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Abstract

In this research, gas transport, diffusion and adsorption through micro–structured porous

materials with the help of data–driven methods are investigated. Different types of the geo-

logical porous media from organic–rich shale to tight carbonate and clays have been digitally

analysed and simulated to characterize various fluid–solid interactions. Considering the het-

erogeneous structure of the many nature–made porous materials, a multi-scale pore network

modeling approach has been presented which couples the effects of micro–pores, meso–pores

and fractures at the same time. Considering the high computational cost of the multi–scale

multi–physical systems, machine learning (ML) is employed to make statistical surrogate

models with minimal accuracy losses. Several physical features of the porous material have

been predicted using deep convolutional neural networks based on the segmented images

as input. Properties like absolute permeability, gas permeability, gas storage capacity, and

capillary pressure have been successfully predicted by the proposed machine learning model

with averaged r–squared of around 0.9. In some of the cases like permeability, ML pre-

dicted values have been compared to the micro–scale laboratory experiments and relative

error of 13 % has are reported which is reasonable considering 3 to 4 orders of magnitude

lower computational cost. The outcome of this study is to equip researchers with a series

of ML–assisted tools to accelerate numerical simulations of several fluid–solid interactions

in porous materials. As an example, the proposed methodology can be used in screening

of the suitable CO2 subsurface storage sites based on analysis of the pore scale images of

shale–deposits.
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1.1 Preface

In this section, a brief general introduction to the porous material concepts and data–driven

approaches such as machine learning is presented to familiarize the readers from different

disciplines with the main discussed subjects.

1.1.1 What is porous media?

To put it simply, a piece material that contains distributed void chambers can be called a

porous medium. Most of the nature–made structures from lifeless objects and particles to

living beings that surround us are porous at some level in a closer look. That’s a reason why

porous material research is fundamentally beneficial for many engineering, scientific, and

biomedical fields from geoscience, water resources [1] and fuel cells [2] to bone marrow and

cardio–vascular studies [3, 4, 5]. Most of the nature–made porous materials have an uneven

distribution of void spaces in both size and spatial domains which are called heterogeneous

porous media. Several physical properties can be defined for porous material as characteriza-

tion criteria. Porosity, pore size distribution, hydraulic permeability and adsorption capacity

are some of the most discussed properties in the literature. Porosity is the fraction of the

porous material material occupied by void space to its bulk volume. Pore size distribution

is a probability density function that represents the abundance of each pore sizes and it is

commonly obtainable via pore–scale image analysis as well as adsorption tests [6]. Hydraulic

permeability, is a measure of fluid flow capacity through the connected pathways of porous

media with the unit of m2 or Darcy. Higher the permeability values indicates an easier

fluid passage or equivalently lower fluid pressure gradient. Finally, adsorption capacity of

the porous material indicates the mass of a fluid that can be attached to the surface sites of

a porous material in a relatively stable manner. Considering the fact that porous materials

have significantly higher surface area compared to the solid materials with the same volume,

they are frequently used in the processes which demands high surface area for better a mass

transfer such as chemical catalysis, sub-surface gas storage, fluid filtering and etc. In this

thesis, fluid transport and storage within heterogeneous geo–porous materials are discussed.

1.1.2 What are data–driven methods?

As a broader concept of data–driven methods, data science is becoming a powerful tool to

solve a wide range of problems [7]. Dhar [8] has famously defined data science as “study

of the generalizable extraction of knowledge from data”. Data science can be viewed as a
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combination of classical disciplines, namely, statistics, data mining, and image analysis with

more recent artificial intelligence approaches like deep machine learning to create additional

value from the abundantly available data [7]. In another definition, Data science is the

mutual overlapping of mathematics, computer science, and a real–world field of expertise

which the data originates from and applies to it [9, 10, 11]. The two main data–driven

modeling approaches are known as statistical methods and machine learning [12]. Statistical

methods can be named as linear regression, auto–regression, multivariate regression, k-means

clustering and many other classic approaches. On the other hand, machine learning methods

are relatively more recent and flexible to model complex and highly non-linear phenomena.

The common machine learning methods can be named as regression trees, support vector

machines and artificial neural networks (ANNs).

ANNs have been initially designed and inspired by the learning pattern of a natural neural

cell [13]. An illustration of a neuron and a corresponding artificial perception are exhibited

in Figure 1.1–a and b. In such a structure, the dendrites receive the inputs and the cell body

is the computational hub of the neuron where it is essentially mimicked by the hidden layers

of the ANN. The output is transmitted through the axon which is subsequently received by

other nearby neurons. Although, this simple operation is virtually a linear transformation,

when large number of neural structures are connected to each other, they are able to process

highly non–linear problems especially by adding the activation functions[14]. Generally,

ANN data-feed is split into three distinct assortments, namely, training, validation and the

test sets [13]. Each dataset is composed of x and y values which correspond to an input

(e.g. pore size) and output (e.g. permeability). During the training phase of the ANN

model, the inputs are compared with the outputs and the corresponding relationships are

determined in terms of weights and biases of the network using back propagation of the

errors. In the meanwhile, the amount of model loss on validation dataset is recorded to

provide an unbiased criteria for the training performance. Once the validation error reach

an acceptable level, the model is considered to be ready for prediction on the test set [15].

The accuracy levels are user defined and the robustness of the model is highly contingent on

the available data points [16]. The model is subsequently subjected to the test set, which

evaluates the accuracy and overfitting criteria [17]. The test set is not a part of the initial

model training phase, thus becomes ideal in evaluating the generality of the trained model.

Upon the convergence to an acceptable error on the test set, the model can be employed on

the unknown data, whereby predictions are made [18]. Sometimes, an additional fraction of

the dataset is often reserved as the validation dataset. This is an optional step to evaluate
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the trained dataset and to propose certain optimisation algorithms to enhance the accuracy

of the model [19, 20].

Figure 1.1: Analogy of the biological neuron (a) and the mimicked ANN (b).

1.1.3 Interface of porous media research and data–driven methods

Data–driven methods can be very suitable candidates to tackle porous material modeling

tasks considering the fact that random–like structures of such material cannot be easily

described using analytical methods. There have been several interdisciplinary studies in the

literature utilizing the power of machine learning to characterize, classify, or reconstruct

pore–scale images.

Data regression

A plethora of regression methods are reported in pore scale research which primarily revolve

around porosity and permeability determination [21, 22]. These two properties dictate the

transport and storage characteristics of the porous material and they are useful in many
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engineering fields from determining the oil and gas recovery in the petroleum industry, to

CO2 sequestration modeling, geothermal plants, and radioactive waste management schemes

[23, 24, 25, 26, 22, 27]. Over the years, many experimental techniques have been developed

to accurately quantify these two properties [28]. However, the precision of these primary

parameters is hampered by the complexity and heterogeneity of the studied porous media.

Besides, the classical techniques through experiments are expensive and time intensive [29,

22]. Therefore, machine learning techniques are adopted by a multitude of researchers to

benefit from a large dataset of imagery data to predict the porous media properties [30, 31,

32].

Data classification and clustering

In the regression analysis, the variability of a particular parameter such as permeability is

determined with respect to several other properties [33]. In contrast, classification techniques

are employed to distinguish a distinct data class, which does not necessarily represent a value

[34]. A data class is typically an assortment of several parameters contained together as a

representative entity. Both regression and classification techniques belong a larger family

of the statistical models known as supervised models in which target labels or values are

predefined in the training process. Conversely, unsupervised models does not dictate specific

labels to the data and tries to reveal the inherent or natural divisions within the data [35].

As an example, clustering, as implied by the term itself, groups the data according to the

distribution in an n-dimensional space without knowing the exact corresponded labels [36].

The clustering and classification processes are routinely encountered in applications, where

image analysis and data grouping are a requisite. For instance, in porous media research,

image analysis is widely practised for mineral identification studies and clustering is employed

for identifying specific facies such as lithofacies and environmental facies in the subsurface

geology [37, 38].

Image reconstruction

To appraise the morphological, topological, statistical, and flow properties of porous media,

we need accessing various reliable realizations of porous media at pore scale [39]. While direct

acquisition high–resolution tomography images of porous material can generally be costly

and non–practical, reconstruction techniques can provide a shortcut to obtain realistic–look

imagery data [40]. Among the traditional reconstruction methods, we may encounter stochas-

tic, process–based, hybrid and data mining methods, which are mostly time consuming and
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in some cases overestimate or underestimate the statistical and dynamical properties [5, 41].

However, deep machine learning as a modern approach shows more realistic reconstruction

in a reasonable computing cost and in an intelligent manner [42, 43, 38].

Among the introduced data–driven techniques, in the present study, shallow ANNs and

deep neural networks have been employed for characterization and regression of porous ma-

terials which will be discussed in chapters 2, 4, and 5.

1.2 Motivation

Subsurface gas–rich structures are becoming more important in the past decade due to the

two main benefits they can provide; supplying natural gas as a cleaner form of fossil fuel,

and application as a storage site of the unwanted gases like CO2. Both of these applications

can have positive impacts to approach the net–zero emission pledge as planned by many

developed countries to achieve by 2050[44, 45].

A major part of the subsurface sediments are composed of heterogeneous porous media

with complex micro-structures. Shale, coal, and tight carbonates are well-known examples

of these type of sediments with coexistence of different levels of porosity from nano to micron

scale coupled with natural fractures. In such media, in addition to the regular gas trans-

port models, we need to take into the account the effects of gas slippage, surface diffusion,

adsorption, and desorption. This phenomena would be more complicated if the medium is

partially saturated with a secondary component which is a frequently observed condition in

a majority of the porous sediments. Conventional direct simulation methods such as finite

volume method, finite element method, or Lattice Boltzmann might become computation-

ally unaffordable in multi-physical problems. In such situation, application of the surrogate

models using Machine learning (ML) techniques can be highlighted to cut down the com-

putational costs of a physically complicated model. Such an integrated nano to micrometer

approach for modeling gas transport within the complex porous material in the presence of

a secondary component, would have several applications in different engineering and geo-

science fields such as shale gas resources, coal bed methane, tight carbonated reservoirs, and

subsurface carbon storage.

Recent advances in multiscale 3D/2D imaging techniques have brought us a new insight

and opportunity to understand the governing mechanisms more clearly. In the heterogeneous

media we are dealing with a wide range of pore sizes embedded in different types of material

each of which can behave in a different manner during the gas transport. Due to a high
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surface area, micro–pores are able to adsorb gas and gradually release it when the pressure

of the system drops. Also, Knudsen and bulk diffusion can cause a noticeable deviation

from the classical gas transport models such as the Darcy’s law. Considering the multi–

scale/multi–physical aspects of the gas transport behaviour in the heterogeneous media,

there is a demand for an integrated modeling of micro and meso scales, which is at the same

time computationally efficient.

1.3 Chapters summary

As mentioned, considering the fact that the simulation of fluid flow models with diversified

conductive components and multiple physics can be computationally expensive, we have

employed machine learning techniques to make surrogate models able to predict numerical

simulation outputs. This emulation concept, has been utilized in different chapters of the

present study.

� In chapter #2, a hybrid pore network model is presented which uses Lattice Boltz-

mann (LB) flow simulation to calculate the pressure drop in pore throats. Then using

a shallow neural network model, pressure drop in pore throats, is modeled based on the

geometrical characteristics of the throat cross-sections to emulate the LB calculations

and speed up the fluid flow modeling.

� In chapter #3, a triple porosity network model is presented to predict steady state

gas flow behaviour in heterogeneous geo–porous materials like tight carbonate rocks.

The presented workflow is capable to simulate meso pores, micro pores and fractures

simultaneously. To evaluate the accuracy of the presented model we have compared

its predictions with the results from analytical solutions.

� In chapter #4, a deep learning workflow is introduced to comprehensively charac-

terize the physical features of naturally–occurred porous materials. A large dataset of

17700 porous samples have been generated and 30 different pore–scale properties and

features have been extracted from them to feed into a machine learning model named

as DeePore. Some of the predictions from this model were in close agreement with

experimental outcomes adopted from the literature.

� In chapter #5, pieces of information from the previous chapters have been combined

to build a comprehensive model of gas transport, diffusion and adsorption in organic-

rich shales for the purpose of carbon subsurface storage. The presented model which is
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equipped with machine learning for faster predictions can be used for quick evaluation

of the carbon storage sites and find the proper locations based on the pore–scale images

of the shale samples.

1.4 Publications

The presented journal format thesis is comprising four peer-reviewed papers as direct out-

comes of the PhD. project. The first three papers which form chapters #2 to #4 have been

published and available online, while the fourth paper that is presented in chapter 5 is still

under review.

1. Hybrid pore-network and Lattice-Boltzmann permeability modelling accel-
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Resources 126, 116 - 128.

Also, this paper has been presented in an invited talk for London SPE Evening 26 Feb,

2019 under this topic: Accelerating pore-scale flow simulations with a machine

learning approach.

Public repository: github.com/ArashRabbani/PaperCodes.
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2.1 Abstract

In this paper, a permeability calculation workflow is presented that couples pore network

modeling (PNM) with a Lattice Boltzmann Method (LBM) to benefit from the strengths of

both approaches. Pore network extraction is implemented using a watershed segmentation

algorithm on 12 three-dimensional porous rock images. The permeabilities of all throats are

calculated using the LBM and substituted in the pore network model instead of using the

cylindrical formulation for throat’s permeability based on the Hagen–Poiseuille equation.

Solving the LBM for every throat results in an accurate representation of flow but the al-

gorithm is computationally expensive. In order to minimize the computational costs, LBM

is used to model the steady-state incompressible fluid flow through 9,333 different throat

images and an Artificial Neural Network (ANN) is trained to mimic the trend of throat’s

permeabilities based on the cross–sectional images. To this end, we extract several mor-

phological features of the throats cross–sectional images and search for the best describing

feature. It is found that the averaged distance map of the throat images is highly corre-

lated with the LBM-based permeability of throats to the extent that even a simple empirical

correlation can reasonably describe the relationship between these two parameters. Finally,

we compare the absolute permeability of samples obtained by full LBM with the presented

hybrid method. Results show that the proposed method provides an accurate estimation of

permeability with a considerable reduction in the computational CPU time.

Keywords: Lattice Boltzmann Method, Pore Network Modeling, Machine Learning,

Permeability, Distance Map.

2.2 Introduction

2.2.1 Permeability calculation

Microscale computed tomography has triggered a series of advances in porous media studies

by revealing accurate interior structures non-destructively [46, 47, 48, 49, 50]. Knowledge

of microscopic porous structure provides a better understanding of porous media properties,

for example, hydraulic conductivity or absolute permeability. In many research areas from

material science to hydrology and geoscience, hydraulic conductivity and permeability of

porous materials have been subjects of research during the past decades [51, 52, 53, 54,

55, 56, 57]. Existing approaches for estimating the pore-level permeability using computed

tomography images can be categorized as direct and indirect methods. “Direct” refers to
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the fact that in these methods realistic geometry of the porous media is taken into account

and governing equations are written to be solved on the exact structure. Finite Volume [58,

59, 60, 49], Finite Element [61, 62, 63, 64] and Lattice Boltzmann [65, 66, 67, 68, 69, 70, 71]

are the most prominent direct simulation methods in the literature. Conversely, indirect

methods do not consider the exact geometry of porous media and the equations are solved

on a simplified proxy model that behaves similarly to the original geometry. Pore Network

Modeling [72, 73] and Bundle-of-Tubes [74, 75, 76] are two indirect methods that have been

widely used for modeling and simulation of several transport phenomena in porous media.

2.2.2 Direct simulation methods

As mentioned, these methods are able to be implemented for the exact geometry of porous

media with a minimal amount of simplification. As a result, they could be accurate if

the governing equations and boundary conditions are selected and solved properly. The

main limitation of direct methods is the high computational cost [46], which could be a

major obstacle when we are dealing with large-sized and high-resolution volumetric images

of porous material. As a solution to this size and time limitation, domain decomposition

and parallel computation have been comprehensively hired to increase the models efficiency

and scalability [77, 78, 79, 80, 81]. Additionally, as another solution to deal with computa-

tional limitations, machine learning can be employed to mimic the behaviour of the complex

solid/fluid systems. The main idea is to save the computational sources by solving a series of

typical/representative problems and extend the results to all similar cases [82, 83, 84]. For

this purpose, we need to break down a large problem into several small independent pieces

and try to find computationally inexpensive features which are statistically related to the

original problem.

As one of the most trending approaches in pore-scale flow modeling, Lattice Boltzmann

method has been initiated by Frisch et al. [85] under the name of lattice-gas automata

in 1986. Later in 1988, Boltzmann equation was plugged into the method proposed by

McNamara and Zanetti [86] and named as LBM. This direct simulation method can be easily

implemented by computer programming [87] and it’s a versatile tool to consider multiple

physics in a parallelized fashion [88]. So, in addition to the single phase flow modelling, more

advanced processes such as multiphase flow including the effect of variable wettablity can be

implemented by LBM [89, 90, 91]. Classic LBM [85] uses a uniform lattice grid for simulation

and this could reduce the simulation performance by avoiding local coarsening/refinement

of the grid, while modern approaches have coupled the finite volume and finite element

18



schemes with LBM calculations to increase the performance of the method by adopting multi-

domain/unstructured grid which can catch more complex geometries [92, 93, 94]. However,

LBM could be computationally expensive. In a comparison published by Manwart et al.

[95] it was claimed that LBM demands 2.5 times more memory than the amount required

by finite difference on the same porous geometry and similar CPU time.

2.2.3 Indirect methods

Indirect methods such as pore network modeling assume several geometrical simplifications

to reduce the computational costs, but lead to error in the simulation results [73, 96]. As

an example, in the classical pore network models, the pressure drop is neglected in pore

bodies and throat cross-sections are considered as definitive geometrical shapes such as circle,

square and triangle [73]. Also, in order to make the PNM’s more realistic, complicated throat

shapes have been investigated by coupling a series of mathematical curves and defining an

analytical shape factor for throats [97]. In comparison, none of these assumptions are made

in the direct simulation methods and the realistic geometry with many of its morphological

details are used to build a mesh and initiate the numerical simulation. Considering the

relentless advances in the 3D imaging techniques [98, 99] and large size of the recorded

images, low–cost computational methods such as PNM are becoming popular. However, the

level of simplifications in PNM should be minimized to avoid compromising the accuracy.

2.2.4 Coupling direct and indirect methods

In recent years, there have been several efforts to couple different direct and indirect simu-

lation methods to increase the performance of permeability models [100, 101, 102]. Miao et

al. [100] extracted 3,292 pore elements and simulated the single-phase permeability of the

pore elements using COMSOL Multiphysics software by solving the Navier-Stokes equation.

They used 3 image-based features to train an Artificial Neural Network (ANN) as a means

to predict the throat absolute permeability as well as shape factor, solidity, and aspect ratio

of the images. In a similar but improved approach in terms of image-based features, here,

we couple both direct and indirect methods for calculation of porous media permeabilities.

Furthermore, in addition to features extracted by Miao et al. [100], we study four more

image-based features from 9,333 pore-throats and substitute the throat permeabilities in a

pore network model to calculate the overall permeability of rock samples.
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2.3 Methodology

2.3.1 Synopsis

Based on the definition, pore throat is referred to the locations of the porous elements

in which the opening of the pathway reaches to its minimum. Thus, the permeability of

such tight openings play as a bottleneck for the rest of the structure and will be critical in

determination of the macroscopic properties.

As opposed to the classical pore network modeling that describes throat cross–sections

analytically [50, 97], we assemble a workflow to handle any arbitrary throat shape with

minimal computational costs. As an illustration, a 3-D image of Berea Sandstone, obtained

from [39], is modeled and absolute hydraulic permeability is calculated with both classical

and proposed PNM–LBM methods (Fig. 2.1a). As we will show in Section 2.4, the PNM–

LBM (Fig. 2.1b) method can calculate the absolute permeability of the porous samples with

a higher accuracy than the classical PNM (Fig. 2.1c).
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Figure 2.1: Visual comparison of modified (PNM–LBM) and classical PNM approaches, (a)

single–phase steady–state pressure drop in a pore network of Berea Sandstone (raw data

obtained from [39]) with relative pressures between 0 and 1, (b) the PNM–LBM approach

with realistic throat cross–sections, and (c) the classical PNM approach with circular throat

cross–sections.

In this study, instead of the hydraulic radius, we use D3Q19 Lattice Boltzmann modeling

with Bhatnagar-Gross-Krook (BGK) approach [103] to estimate the throat’s permeability.

In order to reduce the computational costs of LBM simulations, we introduce Image–Based

Throat Permeability Model (ITPM)1. The workflow of building this model is described step

by step in Fig. 2.2. The process starts with preparation of micro–CT images including noise

filtering and binarization. Next, the pore network is extracted by help of the watershed

algorithm and cross–sectional images of throats are recorded in a database. Additionally,

several morphological features of the throat images are extracted and stored in the database.

Next, we run a series of relatively time consuming LBM simulations on throat images to

determine their absolute permeability and relate them to the permeabilities of the database 2.

1Image–Based Throat Permeability Model is available in the Supplementary information as well as on on

GitHub: https://github.com/ArashRabbani/PaperCodes
2CPU times will be discussed in the results and discussion section.
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Using the database and by training two ANN’s and one empirical correlation we build a set of

ITPM’s that are able to predict the permeability of the throats with minimal computational

cost.

Next, ITPM is used to find the hydraulic properties of the pore networks in a hybrid

approach that couples both PNM and LBM. In this regards, Fig. 2.3 presents the simpli-

fied workflow in a stepwise manner. A 3–D binary pore–level image is taken as an input

of the workflow. At the first step, we need to extract the pore network. This is done in

a subsidiary workflow (Fig. 2.3a) comprising noise removal, distance transform, Gaussian

filtering, watershed segmentation, labeling and connectivity detection. A brief description

of pore network extraction is presented in the next subsection. The extracted pore network

is used in the next step of the main workflow (Fig. 2.3b) for feature extraction from throat

cross–sections. This step, similarly is shown in a subsidiary workflow (Fig. 2.3c) and com-

prises of projecting 3–D image of throat surfaces on a 2–D plane and then calculating the

average value of its distance map. The extracted feature goes back to the main workflow as

an input for ITPM. This process should be repeated for all throats of the network. Finally,

the ITPM permeabilities are substituted in the classical PNM.

1- Preparing 
Micro-CT images

2- Extracting pore 
network of 3D 

images

3- Extracting cross-
sectional images of 

throats

4- Investigate the 
correlation of throat 
image features and 

corresponding 
LBM permeability

5- Extracting 
morphological 

features of throat 
images and add 

them to the 
database

6- Building a 
database containing 
throat cross-section 
images and LBM 
permeability of 

them

7- Training an ANN 
to estimate throat 

LBM permeability 
based on image 

features 

8- Evaluating and 
testing the ANN

9- Investigating the 
possibility of using 

an empirical 
correlation instead 

of ANN 

Image-based Throat 
Permeability Model 

(ITPM)

A fast model capable of 
estimating throat 

permeability based on its 
cross-sectional image 

Figure 2.2: Workflow of building the Image–Based Throat Permeability Model (ITPM).
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Figure 2.3: Workflow of the hybrid PNM–LBM approach for calculation of the pore–level

permeability, (a) subsidiary workflow of pore network extraction, (b) main workflow of the

PNM–LBM permeability calculation, and (c) subsidiary workflow of throat features extrac-

tion.

2.3.2 Pore network extraction

A brief procedure for extracting pore networks is illustrated in Fig. 2.3(a). Watershed

segmentation algorithm is used for pore network extraction. This method is computationally

efficient and sufficiently accurate for auto–detection of pore bodies and pore throats [104,

105, 106, 107]. Watershed algorithm utilizes the distance transform of the pore space to

find out the narrowest pathways of porous media and introduces them as network throats

[108, 109, 110]. In order to have more stabilized results and avoid over–segmentation, 3D

Gaussian filtering is implemented on the distance transform [104, 111]. The output of the

watershed segmentation is an image with isolated segments each of which represents a unique

pore body. This image goes under labeling process to identify all isolated spaces. Finally, by

searching the whole image voxel by voxel, we detect and record adjacent pore spaces with

unique labels to build a connectivity matrix which represents the extracted pore network.
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In this workflow of pore network extraction, throats are curved surfaces at the interface of

two adjacent pores (Fig. 2.4a). In this study, we do not simplify the throat cross–section

to circles and preserve their original shape to compute a more realistic permeability using a

Lattice Boltzmann method. We extract the throat surfaces along the line that connects the

centers of two adjacent pores and forms a prism with arbitrary base shape (Fig. 2.4b).

Solid space

Void space
Throat 3D 

Surface

Center of pore 3

Center of pore 2

Center of pore 1

(a)

(b)

Figure 2.4: Throats definition in the model, (a) a projected image of 3–D throat surface

on 2–D plane which is used for feature extraction, and (b) extruded geometry of the throat

cross–section which is considered as the flow pathway between the pore centers.

2.3.3 Extraction of features

As mentioned, throats are considered to be the interfaces where two adjacent pores touch

each other [108]. These interfaces may have slight curvatures based on the morphology of

the original volumetric image of porous media. In order to effectively extract the image

features, we project the throat images in the direction of a line that connects the centers

of two adjacent pores. Thus, 3D slightly curved surfaces will be converted to flattened

2D binary images which represent the cross–section of the tightest pathway between two

adjacent pores (Fig. 2.4a). Next, we use MATLAB Image Processing Toolbox to extract

multiple morphological features that may be correlated with hydraulic conductivity of the

throats.

Table 2.1 presents a list of features we extract from 2–D images of throats in addition to

their definitions.

Although most of these features have been extensively discussed in the literature for
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characterization of porous structures, amongst these, average distance map needs more clar-

ifications. Thus, consider a throat with circular cross–section as shown in Fig. 2.5(a). Assign

zero to the void space and one to the solid space of the image. Then instead of each zero

pixel, put the Euclidean distance between that pixel and the nearest non–zero pixel in the

image (Fig. 2.5b). Consequently, this distance value will be equal to zero for all the pixels

located in the solid space. This transform is known as the distance transform and it is

available in most of major open–source or commercial image processing packages. The final

feature that we are using to correlate with the throat’s LBM-based permeability is “non–zero

average of the distance map”. A physical justification will be presented in Section 2.4 to

explain the relationship between this feature and the throat permeabilities.

No. Feature Feature Description

1 Cross–section area

(pixel2)

Surface area of the 2–D projection of

throat

2 Wetted perimeter (pixel) Perimeter of the 2–D projection of

throat

3 Axes ratio Ratio between the major and minor

axes of the throat which is always equal

or greater than 1

4 Equivalent diameter

(pixel)

Diameter of the circle with the same

area as the throat

5 Solidity Area of the throat convex hull divided

by the throat area

6 Hydraulic radius (pixel) Throat area multiplied by two divided

by throat wetted perimeter

7 Mean distance (pixel) Non–zero average of the throat distance

transform

Table 2.1: Extracted throat features and their description.
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Figure 2.5: Definition of the distance transform on a circular cross–section, (a) throat cross–

section in which zero indicates the void space and one indicates the solid space, (b) values

are equal to the Euclidean distance between the current pixel and the nearest non–zero pixel.

2.3.4 Throat flow simulation with the LBM

In order to model single–phase steady–state flow in a throat, we consider it as a tube with

an arbitrary cross–section with a uniform shape along the throat length. We assume that

the single–phase flow in throats is steady–state and fully developed. So, technically it is

not required to simulate the whole length of the throat from the center of one pore to the

center of the adjacent pore to find out its permeability (Fig. 2.6a). We take the 2D cross–

section of a throat (Fig. 2.6b) and stack 6 layers of that cross–section (Fig. 2.6d) to build the

simulation geometry. A D3Q19 scheme (Fig. 2.6c) is considered for the LBM which means

there are 18 possible directions for fluid flow within each block. Considering the small size

of the 2D throat images, image voxels are considered to be the simulation blocks without

any upscaling.

We adopt an open–source LBM code in MATLAB to predict the permeability of the tube

section (throat), originally developed by Haslam et al. [112]. A Newtonian fluid with BGK

collision model [103] is used. Also, it is assumed that bounce–back is only in the direction

normal to the geometry boundary. Particle distribution function fi evolves in the directions

of the distribution vectors ei at each time step (t+∆t) and location (x) as [112]:

fi(x+ ei +∆t)− fi(x, t) = −1/τ(fi(x, t)− fi
eq(x, t)) (2.1)

where fi
eq is a truncated Maxwell–Boltzmann equilibrium distribution that can be ex-

pressed as a function of local velocity (v) in all possible directions and τ is the equilibrium
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state time. Also i is the distribution function index for different neighbours. Equilibrium

function is [112]:

fi
eq = wi(1 + 3ei.v)

r∑
i=1

fi (2.2)

where r is the number of particle density distribution vectors which is equal to 19 in

the current 3-D derivation, wi indicates neighbour weights and its values are 1/3, 1/18, and

1/36 for stationary, nearest and next–nearest vectors, respectively (Fig. 2.6c). Please refer

to [112] for more details.

We start the flow simulation by imposing uniform distribution vectors (velocities) to the

inlet blocks of the geometry. Periodic boundary condition is assumed in the direction of

flow which means that during the LBM simulation, velocity distribution in the outlet face

of geometry are assigned to the geometry inlet velocity distribution. It is known that the

absolute permeability of tubes in laminar flow is calculated as k = r2t /8 [113], in which rt

is the tube radius. Considering that this formulation is independent of the tube length,

periodic boundary condition is a valid assumption for the geometry considered.

The LBM simulation continues until a convergence is reached in the magnitude and

direction of the distribution vectors at each block. This equilibrium state can be expressed

in terms of permeability convergence by keeping the relative error smaller than a specified

value. The convergence criterion we use to detect the density equilibrium is

error =
kold − knew

kold
< 10−6 (2.3)

where kold and knew are two consecutive values obtained for permeability during itera-

tions. In order to calculate the permeability of throat tubes at each iteration, Darcy’s law

is rearranged as:

k = −µŪ
dp
dx

(2.4)

where Ū is the averaged velocity vector in the direction of pressure drop, k is absolute

permeability, dp/dx is the pressure gradient that similar to the velocity vector is obtained

from LBM simulation results, and µ is the fluid viscosity which is calculated as:

µ =
1
ω
− 0.5

3
(2.5)

where ω is a relaxation frequency used in LBM. We assume that it is equal to 1 to ensure

convergence of the LBM densities and minimize the error [114, 115].
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After running several time steps in an explicit manner, permeability values converge to

a value which is recorded as the absolute permeability of the simulated throat geometry.

As an illustration, the permeability calculation method discussed above is applied on some

throats’ images with arbitrary shapes. Velocity maps at the outlet surface are visualized in

Fig. 2.7. In this figure, sections (a) to (f) present the exiting velocity maps for throats with

circular, star–shape, square, triangular, sample convex and sample concave cross–sections,

respectively. In all images, as it was expected, velocity has higher values where node is farther

away from the throat wall. Also, for the circular cross–section (Fig. 2.7a), the analytical and

numerical permeabilities match with the value of 25 µm2.

Nearest neighbours

Next-nearest neighbours

Outlet faceInlet face

Stacking 6 layers
Throat cross-section

Pressure drop

Periodic
boundary
condition

Image voxel

(a) (c)

(b) (d)

Figure 2.6: Extraction and construction of the equivalent throat geometry used for LBM

simulation, (a) equivalent throat geometry used in the pore network model and its cross–

section, (b) cross–section of the throat acquired from image processing, (c) D3Q19 scheme of

LBM comprised of nearest and next–nearest neighbour vectors, and (d) schematic pressure

drop during the flow and periodic boundary condition in the direction of flow.
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Figure 2.7: Exiting velocity map for different throat cross–sections obtained by LBM, (a)

circular, (b) star–shape, (c) square, (d) triangular, (e) arbitrary and convex, and (f) arbitrary

and concave cross–section.

2.3.5 Machine learning

We use machine learning to avoid repetitive calculation of the LBM-based permeability in

all throats. Machine learning methods inherently classify the input samples into self–similar

categories and develop a unique matrix–based relationship for each category to predict the

best accurate outputs [116]. In this study, we use Levenberg-Marquardt method to train two

ANN’s in order to predict the throat’s permeability based on the image–extracted features.

Levenberg-Marquardt is an iterative algorithm to find the minimum value of a function that

depends on the sum of squares of a series of nonlinear functions [117]. This algorithm is

a common tool to optimize weights and biases of an ANN in a reasonable time scale [118].

From the two trained ANNs, the first ANN (Fig. 2.8a) takes 7 input parameters and has

6 nodes in the hidden layer and one output parameter. The input parameters are cross–

sectional area, wetted perimeter, axes ratio, equivalent diameter, solidity, hydraulic radius,

and mean distance. In order to avoid over–fitting, size of the hidden layer is set –based on a

rule of thumb– equal to the 2/3 of input parameters plus the number of output parameters.
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Neural network training is performed using the functions existing in Neural Fitting Toolbox

of MATLAB.

The second ANN (Fig. 2.8b) is simpler and composed of one input parameter which is

the mean distance, three nodes in the hidden layer and one output parameter. We train the

second ANN to check out the effect of omitting probably less significant input parameters

and present a simpler model. Variable selection for this ANN model will be described later

in the results and discussions.

In order to train these ANN’s, we build a database composed of 9,333 entries using the

throat images extracted from 12 porous samples used in this study (Table 2.2).

From total number of analyzed throats, we take 65% of them for training, 15% for valida-

tion and 20% for testing. Then mean squared error (MSE) and coefficient of determination

(R2) are calculated to check the performance of training, validation and testing processes.

Using the trained networks, we are able to calculate the throat’s permeability without run-

ning the LBM.

30



1

2

3

4

5

6

Cross-section area 

Wetted perimeter

Axes ratio

Equivalent Diameter 

Solidity

Hydraulic radius

Mean distance

Throat absolute 
permeability

Throat absolute 
permeabilityMean distance

1

2

3

Hidden layerInput layer Output layer

(a)

(b)

Figure 2.8: Illustration of two ANN’s employed to model the permeability of throats based

on the image features and previously calculated LBM-based permeabilities which are stored

in a database, (a) the first ANN with 7 features as input and hidden layer with 6 nodes, and

(b) the second ANN with 1 feature as input and 3 nodes in the hidden layer.

2.3.6 Empirical correlation for throat’s permeability

Machine learning is typically applied in systems with complicated/non–linear relationships

between the inputs and outputs [119]. ANN’s are powerful and versatile tools for these

purposes, however, they cannot be easily transferred to or replicated by other researchers,

as they would need all nodal weights and biases. Thus, we aim to present an empirical

correlation which relates the throat’s LBM-based permeability and the best fitted feature

which is extracted from throat images. A general form will be considered for the correlation

based on the trial and error. Then using an optimization method we minimize the error

of prediction by assigning values to the correlation constants. It is noteworthy that this

empirical correlation is virtually an alternative to Hagen Poiseuille [120] equation which
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assumes an ideal cylindrical shape for the flow pathway.

2.3.7 Samples studied

In this study, we use 12 micro–CT images to investigate the permeability prediction accuracy

of the proposed method. The samples are imaged at Imperial College London [50, 121] and

their size and resolution are listed in Table 2.2. Samples C1 and C2 are carbonate rocks and

rest of the samples are sandstone including Br sample (Berea Sandstone). These samples

have been thoroughly studied in the literature [122, 46, 108, 121, 123].

Name Resolution

(µm/voxel)

Size (voxel)

S1 8.68 3003

S2 4.96 3003

S3 9.10 3003

S4 8.96 3003

S5 4.00 3003

S6 5.10 3003

S7 4.80 3003

S8 4.89 3003

S9 3.40 3003

C1 2.85 4003

C2 5.35 4003

Br 5.35 4003

Table 2.2: List of studied porous rock samples.

In order to avoid the effect of different spatial image resolutions, we temporarily change

all spatial image resolutions to one micrometer per pixel. Then, after calculation of throat’s

permeability, we undo this change by multiplying the obtained value by the second power of

the real spatial resolution provided in Table 2.2.

2.4 Results and Discussions

2.4.1 Pore network extraction

Pore network extraction is implemented on 12 porous samples (Table 2.2) studied in this

research to provide the throat images needed for the LBM-based permeability simulation.

In addition, these networks will be used to calculate the total permeability of the samples by
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assuming throat permeabilities derived by ITPM. The properties of extracted pore networks

are provided in Table 2.3.

The throat radius reported is obtained by assuming equivalent circles with same surface

area. In the current modeling, the pore radius of the network does not directly affect network

permeability. Pore radius is just used to calculate and match the network porosity. Also, we

have not taken into the account the pressure drop of pores. This is because of the fact that

pressure drop in porous elements are mainly controlled by throats which are the narrowest

openings rather than the pore bodies. In the extracted networks, we define the length of

throats as the distance between centroids of two adjacent pores.

Samples Mean pore

radius (µm)

Mean throat

radius (µm)

Mean throat

length (µm)

Mean pore

connectivity

S1 49.18 24.88 207.04 2.64

S2 30.64 16.22 120.13 3.80

S3 32.55 14.26 143.84 2.49

S4 32.68 15.49 133.83 2.07

S5 26.07 21.85 128.81 2.45

S6 33.33 26.73 145.57 3.23

S7 35.11 18.95 138.38 4.11

S8 27.16 21.24 126.60 3.56

S9 29.91 17.57 115.83 3.00

C1 11.39 11.99 62.49 2.12

C2 18.00 15.10 94.29 1.55

Br 26.22 14.70 112.98 2.90

Table 2.3: Properties of the classical pore networks extracted using watershed segmentation

algorithm.

2.4.2 Features statistics

Total number of 9,333 throats are analyzed from 12 extracted networks and 7 morphologi-

cal features are extracted from each throat image. This database includes a wide range of

porous rocks with diverse fabric and morphological properties. We have statistically ana-

lyzed these features to measure the dependency of the permeability on each of them. In this

line, stepwise regression coefficients of the features are calculated and shown in Table 2.4

relative to the absolute permeability. Stepwise regression is an automated method for fitting

regression models and find the explanatory variables [124]. A higher regression coefficient

means that the function value is more correlated to the corresponding variable [124]. Ac-

cording to Table 2.4, it can be concluded that mean distance is the best correlated variable
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which is also physically justified in section 2.4.5. Also, the hydraulic radius of the throat is

reasonably correlated to the LBM-based permeability. Considering the higher correlation of

mean distance, we have selected this feature to be used as single input of the second ANN. In

addition, the proposed empirical correlation for throat’s permeability will utilize the mean

distance as input variable to have the best performance in permeability estimation.

Fig. 2.9 illustrates the scatter plots of 7 image-extracted features vs. absolute permeabil-

ities. In order to remove the effect of different image resolutions, we consider “pixel” unit

for length and “pixel2” for area. Thus, in these figures permeability values are shown with

“pixel2” unit. By visual comparison of the scatter plots from Fig. 2.9(a) to (g), it can be

concluded that absolute permeability of throats has a more significant relationship with the

mean distance (Fig.2.9g). This conclusion is previously verified considering the higher value

of stepwise regression coefficient corresponding to mean distance (Table 2.4).

Feature Stepwise regression coefficient

Cross-section area 0.017

Wetted perimeter 0.013

Axes ratio −0.003

Equivalent Diameter −0.627

Solidity −1.391

Hydraulic radius 0.572

Mean distance 4.399

Table 2.4: Stepwise regression coefficients between the extracted features of throats and their

corresponding LBM-based permeability.
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(a)

(b)

(c)

(d)

(e)

(f) (g)

Figure 2.9: Scatter plot of LBM absolute permeability vs. values of 7 extracted features of

throats: (a) cross-sectional area, (b) wetted perimeter, (c) axes ratio, (d) equivalent radius,

(e) solidity, (f) hydraulic radius, and (g) mean distance.

2.4.3 Machine learning

Visual comparison between the cross-plots of Fig. 2.9 leads to the mean distance as the se-

lected well-correlated input parameter to be used for the single-parameter ANN. The points

of Fig. 2.9g are less scattered and apparently follow a predictable trend. Both 7- and single-

parameter ANN’s are trained to be able to predict throat’s permeability. The learning

performance of both ANN’s are provided in Table 2.5 in terms of mean squared error (MSE)

and coefficient of determination (R2). Although, generally higher number of input param-

eters will enhance the ANN’s predictions, parsimony and simplicity of the model will be

affected. Consequently, the single-parameter ANN is able to estimate the LBM-based per-

meability with a reasonably high coefficient of determination (Testing R2 = 0.9982), as such

it would be more practical to use single-parameter ANN than to use the 7-parameter ANN.

Fig. 2.10(a) and (b) illustrate the original and predicted throat permeabilities by single-

and 7-parameter ANN’s , respectively. As it is expected, the predictions of single-parameter

ANN is more scattered than the 7-parameter ANN.
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Data Set 7-Param.

MSE

7-Param. R2 1-Param.

MSE

1-Param. R2

Training 0.0142 0.9998 0.1436 0.9984

Validating 0.0193 0.9997 0.1281 0.9980

Testing 0.0264 0.9996 0.1971 0.9982

Table 2.5: Learning performance of both 7- and single-parameter ANN’s in terms of coeffi-

cient of determination (R2) and mean squared error (MSE).

(a) (b)

Figure 2.10: The capability of ANN’s to predict LBM-based permeability of throats including

training, evaluation and testing data, (a) single-parameter ANN, (b) 7-parameter ANN.

2.4.4 Empirical correlation for throat’s permeability

In order to improve simplicity of the coupling method, we use empirical correlations be-

side neural networks. The developed correlation will estimate the LBM-based permeability

of throat using mean distance of the throat image. By testing several forms of empirical

correlations, a quadratic form is accepted because of a low magnitude of MSE:

kthroat = aD̄2 + bD̄ + c (2.6)

where kthroat is throat’s permeability with pixel2 unit, and D̄ is mean distance of the

throat image. Optimization of the correlation constants is carried out by linear least squares
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method. The constants obtained for the empirical formula and the 95% confidence interval

for those constants are provided in Table 2.6. Fig.2.11 illustrates the original and estimated

LBM-based permeabilities using the proposed formula. The overall R2 and MSE of the

empirical correlation results are 0.996 and 0.146, respectively. These values are in the same

order of magnitude as R2 and MSE of single-parameter ANN. Thus it is reasonable to use

the proposed empirical correlation when ANN’s are not available. Finally, the proposed

empirical formula for throat’s permeability can be written as:

kthroat = 1.342D̄2 − 0.913D̄ − 0.381 (2.7)

Model constants Mean value Lower

bound-

ary

Upper

boundary

a 1.342 1.338 1.345

b −0.9127 −0.9376 −0.8878

c −0.3814 −0.4131 −0.3498

Table 2.6: Constants in the empirical formula and their 95% confidence intervals.

LB
M

 a
b

so
lu

te
 p

e
rm

ea
b

ili
ty

 (
p

ix
el

2
)

Absolute permeability using 
empirical correlation (pixel2)

Figure 2.11: Original LBM-based throat permeabilities and predicted values using the pro-

posed empirical formula (R2 = 0.996).
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2.4.5 Physical justification

We showed statistically that mean distance is the best image feature to estimate the LBM-

based permeability of a throat. Here, we explain the physical concept behind this observation.

Based on the distance map definition, we know that the distance value of a pixel in a void

space is higher for the pixel that is far from the solid walls (Fig. 2.5). Similarly, for a steady-

state incompressible laminar flow through a tube, fluid velocity reaches its maximum at the

center of the tube since fluid is far from the tube walls (Fig. 2.7a). So, distance map mimics

the trend of the velocity profiles in the tubular laminar flow. In order to illustrate this

statement, Fig. 2.12 is presented. The top row of the figure, shows the relative velocity maps

obtained from the LBM simulations and the bottom row is the relative distance map of the

throat cross-sections. For the sake of comparison, we have divided all values of both map

types over their maximum values to generate the maps with relative intensities. In addition,

the non-zero average and non-zero standard deviation of both groups of maps are inscribed

in the figure. Based on these three pairs of examples, the difference is not more than 25%

between the LBM velocity maps and the distance maps. By the term “non-zero average” we

mean that the zero values (dark blue portion of the maps) are not considered in averaging.
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avg= 0.39
std= 0.24

avg= 0.40
std= 0.29

avg= 0.44
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avg= 0.39
std= 0.19

avg= 0.34
std= 0.21
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std= 0.23

(a)

(b)

(c)

(d) (f)

(e)
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10 µm 10 µm 10 µm 

Figure 2.12: Comparison of velocity maps and distance maps obtained by the LBM sim-

ulation in three different throats: (a) and (b) concave cross-sections, (c) and (d) convex

cross-sections, (e) and (f) triangular cross-sections.

2.4.6 Permeability calculation

When the permeability of all network throats is estimated using ITPM, there is one step

remaining to calculate the permeability of the whole pore network. For this step, we assume

a pressure difference between two sides of the network so that the pressure at the center

of the pores are unknown. In the next step, the continuity equation is written for each

pore for a steady-state single-phase flow of an incompressible fluid. Then we rearrange

the continuity equation in terms of throat permeability, length and pore pressures. Since

throat’s permeability and length are previously known, the only unknown parameters are the

pressure of each pore. This leads to a linear system of equation which can be numerically

solved to find the pressures. After determination of all pressures, the overall flow rate is

calculated and total absolute permeability of the network is obtained using Darcy’s law. We

call the final value “hybrid PNM-LBM permeability” since both methods are used. Here, we
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compare three different options for throat’s permeability calculation and compare the total

permeability of our 12 samples for each option. The three options for throat’s permeability

are as follow:

a) Hagen-Poiseuille permeability with equivalent radius

In this option, throat’s permeability is calculated as r2/8 in which r is throat radius

and it is equal to the radius of a circle with the same surface area as the throat.

b) Hagen-Poiseuille permeability with hydraulic radius

In this option, throat’s permeability is calculated as r2/8 in which r is hydraulic radius

of the throat and can be calculated as 2A/P , that A is throat cross area and P is the

wetted perimeter of throat.

c) LBM-based permeability

In this option, permeability of throats is calculated using the LBM simulation and by

means of Eq. 2.7.

In addition, the total permeability of the studied samples when running LBM on the

whole geometry is available in the literature [122]. Consequently, we are able to compare

our calculated permeabilities with total LBM-based permeability of the samples. This com-

parison is illustrated in Fig. 2.13 by averaging the absolute permeability of samples in x,

y and z directions. Fig. 2.13(a) (for Option a) shows the PNM permeability considering

equivalent radius for throats vs. the total LBM-based permeability of the sample. It is

clear that the predicted values are over-estimated. This could be due to ignoring the wetted

perimeter of the throats in permeability calculation. Larger wetted perimeter causes more

friction during fluid flow and reduces the throat’s permeability. As an example, angular

throat shapes are less permeable than the circular ones, although they have the same cross-

sectional area. Fig. 2.13(b) presents results for Option b. The difference is that for this

option, we are calculating the throat’s permeability using the hydraulic radius concept and

this is a more realistic approach than option a. For option b, the accuracy of the model

increases to R2=0.9689, but still some deviations from the unit slope line are visible, espe-

cially for the higher permeability values. Finally, Fig. 2.13(c) (for Option c) illustrates the

permeabilities obtained by the PNM-LBM approach vs. the values obtained by the LBM.

We reach to R2=0.9973 for permeability estimation which is an improved accuracy. This

shows that the presented hybrid model is adequately capable of estimating direct simulation

permeabilities by coupling PNM and LBM approaches.
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Figure 2.13: Comparison of network permeability values if using three different options for

throat’s permeability, (a) throats with permeability based on the equivalent radius concept,

(b) throats with permeability based on the hydraulic radius concept, and (c) throats with

permeability estimated using LBM by means of Eq. 5.1.

2.4.7 Computational costs

Here, we present the CPU times of the simulation machine while running different perme-

ability modelling techniques. The results are presented in Fig. 2.14. CPU times of the full

LBM are adopted from Mostaghimi et al.[122] who performed LBM on a sandpack image

(LV60) with spatial resolution of 10 micrometer per voxel. CPU times of the classical PNM

and the PNM-LBM methods are measured in the present study. All simulations are per-

formed using a 3.0 GHz CPU with no parallel processing. As it can be seen in Fig. 2.14, the

PNM-LBM method is not computationally efficient and its CPU time is increasing with a

steep trend relative to the other methods. The accelerated PNM–LBM which uses Eq. 2.7 for

the throat’s permeability, is virtually as fast as the classical PNM approach but as we have

shown in Fig. 2.13, it is more accurate. It is noteworthy that for the PNM-based methods,

CPU time of pore network extraction is included in total times. Finally, it can be stated

that using the CPU configuration mentioned and with PNM–LBM approach, the absolute

permeability of a sample (in the size of 4003 voxels) can be calculated in around 200 seconds.
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In addition to the CPU time saving, the PNM-LBM approach demands less computa-

tional memory. The amount of peak memory usage for full LBM-based permeability model

on the discussed 3003 sample is 3.5 GB. For the tested PNM–based methods, memory needed

is around 1 GB when running on the same sample. Additionally, it is possible for the PNM–

based methods to use even less amount of memory if using domain decomposition approach

for running pore network extraction. This part of the presented code has been shown to be

a memory bottleneck [80].
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Figure 2.14: CPU times of the different methods for calculating the absolute permeability of

a sandpack image [122]. Tested methods are full LBM (CPU times from [122]), the classical

PNM [106], the PNM–LBM without machine learning acceleration, and the PNM-LBM with

machine learning acceleration.

2.5 Conclusions

In this study, we coupled PNM and LBM approaches to estimate the hydraulic permeability

of porous rock samples. In this regards, a classic pore network model is extracted from micro-

tomography images and throat permeabilities are simulated using LBM. Then, in order to

reduce the computational cost of the LBM simulation, we utilized some image-based features

to estimate LBM throat permeabilities in an efficient manner.

The main conclusions and findings of this study are as follow:

� Two ANN’s and one empirical formula were presented capable of estimating the throat’s
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LBM-based permeabilities with coefficient of determination (R2) higher than 0.99.

� The “mean distance” was found to be an image-based feature highly correlated with

LBM throat permeabilities. It was defined as non-zero average of the throat distance

map.

� The empirical quadratic formula for estimating the throat’s LBM-based permeability

employed mean distance as the input variable and this simple equation predicted the

throat’s permeability with coefficient of determination around 0.996.

� The throat permeabilities obtained were substituted within the classical pore networks

of 12 rock samples and overall network permeabilities were calculated successfully.

PNM-LBM absolute permeabilities with pure LBM-based permeabilities of the samples

are compared and it has been found that the proposed model is capable of predicting

the overall permeability of the rock samples with coefficient of determination around

0.997.

� The proposed PNM-LBM approach was capable of predicting the permeability with

higher accuracy than the classical PNM and with considerably less computational cost

than the classic LBM.
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Chapter 3

A triple pore network model

(T–PNM) for gas flow simulation in

fractured, micro-porous, and

meso-porous media
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3.1 Abstract

In this study, a novel triple pore network model (T–PNM) is introduced which is composed

of a single pore network model (PNM) coupled to fractures and micro–porosities. We use

two stages of the watershed segmentation algorithm to extract the required data from semi–

real micro–tomography images of porous material and build a structural network composed

of three conductive elements: meso–pores, micro–pores, and fractures. Gas and liquid flow

are simulated on the extracted networks and the calculated permeabilities are compared

with dual pore network models (D–PNM) as well as the analytical solutions. It is found

that the processes which are more sensitive to the surface features of material, should be

simulated using a T–PNM that considers the effect of micro–porosities on overall process

of flow in tight pores. We found that, for gas flow in tight pores where the close contact

of gas with the surface of solid walls makes Knudsen diffusion and gas slippage significant,

T–PNM provides more accurate solution compared to D–PNM. Within the tested range of

operational conditions, we recorded between 10 to 50 % relative error in gas permeabilities

of carbonate porous rocks if micro–porosities are dismissed in the presence of fractures.

3.2 Introduction

3.2.1 Single pore network model

A pore network model (PNM) is a simplified proxy model to simulate various transport

phenomena in porous materials. PNMs can be statistically generated [125, 126] or extracted

from realistic tomography images of porous media [127, 108, 128]. Despite PNM simplifica-

tions, it is still interesting due to the low computational cost, especially with the growing

size and resolution of the tomography images of porous materials [129]. Single PNM has

been initially introduced by Fatt [130] in 1956 (Fig. 3.1a). He discussed several approaches

to tackle the porous media transport problems from single–size capillary tube to dynamic

displacement of two phase fluids. Since then many developments have been accomplished by

researchers to enhance the capability and reliability of PNMs [131] to realistically simulate

and predict the properties of porous materials [132, 133, 134], from hydraulic permeability

[127] and mass diffusivity [135, 136] to electrical [137] and thermal conductivities [138].

In the present study, the main focus of PNM is on simulation of gas transport in porous

media. One of the first applications of PNM for gas flow simulation was presented by Milling-

ton and Quirk in 1961 [139]. They used the physical concept of capillaries network demon-
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strated by Fatt [130] and studied the effects of Knudsen diffusion [140] on gas permeability

of the porous solids. From 1960s to 1990s, most of the gas PNM studies were dedicated to

chemical processes and catalysis applications [141, 142, 143], while the gradually rising role

of the natural gas in world energy market [144] has led to many petroleum–oriented studies

emerged in the literature [145, 146, 147]. Specifically, in the past decade, the prosperity

of unconventional natural gas resources such as shale gas, tight gas, and coal–bed methane

triggered a significant research trend to model and simulate gas transport in these irregular

materials [148, 149, 147, 150, 151, 152, 153, 154]. As a prominent example, shale gas is pi-

oneering among the unconventional gas research subjects and many numerical studies have

been recently presented to include a wide range of physics into a gas transport model such

as adsorption [155, 156], multiple gas components [157], multi–level of porosity[158, 159],

super critical condition [158], and arbitrary pore shapes[160]. Furthermore, in parallel to the

natural gas PNM studies, many fuel cell researchers started to use PNMs as a tool to model

gas diffusion in porous membrane of proton exchange cells [161, 162] even with capability

of including micro–porosities in the network [163] which is one of the main focuses of the

present study.

3.2.2 Dual pore network model (D–PNM)

Meso–pore and micro–pore coupling

A single continuum pore network model defines a void-solid structure in which the granular

portion of the material does not contribute to the fluid flow [164]. In the more recent pore

network studies, many researchers have started to consider an implicit contribution for the

solid phase assumed in the transport properties of porous media [165, 166, 167, 168, 169,

170, 171, 172]. The main logic behind this assumption is the fact that in the heterogeneous

material, micro–pores residing in the solid section can affect the macroscopic properties

of porous material in certain physical conditions. In some physical processes such as gas

transport and two–phase imbibition, micro-pores can make a statistically significant change

in the simulation results as well as in the experiments [148, 170].

Many geometrically different structures for dual pore network of meso and micro-pores

have been suggested by researchers. Bekri et al. [166] presented a D–PNM with lattice-

like networks of micro-pores embedded between the neighbouring meso-pores (Fig. 3.1b).

Then they predicted relative permeabilities with a quasi-static assumption and compared

them with experimental values. In another effort, Bauer et al. [167] considered that some
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portion of the meso-pores are connected to the adjacent pores with both meso and micro-

throats in a paralleled way (Fig. 3.1c). Using an approach similar to Bekri et al. [166],

they compared their relative permeability results obtained from modelling and experiment.

Jiang et al. [171] presented the next comprehensive work on D–PNMs and developed a fully

connected PNM with two scales of pores and throats to consider the effect of unresolved

porosities on PNMs constructed based on micro-tomography images. They studied the

effects of changing the density of micro-throats on two-phase properties of porous media

such as relative permeability. Inspired by their work, Bultreys et al. [170] used micro-CT

images of several tight and heterogeneous porous carbonate rocks to extract a pore network

that in addition to the meso-throats, utilizes some micro-throats to connect adjacent meso-

pores (Fig. 3.1e). Some of their non-fractured raw images of porous carbonated rocks with

multi-levels of porosity are used in this paper as case studies.

Meso–pore and fracture coupling

Similar to the smaller-scale features such as micro-porosities that can be plugged into pore

networks, some larger-scale features like fractures can be coupled to regular PNMs. Re-

searchers must answer two important questions when coupling these components: how should

they specify a void section as a fracture or simply a pore body, and what network proper-

ties, such as hydraulic permeability, should those sections exhibit? To answer the second

question, it is commonly assumed that a pore throat’s hydraulic permeability obeys the

Hagen-Poiseuille law [173, 113], and equals r2/8, where r is the throat hydraulic radius.

Similarly, we can calculate the absolute permeability of an ideal fracture segment using

h2/12 where h is the distance between two planes of the fracture [174, 175].

Hughes and Blunt [176] presented one of the first studies to simulate fluid flow through

the fractures using PNM. They arranged several box-shaped conductors in a row to simulate

the aperture variation of a fracture which is in contact with a regular porous space (Fig. 3.1f).

Erzeybek and Akin [177] studied different arrangements of such fracture nodes in different

pore and fracture configurations to evaluate the contribution of each element in the fluid

flow simulations.

Jiang et al. [178] presented a more versatile approach to calculate the absolute perme-

ability of a pore-fracture system. They utilized the medial axis method to extract the regular

PNM then devised a shrinking algorithm to locate the fractures, answering the important

question of how to specify a void section as a fracture or a pore body. In this shrinking al-

gorithm, they removed non-planar structures in a stepwise manner to obtain the remaining
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fracture body and simulated it with a virtual network of locally variable throats (Fig. 3.1i).

As mentioned, this virtual network for simulating fracture behaviour has been introduced

by Hughes and Blunt [176], and it is used in the present study with modifications. Details

of fracture modelling and method validation will be discussed later in this paper.

In another effort to couple fractures and porous space, Weishaupt et al. [179] used a

Navier–Stokes model for free flow and a PNM for the porous domain to simulate pressure drop

and velocity map of a porous–fractured system in two dimensions. They studied the mass

transport of a component in the porous-space due to the free flow in fractures for different

Reynolds numbers. Their developed method is dynamic, robust and flexible for modeling

of unstructured networks coupled with fractures, however, it could become computationally

intensive for complex 3D geometries.

3.2.3 Triple pore network model

To the best of our knowledge, there is no previous study to couple micro–pores, meso–pores

and fractures at the same time in a triple pore network model (T–PNM). Here, we present an

approach to extract a triple pore network model based on the semi–real micro-tomography

images of heterogeneous porous material. Then by simulating liquid and gas flow through

the porous–fractured geometries of the selected samples, we demonstrate the capability of

the proposed method and justify the conditions that a T–PNM would give more accurate

results than single PNMs or D–PNMs. The diagram of the previous D–PNM structures

in the literature and the presented triple structure are illustrated in Fig. 3.1. Some of the

illustrations in this figure are inspired by Tahmasebi and Kamrava [165].
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Figure 3.1: Network structure of the previous single PNMs and D–PNMs compared to the

presented T–PNM, (a) single PNM [164, 130], (b) D–PNM with meso-pores coupled to

a lattice micro–pores [166], (c) dual with meso-pores and parallel micro-pores and throats

[167], (d) a fully two–scale PNM with micro and meso-pores [171], (e) dual with extra micro-

throats to connect the meso-pores [170], (f) dual with meso-pores and fractures with variable

aperture [176], (g) dual with meso-pores and fractures with fixed aperture [177], (h) D–PNM

with extra bypassing fracture links [180], (i) dual with unstructured network and variable

geometry of fracture [178], (j) the presented T–PNM which includes meso and micro-pores,

meso and micro-throats, fracture nodes, and fracture links.
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3.3 Methodology

In this research we extract a T–PNM from micro-tomography images of heterogeneous porous

media and simulate steady-state liquid and gas flow through the network to investigate the

viability/applicability/advantages of the proposed method. For this purpose, we describe

the porous material preparation and image processing techniques that lead to extracting a

PNM consisting of (1) meso-pores, (2) micro-pores which are unresolved in the images, and

(3) fractures which have been generated synthetically on the volumetric images of porous

carbonated rocks. We define micro–pores as pores so small that they are not explicitly visible

in the tomography images. However, a population of the micro–pores causes local density

reduction that locally decreases the intensity of the X–ray tomography image [181]. On the

other hand, based on our definition, meso–pores are clearly visible in the images, and pore

boundaries can be distinct from the solid or partially solid background. After extracting the

regular PNM, we need to include fractures and micro-pores. Finally, we clarify the equations

that we use to simulate steady–state liquid and gas flow through the proposed T–PNM by

assuming no surface reaction or physical adsorption.

3.3.1 Materials

The International Union of Pure and Applied Chemistry (IUPAC) defines meso–pores as

between 2 nm and 50 nm in size [182], and states that size of micropores should not exceed 2

nm. However, in the present study, we assume a dynamic threshold level for distinguishing

between the micro–pores and meso–pores. This dynamic threshold is equal to the imaging

spatial resolution (see Table 3.1), in which pores with sizes less than spatial resolution are

considered as micro–pores and larger ones are assumed to be meso–pores.

Three carbonate porous rocks are selected as case studies. These samples are hetero-

geneous with two scales of porosity imaged and published by Bultreys et al. in the public

domain [170]. Several artificial fractures are created though these samples to mimic the

conditions of a triple–pore system. These fractures are carved into the samples with a cost–

minimizing random walk approach inspired by Mhiri et al. [183] and coded for our specific

application. The method dictates the fracture pathway to grow in the direction with high-

est porosity and consequently with less mechanical strength. This approach is physically

plausible, considering the fact that breaking a material at loose connections requires less

amount of energy [184]. Details of generating fracture realizations are beyond the scope of

this study, however, more information is provided in Appendix A. Estaillades, Savonnieres
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and Massangis are the conventional names of three types of carbonated porous rocks that we

use as the raw material (Fig. 3.2a, b and c, respectively). Dimensions and spatial resolution

of the porous samples studied are provided in Table 3.1.

Fig. 3.2 illustrates the 3D map of CT numbers for the porous–fractured samples stud-

ied and the corresponding porosity map of each sample. We assume that mineralogy and

consequently mineral density remain constant throughout various sections of the samples.

Based on this assumption, bulk density of a section is the major factor that controls the

energy of the photons received during the tomography process [185, 186]. Bulk density of

the pure materials is inversely related to porosity [187]. Consequently, we can roughly as-

sume that any increase in porosity, linearly decreases the local CT number of the material

[188]. Therefore, in order to obtain a porosity map for the unresolved part of the image we

simply consider a linear relationship with a unit slope between the normalized CT number

and micro–porosity. Then, the darkest portion of the CT number map is considered to be

completely void and the lightest parts of the geometry are assumed to be completely solid.

The segmentation between the void space and porous space of the samples is conducted

using Otsu algorithm [189] which is based on the minimization of standard deviation in

each segment of the data. So, in Fig. 3.2-d to f, the pure yellow segments of the samples

are assumed to be completely porous and the porosity of other parts of the samples varies

between 0 to 1. In addition to tomography images, an experimental curve for the pore size

distribution of each porous material has been obtained by mercury intrusion porosimetry.

These curves are adopted from Bultreys et al.[170], Gibeaux et al. [190], and Neveux et al.

[191], respectively, for Estaillades, Savonnieres and Massangis samples. Dashed part of the

curves in Fig. 3.2g represent the size distribution of the sub–resolution pores.

No. Name Voxels Resolution (µm/voxel)

1 Estaillades 500 × 500 × 150 6.83

2 Savonnieres 500 × 500 × 150 7.61

3 Massangis 500 × 500 × 150 4.54

Table 3.1: Dimensions and spatial resolution of the porous samples.
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Figure 3.2: Fractured realizations of porous samples and corresponding porosity map of

each sample, (a) normalized CT number of Estaillades Carbonate Rock, (b) normalized CT

number of Savonnieres Carbonate Rock, (c) normalized CT number of Massangis Carbonate

Rock, (d) porosity fraction map of Estaillades, (e) porosity map of Savonnieres, and (f)

Porosity map of Massangis, (g) pore size distribution of all three samples with distinction

between macro and micro–porosity based on image spatial resolution
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3.3.2 Extraction of the single pore network model

Extraction of a single–continuum pore network model is a routine procedure reported in

the literature of modeling fluid flow in porous materials [134]. In order to extract the

regular PNM, we use the watershed segmentation algorithm [192] which has been extensively

employed to segment objects with morphological connections or overlapping [107, 128, 193].

It has been shown in the literature that watershed segmentation is reasonably accurate and

computationally efficient for extraction of the pore bodies and pore throats [128, 107]. This

algorithm takes the distance transform of the pore space to locate the narrowest pathways

of pore network and record them as pore throats [108, 109, 110]. Distance transform gives

the minimum distance of a zero voxel to the nearest non-zero voxel [194] (Fig. 3.3b). This

transform is a function available in most of the image processing libraries and packages. We

used MATLAB 2018a Image Processing Toolbox to analyse 2D and 3D images. In order to

avoid over–segmentation of the structure, it is recommended to apply a smoothing transform

such as Gaussian filtering or image opening on the distance map [128, 195, 131, 32].

Fig. 3.3 illustrates a simple workflow for extracting single PNMs (a to d), D–PNMs (e to

h), and T–PNMs (i to l). Initially, we consider a simple bed of spherical solids (Fig. 3.3a).

Applying the distance transform on this geometry generates a map visualized in Fig. 3.3b.

After smoothing, watershed algorithm uses this map to generate the distinct map of the

pore bodies labelled with random shades of grey in Fig. 3.3c. This algorithm simulates

a hypothetical flooding process starting from the local maximum values of the distance

map. In a step–wise manner, the algorithm dilates the central nuclei of each pore while

in the meantime keeps track of the distinct bodies. Each time that two dilating nuclei

from neighbouring pores touch, the intersection voxel is recorded as a throat. This process

continues until all voxels of the domain of interest are flooded by the dilating nuclei [196,

192, 197]. Watershed segmentation inherently calculates the labelled map of pore bodies.

In Fig. 3.3c we have assigned random shade of grey to each pore body to demonstrate the

segmentation. Now, using a 3 × 3 sliding window we scan the whole area of the image

and detect connections between different pore labels. Consequently, a pore network can be

constructed based on the inter–pore connections (Fig. 3.3d).

To simulate fluid flow within the extracted single PNM, we should determine the mag-

nitude of pressure drop occurring when fluid is moving between a pair of connected pore

bodies. If we ignore the pore body pressure drop, the major element that controls the fluid

transport will be the pore throat that has minimal opening area compared to its connected

pores. Hydraulic permeability in a throat can be simply calculated by Hagen-Poiseuille law
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[173], and it is equal to r2/8 that r is the throat hydraulic radius. A more realistic approach

to calculate the absolute permeability of a throat with an arbitrary cross–sectional shape is

presented by Rabbani and Babaei [198] and it is based on the Lattice–Boltzmann method

(LBM) to simulate a steady–state single–phase flow through the throat. They showed that

numerical results obtained for permeability of arbitrary–shaped throats are highly correlated

with averaged distance map of the throat image and permeability can be obtained as the

following quadratic form:

Kp = 1.342D̄2 − 0.913D̄ − 0.381 (3.1)

where Kp is the absolute permeability of the porous space links such as a meso–throat

with pixel2 unit, and D̄ is the mean distance of the throat cross-sectional image. This

approach for obtaining absolute permeability of a single throat is referred to as Image–based

Throat Permeability Model (ITPM) [198] and its code is available in the public domain 1.

As mentioned previously, a distance map shows the minimum distance between a zero voxel

to the nearest non-zero voxel (Fig. 3.3b) and to obtain D̄, we perform an averaging on the

non–zero values of a distance map. More details of statistical and physical justifications for

this empirical equation are provided in [198]. Also, the basics and modelling assumptions of

LBM simulation used in [198] and extended to the current study are described in Appendix

B. By describing the hydraulic behaviour of the links in a single continuum PNM, we are

able to model fluid flow through the extracted networks that consist of meso–pores and

meso–throats.

1The code for ”Image–Based Throat Permeability Model” is available online at GitHub: https:

//github.com/ArashRabbani/PaperCodes
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Figure 3.3: A simplified illustrative workflow for extracting single PNMs(a to d), D–PNMs

(e to h), and T–PNMs (i to l), (a) porosity map of a single continuum sample, (b) distance

map of the single continuum sample, (c) labelled nodes of the single continuum sample,

(d) extracted pore network of the single continuum sample, (e) porosity map of a dual

continuum sample with meso–pores and fractures, (f) distance map of the dual continuum

sample, (g) labelled nodes of the dual continuum sample , (h) extracted pore network of the

dual continuum sample, (i) porosity map of a triple continuum sample, (j) distance map of

the triple continuum sample, (k) labelled nodes of the triple continuum sample, (l) extracted

pore network of the triple continuum sample.
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3.3.3 Fracture inclusion

The common approach to model a D–PNM containing meso–pores and fractures is to sep-

arate the single PNM from fracture elements and then use different flow equations for each

type of the elements [178]. Various morphological operations can be used to specify the loca-

tion of fracture elements [178], however, this distinction could become difficult in cases with

complicated morphologies. For instance, a meso–throat can have a fracture–like elongated

cross-sectional shape that casts shadow on the distinct definition of the elements. In order

to avoid this issue, we present a unified permeability model for both meso–scale and fracture

networks. A fracture network is assumed to be composed of an inter–connected structure of

nodes and links. As a similar definition to the meso–scale network, fracture–links represent

geometrical bottlenecks between fracture–nodes so that these bottlenecks create a pressure

drop when fluid is moving between two connected nodes.

Shape issues

In this subsection, the capability of ITPM (Eq. 5.1) to calculate the absolute permeability

of meso–throats as well as fracture links will be investigated. In this regard, we generate

a set of cross-sectional images with a wide range of elongations from 1 to 10 and different

roundnesses from 0.1 to 1 (Fig. 3.4). Elongation is the ratio between the major axis and the

minor axis of the shape, and roundness is a measure that shows the deviation of the shape

radii from a perfect circle, thus a shape with pointy corners will have less roundness [199]. By

analyzing the sets of geometries, we observed that the hydraulic permeability values obtained

by LBM simulation and ITPM are consistent and averaged relative error is around 3.3%.

Relative error percentage does not necessarily increase or decrease when objects are more

elongated. This observation is validated by performing Student’s t–test between the relative

errors and elongation for 20 different cross-sections illustrated in Fig. 3.4. The obtained

Student’s t–test p–value is 1.5× 10−4 that verifies the independence of these two variables.
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Figure 3.4: Relative velocity map obtained by LBM and permeability prediction for various

range of conductive elements with different roundness and elongation, (a to e) elongation

increases from 1 to 10, (a to p) roundness gradually increases to 1. Averaged relative error

of ITPM results is 3.3% compared to the LBM permeabilities. Permeability unit is Darcy.
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Lateral segments

Another issue when we are extracting a fracture–included porous material is unfavourable

lateral segments. Consider a channel cross–section as visualized in Fig. 3.5a with flow direc-

tion perpendicular to the image surface. If our pore segmentation method mistakenly divides

this elongated channel into 3 sections, its permeability is likely to be under–estimated due

to the added unrealistic zero–velocity boundaries as shown in Fig. 3.5b. Considering that

we are using averaged distance values of throat images (D̄) for calculating their permeabil-

ity (Eq. 5.1), Fig. 3.5b exhibits a lower permeability compared to Fig. 3.5a. The simple

solution to avoid the aforementioned issue is to calculate the distance map prior to the pore

network segmentation. Thus, the distance map will not be affected in the case that lateral

segmentation occurs (Fig. 3.5c).

a Average: 0.3448
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Figure 3.5: Visualizing the issue related to the lateral segments that are not perpendicular

to the flow direction, (a) a fracture distance map without lateral segments, (b) an under–

estimated fracture distance map due to the lateral segments, (c) a fracture element with

is segmented after performing a 3–D distance transform, thus the distance values are not

affected by the extra boundary lines
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Coupling to the meso-pore network

We showed that ITPM can be used for permeability estimation of both meso–throats and

fracture–links. So these elements are effortlessly coupled to each other with no extra calcu-

lation to distinguish each of them. Fig. 3.3e to h, illustrates the steps of network extraction

process for our defined D–PNMs and as it can be seen, the workflow is similar to the single

PNMs.

3.3.4 Micro-porosity inclusion

As described, the solid elements of the porous material could contain micro–porosities. As

mentioned in Section 3.3.1, we are able to generate an approximated porosity map for micro–

pores based on the mineralogy and normalized CT numbers. In this section, we describe

the hydraulic properties of partially solid elements by knowing their approximated porosity

and pore size distribution. Our proposed configuration of T–PNM is illustrated in Fig. 3.6a

in which two micro–pores are connected to a pair of meso–pores and one fracture–node.

We define two types of micro–throats: (1) micro–throats that connect two micro–pores

(Fig. 3.6c), and (2) micro–throats that connect a micro–pore into a meso–pore or fracture–

node (Fig. 3.6b and d). Each micro–throat is consisted of a bundle of micro–tubes with

different range of radii. These micro–tubes intersect at the center of the solid element that

is called main micro–pore (Fig. 3.6b-2). Also, some isolated cavities could exist within the

solid element and they affect the image–based porosity we obtain from CT numbers while not

contributing to fluid flow (Fig. 3.6b-1). If we assume that the radial density of micro–tubes

is constant, based on a probabilistic permeability model of a bundle of tubes developed by

Juang and Holtz [200], the absolute radial permeability of the solid elements (Ks) are:

Ks = αϕm

∫ ∞

0

f(rm)
r2m
8

drm (3.2)

where ϕm is micro–porosity of the solid element, rm is the radius of the micro–tubes with

a distribution described by f(rm), f(rm) is a function that gives the void fraction of the solid

element occupied by micro–tubes with the radius of rm. Parameter α is porosity correction

factor between 0 to 1 that subtracts the portion of the total micro–porosity occupied by

isolated pores. In other words, when α is 0 it means that we have no interconnected micro–

porosity in the solid element and when it is 1, it means there is no isolated micro–porosity

within the solid element. This parameter can be obtained from nano–tomography, high–

resolution FIB–SEM images [201], or by density analysis of the crushed particles of the
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porous sample [202]. Here we have simply assumed that α is 0.95. The term r2m
8

which is

used in Eq. 3.2 represents the absolute permeability of a single micro–tube based on Hagen-

Poiseuille law [173, 113]. The integral used in Eq. 3.2 can be simply solved by numerical

discretization. Considering that the overall pore size distribution of samples is experimentally

obtained by mercury intrusion, we only need to extract and normalize the sub–resolution

part of the pore size curve (f(rm)) (Fig. 3.2-g). Then by descretizing f(rm) over different

values of rm, the integral will be converted to a set of summations.

Then, to calculate the absolute permeability of the micro–throats type 1 (Fig. 3.6c),

we use Eq. 3.2 but instead of a single value for micro–porosity (ϕm), we put the averaged

value of micro–porosities from two adjacent solid elements. This averaging needs to be

weighted relative to the radii of the elements, which means that the larger size of the solid

elements makes them more significant in permeability averaging for micro–throats type 1.

Additionally, in order to calculate the absolute permeability of the micro–throats type 2, we

ignore the pressure drop happening in the void section of the micro–throat (Fig. 3.6b-4 and

Fig. 3.6d-4). Considering that the absolute permeability of a series of elements is mainly

controlled by the smallest permeability value [203], this assumption is reasonable.
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Figure 3.6: Different configurations of micro–porosities in connection with other elements

in a T–PNM, (a) a system of two micro–pores in connection with two meso–pores and one

fracture–node, (b) the structure of a micro–throat type 2 in connection with a fracture–

node, (c) the structure of a micro–throat type 1, (d) structure of a micro–throat type 2 in

connection with a meso–pore (details of figure elements are described in Table 3.2)
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Part Element Description

Fig. 3.6a

1 Interface area between a micro–pore and a fracture–

node in which a bundle of micro–tubes with variable

sizes represents a type 2 micro–throat;

2 Interface area between two micro–pores in which a

bundle of micro–tubes with variable sizes represent

a type 1 micro–throat;

3 Interface area between a micro–pore and a meso–

pore in which a bundle of micro–tubes with variable

sizes represents a type 2 micro–throat;

Fig. 3.6b

1 An isolated cavity that does not contribute to fluid

flow;

2 The main micro–pore that all micro–tubes are con-

nected to it;

3 A part of the micro–throat that is located within the

solid element and contains several micro–tubes with

different sizes;

4 A part of the micro–throat type 2 that is located out-

side the solid element and does not have any micro–

tubes;

5 Length of the micro–tubes;

6 Length of the micro–throat without micro–tubes;

Fig. 3.6c
1 and

2

Same as Fig. 3.6b-1 and 2;

3 The length of the micro–tubes that form the micro–

throat type 1;

Fig. 3.6d 1 to 6 Same as Fig. 3.6b-1 to 6.

Table 3.2: Description of the triple network elements in Fig. 3.6.

Coupling to the dual pore network model

In the previous sections, we developed a D–PNM consisted of meso–pores and fractures.

Now, in order to couple micro–pores into that D–PNM, we need to revise the pore network

extraction method. In order to clarify the workflow of T–PNM extraction, Fig. 3.3i to l

is presented. Fig. 3.3i illustrates the porosity map of a system with three types of porosi-

ties: micro–pores, meso–pores and fractures. In the next step, we apply Euclidean distance

transform on both void and solid spaces separately. then, the obtained distance maps are

summed as follow:

DM = DT (PM < 1) +DT (PM = 1) (3.3)
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That DM is the overall Euclidean distance map (Fig. 3.3j), DT is the distance transform

function that takes a binary map and gives back its distance map, and PM is porosity map of

the media as appears in Fig. 3.3i. Consequently, PM < 1 implies a binary map in which all

the pixels with porosities less than 1 are set to one and other pixels are set to zero. Similarly

PM = 1 represents a binary map in which all the pixels that are completely porous, are set

to 1 and the rest of the pixels are set to zero. On the basis of the obtained overall distance

map, we apply watershed segmentation and generate the node map that includes all three

types of aforementioned nodes (Fig. 3.3k). Finally, based on the generated node map, we

detect the neighbour nodes and interfaces between them. Then by determining the types of

micro–throats, we assign proper hydraulic properties to them. Finally, the T–PNM could be

visualized as in Fig. 3.3l.

3.4 Results and Discussion

In this section, we first verify the developed method using simplified geometries. Then,

statistics of the T–PNMs will be compared to D–PNMs in order to provide a more quantita-

tive measure of differences. Next, steady-state gas flow (formulation presented in Appendix

C) through the extracted PNMs will be simulated to investigate the effects of micro–porosity

presence on the governing flow mechanisms. Finally, the results of gas flow simulation will

be extended to a wide range of pressure, temperature, and molecular mass conditions and

the observed trends in the apparent permeability of the samples will be discussed.

3.4.1 Method verification

In order to measure accuracy of the proposed methodology, we have constructed six ide-

alized geometries that contain a combination of the three porous elements: meso–pores,

micro–pores and fractures (Fig. 4.11a). Then absolute permeability of each geometry is cal-

culated using the developed methodology and analytical equations. The analytical absolute

permeability of the geometries is calculated based on expressions r2/8 and h2/12, respectively

for permeabilities of capillary tubes and ideal fractures as discussed before. Also, analytical

permeability of the partially solid section is obtained by assuming ideal micro–tubes with

an identical radius. The size of all cubic geometries is 2003 µm and spatial resolution is 1

µm per voxel. Four of the geometries (Fig. 3.7a-2, a-4, a-5 and a-6) contain six capillary

tubes with the diameter of 20 µm, equally distributed and aligned to the direction of flow.

Similarly, in four of the geometries (Fig. 3.7a-1, a-3, a-5 and a-6), an ideal fracture with

63



no roughness is present in the middle section with the aperture of 10 µm. Additionally, in

geometries a-3, a-4, and a-6, we have considered 30 % of micro–porosity in the shape of

parallel micro–tubes with diameter of 2 µm (Fig. 3.7d).

Watershed segmentation cannot be used to extract the pore network of these simplified

geometries due to their idealized shapes. The reason is that, most of the pore network

extraction methods including watershed is useful to detect the pathways with minimal cross–

sectional area, while in an idealized uniform geometry, there is no minimal cross–sectional

area in the capillary tubes nor in the fracture. Consequently, to generate the node map we

have divided the void–space and solid–space into equal cubic segments with the size of 10

µm (Fig. 3.7c) and then we have superimposed these maps to generate a complete node map

which includes all flow domains. As can be seen in the magnified part of Fig. 3.7c, each node

is labelled with a random colour.

Considering the porous elements mentioned in this paper, we investigate six types of

geometries that include a combination of the different elements, and then using the developed

pore network model, we calculate the absolute or liquid permeability of each geometry as

presented in Fig. 3.7a. We assumed 1 Pa pressure gradient between two opposite faces of

the PNM to calculate the absolute permeability of the system. The average relative error

between the estimated permeability using the present method and the analytical solution

is less than 2%. Fig. 3.7b illustrates the pore pressure obtained by simulating single–phase

steady–state flow on the geometry with triple porosity.

As can be seen in the magnified section of Fig. 3.7c, capillary tubes contain lateral

segments. These segments did not affect the permeability calculations (Fig. 3.7a) because

we have calculated the distance transform of the geometry prior to the segmentation. To

calculate the analytical permeability of the whole geometry, we assume a system of parallel

conductors with the same length. Thus, the equivalent analytical permeability of the whole

geometry (Ke) is [203]:

Ke = Ksϕs +Kfϕf +Kp(1− ϕs − ϕf ) (3.4)

where ϕs is the volume fraction of the geometry occupied by the partially or fully solid

elements, Kf is the absolute permeability of the fracture, ϕf is the volume fraction of the

geometry occupied by the fracture, Ks is the permeability of the partially solid parts, and

Kp is the overall permeability of the six capillary tubes.
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Figure 3.7: Verification of estimated absolute permeabilities on a simplified geometry, (a)

comparison of absolute permeabilities obtained by the present model and analytical solution

for six combinations of porosity types with an average relative error less than 2%, (b) pore
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ference between two opposite faces of the T–PNM, (c) extracted node map with a random

colour for each node, (d) original geometry of the medium with a fracture, six capillary

tubes, and 0.3 porosity at the solid sections.
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3.4.2 Network statistics

In this subsection, we discuss the statistics of the extracted triple pore networks and compare

them with D–PNMs that contain only meso-pores and fractures. In other words, the effects

of including micro–porosities on the statistical features of the PNMs are investigated. Some

statistics of these networks, including network porosity, average link permeability, specific

surface, number of links, and number of nodes are presented in Table 3.3. As it can be

seen, T–PNM shows higher porosity up to two times higher than the D–PNM which does

not contain micro–porosity. On the contrary, the average link permeability in a T–PNM is

commonly four to five times lower than the D–PNM due to the effect of multitudes of low

permeable micro–throats which are present in a T–PNM. This ratio is virtually the same as

the number of links of the T–PNMs compared to the D–PNMs. It is notable that micro–

throats can contain up to thousands of micro–tubes with minuscule radii. Therefore, the

actual number of links can be two or three orders of magnitude larger than the reported

values.

Specific surface of the pore network is defined as the ratio between total internal surface

area and the bulk volume of the whole geometry. As it can be seen in Table 3.3, specific

surface of the T–PNM can be up to 20-40 times greater than a D–PNM. This property is

significant in the simulation of the surface processes such as reactions or diffusion layers

[204, 205].

Property Network Estaillades Savonnieres Massangis

Network porosity (fraction) Dual 0.236 0.248 0.206

Triple 0.429 0.408 0.310

Average link permeability (D) Dual 97.265 170.694 83.795

Triple 24.773 39.971 25.494

Specific surface (1/mm) Dual 12.681 8.892 11.453

Triple 411.655 338.548 230.621

Number of links Dual 16187 9116 5616

Triple 64123 39359 18557

Number of nodes Dual 5877 3352 1901

Triple 9586 5933 2978

Table 3.3: Comparing pore pore network statistics between T–PNMs and D–PNMs.

Additionally, distributions of two pore network parameters are illustrated in Fig. 3.8 for

the triple and dual approaches. Fig. 3.8a shows the distribution of the node connectivity in

both networks of Estaillades sample. T–PNM has considerably higher coordination number

due to the presence of partially solid elements which are in touch with many adjacent nodes
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and increase the maximum number of connections per node up to 50. The other effect of

micro–porosities is shown in Fig. 3.8b that presents the distribution of node surface area of

both PNMs. The presence of partially solid elements exhibit nodes with surface area with

two to three orders of magnitudes larger than the regular nodes. Consequently, simulation

of the surface dependant processes can give significantly different results by using a T–PNM

instead of a dual or single PNM.

In order to provide more insight into the physical features of the extracted PNMs, Fig. 3.9

is presented for Estaillades sample. Fig. 3.9a illustrates the top view of the original volumetric

image in which the level of darkness intuitively indicates the porosity. Fig. 3.9b and Fig. 3.9c

shows two halves of the plan view with the left–hand half displayed as a D–PNM and the

right–hand half displayed as a T–PNM for providing a concise illustration. The T–PNM

half is denser and contains many large size nodes that indicate the presence of the large

partially solid elements, while the D–PNM half is less dense with relatively smaller size of

nodes. Large nodes of the triple side are highly connected to the neighbouring nodes and

this is the source of high coordination number shown in Fig. 3.8a. In terms of the surface

area, we expect to see large values for partially solid elements (Fig. 3.9d and e) due to the

presence of hundreds to thousands of micro–tubes in each of the links. Finally, if we calculate

the absolute permeability of each link based on Eq. 5.1 and Eq. 3.2, the distribution of this

parameter is visualized in Fig. 3.9f and g. As it can be seen, despite the large sizes of

the partially solid nodes, their connected links have low permeability. However, due to the

large number of connections, their role can become significant in some cases. Roughly, it

can be stated that the highest absolute permeabilities of both PNMs belong to fractures by

comparing the original geometry (Fig. 3.9-a) and permeability network of Fig. 3.9f and g.
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Figure 3.8: Distribution of the node connectivity (a), and node surface area (b) in T–PNM

and D–PNM of the Estaillades sample.
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Figure 3.9: Structure of D–PNMs and T–PNMs of the Estaillades sample partially imposed

on each other, (a) top view of the original geometry of the Estaillades sample with dark void

spaces and partially dark micro–porous zones, (b and c) Radii of the nodes and links respec-

tively in D–PNM and T–PNM, (d and e) internal surface area of the network respectively

in D–PNM and T–PNM, (f and g) link absolute permeability respectively in D–PNM and

T–PNM.
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3.4.3 Gas flow simulation

In this subsection, we present the gas flow simulation results (formulation presented in

Appendix C). Initially, effective flow mechanisms are investigated and then flow pattern

is discussed among D–PNMs and T–PNMs. Finally, we present a sensitivity analysis for

conditions with different pressure and temperature, followed by a discussion on the effect of

gas molecular mass.

Flow mechanisms

As discussed in Appendix C, three main types of gas transport mechanisms happen in porous

media: Knudsen, slippage and viscous flow. Each of these mechanisms could become signif-

icant in a specific range of Knudsen number. This sensitivity of gas flux ratio to Knudsen

number is plotted for each type of the mechanisms and their combinations in Fig. 3.10a. In

order to calculate the gas flux fractions, we have assumed an ideal tube geometry and then by

gradual changing of the tube radius, flux fractions are obtained in a wide range of Knudsen

number. In Fig. 3.10a, non–Knudsen flux denotes the summation of the viscous and slippage

fluxes. Similarly, non–viscous flux is the summation of the slippage and Knudsen fluxes and

finally, non–slip flux is the summation of the Knudsen and viscous fluxes. Assuming the

definition of the Knudsen number which is the ratio of the gas mean free path to the tube

radius, it is reasonable that the viscous flux fraction decreases in higher Knudsen numbers

under conditions where gas molecules frequently collide with tube walls rather than other

gas molecules. When Knudsen number is greater than 1, Knudsen flux and slippage are

dominant flow mechanisms. On the other hand, when Knudsen number is smaller than 0.01,

non–viscous fluxes are minimal. It is noteworthy that the fraction of the slip-flux is always

less than the Knudsen flux at any Knudsen number range.

In order to investigate the effective flow mechanisms in a more complex geometry, we have

considered four sets of gas flow mechanisms to simulate the full pore network model of three

porous materials. Fig. 3.10b shows the ratio between the triple and dual gas permeabilities

calculated with different mechanistical assumptions for three rock samples at the standard

temperature–pressure condition. Simulated gas is methane and we have considered 1 Pa

pressure difference between two opposite faces of the pore network model in the x direction.

As readers can see in Fig 3.10b, the ratio between triple– and dual–porosity permeabilities

increases as we integrate more flow mechanisms into our model. The final columns indi-

cates the condition that all three mechanisms have been applied and it is found that triple

permeability can be 1.3 to 1.55 times larger than the dual permeability which ignores the
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micro–porosities. Also, for the simulated conditions, it can be concluded that Knudsen flux,

is more significant compared to slippage, since the major jump in permeability ratio happens

when Knudsen flow is added to the system (Fig. 3.10b).

a

b

Figure 3.10: Comparing the effect of considering different gas transport mechanisms in the

model, (a) gas flux fraction for six types of flow mechanisms composed of a combination of

viscous, Knudsen and slippage fluxes, (b) comparing the ratio between gas permeability of

T–PNMs and D–PNMs calculated using 4 sets of flow mechanisms for three different rock

samples.

Flow pattern

Considering a steady–state condition we have simulated gas flow in the direction of Y axis

through D–PNM and T–PNM of Estaillades sample. The pressure map and flow rate distri-
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bution are visualized in Fig. 3.11. Pressure difference between two opposite faces of the PNM

is 1 Pa and we have assumed that in this short range of pressure, the gas density and viscos-

ity remains constant. The average pressure for calculating gas properties is 101 kPa and the

temperature is 25 °C. As it can be inferred from Fig. 3.11a and b, iso–pressure lines do not

show sharp changes when changing the geometry from a T–PNM to a D–PNM. Fig. 3.11c

and d illustrates the flow rates of links within D–PNM and T–PNM partly imposed on each

other. Despite the pressure distribution, flow pattern is significantly different between two

PNMs and many micro–throats are contributing in fluid transport. Due to the numerous

connections, micro–throats make a difference in the overall permeability results, while each

single of them does not pass a significant amount of flow compared to the meso–throats or

fractures.
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Figure 3.11: Pressure and flow rate distribution in Estaillades pore networks stacked on each

other, (a & b) pressure distribution respectively in D–PNM and T–PNM, (c & d) flow rate

distribution respectively in in D–PNM and T–PNM.

Sensitivity analysis

In order to provide an insight into the application of a T–PNM and clarify the conditions that

ignoring the partially–porous part of the media could create a significant error, we analyze the

sensitivity of gas permeability by changing three independent parameters: average pressure,

temperature, and gas molecular mass while keeping the flow pressure drop of the whole
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sample equal to 1 Pa. We simulate gas flow in D–PNMs and T–PNMs of all three porous

samples for a wide range of each parameter by keeping the other two as constant. The results

are presented in Fig. 3.12.

Fig. 3.12a shows the gas permeability changes in different average pressures for methane

gas and constant temperature of 25°C. Low pressures could dramatically increase the gas

permeability of T–PNMs, while D–PNMs are relatively less sensitive to the pressure change.

For the tested range of average pressure, lowering the pressure two orders of magnitude

increases the gas permeability of T–PNMs up to two times. This is mainly due to the

increment of gas mean free path in low pressures and consequently higher Knudsen flow

rates. Gas permeability is relatively less sensitive to the temperature variations compared

to the pressure (Fig. 3.12b).

a b c

Figure 3.12: Sensitivity analysis of gas permeability due to changes in average pressure, tem-

perature and molecular mass, (a) sensitivity to pressure for methane in 25°C, (b) sensitivity

to temperature for methane in 101 kPa pressure, (c) sensitivity to molecular mass in 101

kPa pressure and 25°C.

By increasing the average temperature of the gas and keeping constant pressure of 101

kPa, methane permeability linearly increases. This change is more significant for T–PNMs

compared to D–PNM. However, the change hardly exceeds 20 % for 500 degrees of tem-

perature variation. It should be noted that in the case of subsurface flow modelling in
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heterogeneous porous material such as the case in tight carbonate reservoirs or gas shales,

due to the higher range of environmental pressure, the effect of micro–pores in permeability

will become less significant. In contrary due to a higher subsurface temperature, molecules

will have more interaction with solid walls and non–viscous flow mechanisms will be still

important.

Finally, we have examined the effect of changing the gas molecular mass which is hypo-

thetically equivalent to changing the gas type (Fig. 3.12c). It has been found that for lighter

gases in the standard temperature and pressure condition, T–PNM permeability is around

20 % higher than the heavy gases with molecular mass above 100 gr/mol. This change is less

significant in D–PNMs and its almost less than 10 %. Gas permeability gradually approaches

to a constant value when molecular mass increases and this means that mean free path of

the molecules becomes so small that they less frequently interact with the solid walls of the

throats compared to interacting with themselves.

Computational trade–off

While including micro pores can improve the accuracy of the flow model, the computational

cost of the model increases which should be considered as a trade–off. Considering that

at least two stages of pore space segmentation are required for building a T–PNM, it is

observed that the overall computational cost can increase up to three times. However, based

on the fact that PNMs are computationally inexpensive compared to the direct simulation

method, three times increment would not affect the applicability of the presented method.

As an example, pore network extractions and steady–state flow simulation of the studied

Estaillades D–PNM sample takes around 1 minute using a regular desktop computer with

an i7-9750H CPU at 2.60GHz without parallelization. Adding micro porosities to the model,

increases the computational time up to 2 minutes which is still attractive compared to direct

simulation costs which could be greater than 100 times as we have seen in chapter 2.

3.5 Conclusions

In this study, we introduced the concept of triple pore network models that incorporated a

meso–pore network coupled with fractures and micro-porosities. The proposed triple pore

network presents a more detailed model of a porous material in which two levels of porosity

exist in connection with fracture or channel–like elements. After describing the method for

developing these networks, we simulated steady–state gas flow through three porous samples
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in different ranges of pressure, temperature and gas molecular masses. The developed method

was validated by comparing the gas permeability results obtained in simple geometries and

analytical solutions.

We showed that using a T–PNM to model a fractured porous media with two scales of

porosity made substantive differences compared to a D–PNM. Concisely, the main conclu-

sions and findings of this research can be drawn as follow:

� Triple pore network models are introduced and constructed based on the semi–real

tomography images in order to simulate gas and liquid permeabilities.

� A unified approach is invented to simulate fluid flow within a network with both meso–

pores and fractures. In this approach we used distance map of the channels with arbi-

trary cross–sections and estimated the LBM permeabilities using an empirical correla-

tion. The benefits of using this approach are that we bypass the lateral segmentation

problem in pore network extraction as well as no requirement to locate the fracture

elements explicitly.

� A hypothetical micro–network structure is presented for taking into the account the hy-

drodynamical effects of micro–porosities in liquid and gas flow through porous samples

with dual scales of porosity.

� Effects of micro–porosities on gas permeability are investigated and operational con-

ditions in which ignoring the presence of micro–porosities make a significant error are

discussed.

� Within the tested range of operational conditions, we have recorded between 10 to 50

% relative error in gas permeabilities if micro–porosities are dismissed in the presence

of the fractures.
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Chapter 4

DeePore: a deep learning workflow

for rapid and comprehensive

characterization of porous materials
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4.1 Abstract

DeePore is a deep learning workflow for rapid estimation of a wide range of porous mate-

rial properties based on the binarized micro–tomography images. By combining naturally

occurring porous textures we generated 17700 semi–real 3–D micro–structures of porous

geo–materials with size of 2563 voxels and 30 physical properties of each sample are calcu-

lated using physical simulations on the corresponding pore network models. Next, a designed

feed–forward convolutional neural network (CNN) is trained based on the dataset to estimate

several morphological, hydraulic, electrical, and mechanical characteristics of the porous ma-

terial in a fraction of a second. In order to fine–tune the CNN design, we tested 9 different

training scenarios and selected the one with the highest average coefficient of determina-

tion (R2) equal to 0.885 for 1418 testing samples. Additionally, 3 independent synthetic

images as well as 3 realistic tomography images have been tested using the proposed method

and results are compared with pore network modelling and experimental data, respectively.

Tested absolute permeabilities had around 13 % relative error compared to the experimental

data which is noticeable considering the accuracy of the direct numerical simulation meth-

ods such as Lattice Boltzmann and Finite Volume. The workflow is compatible with any

physical size of the images due to its dimensionless approach and can be used to characterize

large–scale 3–D images by averaging the model outputs for a sliding window that scans the

whole geometry.
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4.2 Introduction

Data science is becoming an essential tool to analyze the structural features of porous ma-

terials based on the tomography images [206, 207, 208]. The behavior and performance of

porous materials are strongly related to the characteristics of its internal micro–structure. In

order to discover the descriptive features and the process–structure–property relationships

in a porous material, we need to achieve a reliable representation of the internal structure

of the porous materials [206, 209, 210, 211]. Spatial description of such micro–structures

have created added–value in diverse fields of studies, from composite material engineering

[212, 213, 214] and food processing [215, 216], to the petroleum and petrochemical industries

[39, 5]. For instance, during the past two decades, the field of digital rock physics grew rapidly

and showed outstanding advances owing to the power of imaging and analysis techniques

[39, 40]. Based on the captured images, we are able to build realistic simulation models and

run many digital measurements and experiments on porous material such as pore and throat

sizes, hydraulic and electric conductance, two–phase displacement, and mechanical deforma-

tions [217, 218]. Direct calculation of the abovementioned physical properties based on the

tomographic data could be a complicated and computationally expensive task especially in

the case of large images [219, 220, 129]. In this regard, machine learning approaches can

be utilized to make hybrid [198] or full artificially intelligent models [32] which are able to

reduce the computational costs significantly while maintaining the level of accuracy.

In this regard, shallow neural networks are powerful tools for modeling moderately com-

plex problems in a timely and efficient manner [221, 222, 41] while they are not very suitable

to predict high orders of non–linearity [223]. On the contrary, deep learning models are

capable of estimating a highly non–linear behaviour if they are trained on an adequately

diversified and large set of input and output data [224, 225]. Convolutional neural networks

(CNNs) as a particular type of deep neural networks can be used for analyzing data with

a recognized grid-like topology, similar to image data [226, 227, 228]. A typical CNN uses

several filters to extract higher level features from the input data or images and gradually

narrows it down to the specified output features [229]. CNNs have been mostly used for

image segmentation, recognition, classification, and regression [226, 228, 230]. In mathemat-

ical terms, convolution is a spatial operation to transform an original function or data into a

secondary realization using an operating kernel [231]. Convolution on an input image could

lead to generating negative values which are not usually favorable considering the physical

meaning of the output layer in that specific problem. At each level of convolution, we can

use a down–sampling method such as maximum or average pooling to condense the volume
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of data without losing noticeable amount of information [232]. In many cases CNNs can be

followed by some fully–connected dense layers of nodes to give more flexibility to the model

[233]. CNNs have been used in many recent porous material studies for different purposes

including segmentation of porous media images [234, 43], image quality improvement [235],

super resolution, reconstruction [236, 237], classification [238], and regression [239, 21]. Here

we briefly describe a background of these applications and narrow the topic down to the

specific approach of the present study.

4.2.1 Image improvement and reconstruction

Considering the multi–scale nature of many of the porous micro–structures, it is necessary

to have plenty of details in images while covering a large volume of the object at the same

time. In this regard, super resolution techniques powered by CNNs are valuable tools to

be trained on pairs of low and high resolution images. There are plenty of recent studies

that have presented quantitative methods to obtain a high resolution tomography image of

porous material using images with lower spatial resolution [237, 240, 241, 242, 243, 244].

As a recent example, Kamrava et al. [235] have used a cross–correlation–based simulation

to generate an augmented dataset of porous shale images and make a CNN that is able to

improve the image quality of similar porous textures.

The resolution enhancement can go further to a level that we are able to generate a

detailed realization of the porous material based on the simple input of noise maps through a

specific type of CNNs known as Generative Adversarial Networks (GAN) [245, 246, 247, 248].

As an example, Mosser et al. [245] presented a workflow to train a GAN based on the

available 3–D tomography images and to reconstruct similar realizations of the original

images, while not making an exact copy of them. Then by looking at the hydrodynamic

properties of the constructed porous material, they have evaluated the similarity of the

realizations.

4.2.2 Classification of porous materials

CNNs are good tools to classify images based on texture, visible elements, or objects [228].

This texture recognition has several applications in material and geological sciences to classify

or cluster a dataset of porous material images. Additionally, some other researchers utilized

the CNN framework for recognition of the materials texture [249, 238]. For instance, in

geoscience, classifying different types of rocks in terms of mineralogy and micro–structure
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could be a time consuming and biased task if done by hand, while CNNs have widely been

used in the past three years to automate these processes in a timely and efficient manner

[250].

4.2.3 Image–based regression models

Many diverse physical properties of porous materials have been estimated using CNNs in

recent years; from thermal to hydraulic and mechanical features [251, 252]. Wei et al.[253]

proposed a CNN to predict the effective thermal conductivities of composite materials and

porous media with more than 0.98 accuracy (R2) on 100 testing image samples while train-

ing on 1400 samples. Additionally, permeability and porosity have been heavily investigated

through CNNs [254, 255, 256, 257]. CNNs are able to take both binary or gray–scale images

of porous materials to estimate porosity and permeability with an acceptable error. Alqah-

tani et al.[21] used CNNs to estimate porosity, average pore size and specific surface of the

porous rocks based on both types of 2–D tomography images and found that binary images

could give a more accurate estimation of porous material characteristics compared to the

gray–scale ones. However, the morphology of the binarized images is highly dependent on

the thresholding technique and it suffers from the inherent uncertainty [258]. In another

attempt, Cang et al.[259] designed a CNN for prediction of physical properties of heteroge-

neous materials and successfully predicted the Young modulus, diffusion and permeability

of the porous material with more than 90% of certainty on their testing data. Recently,

Karimpouli and Tahmasebi [260] developed a CNN model to estimate P-wave and S-wave

velocities based on the cross-sectional images of porous material. They were able to estimate

these parameters with coefficients of determination around 0.65, and 0.74, respectively. A

recent extension of the Karimpouli and Tahmasebi [260] work is published by Kamrava et

al. [251] to investigate the link between the absolute permeability and morphology of the

porous materials. They have used a cross–correlation–based simulation technique to aug-

ment an image dataset of sandstones and enriched it with hundreds of synthetic and digital

images. Then a CNN structure followed by a dense layer is trained to estimate the absolute

permeability values that have been obtained by solving the Stokes equation using Avizo

commercial software. The range of permeability variations in their work is around one order

of magnitude which could be a subject of improvement.

Considering the above-mentioned categories of CNN applications in porous material re-

search, the present study can be considered as an image–based regression model. In order to

improve the applicability of the proposed model, a dimensionless and size–independent ap-
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proach is introduced to calculate porous material features that enables us to analyze images

with a wide range of spatial resolutions.

4.3 Methodology

In this study, we use an augmented set of semi–realistic tomography images of geological

porous material to train a convolutional neural network (CNN). The aim of this artificial

intelligence model is to predict multiple physical properties of a porous material based on its

pore scale images. We refer to this deep learning model of porous material characterization

as DeePore. In this section, the devised data augmentation technique, assumptions and

methods for building the ground truth data, and the utilized deep learning approach are

discussed.

4.3.1 Input data augmentation

The original core of the image dataset is composed of 60 real micro-tomography images

which their detailed information and corresponding references are available in Appendix D.

Considering the fact that it is critical for CNNs to be trained on a large dataset of images,

and due to the limited availability of the diverse and realistic tomography data of porous

material, data augmentation is required. Several different methods have been used in the

literature for augmentation of the training data [261] such as elastic deformation [262], mixing

images [263], cross–correlation–based simulation [251], and adversarial reconstruction [264].

Inspired by the mixing image method [263], we have adopted a previously developed

algorithm to generate more realizations of such data by transforming the existing ones [265].

For each augmentation, we select two different images out of the 60 samples and interpolate

a hybrid texture among them by weighted averaging of the normalized distance maps. A

simplified example of the interpolation technique is illustrated in Fig. 4.1. In this example,

two initial grayscale images with different textures (Fig. 4.1-a and h) are binarized using

a locally adaptive Otsu algorithm [266] (Fig. 4.1-b and i). Then, normalized maps of the

Euclidean distances are calculated (Fig. 4.1-c and j) and combined by weighted averaging

to mimic an interpolated texture (Fig. 4.1-e). Then, we can set the threshold level on the

obtained hybrid map to reach any desired amount of porosity (Fig. 4.1-d, g and k).

As a more realistic example, Fig. 4.2 illustrates the texture interpolation results over

only two real tomography images (Fig. 4.2-c and w). In this figure, by going from top to the

bottom rows, texture is gradually changing from sample #1 to #2. Meanwhile, by moving
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from left to right side of the matrix, porosity is increasing by manipulating the threshold

level mentioned above.

It is noteworthy to highlight that the distance maps should be normalized prior to av-

eraging in order to avoid large elements of one image from cloaking the smaller ones in the

other image. In order to generate the hybrid realizations of each pair of the real images, we

have assumed 10 uniform random numbers between 0 to 1 as interpolation weights, as well

as 10 uniform random numbers between 0.1 to 0.45 as final porosity fractions. Then each

of the interpolated textures are translated to a randomly selected direction with a random

shift within the range of one third of the image width. This random translation process

helps to diversify the created dataset and avoid two similar samples which may eventually

end up in training and test subgroups and harm the evaluation process by giving a false

high performance. After directional shifting of the images, the empty space created is filled

by the mirror image of the remaining parts of the micro–structure to maintain the image

texture. Based on the data augmentation method described above, the total number of the

images in the dataset would be
(
60
2

)
× 10 that yields 17700. However, considering that we

aim to calculate several physical properties of these materials, it is expected to filter out

outlier geometries with non–physical or null properties that cannot be modelled through the

regression techniques. For example, in the case that there is no percolating pathway from

one side to the other side of the sample, hydraulic permeability, will be zero and formation

factor which indicates electrical resistivity of the void space approaches to infinity. Also,

tortuosity will have a null value in such cases.
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Figure 4.1: Texture interpolation by weighted averaging of the normalized distance maps,

(a and h) original gray maps, (b and i) binarized geometries, (c and j) normalized distance

maps of the solid space, (e) equally–weighted average of the distance maps, (d, g and k)

three realizations made by changing the threshold level that controls the porosity.
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Figure 4.2: Texture interpolation results based on two real tomography images with a wide

range of porosity and texture distributed between two original samples (d and w), porosity

of the samples increases from left to right and texture is transforming from c to w when

moving downwards.
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4.3.2 Building the ground truth data

After construction of the augmented set of image data, we use a series of in–house codes

developed based on the available literature to analyze the micro–structures of the porous

material. In this regard, we have used several pore network modeling (PNM) techniques

[134] to simulate different physics and processes on the 3–D porous samples and the results

obtained are assumed to be the ground truth for training the DeePore CNN. In addition

to the pore space characterization, we analyze the solid portion of the images which are

defined as a solid network model to enable studying its mechanical behaviour similar to

approach presented by Herman in 2013 [267] but with 3 dimensions. A solid network model

describes the contact area, direction and length between different grains of a porous struc-

ture and assimilate the porous structure to a truss which makes it possible to solve finite

element equations in a coarse grid model and obtain some mechanical properties of the

micro–structures[268, 267]. A sample realization of the solid and pore networks of a porous

material are visualized in Figure 4.3-d and g. In order to construct these networks, initially

we need a 3–D binarized image (Fig. 4.3-a) that is segmented to the void and solid spaces

which are respectively shown in Figure 4.3-b and e. Then using watershed segmentation

algorithm we break down an interconnected micro–structure into a separately labelled map

of nodes as can be seen in Figure 4.3-c and f. The color gradient in these illustrations in-

dicates the relative equivalent radius of the nodes extracted for both void (pore) and solid

networks. When we have detected location and boundaries of each node, then by analyzing

the node map connectivities, two networks can be extracted for both void and solid spaces

(Fig. 4.3-d and g). Watershed segmentation algorithm which is used to break down the

micro-structures into a mathematically describable 3–D network, has been widely employed

for porous material characterization from tomography images [269, 128, 108]. This algorithm

uses the Euclidean distance transform of a binary object to detect the narrowest parts of

the connections between different nodes. More details on the methodology and validation of

watershed segmentation algorithm can be found in [128, 108].

Now in order to build the ground truth data for training DeePore CNN, we investigate

the constructed pore and solid networks by measuring several morphological features and

running physical simulations (Fig. 4.3-h). In this section, we briefly describe the simulation

techniques employed and some assumptions made to generalize the analysis of outcomes.

As an example, we have illustrated 3 simulation results on a sample pore network model

in Fig. 4.3-g. These simulation results are fluid saturation in a 2–phase drainage process,

electricity flow through the saturated pore–space, and pore pressure of the single–phase fluid
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flow, respectively depicted in Fig. 4.3-h1 to h3 to give some insight on the ground truth

generation.

The list of the physical properties and features that have been obtained for each of the

samples within the dataset is provided in Table 4.1. As can be seen, we report 15 single–

value features that comprehensively describe the morphological, hydraulic, mechanical and

electrical properties of porous material. Additionally, 4 functions and 11 distribution curves

are extracted for each porous sample to describe its characteristics (Fig. 4.3-i). Here is a brief

introduction to the calculated set of properties and more details regarding the methodology

of extracting each of the features is available in the corresponding references in Table 4.1.

Morphological properties

Based on the extracted network models, probability distribution in addition to the average

values are reported for pore body radius, pore throat radius, throat length, grain radius, and

pore connectivity [108] which is also known as the network coordination number [39]. In

addition, pore density that indicates the number of pores per unit volume of the geometry,

grain sphericity [270], and specific surface are calculated for each of the 3–D images in the

dataset. Furthermore, we have used Dijkstra’s algorithm [271, 272] to find the shortest path

from one face to the other face of the pore networks and calculate tortuosity. In this regard,

the shortest path between each two random pairs of the pores from inlet to the outlet of the

pore network is calculated for several times and average value of all shortest paths is reported

as tortuosity. Finally, as a morphological property of porous material we have calculated the

two–point correlation function of the binarized images which shows how well–correlated are

the porosity of two random points selected with a specified distance between them [273]. For

more details regarding the calculation methodology for each of the properties please refer to

the references provided in Table 4.1.

Hydraulic properties

Absolute and relative permeabilities are calculated based on the extracted pore networks.

For calculating the fluid conductance in each pore throat, realistic cross–sectional shapes of

the throats are used to provide better results [198]. Additionally, for calculation of the two–

phase flow functions, we have assumed zero contact angle in the case that two immiscible

fluids are present within the porous media. Also, smooth spherical curvatures are assumed

for pores and throats to simplify the displacement process. A thin layer of the wetting

phase fluid is present at the wall surface to maintain the phase connectivity but it does
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not contribute to the hydraulic conductivity of the throats. The procedure we use to model

two–phase displacement in a pore network is a quasi–static approach with stepwise increment

of the non–wetting phase pressure and domination of the capillary forces over the viscous

forces. The quasi–static approach is fully described by Valvatne and Blunt [274]. The

capillary pressure curve is another important hydraulic property of the porous material and

as discussed, we require a technique to remove the pressure unit of this parameter. To this

end, we have used the concept of Leverett J-function curve [275] which is a dimensionless

version of the capillary pressure normalized for different porosities, permeabilities, contact

angle and interfacial tension between the two displacing fluids in porous media.

Electrical properties

Formation and cementation factors are two electrical properties of porous material that have

been calculated using the extracted pore network models [276, 277]. These parameters are

critical in Archie’s equation [278] and helps to describe the electrical behaviour of a porous

medium saturated with a conductive fluid. Formation factor is the ratio of the electrical

resistance of the fully saturated porous media to the electrical resistance of the pure fluid

[279]. In order to calculate this feature, we solve a resistor network assuming conductive

fluid inside the pore space using finite difference method. Also, with a similar approach,

this value remains the same when we are measuring the ratio of the mass diffusivity of a

component in a bulk fluid relative to its diffusivity through the fully–saturated porous media

[280, 281].

Mechanical property

In addition to many pore–dependent properties, we have modelled relative Young modulus

of the material which is a solid phase feature. For this purpose, we assume that the extracted

solid network is a truss–like structure and by applying normal compressional force on each

side of the geometry, the directional Young modulus is calculated by dividing the normal

stress over the strain ratio [282, 283]. Then arithmetic average of the directional values is

calculated and divided by the Young modulus of the pure non–porous material to obtain the

relative Young modulus which is a dimensionless number [284].

Dimensionless approach

It is noteworthy that we have removed the original spatial resolution of the data and defined

a unified unit of length which is equal to the physical size of each voxel. For example, the
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unit of absolute permeability which is area has become px2 which means that we need to

multiply the resulted permeability by the spatial resolution to the power of two in order

to retrieve the re–scaled permeability value. Here, we used px as a short form for pixel or

voxel size which is our unit of length. In the same manner, all other reported features are

dimensionless or described only in length unit which is convertible to voxel size. The list of

all alternative units is presented in Table 4.1. For features that can be calculated directionally

such as permeability, we have assumed an isotropic structure and reported the arithmetic

average of the values in x, y, and z directions. Although in some cases this averaging does

not have explicit physical meaning, but it is used to cover directional non–conformities in

the porous structures that can affect the extensibility of the model.
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Num. Output indices Feature Data type Reference

1 1 Absolute permeability (px2) Single value [198]

2 2 Formation factor (ratio) Single value [276]

3 3 Cementation factor (ratio) Single value [277]

4 4 Pore density (1/px3) Single value [285]

5 5 Tortuosity (ratio) Single value [271, 272, 286]

6 6 Average coordination number Single value [108]

7 7 Average throat radius (px) Single value [287]

8 8 Average pore radius (px) Single value [287]

9 9 Average throat length (px) Single value [287]

10 10 Average pore inscribed radius (px) Single value [288]

11 11 Specific surface (1/px) Single value [289, 290]

12 12 Average throat inscribed radius (px) Single value [288]

13 13 Grain sphericity (ratio) Single value [270]

14 14 Average grain radius (ratio) Single value [193]

15 15 Relative Young module (ratio) Single value [282, 283, 291]

16 16-115 Leverett J–function (ratio) Function [275]

17 116 - 215 Wetting relative permeability (fraction) Function [274]

18 216 - 315 Non-Wetting relative permeability (fraction) Function [274]

19 316 - 415 Two-point correlation function (1/px) Function [273]

20 416 - 515 Pore radius distribution (px) Distribution [195, 131]

21 516 - 615 Throat radius distribution (px) Distribution [195, 131]

22 616 - 715 Throat length distribution (px) Distribution [195, 131]

23 716 - 815 Pore inscribed radius distribution (px) Distribution [288]

24 816 - 915 Throat inscribed radius distribution (px) Distribution [288]

25 916 - 1015 Throat average distance (px) Distribution [198]

26 1016 - 1115 Throat permeability distribution (px2) Distribution [198]

27 1116 - 1215 Coordination number distribution Distribution [108]

28 1216 - 1315 Pore sphericity distribution (ratio) Distribution [292]

29 1316 - 1415 Grain sphericity distribution (ratio) Distribution [270]

30 1416 - 1515 Grain radius distribution (px) distribution [193]

Table 4.1: List of the physical features of porous material which are considered to be the

outputs of the model in addition to the corresponding units and references that describe the

methodologies in detail.

4.3.3 Deep learning method

We have generated the dataset of semi–realistic micro–structures of porous material and a

wide range of 30 physical properties are calculated for each of the samples. The aim is to

build a machine learning model that is able to estimate these properties purely by analyzing
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input images and learning an implicit knowledge of the underlying physics. It should be

noted that this implicit knowledge is different than the physics-informed machine learning

models that explicitly embed physical equations in the structure of their network layers [293].

As discussed, CNNs have proved to be efficient in image classification, segmentation, and

regression. So, we have designed a CNN structure combined with two dense layers of neurons

to make a regression model that is able to estimate all physical properties of porous material

mentioned above in a supervised manner. Data workflow and CNN structure are presented

in Fig. 4.3 and Table 4.2. Here, we are providing more details regarding the structure of the

network and the training process.

Network input layer

Initially, we take a 3–D image from the dataset with the size of 2563 voxels and extract

three perpendicular mid–planes of the volumetric data (Fig. 4.3-k to l). Then, the distance

transform of the solid and void spaces is calculated for each of the images and is deduced to

make an initial feature map (M) as follows:

M =

⌊
8

S
fd(1− A)− 8

S
fd(A)

⌋
(4.1)

Where S is side size of the image which is 256 voxels in our case, and ⌊x⌋ is the floor op-
erator that rounds down the decimal points to the closest smaller integer, fd is the Euclidean

distance transform and A is the a 2–D plane cut through the 3–D volume perpendicular to

one of the major axes (Fig. 4.3-k). As a matter of fact, variable A is an array that contains

0 representing pore space and 1 for solid voxels. The reason to multiply distance maps by

the ratio of 8
S
is to ensure all the calculated values will be mainly between −1 and 1 which is

suitable to be used as CNN input. The distance maps are not only able to deliver informa-

tion about the original binary map, but also, describe the Euclidean distances between each

point of that binary map to the nearest boundary. This additional information enriches the

model input layer with more data compared to passing a simple binary array.

Now, based on the three maps generated using Eq. 4.1, we generate a fictitious RGB

image by stacking them into each other and make an initial feature map to be used as the

input for the CNN (Fig. 4.3-n). The term RGB refers to a color space for image quantization

composed of three channels of red, green, and blue. The reason to mimic an RGB image is the

common use of these image formats as input of a CNN. In addition, RGB images are easy to

store and read from hard disk and there are plenty of lossless compression methods invented

to minimize their size when stored on disk [294]. Use of the whole 3–D data as the input of
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the CNN instead of the perpendicular mid–planes could increase the accuracy of the results,

while it can significantly increase the computational expenses which are not desirable. Also

this defeats the purpose of this research to propose an efficient while adequately accurate

model.

Network hidden layers

At the first layer of CNN, we initially run a 2 by 2 max–pooling filter to reduce the size of

the input data without losing too much information (Fig. 4.3-o2). Then, 3 convolutional

layers are designed to gradually decrease the size of the information while maintaining the

main geometrical features by applying different sequential filters on the input images (Fig.

4.3-o3 to o5). Each convolutional layer is followed by a 2 × 2 max–pooling filter to finally

make data small enough to be fitted into a fully–connected dense layer. The first dense

layer is activated by ReLU, while the second one uses sigmoid (Fig. 4.3-o6 and o7). This

network architecture is designed by testing a range of different structures and monitoring the

performance of each training scenario in terms of accuracy. The selected training scenario

has three convolution kernels with the size of 3× 3 with stride equal to 1× 1. More details

on the structure of the proposed CNN is provided in Table 4.2.

Network output layer

As it can be seen in Table 4.2, the output layer of the network is a one dimensional array of

1515 elements (Fig. 4.3-o8). The first 15 elements of the array are 15 single–value features

calculated for each of the porous samples as described in Table 4.1, rows 1 to 15. The next

1500 elements of the output array describe 4 functions and 11 distribution curves each of

which occupies 100 elements of the array. The range of the array indices for each of the

output parameters is described in Table 4.1. In order to fit the wide range of variables and

functions into an array of 1515 elements, certain reshaping and interpolation operations are

required for the raw results of pore scale modelling. The four functions that occupy indices

from 16 to 415, are Leverett J-function, wetting relative permeability, non–wetting relative

permeability and two–point correlation function. The first three are functions of wetting

phase saturation which is a fraction between 0 to 1. So, in order to summarize each of

these three curves into 100 elements, we have divided the whole curve into 100 pieces each

of which with 0.01 distance from each other in terms of wetting phase saturation. Similarly,

for two–point correlation function, we have split the curve into 100 segments each of which

with 0.5 voxel distance to the next one, in order to cover a total lag distance of 50 voxels
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in 100 elements. For more details regarding this function please refer to [273]. Next, in

order to fit each of the 11 distribution curves into 100 elements, we are using the cumulative

format of the probability distributions (CDF) that pack a full range of variable changes into

a sigmoid–like curve between 0 and 1. Consequently, we have divided the CDF curve into

100 pieces with 0.01 distance between every two consecutive points in Y axis and embedded

the corresponding values of X axis into the output array. For more clarification, a sample

set of the described functions and distribution curves will be presented in the Results and

Discussion section (Table 4.4 and Fig. 4.7).

Model training

Development and training of the DeePore CNN is implemented in Python using Keras with

TensorFlow backend [295]. Additionally SciPy, Numpy and Matplotlib [296] as open–source

packages of Python are used for data pre– and post–processing. Back–Propagation RMSprop

algorithm [297] with the learning rate of 10−5 is used for training the CNN by minimizing

the prediction loss in terms of mean squared error. We have used 80 % of the data samples

for training the network, 10 % for validation and 10 % are kept outside of the workflow for

independent and un–biased testing of the results obtained. We have trained the model for

100 epochs with batch size of 100 samples per each updating of the model gradient. The

input and output data are fed into the model using large size Hierarchical Data Format

(HDF) files. A Python Generator method, reads the data batch by batch from the HDF file

to avoid occupying a large amount of machine memory.
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Figure 4.3: DeePore data workflow for generating the ground truth data and training the

CNN based on that, original binary geometry (a), solid and void spaces (b and e), labelled

map of nodes (c and f), solid and pore network models (d and g), some of physical simulations

on the pore network (h1 to h3), calculated single–value features, as well as the functions and

distributions (i), flatten array of ground truth data (j), three perpendicular mid–planes out

of the 3–D volumetric data (k), structure of three selected planes with one as solid and zero

as void space (l), three differential distance maps of the solid space which mimics red, green,

and blue channels of a synthetic RGB image (Eq. 4.1) (m), input feature map of the porous

media as a fictitious RGB image (n), (o) structure of the designed CNN with 8 layers each

of which are described in Table 4.2. 94



Layers Type Input size Kernel Options Trainable parameters

1 Input 256×256×3 - Normalization 0

2 Pooling 128×128×3 - Max Pool 2×2 0

3 Convolutional 64×64×6 3×3 Max Pool 2×2 336

4 Convolutional 32×32×12 3×3 Max Pool 2×2 2616

5 Convolutional 16×16×18 3×3 Max Pool 2×2 7812

6 Fully-connected 1×1×9217 - ReLU Activation 9217×1515

7 Fully-connected 1×1×1515 - Sigmoid Activation 1516×1515

8 Output 1×1×1515 - Denormalization 0

Total - - - - 16,271,259

Table 4.2: Structure of the designed CNN including type, size, option, kernel and trainable

parameters of each layer.

4.3.4 Direct numerical simulations

In order to provide an insight towards the performance of the proposed method compared

to the direct numerical simulation approaches, we have used Lattice Boltzmann method

(LBM) and pore–scale finite volume solver (PFVS) to calculate the absolute permeability of

3 realistic test samples. Here, we aim to briefly describe the methodology of these numerical

methods.

Pore–scale finite volume solver (PFVS)

The PFVS method solves an elliptic diffusion equation to obtain the spatial pressure dis-

tribution in micro–CT images, hence it estimates the absolute permeability of micro–CT

images [298]. This method is CPU time efficient as it does not require time-stepping to

converge to a solution. The conservation of mass can be expressed as:

∇.v⃗ = q (4.2)

where v⃗ is the velocity vector and q represents source and sink terms, which is assumed to

be zero. We assign each voxel a local conductivity w, calculated as outlined by Chung et al.

[298] to relate the velocity to the pressure gradient:

v⃗ = −w∇P (4.3)

where P is pressure. Combining equations 4.2 and 4.3 gives an elliptic equation:

−∇.(w∇P ) = 0 (4.4)
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This equation is solved with prescribed constant pressure (Dirichlet) boundary conditions on

the inlet and outlet by using Two Point Flux Approximation (TPFA) [299, 300] and Finite

Volume Methods with an Algebraic Multi-Grid (AMG) solver. All solid voxels are removed

from the system of equations, resulting in a smaller system matrix. Once the spatial pressure

distribution and velocity profile (and subsequently, the flow rate) are calculated by equations

4.3, the absolute permeability is estimated from:

K =
Nx

NyNzR

Qµ

∆P
(4.5)

The length of the system is expressed as the voxels multiplied by the resolution of the

image (R). Hence, the number of voxels in the main flow direction can be defined as Nx

and the other two directions are Ny and Nz, Q is flow rate (m3/s), µ is fluid viscosity

(Pa.s), ∆P is pressure difference across the image (Pa), imposed as a boundary condition.

Under the assumptions of laminar incompressible flow and no–slip boundary condition, local

conductivity (w) is defined as a weighting function representing the conductivity of a voxel

for fluid flow. Local conductivity is a function of two variables, the largest inscribed radius

of the flow channel (rmax) and the distance from the solid wall (r):

w = αR2 ρ

8µ
(2dmaxd− d2) (4.6)

where w is local conductivity, α is the shape factor, R is resolution of image (m), dmax is

digital equivalent of the largest inscribed radius, d is digital equivalent of radial distance

from the inner wall, and ρ is fluid density (kg/m3).

Lattice Boltzmann method (LBM)

In another direct numerical simulation approach, flow within the pore space is calculated

by the Lattice Boltzmann Method (LBM) using a Multi-Relaxation Time scheme [301, 302,

303] in D3Q19 quadrature space in order to eliminate spurious parameter coupling between

viscosity and permeability that occurs with Single Relaxation Time and improve stability in

high velocity pore throats. LBM reformulates the Navier-Stokes Equations by numerically

estimating the resulting continuum mechanics from underlying kinetic theory. The kinetics of

a bulk collection of particles within a control volume is estimated with a vector velocity space

ξq and velocity distributions fq. For each velocity space vector ξq, the velocity component in

the specified direction is given by fq. The momentum transport equation at location x⃗i over

a timestep δt relies on a collision operation J which recovers the Navier Stokes Equation,

and outlined in detail by McClure et al. [302].

fq(x⃗i + ξ⃗qδt, t+ δt) = fq(x⃗i, t) + J(x⃗i, t) (4.7)
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Single phase flow is simulated within the pore space of the segmented test samples until

steady state conditions are reached. In the present study we continue the simulations until

the change in permeability over 1,000 LBM timesteps is less than 1e−5. All samples are

simulated with a constant pressure drop between the inlet and outlet, and wall boundary

conditions are imposed along the other sides to avoid geometric inconsistencies associated

with periodic boundary conditions.

4.4 Results and Discussions

In this section, three main outcomes of this study are discussed. Initially we describe the

significance and applications of the present dataset of the porous material and then we focus

on the statistical lessons learned by examining cross–correlations of the dataset features.

Finally, the accuracy of the features estimated by the model will be checked on the testing

samples to demonstrate the capability of DeePore workflow for rapid characterization of the

porous material.

4.4.1 Porous material dataset

In this research we have generated a comprehensive dataset of semi–real micro–porous struc-

tures with 17700 samples and a wide range of morphological, hydraulic, electrical and me-

chanical features are calculated for each of the samples. The main application of this dataset

is to be used as the raw material for more advanced machine learning studies on porous ma-

terials. In addition to the raw 3-D geometries, Python codes, extracted pore networks and all

calculated characteristics are available in the public domain for replication and improvements

in future studies 1.

4.4.2 Statistical lessons learned

Considering the large number of analyzed samples of porous material, we have created a rich

dataset to investigate the existing trends and relationships among the calculated features.

Binary correlation coefficients of 15 single-value features are visualized in Fig. 4.4 as a heat

map to summarize the statistical significance of cross-parameter relationships. Pure blue

color at the intersection of two parameters indicates strong correlation and pure red color

shows a strong inverse correlation between them. As an example, absolute permeability of

1GitHub Repository: https://github.com/ArashRabbani/DeePore
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porous media is well correlated with average pore–throat radius which is expected based on

the available literature [304], while it does not have a significant relationship with average

grain radius and finally it has an inverse relationship with relative Young modulus of the

porous material. This relationship is physically justifiable considering that large values of

relative Young modulus indicate a tight and consolidated structure of porous material [291]

which leads to lower permeability. Although, many of these relationships have been widely

investigated in the literature [305, 306, 307], having a diverse range of them in a single map

(Fig. 4.4), could provide a concise but broad insight about porous material characteristics.
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Figure 4.4: Heatmap of the cross–correlations between the physical properties of the porous

material, blue color indicates that two variables are highly correlated, white color indicates

that variables are not statistically related and red color denotes a strong inverse correlation.

4.4.3 Data distribution

The data is randomly split by shuffling into three sections with the proportions of 80 %, 10

%, and 10 % respectively for training, validation, and testing processes. Relative frequency

distribution of the training, validation, and test data are plotted in Fig. 4.5 to demonstrate

similarity/difference of the data statistics. We have run two–sample Kolmogorov–Smirnov
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(K–S) test to check if the distributions of training and validation/test data are statistically

similar. K–S distances of the tests are provided in Appendix E and if the value is closer to 1,

it indicates that the two compared distributions are dissimilar. Based on the obtained results,

97 % of the K–S distances are below 0.03 which shows that data shuffling and sample selection

are unbiased which is favourable in terms of the training robustness. Fig. 4.5 illustrates the

three distributions of training, validation and testing datasets for 15 single–value features

modelled in this study.
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Figure 4.5: Relative frequency distribution of 15 single–value features for each bundle of the

training, validation and testing data.
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4.4.4 Alternative models

In order to fine–tune the model structure and select the best options, we have tested 9

training scenarios of which they were more likely to fit the purpose. Different number of

filters in each convolution layer, corresponding kernel sizes, optimizers, and loss functions

used for each scenario are presented in Table 4.3. Additionally, the total averaged R2 of the

models based on the testing dataset is calculated to be used as evaluation criterion. Also, the

averaged R2 is calculated for both group of single–value features and functions illustrated

in Fig. 5.10–a. It has been found that the accuracy of the models is dependant to both

loss function and network structure. Four different loss functions have been tested through

9 scenarios:

� Mean squared error (MSE): this is the simplest version of loss function and by

using it we assume that all the 1515 elements of the CNN output array share the same

weight in the training process.

Loss =
1

1515

1515∑
i=1

(yi − y′i)
2 (4.8)

where, yi is the actual value and y′i is the predicted value of the ith elements of the

output array.

� Weighted MSE: this type of loss function indicates that the 15 single–value outputs

should have same weight as the 15 functions and distributions each of which with 100

elements. Thus, MSE is calculated for each of the function elements then it is averaged

over the 100 elements and summed up with the 15 single–value errors as follows:

Loss =
1

15

15∑
i=1

(yi − y′i)
2 +

1

15

30∑
i=16

1

100

100∑
j=1

(yij − y′ij)
2 (4.9)

� Binary cross entropy: This loss function is regularly used for evaluating the accuracy

of a binary classification, while it has been found in this paper to be effective for the

functions and numbers that revolve around the values between 0 and 1. This loss

function performs a maximum likelihood estimation based on the Kullback–Leibler

divergence [308] and it performs better than MSE in the cases with large difference in

the order of magnitude due to the logistic formulation as follows:

Loss =
1

1515

1515∑
i=1

yi(− log(y′i)) + (1− yi)(− log(1− y′i)) (4.10)
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� Weighted binary cross entropy: this loss function behaves similar to the regular

binary cross entropy, but it is normalized over 100 elements of the 15 functions and

distributions to avoid unnecessary additional influence of them in model training due to

the higher quantity compared to the single–value outputs. The formulation is presented

as follows:

Loss =
1

15

15∑
i=1

yi(− log(y′i)) + (1− yi)(− log(1− y′i))

+
1

15

30∑
i=16

1

100

100∑
j=1

yij(− log(y′ij)) + (1− yij)(− log(1− y′ij)) (4.11)

In addition to the loss functions discussed above, two types of optimizers have been

utilized in the alternative scenarios namely Adam and RMSprop. These are two adaptive

gradient-based optimization methods for stochastic objective functions [309, 310]. These

methods store an exponentially decaying average of past squared gradients to utilize it for

future estimations. The advantage of Adam is the fact that it also keeps the momentum of

past gradients which helps it for better estimation of higher order behaviours [311]. We have

used learning rates of 10−5 and 10−3 for RMSprop and Adam optimizers, respectively.

Based on the model performances presented in Table 4.3 and Fig. 5.10–a, it can be

concluded that a simple mean squared error is suitable to be used as the loss function for the

present dataset. Also, the comparison shows that weighted MSE underperforms the simple

MSE in terms of coefficient of determination. (R2 = 0.885 among the alternative models).

In addition to the r–squared comparison, we have illustrated the MSE of the validation and

training datasets at the end of each epoch (Fig. 5.10–b and c). As it can be seen, training

and validation curve of Scenarios 3 are stable when approaching to 100 epochs. In addition,

they are converging almost to a same MSE while in Scenarios 2, 8, and 9 overfitting are

observed. Considering all discussed criteria, Scenario 3 is recommended and we use it as the

predictor model for results presented hereafter.

Another alternative approach to perform this modeling is the use of separated CNNs for

each of the 30 output features. Theoretically, this approach can lead to a better performance

while for the purpose of this study, it is not without flaws. Use of 30 different CNNs not

only increases the storage size and computational burden of the model up to several times,

but also it offers an unnecessary level of accuracy which is beyond the accuracy of the

dataset. Considering the fact that the PNM–obtained ground truth data such as the one for

permeability contains around 5 to 30 % of simplification error [131], the present commingled
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structure of CNNs is sufficiently accurate. In addition, the present light implementation of

the model makes the online and client–side predictions more viable.

Scenarios Number of filters Kernel sizes Optimizer Loss function Averaged R2

1 6,12,18 82,42,22 RMSprop MSE 0.832

2 6,12,18,24 82,42,22,22 RMSprop MSE 0.824

3 12,24,36 32,32,32 RMSprop MSE 0.885

4 6,12,18 82,42,22 RMSprop Weighted MSE 0.775

5 6,12,18,24 82,42,22,22 RMSprop Weighted MSE 0.781

6 12,24,36 32,32,32 RMSprop Weighted MSE 0.782

7 6,12,18 82,42,22 Adam Binary cross entropy 0.791

8 6,12,18 32,32 ,32 Adam Binary cross entropy 0.749

9 6,12,18 32,32 ,32 Adam Weighted binary Cross entropy 0.818

Table 4.3: Comparing 9 different training scenarios in terms of filter number and kernel sizes,

optimizer, loss and coefficient of determination (R2). Scenarios 3 show the best performance

and have been selected to be used as the DeePore ANN structure.
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Figure 4.6: Comparing 9 training scenarios in terms of testing coefficients of determination

(r-squared) (a), validating mean squared error per epoch (b), and training mean squared

error per epoch (c).
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4.4.5 Model performance

Model training is performed both in CPU and GPU architectures. CPU–based computations

are done on a machine with four 3.2 GHz. Intel Xenon processors and 32 GB of memory.

This arrangement enables the model to be trained in 3 to 4 minutes per epoch. In addition,

prediction of the porous media features based on the trained model takes 9.23 ms per sample

on average which is 4 to 6 orders of magnitude faster if the features are to be extracted by

physical simulations whether PNM or direct numerical simulation methods [198].

Using GPU to accelerate the training and prediction stages can make this workflow even

faster. Using an Nvidia GeForce GTX 1660 Ti with Max-Q Design Graphic Card with

Compute Capability of 7.5 and 6 GB of memory, we are able to train the model around 4

times faster, in which each epoch would take around 45 s to finish. Also prediction of the

test dataset can be performed with the speed of 0.379 ms per sample on average which is 24

times faster than the CPU–based instance and it is a considerable improvement.

At each epoch of training the validation and training losses are measured in terms of

mean squared error to ensure that over–fitting is not occurring and training has reached an

optimum point (Fig. 4.6–b and c). In our case, increasing the number of epochs to more

than 100, it hardly reduces the validation loss less than 10−3 in a stable manner. So, we

have stopped the training at 100 epochs as visualized in Fig. 4.6–b and c.

Using the trained CNN model we have estimated a wide range of porous material char-

acteristics on the 10% of the data which are not used in the training or validation processes.

The average determination coefficients (R2) of the reference and estimated features for the

test data are 0.846 and 0.924, respectively, for single–value features (rows number 1 to 15 of

Table 4.1), and function/distribution features (rows number 16 to 30 of Table 4.1). Also, the

average determination coefficient of all 30 features is 0.885. This overall level of accuracy is

reasonably good considering the wide range of porous structures and variety of the predicted

features.

In order to provide an insight into the sample outputs of the model, we have presented

Table 4.4 and Fig. 4.7 for discussing single–value features and functions, respectively. In

Table 4.4, reference values and estimated values are matching with a low level of average

relative error at only 5.4%. If the real spatial resolution of this sample image is assumed

to be 5 microns per voxel, consequently, in order to scale the values with the unit of length

(px) we simply multiply them by 5. Similarly for the area (px2), values are multiplied by

52. This approach gives us the flexibility to predict porous material characteristics in a wide

range of spatial resolutions without changing or re–training the model. A similar approach
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is used for functions and distribution curves which are depicted in Fig. 4.7. The average

determination coefficient of all 15 curves shown in this figure for sample #1 is 0.9417.

Additionally we have compared the distribution probability of all single–value features

to check the correspondence between the reference and estimated data (Fig. 4.8). This

data has been visualized for 1418 testing samples and in the most of the cases both two

distributions follow the same pattern, while for parameters like relative Young module and

, some deviations are observed (Fig. 4.8-o). Also, in grain sphericity reference curve, a

trimodal behavior is observed while the estimated distribution has failed to match that

trend accurately (Fig. 4.8-m). This distributed data are also visualized in the form of

scattered plots in Fig. 4.9. These charts carry the same R2 values as the distribution curves

in Fig. 4.8, while unit–slope lines in Fig. 4.9 could give better insight regarding the over

or under–estimation of the parameters. We have observed a degree of underestimation for

larger values especially in tortuosity, grain sphericity and average connectivity data (Fig.

4.9-e and f). This is probably due to the skewness of the distribution of these parameters

in which a long but thin tail toward the larger values do not lead the model to sacrifice its

accuracy on the middle–range data for better coverage on the whole domain. In other words,

during the training process, model prefers to have higher accuracy for the majority of the

data points instead of less accuracy but better coverage on the whole set of points.

Finally, we have plotted the predicted functions and distributions versus reference values

for 100 randomly selected samples from the testing pool of data (Fig. 4.10). Also, we have

calculated R2 coefficients for each of the plotted lines and the average values are presented

in Fig. 4.10. We have found that the data which are directly calculated from the geometrical

features of the porous samples such as pore radius distribution (Fig. 4.10-e) are easier to

estimate compared to more complicated functions, such as throat permeability distribution

(Fig. 4.10–k) that are obtained from a higher level simulation.
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Num. Feature Reference Value Estimated Value Relative Error (%)

1 Absolute permeability (px2) 0.544 0.573 5.39

2 Formation factor (ratio) 6.541 5.542 15.28

3 Cementation factor (ratio) 2.000 1.980 1.00

4 pore density (1/px3) 1.48E-04 1.43E-04 3.25

5 Tortuosity (ratio) 1.244 1.264 1.62

6 Average coordination number 4.566 4.584 0.40

7 Average throat radius (px) 4.797 5.008 4.40

8 Average pore radius (px) 6.952 6.965 0.18

9 Average throat length (px) 19.722 19.602 0.61

10 Average pore inscribed radius (px) 5.379 5.722 6.37

11 Specific surface (1/px) 1.39E-04 1.36E-04 1.98

12 Average throat inscribed radius (px) 3.585 3.836 7.01

13 Grain sphericity (ratio) 0.807 0.819 1.49

14 Average grain radius (ratio) 8.575 9.039 5.41

15 Relative young module (ratio) 0.219 0.160 26.66

Average - - 5.4

Table 4.4: Example comparison of the reference and estimated values of 15 single–value

features for one of the image samples in the dataset (test sample #1).
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Figure 4.7: Example comparison of the reference and estimated values of 15 functions and

distribution for one of the image samples in the dataset (sample #1). The average correlation

coefficient of the reference and estimated curves is 0.9616.
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Figure 4.8: Comparison between the reference and estimated distributions of the 15 single–

value features, a to o charts correspond to the features inscribed in Table 4.1 rows from 1 to

15.
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Figure 4.9: Comparison between the reference and estimated values for 15 single–value

features and their correlation coefficients, a to o charts correspond to the features inscribed

in Table 4.1 rows from 1 to 15.
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Figure 4.10: Comparison of the reference and estimated curves for 15 functions and distri-

butions that correspond to the rows of 16 to 30 in Table 4.1 (plotted for randomly selected

100 samples and labeled with random colors).
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4.4.6 Independent model verification

In order to ensure that the model is not over–trained with the augmented dataset of semi–

realistic images, we have created three fundamentally different and independent images with

no similar structure inside the dataset to check if the model has implicitly learned the physics

instead of only memorizing different textures and corresponding features. In Fig. 4.11 we

have visualized three porous samples: (a) the medium is made up of overlapping cubes with

no offset limitation, (b) a packing of spheres with overlapping length limited by the half

of the spheres’ radii, and (c) a fibrous medium made by straight cylindrical rods with 10

voxels radius. It has been found that the model predictions on the shown out–of–the–box

samples are almost as good as the testing dataset used to check the model performance in

the previous subsection in terms of r–squared. By lumping 15 single–value features of 3

verification images, r–squared of 0.916 is obtained which shows that the DeePore predictions

are noticeably similar to the pore network modeling simulations. To provide some examples

of the estimated features, we have compared the absolute permeability, average pore radius

and Leverett J function of three constructed samples simulated by PNM and estimated

by DeePore (Fig. 4.11–d to f, respectively). Averaged relative error of the permeabilities

obtained is around 34 % which is reasonable considering the wide range of variation of this

variable. Also, for average pore size this error is around 8.1% that is not out of expectation

due to the high predictability of pore size from images. Finally, Leverett J function of three

samples has been reasonably accurately estimated by DeePore, although a high level of noise

is observed in the prediction. The shape of the fluctuations in Fig. 4.11–f are visually similar

to the white unbiased noise which can be easily cancelled by performing a moving average

or Gaussian filter.
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Figure 4.11: Independent verification of model using three artificial porous structures com-

pletely outside the training, validation and testing dataset. (a) overlapped pack of cubes,

(b) partially overlapped pack of spheres, (c) fibrous media of straight cylindrical rods, (d)

comparing the absolute permeability of three images obtained by PNM and DeePore, (e)

comparing the average pore radius of three images obtained by PNM and DeePore, and (f)

comparison of Leveret J function of three porous samples simulated by PNM and estimated

by DeePore.

4.4.7 Validation with experimental data

Considering the fact that the dataset of images used in this study have been virtually aug-

mented, a validation with realistic images can provide a better insight towards the appli-

cability of the proposed method for real world problems. In this regard, three tomography

images with available pore–scale experiments of absolute permeability have been used. Ad-
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ditionally, we have employed two direct numerical simulation methods of PFVS and LBM

(described briefly in Section 4.3.4) to compare the performance of the proposed method.

Absolute permeabilities obtained from experiment, Deepore, PFVS and LBM are illustrated

in Figure 4.12. Also in this figure we show the segmented images of three samples used

namely Bentheimer sandstone [312], Glidehauser sandstone [313], and glass beads [314]. In

order to find the permeability of the samples in the cylinder’s axial direction, we divide the

image into 2–D slices perpendicular to the cylinder main axis. Then using a 2562–voxels

2-D sliding window we take subsamples to use as DeePore feed. The overal permeability of

a slice is determined by arithmetic averaging over all subsamples and this process repeats

for all slices of the 3-D image. Next, minimal slice permeability over the whole length of

the sample is reported as the sample directional permeability considering the fact that flow

capacity is mainly controlled by the tightest openings and bottlenecks. By comparing the

three predicted absolute permeabilities with the experimental values it can be concluded

that DeePore is predicting the permeability in a good agreement with the direct numerical

simulation methods which are considerably more computationally expensive. The average

relative error of tested methods compared to the experiment are 13 %, 25 %, and 24%,

respectively for DeePore, PFVS, and LBM. Although there could be some sources of un-

certainty (such as images’ improper segmentation, or experimental and imaging errors), the

general conclusion is that based on the tested realistic tomography images, DeePore absolute

permeabilities are in good agreement with experimental measurements.
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Figure 4.12: Experimental verification of the proposed model by comparing absolute per-

meabilities with experimental values as well as direct numerical simulation, (a) Absolute

permeabilities of Bentheimer sandstone, Glidehauser sandstone, and glass beads obtained

from 4 different sources: experiment, DeePore, PFVS, and LBM. (b) Segmented image of

the tested Bentheimer sandstone with resolution of 7 µm/voxel. (c) Segmented image of the

tested Glidehauser sandstone with resolution of 4.4 µm/voxel. (d) Segmented image of the

tested glass beads with resolution of 6.5 µm/voxel.
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4.5 Conclusions and Future Studies

In order to deliver the present DeePore package, we have generated a dataset of semi–real

3–D images of porous structures with 17700 samples and 30 features which are physical

characteristics of porous material. Using a regression CNN coupled with two dense layers, a

fast and comprehensive characterization of 3–D porous material images is implemented. In

summary, the following conclusions can be drawn based on the findings of this research:

� A physically diverse dataset of micro–porous structures are generated based on texture

transformation and porosity manipulation of 60 original tomography images and a wide

range of morphological, hydraulic, electrical and mechanical features are extracted for

each sample. The dataset is publicly available and can be used for future studies.

� A dimensionless approach has been presented to extract or predict the porous material

features without being affected by the spatial resolution of the images.

� A statistically accurate feature estimation is implemented using a designed feed–

forward CNN by training the model for 100 epochs while over–fitting is avoided.

� A cross–correlation heat map of the 15 porous material features are presented that

gives a concise but broad insight into the significance of relationships between each

pair of the extracted features.

� The average coefficient of determination (R2) for all 30 extracted features is 0.885

which is significant considering the diverse range of porous morphologies and features.

� Via a GPU–based architecture we are able to predict the above–mentioned features for

each 2563 voxels binary image of porous material in 0.379 ms on average. This high

speed of prediction enables us to tackle larger image sizes in future studies.

� To provide an independent model verification, three images outside of the datasets are

generated with textures almost unseen in the augmented dataset. The model predic-

tions were almost as good as the testing dataset used to check the model performance

in terms of r–squared. This observation indicates that the dataset is diversified enough

to avoid false accuracy due to the similarity of the training and test results. Also,

considering the novel texture of the verification samples, one can conclude that the

model is implicitly learning the physics of the estimated features rather than blindly

memorizing the textures.
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� In order to provide experimental verification for the proposed method, absolute per-

meabilities of 3 realistic porous samples have been compared with the measured values

in the laboratory and DeePore predictions had around 13% relative error with is rea-

sonable comparing to the accuracy of the direct numerical simulation methods such as

PFVS and LBM.

It is noteworthy that each of the physical simulation methods are subject to uncertainty

due to some inherent simplification assumptions in pore network modeling. Consequently, it

is recommended to use more accurate simulation methods such as direct numerical models

to generate the ground truth dataset based on the current set of 3–D images in the future

studies.

Acknowledgement

The authors thank the University of Manchester for the President’s Doctoral Scholarship

Award 2018 awarded to Arash Rabbani to carry out this research. Also, special thanks to

Prof. Vahid Niasar for sharing the glass beads image that has been used in the present study.

118



Chapter 5

Image-based modeling of carbon

storage in fractured organic–rich shale

with deep learning acceleration
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5.1 Abstract

In this study, we present three methods of predicting CO2 adsorption upon displacing CH4

in dehydrated fractured shale samples. These methods include a dynamic numerical ap-

proach, a steady state numerical approach, and a machine learning (ML)–based approach.

We develop a coupled formulation for including the effects of gas competitive adsorption,

decompression, Knudsen diffusion, slippage, advection, and Fickian diffusion for multicom-

ponent single-phase CO2-CH4 systems. Several stochastic micro–structures of fractured shale

samples are generated and processed for pore network extraction. Extracted pore networks

contain microporosities as well as mesopores and fractures. Next, we show that the dynamic

numerical approach can be substituted with steady state model which is only 2.3% less accu-

rate but 3 to 4 orders of magnitude computationally faster to execute. In order to enhance

the computational limits even further, we train a deep learning model on 3982 simulated

steady state cases with r–squared greater than 0.93. In addition, we define a storage quality

criterion for recognizing suitable shale samples for CO2 sequestration which depends both on

the rate and amount of adsorption. Using this criterion and the developed ML tool, a large

number of shale pore–scale images can be ranked based on their suitability in an efficient

and accurate manner. The proposed workflow is useful for selection of the proper geological

locations for subsurface CO2 storage by analysing the available image datasets.

5.2 Introduction

Considering, for example the net–zero emission pledge of the UK by 2050 [315, 316], sub-

surface carbon capture and storage (CCS) is considered more widely to mitigate carbon

emissions in upcoming years. There is a great potential of carbon storage in subsurface for-

mations with organic or mineral micro-structures that can adsorb CO2 molecules in a stable

manner. Due to the tight nature and high surface area of some clay–based and organic–rich

subsurface deposits, CO2 molecules can be trapped in micro-structural cages or dissolve in

the inter-particle residing water due to its low minimum miscibility pressure [317, 318, 319].

Although, the CCS strategy seems to be an ideal solution to get rid of the excess carbon,

there are still practical issues that need to be addressed by researchers. One major issue is

the uncertainty and randomness of the subsurface porous structures that make it difficult to

find the proper locations for CCS purposes [320]. While running thousands of experiments

does not seem a viable solution to screen the appropriate storage spots, machine learning

(ML) can be used to deal with the complexity and repetitiveness of this screening process.
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Deep machine learning has already proven its enormous capability in medical diagnostics

[321] and it can be adopted in an interdisciplinary manner to make predictions regarding the

CO2 adsorption capacity of different micro-structured porous materials.

Data–driven methods such as deep learning heavily rely on diversified and accurate

datasets to be trained on. However, due to the limited available experimental data on shale

deposits, numerically simulated data can be used as an alternative. A pore network model

(PNM) is a simplified version of porous micro-structures designed to speed up the numerical

simulations while maintaining a reasonable level of physical accuracy [322]. Consequently,

PNMs have been widely employed by researchers to solve coupled physical problems in a

wide range of length scales of shaly subsurface deposits [323, 147]. Many different physics

have been simulated in shale PNMs during the past decade from Knudsen and surface diffu-

sion to inclusion of mechanical deformation and geo–chemistry [324]. Javadpour et al. [324]

reported a significant increase in the number of shale PNM papers in the past few years as

well as different physics included in the developed PNMs.

The main gas transport mechanisms in shale PNMs is believed to be Knudsen diffusion

and gas slippage [148, 325], while some researchers have reported evidences in significance

of surface diffusion [326, 327]. Knudsen diffusion and gas slippage have been coupled to give

a unified formulation of gas transport in two main schemes of dusty gas models [328] and

Knudsen number based models [329, 146]. Knudsen number based models, merge the two

mechanisms by assuming weighting coefficients related to the surface roughness and have

been more frequently used in the literature [330]. Although, gas flow mechanisms of shale

have been significantly discussed by researchers, physical morphology and complexity of the

shale PNMs have not been equally attended [324]. In the present study, in order to address

this gap we have presented a novel arrangement of the micro and meso pores combined with

fractures which has been a shale–tailored version of the triple pore network model (T-PNM)

presented by Rabbani et al. [218]. As a recent and comprehensive example of dynamic

simulation of CO2 adsorption to CH4–saturated shale pore networks, the work by Zhang

et al. [331] is significantly aligned with the PNM methodology of the present study. The

authors have included a wide range of physics from changes in pore volume and shape factor

to competitive adsorption in a two–component system [331]. Despite of similarities in flow

transport and adsorption mechanisms with Zhang et al. [331], the PNM section of this

chapter is distinguishable due to the more realistic pore network generation and coupling of

diversified structural elements of shale samples like clay, kerogen, meso pores and fractures.

Although adding several physics to a geometrically complex and heterogeneous PNM
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model improves the accuracy, it will significantly expand the computational expense of the

model [198, 136]. Deep machine learning has been frequently used by researchers to emulate

the results of numerical simulations in porous media and cut the computational costs [251,

252, 256]. As an example Wei et al.[253] have used a convolutional neural network (CNN) to

estimate the effective thermal conductivity of composite porous materials and reached the

coefficient of determination of 0.98 for 100 test samples. Also, porosity and permeability of

the porous micro–structures have been popular subjects of CNN prediction [254, 255, 256,

257, 31]. As an example, Alqahtani et al.[21] designed a CNN model to estimate features

like porosity, specific surface, and average pore size of the porous sandstones based on 2–D

binary and gray–scale images. As a more recent attempt, Kamrava et al. [251] have studied

the link between the morphology of the porous materials and numerically simulated absolute

permeability. They have employed a cross–correlation–based method to increase the number

of images in a sandstone dataset in addition to adding hundreds of synthetic granular porous

structures. As a closely related paper to the ML section of the present study, Rabbani et

al. [31] presented a comprehensive deep learning model to predict 30 different physical

functions and features of the porous materials from network morphology, permeability and

conductivity to mechanical elasticity. The main distinguishable feature of the ML section of

the present study compared to Rabbani et al. [31] is the prediction of gas permeability and

adsorption capacity as well as accounting for presence of several mineralogies like clay and

kerogen.

5.3 Methodology

In the present study, we aim to make an efficient image–based model which is able to quantify

the quality of the fractured organic–rich shale samples for subsurface storage of CO2. A

brief workflow of the model development is presented in Figure 5.1. The process, starts

with a set of random numbers as input and continues by generating diversified stochastic

shale realizations based on those numbers. Afterwards, using image segmentation and pore

network extraction techniques, a multiple porosity network model is prepared. Then using

dynamic as well as steady–state simulations of gas adsorption, we can find the ultimate

capacity of the generated shale samples for CO2 storage. Considering the fact that both of

these methods are computationally intensive, we have proposed a deep learning approach

to mimic the steady–state storage capacity of the shale samples. After generating a large

dataset of stochastic images and pore network simulations, we have prepared the required
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information for training a deep learning model which takes the shale image as input. Finally,

after testing the trained model to avoid the over–fitting issues, we have an ML tool which

is able to evaluate and rank different shale images based on their quality for underground

storage of gaseous CO2.

Figure 5.1: Summarized workflow of the present study from input latent space of random

numbers to prepare an ML tool for ranking different shale samples based on their quality

for CO2 storage.

5.3.1 Generation of images

3–D imaging of the fractured organic–rich shale samples is challenging due to the mechanical

stability issues and technical difficulties in preparing such small size specimens. As an

alternative, we have designed a statistical approach to generate stochastic realizations of the

shale samples based on a set of random numbers as input which is also called latent space as a

data science jargon. Generation of the 3-D shale samples is composed of 5 steps respectively

to build pyrite framboids, calcite/silicate, clay, kerogen, and fractures which are principal

components of many realistic shale samples. Figure 5.2 illustrates the discussed steps each

of which with four sub-steps. In step #1, we have used thresholded distance map of some

random points and packed the obtained space with spheres of sizes around 0.2 to 0.7 micron.
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The obtained map is assumed to mimic pyrite framboids in the sample. In step #2, we have

applied watershed segmentation on thresholded distance map of a binary salt and paper noise

to emulate the solid grains of calcite and silicate. Then in step #3, we extract the contour

lines of the distance map of the remaining parts of the image after subtracting pyrite and

other solid grains. By running a motion blur, thresholding, dilation, and adding spatial noise,

a visually similar flake–like texture is achieved which mimics the clay-rich sections of shale

samples. In step #4, we fill the remaining space with kerogen while subtracting two randomly

generated sets of large and small organic pores. Finally, in step #5, in order to generate

a visually reasonable fracture within the sample, we have used watershed segmented map

of granular space to cut the geometry from the weaker connections and at the interfaces

of different structural elements. More elaborations regarding the fracturing method are

provided in [332]. A 2–D slice of the generated fractured shale sample is illustrated in Figure

5.2–g which is visually comparable with the real SEM image in Figure 5.2–f that shows,

pyrite framboids, clay flakes, calcite/silicate grains, kerogen, and a fracture at the middle of

the sample. The real SEM image shows a cretaceous shale sample from Alberta, Canada,

which is available online [333] 1.

1The courtesy of Fibics Incorporated.
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Figure 5.2: Shale sample generation process with 5 main steps and visual comparison of a

real SEM image of shale [333] with a stochastically generated image.
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5.3.2 Pore Network Modeling

Classic pore network modeling approach is often used for making a simplified mathematical

model of porous material with one level of porosity, while in many of the real world cases,

multiple scales of porosity are present within the materials. Organic–rich shale deposits are

among the well–known examples with the above-mentioned properties. In order to make a

simplified mathematical representation of shale samples in this study, we have used triple

pore network modeling (T–PNM) introduced by [218] which couples mesopores, micropores,

and fractures in a fluid flow simulation problem. As a modification to T–PNM, we have as-

sumed two types of microporosities for kerogen and clay with different pore size distribution

(Figure 5.5–c) and adsorption behaviour (Table 5.1). Additionally, we have included solid

minerals including pyrite, calcite and silicate that do not contribute to the transport prop-

erties in the gas flow system of this study. Figure 5.3 illustrates the pore network structure

considered for simulation of gas transport and adsorption. As described by Rabbani et al.

[218] the absolute permeability (Kp) of meso–throats and fracture links can be estimated

using a unified quadratic formula depending on the average distance value of the channels

cross-sectional image (D̄):

Kp = 1.342D̄2 − 0.913D̄ − 0.381 (5.1)

where Kp is the absolute permeability of the links with pixel2 unit, and D̄ denotes the

average distance value with the unit of pixel. In addition, the authors calculated the gas

permeability of micro-throats as bundle of microtubes with the radius of rm connected to

an arbitrary micropore at the center of semi–porous nodes including clay and kerogen. Gas

permeability Kg of these three types of links in the network can be calculated as follows

[218]:

Kg =

{
Kn(r) + F (r).Kp(D̄).R2

s meso-throat and frac-link∫
f(rm).Kn(rm) +

1
8
f(rm).F (rm).αϕmr

2
m drm micro–throat

(5.2)

where, r is the equivalent radius of meso–throats and fracture links cross-section, Rs is

the spatial resolution of the simulated image in m/voxel. ϕm is the microporosity of the

clay and kerogen nodes. Also, rm is the radius of the micro–tubes with the size distribution

of f(rm). Here, f(rm) calculates the void fraction of the microporous nodes occupied by

microtubes with the radius equal to rm. Parameter α is a porosity correction factor which

takes values from 0 to 1 and excludes the fraction of the node microporosity which belongs
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to the isolated pores. The term Kn(r) calculates the link permeability enhancement due to

the Knudsen diffusion as a function of gas properties and channel radius (r) and its value

is always greater than 1 (refer to [218] for details). Also, the gas slippage term (F (r)) for

different types of links can be calculated as: [146, 148, 147, 334]:

F (r) = 1 +
c

r

µ

P̄

√
8ZkbTπ

M
(5.3)

where, P̄ is gas average pressure, Z is real gas compressibility, µ is gas viscosity obtained

using an empirical correlation developed by Lee et al. [335], r can be replaced by rm in the

case of micro–throats, c is the collision proportionality factor which is commonly set equal to

1.0. It should be noted that the gases are not in the supercritical conditions for the pressure

and temperature that are assumed (Table 5.1).

The pore network system we aim to simulate in this study, is a shale specimen initially

fully saturated with methane to represent a small element of a dry gas shale reservoir. This

assumption may not be fully representative of actual shale gas systems because at most field

sites, a large portion of the fracking fluid imbibes into the shale matrix during the fracking

process, and thus two-phase flow occurs [217]. Therefore, the model presented here is useful

for areas away from two-phase fracking regions of the reservoir. At the beginning of the

dynamic simulation of gas adsorption, the bottom face of the shale sample opens to a higher

pressure of the CO2 gas compared to the average pressure of the system and CO2 starts to

penetrate through the network via advection and Fickian diffusion. In order to simulate the

advection, we use Eq. 5.2, and for diffusion, Fick’s law is used. At the same time, many

surface sites in the microporous regions that have been initially occupied by CH4 will be

captured by CO2 which has experimentally proved to be more adhesive to the microporous

portion of shale samples [336, 337, 338, 339, 340]. The competitive adsorption has been

described by a two-component Langmuir model [341] with detailed derivation by Zhang et

al. [331]. The boundary conditions assumed in our pore network modelling is no–flow at

the sides and constant pressure at the top of the domain, with the value equal to the initial

average pressure. This assumption creates an upward gas flow through the system. The

CO2 concentration of the injected gas is at 100 %. Gradually, over time, a uniform pressure

gradient forms between the inlet and outlet of the system and simultaneously CO2 pushes

out the residing CH4 until the equilibrium is reached. In order to model this dynamic process

we start by writing the volume balance of the system with the assumption that the pore

volume of each node i remains constant:
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∆Vads,i +∆Vadv,i +∆Vdif,i +∆Vcmp,i = 0 (5.4)

Where ∆Vads,i is the free gas volume change in node i due to adsorption/desorption,

∆Vadv,i is the free gas volume change due to advection which is basically the fluid flow from

other pores, ∆Vdif,i is the volume change due to the Fickian diffusion, and ∆Vcmp,i is the

free gas volume change due to the compression. Each of these terms can be expressed as a

function of system’s pressure for each node (Pi) and methane gas saturation (Si) as follows:

∆Vads,i = Sp,iMgC(P n
i − P n−1

i )/ρ (5.5)

∆Vadv,i =
N∑
j=1

(
KgAt,ij(P

n−1
i − P n−1

j )/Lt,ijµ
)
∆t (5.6)

∆Vdif,i =
N∑
j=1

(
KfAt,ij(S

n−1
i − Sn−1

j )/Lt,ij

)
∆t (5.7)

∆Vcmp,i = Vp,i(P
n
i − P n−1

i )/P n−1
i (5.8)

where, in Eq. 5.5, Sp,i is the internal surface area of the node, Mg is the mass surface

density of the adsorbed gas (kg/m2), C is a linearization coefficient dependant of Langmuir

adsorption coefficient and the range of pressure variation [217], µ is gas viscosity, and ρ is the

free gas density. In Eq. 5.6, At,ij is the interface area between the node i and the adjacent

node j, Lt,ij is the length between the centers of node i and j, N is the number of the

connected nodes to the central node of i, and ∆t is the time step of simulation. In Eq. 5.7,

Kf is the Fickian coefficient of diffusion for a system of two gases, and Si is the volumetric

proportion of CH4 to the total volume of the free gas present in the node i. Finally, in Eq.

5.8, Vp,i is the pore volume of the node that we are writing the material balance for it. By

replacing Eq. 5.5 and Eq. 5.8 in Eq. 5.4, we can write the pressure of the time step n

explicitly as a function of pressure and the saturation of the previous time step (n − 1) as

follows:

P n
i = P n−1

i − ∆Vadv,i +∆Vdif,i

Sp,iMgC/ρ+ Vp,i/P
n−1
i

(5.9)

This equation needs to be written for both of the gaseous components for which the

pressure is interpreted as partial pressure. Additionally, variables such as ρ, C, Mg, and Kp

need to be used for the specific components, accordingly. When writing Eq. 5.9 for both
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of the components, it is noteworthy that the summation of both gas saturations becomes 1.

Assigned values for some of the parameters and constants used in this study are presented

in Table 5.1.

In order to solve Eq. 5.9 in a dynamic manner, we start from the initial condition of

the system and calculate the partial pressures of the second time step. Then saturations of

the system will be updated based on the ratio of the partial pressures to the total pressure.

In order to select an appropriate time step for simulation, we start with a relatively large

time step e.g., 0.01 s, and then check for possible non–physical values such as saturations

larger than 1 and pressures outside of the simulation range. In case of observing these

abnormalities which are violations of the mass balance in the system, we split the time step

to half and recalculate the same time step again. When the time step becomes small enough,

the simulation continues. Most of the converging time steps in our simulations were around

10−8s. Additionally, it is expected to reach an equilibrium in the system after few millions

of time steps. Considering the high computational burden of the dynamic simulations and

many time steps required to achieve an equilibrium, steady state simulation can be valuable,

too. Steady state simulation is capable of estimating ultimate CO2 storage capacity at the

equilibrium. In other words, a steady state simulation may show a high storage capacity

whereas, in practice, due to low permeability of the sample, injection of CO2 will become so

slow that the operation is impractical. Thus, in addition to the CO2 storage capacity, gas

permeability of the samples should be taken into the account as a measure of the adsorption

rate in case we want to use steady state simulations instead of dynamic. In this regards we

define a storage quality (Qs) factor which is equivalent to the multiplication of the storage

capacity Cs and total gas permeability (Kt):

Qs = KtCs (5.10)

Storage capacity (Cs) represents the standard volume of the gas content (m3) divided by the

mass of the shale sample (tonne), and Kt is total gas permeability (Darcy).

In order to solve the problem in the steady state condition, we need to assume that

the adsorption and compression volumes are constant at the equilibrium condition and by

assuming the full saturation of CH4 at that point, pressure distribution of the pore network

is obtainable by solving the following volume balance equation for all of the nodes at the

same time in a system of equations:

∆Vadv,i +∆Vdif,i = 0 (5.11)
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Figure 5.3: Proposed pore network structure for simulation of gas transport within organic-

rich shale deposits, including two types of micro porosities (clay and kerogen), meso–pores

and fractures entangled with solid minerals such as pyrite, calcite, and silicate.

Parameter Value

Kerogen density (g/cm3) 1.21 [342]

Clay density (g/cm3) 1.75 [343]

Silicate density (g/cm3) 2.650 [344]

Calcite density (g/cm3) 2.710 [345]

Pyrite density (g/cm3) 5.020 [342]

Mass surface density of the adsorbed CH4 on kerogen (kg/m2) 2× 10−7 [217]

Mass surface density of the adsorbed CH4 on clay (kg/m2) 1× 10−7 [346]

Mass surface density of the adsorbed CO2 on kerogen (kg/m2) 5.5× 10−7

Mass surface density of the adsorbed CO2 on clay (kg/m2) 2.75× 10−7

Fickian diffusion coefficient of CO2–CH4 (m2/s) 1.5× 10−8

Langmuir linearization coefficient 5.18× 10−10 [217]

Temperature (K) 500

Input pressure (Pa) (7× 106) + 104

Outlet pressure (Pa) 7× 106

Spatial resolution (µm/voxel) 0.05

Table 5.1: Parameters and constants used in the pore network modeling of the present study

and their values.
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5.3.3 Machine learning

In order to achieve a higher level of computational efficiency, machine learning can also

be used to estimate the steady state results. Although, steady state simulations are fast,

they still require traditional image analysis, pore network extraction and solving systems

of equations. A sufficiently complex machine learning model can be trained to emulate the

whole computational workflow of steady state simulations and estimate the storage capacity

and total permeability of the shale samples, by just taking at the images and preliminary

physical properties as inputs.

For this purpose we have built a dataset of 4978 stochastic shale 3–D images with the

size of 256×256×32 voxels and steady state simulation of the ultimate gas storage capacity

is performed for each of them. In addition to the mineralogy maps, we have assumed a

porosity map for the microporous regions of the images by applying a Gaussian smoothing

on a random map of uniformly distributed numbers between 0.01 to 0.1. Considering the

importance of the microporosities for adsorption capacity, we have stacked the middle 2–D

slice of the porosity map into the middle slice of the mineralogy map to both be used as

the inputs of the deep learning model (Figure 5.4). Then, four levels of convolutions are

performed on the input vector with the filter numbers of 6, 12, 18 and 24, respectively. Also,

size of the filters are 82, 42, 22, and 22, respectively, and with same–size padding and He

Normal [347] kernel initialization. Every convolution is followed by a 2 × 2 max pooling

filter with unit stride and 10% dropout to help avoiding the over–fitting problem. After the

4th dropout, the data vector is flattened into a dense layer of 6144 elements and activated

with Rectified Linear Unit (ReLU) [348]. The second dense layer consists of 20 nodes and

it is activated using sigmoid function to address the non–linearities. The output layer of

the model includes two normalized numbers representing ultimate gas storage capacity and

permeability of the shale sample. Suggested optimizer for training the network is RMSprop

[310] with learning rate of 10−4 and mean squared error as the loss function.
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Figure 5.4: Proposed deep learning model structure for estimating the ultimate gas storage

capacity, permeability based on the mineralogy, and porosity maps of shale samples.

5.4 Results and Discussions

In this section we present results of the dynamic and steady state simulations of CO2 ad-

sorption into fully saturated shale samples with CH4. Then using the results, some of the

structural properties of shale will be examined to evaluate their effects on the storage quality

of the samples. Finally, the results of the machine learning approach will be presented and

the accuracy of the presented methodology is discussed.

5.4.1 Pore network modeling

During the dynamic simulation of the adsorption, gradually CO2 molecules occupy the sur-

face sites and release the previously adsorbed CH4 molecules. Figure 5.5–a and b illustrates

the changes in the gas content of shale sample during the mentioned process. In the simu-

lated sample, kerogen can contain more than 6 times gas compared to the void space which

indicates the suitability of the organic–rich shales for carbon sequestration. As it can be
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seen, the dynamic amount of gas contents in Figure 5.5–a is converging to the steady state

value although a small gap is visible for some of the mineralogies. Considering the fact that

in our case the steady state modeling runs around 103 to 104 times faster than the dynamic

simulation, it is valuable to compensate the gap error. For this purpose, we have simulated

50 shale samples with both approaches and plotted the obtained ultimate adsorptions vs.

each other in Figure 5.5–d. The mean relative error of the data points from the unit slope

line is 12.5% while by fitting a straight line on the data points the amount of error between

the dynamic and steady state results reduces to 2.3% which is promising considering the

huge difference made in the computational expense.

However, dynamic simulation is still important for the cases we want to have a closer look

on the mechanisms of gas transport and adsorption. As an example, Figure 5.6 presents the

simulated pore network structure and properties for the same simulation plotted in Figure

5.5–a and b. In this figure, gas pressure distribution, CO2 mass content, and CH4 saturation

are shown in four snapshots of the process at times of 0 µs, 20 µs, 40 µs, and 50 ms which

indicates the equilibrium time. Pressure development occurs mainly after passing only few

microseconds of the process due to the high permeability of the fractures, while CO2 mass

content and CH4 saturation needs to pass 50 milliseconds to reach their final state. This

observation is justifiable considering the diffusion dominant nature of the flow transport in

micropores. By comparing the regions in the network with the high CO2 content in Figure

5.6–b–4 and mineralogy map in Figure 5.7–a, it is visible that that kerogen is the main storage

site of the gas. Considering the relatively high sub–resolution porosity of the kerogen in the

studied sample (Figure 5.7–b) and average pore sizes of few nanometers (Figure 5.5-c), a high

surface area and consequently high adsorption are expected. As discussed, the ultimate gas

adsorption capacity can be obtained from both dynamic and steady state approaches, which

their pressure distributions are visualized in Figures 5.7–c, and d to show the similarities

between results of the two methods.
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Figure 5.5: Sample results of the dynamic and steady state adsorption in terms of gas content,

(a) changes in CH4 gas content, (b) changes in CO2 gas content, (c) pore size distribution of

clay and kerogen zones of the sample adopted from [349], and (d) comparison of the ultimate

adsorption capacity using dynamic and steady state simulations.
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Figure 5.6: (a) Visualization of the gas pressure distribution, (b) CO2 mass content, and (c)

CH4 saturation for four snapshots of the process at times of 0 µs, 20 µs, 40 µs, and 50 ms.
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Figure 5.7: (a) Minerals map, (b) micro–porosity map, and comparison of the pressure

distribution of dynamic simulation (d) at the equilibrium and pressure distribution of the

steady state simulation (c).

5.4.2 Shale micro–structural effects on storage

In this section, using the randomly generated dataset of 4978 shale samples, we investigate

the interrelations between micro-structural properties of shale and its storage quality. Figure

5.8 illustrates the sensitivity analysis of some parameters like fracture density, fracture aper-

ture, average meso pore and throat sizes, and the fraction of the sample volume occupied

by meso pores as well as kerogen. Increasing the fracture density can improve the storage

quality up to 6 times, although the storage quality may eventually reach its upper limit due
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to the fact that a high fracture density causes a reduction in the kerogen portion of the

sample. On the other hand, a higher value of fracture aperture improves the absolute per-

meability quadratically which compensates the absence of kerogen that linearly controls the

adsorption capacity (Eq. 5.10). In other words, the growth rate of permeability is greater

than the shrinkage rate of the storage capacity, that eventually leads to a higher storage

quality as defined in Eq. 5.10. Average size of the meso pores and throats are also presented

in Figure 5.8–c. As expected, the correlation coefficient of storage quality with meso throats

is greater than the meso pores. According to the definition, a throat is the geometrical

bottleneck between two connected pores [108], and it is reasonable that the permeability of

a channel will be more controlled by its narrowest opening. Finally, based on Figure 5.8–d it

can be stated that increasing the volume fraction of samples occupied by kerogen does not

necessarily improve the storage quality since abundance of storage sites without giving the

proper access for gas transport such as fractures is not effective.
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Figure 5.8: Effects of the shale micro–structural features on the storage quality (Eq. 5.10),

(a) fracture density with upper and lower quartile bars, (b) fracture aperture with upper and

lower quartile bars, (c) average radius of meso–pores and throats, and (d) volume fraction

of kerogen and meso–pores.

5.4.3 Deep learning acceleration

We have substituted the dynamic simulation with steady state calculations to speed up the

quality measurement of shale samples for carbon storage. To push the computational limits

even further, we have used deep machine learning to emulate the steady state calculations and

predict the storage quality in a fraction of a second. For this purpose a deep convolutional

neural network model is trained on 3982 shale images with the size of 256×256×32 voxels with

spatial resolution of 50 nm per voxel. Additionally, two sets of data each with 498 samples
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have been used for validation and testing purposes. Figure 5.9 illustrates the distribution

of the data points in each of the mentioned subsets for two variables of gas adsorption and

permeability. In addition, storage quality lines in the figure, segment the data points into

different zones based on their suitability for CO2 storage.

In order to ensure the fitness of the developed deep learning model, we have considered

two other alternative models with slight structural changes and then we have recorded the

training performance of all three cases. Figure 5.10–a presents the training and validation

loss of three deep learning models in terms of mean squared error for 100 epochs. As a rule of

thumb, divergence of the training and validation loss is a sign of over–fitting and means that

the model is performing very well on the training data while very poorly on the validation

set [350]. Consequently, model #2 has shown the best performance considering the gradual

decrease of both the training and validation curves up to the epoch 100. The detailed

structure of this model has been discussed in Section 5.3.3 as the approved method for ML

predictions of the presented paper. Model #1 is structurally similar to model #2 with the

difference of having 5 convolutional layers and fixed filter size of 33 voxels in all the layers.

Loss values of this model starts to diverge from an early point in epoch 15. Model #3 is also

mainly similar to model #2, but the number of the filters used remains constant at 6 for

all the convolutional layers. This model is a good example of over–fitting with very low loss

values on the training dataset and large errors on the validation set. To conclude, increasing

the number of filters and decreasing the filter size across the convolutional layers seems to be

crucial to obtain a good training performance as we can see for model #2. Finally, we have

plotted ML predicted vs. numerically calculated values of gas adsorption and permeability

for different subsets of data in Figure 5.10–b and c. Coefficients of determination (R2) for all

the cases are above 0.93 for prediction of the storage qualities. Similarity of the r–squared

values for each of the training, validation and test data implies that over–fitting has not

occurred in the training process.
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Figure 5.9: Distribution of the ultimate gas adsorption capacity and permeability of the

samples in the dataset for each of the training, validation and testing subsets.
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Figure 5.10: Comparing the training and validation loss of three proposed deep learning

models in terms of mean squared error (a), comparing CO2 adsorption values predicted by

machine learning and numerical method (b), comparing gas permeability values predicted

by machine learning and numerical method.
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5.5 Conclusions

In this study, we have developed an image–based numerical tool for simulation of CO2

storage in CH4 saturated shale samples that contain fractures. In such systems, CO2 can

easily transport through the fracture network and access the locations with high surface area

such as the kerogen–rich zones. Then, due to a higher adsorption tendency compared to the

residing gas, CO2 will occupy the surface sites and starts to accumulate in the sample. In

order to accelerate the numerical simulation process, we have utilized deep learning to expand

the computational limits. The developed ML model has shown an acceptable performance

with less than 7% of error in prediction of gas adsorption and permeability.

In this study, to simplify the selection criteria of a suitable shale sample for carbon

storage, we have defined a term as “Storage Quality” that implies the amount and rate of

gas adsorption by different shale samples. This criterion, coupled with the developed ML

model, can be utilized to help ranking different geological sites based on pore–scale images of

their common shale structures. Additionally, the following conclusions can be drawn based

on the findings of this study in a summarized manner:

� Numerical simulation of the dynamic gas adsorption through fractured shale samples

has shown that pressure profiles converge to their equilibrium state considerably faster

than the gas saturations. This is mainly due to the diffusion dominant nature of the

gas transport in microporosities.

� Steady state simulation of gas adsorption is able to estimate the dynamic gas content

at the equilibrium condition with 2.3% error on 50 studied samples. Thus, it can be

alternatively used especially knowing the fact that its computational expense is 3 to 4

orders of magnitude lower than the dynamic numerical simulation. However, dynamic

modeling will still be irreplaceable for the cases in which the system’s properties change

significantly during the simulation.

� A deep convolutional neural network model is developed to predict the steady state

simulation results and accelerate the calculations even further. Ultimate gas adsorption

capacity and permeability of the shale samples have been predicted based on their

mineralogy and microporosity maps with r–squared of 0.95 and 0.93, respectively.
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Summary
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In this thesis, which has been an amalgamate of four published research papers, a range

of fluid flow models in porous material are developed with an approach to machine learning.

In the first chapter, a brief introduction to porous material concepts and common machine

learning methods is presented. In the second chapter, a hybrid model of Lattice Boltzmann

method and pore network modeling is developed to make an surrogate but accurate perme-

ability model which utilizes the realistic geometry of pore–throats instead of a cylindrical

simplification. We have used the developed model to make a unified fluid flow equation

in chapter 3 which is able to predict the permeability of pore-throats and micro–fractures

at the same time. Thus by introducing micro–porosity into such flow model, a triple pore

network model is developed which can be used to model heterogeneous porous materials

such as tight carbonate rocks and organic–rich shale deposits. In chapter 4, we have used

pore scale images for data–driven characterization of the porous material to bypass the need

for heavy numerical simulations. The developed model was able to predict some flow based

characteristics with a good agreement not only with numerical simulations but also exper-

imental data such as absolute permeability. Finally in the last chapter, we have used the

methods developed in the previous chapters to evaluate the suitability of the organic rich

shale deposits for subsurface storage of CO2 based on the pore–scale images. Here, we have

summarized the the conclusion sections of each chapter to provide a more comprehensive

view on research outcomes:

� In chapter 2, two ANN’s and one empirical formula were presented capable of estimat-

ing the throat’s LBM-based permeabilities with coefficient of determination (R2) higher

than 0.99. Additionally, the “mean distance” was found to be an image-based feature

highly correlated with LBM throat permeabilities. In this chapter, throat permeabili-

ties obtained were substituted within the classical pore networks of 12 rock samples and

overall network permeabilities were calculated successfully. We compared the PNM-

LBM absolute permeabilities with pure LBM-based permeabilities of the samples and

found that the proposed model was capable of predicting the overall permeability of

the rock samples with coefficient of determination around 0.997 while minimizing the

computational cost by two orders of magnitude compared to the full LBM solution.

� In chapter 3, triple pore network models are introduced and constructed based on the

semi–real tomography images in order to simulate gas and liquid permeabilities. In

this regards, a unified approach is invented to simulate fluid flow within a network

with both meso–pores and fractures using the distance map of the channels. In this
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chapter, a hypothetical micro–network structure is presented for taking into the ac-

count the hydrodynamical effects of micro–porosities in liquid and gas flow through

porous samples with dual scales of porosity. In addition, effects of micro–porosities

on gas permeability are investigated and operational conditions in which ignoring the

presence of micro–porosities make a significant error are discussed.

� In chapter 4, a physically diverse dataset of micro–porous structures are generated

based on texture transformation and porosity manipulation of 60 original tomography

images and a wide range of morphological, hydraulic, electrical and mechanical features

are extracted for each sample. The dataset is publicly available and can be used for

future studies. In addition, a dimensionless approach has been presented to extract or

predict the porous material features without being affected by the spatial resolution of

the images. The average coefficient of determination (R2) for all 30 extracted features

is 0.885 which is significant considering the diverse range of porous morphologies and

features. In this chapter, to provide an independent model verification, three images

outside of the datasets are generated with textures almost unseen in the augmented

dataset. The model predictions were almost as good as the testing dataset used to

check the model performance in terms of r–squared. This observation indicates that the

dataset is diversified enough to avoid false accuracy due to the similarity of the training

and test results. Also, considering the novel texture of the verification samples, one

can conclude that the model is implicitly learning the physics of the estimated features

rather than blindly memorizing the textures. Additionally, in this chapter, in order

to provide experimental verification for the proposed method, absolute permeabilities

of 3 realistic porous samples have been compared with the measured values in the

laboratory and DeePore predictions had around 13% relative error with is noticeable

comparing to the accuracy of the direct numerical simulation methods such as PFVS

and LBM.

� Finally, in chapter 5, numerical simulation of the dynamic gas adsorption through

fractured shale samples has shown that pressure profiles converge to their equilibrium

state considerably faster than the gas saturations. This is mainly due to the diffusion

dominant nature of the gas transport in micro–porosities. We have shown that, steady

state simulation of gas adsorption is able to estimate the dynamic gas content at the

equilibrium condition with 2.3% error on 50 studied samples. As a result, it can

be alternatively used especially knowing the fact that its computational expense is 3

to 4 orders of magnitude lower than the dynamic numerical simulation. In order to
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push computational limits even further, a deep convolutional neural network model

is developed to predict the steady state simulation results. Using the developed deep

learning model, ultimate gas adsorption capacity and permeability of the shale samples

have been predicted based on their mineralogy and microporosity maps with r–squared

of 0.95 and 0.93, respectively.
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Appendix A: Fracture realization

In each sample we have created 12 fractures which half of them are deviated by 30 degrees

and the rest by 60 degrees from y axis and the angle is measured in the xy plane. These

angles only indicate the general trend of the fractures, and fracture local curvature changes

due to porous media texture. These fractures are generated via a random walk approach

which is inspired by the idea used in Mhiri et al. [183]. In this approach, we consider some

arbitrary walkers that can move to their neighbouring cells/pixel in each time step in a

random manner. In 2D, each walker, has 8 neighbouring pixel to travel. In order to control

the general trend of the pathway, a bias weight is put on the pixels which are aligned to the

desired fracture direction. So, the walkers wobble randomly but in a larger picture they are

gradually moving towards the biased direction. Then we run this process for several times

and calculate a cost function for each trial. If a walker path cuts hard grains/solid sections of

the porous media in which the CT number is higher, the path cost would increase. Finally,

in a random search approach, we select the least expensive path to establish a fracture in

that area.

Fig. 5.11 illustrates the cost minimization process which is used to generate a horizontal

fracture in the Estaillades sample. As can be seen, at the initial generations of the random

search, fracture path has a high cost due to hitting many high density zones in the image

(Fig. 5.11a). Quickly, the algorithm finds pathways with a lower cost and start to bypass

some expensive zones (Fig. 5.11b). And finally, after 1000 generations, a plausible trend for

an artificial fracture is obtained in which the sample is cut at the points with the lowest cost

while maintaining the optimization limits such as the maximum number of steps (Fig. 5.11c).

It is noteworthy that the cost function is defined as the averaged values of the voxels

within the fracture path. Also, the voxel cost of the whole map is normalized to be between

0 and 1 (Fig. 5.11d). A simple version of this fracture approximation code is published in

the public domain 2.

2https://github.com/ArashRabbani/PaperCodes
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Figure 5.11: Cost minimization process used to generate realizations of fractures within

porous material, (a) fracture path at the beginning of optimization with high cost and

several solid hits, (b) fracture path at the middle of the optimization with partially passed

solids, (c) final fracture path that bypasses most of the solid regions, and (d) best function

cost during the optimization process to find the least expensive fracture pathway.

Appendix B: Lattice–Boltzmann simulation

We used LBM to numerically calculate absolute permeability of pores and fractures, and

compared it with ITPM results. In order to simulate a steady–state, single–phase, and fully–

developed flow in a channel–like link in the network (pore–throat or fracture), we assume

it has arbitrary cross–section and a uniform shape along its length. A 2D cross–section of

the fluid conductor is taken 6 times and they are stacked upon each other to create the

simulation geometry. Image voxels will be simulation grids so if the conductor image is 50

149



by 50 voxels, the simulation grid is 50 by 50 by 6 grids. The scheme of LBM is D3Q19 which

means there will be 18 possible directions for fluid flow within each block. The code that has

been modified and used to calculate LBM permeability is originally published by Haslam et

al. [112]. In this simulation, fluid is assumed to be Newtonian with BGK collision model

[103]. Additionally, bounce–back is only in the direction normal to the geometry boundary.

The same as the regular formulation of LBM, we have assumed that the particle distribution

function fi evolves in the directions of the distribution vectors ei at each time step (t+∆t)

and location (x) as [112]:

fi(x+ ei +∆t)− fi(x, t) = −1/τ(fi(x, t)− fi
eq(x, t)) (B1)

where fi
eq is a truncated Maxwell–Boltzmann equilibrium distribution and it can be

written as a function of local velocity (v) in 18 directions and τ is equilibrium state time.

Also i is the distribution function index for different neighbouring cells. Simulation starts

by imposing a fixed flow velocity at the inlet of geometry (first layer) and periodic boundary

condition is considered in the direction of flow. We have defined the convergence criteria when

calculated permeability value is stabilized and its relative error compared to the previous

time step is less than 10−6. More details on LBM permeability calculation is provided in

[198].

Appendix C: Gas flow simulation

In this Appendix, we describe the method for gas flow simulation within the modelled T–

PNMs. The reason for selecting gas flow to be simulated is that gas flow mechanisms change

significantly in different size scales of the pores and channels. In micro–porosities more

molecular and diffusive mechanisms such as Knudsen and slip flow are active while in the

meso–porosities and fractures, viscous flow regime is dominant [146, 328]. Absolute per-

meability of the network links is commonly addressed as the liquid permeability. However,

gas permeability is partially different than Newtonian liquids due to the molecular interac-

tions with solid walls [351]. In this paper, we calculate the absolute permeability of gas in

different temperature–pressure conditions for the whole pore network with a steady–state

approach. Due to the assumed small pressure changes from inlet to the outlet of the PNM,

gas properties such as viscosity and density are taken constant. Based on Javadpour et al.

[146, 148] formulation for gas flow in nano to micro size channels, and by assuming three

flow mechanisms of Knudsen, slippage and viscous, the gas permeability of a channel can be
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calculated as [146, 148, 150]:

Kg = Kn(r) + F (r)Ka (C1)

Kn(r) =
2rµgM

3kbT ρ̄

√
8kbT

πM
(C2)

where M is molecular mass of the gas, kb is the gas Boltzmann constant, T is average

temperature, ρ̄ is the average density of the gas, µg is gas dynamic viscosity, r is tube equiv-

alent radius, F (r) is a correction factor to include slip flow in gas permeability as a function

of r, and Ka is the absolute or liquid permeability of the channel which is independent to the

fluid properties. Kn(r) describes the channel permeability increment due to the Knudsen

diffusion. This term is a function of gas properties and channel radius (r) and its presence

increases the apparent gas permeability of any type of network links including meso–throats,

micro–throats and fracture–links.

We have previously calculated the absolute permeability of meso–throats and fracture

links (Kp) in Eq. 5.1, so this value can be replaced in Eq. C1 as Ka. We cannot do the

same replacement for the gas permeability of micro–throats since they contain a range of

micro–tubes with different sizes and we need to calculate slippage (F (rm)) and Knudsen

terms (Kn(rm)) for each size of the tubes, and then integrate the calculated permeabilities

over different micro–tube radii (rm). Thus, the gas permeability of all different links within

the T–PNM can be calculated as:

Kg =

{
Kn(r) + F (r)Kp(D̄)R2

s meso-throat and fracture-link∫ (
f(rm)Kn(rm) +

1
8
f(rm)F (rm)αϕmr

2
m

)
drm micro–throat

(C3)

where Rs is the spatial resolution of the image in µm/voxel. Additionally, gas slippage

term for all types of channels can be calculated as: [146, 148, 147]:

F (r) = 1 +
4cλ̄

r
(C4)

where r can be replaced by rm in the case of micro–throats, c is a collision proportionality

factor, and is commonly set equal to 1, and λ̄ is average mean free path of the gas and can

be calculated as [334]:

λ̄ =
µ

P̄

√
kbTπ

2M
(C5)
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where P̄ is gas average pressure. Eq. C4 and Eq. C5 can be used for all types of network

links including micro–tubes with the radius of rm and meso–throats or fracture–links with

the equivalent radius of r. By assuming that gas properties remain constant in a small

pressure range of the flow, we can write a steady–state gas flow balance for each pore based

on Darcy’s law [352, 217]:

n∑
i=1

KgiAi∆Pi

µgLi

= 0 (C6)

where Ai is the effective surface area of a network link in the direction of flow, ∆Pi is the

pressure difference between two sides of the link, Li is the length of the ith link, and n is the

total number of network links connected to the specified node and µg is gas viscosity obtained

by empirical correlation developed by Lee et al. [335] at the average temperature–pressure

condition:

µg = Z exp(XρY ) (C7)

Z =
(7.77 + 0.0063M)T 1.5

122.4 + 12.9M + T
(C8)

X = 2.57 + 1914.5/T + 0.0095M (C9)

Y = 1.11 + 0.04X (C10)

where X, Y and Z are correlation constants used to estimate the gas viscosity. By

writing Eq. C6 for each of the nodes in the network, a set of equations is given in which the

only unknown parameter is the node pressure (Pi). In order to solve this set of equations,

we apply a small pressure difference of 1 Pa between two opposite faces of the PNM as a

boundary condition. Other sides of the geometry are assumed as no–flow boundaries. Then,

using the biconjugate gradients method [353] coupled with a lower–upper (LU) factorization

[354], we solve the system of equations obtained in an iterative manner to find the pore

pressure at the centers of each node. Now, using Darcy’s law, we find the volumetric flow

rate of each network link as well as the overall flow rate. Finally, writing Darcy’s law for the

whole network, the equivalent gas permeability of the T–PNM is obtained.
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Appendix D: Original samples

Here we have listed the real tomography images of porous material used to generate the

dataset using the data augmentation method. The size and spatial resolutions mentioned

in this table are modified by resizing/cropping the original images to fit the purpose of this

study.

Num. Name Resolution Modified Type DOI

(µm/px) size (px3)

1 Berea #1 11.72 2563 Sandstone https://doi.org/10.1016/j.advwatres.2012.03.003

2 Berea #1 8.35 2563 Sandstone http://dx.doi.org/10.1103/PhysRevE.80.036307

3 Berea #2 3.25 2563 Sandstone https://doi.org/10.1016/j.advwatres.2012.03.003

4 Berea #3 3.25 2563 Sandstone https://doi.org/10.1016/j.advwatres.2012.03.003

5 Berea #4 3.25 2563 Sandstone https://doi.org/10.1016/j.advwatres.2012.03.003

6 Berea #5 4.33 2563 Sandstone https://doi.org/10.1016/j.advwatres.2012.03.003

7 Berea #6 4.33 2563 Sandstone https://doi.org/10.1016/j.advwatres.2012.03.003

8 Berea #7 4.33 2563 Sandstone https://doi.org/10.1016/j.advwatres.2012.03.003

9 C1 4.45 2563 Carbonate http://dx.doi.org/10.1103/PhysRevE.80.036307

10 C2 8.35 2563 Carbonate http://dx.doi.org/10.1103/PhysRevE.80.036307

11 Doddington #1 5.41 2563 Sandstone https://doi.org/10.1016/j.advwatres.2012.03.003

12 Doddington #2 5.41 2563 Sandstone https://doi.org/10.1016/j.advwatres.2012.03.004

13 Doddington #3 5.41 2563 Sandstone https://doi.org/10.1016/j.advwatres.2012.03.005

14 Doddington #4 5.41 2563 Sandstone https://doi.org/10.1016/j.advwatres.2012.03.006

15 Estaillades #1 10.72 2563 Carbonate https://doi.org/10.1016/j.physa.2009.12.006

16 Fontainebleau #1 17.17 2563 Sandstone https://doi.org/10.1016/j.physa.2009.12.006

17 Fontainebleau #2 17.17 2563 Sandstone https://doi.org/10.1016/j.physa.2009.12.006

18 Fontainebleau #3 17.17 2563 Sandstone https://doi.org/10.1016/j.physa.2009.12.006

19 Fontainebleau #4 17.17 2563 Sandstone https://doi.org/10.1016/j.physa.2009.12.006

20 Fontainebleau #5 17.17 2563 Sandstone https://doi.org/10.1016/j.physa.2009.12.006

21 Fontainebleau #6 17.17 2563 Sandstone https://doi.org/10.1016/j.physa.2009.12.006

22 Ketton 10.62 2563 Carbonate https://doi.org/10.1016/j.advwatres.2012.03.005

23 S1 10.18 2563 Sandstone http://dx.doi.org/10.1103/PhysRevE.80.036307

24 S2 5.81 2563 Sandstone http://dx.doi.org/10.1103/PhysRevE.80.036307

25 S3 10.66 2563 Sandstone http://dx.doi.org/10.1103/PhysRevE.80.036307

26 S4 10.50 2563 Sandstone http://dx.doi.org/10.1103/PhysRevE.80.036307

27 S5 4.68 2563 Sandstone http://dx.doi.org/10.1103/PhysRevE.80.036307

28 S6 5.98 2563 Sandstone http://dx.doi.org/10.1103/PhysRevE.80.036307

29 S7 5.63 2563 Sandstone http://dx.doi.org/10.1103/PhysRevE.80.036307

30 S8 5.73 2563 Sandstone http://dx.doi.org/10.1103/PhysRevE.80.036307

31 S9 3.98 2563 Sandstone http://dx.doi.org/10.1103/PhysRevE.80.036307

32 F42A 11.72 2563 Sandpack http://dx.doi.org/10.1103/PhysRevE.80.036307

33 F42B 11.72 2563 Sandpack http://dx.doi.org/10.1103/PhysRevE.80.036307

34 F42C 11.72 2563 Sandpack http://dx.doi.org/10.1103/PhysRevE.80.036307

35 LV60A 11.72 2563 Sandpack http://dx.doi.org/10.1103/PhysRevE.80.036307

36 LV60B 11.68 2563 Sandpack http://dx.doi.org/10.1103/PhysRevE.80.036307

37 LV60C 11.72 2563 Sandpack http://dx.doi.org/10.1103/PhysRevE.80.036307

38 A1 4.51 2563 Sandpack http://dx.doi.org/10.1103/PhysRevE.80.036307

39 Benthemier #2 4.97 2563 Sandstone https://doi.org/10.1016/j.advwatres.2012.03.005

40 Benthemier #3 4.97 2563 Sandstone https://doi.org/10.1016/j.advwatres.2012.03.005

41 Benthemier #4 4.97 2563 Sandstone https://doi.org/10.1016/j.advwatres.2012.03.005
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42 Benthemier #5 4.97 2563 Sandstone https://doi.org/10.1016/j.advwatres.2012.03.005

43 Benthemier #6 4.97 2563 Sandstone https://doi.org/10.1016/j.advwatres.2012.03.005

44 Benthemier #7 4.97 2563 Sandstone https://doi.org/10.1016/j.advwatres.2012.03.005

45 Berea #8 7.11 2563 Sandstone https://doi.org/10.1016/j.advwatres.2015.07.012

46 Clashach 10.15 2563 Sandstone https://doi.org/10.1016/j.advwatres.2015.07.012

47 Doddington #5 9.50 2563 Sandstone https://doi.org/10.1016/j.advwatres.2015.07.012

48 Estaillades #2 10.16 2563 Carbonate https://doi.org/10.1016/j.advwatres.2015.07.012

49 Indiana 10.15 2563 Carbonate https://doi.org/10.1016/j.advwatres.2015.07.012

50 Ketton #2 10.15 2563 Carbonate https://doi.org/10.1016/j.advwatres.2015.07.012

51 Monte Gamb. #1 4.94 2563 Carbonate https://doi.org/10.1016/j.advwatres.2012.03.004

52 Monte Gamb. #2 4.94 2563 Carbonate https://doi.org/10.1016/j.advwatres.2012.03.004

53 Monte Gamb. #3 4.94 2563 Carbonate https://doi.org/10.1016/j.advwatres.2012.03.004

54 Monte Gamb. #4 4.94 2563 Carbonate https://doi.org/10.1016/j.advwatres.2012.03.004

55 Monte Gamb. #5 4.94 2563 Carbonate https://doi.org/10.1016/j.advwatres.2012.03.004

56 Monte Gamb. #6 4.94 2563 Carbonate https://doi.org/10.1016/j.advwatres.2012.03.004

57 Monte Gamb. #7 4.94 2563 Carbonate https://doi.org/10.1016/j.advwatres.2012.03.004

58 Monte Gamb. #8 4.94 2563 Carbonate https://doi.org/10.1016/j.advwatres.2012.03.004

59 Hollington #1 2.17 2563 Sandstone https://doi.org/10.1007/s11242-019-01244-8

60 Hollington #2 2.17 2563 Sandstone https://doi.org/10.1007/s11242-019-01244-8

Table 5.2: Sources of the original tomography data and some specifications

including original names, size and spatial resolutions.

Appendix E: Statistical test

Feature Training–validation (K–S distance) Training–test (K–S distance)

Absolute Perm. 0.025 0.118

Formation Factor 0.013 0.019

Cementation Factor 0.017 0.021

Pore Density 0.013 0.025

Tortuosity 0.018 0.018

Avg. Connectivity 0.022 0.017

Avg. Throat Rad. 0.016 0.014

Avg. Pore Rad. 0.015 0.023

Avg. Throat Length 0.017 0.021

Avg. Pore Inscribed Rad. 0.012 0.023

Specific Surface 0.024 0.020

Avg. Throat Inscribed Rad. 0.014 0.016

Grain Sphericity 0.012 0.020

Avg. Grain Rad. 0.014 0.009

Rel. Young Module 0.013 0.018

Table 5.3: Results of two–sample Kolmogorov–Smirnov (K–S) test to check the similar-

ity/dissimilarity of the training–validation and training–test data, K–S distances close to 1

indicate dissimilarity of the distributions.

154



Appendix F: Author Contribution Statement
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Appendix G: Nomenclature and terminologies

In this appendix, a list of different variables or parameters used in different chapters of the

thesis are provided.

Chapter 2

Variable Definition

fi Particle distribution function

ei Particle distribution vectors

∆t Time step

x Grid location

fi
eq Tuncated Maxwell–Boltzmann equilibrium distribution

v local velocity

τ equilibrium state time

r Number of particle density distribution vectors

rt Tube radius

k Absolute fluid permeability

p Pressure

Ū Averaged velocity vector in the direction of pressure drop

ω Relaxation frequency used in the LBM simulation

kthroat Pore throat absolute permeability

D̄ mean distance of the throat image

A Throat cross area

P Wetted perimeter of throat
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Chapter 3

Variable Definition

Kp absolute permeability of the porous space links such as a

meso–throat with pixel2 unit

D̄ Mean distance of the channel cross-sectional image

rm Radius of the micro–tubes residing within a micro–throat

r Channel equivalent radius

ϕm Total micro–porosity of the solid element

ϕs Volume fraction of geometry occupied by the partially solid

elements

ϕf Volume fraction of the geometry occupied by the fracture

α Porosity correction factor

Kg Gas permeability of a network link

f(rm) Function that gives back the probability of micro–tubes

with the radius equal to rm

Ks Absolute permeability of a solid element with micro–

porosity

Ka Absolute permeability of the network link

Kn Knudsen permeability

Ke Total equivalent analytical permeability of the geometry

Kf the absolute permeability of the fracture

Fr Gas slippage correction factor

Kp Overall permeability of the meso–PNM

λ̄ Mean free path of gas

Ai The effective surface area of a network link in the direction

of flow

Li The length of a network link and its equal to the distance

between two connected nodes

M Molecular mass of gas

ρ̄ Average gas density

T Average temperature

µg Gas viscosity

kb gas Boltzmann constant

Additionally, considering the differences between the definition of technical terms in literature

and in order to clarify the vocabulary used/defined in chapter 3, the following terminology

list is provided:
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Term Definition

Pore Short way to imply pore–body

Throat Short way to imply pore–throat

Micro–pore A hypothetical volume–less joint that con-

nects the micro–throats, unresolved in the to-

mography images

Micro–throat A bundle of micro–tubes that connects micro–

pores to other elements in the network

Micro–tubes Capillary tubes with sub–resolution radii that

form a micro–throat

Meso–pore Adequately–resolved pore–body based on the

images from tomography

Meso–throat The interface between two meso–pore–bodies

that is the tightest pathway between them

Fracture–node A similar element to meso–pores but with an

elongated structure

Fracture–link The interface between two fracture–node that

is the tightest pathway between them

Throat length The Euclidean distance between the center of

masses of two connecting pore–bodies

Throat area Cross-sectional area of a throat image which

is projected on a 2D surface perpendicular to

the throat axis

Throat axis The straight line that connects the center of

masses of two adjacent pore–bodies

Micro–porosity Existence of a micro–pore and micro–throat

system in a partially solid element within a

tomography image of porous material

Solid element A partially solid part of the image that hosts

micro–porosities

158



Chapter 4

Variable Definition

S Side size of the image which is 256 voxels in this chapter

⌊x⌋ Floor operator that rounds down the decimal points to the

closest smaller integer

fd Euclidean distance transform

A array of a 2–D plane cut through the 3–D volume perpen-

dicular to one of the major axes

v⃗ Fluid velocity vector

q Source and sink terms in PFVS

P Pressure

w voxel a local conductivity

Nx the number of voxels in the main flow direction

Ny the number of voxels in y direction which is perpendicular

to the flow direction

Nz the number of voxels in z direction which is perpendicular

to the flow direction

Q Flow rate (m3/s)

µ Fluid viscosity (Pa.s)

∆P Pressure difference across the image (Pa)

α Shape factor

R Spatial resolution of image in PFVS

dmax Largest inscribed radius in pixels

d Radial distance from the inner wall in pixel

ρ Fluid density (kg/m3)

ξq Vector velocity space in LBM

fq Velocity distribution in LBM

ξq velocity space vector in LBM

δt Timestep

J Collision operation in LBM

159



Chapter 5

Variable Definition

Kp Absolute permeability of the network links

D̄ Average distance value with the unit of pixel

Kg Gas permeability

r Equivalent radius of meso–throats and fracture links cross-

section

Rs Spatial resolution of the simulated image in m/voxel

ϕm microporosity of the clay and kerogen nodes

rm Radius of the micro–tubes

f(rm) Size distribution function of micro–tubes

α porosity correction factor for partially porous elements

P̄ Gas average pressure

Z Real gas compressibility

µ Gas viscosity

∆Vads,i Free gas volume change in node i due to adsorp-

tion/desorption

∆Vadv,i Free gas volume change due to advection

∆Vdif,i Gas volume change due to the Fickian diffusion

∆Vcmp,i Free gas volume change due to the compression

Pi Pressure at each node

Si Methane gas saturation

Sp,i Internal surface area of the node

Mg Mass surface density of the adsorbed gas (kg/m2)

C Linearization coefficient dependant of Langmuir adsorption

coefficient and the range of pressure variation [217]

µ Gas viscosity

ρ Free gas density

Cs Gas storage capacity (m3/tonne)

Kt Total gas permeability (Darcy)

Qs Gas storage quality
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