inversion of the Laplace transform, and summation formulas to compute

the derivatives. They exploit certain identities [20, Props. 3–4] to express high-order

derivatives in terms of lower order ones, since they observe that all three methods

tend to have reduced accuracy for high order derivatives. In fact, almost all of [20]

is devoted to the computation of the derivatives. By combining derivative balancing

techniques with algorithms for computing the derivatives the authors show in their

experiments that the computed pEpkq
α,βpzq have errors

|Epkq
α,βpzq ´ pEpkq

α,βpzq|

1 ` |Epkq
α,βpzq|

that lie “in a range 10´13 „ 10´15” [20, p. 146]. Now if

|Epkq
α,βpzq ´ pEpkq

α,βpzq|

1 ` |Epkq
α,βpzq|

“ ϵ, (3.17)

74 a multiprecision schur–parlett algorithm

then the relative error

ϕ “
|Epkq

α,βpzq ´ pEpkq
α,βpzq|

|Epkq
α,βpzq|

“
ϵ

|Epkq
α,βpzq|

` ϵ,

so ϵ approximates the relative error for large function values |Epkq
α,βpzq| and the absolute

error when |Epkq
α,βpzq| is small. However, in floating-point arithmetic it is preferred to

use the relative error ϕ to quantify the quality of an approximation. Because they only

satisfy (3.17), derivatives computed by the methods of [20] can have large relative

errors when |Epkq
α,βpzq| ! 1. It is hard to identify the range of z, α, β, and k for which

|Epkq
α,βpzq| ă 1, but intuitively we expect that the kth order derivatives |Epkq

α,βpzq| will

generally decrease with decreasing |z| or increasing β. Since the algorithm of [20] is

so far the most practical algorithm for computing the matrix Mittag–Leffler function,

we use it as a comparison in testing Algorithm 3.2.

In order to compute a matrix function by Algorithm 3.2 it is necessary to be able to

accurately evaluate its corresponding scalar function. For the Mittag–Leffler function,

the state-of-the-art algorithm ml_opc proposed by Garrappa [17] for computing the

scalar function aims to achieve

|Eα,βpzq ´ pEα,βpzq|

1 ` |Eα,βpzq|
ď 10´15.

Hence, in view of the discussion above ml_opc can produce large relative errors when

|Eα,βpzq| ! 1 and we do not expect it to provide small relative errors for all arguments.

3.6.1 Numerical experiments

In this section we present numerical tests of Algorithm 3.2 (funm_nd). In funm_nd the

ability to accurately evaluate the scalar Mittag–Leffler function in precisions beyond

the working precision is required. We evaluate the scalar Mittag–Leffler function

by truncating the series definition and we use a precision a few digits more than

the highest precision required by the algorithms for the evaluation of the diagonal

blocks.

3.6 an application to the matrix mittag–leffler function 75

0 1 2 3 4 5 6 7 8 9 10
10

-15

10
-14

10
-13

10
-12

10
-11

10
-10

mlm

funm_nd

1 2 3 4 5 6 7 8 9 10
10

-15

10
-14

10
-13

10
-12

10
-11

10
-10

mlm

funm_nd

Figure 3.6: Normwise relative errors in the computed Eα,βp´Rq for the Redheffer matrix R and different
α and β. The solid lines are κMLpRqu.

In the literature particular attention has been paid to the Mittag–Leffler functions

with 0 ă α ă 1 and β ą 0 as this is the case that occurs most frequently in appli-

cations [18], [35]. In addition to the Mittag–Leffler functions with β « 1 that are

often tested in the literature, we will also investigate the cases when β takes other

positive values that appear in actual applications. For example, in linear multiterm

fractional differential equations the source term can often be approximated by a poly-

nomial, say, pptq “
řs

i“0 citi, and then the solution involves evaluating the matrix

Mittag–Leffler functions with β “ α ` ℓ for ℓ “ 1, 2, . . . , s ` 1 [20].

We compare the accuracy of our algorithm funm_nd with that of mlm, the numeri-

cal scheme proposed by Garrappa and Popolizio [20]. The normwise relative error

}pX ´ Eα,βpAq}F{}Eα,βpAq}F of the computed pX is reported, where the reference solu-

tion Eα,βpAq is computed by randomized approximate diagonalization at 200 digit

precision. In the plots we also show κMLpAqu, where κMLpAq is an estimate of the

1-norm condition number of the matrix Mittag–Leffler function.

Example 1: the Redheffer matrix. We first use the Redheffer matrix, which is generated

by the MATLAB function gallery('redheff') and has been used for test purposes

in [20]. It is a square matrix R with rij “ 1 if i divides j or if j “ 1 and otherwise rij “ 0.

The Redheffer matrix has n ´ tlog2 nu ´ 1 eigenvalues equal to 1 [9], which makes it

necessary to evaluate high order derivatives in computing Eα,βp´Rq by means of the

standard Schur–Parlett algorithm. The dimension of the matrix is set to n “ 20.

76 a multiprecision schur–parlett algorithm

Table 3.8: Eigenvalues (with multiplicities/numbers) for the matrices in Example 2. Here, rℓ, rspkq

means that we take k eigenvalues from the uniform distribution on the interval rℓ, rs.

Matrix Eigenvalues (multiplicities/numbers) Size

A21 0p3q, ˘1.0p6q, ˘5p6q, ´10p3q 30 ˆ 30
A22 ˘r0.9, 1.0sp5q, ˘r1.2, 1.3sp4q, ˘r1.4, 1.5sp3q, ˘r0.9, 1.0s ˘ 1ip4q 40 ˆ 40

0 1 2 3 4 5 6 7 8 9 10
10

-15

10
-14

10
-13

10
-12

10
-11

10
-10

mlm

funm_nd

0 1 2 3 4 5 6 7 8 9 10
10

-15

10
-14

10
-13

10
-12

10
-11

10
-10

mlm

funm_nd

Figure 3.7: Normwise relative errors in the computed Eα,βpAq for α “ 0.8 and different β for the matrices
in Table 3.8. The solid lines are κMLpAqu.

In this case the Schur–Parlett algorithm funm_nd chooses five blocks: one 16ˆ16

block and four 1ˆ1 blocks to compute the matrix Mittag–Leffler functions with α “

0.5 or α “ 0.8 and β starting from 0.5 to 10 with increment 0.5. Figure 3.6 shows

that the errors for funm_nd are all Op10´14q and are below κMLpAqu for all tested α

and β, showing the forward stability of funm_nd. On the other hand, for β ě 6.5, mlm

produces errors that in general grow with β and become much larger than κMLpAqu,

so it is behaving numerically unstably. It is not surprising to see that mlm becomes

numerically unstable when β “ 10, as it aims to achieve (3.17) and |Eα,βpzq| decays to

0 when β increases; for example, |E0.5,10p1q| « 4.0 ˆ 10´6.

Example 2: matrices with clustered eigenvalues. In the second experiment we test two

matrices A1 and A2 of size 30 ˆ 30 and 40 ˆ 40 with both fixed and randomly gener-

ated eigenvalues that are clustered to different degrees, as explained in Table 3.8.

The test matrices were designed to have nontrivial diagonal blocks in the reordered

and blocked Schur form. We assigned the specified values to the diagonal matrices

and performed similarity transformations with random matrices having a condition

3.7 concluding remarks 77

0 5 10 15 20 25 30

10
-17

10
-13

10
-9

10
-5

10
0

mlm

funm_nd

0 5 10 15 20 25 30

10
-17

10
-13

10
-9

10
-5

10
0

mlm

funm_nd

Figure 3.8: Normwise relative errors in the computed Eα,βpAq for A of size 10 ˆ 10 from the set of 32
matrices from the MATLAB gallery. The solid lines are κMLpAqu.

number of order the matrix size to obtain the full matrices A21 and A22 with the

desired spectrum.

In this example, funm_nd chooses six blocks for A21 and ten blocks for A22. Fig-

ure 3.7 shows that for these matrices funm_nd performs in a numerically stable fash-

ion, whereas mlm does not for β ě 7.

Example 3: matrices from the MATLAB gallery. Now we take 32 matrices of size

10 ˆ 10 from the MATLAB gallery and test the algorithm using the matrix Mittag–

Leffler functions with α “ 0.8 and β “ 1.2 or β “ 8.0. The errors are shown in

Figure 3.8. We see that mlm is mostly numerically unstable for β “ 8 while funm_nd

remains largely numerically stable.

One conclusion from these experiments is that by exploiting higher precision arith-

metic it is possible to evaluate the Mittag–Leffler function with small relative error

even when the function has small norm.

3.7 concluding remarks

We have built a multiprecision algorithm for evaluating analytic matrix functions

f pAq that requires only function values and not derivatives. By contrast, the stan-

dard Schur–Parlett algorithm, implemented as funm in MATLAB, requires derivatives

and is applicable only to functions that have a Taylor series with a sufficiently large

78 a multiprecision schur–parlett algorithm

radius of convergence. Our algorithm needs arithmetic of precision at least double

the working precision to evaluate f on the diagonal blocks of order greater than 2 (if

there are any) of the reordered and blocked Schur form.

The inspiration for our algorithm is Davies’s randomized approximate diagonal-

ization. We have shown that the measure of error that underlies randomized ap-

proximate diagonalization makes it unsuitable as a practical means for computing

matrix functions. Nevertheless, we have exploited the approximate diagonalization

idea within the Schur–Parlett algorithm by making random diagonal perturbations to

the nontrivial blocks of order greater than 2 in the Schur form and then diagonalizing

the perturbed blocks in higher precision.

Numerical experiments show similar accuracy of our algorithm to funm. We found

that when applied to the Mittag–Leffler function Eα,β our algorithm provides results

of accuracy at least as good as, and systematically for β ě 6 much greater than, the

special-purpose algorithm mlm of [20].

Our multiprecision Schur–Parlett algorithm requires at most 2n3{3 flops to be car-

ried out in higher precisions in addition to the approximately 28n3 flops at the work-

ing precision, and the amount of higher precision arithmetic needed depends on the

eigenvalue distribution of the matrix. When there are only 1 ˆ 1 and 2 ˆ 2 blocks on

the diagonal of the reordered and blocked triangular Schur factor no higher precision

arithmetic is required.

Our new algorithm is a useful companion to funm that greatly expands the class

of readily computable matrix functions. Our MATLAB code funm_nd is available on

GitHub.2

2 https://github.com/Xiaobo-Liu/mp-spalg

https://github.com/Xiaobo-Liu/mp-spalg

references 79

references

[1] A. H. Al-Mohy and N. J. Higham. “A new scaling and squaring algorithm

for the matrix exponential.” SIAM J. Matrix Anal. Appl. 31.3 (2009), pp. 970–989

(cited on p. 44).

[2] A. H. Al-Mohy and N. J. Higham. “Improved inverse scaling and squaring

algorithms for the matrix logarithm.” SIAM J. Sci. Comput. 34.4 (2012), pp. C153–

C169 (cited on p. 44).

[3] E. Anderson. Robust Triangular Solves for Use in Condition Estimation. Techni-

cal Report CS-91-142. Knoxville, TN, USA: Department of Computer Science,

University of Tennessee, Aug. 1991, p. 35. LAPACK Working Note 36 (cited on

p. 55).

[4] Z. Bai, J. W. Demmel, and A. McKenney. “On computing condition numbers

for the nonsymmetric eigenproblem.” ACM Trans. Math. Software 19.2 (1993),

pp. 202–223 (cited on p. 53).

[5] J. Banks, J. Garza-Vargas, A. Kulkarni, and N. Srivastava. Pseudospectral Shat-

tering, the Sign Function, and Diagonalization in Nearly Matrix Multiplication Time.

ArXiv:1912.08805. 2019. Revised September 2020 (cited on p. 48).

[6] J. Banks, J. Garza-Vargas, A. Kulkarni, and N. Srivastava. “Pseudospectral Shat-

tering, the Sign Function, and Diagonalization in Nearly Matrix Multiplication

Time.” In: 2020 IEEE 61st Annual Symposium on Foundations of Computer Science

(FOCS). 2020, pp. 529–540 (cited on p. 48).

[7] J. Banks, A. Kulkarni, S. Mukherjee, and N. Srivastava. Gaussian Regularization

of the Pseudospectrum and Davies’ Conjecture. ArXiv:1906.11819. 2019. Revised

April 2020 (cited on p. 48).

[8] J. Banks, J. G. Vargas, A. Kulkarni, and N. Srivastava. Overlaps, Eigenvalue Gaps,

and Pseudospectrum Under Real Ginibre and Absolutely Continuous Perturbations.

ArXiv:2005.08930. May 2020 (cited on p. 48).

https://doi.org/10.1137/09074721X
https://doi.org/10.1137/09074721X
https://doi.org/10.1137/110852553
https://doi.org/10.1137/110852553
http://www.netlib.org/lapack/lawnspdf/lawn36.pdf
https://doi.org/10.1145/152613.152617
https://doi.org/10.1145/152613.152617
https://arxiv.org/abs/1912.08805v3
https://arxiv.org/abs/1912.08805v3
https://arxiv.org/abs/1906.11819v4
https://arxiv.org/abs/1906.11819v4
https://arxiv.org/abs/2005.08930
https://arxiv.org/abs/2005.08930

80 a multiprecision schur–parlett algorithm

[9] W. W. Barrett and T. J. Jarvis. “Spectral properties of a matrix of Redheffer.”

Linear Algebra Appl. 162-164 (1992), pp. 673–683 (cited on p. 75).

[10] E. B. Davies. “Approximate diagonalization.” SIAM J. Matrix Anal. Appl. 29.4

(2007), pp. 1051–1064 (cited on pp. 44, 47).

[11] P. I. Davies and N. J. Higham. “A Schur–Parlett algorithm for computing ma-

trix functions.” SIAM J. Matrix Anal. Appl. 25.2 (2003), pp. 464–485 (cited on

pp. 44, 46, 50, 66–68, 70).

[12] J. W. Demmel. “The condition number of equivalence transformations that

block diagonalize matrix pencils.” SIAM J. Numer. Anal. 20.3 (1983), pp. 599–

610 (cited on p. 53).

[13] J. Duan and L. Chen. “Solution of fractional differential equation systems and

computation of matrix Mittag–Leffler functions.” Symmetry 10.10 (2018), p. 503

(cited on p. 73).

[14] M. Fasi and N. J. Higham. “An arbitrary precision scaling and squaring al-

gorithm for the matrix exponential.” SIAM J. Matrix Anal. Appl. 40.4 (2019),

pp. 1233–1256 (cited on p. 45).

[15] M. Fasi and N. J. Higham. “Multiprecision algorithms for computing the ma-

trix logarithm.” SIAM J. Matrix Anal. Appl. 39.1 (2018), pp. 472–491 (cited on

p. 45).

[16] M. Fasi, N. J. Higham, and B. Iannazzo. “An algorithm for the matrix Lambert

W function.” SIAM J. Matrix Anal. Appl. 36.2 (2015), pp. 669–685 (cited on p. 45).

[17] R. Garrappa. “Numerical evaluation of two and three parameter Mittag-Leffler

functions.” SIAM J. Numer. Anal. 53.3 (2015), pp. 1350–1369 (cited on p. 74).

[18] R. Garrappa, I. Moret, and M. Popolizio. “On the time-fractional Schrödinger

equation: theoretical analysis and numerical solution by matrix Mittag-Leffler

functions.” Comput. Math. Applic. 74.5 (2017), pp. 977–992 (cited on pp. 73, 75).

[19] R. Garrappa, I. Moret, and M. Popolizio. “Solving the time-fractional Schrödinger

equation by Krylov projection methods.” J. Comp. Phys. 293 (2015), pp. 115–134

(cited on p. 73).

https://doi.org/10.1016/0024-3795(92)90401-U
https://doi.org/10.1137/060659909
https://doi.org/10.1137/S0895479802410815
https://doi.org/10.1137/S0895479802410815
https://doi.org/10.1137/0720040
https://doi.org/10.1137/0720040
https://doi.org/10.3390/sym10100503
https://doi.org/10.3390/sym10100503
https://doi.org/10.1137/18M1228876
https://doi.org/10.1137/18M1228876
https://doi.org/10.1137/17M1129866
https://doi.org/10.1137/17M1129866
https://doi.org/10.1137/140997610
https://doi.org/10.1137/140997610
https://doi.org/10.1137/140971191
https://doi.org/10.1137/140971191
https://doi.org/10.1016/j.camwa.2016.11.028
https://doi.org/10.1016/j.camwa.2016.11.028
https://doi.org/10.1016/j.camwa.2016.11.028
https://doi.org/10.1016/j.jcp.2014.09.023
https://doi.org/10.1016/j.jcp.2014.09.023

references 81

[20] R. Garrappa and M. Popolizio. “Computing the matrix Mittag-Leffler function

with applications to fractional calculus.” J. Sci. Comput. 77.1 (2018), pp. 129–153

(cited on pp. 73–75, 78).

[21] R. Garrappa and M. Popolizio. “On the use of matrix functions for fractional

partial differential equations.” Math. Comput. Simulation C-25.81 (2011), pp. 1045–

1056 (cited on p. 73).

[22] N. J. Higham. Accuracy and Stability of Numerical Algorithms. 2nd ed., Philadel-

phia, PA, USA: Society for Industrial and Applied Mathematics, 2002, pp. xxx+680

(cited on p. 53).

[23] N. J. Higham. “Computing real square roots of a real matrix.” Linear Algebra

Appl. 88/89 (1987), pp. 405–430 (cited on p. 49).

[24] N. J. Higham. Functions of Matrices: Theory and Computation. Philadelphia, PA,

USA: Society for Industrial and Applied Mathematics, 2008, pp. xx+425 (cited

on pp. 44, 47, 49, 52, 59, 65).

[25] N. J. Higham. “Short codes can be long on insight.” SIAM News 50.3 (Apr.

2017), pp. 2–3 (cited on p. 48).

[26] N. J. Higham. The Matrix Computation Toolbox. http://www.maths.manchester.

ac.uk/~higham/mctoolbox (cited on p. 68).

[27] N. J. Higham. The Matrix Function Toolbox. http://www.maths.manchester.ac.

uk/~higham/mftoolbox (cited on pp. 59, 65).

[28] N. J. Higham and A. H. Al-Mohy. “Computing matrix functions.” Acta Numer-

ica 19 (2010), pp. 159–208 (cited on p. 44).

[29] N. J. Higham and E. Hopkins. A Catalogue of Software for Matrix Functions.

Version 3.0. MIMS EPrint 2020.7. UK: Manchester Institute for Mathematical

Sciences, The University of Manchester, Mar. 2020, p. 24 (cited on p. 44).

[30] IEEE Standard for Floating-Point Arithmetic, IEEE Std 754-2019 (Revision of IEEE

754-2008). New York, USA: The Institute of Electrical and Electronics Engineers,

2019, p. 82 (cited on p. 55).

https://doi.org/10.1007/s10915-018-0699-5
https://doi.org/10.1007/s10915-018-0699-5
https://doi.org/10.1016/j.matcom.2010.10.009
https://doi.org/10.1016/j.matcom.2010.10.009
https://doi.org/10.1137/1.9780898718027
https://doi.org/10.1016/0024-3795(87)90118-2
https://doi.org/10.1137/1.9780898717778
https://sinews.siam.org/Details-Page/short-codes-can-be-long-on-insight
http://www.maths.manchester.ac.uk/~higham/mctoolbox
http://www.maths.manchester.ac.uk/~higham/mctoolbox
http://www.maths.manchester.ac.uk/~higham/mftoolbox
http://www.maths.manchester.ac.uk/~higham/mftoolbox
https://doi.org/10.1017/S0962492910000036
http://eprints.maths.manchester.ac.uk/2754/
http://eprints.maths.manchester.ac.uk/2754/
https://doi.org/10.1109/IEEESTD.2019.8766229
https://doi.org/10.1109/IEEESTD.2019.8766229

82 a multiprecision schur–parlett algorithm

[31] V. Jain, A. Sah, and M. Sawhney. On the Real Davies’ Conjecture. ArXiv:2005.08908v2.

May 2020 (cited on p. 48).

[32] C. S. Kenney and A. J. Laub. “Condition estimates for matrix functions.” SIAM

J. Matrix Anal. Appl. 10.2 (1989), pp. 191–209 (cited on p. 44).

[33] C. S. Kenney and A. J. Laub. “Small-sample statistical condition estimates for

general matrix functions.” SIAM J. Sci. Comput. 15.1 (1994), pp. 36–61 (cited on

p. 56).

[34] C. B. Moler and C. F. Van Loan. “Nineteen dubious ways to compute the

exponential of a matrix, twenty-five years later.” SIAM Rev. 45.1 (2003), pp. 3–

49 (cited on p. 44).

[35] I. Moret and P. Novati. “On the convergence of Krylov subspace methods

for matrix Mittag–Leffler functions.” SIAM J. Numer. Anal. 49.5 (Oct. 2011),

pp. 2144–2164 (cited on pp. 73, 75).

[36] Multiprecision Computing Toolbox. Advanpix, Tokyo, Japan. http://www.advanpix.

com (cited on pp. 49, 62).

[37] B. N. Parlett. Computation of Functions of Triangular Matrices. Memorandum ERL-

M481. Berkeley: Electronics Research Laboratory, College of Engineering, Uni-

versity of California, Nov. 1974, p. 18 (cited on p. 46).

[38] M. Popolizio. “Numerical solution of multiterm fractional differential equa-

tions using the matrix Mittag–Leffler functions.” Mathematics 6.1 (2018), p. 7

(cited on p. 73).

[39] J. D. Roberts. “Linear model reduction and solution of the algebraic Ricca-

tiq equation by use of the sign function.” Internat. J. Control 32.4 (Oct. 1980),

pp. 677–687 (cited on p. 44).

[40] M. R. Rodrigo. “On fractional matrix exponentials and their explicit calcula-

tion.” J. Differential Equations 261.7 (2016), pp. 4223–4243 (cited on p. 73).

[41] A. Schwarz and C. C. K. Mikkelsen. “Robust Task-Parallel Solution of the Trian-

gular Sylvester Equation.” In: Parallel Processing and Applied Mathematics. Ed. by

https://arxiv.org/abs/2005.08908v2
https://doi.org/10.1137/0610014
https://doi.org/10.1137/0915003
https://doi.org/10.1137/0915003
https://doi.org/10.1137/S00361445024180
https://doi.org/10.1137/S00361445024180
https://doi.org/10.1137/080738374
https://doi.org/10.1137/080738374
http://www.advanpix.com
http://www.advanpix.com
https://doi.org/10.3390/math6010007
https://doi.org/10.3390/math6010007
https://doi.org/10.1080/00207178008922881
https://doi.org/10.1080/00207178008922881
https://doi.org/10.1016/j.jde.2016.06.023
https://doi.org/10.1016/j.jde.2016.06.023

references 83

R. Wyrzykowski, E. Deelman, J. Dongarra, and K. Karczewski. Springer, Cham,

Switzerland, 2020, pp. 82–92 (cited on p. 55).

[42] A. Schwarz, C. C. K. Mikkelsen, and L. Karlsson. “Robust parallel eigenvector

computation for the non-symmetric eigenvalue problem.” Parallel Comput. 100

(Dec. 2020), p. 102707 (cited on p. 55).

https://doi.org/10.1016/j.parco.2020.102707
https://doi.org/10.1016/j.parco.2020.102707

4 ARB ITRARY PREC I S ION ALGOR ITHMS FOR

COMPUT ING THE MATR IX COS INE AND ITS

FRÉCHET DER IVAT IVE

Abstract. Existing algorithms for computing the matrix cosine are tightly coupled

to a specific precision of floating-point arithmetic for optimal efficiency so they do

not conveniently extend to an arbitrary precision environment. We develop an algo-

rithm for computing the matrix cosine that takes the unit roundoff of the working

precision as input, and so works in an arbitrary precision. The algorithm employs a

Taylor approximation with scaling and recovering and it can be used with a Schur

decomposition or in a decomposition-free manner. We also derive a framework for

computing the Fréchet derivative, construct an efficient evaluation scheme for com-

puting the cosine and its Fréchet derivative simultaneously in arbitrary precision,

and show how this scheme can be extended to compute the matrix sine, cosine, and

their Fréchet derivatives all together. Numerical experiments show that the new

algorithms behave in a forward stable way over a wide range of precisions. The

transformation-free version of the algorithm for computing the cosine is competitive

in accuracy with the state-of-the-art algorithms in double precision and surpasses

existing alternatives in both speed and accuracy in working precisions higher than

double.

Keywords: multiprecision algorithm, multiprecision arithmetic, matrix cosine, ma-

trix exponential, matrix function, Fréchet derivative, double angle formula, Taylor

approximation, forward error analysis, MATLAB.

2010 MSC: 15A16, 65F30, 65F60.

84

4.1 introduction 85

4.1 introduction

Matrix functions have been the subject of much research because of their many ap-

plications in science and engineering. The matrix exponential is the most studied

function thanks to its crucial role in representing the solutions of linear first order

differential equations. The matrix sine and cosine, which can be defined for A P Cnˆn

by their Maclaurin series

cos A “ I ´
A2

2!
`

A4

4!
´

A6

6!
` ¨ ¨ ¨ ,

sin A “ A ´
A3

3!
`

A5

5!
´

A7

7!
` ¨ ¨ ¨ ,

where I denotes the identity matrix of order n, play an analogous role for second

order differential equations. For example, the second order system

y2ptq ` Ayptq “ gptq, yp0q “ y0, y1p0q “ y1
0, (4.1)

which appears in finite element semidiscretization of the wave equation, has the

solution

yptq “ cosp
?

Atqy0 ` p
?

Aq´1 sinp
?

Atqy1
0 `

ż t

0
p
?

Aq´1 sin
`

?
Apt ´ sq

˘

gpsqds,

where
?

A denotes any square root of A [38]. For generalizations of the system (4.1)

and other applications see [5] and the references therein.

In recent years there has been a growing interest in multiprecision algorithms for

computing matrix functions. Several algorithms that work in arbitrary precision have

been developed, including algorithms for the matrix exponential [8], [15], the matrix

logarithm [16], and general matrix functions [23]. We note that the cosine and sine

of a matrix can be computed via the the matrix exponential by exploiting the matrix

analogue of Euler’s formula, eiA “ cos A ` i sin A, and this idea is implemented in the

mpmath library [29], but complex arithmetic needs to be used even for a real A. The

Multiprecision Computing Toolbox [32] offers functions that can evaluate in arbitrary

86 arbitrary precision algorithms for matrix cosine

precision the sine and cosine of a matrix using the Schur–Parlett algorithm [9]. We are

not aware of any specialized algorithm for computing the matrix cosine in arbitrary

precision.

The need for arbitrary precision algorithms for matrix trigonometric functions

arises from their inclusion in many languages and libraries that attempt to offer ar-

bitrary precision implementations of various functions with both scalar and matrix

arguments, including the software mentioned above, as well as the Julia language [7]

and Python’s SymPy [31], for example. Furthermore, from the aspect of algorithm de-

velopment, a reference solution computed in higher precision is required to estimate

the forward error of algorithms for these matrix functions.

In this work we develop a new arbitrary precision algorithm for computing the

matrix cosine. The algorithm uses a Taylor approximant to cosp2´s Aq in conjunction

with the double angle recurrence cosp2Aq “ 2 cos2 A ´ I, and we refer to this process

as scaling and recovering. The algorithmic parameters s and the degree of the ap-

proximant are determined from a relative forward error bound for the approximant.

The algorithm takes the working precision as an input argument and can compute

the Fréchet derivative LcospA, Eq (defined in section 4.5) simultaneously.

We begin in section 4.2 by reviewing previous work on computing the matrix co-

sine and explaining why existing algorithms are not suitable for arbitrary precision

arithmetic. In section 4.3 we derive a bound on the norm of the forward error of

a Taylor approximant to the matrix cosine. Based on this error bound we develop

an algorithm for evaluating the matrix cosine in arbitrary precision in section 4.4.

In section 4.5 we derive a framework for computing LcospA, Eq by Fréchet differen-

tiating our algorithm for cos A, and we construct an efficient evaluation scheme for

computing cos A and LcospA, Eq simultaneously. An algorithm for computing cos A

and LcospA, Eq in arbitrary precision is developed. We also discuss an extension of

the evaluation scheme to the matrix sine and its Fréchet derivative. We then test

the algorithms developed in the previous sections experimentally and compare their

performance against alternative approaches in section 4.6. Conclusions are drawn in

section 4.7.

4.2 previous work 87

Throughout this work we denote by ∥¨∥ any consistent matrix norm, by N the set

of nonnegative integers, and by N` the set of positive integers. We denote by u the

unit roundoff of the floating-point arithmetic.

4.2 previous work

The focus in the literature has been on computing the matrix cosine rather than the

matrix sine, as the sine can be obtained with a cosine algorithm by using the iden-

tity sin A “ cospA ´ π
2 Iq. The most popular and successful method for computing

the cosine of a matrix is the scaling and recovering algorithm. It uses a rational or

polynomial approximation to cosp2´s Aq in conjunction with scaling and recovering

[20, Thm. 12.1]. The algorithm was first suggested by Serbin and Blalock [39], though

they did not propose a concrete scheme for choosing the algorithmic parameters.

Higham and Smith [27] develop an algorithm that scales the matrix such that

}2´s A}8 ď 1 and employs a diagonal Padé approximant of fixed degree 8, where

ad hoc analysis shows that this choice provides full normwise relative accuracy in

IEEE double precision arithmetic. Diagonal Padé approximants are preferred over

non-diagonal ones, as symmetries in the coefficients of the numerator and denom-

inator can be utilized for efficient evaluation of the approximant. Hargreaves and

Higham [19] derived an algorithm that chooses the degree of the diagonal Padé

approximant adaptively to minimize the computational cost subject to achieving a

desired absolute error bound. Since then the strategy of using variable degree ap-

proximants has been widely adopted. Sastre et al. [35] propose an algorithm that

uses Taylor series approximations with sharper absolute error bounds derived using

ideas similar to those in [2, sect. 4]. The derivation of these algorithms is based on

forward error bounds. Al-Mohy, Higham, and Relton [5] develop algorithms that are

based on backward error analysis and Padé approximants to sin x and ex, and they

can compute the matrix sine and cosine separately or simultaneously. Another algo-

rithm that can calculate the two functions simultaneously is proposed by Seydaoglu,

88 arbitrary precision algorithms for matrix cosine

Bader, Blanes, and Casas [40]; it chooses from some Taylor polynomial approxima-

tions of fixed degree and relies on precomputed constants. Other algorithms have

been developed for computing the matrix cosine based on Taylor series [6], [36], [37],

with improvements on the error bounds or the cost of evaluation of the approximat-

ing polynomials. There are also algorithms for evaluating the matrix cosine based

on approximating functions other than Taylor and Padé approximants, for example,

algorithms based on Bernoulli matrix polynomials [10] and Hermite matrix polyno-

mials [11].

The algorithms mentioned above require computing symbolically in high preci-

sion certain constants that depend on the working precision, and these constants are

crucial for selecting algorithmic parameters since they appear in the truncation er-

ror bounds or are the coefficients of the approximating functions. For example, the

algorithm of [19, sect. 3] is based on the absolute forward error bound

}cos A ´ r2mpAq}8 “

›

›

›

›

›

8
ÿ

i“2m`1

g2i A2i

›

›

›

›

›

8
ď

8
ÿ

i“2m`1

|g2i|}A2}i8, (4.2)

where r2m is the diagonal Padé approximant of degree 2m to the cosine. Then for

some chosen values of m, symbolic and high precision computation are used, respec-

tively, in computing the coefficients g2i and the quantity

θ2m “ max

#

θ :
8
ÿ

i“2m`1

|g2i|θ
2i ď τ

+

,

where τ “ 2´53 is the unit roundoff of double precision, so that (4.2) ensures an er-

ror not exceeding τ as long as }A2}
1{2
8 ď θ2m. The same mechanism is used in other

existing algorithms, based on either forward or backward error analysis, for comput-

ing the matrix cosine. Therefore, none of these algorithms conveniently extends to

an arbitrary precision environment since it is impractical to carry out this procedure

when the accuracy at which the function should be evaluated is known only at run

time. Hence a new approach is required for computing the matrix cosine in arbitrary

precision.

4.3 forward error analysis for the matrix cosine 89

4.3 forward error analysis for the matrix co-

sine

Padé approximation has been widely adopted in algorithms, especially arbitrary pre-

cision algorithms, for evaluating matrix functions, including the matrix logarithm [16]

and the matrix exponential [15]. In comparison with the exponential and logarithm

functions, relatively few results are available concerning Padé approximants of the

cosine function. In particular, we are not aware of a proof of existence of the Padé

approximants for arbitrary degrees. Magnus and Wynn [30] give the coefficients of

the Padé approximants of the scalar cosine function in terms of determinants of ma-

trices whose entries are binomial coefficients, but these expressions are not useful for

deriving a general error bound. For this reason, we employ the scaling and recover-

ing idea and bound the relative forward error of the truncated Taylor approximant

to the cosine. The techniques used in [15, sect. 3] for bounding the forward error of a

Taylor approximant as an approximation to the matrix exponential do not generalize

to the matrix cosine, because the terms in its Taylor expansion alternate in sign, but

we can derive computable error bounds by using the hyperbolic cosine.

Let

tc
2mpAq :“

m
ÿ

i“0

p´1qi

p2iq!
A2i, tch

2mpAq :“
m
ÿ

i“0

1
p2iq!

A2i (4.3)

denote the Taylor approximants of order 2m to cos A and cosh A, respectively and let

B “ A2. Then we have

∥cos A ´ tc
2mpAq∥ “

›

›

›

›

›

8
ÿ

i“m`1

p´1qi

p2iq!
A2i

›

›

›

›

›

“

›

›

›

›

›

8
ÿ

i“m`1

p´1qi

p2iq!
Bi

›

›

›

›

›

ď

8
ÿ

i“m`1

1
p2iq!

αmpBqi

“

8
ÿ

i“m`1

1
p2iq!

`

a

αmpBq
˘2i

“ cosh
`

a

αmpBq
˘

´ tch
2m
`

a

αmpBq
˘

(4.4)

90 arbitrary precision algorithms for matrix cosine

by [2, Thm. 4.2(a)], where

αmpBq P AmpBq (4.5)

:“
␣

max
`

∥Bd∥1{d, ∥Bd`1∥1{pd`1q˘ : d P N`, dpd ´ 1q ď m ` 1
(

.

For nonnormal matrices this bound can be much smaller than a simpler bound based

on a single power of A, such as [20, eq. (4.9)]. The main concern with the latter bound

is that it can be arbitrarily loose for nonnormal A due to the use of the potentially

arbitrarily weak inequality ∥Ak∥ ď ∥A∥k for k P N` in its derivation, as discussed in

[2, sect. 1], [20, p. 288].

We note that elements in AmpBq are of the form ∥Bd∥1{d for some d P N`, and the

size of AmpBq depends on m. In fact, we could instead apply [2, Thm. 4.2(b)] in (4.4),

as Al-Mohy does in [1, eq. (3.2)], and this would lead to exactly the same bound.

Nadukandi and Higham [33] show that the use of

rαmpBq :“ min
␣

max
`

∥Ba∥1{a, ∥Bb∥1{b˘ : a, b P N`, gcdpa, bq “ 1, ab ´ a ´ b ă m ` 1
(

in place of αmpBq results in a more refined bound, but it requires considerably more

computation, which can be undesirable in high precision, as discussed in [15, sect. 3.1].

For this reason we will choose an αmpBq from AmpBq defined in (4.5), but it should be

noted that all the results in this section remain true with αmpBq replaced by rαmpBq.

Ideally, in designing an algorithm for computing the matrix cosine we would like

to use in the bound (4.4) the quantity

αopt
m pBq “ mint αm : αm P AmpBq u,

in order to obtain the sharpest bounds, since these bounds are obviously increasing in

αmpBq. However, to find αopt
m pBq we would need to search over D :“ td P N` : dpd ´

1q ď m ` 1u, and this set has tp1 `
?

4m ` 5q{2u elements. This makes computation of

αopt
m pBq impractical since the value of m can be large for an algorithm aiming for an

arbitrary precision environment. More importantly, it has been observed [2] that for

4.4 a multiprecision algorithm for the matrix cosine 91

nonnormal matrices the sequence t∥Bk∥1{ku is typically roughly decreasing despite

possible considerably nonmonotonic behavior, so it is reasonable and effective to

employ the considerably cheaper approximation to αopt
m pBq,

αm̊pBq “ max
`

∥Bd˚∥1{d˚
, ∥Bd˚`1∥1{pd˚`1q˘, d˚ “ max

d
D “

Z

1 `
?

4m ` 5
2

^

, (4.6)

and this strategy has been shown to be effective for computing the matrix exponential

in arbitrary precision by Fasi and Higham [15].

4.4 a multiprecision algorithm for the matrix

cosine

In this section we build a novel algorithm for computing the matrix cosine in arbitrary

precision floating-point arithmetic based upon the Taylor approximant tc
2m of (4.3)

together with the scaling and recovering idea. There are two algorithmic parameters:

m, which relates to the order of approximation, and s, the number of scalings in

X “ 2´s A (or Y “ 4´sB, as we work with B “ A2), to be determined in order to

guarantee that

∥cos X ´ tc
2mpXq∥ À u∥cos X∥. (4.7)

By (4.4), a sufficient condition for (4.7) to hold is

cosh
`

a

αm̊p4´sBq
˘

´ tch
2m
`

a

αm̊p4´sBq
˘

À u∥cosp2´s Aq∥. (4.8)

We employ the Paterson–Stockmeyer method [34], which is the customary choice

in the literature, to evaluate

tc
2mpXq “

m
ÿ

i“0

p´1qi

p2iq!
X2i “

m
ÿ

i“0

p´1qi

p2iq!
p4´sBqi “: pc

mp4´sBq, (4.9)

92 arbitrary precision algorithms for matrix cosine

which is a polynomial (in B “ A2) of degree m. It is important to note that, in

choosing the degree m and hence the corresponding approximants, only those that

maximize the approximation degree for a given number of matrix multiplications

are worth considering. For evaluating polynomial approximants pc
m to the cosine by

means of the Paterson–Stockmeyer method, the sequence of optimal degrees is [14,

eq. (14)]

mi :“
Z

pi ` 2q2

4

^

, i P N.

To evaluate the approximant pc
mi

pBq, it is known that at least the first ν “ t
?
miu

powers of B will be required [18, Thm. 1.7.4]. Hence we can form the first ν powers

of B immediately after the degree m is chosen, which can be used to reduce the

computational cost of evaluating αm̊p4´sBq. Note that ∥p4´sBqd∥1{d “ 4´s∥Bd∥1{d

and thus αm̊p4´sBq “ 4´sαm̊pBq, so we could compute the norms of powers of B

and then perform scaling as required. More computational effort can be saved in

finding αm̊pBq by estimating the 1-norms of powers of B since it is enough to evaluate

accurately the order of magnitude of αm̊pBq. We adapt the numerical scheme used

by Fasi and Higham [15, Frag. 4.5] for estimating ∥Bd∥1, d P N`. The algorithm

efficiently computes BdW using available powers of B, where W P Cnˆt, with t ! n,

and integrates this process with the block 1-norm estimation algorithm normest1

proposed by Higham and Tisseur [28] that repeatedly computes the action of B on W,

without explicitly forming any powers of B. This algorithm requires only Opn2q flops.

The technique proposed by Fasi and Higham [15, sect. 4.1] can be exploited to ob-

tain a sharper bound at almost no extra cost, by reusing quantities computed during

previous steps of the algorithm. Since the algorithm considers the approximants in

nondecreasing order of cost, the value of d˚pmiq in (4.6) is nondecreasing in i. Hence,

in the process of seeking suitable a degree parameter we can use a variable αmin to

keep track of the smallest value of αm̊i
pBq computed up to now, and update it when a

new value αm̊j
pBq ă αmin is found for some j ą i, and in practical calculation we use

this αmin to replace αm̊pBq.

4.4 a multiprecision algorithm for the matrix cosine 93

On the other hand, we do not know ∥cosp2´s Aq∥ “ ∥cos X∥ a priori, so we could

use a lower bound for the norm of cos X, such as those presented in [20, Thm. 12.3].

In fact, we can even derive a sharper bound by exploiting the result in [2, Thm. 4.2(a)]:

with Y “ X2,

∥cos X∥ “

›

›

›

›

›

I `

8
ÿ

i“1

p´1qi

p2iq!
X2i

›

›

›

›

›

ě 1 ´

›

›

›

›

›

8
ÿ

i“1

p´1qi

p2iq!
Yi

›

›

›

›

›

ě 1 ´

8
ÿ

i“1

`
a

αmpYq
˘2i

p2iq!
“ 2 ´ cosh

`

a

αmpYq
˘

.

However, to use this bound or those in [20, Thm. 12.3] it is required that θ ă

cosh´1
p2q, for θ “

a

αmpYq or θ “
a

∥Y∥. This condition on the norm of the scaled

matrix Y “ 4´s A2 can require a very large s (when ∥A∥ is large), which means a

large number of double angle recurrence steps. This potentially rigid restriction on

s is undesirable, especially for an algorithm aiming for arbitrary precision. Alterna-

tively, an absolute bound can be used in developing the algorithm, for example [19],

[27], [35], and clearly this is reasonable if ∥Y∥ is not too large. In our algorithm we

truncate the Taylor series to obtain the practical approximation

cosp2´s Aq «

ℓ
ÿ

i“0

p´1qi

p2iq!
p2´s Aq2i “

ℓ
ÿ

i“0

p´4´sqi

p2iq!
Bi, ℓ “ lengthpBq, (4.10)

where B “ tI, B, B2, . . . u is an array that stores the powers of B “ A2, and lengthpBq

is the number powers in B with positive exponents. This is the best approximation

we currently have to cosp2´s Aq. In practice, we can evaluate (4.10) in a lower preci-

sion (for example, single or double precision if the working precision is higher than

double) since it suffices to obtain the correct order of magnitude of ∥cosp2´s Aq∥ in

the bound (4.7), and in fact this is necessary for better efficiency considering that we

have to recompute the coefficients in (4.10) when s is changed. We update B when it

does not contain the first t
?

mu powers of B, so the value of lengthpBq varies with the

degree m. Since the estimate (4.10) uses only the powers of B that are available in B,

it requires only Opn2q flops.

94 arbitrary precision algorithms for matrix cosine

Fragment 4.1: Error bound checking for the matrix cosine.

1 function EvalBoundpB P Cnˆn, m, s P Nq

Ź Check (4.8) using elements in B. Lines 2–3 are executed in precision u, line 10 is
executed in precision u1.2, and the other lines can be executed in a precision lower
than precision u.

2 for i Ð lengthpBq ` 1 to t
?

mu do
3 Bi “ Bi´1B

4 d˚ Ð t
1`?

4m`5
2 u

5 if bd˚ “ ´8 then
6 bd˚ Ð normest1pλx.EvalPowVecpd˚, xqq1{d˚

7 if bd˚`1 “ ´8 then
8 bd˚ Ð normest1pλx.EvalPowVecpd˚ ` 1, xqq1{pd˚`1q

9 αmin Ð mintmaxtbd˚ , bd˚`1u, αminu

10 δnxt Ð coshp
?

4´sαminq ´ tch
2mi

p
?

4´sαminq

11 M Ð
řlengthpBq

i“0
p´4´sqi

p2iq! Bi

12 ϕ Ð normest1pλx.Mxq

13 return δnxt, ϕ

14 function EvalPowVecpW P Cnˆt, d P Nq

Ź Compute BdW using elements in B.
15 ℓ Ð lengthpBq

16 while d ą 0 do
17 for i Ð 1 to td{ℓu do
18 W Ð BℓW

19 d Ð d mod ℓ
20 ℓ Ð mintℓ ´ 1, du

21 return W

The function EvalBound in Fragment 4.1 shows how the bound (4.8) can be eval-

uated efficiently using the techniques discussed above. We use some extra precision

in forming the sum in the tch
2m term in the error bound (4.8) to guarantee sufficient

accuracy, and we found this strategy makes no noticeable difference to the speed. In

our implementation we only compute and store these scalar coefficients at run time

when the order increases from mi to mi`1, so each of the coefficients is calculated at

most once. Within the 1-norm estimating function normest1 in EvalBound, we have

used the lambda syntax from lambda calculus for an anonymous function: λx. f pxq

denotes a function that replaces all the occurrences of x in the body of f with the

value of its input argument.

4.4 a multiprecision algorithm for the matrix cosine 95

Fragment 4.2: Modified Paterson–Stockmeyer algorithm for the cosine.

1 function PSEvalCospB P Cnˆn, m, s P Nq

Ź Evaluate
řm

i“0 cip4´sBqi using elements of B.
2 for i Ð 0 to m do
3 ci Ð p´1qi{p2iq!

4 ν Ð t
?

mu

5 µ Ð tm{νu

6 for i Ð lengthpBq ` 1 to ν do
7 Bi Ð Bi´1B

8 C Ð
řm´µν

j“0 cµν`j4´sjBj

9 for i Ð µ ´ 1 down to 0 do
10 C Ð 4´sνCBν `

řν´1
j“0 cνi`j4´sjBj

11 return C

For a chosen combination of s and m, if the bound (4.8) is not satisfied we can

either increase m from mi to mi`1 to use a Taylor approximant of higher order or

increment the scaling parameter s, to reduce the truncation error of approximation.

Both options will increase the dominant part of the computational cost by one matrix

multiplication. Although increasing s will increase the number of matrix squarings

that will occur during the recovering phase of the algorithm, which is a potentially

significant source of rounding errors for the algorithm, we still need to choose s such

that the norm of X “ 2´s A is sufficiently small in order for the Taylor approximation

of cos X to be computed stably and accurately. On the other hand, when ∥2´s A∥ " 1

both the actual error and the bound (4.4) can decrease extremely slowly as m in-

creases, leading to the use of an approximant of degree much higher then necessary,

which in turn results in loss of accuracy in floating-point arithmetic and unnecessary

computation. It sometimes can be cheaper (and even more accurate) to perform a

stronger scaling on A and use a lower order approximant.

Facing this flexibility in selecting the algorithmic parameters, algorithms aiming

for a fixed precision environment usually choose to consider the approximants only

up to a certain order, or set a scaling threshold η ą 0 and keep increasing s until

∥2´s A∥ ď η is satisfied. The multiprecision algorithm for the matrix exponential [15]

determines both parameters at run time by monitoring the decay rate of the bound

96 arbitrary precision algorithms for matrix cosine

Fragment 4.3: Recomputation of the diagonals.

1 function RecompDiagspA, C P Cnˆnq

Ź Compute main diagonal and first superdiagonal of C « cos A for upper triangular
or real upper quasi-triangular A.

2 for i “ 1 to n do
3 if i “ n ´ 1 or i ď n ´ 2 and ai`2,i`1 “ 0 then
4 if ai`1,i “ 0 then
5 Recompute cii, ci,i`1, ci`1,i`1 using [5, eqs. (3.1), (3.3)].
6 else
7 Recompute cii, ci,i`1, ci`1,i, ci`1,i`1 using [5, eq. (3.6)].

8 i Ð i ` 1
9 else
10 cii Ð cos aii

11 return C

on the truncation error of the approximant as m increases, and this heuristic proves

to be effective. Let us denote the truncation error bound associated with the Taylor

approximant of order 2mi of this algorithm by

δi “ cosh
´b

αm̊i
p4´sBq

¯

´ tch
2mi

´b

αm̊i
p4´sBq

¯

. (4.11)

In the algorithm we increment s when δi´1 ă δk
i , k P N`, that is, when the bound on

the absolute error does not decay at least at the order k as m increases from mi´1 to mi.

We found in practice that k “ 3 is the best choice for accuracy.

Once a combination of Taylor approximant of order m and scaling parameter s

is found, the algorithm computes an approximation to cosp2´s Aq by evaluating the

polynomial pc
mp4´sBq using the modified Paterson–Stockmeyer method PSEvalCos

given in Fragment 4.2, and finally recovers cos A by applying s steps of the double

angle recurrence. If A is upper quasi-triangular, then in order to reduce the round-

ing errors introduced during the recovering phase and improve accuracy of the final

result, the algorithm recomputes the diagonal and first superdiagonal of the interme-

diate matrices in the recovering stage from the elements of A, as discussed in [5], and

this is accomplished by RecompDiags in Fragment 4.3. The algorithm can optionally

make use of preprocessing (and postprocessing) techniques as discussed in [19], [27].

4.4 a multiprecision algorithm for the matrix cosine 97

Algorithm 4.4: Multiprecision algorithm for the matrix cosine.
Given A P Cnˆn this algorithm computes an approximation C to cos A in floating-
point arithmetic with unit roundoff u using a scaling and recovering method
based on Taylor approximants. The pseudocode of EvalBound is given in Frag-
ment 4.1, that of PSEvalCos in Fragment 4.2, and that of RecompDiags in Frag-
ment 4.3. The function isSchurForm returns true if A is upper triangular or real
and upper quasi-triangular, and otherwise false.

1 B Ð A2

2 B0 Ð I
3 B1 Ð B
4 αmin Ð 8

5 δpre Ð 8

6 b Ð r´8, ´8, . . . s

7 s Ð 0
8 i Ð 1
9 rδnxt, ϕs Ð EvalBoundpB, mi, sq

10 while δnxt ą uϕ and i ă N do
11 if δpre ă δk

nxt then
12 s Ð s ` 1
13 else
14 i Ð i ` 1

15 δpre Ð δnxt
16 rδnxt, ϕs Ð EvalBoundpB, mi, sq

17 C Ð PSEvalCospB, mi, sq

18 if isSchurFormpAq then
19 C Ð RecompDiagsp2´s A, Cq

20 for j Ð 1 to s do
21 C Ð 2C2 ´ I
22 if isSchurFormpAq then
23 C Ð RecompDiagsp2´s`j A, Cq

24 return C

We now present the complete precision-independent scaling and recovering algo-

rithm for the matrix cosine, which is given in Algorithm 4.4. In addition to the matrix

A P Cnˆn, the algorithm takes the following input arguments.

‚ The arbitrary precision floating-point parameter u ą 0 that specifies the unit

roundoff of the working precision of the algorithm.

‚ The positive integer mmax determines the maximum order of the approximants

pc
m in (4.9) that the algorithm can consider. The algorithm will try the orders

m “ mi ascendingly for i “ 1 : N such that mN ď mmax ă mN`1.

98 arbitrary precision algorithms for matrix cosine

In the algorithm the variables B, b, and αmin are assumed to be available within all

the code fragments (that is, their scope is global in the codes). We use the notation

rx, x, . . . s to denote a vector whose elements are all initialized to x and whose length

is unimportant, and such a vector b is defined to store the approximated values of

∥Bd∥1{d
1 , d P N`, so the 1-norm of each power of B is estimated at most once.

Overall, Algorithm 4.4 requires about 2
?
mi ` s matrix multiplications, or a total of

p4
?
mi ` 2sqn3 flops in the highest order in precision u, where 2

?
mi multiplications are

for forming the required powers of B and evaluating the polynomial pc
mp4´sBq, and s

multiplications are for performing the final recovering phase.

4.4.1 Schur variant

If A is normal (A˚ A “ AA˚) and a multiprecision implementation of the QR al-

gorithm [17, sect. 7.5] is available, then we should simply diagonalize A in preci-

sion u to obtain A “ QDQ˚ with Q unitary and D diagonal and then compute

cos A “ Q cospDqQ˚. More generally, for nonnormal A a (real) Schur decomposition

can be computed before invoking our multiprecision algorithm. More specifically, we

compute A “ QTQ˚, where Q and T are, respectively, unitary and upper triangular

if A has complex entries and orthogonal and upper quasi-triangular if A has real

entries; then we compute cos A “ Q cospTqQ˚. This Schur variant of the algorithm

requires
`

28 ` p4
?
mi ` 2sq{3

˘

n3 flops in precision u.

4.5 computing the fréchet derivative

The Fréchet derivative of a matrix function f at A P Cnˆn is a linear operator L f pA, ¨q

satisfying

f pA ` Eq ´ f pAq ´ L f pA, Eq “ op∥E∥q

4.5 computing the fréchet derivative 99

for all E P Cnˆn. It appears in an expression for the condition number [20, sect. 3.1]:

condp f , Aq :“ lim
ϵÑ0

sup
∥E∥ďϵ∥A∥

∥ f pA ` Eq ´ f pAq∥
ϵ∥ f pAq∥ “

∥L f pAq∥∥A∥
∥ f pAq∥ ,

where

∥L f pAq∥ :“ max
G‰0

∥L f pA, Gq∥
∥G∥ .

The condition number measures the first order sensitivity of f pAq to small perturba-

tions in A.

Recall that the truncation error for a Taylor approximant of degree 2m to cos X is

cos X ´ tc
2mpXq “

8
ÿ

i“m`1

ciX2i, ci :“
p´1qi

p2iq!
. (4.12)

Fréchet differentiating both sides of (4.12) at X “ 2´s A in the direction Es :“ 2´sE

gives the truncation error for an approximation to the Fréchet derivative:

LcospX, Esq ´ Ltc
2m

pX, Esq “

8
ÿ

i“m`1

ciLx2i pX, Esq. (4.13)

From (4.13) we can approximate LcospX, Esq by Ltc
2m

pX, Esq with a controllable trun-

cation error. We will discuss in detail the computation of Ltc
2m

pX, Esq, the Fréchet

derivative of a power series, in the next subsection.

Now we derive the basic framework for computing cos A and LcospA, Eq simulta-

neously given that the approximated values of cos X ” cosp2´s Aq and LcospX, Esq ”

Lcosp2´s A, 2´sEq are available. Fréchet differentiating the double angle formula cosp2Aq “

2 cos2 A ´ I and employing the chain rule, we have the relation

Lcosp2A, 2Eq “ L2x2´1
`

cos A, LcospA, Eq
˘

.

100 arbitrary precision algorithms for matrix cosine

Then using the linearity of the Fréchet derivative and the sum and product rules [20,

Sec. 3.2], we obtain

Lcosp2A, 2Eq “ 2
`

cos ALcospA, Eq ` LcospA, Eq cos A
˘

.

Using this relation we can construct the following recurrence relation, which yields

C0 :“ cos A and L0 :“ LcospA, Eq simultaneously:

Ls “ Lcosp2´s A, 2´sEq,

Cs “ cosp2´s Aq,

Lk´1 “ 2pCkLk ` LkCkq

Ck´1 “ 2C2
k ´ I

,

/

.

/

-

k “ s : ´1 : 1.

4.5.1 Error analysis and evaluation scheme

We can derive an error bound for the approximation LcospX, Esq « Ltc
2m

pX, Esq. Taking

norms on both sides of (4.13) gives

∥LcospX, Esq ´ Ltc
2m

pX, Esq∥ ď

8
ÿ

i“m`1

2i|ci|∥Es∥∥X∥2i´1 “ ∥Es∥
8
ÿ

i“m

∥X∥2i`1

p2i ` 1q!

“ ∥Es∥
´

sinhp∥X∥q ´

m´1
ÿ

i“0

∥X∥2i`1

p2i ` 1q!

¯

, (4.14)

where we have used the result ∥Lxi pX, Esq∥ ď i∥Es∥∥X∥i´1 [3, Thm. 3.2]. One advan-

tage of this forward error bound for the Fréchet derivative of tc
2m is that it can be

used in a multiprecision environment. Note that the error bound is based on ∥X∥,

whereas the error bound for tc
2m itself is based on αm̊pX2q. Since the bound based

on ∥X∥ can be arbitrarily weak (see the discussion in section 4.3) we will base our

algorithm for computing cos A and LcospA, Eq on the αm-based bound (4.8). We will

test experimentally whether this produces an accurate Fréchet derivative. A simi-

lar situation holds in the works [4] for the matrix logarithm and [22] for the matrix

fractional powers, where the algorithms (designed for double precision) are based

4.5 computing the fréchet derivative 101

Fragment 4.5: Modified Paterson–Stockmeyer scheme for the matrix cosine
and its Fréchet derivative.
1 function PSEvalCosLcpA, B, E P Cnˆn, m, s P Nq

Ź Compute simultaneously C « cosp2´s Aq and L « Lcosp2´s A, 2´sEq.
2 for i “ 0 to m do
3 ci Ð p´1qi{p2iq!

4 ν Ð t
?

mu

5 µ Ð tm{νu

6 for i Ð lengthpBq ` 1 to ν do
7 Bi Ð Bi´1B

8 for i Ð 0 to µ ´ 1 do
9 Zi Ð

řν´1
j“0 cνi`j4´sjBj

10 Zµ Ð
řm´µν

j“0 cνi`j4´sjBj

11 M1 Ð 4´spAE ` EAq

12 for j Ð 2 to ν do
13 Mj Ð 4´sMj´1B ` 4´spj´1qBj´1M1

14 N1 Ð Mν

15 P Ð N1
16 for i Ð 2 to µ do
17 P Ð 4´sνBνP
18 Ni Ð 4´sνNi´1Bν ` P

19 C Ð Zµ

20 L Ð
řm´µν

j“1 cνi`jMj

21 for i Ð µ ´ 1 down to 0 do
22 C Ð 4´sνCBν ` Zi

23 L Ð 4´sνLBν `
řν´1

j“1 cνi`jMj

24 L Ð L `
řµ

i“1 ZiNi
25 return C, L

on backward αm-based error bounds for the functions themselves. Of course, if the

Fréchet derivatives are being used for condition number estimation then an accurate

derivative is not required.

Now we derive an evaluation scheme for computing cos X and LcospX, Esq in a way

that reuses matrix operations from the computation of cos X in the computation of

LcospX, Esq. Fréchet differentiating both sides of tc
2mpXq “ pc

mpYq from (4.9), where

Y “ X2, at X in direction Es and using the chain rule, we have

Ltc
2m

pX, Esq “ Lpc
m

`

X2, Lx2pX, Esq
˘

“ Lpc
m pY, XEs ` EsXq.

102 arbitrary precision algorithms for matrix cosine

Recall that pc
mpYq is evaluated by the Paterson–Stockmeyer method. To be more

specific, we rewrite the polynomial as

pc
mpYq “

µ
ÿ

i“0

ZipYνqi, µ “ tm{νu, (4.15)

where

Zi “

$

’

’

&

’

’

%

řν´1
j“0 cνi`jY j, i “ 0, . . . , µ ´ 1,

řm´µν
j“0 cνi`jY j, i “ µ.

Note that the powers of Y “ 4´sB up to the νth are available by ν matrix scalings

given that we have formed those powers of B. Fréchet differentiating both sides

of (4.15) at Y in direction rEs :“ XEs ` EsX and employing the product rule, we have

Lpc
m pY, rEsq “

µ
ÿ

i“0

Lzi pY, rEsqpYνqi `

µ
ÿ

i“1

Zi Mνi,

where

Lzi pY, rEsq “

$

’

’

&

’

’

%

řν´1
j“1 cνi`j Mj, i “ 0, . . . , µ ´ 1,

řm´µν
j“1 cνi`j Mj, i “ µ,

and Mj :“ Lyi pY, rEsq satisfies the recurrence relation

Mj “ Mℓ1Yℓ2 ` Yℓ1 Mℓ2 , M1 “ rEs, (4.16)

where j “ ℓ1 ` ℓ2 with positive integers ℓ1 and ℓ2 [3, Thm. 3.2]. Hence, it is ef-

ficient to compute explicitly and store Zi in computing pc
mpYq « cosp2´s Aq as we

can reuse these coefficient matrices for computing Lpc
m pY, rEsq. In addition, Mj for

j “ 1, 2, . . . , ν ´ 1 and j “ ν, 2ν, . . . , µν are needed. Using (4.16) we can compute

Mj “ Mj´1Y ` Y j´1M1, j “ 2 : ν,

Miν “ Mpi´1qνYν ` Ypi´1qν Mν, i “ 2 : µ, (4.17)

where all the required powers of Y are available if both the right-hand sides of (4.15)

and (4.17) are evaluated via explicit powers. However, we found in practice that

4.5 computing the fréchet derivative 103

Algorithm 4.6: Multiprecision algorithm for the matrix cosine and its Fréchet
derivative.

Given A P Cnˆn and E P Cnˆn this algorithm computes simultaneously C « cos A
and L « LcospA, Eq in floating-point arithmetic with unit roundoff u using a
scaling and recovering method based on Taylor approximants. The pseudocode
of PSEvalCosLc is given in Fragment 4.5, and that of RecompDiags in Frag-
ment 4.3.

1 Execute lines 1–16 in Algorithm 4.4.
2 rC, Ls Ð PSEvalCosLcpA, B, E, mi, sq

3 if isSchurFormpAq then
4 C Ð RecompDiagsp2´s A, Cq

5 for j Ð 1 to s do
6 L Ð 2pCL ` LCq

7 C Ð 2C2 ´ I
8 if isSchurFormpAq then
9 C Ð RecompDiagsp2´s`j A, Cq

10 return C, L

evaluating the right-hand side of (4.15) via explicit powers produces a less accurate

approximation for cosp2´s Aq than using Horner’s method. We hence use Horner’s

method and form the extra powers Yiν, i “ 2, . . . , µ ´ 1 implicitly when required

in (4.17).

We summarize in Fragment 4.5 our scheme for computing simultaneously cosp2´s Aq

and Lcosp2´s A, 2´sEq where we have introduced the arrays Zi “ Zi, i “ 0, . . . , µ,

Mj “ Mj, j “ 1, . . . , ν, and Ni “ Miν, i “ 1, . . . , µ.

Exploiting Fragment 4.5, we obtain Algorithm 4.6, the overall algorithm for com-

puting cos A and LcospA, Eq simultaneously. The total cost of Algorithm 4.6 in preci-

sion u in the highest order is the p4
?
mi ` 2sqn3 flops cost of Algorithm 4.4 plus the

extra cost for computing LcospA, Eq, which consists of about 6
?
mi matrix multiplica-

tions for computing the required coefficient matrices Mj and forming the approxi-

mated Lcosp2´s A, 2´sEq, and 2s matrix multiplications in the recovering recurrence

for LcospA, Eq, namely an extra cost of p12
?
mi ` 4sqn3 flops. This algorithm also re-

quires about 3
?
min2 additional memory locations for the storage of the Zi and Mi for

the computation of LcospA, Eq.

104 arbitrary precision algorithms for matrix cosine

If a Schur decomposition T “ Q˚ AQ is computed before invoking Algorithm 4.6,

then for the Fréchet derivative we need apply to the direction E the same transforma-

tion and undo the transformation at the end [20, Prob. 3.2], arriving at LcospA, Eq “

QLcospT, Q˚EQqQ˚. If a real Schur decomposition is computed and E is full, the

Schur variant of Algorithm 4.6 requires an extra cost of
`

8 ` p12
?
mi ` 4sq{2

˘

n3 flops

in precision u for computing the Fréchet derivative. For normal A we can simply em-

ploy an explicit formula obtained from the Daleckiı̆–Kreı̆n theorem [20, Thm. 3.11]

for computing the Fréchet derivative.

In some situations, such as in condition estimation, when several Fréchet deriva-

tives LcospA, Eq are needed at a fixed A and different direction we need only compute

the parameters s and m once since they depend only on A.

4.5.2 Extension to the sine and its Fréchet derivative

It is straightforward to bound the truncation error of a Taylor approximant to the

matrix sine function in a similar way to (4.4), by employing the hyperbolic sine. We

have

∥sin A ´ ts
2m`1pAq∥ ď ∥A∥

›

›

›

›

›

8
ÿ

i“m`1

p´1qi

p2i ` 1q!
Bi

›

›

›

›

›

ď
∥A∥

a

αmpBq

8
ÿ

i“m`1

`
a

αmpBq
˘2i`1

p2i ` 1q!

“
∥A∥

a

αmpBq

´

sinh
`

a

αmpBq
˘

´ tsh
2m`1

`

a

αmpBq
˘

¯

, (4.18)

where

ts
2m`1pAq :“

m
ÿ

i“0

p´1qi

p2i ` 1q!
A2i`1, tsh

2m`1pAq :“
m
ÿ

i“0

1
p2i ` 1q!

A2i`1 (4.19)

are the Taylor approximants of order 2m ` 1 to sin A and sinh A, respectively. Based

on the ts
2m`1 of (4.19) together with the triple angle recurrence sinp3Aq “ 3 sin A ´

4 sin3 A we can design a multiprecision algorithm for the matrix sine similarly to that

in section 4.4. Moreover, an algorithm for computing the matrix sine and cosine at the

4.5 computing the fréchet derivative 105

same time can be easily developed exploiting the idea in [5], where computational

savings are possible by reusing the powers of B “ A2 in the matrix array B.

On the other hand, we can evaluate the matrix sine and its Fréchet derivative

simultaneously without computing cos A. Fréchet differentiating the triple angle

formula sinp3Aq “ sin Ap3I ´ 4 sin2 Aq and employing the product rule, we arrive at

Lsinp3A, 3Eq “ LsinpA, Eq
`

3I ´ 4 sin2 A
˘

(4.20)

´ 4 sin A
`

sin A LsinpA, Eq ` LsinpA, Eq sin A
˘

.

If we scale A by 3s for some s P N, using (4.20) we obtain the following relation

which produces S0 :“ sin A and rL0 :“ LsinpA, Eq simultaneously:

rLs “ Lsinp3´s A, 3´sEq, Ss “ sinp3´s Aq,

rLk´1 “ rLkp3I ´ 4S2
kq ´ 4SkpSkrLk ` rLkSkq

Sk´1 “ Skp3I ´ 4S2
kq

,

/

.

/

-

k “ s : ´1 : 1,

where Sk can be evaluated by a Taylor approximant with truncation error bounded

above by (4.18), and an approximated rLk is obtainable by Fréchet differentiating Sk in

the direction 3´sE.

Ultimately, it is possible to construct an algorithm to compute efficiently the matrix

cosine and sine functions and their Fréchet derivatives all together. Fréchet differen-

tiating both sides of the double angle formulae

cosp2Aq “ I ´ 2 sin2 A, sinp2Aq “ 2 sin A cos A

gives

Lcosp2A, 2Eq “ ´2
`

sin A LsinpA, Eq ` LsinpA, Eq sin A
˘

,

Lsinp2A, 2Eq “ 2
`

sin A LcospA, Eq ` LsinpA, Eq cos A
˘

,

106 arbitrary precision algorithms for matrix cosine

from which we can obtain the following recurrence for computing C0 “ cos A, S0 “

sin A, L0 “ LcospA, Eq, and rL0 “ LsinpA, Eq all together.

Ls “ Lsinp2´s A, 2´sEq, rLs “ Lsinp2´s A, 2´sEq,

Cs “ cosp2´s Aq, Ss “ sinp2´s Aq,

Lk´1 “ ´2pSkrLk ` rLkSkq

rLk´1 “ 2pSkLk ` rLkCkq

Sk´1 “ 2SkCk

Ck´1 “ I ´ 2S2
k

,

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

-

k “ s : ´1 : 1.

4.6 numerical experiments

All our experiments were performed using the 64-bit version of MATLAB 2021a on

a laptop equipped with an Intel i7-6700HQ processor running at 2.60GHz and with

16GB of RAM. The code uses the Advanpix Multiprecision Computing Toolbox (ver-

sion 4.8.3.14463) [32], which allows the user to specify the number of decimal digits d

of working precision by using the command mp.Digits(d).

The test matrices, whose size ranges between 4 and 41, are nonnormal and are

selected from Anymatrix [25], [24] and the literature of matrix functions [5], [15], [27];

those from the matrix function literature are collected in an Anymatrix group that

is available on GitHub.1 Normal matrices are excluded since they can be easily han-

dled by diagonalization, as we have discussed in the previous sections. Most of test

matrices have only real elements and are set to be of size 16 ˆ 16. To examine the

algorithms for complex matrices we also test the above matrices multiplied by the

imaginary unit i. In total 198 matrices are used in the experiments, and we denote

by F the set containing these matrices. The MATLAB code for our algorithms and

experiments is available on GitHub.2

1 https://github.com/Xiaobo-Liu/matrices-mp-cosm
2 https://github.com/Xiaobo-Liu/mp-cosm

https://github.com/Xiaobo-Liu/matrices-mp-cosm
https://github.com/Xiaobo-Liu/mp-cosm

4.6 numerical experiments 107

We compare the following codes for computing the cosine. The first three codes are

for double precision only, and are used to test whether our algorithm is competitive

in double precision.

‚ cosm, the algorithm by Al-Mohy, Higham, and Relton [5, Alg. 4.1], which is

intended for double precision only.

‚ cosm_tay, the algorithm by Sastre et al. [36], which uses the scaling and re-

covering method based on truncated Taylor series, and is intended for double

precision only.

‚ cosm_pol, the algorithm by Sastre et al. [37], which uses Taylor polynomial

approximations of fixed degree with precomputed coefficients, and is intended

for double precision only.

The next four codes are for arbitrary precision.

‚ cosm_adv, the (overloaded) cosm function provided by the Advanpix Multipreci-

sion Computing Toolbox [32].3

‚ cosm_exp, the algorithm [20, Alg. 12.7] that computes the cosine via the identity

involving the exponential

cos A “

$

’

’

&

’

’

%

RepeiAq, if A is real,

1
2 peiA ` e´iAq, if A is complex,

(4.21)

where the exponential is computed by expm [2] and the multiprecision algorithm

for the matrix exponential [15], respectively, in double precision and other pre-

cisions.

‚ cosm_mp, our implementation of Algorithm 4.4 with mmax “ 500.

‚ cosm_mp_s, our implementation of the Schur variant of Algorithm 4.4 with

mmax “ 500 (the real Schur decomposition is used where possible).

3 This function in fact uses a multiprecision Schur–Parlett algorithm in computation, according to a
private communication with Pavel Holoborodko, the author of the toolbox.

108 arbitrary precision algorithms for matrix cosine

We found in practice that the preprocessing techniques in general made little differ-

ence to accuracy of our algorithm (this is also found in [19], for example). Therefore,

we did not perform preprocessing in the tests. We also compared cosm_mp with its

counterpart based on an absolute error bound and found that the former is faster

and more accurate in practice. In our implementation of Algorithm 4.4 we set k “ 3,

which controls the switch between increasing m and s as the truncation error decays,

and we chose the lower precision in Fragment 4.1 to be double precision.

We assess the quality of a computed solution rX by an algorithm running with

d digits of precision in terms of the 1-norm relative forward error ∥X ´ rX∥1{∥X∥1,

where the reference solution X is computed in 2d digits of precision using cosm_mp

with mmax “ 2500. We gauge the forward stability of the algorithms by comparing

the forward error with κcospAqu, where κcospAq is the 1-norm condition number [20,

Chap. 3] of the matrix cosine of A. We estimate it in double precision by applying

the funm_condest1 function provided by the Matrix Function Toolbox [21] to cosm.

To improve the plots of forward error, we map any errors outside the displayed

range onto the nearest edge (top or bottom) of the plot. We also present the re-

sults in the form of performance profiles [13], and use the technique of Dingle and

Higham [12] to rescale errors smaller than u.

4.6.1 Accuracy of the computed cosine in double precision

Our first experiments compare the accuracy of cosm_mp and cosm_mp_s with cosm,

cosm_exp, cosm_tay, cosm_pol, and cosm_adv in IEEE double precision, with cosm_adv

running with 16 decimal digits of precision simulated by Advanpix [32].

Figure 4.1 presents the comparison in accuracy between the algorithms on the test

matrices, sorted by decreasing condition number. In the performance profiles, the

y-coordinates of a given method represents the frequency of matrices for which its

relative error is within a factor θ of the error of the algorithm that produces the most

accurate result. We observe that our implementation of cosm_mp in double precision

is competitive in accuracy with the most accurate algorithms that are optimized for

4.6 numerical experiments 109

0 20 40 60 80 100 120 140 160 180 200
A 2 F

10-18

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

5cos(A)u
cosm tay
cosm pol
cosm mp
cosm exp
cosm
cosm adv
cosm mp s

5 10 15 20 25
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

cosm tay
cosm pol
cosm mp

cosm exp
cosm
cosm adv

cosm mp s

Figure 4.1: Left: forward errors of the algorithms on the matrices in F in double precision, where the
solid line is κcospAqu. Right: corresponding performance profiles.

double precision. We also note that among the algorithms cosm_adv is overall the

least accurate and can be unstable, as it sometimes provides a forward error far

above κcospAqu.

4.6.2 Accuracy in higher precision

Now we examine the accuracy of our algorithms in higher precision. We compare

the relative forward errors of cosm_adv, cosm_exp, cosm_mp, and cosm_mp_s running

at 256 and 1024 decimal digits of precision on the test matrices, and report the same

data in the form of performance profiles.

As reported in Figure 4.2, cosm_mp delivers superior accuracy to its counterparts

and gives the best accuracy in more than 60 percent of the cases. The exponential-

based algorithm cosm_exp is only slightly less accurate than cosm_mp. The Schur-

based algorithm cosm_mp_s is distinctively less accurate than its Schur-free counter-

part. We also note that cosm_adv achieves the worst overall accuracy in the experi-

ments and shows signs of forward instability, especially when the number of decimal

digits is increased from 256 to 1024, as it gives errors much larger than κcospAqu in

many cases.

110 arbitrary precision algorithms for matrix cosine

0 20 40 60 80 100 120 140 160 180 200
A 2 F

10-258

10-256

10-254

10-252

10-250

10-248

10-246

10-244

10-242

5cos(A)u
cosm mp
cosm exp
cosm adv
cosm mp s

5 10 15 20 25
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

cosm mp
cosm exp
cosm adv
cosm mp s

0 20 40 60 80 100 120 140 160 180 200
A 2 F

10-1026

10-1024

10-1022

10-1020

10-1018

10-1016

10-1014

10-1012

10-1010

5cos(A)u
cosm mp
cosm exp
cosm adv
cosm mp s

5 10 15 20 25
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

cosm mp
cosm exp
cosm adv
cosm mp s

Figure 4.2: Left: forward errors of the algorithms on the matrices in F in d digits of precision, where
the solid line is κcospAqu. Right: corresponding performance profiles. Top: d “ 256. Bottom:
d “ 1024.

4.6.3 Speed comparison for computing the cosine

We also compared the execution times of our implementations of cosm_mp and cosm_mp_s

with the other algorithms in double and higher precisions. For this purpose it is sen-

sible to test the algorithms on matrices of different sizes, so we take from F the

matrices whose size is variable in the tests. We denote the new set of 104 matrices by

V .

Figure 4.3 shows that, in double precision, cosm_tay, cosm_pol, cosm_exp, and

cosm are the fastest algorithms and have close performance in computation time.

These double-precision-oriented algorithms employ a rational approximant of degree

chosen from a fixed set based on error bounds with precomputed coefficients and are

highly optimized in selecting the degree and scaling parameter, so in general cosm_mp

and cosm_mp_s are not expected to be as efficient. However, from the performance

4.6 numerical experiments 111

0 10 20 30 40 50 60 70 80 90 100
A 2 V ; n = 16

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02
cosm mp s
cosm mp
cosm
cosm exp
cosm tay
cosm pol

5 10 15 20 25 30
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

cosm pol
cosm tay
cosm
cosm exp
cosm mp
cosm mp s
cosm adv

0 10 20 30 40 50 60 70 80 90 100
A 2 V ; n = 100

0

0.01

0.02

0.03

0.04

0.05

0.06
cosm mp s
cosm mp
cosm
cosm exp
cosm tay
cosm pol

5 10 15 20 25 30
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

cosm pol
cosm tay
cosm
cosm exp
cosm mp
cosm mp s
cosm adv

Figure 4.3: Execution times (in seconds) and the corresponding performance profile of the algorithms
for matrices of different size in V in double precision. The execution times for cosm_adv are
significantly larger and are not plotted.

profiles we observe that cosm_mp has relatively better performance as n increases

from 16 to 100. This is because the Opn2q flops required by cosm_mp in evaluating

the error bound, which is extra compared with the above double-precision-oriented

algorithms, are expensive for small matrices but become negligible for large n. The

Schur-based algorithm cosm_mp_s becomes relatively slower as n grows. We also note

that cosm_adv is appreciably slower than the rest of the algorithms in both cases.

Then we compare the execution times of cosm_adv, cosm_exp, cosm_mp, and cosm_mp_s

in precisions higher than double. Figure 4.4 reports the execution times and corre-

sponding performance profiles of these algorithms in 256 digits of precision, where

matrices of size n “ 16 and n “ 100 are used. It is observed that cosm_mp is substan-

tially faster than the other algorithms, being the fastest algorithm on about 80 percent

of the matrices in both sets. The Schur-based algorithm cosm_mp_s is in general faster

than cosm_exp for n “ 16, but its performance deteriorates for n “ 100. cosm_adv

112 arbitrary precision algorithms for matrix cosine

0 10 20 30 40 50 60 70 80 90 100
A 2 V ; n = 16

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
cosm adv
cosm mp s
cosm exp
cosm mp

1 2 3 4 5 6 7 8 9 10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

cosm mp
cosm exp
cosm mp s
cosm adv

0 10 20 30 40 50 60 70 80 90 100
A 2 V ; n = 100

0

10

20

30

40

50

60

70

80

90

100
cosm adv
cosm mp s
cosm exp
cosm mp

1 2 3 4 5 6 7 8 9 10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

cosm mp
cosm exp
cosm mp s
cosm adv

Figure 4.4: Execution times (in seconds) and corresponding performance profiles of the algorithms in
256 digits of precision on matrices of different sizes.

is the least efficient algorithm and its behavior is unsteady as it can be much slower

than other algorithms on certain matrices. We repeated the above experiments in a

working precision of 1024 digits, finding similar behavior of the algorithms.

4.6.4 Accuracy of the computed Fréchet derivative

In this section we examine the accuracy of Algorithm 4.6 for computing the Fréchet

derivative in multiprecision arithmetic on the 198 matrices in set F . For each A,

we used a different E, generated to have pseudorandom elements drawn from the

standard normal distribution and normalised such that ∥E∥1 “ 1. We evaluate in the

1-norm the relative forward error of the computed Fréchet derivative. To obtain the

reference solution LcospA, Eq we apply Algorithm 4.4 with mmax “ 2500 in twice the

4.6 numerical experiments 113

0 20 40 60 80 100 120 140 160 180 200
A 2 F

10-18

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

5L(A;E)u
cosm fre mp
cosm fre blk
cosm fre mp s
cosm fre exp

5 10 15 20 25
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

cosm fre mp
cosm fre blk
cosm fre mp s
cosm fre exp

Figure 4.5: Left: forward errors in LcospA, Eq on the matrices in F in double precision, where the solid
line is κLpA, Equ. Right: corresponding performance profiles.

working precision to the 2n ˆ 2n matrix
“

A E
0 A

‰

and exploit the property, for arbitrary

f [20, eq. (3.16)],

f
ˆ„

A E
0 A

ȷ˙

“

„

f pAq L f pA, Eq

0 f pAq

ȷ

. (4.22)

We tested the following four schemes for computing the Fréchet derivative:

‚ cosm_fre_blk, Algorithm 4.4 with mmax “ 500 applied to the block 2 ˆ 2 matrix

in (4.22).

‚ cosm_fre_mp, our implementation of Algorithm 4.6 with mmax “ 500.

‚ cosm_fre_mp_s, our implementation of the Schur variant of Algorithm 4.6 with

mmax “ 500.

‚ cosm_fre_exp, which computes LcospA, Eq “ i
2 pLexppiA, Eq ´ Lexpp´iA, Eqq, which

is obtained by applying the chain rule to the complex case of (4.21), by invoking

the algorithm [3] for computing the Fréchet derivative of the matrix exponential,

and is intended for double precision only.

As in the previous experiments in the implementation of Algorithms 4.4 and 4.6 we

set k “ 3, which controls the switch between increasing m and s as the truncation

error decays. We also measure the forward stability of these algorithms by compar-

114 arbitrary precision algorithms for matrix cosine

0 20 40 60 80 100 120 140 160 180 200
A 2 F

10-258

10-256

10-254

10-252

10-250

10-248

10-246

10-244

10-242

5L(A;E)u
cosm fre mp
cosm fre blk
cosm fre mp s

5 10 15 20 25
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

cosm fre mp
cosm fre blk
cosm fre mp s

Figure 4.6: Left: forward errors in LcospA, Eq on the matrices in F in 256 digits of precision, where the
solid line is κLpA, Equ. Right: corresponding performance profiles.

ing the error with condLpA, Equ, where condLpA, Eq is the condition number of the

Fréchet derivative, defined as

condLpA, Eq “ lim
ϵÑ0

sup
∥∆A∥ďϵ∥A∥
∥∆E∥ďϵ∥E∥

∥LcospA ` ∆A, E ` ∆Eq ´ LcospA, Eq∥
ϵ∥LcospA, Eq∥ .

We estimate condLpA, Eq using an algorithm of Higham and Relton [26].

We observe from Figure 4.5 that cosm_fre_mp and cosm_fre_blk are competitive in

terms of accuracy. This also reflects the robustness of Algorithm 4.4 for computing

the matrix cosine. However, cosm_fre_blk has eight times the cost and four times the

storage requirement of cosm_fre_mp, and its performance may depend on the scaling

of the perturbation E, which is undesirable [22, sect. 4.3]. All the algorithms except

cosm_fre_exp behave in a forward stable manner in most of cases. The exponential-

based algorithm cosm_fre_exp is, in general, the least accurate and can be unstable

on some very well-conditioned problems.

Finally, we examine the accuracy of the algorithms in precisions higher than dou-

ble. Figure 4.6 shows a similar trend to that in the double precision. The Schur-free

algorithms cosm_fre_mp and cosm_fre_blk are most accurate and have close perfor-

mance, and all three algorithms are reasonably forward stable. We repeated the

above experiments in a working precision of 1024 digits, finding similar behavior of

the algorithms.

4.7 concluding remarks 115

4.7 concluding remarks

Existing algorithms for computing the matrix cosine are all designed for double preci-

sion arithmetic and typically require certain precomputed constants that are specific

to double precision arithmetic, so they do not conveniently extend to an arbitrary

precision environment. In this work we have developed multiprecision algorithms

that take the unit roundoff u and matrices A and E as input and compute cos A

and the Fréchet derivative LcospA, Eq. The algorithms employ a forward error bound

on the Taylor approximant to cos A that combines the hyperbolic cosine function

with the quantity
a

αmpA2q. We have also derived a framework for computing the

Fréchet derivative, constructed an efficient evaluation scheme for computing the co-

sine and its Fréchet derivative simultaneously in arbitrary precision, and shown how

this scheme can be extended to compute the matrix sine, cosine, and their Fréchet

derivatives all together.

Experiments show that our new algorithms behave in a forward stable manner in

floating-point arithmetic. The transformation-free version of the new algorithm for

computing the cosine is competitive in accuracy with the state-of-the-art algorithms

in double precision and is the fastest and most accurate among all candidates in work-

ing precisions higher than double. The fact that the Fréchet derivative computation

in Algorithm 4.6 is based on an error bound that is valid only for the cos A computa-

tion does not appear to affect the accuracy of the computed Fréchet derivative. The

new algorithms have been shown to have excellent accuracy on various test matrices

as well as their variants multiplied by the imaginary unit i, so the algorithms are also

good candidates for computing the matrix hyperbolic cosine function and its Fréchet

derivative from the identity cosh A “ cospiAq.

The analysis and techniques here can be adapted for evaluating other matrix trigono-

metric and hyperbolic functions in arbitrary precision arithmetic, such as those treated

in [1] and the wave-kernel functions investigated in [33] and their Fréchet derivatives.

Another possible future direction is to extend our algorithms to compute the action

116 arbitrary precision algorithms for matrix cosine

of these functions on a matrix in arbitrary precision as it is actually the matrix–vector

products that are required in the solutions of wave equations.

references

[1] A. H. Al-Mohy. “A truncated Taylor series algorithm for computing the action

of trigonometric and hyperbolic matrix functions.” SIAM J. Sci. Comput. 40.3

(2018), A1696–A1713 (cited on pp. 90, 115).

[2] A. H. Al-Mohy and N. J. Higham. “A new scaling and squaring algorithm

for the matrix exponential.” SIAM J. Matrix Anal. Appl. 31.3 (2009), pp. 970–989

(cited on pp. 87, 90, 93, 107).

[3] A. H. Al-Mohy and N. J. Higham. “Computing the Fréchet derivative of the

matrix exponential, with an application to condition number estimation.” SIAM

J. Matrix Anal. Appl. 30.4 (2009), pp. 1639–1657 (cited on pp. 100, 102, 113).

[4] A. H. Al-Mohy, N. J. Higham, and S. D. Relton. “Computing the Fréchet deriva-

tive of the matrix logarithm and estimating the condition number.” SIAM J. Sci.

Comput. 35.4 (2013), pp. C394–C410 (cited on p. 100).

[5] A. H. Al-Mohy, N. J. Higham, and S. D. Relton. “New algorithms for com-

puting the matrix sine and cosine separately or simultaneously.” SIAM J. Sci.

Comput. 37.1 (2015), A456–A487 (cited on pp. 85, 87, 96, 105–107).

[6] P. Alonso, J. Ibánez, J. Sastre, J. Peinado, and E. Defez. “Efficient and accu-

rate algorithms for computing matrix trigonometric functions.” J. Comput. Appl.

Math. 309 (2017), pp. 325–332 (cited on p. 88).

[7] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah. “Julia: A fresh approach

to numerical computing.” SIAM Rev. 59.1 (2017), pp. 65–98 (cited on p. 86).

[8] M. Caliari and F. Zivcovich. “On-the-fly backward error estimate for matrix

exponential approximation by Taylor algorithm.” J. Comput. Appl. Math. 346

(2019), pp. 532–548 (cited on p. 85).

https://doi.org/10.1137/17M1145227
https://doi.org/10.1137/17M1145227
https://doi.org/10.1137/09074721X
https://doi.org/10.1137/09074721X
https://doi.org/10.1137/080716426
https://doi.org/10.1137/080716426
https://doi.org/10.1137/120885991
https://doi.org/10.1137/120885991
https://doi.org/10.1137/140973979
https://doi.org/10.1137/140973979
https://doi.org/10.1016/j.cam.2016.05.015
https://doi.org/10.1016/j.cam.2016.05.015
https://doi.org/10.1137/141000671
https://doi.org/10.1137/141000671
https://doi.org/10.1016/j.cam.2018.07.042
https://doi.org/10.1016/j.cam.2018.07.042

references 117

[9] P. I. Davies and N. J. Higham. “A Schur–Parlett algorithm for computing ma-

trix functions.” SIAM J. Matrix Anal. Appl. 25.2 (2003), pp. 464–485 (cited on

p. 86).

[10] E. Defez, J. Ibánez, J. M. Alonso, and P. Alonso-Jordá. “On Bernoulli series

approximation for the matrix cosine.” Math. Meth. Appl. Sci. (2020), pp. 1–15

(cited on p. 88).

[11] E. Defez, J. Ibánez, J. Peinado, J. Sastre, and P. Alonso-Jordá. “An efficient and

accurate algorithm for computing the matrix cosine based on new Hermite

approximations.” J. Comput. Appl. Math. 348 (2019), pp. 1–13 (cited on p. 88).

[12] N. J. Dingle and N. J. Higham. “Reducing the influence of tiny normwise

relative errors on performance profiles.” ACM Trans. Math. Software 39.4 (2013),

24:1–24:11 (cited on p. 108).

[13] E. D. Dolan and J. J. Moré. “Benchmarking optimization software with perfor-

mance profiles.” Math. Program. 91 (2002), pp. 201–213 (cited on p. 108).

[14] M. Fasi. “Optimality of the Paterson–Stockmeyer method for evaluating ma-

trix polynomials and rational matrix functions.” Linear Algebra Appl. 574 (2019),

pp. 182–200 (cited on p. 92).

[15] M. Fasi and N. J. Higham. “An arbitrary precision scaling and squaring al-

gorithm for the matrix exponential.” SIAM J. Matrix Anal. Appl. 40.4 (2019),

pp. 1233–1256 (cited on pp. 85, 89–92, 95, 106, 107).

[16] M. Fasi and N. J. Higham. “Multiprecision algorithms for computing the ma-

trix logarithm.” SIAM J. Matrix Anal. Appl. 39.1 (2018), pp. 472–491 (cited on

pp. 85, 89).

[17] G. H. Golub and C. F. Van Loan. Matrix Computations. 4th ed., Baltimore, MD,

USA: Johns Hopkins University Press, 2013, pp. xxi+756 (cited on p. 98).

[18] G. Hargreaves. “Topics in Matrix Computations: Stability and Efficiency of Al-

gorithms.” PhD thesis. Manchester, England: University of Manchester, 2005,

p. 204 (cited on p. 92).

https://doi.org/10.1137/S0895479802410815
https://doi.org/10.1137/S0895479802410815
https://doi.org/10.1002/mma.7041
https://doi.org/10.1002/mma.7041
https://doi.org/10.1016/j.cam.2018.08.047
https://doi.org/10.1016/j.cam.2018.08.047
https://doi.org/10.1016/j.cam.2018.08.047
https://doi.org/10.1145/2491491.2491494
https://doi.org/10.1145/2491491.2491494
https://doi.org/10.1007/s101070100263
https://doi.org/10.1007/s101070100263
https://doi.org/10.1016/j.laa.2019.04.001
https://doi.org/10.1016/j.laa.2019.04.001
https://doi.org/10.1137/18M1228876
https://doi.org/10.1137/18M1228876
https://doi.org/10.1137/17M1129866
https://doi.org/10.1137/17M1129866

118 arbitrary precision algorithms for matrix cosine

[19] G. I. Hargreaves and N. J. Higham. “Efficient algorithms for the matrix cosine

and sine.” Numer. Algorithms 40.4 (2005), pp. 383–400 (cited on pp. 87, 88, 93,

96, 108).

[20] N. J. Higham. Functions of Matrices: Theory and Computation. Philadelphia, PA,

USA: Society for Industrial and Applied Mathematics, 2008, pp. xx+425 (cited

on pp. 87, 90, 93, 99, 100, 104, 107, 108, 113).

[21] N. J. Higham. The Matrix Computation Toolbox. http://www.maths.manchester.

ac.uk/~higham/mctoolbox (cited on p. 108).

[22] N. J. Higham and L. Lin. “An improved Schur–Padé algorithm for fractional

powers of a matrix and their Fréchet derivatives.” SIAM J. Matrix Anal. Appl.

34.3 (2013), pp. 1341–1360 (cited on pp. 100, 114).

[23] N. J. Higham and X. Liu. “A multiprecision derivative-free Schur–Parlett algo-

rithm for computing matrix functions.” SIAM J. Matrix Anal. Appl. 42.3 (2021),

pp. 1401–1422 (cited on p. 85).

[24] N. J. Higham and M. Mikaitis. “Anymatrix: An extensible MATLAB matrix

collection.” Numer. Algorithms (2021) (cited on p. 106).

[25] N. J. Higham and M. Mikaitis. Anymatrix: An Extensible MATLAB Matrix Collec-

tion. https://github.com/mmikaitis/anymatrix (cited on p. 106).

[26] N. J. Higham and S. D. Relton. “Estimating the condition number of the Fréchet

derivative of a matrix function.” SIAM J. Sci. Comput. 36.6 (2014), pp. C617–C634

(cited on p. 114).

[27] N. J. Higham and M. I. Smith. “Computing the matrix cosine.” Numer. Algo-

rithms 34 (2003), pp. 13–26 (cited on pp. 87, 93, 96, 106).

[28] N. J. Higham and F. Tisseur. “A block algorithm for matrix 1-norm estimation,

with an application to 1-norm pseudospectra.” SIAM J. Matrix Anal. Appl. 21.4

(2000), pp. 1185–1201 (cited on p. 92).

[29] F. Johansson et al. Mpmath: A Python Library for Arbitrary-Precision Floating-Point

Arithmetic. 2013. http://mpmath.org (cited on p. 85).

https://doi.org/10.1007/s11075-005-8141-0
https://doi.org/10.1007/s11075-005-8141-0
https://doi.org/10.1137/1.9780898717778
http://www.maths.manchester.ac.uk/~higham/mctoolbox
http://www.maths.manchester.ac.uk/~higham/mctoolbox
https://doi.org/10.1137/130906118
https://doi.org/10.1137/130906118
https://doi.org/10.1137/20m1365326
https://doi.org/10.1137/20m1365326
https://doi.org/10.1007/s11075-021-01226-2
https://doi.org/10.1007/s11075-021-01226-2
https://github.com/mmikaitis/anymatrix
https://doi.org/10.1137/130950082
https://doi.org/10.1137/130950082
https://doi.org/10.1023/A:1026152731904
https://doi.org/10.1137/S0895479899356080
https://doi.org/10.1137/S0895479899356080
http://mpmath.org

references 119

[30] A. Magnus and J. Wynn. “On the padé table of cos z.” Proc. Amer. Math. Soc. 47

(1975), pp. 361–367 (cited on p. 89).

[31] A. Meurer, C. P. Smith, M. Paprocki, et al. “SymPy: Symbolic computing in

Python.” PeerJ Comput. Sci. 3 (Jan. 2017), e103 (cited on p. 86).

[32] Multiprecision Computing Toolbox. Advanpix, Tokyo, Japan. http://www.advanpix.

com (cited on pp. 85, 106–108).

[33] P. Nadukandi and N. J. Higham. “Computing the wave-kernel matrix func-

tions.” SIAM J. Sci. Comput. 40.6 (2018), A4060–A4082 (cited on pp. 90, 115).

[34] M. S. Paterson and L. J. Stockmeyer. “On the number of nonscalar multiplica-

tions necessary to evaluate polynomials.” SIAM J. Comput. 2.1 (1973), pp. 60–66

(cited on p. 91).

[35] J. Sastre, J. Ibáñez, P. Ruiz, and E. Defez. “Accurate and efficient matrix ex-

ponential computation.” Internat. J. Comput. Math. 91.1 (May 2013), pp. 97–112

(cited on pp. 87, 93).

[36] J. Sastre, J. Ibánez, P. Alonso, J. Peinado, and E. Defez. “Two algorithms for

computing the matrix cosine function.” Appl. Math. Comput. 312 (2017), pp. 66–

77 (cited on pp. 88, 107).

[37] J. Sastre, J. Ibánez, P. Alonso-Jordá, J. Peinado, and E. Defez. “Fast Taylor

polynomial evaluation for the computation of the matrix cosine.” J. Comput.

Appl. Math. 354 (2019), pp. 641–650 (cited on pp. 88, 107).

[38] S. M. Serbin. “Rational approximations of trigonometric matrices with applica-

tion to second-order systems of differential equations.” Appl. Math. Comput. 5

(1979), pp. 75–92 (cited on p. 85).

[39] S. M. Serbin and S. A. Blalock. “An algorithm for computing the matrix cosine.”

SIAM J. Sci. Statist. Comput. 1.2 (1980), pp. 198–204 (cited on p. 87).

[40] M. Seydaoğlu, P. Bader, S. Blanes, and F. Casas. “Computing the matrix sine

and cosine simultaneously with a reduced number of products.” Appl. Numer.

Math. 163 (2021), pp. 96–107 (cited on p. 88).

https://doi.org/10.2307/2039747
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.7717/peerj-cs.103
http://www.advanpix.com
http://www.advanpix.com
https://doi.org/10.1137/18M1170352
https://doi.org/10.1137/18M1170352
https://doi.org/10.1137/0202007
https://doi.org/10.1137/0202007
https://doi.org/10.1080/00207160.2013.791392
https://doi.org/10.1080/00207160.2013.791392
https://doi.org/10.1016/j.amc.2017.05.019
https://doi.org/10.1016/j.amc.2017.05.019
https://doi.org/10.1016/j.cam.2018.12.041
https://doi.org/10.1016/j.cam.2018.12.041
https://doi.org/10.1016/0096-3003(79)90011-0
https://doi.org/10.1016/0096-3003(79)90011-0
https://doi.org/10.1137/0901013
https://doi.org/10.1016/j.apnum.2021.01.009
https://doi.org/10.1016/j.apnum.2021.01.009

5 COMPUT ING THE SQUARE ROOT OF A

LOW-RANK PERTURBAT ION OF THE

SCALED IDENT ITY MATR IX

Abstract. We consider the problem of computing the square root of a perturbation

of the scaled identity matrix, A “ αIn ` UV˚, where U and V are n ˆ k matrices

with k ď n. This problem arises in various applications, including computer vision

and optimization methods for machine learning. We derive a new formula for the

pth root of A that involves a weighted sum of powers of the pth root of the k ˆ k

matrix αIk ` V˚U. This formula is particularly attractive for the square root, since

the sum has just one term when p “ 2. We also derive a new class of Newton

iterations for computing the square root that exploit the low-rank structure. We test

these new methods on random matrices and on positive definite matrices arising

in applications. Numerical experiments show that the new approaches can yield a

much smaller residual than existing alternatives and can be significantly faster when

the perturbation UV˚ has low rank.

Keywords: matrix pth root, matrix square root, low-rank update, matrix iteration,

Newton iteration, MATLAB.

2010 MSC: 15A16, 65F60, 65F99.

5.1 introduction

Any solution of the nonlinear equation Xp “ A is a pth root of the square matrix A.

This matrix equation arises in many applications [18, sect. 2.14], and various methods

for solving it numerically have been proposed in the literature. Particular attention

120

5.1 introduction 121

has been devoted to the principal pth root A1{p, which for a matrix with no eigenval-

ues on the closed negative real axis R´ is the unique pth root whose eigenvalues λ

all satisfy |arg λ| ă π{p. For p “ 2 one obtains the square root, which is the pth root

most often needed in applications and most thoroughly investigated in the literature.

Throughout this work, “pth root” refers to the principal pth root, and in particular

“square root” refers to the principal square root, whose eigenvalues all lie in the open

right half-plane.

The state-of-the-art methods for computing the matrix square root are based on

the Schur decomposition [6], [8], [16], and can be extended to the computation of the

pth root [12], [22], [31]. These methods have excellent numerical stability, in the sense

that the computed solution satisfies essentially the same backward error bound as

the rounded exact solution.

The Schur decomposition is typically computed using the QR algorithm [35], [36],

[34], which is one of the most complex methods in matrix computations [11, sect. 7.5].

Implementing it in a robust and efficient way is a difficult task, so its low prevalence

in libraries for matrix computations on custom hardware is not surprising. For ex-

ample, a nonsymmetric dense eigensolver is not present in the NVIDIA cuSOLVER

library.1 Multiprecision environments often do not supply a routine for computing

the Schur decomposition [10, sect. 5]; examples lacking one are the Julia language [5],

which currently (version 1.7.3) does not provide it for its BigFloat data type,2 and

the MATLAB Symbolic Math Toolbox [33], where it is not available for the sym data

type at the time of writing (version 9).

Matrix iterations for computing A1{2 are an attractive alternative in these situa-

tions. Newton iterations converge quadratically in exact arithmetic and require only

matrix multiplication and (in most cases) matrix inversion or the solution of multiple

right-hand side linear systems. In deep learning, for example, the Newton–Schulz

iteration [18, p. 153], [27] is widely used as an alternative to diagonalization when

A is positive semidefinite. Being rich in matrix multiplication, it offers better perfor-

mance on modern GPUs and it can speed up the forward propagation [32]. Tailored

1 https://docs.nvidia.com/cuda/cusolver/
2 A multiprecision Schur decomposition is available through the unofficial GenericSchur.jl package at
https://github.com/RalphAS/GenericSchur.jl.

https://docs.nvidia.com/cuda/cusolver/
https://github.com/RalphAS/GenericSchur.jl

122 roots of low-rank perturbations of scaled identity

iterations are available for computing the square root of matrices with special struc-

ture or properties, including M-matrices, H-matrices, and Hermitian positive definite

matrices; these are surveyed in [18, sect. 6.8].

Here we study methods for computing the square root of a matrix A P Cnˆn of the

form

A “ αIn ` UV˚, α P C, U, V P Cnˆk, k ď n, ΛpAq X R´ “ H, (5.1)

where In is the identity matrix of order n and ΛpAq denotes the spectrum of A. The

condition ΛpAq X R´ “ H implies that A is necessarily nonsingular, and if k ă n,

so that UV˚ is rank deficient, it also implies that α lies off R´ (and in particular is

nonzero). The same condition also requires that the k ˆ k matrix αIk ` V˚U has no

eigenvalues on R´, since the nonzero eigenvalues of BC and CB are the same for any

two matrices B and C [18, Thm. 1.32], [20, Thm. 1.3.22].

An explicit expression for a function of a matrix in the form (5.1) is given by

Higham in [18, Thm. 1.35] (and also by Harris in [15, Lem. 2] for α “ 0). The re-

sult allows us to evaluate f pAq and only requires that f be defined on the spectrum

of A. We recall this definition and give the corresponding theorem.

Definition 5.1 ([18, Def. 1.1]). Let A P Cnˆn, let λ1, . . . , λm be the distinct eigenvalues

of A, and let ζ1, . . . , ζm be their respective indices (that is, ζi is the order of the largest

Jordan block in which λi appears). A function f is defined on the spectrum of A if

the values f pjqpλiq exist for j “ 0 : ζi ´ 1 and i “ 1 : m.

Theorem 5.1 ([18, Thm. 1.35]). Let U, V P Cnˆk with k ď n and assume that V˚U is

nonsingular. Let f be defined on the spectrum of A “ αIn ` UV˚, and if k “ n let f be

defined at α. Then

f pAq “ f pαqIn ` UpV˚Uq´1` f pαIk ` V˚Uq ´ f pαqIk
˘

V˚. (5.2)

The theorem says two things: that f pAq, like A, is a perturbation of rank at most k

of the identity matrix and that f pAq can be computed by evaluating f and the inverse

at two k ˆ k matrices. The formula (5.2) is of clear computational interest when k ! n.

5.1 introduction 123

Note that if we take f pxq “ x´1 and write A ` UV˚ “ ApIn ` A´1UV˚q, then

after a little manipulation we obtain as a special case of (5.2) the Sherman–Morrison–

Woodbury formula, which says that if Ik ` V˚ A´1U is nonsingular then A ` UV˚ is

also nonsingular and

pA ` UV˚q´1 “ A´1 ´ A´1UpIk ` V˚ A´1Uq´1V˚ A´1. (5.3)

Taking for f the square root in (5.2) gives

A1{2 “ α1{2 In ` UpV˚Uq´1`pαIk ` V˚Uq1{2 ´ α1{2 Ik
˘

V˚. (5.4)

This formula is valid only if V˚U is nonsingular, yet this condition is not required

for A1{2 to be defined. This is undesirable, since there is no guarantee that for a

rank-k perturbation written as UV˚ the matrix V˚U will be nonsingular. Consider

the k “ 1 case with U “ ei and V “ ej for i ‰ j: formula (5.4) fails since V˚U “ 0,

and there is no alternative way of writing this perturbation. In general, we cannot

avoid a singular V˚U given only the assumption that A1{2 is well defined, and thus

the formula cannot always be applicable.

Another problem with (5.2) is that it may not provide full accuracy when evalu-

ated in floating-point arithmetic if the condition number of V˚U is large. This is

illustrated in Figure 5.1, where we compare the accuracy of (5.4) and (5.9) (see below)

on matrices of the form (5.1) for n “ 100 and α “ 1. The square root of a k ˆ k matrix

is computed by the Schur method using the MATLAB function sqrtm. We gauge the

accuracy by measuring the 2-norm relative residual of the equation that defines the

square root, that is, the quantity

∥ pX2 ´ A∥2

∥A∥2
, (5.5)

where pX is a computed approximation to the square root obtained in MATLAB using

binary64 arithmetic with unit roundoff u64 « 1.1 ˆ 10´16. In order to reduce the

magnitude of possible roundoff errors in the computation of the relative residual,

124 roots of low-rank perturbations of scaled identity

0 0.2 0.4 0.6 0.8 1
10�16

10�15

10�14

10�13

10�12

10�11

10�10

k{n

(a) uij P N
`

0, n´2˘; V “ U.

100 104 108 1012 1016
10�16

10�13

10�10

10�7

10�4

10�1

kappa � κ2pV�Uq

(b) Fixed rank U and V.

Formula (1.4) Formula (1.9) κ2pV�Uqu

Figure 5.1: Relative residuals of (5.4) and (5.9) in the 2-norm. The matrix A is of the form (5.1) for
n “ 100, α “ 1, and V “ U. The elements of U are drawn from different distributions in the
two panels. Note that the y-axes have a different range.

(5.5) is evaluated in binary128 arithmetic by relying on the Multiprecision Computing

Toolbox for MATLAB [25].

In Figure 5.1a, the matrix U P Cnˆk, for k varying between 1 and 100, has entries

drawn from the normal distribution with mean 0 and variance n´2, which we denote

by N
`

0, n´2
˘

, and we set V “ U so that A is Hermitian. In Figure 5.1b, the parameter

k is set to 10, and the matrices U and V are generated with the MATLAB code

S = logspace(-log10(kappa), 0, k);

U = orth(randn(n, k));

V = U .* S;

This ensures that V˚U has condition number approximately kappa, which in our

experiment varies between 1 and 1016. The relative residual of the solution computed

using (5.4) deteriorates as the rank of UV˚ or the condition number of V˚U increase.

Interestingly, the Sherman–Morrison–Woodbury formula (5.3) does not involve

pV˚Uq´1, so for particular f this term does not necessarily have to appear in a for-

mula for f pAq. We now derive a formula for the pth root of a matrix of the form (5.1)

that does not have the restriction that V˚U be nonsingular.

5.1 introduction 125

Theorem 5.2. Let U, V P Cnˆk with k ď n have full rank and let the matrix A “ αIn ` UV˚

have no eigenvalues on R´. Then for any integer p ě 1,

A1{p “ α1{p In ` U

¨

˝

p´1
ÿ

i“0

αi{p ¨ pαIk ` V˚Uqpp´i´1q{p

˛

‚

´1

V˚. (5.6)

Proof. Assume, first, that V˚U is nonsingular. Taking for f the pth root in Theo-

rem 5.1 gives

A1{p “ α1{p In ` UpV˚Uq´1`pαIk ` V˚Uq1{p ´ α1{p Ik
˘

V˚. (5.7)

On the other hand, from the identity ap ´ bp “ pa ´ bq

´

řp´1
i“0 ap´i´1bi

¯

we have

pαIk ` V˚Uq1{p ´ α1{p Ik “ V˚U

¨

˝

p´1
ÿ

i“0

αi{p ¨ pαIk ` V˚Uqpp´i´1q{p

˛

‚

´1

, (5.8)

where the matrix in parentheses is nonsingular because αIk ` V˚U and αIk have no

eigenvalue in common, which means that the left-hand side of (5.8) is nonsingular.

Using the identity (5.8) in (5.7) gives (5.6). If V˚U is singular, consider the matrix

Aptq “ αIn ` UptqV˚, where Uptq “ U ` tV for t P R. Then V˚Uptq “ V˚U ` tV˚V is

nonsingular for sufficiently small t (specifically, for any t ą 0 if V˚U has no negative

real eigenvalues and otherwise for t P p0, |λ|), where λ is the algebraically largest

negative real eigenvalue of V˚U). By (5.6) we have

Aptq1{p “ α1{p In ` pU ` tVq

¨

˝

p´1
ÿ

i“0

αi{p ¨
`

αIk ` V˚U ` tV˚V
˘pp´i´1q{p

˛

‚

´1

V˚,

and taking the limit as t Ñ 0 gives (5.6). ˝

Our main interest is in p “ 2, for which we have the following corollary.

Corollary 5.3. Let U, V P Cnˆk with k ď n have full rank and let the matrix A “ αIn `

UV˚ have no eigenvalues on R´. Then

A1{2 “ α1{2 In ` U
`

pαIk ` V˚Uq1{2 ` α1{2 Ik
˘´1V˚. (5.9)

126 roots of low-rank perturbations of scaled identity

The formula (5.9) in Corollary 5.3 is a significant improvement over (5.4), since it

does not contain the factor pV˚Uq´1. Furthermore, in the experiments of Figure 5.1,

formula (5.9) produces relative residuals of order u, unlike (5.4). Note that when

n “ 1, the difference between (5.4) and (5.9) boils down to the difference between

expressions of the form p
?

1 ` x ´ 1q{x and 1{p
?

1 ` x ` 1q, x P C; the latter does not

require the inverse of x and is more stable when |x| is small.

In section 5.2 we describe some applications that motivated this work. In section 5.3

we derive a Newton iteration that exploits the low-rank structure and provides an

alternative to using (5.9); it is a structured variant of the Denman–Beavers iteration.

We discuss Schur-based approaches for computing the square root in section 5.4,

where we develop novel schemes that take advantage of the structure of the Schur

decomposition. In section 5.5 we compare the computational cost of several methods

applied to the explicitly formed A or to (5.9), and in section 5.6 we compare the

methods in terms of numerical stability and speed on random matrices as well as on

positive definite matrices arising in real applications. Concluding remarks are offered

in section 5.7.

We note that similar problems have been addressed in the literature. Bernstein and

Van Loan [4] proposed an algorithm for computing f pX ` uvTq for X P Rnˆn and

u, v P Rn, where f is a rational function defined on the spectra of X and X ` uvT.

Beckermann, Kressner, and Schweitzer [3] proposed a polynomial Krylov method for

approximating f pX ` UV˚q for any X P Cnˆn provided that UV˚ has low rank and

that f is analytic on some domain containing the spectra of X and X ` UV˚. The

algorithms are given and their convergence analyzed for the case of rank-1 pertur-

bations, but the authors suggest two approaches to apply the proposed algorithms

to higher rank. More recently, Beckermann, Cortinovis, Kressner, and Schweitzer [2]

have developed a rational Krylov method to address the same problem. The pro-

posed algorithm requires that the numerical range of X does not contain a singular-

ity of f . For the matrix square root, the convergence of the algorithm may be slow

when α P C in (5.1) is close to the origin in the complex plane. Being Krylov-based,

these methods are necessarily iterative, and they aim to approximate the correction

5.2 applications 127

f pX ` UV˚q ´ f pXq and compute f pX ` UV˚q as an update of f pXq, whereas the

formula (5.9) is direct with a predictable cost and gives an explicit expression for

pαIn ` UV˚q1{2.

Recently, Shumeli, Drineas, and Avron [30] developed a method to compute the

quantity pX ˘ UUTq˘1{2 for a symmetric positive semidefinite X. Their method is

based on the approximate solution of an algebraic Riccati equation, and allows for

either symmetric positive semidefinite or symmetric negative semidefinite perturba-

tions.

5.2 applications

The need to compute roots of matrices of the form (5.1) arises in high-order optimiza-

tion algorithms for machine learning [1], [14] and in machine vision [24].

The Shampoo technique, developed by Gupta, Koren, and Singer [14], is a precon-

ditioned gradient method for second-order optimization. Computationally, the most

expensive step of the algorithm is the evaluation of

L´1{2p
t GtR

´1{2q
t , t “ 1, . . . , ℓ,

for some positive integers ℓ, p, and q where

Lt “ αIn `

t
ÿ

s“1

GsGs̊ , Rt “ αIk `

t
ÿ

s“1

Gs̊ Gs, α ą 0, (5.10)

and G1, . . . , Gt P Rnˆk are of rank at most r. We note that the matrix
řt

s“1 GsGs̊

can be written as UU˚ where U “ rG1 . . . Gts P Rnˆkt, which shows that Lt is of

the form (5.1). The original implementation of Shampoo [14] used an SVD-based

approach to compute the pth roots of Lt and Gt, but more recently Anil et al. [1] used

the Schur–Newton algorithm of Guo and Higham [13] to compute the inverse pth

roots. We note that the two algorithms are roughly equivalent for symmetric positive

definite matrices such as Lt and Rt, as both the SVD and the Schur decomposition

128 roots of low-rank perturbations of scaled identity

reduce to the eigendecomposition, and the only difference is in the way the pth roots

of the eigenvalues are computed: the SVD-based algorithm computes the pth roots of

the eigenvalues directly, whereas the Schur–Newton algorithm uses a scalar Newton

iteration.

In representations for visual recognition [24, p. 39], the square root of a matrix

of the form (5.1) is used in the spectral normalization of bilinear convolutional neu-

ral networks. This feature normalization technique runs an input image through a

convolutional layer that extracts a set of k feature vectors x1, . . . , xk P Rn with non-

negative entries. These features are then aggregated via bilinear pooling, producing

the matrix

A “ αIn `
1
k

k
ÿ

i“1

xixi̊ , α ą 0.

Since k depends on the size of the input image and of the convolutional filters,

whereas n depends on the number of filters, these two numbers can be very different.

Even when n and k are of similar magnitude, as often happens in state-of-the-art

models [24, p. 52], many of the xi may in principle be equal or very similar, produc-

ing a perturbation of rank much smaller than k. Because of the local nature of the

convolutional filters, this is likely to happen when a large portion of the input image

is filled by a homogeneous texture, as is the case for images with bursty features such

as those considered in [24, Chap. 4]. The low-rank approximation can be obtained

efficiently by using, for example, the randomized SVD algorithm recently developed

by Nakatsukasa [26].

The need for computing the square root of a matrix of the form (5.1) also comes

from numerical considerations in computing the square root of a singular or nearly

singular matrix B. Rounding errors in floating-point arithmetic can displace small

positive real eigenvalues of B to the negative real axis, where the principal square

root is not well defined. In order to avoid potential issues, one can regularize B by

adding the term αI for some small positive constant α: if B is factorized into a product

of the form UV˚ by truncating its singular value decomposition, then this diagonal

shift produces a matrix of the form (5.1). This technique has been used, for example,

5.3 newton iterations 129

to regularize some structured layers of deep neural networks [23]. The same regu-

larization may be of interest when computing the inverse square roots of matrices of

the form 1
n XTX, where X represents the data matrix and n is the number of samples.

Matrices of this form arise in the training of deep neural networks [28], [37].

5.3 newton iterations

An obvious approach for computing the square root is to apply any Newton iteration

to A in (5.1) directly. For k ! n, a more efficient strategy is to invoke (5.9) in Corol-

lary 5.3 and apply the iteration to the k ˆ k matrix αIk ` V˚U. The standard Newton

iteration is known to be numerically unstable [19], [18, sect. 6.4.1], so we focus on

two of its numerically stable variants, namely the Denman–Beaver iteration (DB) and

its product form.

The (scaled) DB iteration [9], [18, sect. 6.3] is

Xi`1 “
1
2
`

µiXi ` µ´1
i Y´1

i

˘

, X0 “ A,

Yi`1 “
1
2
`

µiYi ` µ´1
i X´1

i

˘

, Y0 “ I,
(5.11)

where the positive scaling parameter µi P R can be used to accelerate the convergence

of the method in its initial steps. The choice µi “ 1 yields the unscaled DB method,

for which Xi and Yi converge quadratically to A1{2 and A´1{2, respectively. An effec-

tive but possibly expensive technique for choosing the parameter µi is determinantal

scaling, which we discuss later in this section.

We prove by induction that if A is of the form (5.1) then for i ě 0 the iterates Xi

and Yi can be written in the form

Xi “ βi In ` UBiV˚, βi P C, Bi P Ckˆk, (5.12)

Yi “ γi In ` UCiV˚, γi P C, Ci P Ckˆk. (5.13)

130 roots of low-rank perturbations of scaled identity

For i “ 0, this follows from setting β0 “ α, B0 “ Ik and γ0 “ 1, C0 “ 0. For

the inductive step, by using the Sherman–Morrison–Woodbury formula (5.3) for X´1
i

and Y´1
i we obtain

Xi`1 “
1
2
`

µiXi ` µ´1
i Y´1

i

˘

“
µi

2
pβi In ` UBiV˚q `

pµiγiq
´1

2
`

In ´ UCipγi Ik ` V˚UCiq
´1V˚˘

“
µiβi ` pµiγiq

´1

2
In `

1
2

U
`

µiBi ´ pµiγiq
´1Cipγi Ik ` V˚UCiq

´1˘V˚,

and

Yi`1 “
1
2
`

µiYi ` µ´1
i X´1

i

˘

“
µi

2
pγi In ` UCiV˚q `

pµiβiq
´1

2
`

In ´ UBipβi Ik ` V˚UBiq
´1V˚˘

“
µiγi ` pµiβiq

´1

2
In `

1
2

U
`

µiCi ´ pµiβiq
´1Bipβi Ik ` V˚UBiq

´1˘V˚,

so that

βi`1 “
µiβi ` pµiγiq

´1

2
, (5.14a)

Bi`1 “
1
2
`

µiBi ´ pµiγiq
´1Cipγi Ik ` V˚UCiq

´1˘, (5.14b)

γi`1 “
µiγi ` pµiβiq

´1

2
, (5.14c)

Ci`1 “
1
2
`

µiCi ´ pµiβiq
´1Bipβi Ik ` V˚UBiq

´1˘. (5.14d)

With W “ V˚U P Ckˆk precomputed and stored, each step requires the solution of

two k ˆ k linear systems with k right-hand sides and two k ˆ k matrix multiplications,

for a total cost of 28
3 k3 floating-point operations (flops).

Note that since βi Ñ α1{2 and γi Ñ α´1{2, we might be tempted to remove the

iterations for βi and γi and replace βi by α1{2 in (5.14d) and γi by α´1{2 in (5.14b).

However, this choice changes the iteration, which is no longer convergent in general.

5.3 newton iterations 131

By introducing the product Mi “ XiYi and rewriting (5.11), one of the inversions

can be traded for a multiplication, giving the product form of the DB iteration [7],

[18, sect. 6.3]

Mi`1 “
1
2

ˆ

In `
µ2

i Mi ` µ´2
i M´1

i
2

˙

, M0 “ A,

Xi`1 “
1
2

µiXi
`

In ` µ´2
i M´1

i

˘

, X0 “ A.
(5.15)

Here, Xi Ñ A1{2 and Mi Ñ I as i Ñ 8.

Now we show that if A has the form (5.1) then for i ě 0 the matrix Mi has the form

Mi “ νi In ` UNiV˚, νi P C, Ni P Ckˆk, (5.16)

and Xi has the form (5.12). For i “ 0, this follows from setting ν0 “ β0 “ α and

N0 “ B0 “ Ik. For the inductive step, by using the Sherman–Morrison–Woodbury

formula (5.3) for M´1
i we obtain for Mi`1 the expression

Mi`1 “
1
2

ˆ

In `
µ2

i Mi ` µ´2
i M´1

i
2

˙

“
1
2

ˆ

In `
µ2

i pνi In ` UNiV˚q ` µ´2
i ν´1

i pIn ´ UNipνi Ik ` V˚UNiq
´1V˚q

2

˙

“
2 ` pµ2

i νi ` µ´2
i ν´1

i q

4
In `

1
4

U
`

µ2
i Ni ´ pµ2

i νiq
´1Nipνi Ik ` V˚UNiq

´1˘V˚

“
2 ` pµ2

i νi ` µ´2
i ν´1

i q

4
In `

1
4

U
`

µ2
i Ni ´ Si

˘

V˚, (5.17)

where

Si “ pµ2
i νiq

´1Nipνi Ik ` V˚UNiq
´1.

132 roots of low-rank perturbations of scaled identity

Similarly, for Xi`1 we have

Xi`1 “
µi

2
Xi
`

In ` µ´2
i M´1

i

˘

“
µi

2
pβi In ` UBiV˚q

`

In ` µ´2
i ν´1

i pIn ´ UNipνi Ik ` V˚UNiq
´1V˚q

˘

“
µi

2
βip1 ` µ´2

i ν´1
i qIn `

1
2

U
`

pµi ` µ´1
i ν´1

i qBi ´ µiβiSi ´ µiBiV˚USi
˘

V˚.

(5.18)

From (5.17) and (5.18) we can read off formulas for νi`1, Ni`1, βi`1, and Bi`1 in terms

of νi, Ni, βi, and Bi.

With V˚U computed initially and stored, forming Si requires one k ˆ k matrix mul-

tiplication and one k ˆ k linear system solve with k right-hand sides, and computing

Bi takes two additional k ˆ k matrix products. Therefore, each iteration entails three

k ˆ k matrix products and the solution of a k ˆ k linear system with k right-hand sides,

for a total cost of 26
3 k3 flops.

An effective scaling is determinantal scaling, which is given for the DB iteration by

µi “

∣∣∣∣∣
a

detpAq

detpXiq

∣∣∣∣∣
1{n

“

∣∣∣∣ 1
detpXiq detpYiq

∣∣∣∣1{2n

and for the product form of the DB iteration by

µi “

∣∣∣∣ 1
detpMiq

∣∣∣∣1{2n

.

In order to perform this scaling efficiently, however, it is necessary to exploit the

structure of the matrices A, Xi, Yi, and Mi when computing their determinants. We

explain how to compute the determinant of Xi in (5.12); those of A in (5.1), of Yi

in (5.13), and of Mi in (5.16) can be computed analogously. By exploiting the identity

detpI ` ABq “ detpI ` BAq, we obtain

detpXiq “ detpβi In ` UBiV˚q

“ βn
i detpIk ` β´1

i pV˚UqBiq

“ βn´k
i detpβi Ik ` pV˚UqBiq,

5.4 schur methods 133

where the last expression involves only k ˆ k matrices. Since βi can be small, to avoid

underflow in forming βn´k
i for large n ´ k we should form directly

|detpXiq|1{n
“ β

1´k{n
i |detpβi Ik ` pV˚UqBiq|1{n ,

rather than computing detpXiq explicitly.

The det term itself is also prone to underflow, so care is needed in its evaluation.

If µi becomes an infinity, a NaN, or 0 we set µi “ 1. As is customary when using

scaled iterations [17], we also set µi “ 1 when the relative difference between µi´1

and µi becomes small.

5.4 schur methods

In this section we consider Schur-based methods for computing the square root of

A in (5.1). The most evident approach is employing the Schur method [6] directly

on A, which costs roughly 28 1
3 n3 flops. A more efficient strategy when k ! n is

invoking (5.9) in Corollary 5.3 and applying the Schur algorithm to the k ˆ k matrix

αIk ` V˚U. For k ! n this reduces the cost to only 2kn2 in the leading order.

In addition to the above methods, we discuss how the structure of A in (5.1) can

be exploited in several Schur-based methods.

5.4.1 Exploiting structure in Schur decomposition

For the Schur decomposition of A “ αIn ` UV˚ it is sufficient to consider the Schur

decomposition of UV˚. Suppose

U “
“

Q1 Q2
‰

„

R1

0

ȷ

134 roots of low-rank perturbations of scaled identity

is a (full) QR decomposition of U, where Q1 P Cnˆk, Q2 P Cnˆpn´kq, and R1 P Ckˆk.

Then we can write

UV˚ “
“

Q1 Q2
‰

„

Z
0

ȷ

“:
“

Q1 Q2
‰

„

Z1 Z2

0 0

ȷ

,

where Z “ R1V˚ P Ckˆn, Z1 P Ckˆk, and Z2 P Ckˆpn´kq. Then the remaining task is

to find a QR decomposition of the matrix Z̃ :“
“ Z1 Z2

0 0

‰

. Suppose Z1 “ PT is a (full)

QR decomposition of Z1, where P P Ckˆk is unitary and T P Ckˆk is upper triangular,

then

„

Z1 Z2

0 0

ȷ

“

„

P 0
0 In´k

ȷ „

T P˚Z2

0 0

ȷ

is a QR decomposition of rZ. So we have

UV˚ “
“

Q1P Q2
‰

„

T P˚Z2

0 0

ȷ

:“ QR.

If we repartition the unitary factor Q P Cnˆn into

Q “
“

Q1P Q2
‰

“

„

Qa

Qb

ȷ

,

where Qa P Ckˆn and Qb P Cpn´kqˆn, then we have

RQ “

„

TQa ` P˚Z2Qb
0

ȷ

(5.19)

which can be partitioned in the same form as rZ, so we can compute its QR decompo-

sition in the same fashion.

From the above discussion we can build a basic QR algorithm for reducing A to the

Schur form. This algorithm avoids form the product UV˚ explicitly and works with

a k ˆ n matrix in each iteration. For k ! n the algorithm costs 2kn2 ` Opk2nq for the

initial calculation to obtain (5.19) plus 2k2n flops in the leading order in each iteration

afterwards, so it can be very efficient in this case. However, the convergence of such

a basic QR algorithm is not always guaranteed [11, sect. 7.3] and those advanced

5.4 schur methods 135

shifting techniques discussed in [11, sect. 7.5] for accelerating convergence do not

appear applicable in our case. The iteration is thus of limited practical interest due

to this potential issue.

5.4.2 Working with block-factorized matrices

Writing

A “ αIn ` UV˚ “
“

αIn U
‰

„

In

V˚

ȷ

“: BC, B P Cnˆpn`kq, C P Cpn`kqˆn

and employing the identity f pBCqB “ B f pCBq [18, Cor. 1.34], we get

A1{2 “ pBCq1{2 “ BpCBq1{2B˚pBB˚q´1, (5.20)

where BB˚ “ α2 I ` UU˚ is positive definite and

CB “

„

αIn U
αV˚ V˚U

ȷ

is a block arrowhead matrix with leading diagonal block. We can exploit this special

structure of CB when computing its Schur decomposition, in the initial step of the

QR algorithm in which the Hessenberg form is computed. Compared with a full

pn ` kq ˆ pn ` kq matrix where we need zero out n2{2 ` kn ` k2{2 ` Opnq elements

to get a Hessenberg form, there are only kn ` k2{2 ` Opkq nonzero elements that we

need to tackle in CB. In the case k ! n, which is the necessarily the situation when

this method is worth considering, Givens rotations should be preferred in order to

fully exploit the structure in CB. Under this assumption the initial reduction to

Hessenberg form only costs Opkn2q flops, and the total cost of the Schur method [6]

on CB reduces to approximately 25pn ` kq3 flops.

In the setting k ! n, the total cost of this block-factorized method via (5.20) is

27 2
3 n3 flops in the leading order, where the matrix products involving B or B˚ can be

formed in Opkn2q flops by exploiting the partitioned block structure so are negligible.

136 roots of low-rank perturbations of scaled identity

Even though we can exploit the structure in CB, this block-factorized method is still

too expensive to be considered in practice.

5.4.3 Factorizing UV˚ from factorizations of V˚U

The spectral decomposition and the Schur decomposition of the n ˆ n matrix UV˚

can be computed from the corresponding decomposition of the k ˆ k matrix V˚U.

The methods should be of interest only when k ! n as to computational efficiency.

Spectral decomposition. In order to compute the spectral decomposition of the

matrix A in (5.1) we will exploit the fact that the nonzero eigenvalues of UV˚ are

eigenvalues of V˚U [18, Thm. 1.32], [20, Thm. 1.3.22].

Let pλ, xq be an eigenpair of V˚U P Ckˆk, then V˚Ux “ λx implies that pUV˚qUx “

λUx or, in other words, that pλ, Uxq is an eigenpair of UV˚ P Cnˆn. Therefore, we

can compute the nonzero eigenvalues of UV˚ and the corresponding eigenvectors by

computing the eigensystem of the k ˆ k matrix V˚U. However, in the general case for

nonnormal V˚U its eigenvectors may not form a basis for Ck or its eigenvectors can

be ill-conditioned, in which cases this method is not suitable.

If we assume that U “ V, then by the spectral theorem there exist X P Ckˆk unitary

and Λ P Ckˆk diagonal such that U˚U “ XΛX˚. The columns of UX P Cnˆk are

orthogonal, since pUXq˚pUXq “ X˚U˚UX “ Λ, and are eigenvectors of UU˚. We can

normalize the columns of UX and then add n ´ k orthonormal columns to the matrix

until we obtain Y P Cnˆn, an orthonormal basis of Cn that satisfies

UU˚ “ Y rΛY˚, rΛ “

„

Λ 0
0 0

ȷ

P Cnˆn. (5.21)

Alternatively, we can obtain a spectral decomposition of UU˚ by using a QR decom-

position of U, exploiting the fact it can be formed by the product of k Householder

5.4 schur methods 137

reflectors (in the case of U being square with n “ k, there are k ´ 1 Householder

reflectors needed, but our main interest is in the case k ! n):

PkPk´1 . . . P2P1U “

„

R1

0

ȷ

, Pi “ In ´
2

vi̊ vi
vivi̊ (5.22)

for some 0 ‰ vi P Cn, each of which can be efficiently formed as a matrix-vector

product followed by an outer product. The total cost of the QR decomposition U “

QR is Opkn2q flops (with explicit formation of the unitary factor Q “ P1P2 . . . Pk´1Pk).

Suppose

U “
“

Q1 Q2
‰

„

R1

0

ȷ

is a (full) QR decomposition of U, where Q1 P Cnˆk, Q2 P Cnˆpn´kq, and R1 P Ckˆk.

Then we have

UU˚ “
“

Q1 Q2
‰

„

R1R1̊ 0
0 0

ȷ „

Q1̊
Q2̊

ȷ

“ Q1R1R1̊ Q1̊ .

Therefore, if a spectral decomposition R1R1̊ “ PΛP´1 “ PΛP˚ is formed, where

P P Ckˆk is unitary and Λ P Ckˆk is diagonal, we obtain a decomposition of exactly

the same form as (5.21), in which case the Y P Cnˆn, an orthonormal basis of Cn,

is computed by explicitly forming Q1P P Cnˆk and then adding n ´ k orthonormal

columns to it.

Then we have A “ αIn ` UU˚ “ αYY˚ ` Y rΛY˚ “ YpαIn ` rΛqY˚ and thus

A1{2 “ YpαIn ` rΛq1{2Y˚. (5.23)

The asymptotic cost of the algorithm is 4 2
3 n3 flops in total. The dominant compu-

tational complexity of this algorithm is in completing the orthogonal matrix Y, which

costs 8{3n3 flops [11, sect. 5.2.9], and forming the root A1{2, which requires 2n3 flops.

138 roots of low-rank perturbations of scaled identity

In fact, once we have formed the k Householder reflectors P1P2 . . . Pk´1Pk of (5.22)

in the QR decomposition of U, a more efficient computation scheme is to apply these

Householder reflectors directly to the matrix αIn ` UU˚. We then have

PkPk´1 . . . P2P1pαIn ` UU˚qP1P2 . . . Pk´1Pk “

„

αIk ` R1R1̊ 0
0 αIn´k

ȷ

,

from which we have

pαIn ` UU˚q1{2 “ P1 . . . Pk

„

pαIk ` R1R1̊ q1{2 0
0 α1{2 In´k

ȷ

Pk . . . P1.

The computation of the square root of αIk ` R1R1̊ only requries Opk3q flops, and

applying each Householder reflector requires Opn2q flops (as discussed above), so

the asymptotic cost of the algorithm is only Opkn2q flops. Finally, we note that this

algorithm could be made more efficient if the Householder reflectors are applied in

blocks [11, sect. 5.2.3].

Schur decomposition. The analogous method for the Schur decomposition ex-

ploits a similar idea, but the triangular form creates additional difficulties.

For any U, V P Cnˆk there exist W P Ckˆk unitary and S P Ckˆk quasi-upper

triangular such that V˚U “ WSW˚. By multiplying both sides of this equation by U

on the left and by W on the right, we obtain

pUV˚qpUWq “ pUWqS. (5.24)

The matrix UW is not unitary in general, but it has the thin QR factorization UW “:

QR, where Q P Cnˆk has orthonormal row and R P Ckˆk is upper triangular. We can

rewrite (5.24) as Q˚pUV˚qQ “ RSR´1 and computing the Schur decomposition of the

right-hand side yields

Q˚pUV˚qQ “ rPrT rP˚, (5.25)

5.5 cost comparison of the methods 139

where rP, rT P Ckˆk are unitary and quasi-upper triangular, respectively. The matrix

rQ :“ QrP has orthonormal columns, and we can construct a unitary basis of Cn by

finding a matrix rY P Cnˆpn´kq such that P :“
”

rQ rY
ı

is unitary. Thus we have

P˚pUV˚qP “

«

rQ˚
rY˚

ff

UV˚
”

rQ rY
ı

“

«

rQ˚UV˚
rQ rQ˚UV˚

rY
rY˚UV˚

rQ rY˚UV˚
rY

ff

.

From (5.25) we can easily derive UV˚ “ rQrT rQ˚, and since rY˚
rQ “ 0 by construction,

we have that rY˚UV˚ “ 0. Therefore, we have that

UV˚ “ P˚
«

rT rQ˚UV˚
rY

0 0

ff

P “: PTP˚ (5.26)

is a Schur decomposition of UV˚, and a Schur decomposition of A in (5.1) is A “

αIn ` UV˚ “ αPP˚ ` PTP˚ “ PpαIn ` TqP˚, from which A1{2 can be computed using

the Schur algorithm [6], [16].

The total cost of the algorithm is 6n3 flops in the leading order, which includes com-

pleting the orthogonal matrix P that costs 8{3n3 flops [11, sect. 5.2.9] and computing

the square root A1{2 and forming A, which costs n3{3 flops and 3n3 flops, respec-

tively. The methods discussed above are therefore asymptotically more expensive

than using formula (5.9) with Schur method (or spectral method, in the symmetric

case) under the setting k ! n, so again we do not consider them further.

5.5 cost comparison of the methods

Now we compare the computational cost of the methods discussed in the previous

sections for computing the square root of the matrix A in (5.1). The methods that are

not considered practical or only applicable to A with U “ V are excluded.

In Table 5.1 the methods are divided into two categories: Schur-based methods and

Newton methods. We report the asymptotic cost of the methods, where we assume

that the linear systems are solved using LU factorization. We give the cost in terms

140 roots of low-rank perturbations of scaled identity

Table 5.1: Asymptotic cost of methods for computing pαI ` UV˚q1{2 for U, V P Cnˆk. The second
and third column report the cost of the methods in terms of flops and matrix operations,
respectively. Here, Dk, Ik, and Mk denote the solution of a k ˆ k linear system with k right-
hand sides, the inversion of a matrix of order k, and the multiplication of two matrices of
order k, respectively. For the iterative methods, N is the total number of iterations performed.

Method Total flops Operations
per iteration

Schur-based: Schur method 28 1
3 n3 –

Formula (5.9) with Schur method 2kn2 ` 4k2n ` 29k3 –

Newton: DB iteration 4Nn3 2 In
Product DB iteration 4Nn3 Mn + In
Structured DB 2kn2 ` 4k2n ` 9 1

3 Nk3 2 Mk + 2 Dk

Structured product DB 2kn2 ` 4k2n ` 8 2
3 Nk3 3 Mk + Dk

Formula (5.9) with DB 2kn2 ` 4k2n ` 4Nk3 2 Ik
Formula (5.9) with product DB 2kn2 ` 4k2n ` 4Nk3 Mk + Ik

of flops and in terms of matrix multiplications, matrix inversions, and multiple-right-

hand-side system solves.

For k ! n, the computational cost of computing A1{2 is reduced from Opn3q for the

standard (unstructured) methods to Opn2q for the methods that exploit the low-rank

structure, assuming that for the Newton methods the number of iterations does not

depend on k or n. Among the Schur-free methods that exploit the low-rank structure,

formula (5.9) has the least cost, regardless of what form of the DB iteration is used

to compute the k ˆ k square root. It will be cheaper to evaluate (5.9) using the DB

iteration (plain or in product form) as long as convergence is achieved in no more

than 7 steps, whilst the Schur method will be more convenient for matrices that

would require 8 or more iterations.

5.6 numerical experiments

In this section we evaluate the performance of four methods for computing the square

root of matrices of the form (5.1), which are implemented in the following MATLAB

codes.

5.6 numerical experiments 141

‚ schur_full: an algorithm that first builds the matrix A in (5.1) by computing

the outer product and then computes its square root using the MATLAB func-

tion sqrtm, which implements the Schur method [6], [8], [16]. If U “ V, the

matrix A is normal and its triangular Schur factor is diagonal. In this case,

this algorithm reduces to the computation of QΛ1{2Q˚ where A “ QΛQ˚ is a

spectral decomposition of A.

‚ schur_k: an implementation of (5.9), where the square root of the k ˆ k matrix

is computed using sqrtm and the k ˆ k linear system with k right-hand sides is

solved using the MATLAB backslash operator.

‚ db_prod_k: an implementation of (5.9), where the square root of the k ˆ k matrix

is computed using the DB iteration in product form (5.15) with determinantal

scaling and the k ˆ k linear system with k right-hand sides is solved using the

MATLAB backslash operator.

‚ db_prod_struct: the structured DB iteration in product form discussed in sec-

tion 5.3, which iterates on k ˆ k matrices. The algorithm uses the determinantal

scaling in (5.16) and (5.17).

The experiments were run using the 64-bit GNU/Linux version of MATLAB 9.11.0

(R2021b Update 1) on a machine equipped with an AMD Ryzen 7 Pro 5850U running

at 1.90GHz and 32 GiB of RAM. The code we used to produce the results in this

section is available on GitHub.3

For the DB iterations we use the following stopping criterion: we look at Bi, one of

the k ˆ k matrices on which we iterate, and we return the current approximation when

the 1-norm of the relative change between two successive iterations falls below a

given tolerance τ, which for our experiments was set to 10u64 for binary64 arithmetic

and 8u32 for binary32 precision, where u64 “ 2´53 « 1 ˆ 10´16 and u32 “ 2´24 «

6 ˆ 10´8 are the unit roundoffs of binary64 and binary32 arithmetic, respectively.

3 https://github.com/Xiaobo-Liu/sqrtm-lrpsi

https://github.com/Xiaobo-Liu/sqrtm-lrpsi

142 roots of low-rank perturbations of scaled identity

For each computed square root pX of A, we compute the 2-norm relative residual

in (5.5) and we gauge the quality of pX by comparing the relative residual with the

quantity α2pXqu, where

α2pXq “
∥X∥2

2
∥A∥2

can be regarded as a condition number for the relative residual [6, sect. 4], [16, sect. 5],

and u is the unit roundoff of the working precision. We note that α2pXq ” 1 if A is

normal [6, sect. 4], thus we do not report the value of α2pXq in such cases.

5.6.1 Quality

First we compare our four implementations in terms of the quality of the computed

solution. In these experiments we consider the matrix A in (5.1) for U “ V and n “

100. For the dimension k we vary the ratio k{n from 0 to 1 with increment of 0.05 and

replace the zero ratio by 0.01. Figure 5.2 reports the relative residual (5.5). The matrix

U has entries drawn from N
`

0, n´2
˘

in Figure 5.2a, and from the uniform distribution

over the open interval p0, n´1q, which we denote by U
`

0, n´1
˘

, in Figure 5.2b. In these

two figures α “ 1 is used. In Figure 5.2c and Figure 5.2d the matrix U has entries

drawn from U
`

0, n´1
˘

with α “ 0.1 and α “ 0.001, respectively.

In Figure 5.2a and Figure 5.2b the relative residual of db_prod_struct is indistin-

guishable from that of schur_k and db_prod_k, which exploit the formula (5.9). The

relative residual of schur_full, on the other hand, is about one and a half orders

of magnitude larger in both cases, and in fact schur_full is the only algorithm that

produces a relative residual not of the same magnitude as α2pXqu; the reason for this

mild instability is not clear. In Figure 5.2c the performance of the algorithms does not

change much from that in Figure 5.2b when α decreases to 0.1. In Figure 5.2d we see

that if α “ 0.001 then db_prod_struct shows signs of instability as k{n approaches 1,

while the other algorithms remain largely stable and schur_full has relatively better

performance for small α. With the chosen values of α, the matrix A is very well condi-

5.6 numerical experiments 143

0 0.2 0.4 0.6 0.8 1
10�17

10�16

10�15

10�14

10�13

k{n

(a) uij “ vij „ N
`

0, n´2˘, α “ 1.

0 0.2 0.4 0.6 0.8 1
10�17

10�16

10�15

10�14

10�13

k{n

(b) uij “ vij „ U
`

0, n´1˘, α “ 1.

0 0.2 0.4 0.6 0.8 1
10�17

10�16

10�15

10�14

10�13

k{n

(c) uij “ vij „ U
`

0, n´1˘, α “ 0.1.

0 0.2 0.4 0.6 0.8 1
10�17

10�16

10�15

10�14

10�13

k{n

(d) uij “ vij „ U
`

0, n´1˘, α “ 0.001.

schur_full schur_k db_prod_k db_prod_struct

Figure 5.2: Relative residuals of algorithms for computing the square root. The matrix A has the
form (5.1) for n “ 100, various choices of α, and V “ U. The elements of U are drawn
from different distributions.

tioned, as κ2pAq ă 10. We repeated the experiment with the setting in Figure 5.2d but

further decreasing α to 10´6. In this case κ2pAq “ Opnq, and the algorithms behaved

as in Figure 5.2d.

Next we test the algorithms on nonsymmetric matrices. We use the same experi-

mental settings as in previous tests, but we now set U ‰ V so that A is nonsymmetric.

The results are shown in Figure 5.3. There is no substantial difference between the

behavior of the algorithms on symmetric and nonsymmetric matrices, although we

144 roots of low-rank perturbations of scaled identity

0 0.2 0.4 0.6 0.8 1
10�17

10�16

10�15

10�14

10�13

k{n

(a) uij, vij „ N
`

0, n´2˘, α “ 1.

0 0.2 0.4 0.6 0.8 1
10�17

10�16

10�15

10�14

10�13

k{n

(b) uij, vij „ U
`

0, n´1˘, α “ 1.

0 0.2 0.4 0.6 0.8 1
10�17

10�16

10�15

10�14

10�13

k{n

(c) uij, vij „ U
`

0, n´1˘, α “ 0.1.

0 0.2 0.4 0.6 0.8 1
10�17

10�16

10�15

10�14

10�13

k{n

(d) uij, vij „ U
`

0, n´1˘, α “ 0.001.

schur_full schur_k db_prod_k db_prod_struct

α2pXqu

Figure 5.3: Relative residuals of algorithms for computing the square root. The matrix A has the
form (5.1) for n “ 100, various choices of α, and V ‰ U. The elements of U and V are
drawn from different distributions.

note that the quality of the solutions computed by the Schur-based algorithms slightly

deteriorates in Figure 5.3 compared with the results in Figure 5.2.

5.6 numerical experiments 145

0 0.2 0.4 0.6 0.8 1
10�3

10�2

10�1

100

k{n

(a) n “ 1000.

0 0.2 0.4 0.6 0.8 1
10�2

10�1

100

101

102

k{n

(b) n “ 4000.

0 0.2 0.4 0.6 0.8 1
10�1

100

101

102

103

k{n

(c) n “ 7000.

0 0.2 0.4 0.6 0.8 1
10�1

100

101

102

103

k{n

(d) n “ 10000.

schur_full schur_k db_prod_k db_prod_struct

Figure 5.4: Execution times (in seconds) of algorithms for computing the square root. The matrix A has
the form (5.1) for α “ 0.1 and V “ U. The elements of U are drawn from N

`

0, n´2˘.

5.6.2 Timings

In Figure 5.4 we gauge how the execution time of our MATLAB implementations

changes as the ratio k{n varies. In this experiment we consider the matrix A in (5.1)

for α “ 0.1, U “ V, and n “ 1000, 4000, 7000, and 10000. The results reported here

are for uij „ N p0, n´2q, but we have repeated the experiment with uij „ Up0, n´1q and

found that the behavior of the methods does not change significantly. As predicted by

the analysis of the computational cost in section 5.5, schur_full is the only algorithm

whose timings depend only on the order n of the input matrix but not on the rank k

146 roots of low-rank perturbations of scaled identity

0 0.2 0.4 0.6 0.8 1
10�3

10�2

10�1

100

k{n

(a) n “ 1000.

0 0.2 0.4 0.6 0.8 1
10�2

10�1

100

101

102

k{n

(b) n “ 4000.

0 0.2 0.4 0.6 0.8 1
10�1

100

101

102

103

k{n

(c) n “ 7000.

0 0.2 0.4 0.6 0.8 1
10�1

100

101

102

103

k{n

(d) n “ 10000.

schur_full schur_k db_prod_k db_prod_struct

Figure 5.5: Execution times (in seconds) of algorithms for computing the square root. The matrix A has
the form (5.1) for α “ 0.1 and V ‰ U. The elements of U and V are drawn from N

`

0, n´2˘.

of the perturbation. The methods that exploit the structure of A, on the other hand,

become slower as the ratio k{n grows. The fastest of the four implementations is

schur_k, and its execution time never exceeds that of schur_full significantly. In

this experiment db_prod_struct typically requires 7 iterations to converge and is the

slowest, and db_prod_k typically requires 6 iterations to converge and is just slightly

slower than schur_k.

We repeated the experiments with α “ 1 and obtained very similar results, al-

though on this simpler problem db_prod_k and db_prod_struct were usually faster

and required at most 2 and 3 iterations, respectively.

5.6 numerical experiments 147

Table 5.2: Characteristics of the test matrices provided as part of the Lingvo framework and our ap-
proximations to them. For the test matrices Bi we report the size, n, the smallest and the
largest eigenvalues λmin and λmax computed by the MATLAB eig function using binary32
arithmetic, and the numerical rank r as returned by the MATLAB function rank. For the
approximations rBi we report the order ti of Σt in the truncated spectral decomposition with
tolerance εi, as discussed in section 5.6.3.

n λmin λmax r ε1 t1 ε2 t2

B1 1024 ´1.3 ˆ 10´2 7.8 ˆ 104 20 rB1 1.0 ˆ 10´1 82 2.0 ˆ 10´3 128
B2 512 ´2.4 ˆ 10´4 5.6 ˆ 103 173 rB2 1.0 ˆ 10´1 221 6.9 ˆ 10´4 418
B3 512 ´1.9 ˆ 10´4 1.8 ˆ 103 243 rB3 1.0 ˆ 10´1 177 6.9 ˆ 10´4 511

The picture is different for nonsymmetric matrices, as shown by Figure 5.5, which

reports the results of the same experiments for the matrix A of the form (5.1) with

n “ 1000, 4000, 7000, and 10000, α “ 0.1, and U ‰ V. The behavior of the algorithms

does not change significantly in this setting, although db_prod_k becomes the fastest

method for all matrix sizes, schur_k becomes the slowest by a considerable margin

for n “ 1000, whereas db_prod_struct is typically the slowest for larger matrices.

We remark that in both cases, the new algorithms we discuss can be up to two

orders of magnitude faster than the traditional approach based on the Schur decom-

position, when the ratio k{n is below 1/10, which can be considered the typical range

for low-rank updates.

5.6.3 Positive definite matrices from applications

Now we compare the structured iterations and the direct algorithms on three test

matrices from machine learning applications [1]. These are provided as part of the

Lingvo framework for TensorFlow [29] and are available on GitHub.4 The matrices,

which are provided in binary32 format, are formed by accumulating matrix products

of the form (5.10) for α “ 0, and thus they are real and symmetric but are numerically

indefinite because of rounding errors in the computation, having small negative real

eigenvalues (see Table 5.2). We do not have access to the terms Gs in (5.10) used to

generate the test matrices, and for the sake of our experiment we recover them from

the test matrices as we now explain.

4 https://github.com/tensorflow/lingvo/tree/master/lingvo/core/testdata

https://github.com/tensorflow/lingvo/tree/master/lingvo/core/testdata

148 roots of low-rank perturbations of scaled identity

By the spectral theorem, the symmetric test matrix Bi P Rnˆn can be decomposed

as QΣQT, where Q P Rnˆn is orthogonal and Σ P Rnˆn is diagonal and has diagonal

elements sorted in decreasing order. Let us now define the matrix rBi “ QtΣtQT
t ,

where Qt P Rnˆt collects the first t columns of Q and Σt P Rtˆt is the leading principal

submatrix minor of Σ of order t. In other words, rBi approximates Bi by truncating

its spectral decomposition to rank t. By taking G “ QtΣt
1{2, we can rewrite this

approximation as GGT “ rBi « Bi, which is implicitly of the form
řt

s“1 GsGT
s in (5.10).

We choose t according to some tolerance ε ą 0 such that all eigenvalues of Bi P Rnˆn

not less than ε are retained in Σt P Rtˆt. In the experiments we consider two different

choices of the tolerance: ε1 “ 0.1 and ε2 “ n3{2u32.

In Table 5.2 we list some important characteristics of the original test matrices,

which we denote by B1, B2, and B3, and our approximations to them, which we

denote by rB1, rB2, and rB3, respectively.

We examine the performance of the algorithms for computing the principal square

root of Ai “ αIn ` rBi in binary32 arithmetic, where α is a positive real constant chosen

so that the smallest eigenvalue of Ai is positive, which implies that Ai is positive

definite. Given that practical values of the regularizing scalar α are not mentioned

in [1], in the experiments we test three choices: α “ 10´6, 10´3, and 1.

The results are given in Table 5.3, and Figure 5.6 presents the same data pictorially.

The matrices do not appear in the same order in the two panels of Figure 5.6: they

are grouped by value of α in Figure 5.6a and by size and rank in Figure 5.6b.

All the methods except db_prod_struct converge for all test matrices with relative

residual of the order α2pA1{2qu32 in most cases, which indicates good numerical stabil-

ity. In general, db_prod_k gives the solution that has the smallest residual; the other

iterative method, db_prod_struct computes an unsatisfactory solution for α “ 10´6

and α “ 10´3, but for α “ 1 its performance is on par with that of db_prod_k.

In terms of timings, schur_full is by far the slowest choice for B1, but becomes

comparable with db_prod_k and db_prod_struct for B2 and B3 when the rank of

rBi is moderate compared with the size. schur_k is the fastest method, while its

5.6 numerical experiments 149

Table 5.3: Relative residual and execution time (in seconds) of algorithms for computing the square
root. The matrices are those in Table 5.2.

t Method α “ 10´6 α “ 10´3 α “ 1
res time res time res time

B1 82 schur_full 1 ˆ 10´6 5 ˆ 10´2 1 ˆ 10´6 5 ˆ 10´2 2 ˆ 10´6 4 ˆ 10´2

schur_k 9 ˆ 10´7 2 ˆ 10´3 9 ˆ 10´7 1 ˆ 10´3 1 ˆ 10´6 1 ˆ 10´3

db_prod_k 4 ˆ 10´7 6 ˆ 10´3 3 ˆ 10´7 6 ˆ 10´3 5 ˆ 10´7 5 ˆ 10´3

db_prod_struct 1 ˆ 10´1 5 ˆ 10´3 1 ˆ 10´4 3 ˆ 10´3 2 ˆ 10´7 3 ˆ 10´3

128 schur_full 2 ˆ 10´6 4 ˆ 10´2 2 ˆ 10´6 4 ˆ 10´2 2 ˆ 10´6 4 ˆ 10´2

schur_k 2 ˆ 10´6 2 ˆ 10´3 9 ˆ 10´7 2 ˆ 10´3 2 ˆ 10´6 2 ˆ 10´3

db_prod_k 5 ˆ 10´7 1 ˆ 10´2 4 ˆ 10´7 1 ˆ 10´2 5 ˆ 10´7 1 ˆ 10´2

db_prod_struct 1 ˆ 10´1 8 ˆ 10´3 1 ˆ 10´4 7 ˆ 10´3 4 ˆ 10´7 1 ˆ 10´2

B2 221 schur_full 2 ˆ 10´6 9 ˆ 10´3 1 ˆ 10´6 8 ˆ 10´3 1 ˆ 10´6 8 ˆ 10´3

schur_k 1 ˆ 10´6 3 ˆ 10´3 2 ˆ 10´6 3 ˆ 10´3 9 ˆ 10´7 3 ˆ 10´3

db_prod_k 4 ˆ 10´7 2 ˆ 10´2 8 ˆ 10´8 2 ˆ 10´2 4 ˆ 10´7 2 ˆ 10´2

db_prod_struct 1 ˆ 10´1 2 ˆ 10´2 1 ˆ 10´4 1 ˆ 10´2 5 ˆ 10´7 1 ˆ 10´2

418 schur_full 2 ˆ 10´6 9 ˆ 10´3 2 ˆ 10´6 8 ˆ 10´3 2 ˆ 10´6 8 ˆ 10´3

schur_k 7 ˆ 10´6 8 ˆ 10´3 6 ˆ 10´6 8 ˆ 10´3 6 ˆ 10´6 8 ˆ 10´3

db_prod_k 4 ˆ 10´7 4 ˆ 10´2 7 ˆ 10´8 4 ˆ 10´2 4 ˆ 10´7 4 ˆ 10´2

db_prod_struct 1 ˆ 10´1 6 ˆ 10´2 1 ˆ 10´4 4 ˆ 10´2 5 ˆ 10´7 4 ˆ 10´2

B3 177 schur_full 2 ˆ 10´6 9 ˆ 10´3 1 ˆ 10´6 8 ˆ 10´3 3 ˆ 10´6 8 ˆ 10´3

schur_k 1 ˆ 10´6 2 ˆ 10´3 1 ˆ 10´6 2 ˆ 10´3 7 ˆ 10´7 2 ˆ 10´3

db_prod_k 3 ˆ 10´7 1 ˆ 10´2 1 ˆ 10´7 1 ˆ 10´2 2 ˆ 10´7 1 ˆ 10´2

db_prod_struct 1 ˆ 10´1 1 ˆ 10´2 1 ˆ 10´4 9 ˆ 10´3 3 ˆ 10´7 9 ˆ 10´3

511 schur_full 2 ˆ 10´6 8 ˆ 10´3 2 ˆ 10´6 9 ˆ 10´3 3 ˆ 10´6 8 ˆ 10´3

schur_k 3 ˆ 10´6 1 ˆ 10´2 3 ˆ 10´6 1 ˆ 10´2 1 ˆ 10´6 1 ˆ 10´2

db_prod_k 3 ˆ 10´7 8 ˆ 10´2 1 ˆ 10´7 8 ˆ 10´2 2 ˆ 10´7 8 ˆ 10´2

db_prod_struct 1 ˆ 10´1 1 ˆ 10´1 1 ˆ 10´4 6 ˆ 10´2 3 ˆ 10´7 6 ˆ 10´2

advantage over db_prod_k and db_prod_struct becomes negligible when rBi has low

rank. The execution time of the two iterative methods db_prod_k and db_prod_struct

is similar on most of the test matrices. Again, we observe that exploiting the structure

of A delivers a significant performance improvement when k ! n, in line with what

suggested by the cost comparison in Table 5.1.

We conclude by mentioning that we derived, implemented, and tested the struc-

tured version of other variants of the Newton iteration, including the incremental

form of Iannazzo [21] and the Newton–Schulz iteration. We found that their perfor-

mance is similar to that of the structured DB iteration in product form.

150 roots of low-rank perturbations of scaled identity

10´8

10´7

10´6

10´5

10´4

10´3

10´2

10´1

α “ 10´6 α “ 10´3 α “ 100

(a) Residual.

10´3

10´2

10´1

t1 t2 t1 t2 t1 t2

B1 B2 B3

(b) Timings.

schur_full schur_k db_prod_k db_prod_struct

Figure 5.6: Relative residual (left) and execution time in seconds (right) of algorithms for computing
the square root. The matrices are those in Table 5.2; they are grouped by value of α in the
plot on the left, and by matrix in the plot on the right, where the two values of t for a matrix
Bi are separated by a dotted line.

5.7 concluding remarks

We have investigated numerical methods for computing roots of a matrix A “ αIn `

UV˚, where U and V have rank k ď n. We derived a new formula for A1{p that has

the advantage over the existing formula from Theorem 5.1 of not requiring that V˚U

be nonsingular. Focusing on the square root, we have also derived a new structured

DB iteration that exploits the low-rank structure of UV˚.

Our numerical experiments confirm that when k ! n, exploiting the structure

yields algorithms that are much more efficient than simply applying the Schur method

to A. If the Schur decomposition can be computed then using the Schur method to

evaluate (5.9) is our preferred method overall. Otherwise, we recommend the use

of the DB iteration, either in its structured form or as an unstructured algorithm to

compute the k ˆ k square root appearing in (5.9).

references 151

references

[1] R. Anil, V. Gupta, T. Koren, K. Regan, and Y. Singer. Scalable Second Order Op-

timization for Deep Learning. preprint, arXiv:2002.09018v2 [cs.LG]. 2020. Revised

March 2021 (cited on pp. 127, 147, 148).

[2] B. Beckermann, A. Cortinovis, D. Kressner, and M. Schweitzer. “Low-rank

updates of matrix functions II: Rational Krylov methods.” SIAM J. Numer. Anal.

59.3 (Jan. 2021), pp. 1325–1347 (cited on p. 126).

[3] B. Beckermann, D. Kressner, and M. Schweitzer. “Low-rank updates of matrix

functions.” SIAM J. Matrix Anal. Appl. 39.1 (Jan. 2018), pp. 539–565 (cited on

p. 126).

[4] D. S. Bernstein and C. F. V. Loan. “Rational matrix functions and rank-1 up-

dates.” SIAM J. Matrix Anal. Appl. 22.1 (2000), pp. 145–154 (cited on p. 126).

[5] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah. “Julia: A fresh approach

to numerical computing.” SIAM Rev. 59.1 (2017), pp. 65–98 (cited on p. 121).

[6] Å. Björck and S. Hammarling. “A Schur method for the square root of a ma-

trix.” Linear Algebra Appl. 52/53 (1983), pp. 127–140 (cited on pp. 121, 133, 135,

139, 141, 142).

[7] S. H. Cheng, N. J. Higham, C. S. Kenney, and A. J. Laub. “Approximating the

logarithm of a matrix to specified accuracy.” SIAM J. Matrix Anal. Appl. 22.4

(2001), pp. 1112–1125 (cited on p. 131).

[8] E. Deadman, N. J. Higham, and R. Ralha. “Blocked Schur Algorithms for Com-

puting the Matrix Square Root.” In: Applied Parallel and Scientific Computing:

11th International Conference, PARA 2012, Helsinki, Finland. Ed. by P. Manninen

and P. Öster. Vol. 7782. Lecture Notes in Computer Science. Springer-Verlag,

Berlin, Germany, 2013, pp. 171–182 (cited on pp. 121, 141).

[9] E. D. Denman and A. N. Beavers Jr. “The matrix sign function and computa-

tions in systems.” Appl. Math. Comput. 2.1 (1976), pp. 63–94 (cited on p. 129).

https://arxiv.org/abs/2002.09018
https://arxiv.org/abs/2002.09018
https://doi.org/10.1137/20m1362553
https://doi.org/10.1137/20m1362553
https://doi.org/10.1137/17m1140108
https://doi.org/10.1137/17m1140108
https://doi.org/10.1137/S0895479898333636
https://doi.org/10.1137/S0895479898333636
https://doi.org/10.1137/141000671
https://doi.org/10.1137/141000671
https://doi.org/10.1016/0024-3795(83)80010-X
https://doi.org/10.1016/0024-3795(83)80010-X
https://doi.org/10.1137/S0895479899364015
https://doi.org/10.1137/S0895479899364015
https://doi.org/10.1016/0096-3003(76)90020-5
https://doi.org/10.1016/0096-3003(76)90020-5

152 roots of low-rank perturbations of scaled identity

[10] M. Fasi and N. J. Higham. “Multiprecision algorithms for computing the ma-

trix logarithm.” SIAM J. Matrix Anal. Appl. 39.1 (2018), pp. 472–491 (cited on

p. 121).

[11] G. H. Golub and C. F. Van Loan. Matrix Computations. 4th ed., Baltimore, MD,

USA: Johns Hopkins University Press, 2013, pp. xxi+756 (cited on pp. 121, 134,

135, 137–139).

[12] F. Greco and B. Iannazzo. “A binary powering Schur algorithm for computing

primary matrix roots.” Numer. Algorithms 55.1 (2010), pp. 59–78 (cited on p. 121).

[13] C.-H. Guo and N. J. Higham. “A Schur–Newton method for the matrix pth

root and its inverse.” SIAM J. Matrix Anal. Appl. 28.3 (2006), pp. 788–804 (cited

on p. 127).

[14] V. Gupta, T. Koren, and Y. Singer. “Shampoo: Preconditioned Stochastic Ten-

sor Optimization.” In: Proceedings of the 35th International Conference on Machine

Learning. Ed. by J. Dy and A. Krause. Vol. 80. Proceedings of Machine Learning

Research. Stockholmsmässan, Stockholm Sweden, 2018, pp. 1842–1850 (cited on

p. 127).

[15] L. A. Harris. “Computation of functions of certain operator matrices.” Linear

Algebra Appl. 194 (1993), pp. 31–34 (cited on p. 122).

[16] N. J. Higham. “Computing real square roots of a real matrix.” Linear Algebra

Appl. 88/89 (1987), pp. 405–430 (cited on pp. 121, 139, 141, 142).

[17] N. J. Higham. “Computing the polar decomposition—with applications.” SIAM

J. Sci. Statist. Comput. 7.4 (Oct. 1986), pp. 1160–1174 (cited on p. 133).

[18] N. J. Higham. Functions of Matrices: Theory and Computation. Philadelphia, PA,

USA: Society for Industrial and Applied Mathematics, 2008, pp. xx+425 (cited

on pp. 120–122, 129, 131, 135, 136).

[19] N. J. Higham. “Newton’s method for the matrix square root.” Math. Comp.

46.174 (Apr. 1986), pp. 537–549 (cited on p. 129).

[20] R. A. Horn and C. R. Johnson. Matrix Analysis. 2nd. Cambridge, UK: Cambridge

University Press, 2013, pp. xviii+643 (cited on pp. 122, 136).

https://doi.org/10.1137/17M1129866
https://doi.org/10.1137/17M1129866
https://doi.org/10.1007/s11075-009-9357-1
https://doi.org/10.1007/s11075-009-9357-1
https://doi.org/10.1137/050643374
https://doi.org/10.1137/050643374
https://doi.org/10.1016/0024-3795(93)90111-Z
https://doi.org/10.1016/0024-3795(87)90118-2
https://doi.org/10.1137/0907079
https://doi.org/10.1137/1.9780898717778
https://doi.org/10.1090/S0025-5718-1986-0829624-5

references 153

[21] B. Iannazzo. “A note on computing the matrix square root.” Calcolo 40.4 (2003),

pp. 273–283 (cited on p. 149).

[22] B. Iannazzo and C. Manasse. “A Schur logarithmic algorithm for fractional

powers of matrices.” SIAM J. Matrix Anal. Appl. 34.2 (2013), pp. 794–813 (cited

on p. 121).

[23] C. Ionescu, O. Vantzos, and C. Sminchisescu. “Matrix backpropagation for deep

networks with structured layers.” In: Proceedings of the IEEE International Confer-

ence on Computer Vision. Dec. 2015, pp. 2965–2973 (cited on p. 129).

[24] T.-Y. Lin. “Higher-Order Representations for Visual Recognition.” PhD thesis.

Massachusetts, USA: College of Information and Computer Sciences, Univer-

sity of Massachusetts Amherst, Feb. 2020, p. 105 (cited on pp. 127, 128).

[25] Multiprecision Computing Toolbox. Advanpix, Tokyo, Japan. http://www.advanpix.

com (cited on p. 124).

[26] Y. Nakatsukasa. Fast and Stable Randomized Low-rank Matrix Approximation. preprint,

arXiv:2009.11392 [math.NA]. 2020 (cited on p. 128).

[27] G. Schulz. “Iterative Berechung der reziproken Matrix.” Z. Angew. Math. Mech.

13.1 (1933), pp. 57–59 (cited on p. 121).

[28] W. Shao, H. Yu, Z. Zhang, H. Xu, Z. Li, and P. Luo. BWCP: Probabilistic Learning-

to-Prune Channels for ConvNets via Batch Whitening. preprint, arXiv:2105.06423

[cs.LG]. 2021 (cited on p. 129).

[29] J. Shen, P. Nguyen, Y. Wu, et al. Lingvo: A Modular and Scalable Framework for

Sequence-to-Sequence Modeling. preprint, arXiv:1902.08295 [cs.LG]. 2019 (cited on

p. 147).

[30] S. Shumeli, P. Drineas, and H. Avron. Low-Rank Updates of Matrix Square Roots.

arXiv:2201.13156 [math.NA]. 2022 (cited on p. 127).

[31] M. I. Smith. “A Schur algorithm for computing matrix pth roots.” SIAM J.

Matrix Anal. Appl. 24.4 (2003), pp. 971–989 (cited on p. 121).

[32] Y. Song, N. Sebe, and W. Wang. Fast Differentiable Matrix Square Root. ArXiv:1209.5145.

2022 (cited on p. 121).

https://doi.org/10.1007/s10092-003-0079-9
https://doi.org/10.1137/120877398
https://doi.org/10.1137/120877398
http://www.advanpix.com
http://www.advanpix.com
https://arxiv.org/abs/2009.11392
https://doi.org/10.1002/zamm.19330130111
https://arxiv.org/abs/2105.06423
https://arxiv.org/abs/2105.06423
https://arxiv.org/abs/1902.08295
https://arxiv.org/abs/1902.08295
https://arxiv.org/abs/2201.13156
https://doi.org/10.1137/S0895479801392697
https://arxiv.org/abs/2201.08663

154 roots of low-rank perturbations of scaled identity

[33] Symbolic Math Toolbox. The MathWorks, Inc., Natick, MA, USA. http://www.

mathworks.co.uk/products/symbolic/ (cited on p. 121).

[34] D. S. Watkins. “Francis’s algorithm.” Amer. Math. Monthly 118.5 (2011), p. 387

(cited on p. 121).

[35] D. S. Watkins. “Understanding the QR algorithm.” SIAM Rev. 24.4 (Oct. 1982),

pp. 427–440 (cited on p. 121).

[36] D. S. Watkins. “The QR algorithm revisited.” SIAM Rev. 50.1 (Jan. 2008), pp. 133–

145 (cited on p. 121).

[37] C. Ye, X. Zhou, T. McKinney, Y. Liu, Q. Zhou, and F. Zhdanov. Exploiting In-

variance in Training Deep Neural Networks. preprint, arXiv:2103.16634v2 [cs.CV].

2021. Revised December 2021 (cited on p. 129).

http://www.mathworks.co.uk/products/symbolic/
http://www.mathworks.co.uk/products/symbolic/
https://doi.org/10.4169/amer.math.monthly.118.05.387
https://doi.org/10.1137/1024100
https://doi.org/10.1137/060659454
https://arxiv.org/abs/2103.16634
https://arxiv.org/abs/2103.16634

6 CONCLUS IONS

The computation of functions of matrices has drawn much research interest over the

decades, and various algorithms for computing different matrix functions have been

proposed in the literature. Many existing state-of-the-art algorithms for computing

matrix functions are tightly coupled to a specific precision of floating-point arithmetic

and are not suited for an arbitrary precision setting, because their algorithmic design

requires potentially expensive precision-dependent computations. In this thesis we

developed numerical methods for computing matrix functions in arbitrary precision,

which take the unit roundoff of the working precision as an input argument to reduce

the dependence on characteristics of the computational environment, and so works

in an arbitrary precision.

We exploited Davies’s idea of randomized approximate diagonalization [2] within

the Schur–Parlett framework [3] to build a multiprecision derivative–free algorithm

for evaluating analytic matrix functions in arbitrary precision. The key idea is to

add random diagonal perturbations to nontrivial blocks on the diagonal of the Schur

form and then diagonalize the perturbed blocks in a precision higher than the work-

ing precision. An estimate of the condition number of the eigenvector matrix of the

perturbed blocks is needed in order to determine the higher precision at which to

perform the diagonalization. We therefore designed a scheme to estimate the con-

dition number of the eigenvector matrix of a triangular matrix based only on its

elements. This algorithm greatly expands the class of readily computable matrix

functions, given that we have access to higher precision arithmetic which depends on

the eigenvalue distribution of the matrix.

Experiments suggest that the condition numbers of the matrix square root, the sign

function, and the logarithm at a triangular matrix in the direction of a full matrix

can be significantly larger than that in the direction of a triangular matrix. This

155

156 conclusions

huge difference in the unstructured and structured conditioning of these functions at

triangular matrices could be investigated in future research.

We developed a scaling and recovering algorithm for computing the matrix cosine

in arbitrary precision. The fact that the computational environment is only known

at the run time brings uncertainty and flexibility in selecting the parameters in the

algorithm. We overcame this difficulty by combining new inexpensively computable

forward error bounds from Taylor approximation that exploit the hyperbolic cosine

with dynamic strategies for selecting the algorithmic parameters, to design a viable

algorithm in arbitrary precision, where, in principle, the number of scalings and the

degree of the approximant chosen by the algorithm can be arbitrarily large. We also

derived a framework for computing the cosine and its Fréchet derivative simulta-

neously, where the main point is Fréchet differentiating the double angle formula

cosp2Aq “ 2 cos2 A ´ I, and we built an efficient evaluation scheme based on the

Paterson–Stockmeyer method for computing them simultaneously in arbitrary preci-

sion. This is the first algorithm that can compute in arbitrary precision a matrix func-

tion and its Fréchet derivative simultaneously. We finally showed how this scheme

can be extended to evaluate the matrix sine, cosine, and their Fréchet derivatives all

together.

The analysis and techniques in the algorithm can be readily adapted for computing

other matrix trigonometric and hyperbolic functions in arbitrary precision arithmetic,

such as those treated in [1] and the wave-kernel functions investigated in [6] and their

Fréchet derivatives. Another possible future direction is to extend our algorithm to

compute the action of these functions on a matrix in arbitrary precision as it is actu-

ally the matrix–vector products that are required in the solutions of wave equations.

We studied numerical methods for computing roots of a matrix A “ αI ` UV˚, as

a correction of α1{2 I, where U and V have rank k ď n, and derived a new formula

for A1{p that has the advantage over the existing formula from [5, Thm. 1.35] of not

requiring that V˚U be nonsingular; focusing on the square root, we derived a new

class of Newton iterations that exploits the structure of A by simultaneously iterating

on a scalar and a k ˆ k matrix. We also proposed several Schur-based methods that

references 157

can utilize the structure of A. These methods can be employed in arbitrary precision

by simply executing all elementary scalar operations in arbitrary precision, and, ad-

ditionally, for the iterative algorithms, by properly adjusting the internal tolerance

that is used as stopping criterion.

In particular, within the Schur-based methods we established a scheme to obtain

the Schur decomposition of the n ˆ n matrix UV˚ from the Schur decomposition

of the k ˆ k matrix V˚U, and this scheme may be exploited to derive an efficient

Schur-based algorithm for computing matrix functions of a low-rank matrix A, in

the combination with randomized algorithms such as [4] that construct a low-rank

factorization of A. The study of this algorithm remains the subject of future work.

references

[1] A. H. Al-Mohy. “A truncated Taylor series algorithm for computing the action

of trigonometric and hyperbolic matrix functions.” SIAM J. Sci. Comput. 40.3

(2018), A1696–A1713 (cited on p. 156).

[2] E. B. Davies. “Approximate diagonalization.” SIAM J. Matrix Anal. Appl. 29.4

(2007), pp. 1051–1064 (cited on p. 155).

[3] P. I. Davies and N. J. Higham. “A Schur–Parlett algorithm for computing ma-

trix functions.” SIAM J. Matrix Anal. Appl. 25.2 (2003), pp. 464–485 (cited on

p. 155).

[4] N. Halko, P.-G. Martinsson, and J. A. Tropp. “Finding structure with random-

ness: probabilistic algorithms for constructing approximate matrix decomposi-

tions.” SIAM Rev. 53.2 (2011), pp. 217–288 (cited on p. 157).

[5] N. J. Higham. Functions of Matrices: Theory and Computation. Philadelphia, PA,

USA: Society for Industrial and Applied Mathematics, 2008, pp. xx+425 (cited

on p. 156).

[6] P. Nadukandi and N. J. Higham. “Computing the wave-kernel matrix func-

tions.” SIAM J. Sci. Comput. 40.6 (2018), A4060–A4082 (cited on p. 156).

https://doi.org/10.1137/17M1145227
https://doi.org/10.1137/17M1145227
https://doi.org/10.1137/060659909
https://doi.org/10.1137/S0895479802410815
https://doi.org/10.1137/S0895479802410815
https://doi.org/10.1137/090771806
https://doi.org/10.1137/090771806
https://doi.org/10.1137/090771806
https://doi.org/10.1137/1.9780898717778
https://doi.org/10.1137/18M1170352
https://doi.org/10.1137/18M1170352

	Contents
	List of Figures
	 List of Figures
	List of Tables
	 List of Tables
	Abstract
	Declaration
	Copyright statement
	Acknowledgements
	Publications
	1 Introduction
	References

	2 Background Material
	2.1 Matrix theory
	2.2 Functions of matrices
	2.3 Floating-point arithmetic
	References

	3 A Multiprecision Schur–Parlett Algorithm
	3.1 Introduction
	3.2 Schur–Parlett algorithm
	3.3 Approximate diagonalization
	3.4 Evaluating a function of a triangular matrix
	3.5 Overall algorithm for computing f(A)
	3.6 An application to the matrix Mittag–Leffler function
	3.7 Concluding remarks
	References

	4 Arbitrary Precision Algorithms for Matrix Cosine
	4.1 Introduction
	4.2 Previous work
	4.3 Forward error analysis for the matrix cosine
	4.4 A multiprecision algorithm for the matrix cosine
	4.5 Computing the Fréchet derivative
	4.6 Numerical experiments
	4.7 Concluding remarks
	References

	5 Roots of Low-Rank Perturbations of Scaled Identity
	5.1 Introduction
	5.2 Applications
	5.3 Newton iterations
	5.4 Schur methods
	5.5 Cost comparison of the methods
	5.6 Numerical experiments
	5.7 Concluding remarks
	References

	6 Conclusions
	References

