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Quantum effects in two-dimensional nanostructures

Two-dimensional van der Waals semiconductors have emerged as one of the
most promising class of materials in the field of nanoelectronics. Among them,
InSe has excelled in providing all the requirements needed for technological ap-
plications, demonstrating superior flexibility[1, 2, 3], ambient stability[4] and
exceptional band gap tunability[5, 6, 7, 8]. In this thesis, we explore using k · p
and tight-binding calculations, a plethora of quantum effects observed in few-layer
InSe and we analyse transverse magnetic focusing data measured in twisted bi-
layer graphene.

We studied the intersubband energy dependence on the number of layers and
the applied electric field in the lowest conduction subband of multilayer InSe. From
the subband energies, we extracted the intersubband optical absorption properties
of n-doped InSe. Using a quantum well model, the intersubband energies in the
conduction band were found to range in the infrared and far-infrared part of
the optical spectrum. The dependence on the electric field was self-consistently
calculated for the different number of layers and an analytical expression for the
intersubband optical absorption coefficient was derived using the Fermi golden
rule.

Using the self-consistent algorithm previously developed to study the inter-
subband energy dependence on the applied electric field, the spin-orbit coupling
(SOC) strength in the bottommost conduction subband was calculated at different
applied displacement fields. The calculations performed were complemented with
density functional theory (DFT) studies of ferroelectric charge transfer[9] in InSe
which indicated a very weak ferroelectric contribution to the overall SOC strength.
Finally, our calculated SOC strengths were compared with those extracted from
weak antilocalization measurements in a dual-gated device. We found a very good
agreement between our theoretical predictions and the experimental data.
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ABSTRACT 7

We used the quantum harmonic oscillator basis to calculate the excitonic dis-
persion in InSe films ranging from the monolayer to the bulk limit. Both the
excitonic dispersion and the binding energies in different film thicknesses were
calculated taking into account the sombrero dispersion in the valence band. The
effect of such band flatness was to generate a minimum in the excitonic dispersion
at a finite centre of mass momentum which vanishes with an increasing number of
layers[10]. When the InSe film thickness surpasses the six-layer limit, a transition
from a dark to a bright exciton was predicted. The proposed procedure was
demonstrated to be effective to calculate the excitonic binding energies in any van
der Waals heterostructure[11, 12] using an extension of the proposed procedure.

Finally, we demonstrated how magnetic focusing can be used to probe the
band structure of any 2D material. This technique was used to investigate the
band structure profile of twisted bilayer graphene, where the application of an
externally applied electric field generates a visible minivalley splitting.
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Chapter 1

Introduction
The family of post-transition metal monochalcogenides (InSe and GaSe) has

recently been a primary focus of attention in the 2D materials scientific com-
munity[13, 14] due to their unique optical and transport properties[6]. These
materials are capable of not only transitioning from an indirect to direct band
gap[15, 16] in increasing the number of layers or in applying strain[17] but they
have also shown a large modulation in their spin-orbit coupling strength with
the applied electric field, the number of layers, and crystal stacking[18, 19]. In
addition to that, their superior flexibility[20, 21], ambient condition stability[4]
and tunable intersubband energy in the infrared (IR) and far-infrared (FIR) part
of the optical spectrum, makes them a very promising family of materials for
optoelectronic applications such as tunnelling devices, light-emitting diodes, or
quantum cascade lasers[22, 23, 24]. Finally, the very flat valence band in these
materials strongly enhances the electron-electron[25] and electron-phonon[26] in-
teraction, making p-doped InSe and GaSe very interesting platforms to study
strongly correlated physics[15].

In few-layer InSe, the intersubband energy splitting in the conduction band
is uniquely determined by the degree of confinement of the particle along the
sample growth direction. Consequently, one can model the formation of energy
subbands using a quantum well model and calculate the intersubband energies
from the quantised energy levels. The most straightforward mechanism to exter-
nally control the intersubband energies and the optical absorption peaks due to
such subbands is by applying a perpendicular electric field. An electric field would
not only enhance the oscillator strength between the different subbands but also
enlarge the number of electrons participating in the process of optical absorption.
Finally, the thermal broadening in the absorption peaks can be studied at different
applied electric fields.

The very large and layer-number-dependent SOC both in the conduction and

12



CHAPTER 1. INTRODUCTION 13

in the valence band of few-layer InSe makes this material a very interesting can-
didate for spintronic device applications with the possibility to control its SOC
with the number of layers, stacking and applied displacement field. Using the
previously discussed quantum well model, the intrinsic SOC strength due to the
lack of inversion symmetry in γ-stacked InSe can be analytically computed from
the discretised values of kz in this approximate framework. Furthermore, as the
applied displacement field can either enhance or counteract the overall z → −z
asymmetry of the electron’s wavefunction, InSe permits fabricating devices with
vanishing SOC at sufficiently large applied displacement fields.

From the interband optics viewpoint, InSe has the rather peculiar charac-
teristic of an indirect to direct band gap transition when the number of layers
is increased from the monolayer to the bulk limit[6]. This is due to the large
wavevector mismatch (of the order of 0.2Å−1 in monolayer InSe) between the
lowest energy point in the conduction band and the highest energy point in the
top of the valence band, resulting in a significant suppression of the recombination
probability. In addition to this unique dark to bright exciton transition in the 2D
limit, recently, bulk InSe excitons have displayed an exotic 2D to 3D crossover due
to its very high effective mass anisotropy resulting in an unconventional sequence
of photoluminescence peaks and surprising stability of the exciton bound state at
very high temperatures[27]. In addition to the many exotic properties of InSe, the
combination of InSe with other 2D materials also has promising applications in
the realm of optics, with the possibility to create direct Γ-point excitons in hBN-
encapsulated InSe/TMDs heterostructures[28] when appropriately engineered.

This thesis is aimed at providing a coherent and consistent explanation of a
wide realm of optical and transport phenomena due to the interplay between quan-
tum confinement, strong spin-orbit coupling and the unique sombrero dispersion
present in the topmost valence band of multilayer InSe. Using the tight-binding[29]
and k · p models previously developed[30], a complete theoretical description often
supported by ab initio calculations is available for both theorist and experimen-
talists working on this field of research. The first chapter of this thesis is devoted
to an introductory overview of the analytical tools necessary to understand the
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content of this investigation. Chapters 3-6 are presented starting from an introduc-
tory description of the material under consideration and followed by a scientific
manuscript on each topic. An additional supplementary material subsection is
added to clarify and support any relevant claim made in each manuscript. Finally,
a conclusion stating the most relevant results and the prospects of this field of
research is presented. The chapters of this thesis are therefore organised as follows:

Chapter 2

Chapter 2 provides a general overview of the crystalline structure and the
orbital composition of few-layer InSe. The SOC properties of monolayer InSe are
also discussed with a particular emphasis on its effect in the interband optical
selection rules. The 14-band hybrid k · p tight-binding Hamiltonian used for this
investigation is also presented.

Chapter 3

In Chapter 3 a self-consistent analysis of multilayer InSe under an applied
displacement field is presented and its impact on the intersubband optical absorp-
tion is studied. The application of an electric field is demonstrated to have an
interesting role to manipulate the optical absorption properties of this material
as it modifies both the number of states participating in the process of optical
absorption and the resonant frequencies.

Chapter 4

In Chapter 4 the spin-orbit coupling (SOC) strength in multilayer InSe was
calculated for various multilayer systems at different applied displacement fields.
Its magnitude was compared with the SOC strengths extracted from weak antilo-
calization measurements.

Chapter 5

In Chapter 5 the exciton dispersion and binding energies calculated for various
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hBN-encapsulated InSe thin films are presented. A crossover from an indirect to
direct exciton was predicted when the number of InSe layers exceeded 6-7 layers.
In bulk InSe, a similar direct to indirect transition was found when the exciton
acquired a finite centre of mass momentum in the z-direction. Additionally, using
the method presented we calculated binding energies in suspended TMDs and in
TMD heterostructures.

Chapter 6

In Chapter 6 the technique of magnetic focusing is presented and it is shown
how it can be used to probe the Fermi surface of twisted bilayer graphene under
an applied displacement field. By changing both the displacement field and the
perpendicularly applied magnetic field, both the shape and the radius of the
cyclotron orbits were hugely altered. In twisted bilayer graphene, this technique
allowed us to observe valley-split currents due to an opposite shift in the energies
at the two different K-points.

Chapter 7

In this final chapter, a summary of the main conclusions of this investigation
is presented and the main results are highlighted. A particular emphasis is put on
the potential optoelectronic applications of this investigation and the prospects
of this field of research.



Chapter 2

Background and Theory

2.1 Crystalline structure of two-dimensional InSe

To fully understand the optoelectronic properties of any 2D material, the
first step is to consider the symmetries present in the crystal structure as well as
their dynamical symmetries such as invariance under time-reversal. Such symme-
tries dictate any conserved quantity the system may have such as topologically
invariant quantities or the presence of spin-split bands. The constraints imposed
by the crystal symmetries were studied in monolayer transition metal dichalco-
genides (TMDs)[31, 32] allowing to formulate a k · p Hamiltonian around the K

and K′ points. Similarly, a very systematic analysis of the broken symmetries in
monolayer graphene allowed to predict the form of the spin-split bands in a very
wide realm of different situations combining both tight-binding calculations and
group theory considerations[33].

Monolayer InSe is an element of the family of the post-transition metal
monochalcogenides with point group symmetry D3h. This implies a 3-fold ro-
tational symmetry along its vertical axis and a mirror-plane symmetry with
respect to the central plane of the monolayer (see Fig.2.1). Its primitive lattice
vectors are given by ~a1 = a(1, 0) and ~a2 = a

2(1,
√

3), where a = 3.95Å is the
length of the hexagonal side conforming the unit cell in real space (see Fig.2.1).
Given the hexagonal unit cell of the crystal, a Brillouin zone defined by the vec-
tors ~b1 = 2π

a
(1, −1√

3) and ~b2 = 2π
a

(0, 2√
3) is expected. Twelve symmetry elements

characterise the D3h point group, among them, the three most relevant are the C3

rotational symmetry, the σh mirror plane reflection symmetry along the central
xy-plane and the three reflections along the three major axes. As shown in Sec-
tion. 2.2, the lack of inversion symmetry (~r → −~r) in monolayer InSe crucially
determines the presence of spin-split bands in its band structure.

In going from monolayer to multilayer InSe, the crystal stacking most often

16



CHAPTER 2. BACKGROUND AND THEORY 17

reduces the symmetries previously present in the monolayer form. Three different
stackings are most commonly found in InSe multilayer structures: γ, ε and β

stackings, with their atomic distribution along the unit cell shown in Fig.2.1.
Among them, γ-stacked InSe is the most stable configuration, although recent
studies[18] have demonstrated a large presence of stacking faults in γ-stacked
InSe multilayers when grown by the Bridgman method[36, 37]. In addition to the
very common stacking fault defects which may alter the overall symmetry of the
crystal, InSe is also a very sensitive material to point-like defects such as adatoms
and vacancies[38] which have been shown to originate much larger trigonal de-
fects[39]. Among all the different stacking phases, γ and ε-stacked InSe do not
have inversion symmetry while the β and δ stacking do have an inversion centre.
As demonstrated in Section.4.2, the presence or absence of inversion symmetry
dictates the possibility of having or not a finite SOC splitting and the z → −z
asymmetry of the multilayer crucially determines whether such splitting is linear

Figure 2.1: a) Bulk unit cell of the different stackings in multilayer InSe as shown in Ref.[34,
35]. The yellow spheres indicate the metal atoms M=In, Ga while the smaller grey spheres
label the chalcogen atoms X=Se. While neither ε nor γ-stacked InSe are inversion symmetric,
ε-stacked InSe is clearly shown to be z → −z symmetric for even number of layers. b) Top and
profile view of monolayer MSe. c) Brillouin zone of monolayer InSe with the high-symmetry
points indicated.
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or cubic in k. Furthermore, the absence of inversion symmetry is also responsible
for the γ-stacked InSe bilayer to host a slight ferroelectric polarisation as due
to interlayer charge transfer[9]. Such transfer of charge generates a very clear
hysteresis loop in the electric polarisation with the externally applied electric field,
and, as shown experimentally in InSe/GaSe heterostructures[40], it could allow
for very high-quality non-volatile memory devices.

2.2 Electronic band structure of monolayer InSe

In order to study the optoelectronic properties of InSe, it is crucial to scru-
tinize the orbital composition of the bands under consideration. Indium atoms
(Z = 49) are post-transition metal atoms with an electronic configuration given
as: [Kr]4d105s25p1, which prescribes their two most common oxidation states to
be In3+ and In1+. Selenium atoms belong to the family of the chalcogenides, and
have an electronic configuration of the form: [Ar]3d104s24p4, which dictates its
three most common oxidation states to be Se2−, Se4+ and Se6+. The electronic
structure of these elements therefore allows for several compounds to occur, the
most notable ones being In2Se3, InSe and In6Se7[41]. In InSe, The valence s and
p orbital states in both the Indium and Selenium atoms determine the orbital
composition of the different InSe bands. While the lowest monolayer conduction
band c and the topmost valence band v (see Fig. 2.2 and Table 2.1) are mainly
composed of equally distributed s and pz orbitals from both Indium and Selenium
atoms, the upper conduction band c1 is only made of Indium s and pz orbitals
states while the deeper valence bands v1 and v2 are only composed of Selenium px

D3h E σh 2C3 2S3 3C ′2i 3σvi basis
Γ1 1 1 1 1 1 1 1
Γ2 1 1 1 1 -1 -1 xy
Γ3 1 -1 1 -1 1 -1 xyz
Γ4 1 -1 1 -1 -1 1 z
Γ5 2 -2 -1 1 0 0 (xz, yz)
Γ6 2 2 -1 -1 0 0 (x, y)

Table 2.1: Character table of the point group D3h as tabulated in Ref.[35].
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and py orbital states. Given that we will be mostly interested in bands c and v,
we can evaluate the effect of the various crystal symmetries on the wavefunctions
of bands c and v respectively (i.e. Φc and Φv) by looking at the character table
presented in Table 2.1 for the D3h point group. Starting from the rotational C3

symmetry, the effect of a 3-fold rotation in the wavefunctions Φc and Φv is

Ĉ3|Φc〉 = |Φc〉 and (2.1)

Ĉ3|Φv〉 = |Φv〉. (2.2)

Similarly, the horizontal mirror-plane reflection σh (i.e. z → −z symmetry) leads
to

σ̂h|Φc〉 = −|Φc〉 and (2.3)

σ̂h|Φv〉 = |Φv〉. (2.4)

Finally, the σvi symmetry coming from the mirror reflection along the three major
crystallographic axes impose

σ̂vi|Φc〉 = |Φc〉 and (2.5)

σ̂vi|Φv〉 = |Φv〉. (2.6)

In the absence of an applied magnetic field, time-reversal symmetry is needed to be
considered as Kramer’s theorem imposes at least a double-degeneracy constraint
on every energy level. The electron Hamiltonian, therefore, satisfies [Ĥ, T̂ ] = 0
while the wavefunction of a half-integer spin σ ≡ {↑, ↓} = {1,−1} must obey [33]

T̂ |Φ, σ〉 = (−1)
1−σ

2 |Φ, (−σ)〉. (2.7)

A very remarkable feature of both InSe and GaSe is its very flat topmost va-
lence band (band v in Fig.2.2) which persists from the monolayer to the bulk limit.
Such valence band flatness can be understood as originating from a competition
between k · p interactions involving higher conduction bands and deeper valence



CHAPTER 2. BACKGROUND AND THEORY 20

Figure 2.2: a) Monolayer InSe band structure in the absence of SOC with the appropriate
irreducible representation Γα (see Table 2.1) for each band clearly labelled. b) Monolayer InSe
band structure when SOC is included with the band nomenclature labelled in green and the
corresponding irrep labelled in black.

bands[42]. While the former tries to push the band v lower in energy, the latter
tries to push band v to higher energies, resulting in an energetic minimum exactly
at the Γ-point followed by a maximum in energy at a finite wavevector. Such
dispersion profile commonly referred to as a "Mexican hat" or a "sombrero" dis-
persion, is particularly prominent in monolayer InSe. In going from monolayer to
multilayer InSe, the formation of subbands due to the different quantum confined
eigenstates suppresses the Mexican hat dispersion because of the greater influence
of the pz orbitals of the interlayer chalcogen atoms. Such orbitals dominate the
valence band dispersion around the Γ-point therefore raising in energy the bottom
of the sombrero dispersion[42]. This results in a vanishing Mexican hat dispersion
with increasing number of layers which, as will be shown in Section.5, leads to a
transition from dark to bright excitons in increasing the number of layers.

To fully understand the optoelectronic properties of monolayer InSe, it is nec-
essary to account for the effect of spin-orbit coupling. Atomic spin-orbit coupling
is a relativistic effect coupling the angular momentum and the spin component
of an electron[43], resulting in a term in the electron’s Hamiltonian of the form
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ξL̂ · Ŝ. In InSe, both the In and Se atoms possess a very strong SOC due to their
very large atomic number (ZIn = 49 and ZSe = 34). Such interaction is therefore
capable of mixing the different spins of the px and py orbital components of the v1

and v2 bands, therefore shifting the bands with total angular momentum J = 3
2~

higher in energy compared to the ones with J = 1
2~. As well as splitting the

v1 and v2 bands, SOC allows for the mixing of the pz orbital states in c and v

with the px and py orbital states of the v1 and v2 bands. This has a huge impact
on the Mexican hat dispersion of the topmost valence band as it significantly
flattens the sombrero dispersion[44], reducing the energy difference between the
rim and the bottom of the Mexican hat from approximately 70 to 40meV in
monolayer InSe. Due to the z → −z symmetry (labelled as σh in Table 2.1)
of the monolayer crystal, the spin Pauli operator ŝz is a good quantum number
([Ĥ, ŝz] = 0). Given such constraint, the s and pz orbital dominated bands c and
v must have a momentum-dependent spin-splitting proportional to ŝz. Given the
lack of inversion and σh symmetry, the lowest order SOC-splitting of bands c and
v must have the form[42]

Hso = γk3 sin (3φ)ŝz, (2.8)

where φ is the polar angle with respect to the Γ −M direction. Note that Eq.
(2.8) takes into account the three-fold rotational symmetry of the crystal as well
as the lack of inversion symmetry and predicts exactly zero spin splitting in the
Γ−M direction.

2.3 Optical properties of monolayer InSe

One of the most relevant features of post-transition metal monochalogenides
is their interaction with light and the selection rules derived from it[16]. In
the absence of SOC, two very clear absorption peaks are expected from group
theoretical arguments[30]. Firstly, an absorption peak of z-polarised light is
expected from the v to c optical transition, as clearly seen from the direct product
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of their two irreducible representations (Γ1
⊗Γ4 = Γ4 ∼ z). Similarly, an in-

plane polarization absorption peak is expected for the v1 to c optical transition.
This is again proven from the direct product of their irreducible representations
(Γ5

⊗Γ4 = Γ6 ∼ (x, y)).
In using a k · p expansion around the Γ-point, it can be shown how the

incorporation of spin-orbit coupling hugely alters the optical absorption properties
of monolayer InSe[30, 45]. Using the k · p formalism, the light-matter coupling can
be obtained replacing any momentum p by p→ p + A where A is the magnetic
vector potential. Our starting point is the monolayer k · p Hamiltonian including
the various light-matter couplings (see Section.2.4 for a thorough derivation of
the monolayer k · p Hamiltonian)

Ĥ =



Hcs0 Ezdzs0
ieβ1
cme

(s0
⊗A) iλc,v2(s×Λ)

Ezdzs0 Hvs0 iλv,v1(s×Λ) ieβ2
cme

(s0
⊗A)

−ieβ1
cme

(s0
⊗A)T −iλv,v1(s×Λ)† Hv1(2)s0 + λv1τysz 0

−iλc,v2(s×Λ)† −ieβ2
cme

(s0
⊗A)T 0 Hv1(2) ŝ0 + λv2τysz

 ,

(2.9)

where Hc = ~2k2

2mc , Hv = Ev + Ev2k
2 + Ev4k

4 and Hv1(2) =
[
Ev1(2) + ~2k2

2mv1(2)

]
τ0 +

~2(k2
x−k2

y)
2m′1(2)

τz + 2~2kxky
2m′1(2)

τx. The matrices τi label the 2× 2 Pauli matrices in the space
of the px and py orbital components of the v1 and v2 bands, while τ0 is the identity
matrix in that same basis. The vector A labels the magnetic vector potential
and the vector Λ labels the px and py orbital component of the v1 and v2 bands
(the px component being Λx = [1, 0] and the py being Λy = [0, 1]) such that
(s×Λ) = (−sy, sx). The matrices s are the spin Pauli matrices with s0 being the
identity matrix in spin space and any SOC strength is labelled by the greek letter
λ. Finally, the term Ez is the component of the electric field in the z-direction
coming from the incident electromagnetic wave and dz is the interband dipole
moment defined as dz ≡ e〈c|z|v〉. The parameters β1(2) are the different interband
matrix elements of the momentum operator β1(2) ≡ |〈c(v)|P|v1(v2)〉|. From this
expression, the light-matter absorption for each interband optical transition can
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Figure 2.3: a) Optical absorption diagram in monolayer InSe when spin-orbit coupling is
not considered inspired from Fig.1 of Ref.[30]. Circularly polarised light is required for the
B-absorption line while for the A-absorption line, light polarised in the z-direction couples bands
c and v. b) New set of optical absorption resonant frequencies when SOC is included. As due
to SOC, both the v1 and v2 bands split, creating different absorption lines for the Jz = ± 1

2~
and Jz = ± 3

2~ eigenstates.

be evaluated using the Fermi golden rule,

Γi→f = 2π
~
|〈f |δĤ|i〉|2ρ(E), (2.10)

where 〈f | is the band c and |i〉 is any of the v, v1 or v2 bands. The term δH

is the light to matter coupling term between |i〉 and 〈f | with or without SOC
included. This term is given by δĤ = − e

mc
~p · ~A in the absence of SOC, and by

δĤ = −e
mc

β1λv1v
Ev−Ev1

(sxAy − syAx) in the presence of SOC, coupling the spin and the
light polarisation perpendicular to each other. Finally, ρ(E) is defined as the
density of states at a given energy E. As shown in Fig.2.3, the overall result was
that SOC-mediated spin-flip transitions were capable of not only coupling bands
with different total angular momentum (c± 1

2 and v±
3
2

1 ), but also the v to c bands
with in-plane polarised light[30] and the v1 to c bands with out-of-plane polarised
light. Exact analytical expressions for the absorption coefficient can be obtained
considering the ratio of the absorbed light by the interband transition divided
by the energy flux of the incident electromagnetic radiation[46, 29, 30]. In the
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absence of spin-orbit coupling, the absorption coefficient α for v to c and for v1

to c can be obtained from

α = 16π2e2

m2
ecω
|〈c|p|v′〉|2ρcv′(~ω), (2.11)

where ω is the optical frequency, p is the momentum operator and ρcv(~ω) is the
joint density of states between bands c and an arbitrary valence band v′. In two
dimensions, this quantity equals to ρcv = mr

π~2 where mr is the reduced effective
mass between bands c and v′. The above expression would yield to the following
expression for αzcv (maximum absorption coefficient between bands c and v due
to z-polarised light) and for ασ±cv1(maximum absorption coefficient between bands
c and v1 due to circularly polarised light)[44],

αzcv = 8πe2

~c

∣∣∣∣dze
∣∣∣∣2~ωmc

~2 , (2.12)

ασ
±

cv1 = 8πe2

~c
|β1|2

mc

~ωm2
e

.

On including the SOC term mixing bands v1 and v, the following additional
term[30] can be obtained for the circularly polarised optical absorption between
bands c and v,

ασ
±

cv = 8πe2

~c

∣∣∣∣β1

√
2λvv1(

Ev − Ev1 + λv1

)∣∣∣∣2 mc

~ωm2
e

. (2.13)

2.4 Hybrid k ·p tight-binding model of few-layer

InSe

To study both the optical and spin-orbit coupling properties of multilayer
InSe around the Γ-point, a 14×14-band k · p Hamiltonian capable of catching all
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the relevant dispersion features from monolayer to bulk InSe was used[47]. The
7-bands (each one has two possible spin states, therefore making 14 bands in
total) of the 14-band k · p monolayer InSe Hamiltonian are the two c1, c bands
in the conduction band and the v, v1x, v1y, v2x, v2y bands in the valence band
(see Fig.2.2). From the character table shown in Table 2.1 for the point group
D3h, a general k · p Hamiltonian capturing all the symmetries of the D3h point
group can be formulated using the usual technique of invariants[35]. According
to such methodology, the Hamiltonian is required to remain invariant under all
the symmetries present in the crystal, therefore forcing it to obey[35]

Dα(g)Hαβ(P̂gKP̂−1
g )Dβ(g−1) = Hαβ(K), (2.14)

where Dα(g) is the matrix representation of the operator g in the irreducible
representation Γα (see Table 2.1 for the symmetries of each irrep) and P̂gKP̂−1

g

is the effect of the operator g in the (kx, ky)-dependent polynomial K. The
procedure of invariants therefore constructs the k · p matrix Hamiltonian from
elements invariant under all the symmetries prescribed by the crystal lattice such
that each irrep Γγ has invariants of the form[35]

Iαβγ =
∑
l

Xαβ
γl Kγl, (2.15)

where Kγl are irreducible tensor operators obtained from K which under D3h

are required to obey P̂gKγlP̂
−1
g = ∑

l′ Kγl′D
γ
l′l(g). Finally, the tensor Xαβ

γl are
D3h-symmetrized matrices which transform according to the lth column of Γγ,
i.e. Dα(g)Xαβ

γl D
β(g−1) = ∑

l′ X
αβ
γl′D

γ
l′l(g). The term in the Hamiltonian Hαβ is

therefore given by a proportionality constant with respect to a linear combination
of the invariants Iαβγ such that

Hαβ(K) =
∑
γ

cαβγ Iαβγ (K). (2.16)

In addition to the crystal symmetries, it is necessary to take into consideration
the time-reversal symmetry present in the absence of an applied magnetic field.
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This can be written as

θ̂Hαβ(K)θ̂−1 = Hαβ(K), (2.17)

where θ̂ is the time-reversal operator. This condition is only strictly necessary in
the diagonal elements of the k · p matrix Hamiltonian[48]. Using this method,
the 14-band Hamiltonian describing both monolayer InSe and GaSe around the
Γ-point can be written as

Ĥ =

Ĥcc Ĥcv

Ĥvc Ĥvv

 , (2.18)

where Ĥcc is defined as

Ĥcc =

(εc + αck
2)s0 0

0 (εc1 + αc1k
2)s0

 , (2.19)

operating on the c↑, c↓, c↑1 and c↓1 band basis of monolayer InSe (see Fig.2.2). In Eq.
(2.19), the 2×2 matrix s0 is defined as the identity matrix in spin space. The term
Ĥcv couples bands v, v1 and v2 with bands c1 and c. Its matrix representation
can be proven to have the form

Ĥcv =

 0 iβc,v1(k ·Λ) iλc,v2(s×Λ)
βc1,vk

2 0 iβc1,v2(k ·Λ)

 . (2.20)

In the above expression, the vectors Λ = (Λx,Λy) are the unit vectors Λx = [1, 0]
and Λy = [0, 1] operating in the space of px and py orbital components of the v1

and v2 bands, while the matrices s = (sx, sy, sz) are the spin Pauli matrices in
the x, y and z-direction respectively. Note that the matrix Ĥcv is related to Ĥvc

by hermiticity. The matrix Ĥvv written in the basis of v,v1 and v2 states can be
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proven to have the form

Ĥvv =


(εv + αvk

2)s0 iλv,v1(s×Λ) iβv,v2(k ·Λ)
−iλv,v1(s×Λ)† s0γv1 + λv1τysz 0
−iβv,v2(k ·Λ)T 0 s0γv2 + λv2τysz

 , (2.21)

where the τx,y,z are Pauli matrices operating in the px, py orbital components of
the v1, v2 bands and τ0 is the identity matrix in that same basis. In Eq. (2.21), γv1

is defined as γv1 ≡ Dv1τ0 +D′v1τx +D′′v1τz and γv2 as γv2 ≡ Dv2τ0 +D′v2τx +D′′v2τz.
The term Dv1 is defined as Dv1 ≡ (εv1 + αv1k

2) while Dv2 as Dv2 ≡ (εv2 + αv2k
2).

The terms D′v1 and D′v2 are defined as D′v1 ≡ −2α′v1kxky and D′v2 ≡ −2α′v2kxky

respectively (see Table 2.2 for their numerical values). Finally, the terms D′′v1

and D′′v2 have the form D′′v1 ≡ α′v1(k2
y − k2

x) and D′′v2 ≡ α′v2(k2
y − k2

x) respectively.
In this Hamiltonian it is important to point out the (s × Λ) form of the SOC
terms mixing bands c and v2 as well as bands v and v1. This form of the SOC
comes from invariants whose product of the irreps had functional form ∼ (xz, yz),
forcing the SOC matrix elements between c and v2 as well as between v and v1

to have the cross product form (−sy, sx). This crossed form of the SOC is an
important feature for the investigation of SOC in multilayer InSe and GaSe thin
films as it prescribes the electron’s spin texture, which is a physical observable
responsible for transport phenomena such as the spin-galvanic effect[49, 50, 51,
52].

In the hybrid k · p tight-binding Hamiltonian, the interlayer hoppings are given
by the tunnelling amplitude between neighbouring Selenium atoms. Neglecting
any interlayer spin-flip hopping term, the hopping Hamiltonian between layers
i+ 1 and i in the basis [c, c1, v, v1, v2] therefore has the following form:

Ĥi,i+1 =



tc tc1,c tc,v 0 0
−tc1,c tc1 0 0 0
−tc,v 0 tv 0 0

0 0 0 tv1,2 tv1,2

0 0 0 −tv1,2 tv1,2


. (2.22)
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The hybrid k ·p tight-binding Hamiltonian parameters were extracted from fitting
density functional theory computed bands taking into account electron-electron
interaction effects in the GW approximation[53, 54] (see Table 2.2 for their nu-
merical values). Such parameterisation unavoidably overestimated the effective
mass of the electron in the monolayer but provided a very accurate description
of the global properties of the band structure including the spin-orbit splittings
in bands v1 and v2 as well as an accurate description of the sombrero dispersion
in band v (see Fig. 2.4).

While this 14-band Hamiltonian is a very useful tool to study the optoelec-
tronic properties of InSe in the vicinity of the Γ-point, it may sometimes be more
convenient to use a simplified model to reduce the required time needed for com-
putations. As we are mostly interested in looking at the properties of the c and
v band, one usual procedure is to formulate a 2-band hybrid k · p tight-binding
Hamiltonian from the 14-band model. This is done by projecting both the upper
c1 conduction band and the deeper v1, v2 valence bands into a 2-band basis com-
posed of c and v monolayer eigenstates. The projection is done applying Löwdin
renormalisation (see Section. 4.2) of both the linear in momentum terms and the
various interlayer hoppings in both the c and v bands ignoring the effects of SOC.
Such renormalization procedure leads to the following 2-band Hamiltonian

Ĥk.p =



Eg
2 + ~2k2

2mc t(2)
cc 0 t(2)

cv

t(2)
cc

Eg
2 + ~2k2

2mc −t(2)
cv 0

0 −t(2)
cv −Eg

2 + γ2k
2 + γ4k

4 t(2)
vv

t(2)
cv 0 t(2)

vv −Eg
2 + γak

2 + γ4k
4

 ,

(2.23)

where 1
2mc = β2

c,v1
Ec−Ev1

, t(2)
vv ≡ tv+tvv2k

2 , tvv2 = β2
v,v2 tv1,2

(Ev−Ev2 )2−
β2
v,v2 tv

(Ev−Ev2 )2 , t(2)
cc = tc+tcc2k2,

tcc2 = β2
c,v1 tv1,2

(Ec−Ev1 )2 −
β2
c,v1 tc

(Ec−Ev1 )2 , t(2)
cv = tc,v + tcv2k

2, and tcv2 = βc,v1βv,v2 tv1,2
(Ec−Ev1 )(Ev−Ev2 ) −

β2
c,v1 tcv

2(Ec−Ev1 )2 −
β2
v,v2 tcv

2(Ev−Ev2 )2 .
Using this simplified hybrid k ·p tight-binding Hamiltonian, the subband ener-

gies and optical absorption amplitudes can be easily extracted and, in combination
with a self-consistent calculation of the externally applied electrostatic potential,
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εc1 3.064 eV
εc 2.015 eV
εv −0.855 eV
εv1 −1.449 eV
εv2 −1.538 eV
λv1(2) 0.142 eV
λv,v1 0.119 eV
λc,v2 -0.09 eV
tc1 −0.011 eV
tc 0.333 eV
tv −0.420 eV
tv1,2 −0.048 eV
tc1,c 0.019 eV
tc,v 0.251 eV

αc1 1.54 eVÅ2

αc −18.7 eVÅ2

αv −4.95 eVÅ2

αv1 6.48 eVÅ2

α′v1 −10.51 eVÅ2

αv2 −0.28 eVÅ2

α′v2 −4.20 eVÅ2

βc1,v 3.77 eVÅ2

βc1,v2 8.51 eVÅ
βc,v1 10.54 eVÅ
βv,v2 −2.78 eVÅ

Table 2.2: Model parameters provided by S.J.Magorrian used in Chapter.4 and 5. They were
obtained from fitting these parameters to bulk QSGW computed bands from Ref.[53, 54]. The
SOC parameter λc,v2 was obtained from fitting λc,v2 from the QSGW data as shown in Section
4.2.

one could study the effect of an applied external electric field in the vicinity of
the Γ-point. A similar 2-band model was successfully used for the calculation of
intersubband energies and optical absorption coefficients in the lowest conduction
subband, neglecting any effect of spin-orbit coupling due to its limited impact in
the energetics and dispersion features of the lowest conduction subband.

Figure 2.4: (Left) Tight-binding calculation of the monolayer InSe band structure in the
absence of SOC. (Right) Tight-binding calculation of the band structure of bilayer InSe in the
absence of SOC.



Chapter 3

Subband optics in InSe

3.1 Introduction

In going from bulk to monolayer InSe, the allowed values of the out-of-plane
momentum kz are discretised due to the confinement of the electrons in the z-
direction [42]. The discrete set of kz values leads to a finite number of energy levels
in the electronic band structure known as subbands. To model the formation
of such states in InSe, a quantum well model was developed for multilayer InSe
and the intersubband energy dependence on the number of layers was described
using such formalism. The boundary conditions applied to both InSe/vacuum
interfaces corresponded to the generalised Dirichlet-Neumann boundary conditions
(also known as Robin boundary conditions[55]) which considers the multilayer
crystal as an effective quantum well with a slight overextension compared to
the actual thickness of the film. From the subband energies, the intersubband
oscillator strengths and optical absorption coefficients were calculated as well as
their thermal broadening.

Using a self-consistent algorithm that models each monolayer as an infinitely
thin film (see Appendix.A.1 of this thesis for the self-consistent analysis of bilayer
InSe), a toy-model for the intersubband energy dependence on the applied electric
field was developed for different multilayer systems and the effect of an applied
displacement field on the optical absorption peaks was studied. The intersubband
energies were found to range from the infrared to the far-infrared part of the
optical spectrum when going from the bilayer to the bulk limit. In applying
an electric field, tunability in the resonant peak was demonstrated due to the
dependence of the intersubband energy, the intersubband dipole moment and the
in-plane conduction band effective mass on carrier density.

30
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3.2 Hybrid k · p tight-binding model for inter-

subband optics in atomically thin InSe films

The results of this investigation were presented in Ref.[23]: “Hybrid k·p tight-
binding model for intersubband optics in atomically thin InSe films”. In:Phys.
Rev. B97 (16 Apr. 2018).

My contribution to this work: A. Ceferino performed the self-consistent calcu-
lation to account for the effect of an electric field in the intersubband energies in
multilayer InSe and computed the optical absorption coefficient in different InSe
multilayer thin films at various carrier densities.

Full author list: S. J. Magorrian, A. Ceferino, V. Zólyomi and V. I. Fal’ko.

Author contribution: S. J. Magorrian calculated the subband energies, optical
absorptions in the absence of an applied electric field, developed the quantum
well model and wrote the paper. A. Ceferino and S. J. Magorrian calculated the
intersubband energy dependence on carrier density.
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Hybrid k · p tight-binding model for intersubband optics in atomically thin InSe films
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We propose atomic films of n-doped γ -InSe as a platform for intersubband optics in the infrared and far-infrared
range, coupled to out-of-plane polarized light. Depending on the film thickness (number of layers) and the amount
of n-doping of the InSe film, these transitions span from ∼0.7 eV for bilayer to ∼0.05 eV for 15-layer InSe. We
use a hybrid k · p theory and tight-binding model, fully parametrized using density-functional theory, to predict
their oscillator strengths and thermal linewidths at room temperature.

DOI: 10.1103/PhysRevB.97.165304

I. INTRODUCTION

Atomically thin layers of van der Waals (vdW) materials
and their heterostructures [1,2], generally branded as two-
dimensional materials (2DMs), attracted attention due to their
promise for creating multifunctional electronic devices and,
more generally, as a new materials base for optoelectronics
[3]. This class of materials features strong covalent bonding of
atoms in the 2D planes and a weak vdW attraction between the
layers, permitting fabrication of stable films of such materials
down to a monolayer (sub-nm) thickness and creation of
their various heterostructures. The ongoing studies of 2DMs
broadly address graphene [1] and hexagonal boron nitride
(hBN, a wide-band-gap insulator) [4], narrow-gap semicon-
ductor black phosphorus [5,6], and various transition-metal
dichalcogenides [7].

Among all 2DMs, a special place is taken by two post-
transition-metal chalcogenides (PTMCs): InSe and GaSe. This
closely lattice-matched pair of optically active 2D compounds
(with a monolayer stoichiometric formula M2Se2, M = In or
Ga) was found, both theoretically [8,9] and experimentally
[10], to have a band gap that varies widely from the monolayer
to multilayer films, densely covering the range of energies
Eg ∼ 1.3–3 eV. Also, these 2DMs have relatively light (mc ∼
0.2me) conduction-band electrons [8–10] with very high mo-
bility, even in the case of atomically thin films. While the recent
optical studies of 2D InSe and GaSe crystals [10,11] have
been performed using mechanically exfoliated films, manu-
facturability of 2D crystals of PTMCs using molecular-beam
epitaxy [12] and chemical vapor deposition [13] has already
been demonstrated, and the potential of various PTMCs for
optoelectronics applications was identified in terms of their im-
plementation in high-sensitivity [14] and fast [15] broadband
photodiodes. Here, we show that optical transitions between
subbands inn-doped PTMC films of various thicknesses, active
in the same out-of-plane polarization [9] as the interband
transitions, can extend the range of their optical functionality
into the IR/FIR range.

Theoretical studies of 2D InSe have largely focused on the
monolayer, with DFT studies finding a slightly indirect band
gap due to an offset in the valence-band maximum [8], with a

Lifshitz transition presenting the possibility of ferromagnetism
on hole-doping [16]. Meanwhile, k · p theory and tight-binding
studies [9,17,18] have been employed to further understand
the band structure, symmetries, optical properties, and highly
sensitive strain response of monolayer InSe.

Here, we use a hybrid k · p theory and tight-binding
(HkpTB) model to study in detail the subbands and inter-
subband transitions in atomically thin films of post-transition-
metal chalcogenides. In particular we find that, in InSe films
with thicknesses from N = 2 to 15 layers, transitions between
the lowest and first excited subbands cover the range of
photons from λ ∼ 2 μm to λ ∼ 25 μm (between ∼680 and
∼50 meV); see Fig. 1. We analyze thermal broadening of
the intersubband absorption spectra caused by the variation
of the 2D (in-plane) dispersion of electrons in consecutive
subbands, and we also develop the self-consistent descrip-
tion of the subband energies for the films doped n-type
by gates.

II. HYBRID k · p TIGHT-BINDING MODEL

The crystal structure of few-layer InSe is shown in
Fig. 2, with successive Se-In-In-Se layers arranged in the γ

polytype—each layer is shifted with respect to the layer below
such that selenium atoms in the upper layer lie above the
indium atoms in the lower layer. The wave functions at the
conduction-band edge in InSe are predominantly composed of
s and pz orbitals on In and Se [9]. Electrons in the monolayer
have a light in-plane effective mass mc ∼ 0.2me, while strong
interlayer hopping between the layers leads to a strong band
gap dependence on the number of layers, varying from ∼1.3 eV
in the bulk to ∼2.0 eV in the bilayer [9,10].

To describe subbands of electrons in the conduction band
in few-layer InSe, we construct a two-band hybrid (k · p)-
tight-binding Hamiltonian in a basis of the k · p conduction
and valence bands of the monolayer, with successive layers
coupled by tight-binding hoppings between monolayer k · p
states. These bands and hoppings are chosen as those in the
region of the band edge with non-negligible strength interlayer
electronic couplings and subband splittings. The Hamiltonian

2469-9950/2018/97(16)/165304(6) 165304-1 ©2018 American Physical Society
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FIG. 1. Intersubband energies for an allowed electric dipole
transition for excitation from the lowest subband in weakly n-doped
(N = 2–15)-layer InSe. Transitions to the second lowest subband
(marked in blue) are expected to be significantly stronger than
transitions to higher subbands. The red line shows the 1|N → 2|N in-
tersubband transition energies in lightly n-doped films approximated
by an asymptotic (N � 1) formula, h̄ω ≈ h̄2π2

2mAza
2
z

3
(N+2ν)2 , derived

from Eq. (8). The lowest intersubband transition energy increases
for heavily doped films (see Fig. 5 in Sec. V).

takes the form

Ĥ =
N∑
n

[(
�c(2 − δn,1 − δn,N ) + h̄2p2

2mc

)
anca

†
nc

+ [Ev + �v(2 − δn,1 − δn,N )]anva
†
nv

]

+
N−1∑

n

[(
t	c + t ′cp

2
)
a

†
(n+1)canc + tva

†
(n+1)vanv

+ (
t	cv + t ′cvp

2
)
(a†

(n+1)vanc − a
†
(n+1)canv) + H.c.

]
. (1)

FIG. 2. 	-A dispersion in bulk γ -InSe (kx = ky = 0), from the
two-band HkpTB model, Eq. (1). Zero of energy set to the conduction-
band edge in a monolayer. Inset center: crystal structure of γ -InSe.
The monolayer has a hexagonal structure, with point-group symmetry
D3h. The point group of the bulk crystal is C3v , with each layer shifted
with respect to the layer below such that selenium atoms in the upper
layer lie above the indium atoms in the lower layer. az = 8.32 Å is
the experimentally known interlayer distance [19]. Inset bottom right:
Brillouin zone of a conventional unit cell of InSe (three layers); bands
plotted here have been unfolded.

TABLE I. HkpTB theory parameters in Eq. (1), and 	-point
transition energies between two lowest subbands.

Ev −2.79 eV t	
c 0.34 eV

mc 0.17 me tv −0.41 eV
�c 0.03 eV t	

cv 0.29 eV

�v −0.03 eV t ′
c −5.91 eV Å

2

t ′
cv −5.36 eV Å

2

N E2|N − E1|N

2 680 meV
3 490 meV
4 360 meV
5 280 meV

Here, operators a
(†)
nc/v annihilate (create) electrons in the con-

duction (valence) bands of the individual layers (indexed
by n = 1, . . . ,N) of the N -layer crystal. Since the 	-point
dispersion of electrons in the conduction band of monolayer
InSe changes negligibly upon inclusion of spin-orbit coupling
(SOC) [20], we neglect spin-orbit effects and describe the
monolayer conduction band with a parabolic dispersion with
effective mass mc, while approximating the valence band as
flat, with constant energy Ev . tc(v) is an interlayer conduction-
conduction (valence-valence) hop, and tcv describes inter-
layer conduction-valence and valence-conduction hybridiza-
tion. Our earlier studies [9] showed that the interlayer coupling
is dominated by Se-Se interlayer pairs on the outside adjacent
monolayers, and hence we assume that the valence-conduction
and conduction-valence hops can be related as tvc = −tcv . The
p dependence of the conduction-conduction and conduction-
valence interlayer hops, which helps account for the differing
effective masses in the subbands within the conduction band, is
introduced as tc(cv) = t	c(cv) + t ′c(cv)p

2. Finally, �c(v) are on-site
energy shifts to the conduction (valence) states, included to
take account of the different environment of states on the inside
of the crystal compared with those on the surface.

We parametrize the interlayer hops (tα) and on-site energy
shifts (�) using dispersion curves obtained by means of
density-functional theory (DFT) as implemented in VASP [21]
for bulk and few-layer InSe [9,20]. The cutoff energy for the
plane-wave basis is 600 eV and the Brillouin zone is sampled
by a 12 × 12 k-point grid. We complement DFT by a “scissor
correction” adjustment of the monolayer band gap (having
the effect Ev → Ev − 0.99 eV), chosen to correct for the
difference between the LDA band gap and the value known
from experiment for bulk InSe, as described in Ref. [9]. The
parameters obtained are listed in Table I. This procedure is
chosen since the underestimation of the gap by DFT would
lead to the overestimation of the effect of the interband
interlayer hop tcv on the value of the electron effective mass
in the z direction in the bulk, and on the subband spectra
of multilayer films. To illustrate this effect, we consider the
out-of-plane conduction-band-edge effective mass in the bulk,
given by Eq. (3). Using the parameters in Table I with the
LDA band gap Eg = 0.41 eV, we obtain an effective mass
mAz = 0.043me, while with the corrected gap Eg = 1.40 eV
we find an effective mass mAz = 0.088me, which is much

165304-2
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FIG. 3. Subbands of the conduction band in the N = 1 − 4-layer InSe near the 	 point, from Eq. (1). 0 of energy set to the conduction-band
minimum in the monolayer. Red arrows denote the strongest intersubband optical-absorption transitions, coupled to the out-of-plane electric
dipole, while the dashed gray arrow for four-layer InSe indicates a much weaker transition. Arrows are labeled with the intersubband out-of-plane
electric dipole moment of the transition, dz [Eq. (10)].

closer to the experimental value of 0.081(9)me [22]. Having
noted this change to the dispersion in the bulk crystal, we also
expect changes to the energies of the subbands in the few-layer
crystal. For example, correction of the monolayer gap reduces
the splitting between the two lowest subbands in six-layer InSe
from 250 to 220 meV.

Each band in the monolayer generates N subbands in
N -layer InSe, with the subband dispersions of the conduction
band for N = 1–4 shown in Fig. 3, and the 	-point separation
between the lowest subbands shown in Table I. In all of
these cases, electrons in the lower-energy subbands have
lighter effective masses than those in the higher subbands.
This difference in effective masses gives a finite thermal
linewidth to the absorption lines, at high doping and/or elevated
temperatures.

III. BAND-EDGE EXPANSION IN BULK InSe

In bulk InSe, both conduction- and valence-band edges are
located at the A-point (see Fig. 2), kx = ky = 0,kz = π/az

(where az = 8.32 Å is the experimentally known interlayer
distance [19]). The k · p expansion in the vicinity of the
A-point can be written as

Ec(p,pz) =
(

h̄2

2mA

+ ηp2
za

2
z

)
p2 + h̄2p2

z

2mAz

, (2)

where p = |p| = |(px,py)|, while pz = kz − π/az. The xy

plane and z-axis effective masses, mA and maz
, are given by

1

mA

= 1

mc

− 4t ′c
h̄2 ,

1

mAz

= 2a2
z

h̄2

[
t	c + 4t	2

cv

Eg

]
, (3)

respectively, where Eg = 2�c − (Ev + 2�v) − 2(tc − tv) is
the bulk band gap. These give mA = 0.11me and mAz =
0.09me, respectively, close to the experimentally known values
of mA = 0.14me and mAz = 0.08me [22]. The additional
parameter,

η = t ′c − 2h̄2

mA

t	2
cv

E2
g

+ 8t	cvt
′
cv

Eg

� −0.63
h̄2

2mA

, (4)

takes into account the anisotropic nonparabolicity of the
electron dispersion at the A-point.

For a crystal slab of finite thickness L = Naz, the general
form of the boundary conditions at the crystal surfaces can be

written as

ψ ± νaz∂zψ = 0, (5)

where ν is a dimensionless constant ∼1, and it allows the
wave function to extend a little beyond the surface of the crys-
tal. + (−) corresponds to the upper (lower) surface of the
crystal. Substitution of a general plane-wave wave function,
ψ = ueipzz + ve−ipzz, where u and v are constants, yields the
requirement

Npzaz + 2 arctan(νpzaz) = nπ, (6)

where n is an integer. Expansion for small pz thus gives the
quantization condition for small momenta,

pz = nπ

(N + 2ν)az

. (7)

Within the bulk CB edge expansion, Eq. (2), the 2D 	-point
energy of subband n in N -layer InSe (denoted n|N ) can then
be expressed as

En|N (n � N ) ≈ h̄2π2

2mAza2
z

n2

(N + 2ν)2
. (8)

Using subband energies calculated from the HkpTB model,
we find that ν = 1.42, as fitted to the intersubband transition
energies for the transition from subband 1 to 2, E2|N − E1|N .
The energies obtained from Eq. (8) are plotted in Fig. 1
alongside those obtained from the few-layer HkpTB model
[Eq. (1)]. Additionally, the difference in effective masses for
the electron dispersion in different subbands, shown in Fig. 3,
arises from the nonparabolicity of the electron dispersion at
the A-point. Also, quantization of pz in a thin film leads to
heavier effective masses in higher subbands (for n � N ),

1

mn|N
≈ 1

mA

[
1 − 6.2n2

(N + 2ν)2

]
, (9)

which produces the difference between the 2D effective masses
in the lowest subbands shown in Fig. 4.

IV. INTERSUBBAND TRANSITIONS

For the intersubband transitions between the subbands of the
conduction band of n-doped InSe, the population of holes in the
valence band is negligible, so excitonic effects do not need to be
considered, and the energy of an intersubband optical transition
can be taken as that of the subband splitting. The oscillator
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FIG. 4. Intersubband line shapes (normalized to the 	-point
transition in the bilayer) for N -layer InSe for excitation from lowest
subband (1|N ) to next-lowest subband (2|N ), for a very light doping
at T = 300 K. Inset: thermal broadening (T = 300 K, left-hand axis)
of absorption lines at light doping due to the difference between
subband effective masses (right-hand axis), Eq. (14). The red line
was calculated using effective masses approximated by Eq. (9)
for N > 4.

strength of coupling to z-polarized photons is determined by
the electric dipole matrix element,

dz(1|N,b|N ) = e

N∑
n

〈1|N | z(n)(a†
ncanc + a†

nvanv) |b|N〉 ,

(10)

where z(n) = az[n − (N + 1)/2]. Due to the z → −z sym-
metry of the HkpTB model, dz(1|N,b|N ) = 0 when b is odd
(a consequence of setting tvc = −tcv). Since the true crystal
structure does not have this symmetry, we check the validity
of the latter assumption using values from a DFT calculation
for the trilayer case—this gives |dz(1|3,3|3)|2

|dz(1|3,2|3)|2 ∼ 10−4, so the
transitions forbidden by the HkpTB model can be safely
neglected. In Fig. 3, the nonzero intersubband dipole matrix
elements are labeled alongside their respective transitions,
and we note that the matrix element for transitions between
adjacent subbands is much larger than that for transitions
between more distant subbands.

With the subband energies, dipole matrix elements, and
effective masses obtained by diagonalizing the Hamiltonian
in Eq. (1), we can describe the line shape for intersubband
absorption of IR/FIR photons by a slightly n-doped N -layer
InSe, from the n = 1 subband to the n = 2 subband as

g(h̄ω) ∝ |dz(1|N,2|N )|2h̄ω × DOS × FT , (11)

where the joint density of states of the excitation is given
by DOS(h̄ω) = [πh̄2(1/m1|N − 1/m2|N )]

−1 × �(E2|N −
E1|N − h̄ω), while the factor reflecting the occupancy of

initial states is

FT =
{

exp

[
1

kBT

(
E2|N − E1|N − h̄ω

1 − m1|N
m2|N

− EF

)]
+ 1

}−1

,

(12)

where

EF = kBT ln

[
exp

(
πh̄2ne

m1|NkBT

)
− 1

]
(13)

is the Fermi energy in the lowest subband, relative to the band
minimum, of an n-doped InSe film with carrier density ne.
Here we assume that E2|N − E1|N − EF � kBT . The thermal
linewidth can be estimated as

�h̄ωFWHM ≈ max

{[
1 − m1|N

m2|N

]
kBT ln 2,EF

}
, (14)

resulting in the thermal linewidths shown in the inset to
Fig. 4, which shows the line shapes (normalized to the 	-point
transition in the bilayer) determined by Eq. (11) for the 1|N →
2|N IR/FIR optical transitions as a function of the transition
energy for (N = 2–5)-layer InSe at 300 K for a very light
doping.

V. EFFECTS OF INTERLAYER SCREENING
IN GATED n-DOPED InSe

For the intersubband transitions to be active, the system
must be n-doped. In the earlier transport experiments on 2D
InSe, n-doping was introduced using electrostatic gates. In
bulk systems (or thick films), doping by the gates induces
accumulation layers of electrons near the surface, where the
form of the confinement potential and, therefore, the subband
structure of the effective quantum well is determined by the
density profile of confined electrons [23]. In a thin film,
the doping by the gate applied on one side introduces an
asymmetry of potential distribution inside it, increasing the
energy separation between the lowest two subbands, while the
change in the corresponding lowest subband wave function
leads to a partial screening of such potential. Below, we offer
a self-consistent analysis of the potential profile and subband
splittings induced by the voltage applied to the gate for doping
the film with electrons, taking into account the screening (by
the induced electrons) of the electric field of the gate. For this,
we calculate the excess charges on each layer in the conduction
band as

ne(n) =
∑

j

1

π

∫ ∑
α=c,v

|cjn(α,Ĥ ′)|2FTj (Ĥ ′,k)k dk, (15)

where FTj (Ĥ ′,k) are the Fermi occupation factors in the j th
subband at momentum k, and cjn(c/v,H ′) are the amplitudes
of the j th subband wave function on the nth layer (in terms
of the monolayer basis states), evaluated using Eq. (1) with
an additional potential energy term added to the on-layer
“monolayer” Hamiltonian for each layer,

Ĥ ′ = Ĥ +
∑

n

Un(a†
ncanc + a†

nvanv). (16)
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FIG. 5. Intersubband transition energies as a function of total
gate-induced carrier density (ne) for two- to six-layer InSe.

The potential energy profile in Ĥ ′ is related to the electron
density distribution over the layers as

Un>1 = U1 + eaz

n∑
n′=2

En′−1,n′ , En−1,n = e

ε0

N∑
n′=n

ne(n′),

which satisfies the requirement that the total density is deter-
mined by the electric field between the top of the film and the
gate,

Eext = e

ε0
ne, ne =

∑
n

ne(n).

Then, for each density we converge the potential distribution
Un, setting an additional requirement that U1 has a value chosen
to give the desired total carrier density at self-consistency.

The results of the self-consistent calculation are shown in
Fig. 5 for the films with two to six layers, over the density
range where only states in the lowest subband are filled.
Following a slight decrease in the subband spacing at very

small gate voltages (where the density distribution remains
peaked in the center of the film), we find a steady increase
in the intersubband transition energy. The latter result shows
that by doping, one can increase the intersubband spacing, thus
broadening the spectrum of IR and FIR transitions in the film
with a given number of layers, offering an additional tunability
of the spectral characteristics of this system.

VI. CONCLUSIONS

In conclusion, we have used a hybrid k · p tight-binding
model, fully parametrized using DFT, to evaluate the energies,
oscillator strengths, and thermal linewidths of optical transi-
tions between the subbands of the conduction band of few-layer
InSe. The strongest transitions are found to be from the lowest
to next-lowest energy subbands, which broadly cover the
optical spectrum from ∼0.7 eV down to the low THz range,
with thermal linewidths ∼8–0.5 meV at room temperature
arising from the variation of in-plane effective masses between
the subbands. Similar properties can also be expected for
atomically thin films of transition-metal chalcogenides [24],
so that 2D materials offer great potential for applications in
IR/FIR optoelectronics.
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3.3 Supplementary material

3.3.1 Optical absorption

As shown in the above publication, the formation of subbands leads to the
possibility of photon absorption at frequencies in the infrared and far-infrared
range. The optical absorption rate between subbands i and f can be obtained
using the Fermi golden rule,

Γi→f = 2π
~
|〈f |δĤ|i〉|2ρ(Ef ), (3.1)

where Γi→f is the transition rate from state |i〉 to |f〉, ρ(E) is the density of states
at energy E and δĤ is the light-matter coupling term defined as δĤ = −e ~A·~p

mc

coupling states |i〉 and |f〉. To obtain the absorption of light polarised in the z-
direction, we use the following identity relating the momentum operator between

Figure 3.1: Subband optical absorption peaks in different InSe multilayers at two different
carrier concentrations. The absorption coefficient of each multilayer thin film was normalised
with respect to the absorption coefficient of bilayer at that specific carrier density. A clear
broadening of the absorption frequencies as well as a net enhancement of the optical absorption
amplitude is observed with increasing carrier density. The dielectric constant used for this
calculation was εz = 9.9 and the temperature used was T=300K.
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states |n〉 and |k〉 with the dipole moment between them[56]:

x̂nk = −i~p̂xnk
m(En − Ek)

. (3.2)

Integrating the transition rate between the two conduction subbands c1 and ci

over the totality of occupied states in the conduction band below the Fermi level,
we obtain

Wi1 = 2π
~

∫
|〈ci|δH|c1〉|2 2

(2π)2 δ(Eci − Ec1 − ~ω)f(Ec1(k)− EF )d2k (3.3)

= 2π
~

∫
|〈ci|δH|c1〉|2 2

2πδ(Ec
i − Ec1 − ~ω)f(Ec1 − EF ) d(Eci − Ec1)

~2| 1
m1|N

− 1
mi|N
|
,

where Eci − Ec1 is the subband energy difference between the 1st and the ith

subband. After integrating over the appropriate energy range effectively limited
by the Fermi-Dirac distribution f(Ec1 − EF ) assuming that the final state ci is
empty, and dividing by the incident electromagnetic flux given by multiplying the
Poynting vector over the visible area, the following expression was obtained for
the intersubband optical absorption coefficient

αi1(ω,EF ) = 8πd2
z~ωΘ(Ei|N − E1|N − ~ω)

~3c

∣∣∣∣∣∣ 1
m1|N

− 1
mi|N

∣∣∣∣∣∣
e 1

kBT

(
Ei|N−E1|N−~ω

1−
m1|N
mi|N

−EF

)
+ 1


. (3.4)

In the above expression, Ei|N − E1|N is the energy difference between the ith and
the 1st subband of an N-layer system and mi|N and m1|N are the effective masses
of the ith and the 1st conduction subband respectively.

3.3.2 Oscillator strengths

Due to an applied displacement field, the intersubband energies are expected
to be altered, leading to a shift in the intersubband absorption frequencies. How-
ever, as shown in Eq. (10) and Eq. (11) of the previously presented manuscript,
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the optical absorption amplitude hugely depends on the intersubband dipole
moment. In applying a displacement field, as well as varying the intersubband
energies, it also affects the intersubband dipole moment as well as the in-plane
effective masses. To look at the displacement field dependence of the intersubband
optical absorption in InSe, it is necessary to look at the electric field dependence
of the intersubband dipole moment d2,1

z ≡ 〈c2|ez|c1〉 between the lowest (c1) and
the second lowest (c2) conduction subband as well as at the effect that the applied
displacement field has on the resonant energies. Using perturbation theory, the
dependence of the intersubband dipole moment on an applied electric field Ez can
be obtained as

d̃2,1
z ≡ 〈c2|ez|c1〉 = 〈c2

0 + c1
0Ezd1,2

z

Ec2 − Ec1
+ c3

0Ezd3,2
z

Ec2 − Ec3
|ez|c1

0 + c2
0Ezd2,1

z

Ec1 − Ec2
〉 (3.5)

= d2,1
z + −E2

z d
1,2
z d2,1

z

(Ec2 − Ec1)2 + E2
z d

1,2
z d2,3

z

(Ec1 − Ec2)(Ec2 − Ec3) .

As shown in Eq. (3.4), as well as depending on the intersubband oscillator
strength, the optical absorption coefficient depends very strongly on the effective
mass through the joint density of states.

3.3.3 Effective masses

As shown in Eq. (14) of the above publication, the thermal broadening of
the intersubband optical transition crucially depends on the effective masses of
the different subbands. Its dependence on the displacement field can be obtained
using perturbation theory. Considering the momentum dependence of the c− c
interlayer hopping (i.e. tcc2, defined in Eq. (2.23)) as a perturbation and using 1st

order perturbation theory on the lowest conduction subband wavefunction Ψ, the
following expression can be obtained for the corrections to the conduction band
energy dependence on wavevector k

∆E(k) = 〈Ψ|δĤ|Ψ〉 = 〈Ψ0 + δΨ|δĤ|Ψ0 + δΨ〉. (3.6)
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In the above expression, the perturbation term δΨ accounts for the effect of
a displacement field in the wavefunction distribution of the lowest conduction
subband Ψ0. Considering the limit where the electrostatic potential can be
treated as a perturbation due to its smallness compared to the intersubband
energy difference, the wavefunctions are modified as

|Ψ〉 = |Ψ0〉+ |Ψj
0〉

j=N∑
j=2

Ez〈Ψj
0|ez|Ψ0〉

∆E1j
= |Ψ0〉+ |Ψj

0〉
j=N∑
j=2

eEz
∑i=N
i=1 ziαiα

j
i

∆E1j
. (3.7)

The following expression is therefore obtained for the corrections of the subband
energy-wavevector dependence with the penultimate term being the corrections
linear in the applied electric field

∆E(k) =
i=N∑
i=1

k2
(
tcc2αi(αi+1 + αi−1) + 2tcc2αi(αji+1 + αji−1)

j=N∑
j=2

eEz
∑l=N
l=1 zlαlα

j
l

∆E1j

(3.8)

+O(E2
z )
)
.

The above expression automatically implies a renormalisation of the in-plane
conduction band effective mass with respect to the applied electric field of the
form

δmc = −
i=N∑
i=1

4m2
c

(
tcc2αi(αji+1 + αji−1)∑j=N

j=2
eEz
∑i=N

i=1 zlαlα
j
l

∆E1j

)
~2 , (3.9)

where mc is the effective mass of the lowest conduction subband in the unper-
turbed situation.



Chapter 4

Tunable spin-orbit coupling in two-

dimensional InSe

4.1 Introduction

Inversion asymmetric 2D materials have spin-split bands even in the absence
of an applied electric or magnetic field. The application of an external displace-
ment field can either enhance or suppress the overall asymmetry of the electron
wavefunction[57, 58], resulting in an exceptionally useful tool to easily manipulate
the spin-splitting in any given system. Using the method of Löwdin partition-
ing[59, 60, 61] in combination with the self-consistent algorithm presented in
Section.3, the SOC was calculated in the lowest conduction subband of different
γ-stacked InSe multilayers, and its dependence on the applied displacement field
and carrier density was studied.

The ferroelectric charge transfer in bilayer InSe was calculated using DFT
to evaluate its impact on the SOC strength. To account for the intrinsic lack
of z → −z symmetry, bulk SOC vs kz was fitted to small interlayer z → −z
symmetry breaking parameters which take into account the effect that the In
atoms have in the interlayer hopping terms. Three mechanisms were found to

Figure 4.1: a) Schematic diagram of a dual-gated device made of multilayer InSe. b) Schematic
diagram of an hBN-encapsulated InSe single-gated device. c) Optical image of the dual-gated
device analysed in Section.3 for its SOC properties.
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heavily contribute to the overall SOC strength. The first one is the intrinsic lack
of inversion symmetry of the crystal, then the overall z → −z asymmetry of
the wavefunction due to the applied electrostatic potential in the thin film, and
finally the mixing between different z-parity bands due to the various interband
dipole moments. The 14-band Hamiltonian including all these z → −z symmetry
breaking hopping parameters and the SOC terms mixing the different bands was
used to calculate the SOC strength in the lowest conduction subband.

Applying such methodology, it was demonstrated how an applied displacement
field could completely suppress any intrinsic spin-splitting in multilayer InSe by
counteracting the intrinsic z → −z asymmetry of the thin film. At displacement
fields of the order of Dz = 1.5Vnm−1, the SOC was found to completely vanish
in the few-layer limit (4-8 layers). The direction of the stacking relative to that
of the displacement field generated two branches in the SOC-displacement field
dependence. In a single-gated configuration where the application of an electric
field implies an increase in the carrier density of the thin film, a complete sup-
pression of the SOC was found a lot more complicated due to the large effect
of screening inside the multilayer. It was found necessary to n-dope the system
up to carrier densities of the order of ∼ 1013cm−2 to completely suppress SOC,
which is experimentally very challenging and would require ionic-liquid-gating.
Finally, from group-theoretical arguments, a quantum well model was formulated
and a generalised expression for the SOC was obtained for any arbitrarily applied
electric field Ez and number of layers N .

The perturbation theory analysis performed to extract the SOC strength was
compared with the exact solution obtained from an exact diagonalisation of the 14-
band Hamiltonian with good agreement between the two. Finally, the calculated
SOC strengths were compared with experimentally extracted SOC splittings ob-
tained from weak antilocalization measurements (see Appendix.B.1 of this thesis)
in a high-mobility dual-gated device[6].
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4.2 Tunable spin-orbit coupling in two-dimensional

InSe

The results of this investigation were presented in Phys.Rev.B (currently under
review): "Tunable spin-orbit coupling in two-dimensional InSe"[62].
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We demonstrate that spin-orbit coupling (SOC) strength for electrons near the conduction band
edge in few-layer γ-InSe films can be tuned over a wide range. This tunability is the result of a
competition between film-thickness-dependent intrinsic and electric-field-induced SOC, potentially,
allowing for electrically switchable spintronic devices. Using a hybrid k · p tight-binding model,
fully parameterized with the help of density functional theory computations, we quantify SOC
strength for various geometries of InSe-based field-effect transistors. The theoretically computed
SOC strengths are compared with the results of weak antilocalization measurements on dual-gated
multilayer InSe films, interpreted in terms of Dyakonov-Perel spin relaxation due to SOC, showing
a good agreement between theory and experiment.

I. INTRODUCTION

Indium selenide (InSe) is a layered semiconductor with
already demonstrated high mobility and versatile op-
tical properties1–8. Atomically thin InSe films (exfoli-
ated from bulk crystals9 or produced by chemical vapour
deposition10) have already been used to fabricate field-
effect transistors (FET devices). Moreover, the persis-
tence of high mobility11–13 of electrons in n-type doped
γ-InSe to only few atomic layers3,4,9 in thickness makes
it feasible to implement InSe in spintronic devices14. In
contrast to the conventional InAs15 or HgTe16 quantum
wells, in γ-InSe it is possible to completely suppress
the conduction band SOC using applied displacement
field, allowing for exceptionally tunable spintronic de-
vices. One of the methods to control the electron spin in
semiconductors is to manipulate its spin-orbit coupling
(SOC)17–23, and, in this paper, we study the dependence
of SOC for two dimensional (2D) electrons near the con-
duction band edge of InSe films on the number of lay-
ers and on the gate-controlled electrostatic doping in the
films implemented in the FET geometry24–31.

Below, we use the earlier developed hybrid k · p tight-
binding (HkpTB) model for InSe33,34, taking into ac-
count the s and pz orbital composition of the lowest
conduction subband and self-consistent analysis of the
electrostatic potential on each layer35, and show that the
dominant term in the SOC in γ-stacked InSe multilayer
thin film (any number of layers) has the generic form,

ĤSOC = α(s× k)·ẑ. (1)

This is the only linear in wavevector k=(kx, ky) of elec-
tron (in the vicinity of the Γ-point) term allowed by C3v

point-group symmetry of the lattice of γ-stacked multi-
layer (the next term in the k · p theory expansion would

FIG. 1. SOC strength dependence on displacement field and num-
ber of layers N at ne = 0 in a dual-gated FET geometry. InSe
dielectric constant32 used here is εz = 9.9. The inset shows the
layer-number-dependence of parameter ℵ used to take into account
the influence of an electric field Ez in Eq. (2). The solid and dot-
ted lines indicate respectively when the applied displacement field
suppresses or enhances the Dresselhaus SOC.

be of the third order36 in k, hence, much weaker for a
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Ev −2.79 eV tΓcc 0.34 eV mc 0.266 m0

tΓvv −0.41 eV tcc2 −3.43 eVÅ2 Ev1 −3.4 eV

Ev2 −3.5 eV tΓcv 0.25 eV tcv2 −3.29 eVÅ2

Ecv 2.79 eV

Ec1c 1.09 eV

Evv1 0.54 eV

Evv2 0.683 eV

b54 10.54 eVÅ

λ15 0.119 eV

b16 −2.77 eVÅ

bc1v216 8.51 eVÅ

dcv −1.68 eÅ

dv1v2 −2.56 eÅ

dc1c 0.86 eÅ

tΓcc 0.34 eV

tΓvv −0.41 eV

tΓcv 0.25 eV

tcc1 0.019 eV

tv1v2 0.048 eV

δcv 0.014 eV

δc1c 0.022 eV

δv1v2 -0.001 eV

λ46 -0.09 eV

az 8.32 Å

TABLE I. (Top) Two-band hybrid k · p tight-binding parameters
extracted from the 14-band model in the bottom table. (Bottom)
Hybrid k ·p tight-binding model parameters used in the perturba-
tion theory analysis. Numerical indices in the b and λ terms label
the symmetry group shown in the character table in Fig. 4. The
magnitude of the out-of-plane dipole moments dcv , dv1v2 and dc1c
were obtained from the tight-binding model developed in Ref. 33.
The SOC parameter λ46 was calculated from the fits performed in
Appendix A and the interlayer distance az = 8.32Å was obtained
from the experimental measurements shown in Ref. 40.

feasible doping of the film)37–39. In Eq. (1), s = (σx, σy)
is a vector composed of Pauli matrices, and α is a layer-
number-dependent factor,

α(Ez, N) ≈ α∞
(

1− χ

(N + 2.84)2

)
± Ezℵ. (2)

Here, α∞ ≈ 34.5 meVÅ is the value of SOC at the con-
duction band edge of 3D bulk γ-InSe, N is the number of
layers in a thin film, χ ≈ 14.9 accounts for the non-linear
dependence of bulk SOC on the out-of-plane momentum
kz counted from the bulk A-point band edge, at kA = π

az
.

Also Ez is the electric field piercing the film, and param-
eter ℵ quantifies the dependence on the electric field, as
shown in the inset of Fig. 1.

The overall strength of SOC in Eq. (2) is determined
by the interplay between the intrinsic lattice asymme-
try of the crystal (known as Dresselhaus contribution41)
and the electric-field-induced symmetry breaking (the so-

called Bychkov-Rashba term42). This interplay allows
for the tunability of the SOC value, both by choosing
the film thickness (Nd), and by applying a displacement
field in the double-gated (both top- and bottom-gated)
devices. The results of our analysis are exemplified in
Fig. 1, indicating that a vertically applied electric field
Ez ∼ 0.15-0.20 Vnm-1 would be enough to switch SOC
off and on, opening new avenues towards the design of
spintronic devices. This form of SOC in a film is the re-
sult of k · p and tight-binding model analysis43, parame-
terized using density functional theory (DFT) computa-
tions of the band structure. The theoretically calculated
SOC size was compared with the values of SOC strength
extracted from weak antilocalization magnetoresistance,
measured in a FET based on a six-layer InSe device. We
find a good agreement between theory and experiment in
the available range of device parameters.

Below, the paper is organized as follows. In Section
II, we compute the SOC coefficient in the lowest conduc-
tion subband of InSe using DFT ab intio calculations, in
Section III, we perform simple perturbative calculations
of SOC strength in the lowest conduction subband of bi-
layer InSe and, in Section IV, we generalise the bilayer
formalism for an arbitrary number of layers. Finally, in
Section V, we compare the theoretically obtained SOC
coefficient with the values experimentally measured in
an available InSe-based FET device.

II. FIRST PRINCIPLES CALCULATIONS OF
InSe PARAMETERS

As a background to the hybrid k · p tight-binding
(HkpTB) model presented in this manuscript, we
overview the density functional theory bandstructure of
monolayer and few-layer InSe.

Monolayer InSe has pairs of vertically aligned metal

FIG. 2. Plane-averaged electrostatic potential accounting for ionic
and Hartree contributions in a double-bilayer InSe supercell (super-
cell structure shown as inset).
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FIG. 3. DFT-calculated conduction band spin-orbit splitting for
mono-, bi-, and tri-layer InSe in for small kx near the Γ-point.
The finite thickness of the film discretizes kz while kx and ky re-
main continuous variables. While the cubic Dresselhaus SOC split-
ting is expected to be zero in the Γ −M direction, in the (kx, 0)
orientation a finite contribution is expected. In contrast to the
orientation-dependent cubic SOC, the expected form of the linear
SOC splitting (see Eq. (1)) makes this contribution isotropic in
k. The shaded region labels the range in kx below the Fermi level
of a device doped with a carrier density of ne ≈ 2 × 1012cm−2.
The clear linear spin splitting with kx indicates the dominance of
the linear SOC terms near the Brillouin zone (BZ) center. Also
plotted using stars connected by dashed lines are values of split-
ting for a monolayer InSe/monolayer hBN heterostructure for three
different in-plane stacking configurations. (Inset) Hexagonal BZ of
monolayer InSe. The red circle indicates the region in the BZ with
wavevector magnitude in the range presented.

atoms in the middle sublayers and chalcogens in the outer
sublayers, arranged on a plane into a honeycomb struc-
ture. Such a lattice has a D3h point-group symmetry
which includes mirror plane symmetry, rotations by 120◦,
but not inversion symmetry. In any few-layer γ-InSe film,
the z → −z mirror symmetry is broken. This opens a
possibility for a weak “ferroelectric” charge transfer be-
tween the layers due to layer-asymmetric hybridization
between the conduction and valence bands and the result-
ing built-in electric field in the film which may be relevant
for the self-consistent analysis of the on-layer potential in
a film with a finite thickness. To find out whether this
is of relevance for InSe, or not, we carry out DFT cal-
culations on a supercell with a large vacuum separating
two mirror reflected images of a γ-InSe bilayer, to sat-
isfy periodic boundary conditions without affecting the
mismatch between vacuum potentials, produced by the
double-charge layer due to the charge transfer (see Fig. 2
and inset). For the DFT calculations, we used the gener-
alized gradient approximation (GGA) of Perdew, Burke
and Ernzerhof44, with an 12× 12× 1 k -point grid and a
plane-wave cutoff energy of 600 eV, implemented in the
VASP code45. Monolayer atomic structure parameters,
and interlayer distances, are taken from an experimental

D3h E σh 2C3 2S3 3C
′
2i 3σvi basis orbitals bands

A′1(Γ1) 1 1 1 1 1 1 1 (s+, p−z ) v, c1

A′2(Γ2) 1 1 1 1 -1 -1 xy

E′(Γ6) 2 2 -1 -1 0 0 (x, y) (p+
x , p

+
y ) v2

A′′1 (Γ3) 1 -1 1 -1 1 -1 xyz

A′′2 (Γ4) 1 -1 1 -1 -1 1 z (s−, p+
z ) c

E′′(Γ5) 2 -2 -1 1 0 0 (xz, yz) (p−x , p
−
y ) v1

FIG. 4. (Top) Character table of the point-group D3h which cap-
tures the symmetries of monolayer InSe. In parenthesis, the Bethe
notation for each irrep is shown. Both the basis function of each
irreducible representation as well as the orbital composition of any
band relevant for our analysis are displayed in the final columns.
The σh conjugacy class in the character table labels the z → −z
symmetry of each irreducible representation. This crucially deter-
mines which bands are mixed due to an applied electric field. The
superscripts on top of the orbitals indicate the parity with respect
to the z → −z symmetry calculated in Ref. 46. (Bottom) Band
structure of monolayer InSe without SOC.

reference for the bulk crystal40. We find that the charge
transfer between the layers is small, yielding a ≈ 2 meV
vacuum potential difference across the bilayer in Fig. 2,
which is so small that it will be neglected for the rest of
the manuscript.

Due to its mirror symmetry, the monolayer Hamilto-
nian cannot include sx, and sy operators, that is, it does
not display a 2D SOC. However, its symmetry allows for
spin-orbit splitting in the form of41,46

Ĥso = γk3 sin(3φ)ŝz (3)

where φ is the polar angle with respect to the Γ−M di-
rection and ŝz is the third Pauli matrix. This is reflected
by the results of DFT computations of conduction band
dispersion in mono-, bi-, and trilayers shown in Fig. 3(a).
Note that the spin polarization of the computed states
is in z-direction only for monolayers, whereas for bi- and
trilayers, where it has a linear dependence announced in
Eq. (1), it reflects in-plane spin splitting. In fact, for the
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FIG. 5. Profile and top view of bilayer γ-stacked InSe. The Se
atom of the top layer is shown to sit above the In atom of the
bottom layer but not the other way around. This crystallographic
z -asymmetry is responsible for an effective “electric field” at the
origin of the Dresselhaus SOC in bilayer InSe.

range of in-plane wavenumbers corresponding to feasible
doping densities, the spin splitting in the monolayer is
negligibly small.47. We also carried out DFT calculations
for a heterobilayer consisting of monolayer of InSe, and
monolayer of hBN (the latter was strained to give com-

mensurability with a lattice constant ahBN = aInSe/
√

3
and rotated to align the armchair direction of hBN with
the zigzag direction of the InSe). We take the interlayer
distance as 0.333 nm between the middle of hBN and
the nearest plane of Se atoms. A dipole correction was
applied, and we considered three in-plane configurations:
(1) boron directly above indium, (2) nitrogen above in-
dium (the hBN is inverted in-plane), and (3) configura-
tion (1) with the hBN shifted in-plane by half the B-
N vector. The spin-orbit splitting near Γ in the (InSe-
dominated) conduction band edge is plotted for all 3 con-
figurations in Fig. 3. For the monolayer InSe/monolayer
hBN heterostructure, we obtain a SOC which depends
very weakly on the configuration, with a strength similar
to that of the isolated InSe bilayer.

III. SPIN-ORBIT COUPLING IN InSe BILAYER

InSe belongs to the family of group-III metal-
monochalcogenides with the s and p orbitals of In and

Se dominating the low-energy dispersion in the vicinity
of the Γ-point33,43,46. In the bottomost conduction band
c and in the topmost valence band v, the atomic orbital
composition is mainly dominated by the s and pz orbitals
of both In and Se. The deeper valence bands v1 and v2

are prominently Se px and py orbitals which are naturally
split by the atomic SOC of the Se atoms.

In going from monolayer to bilayer γ-stacked InSe (see
Fig. 5), the mirror plane symmetry is broken, reducing
the symmetry from the point-group D3h to C3v. This
allows for a linear in momentum SOC splitting in the
form presented in Eq. (1) prescribed by the third-order
rotation symmetry axis48. Consequently, the interlayer
hoppings need to account for the reduction of the global
symmetries of the bilayer, leading to a finite Dresselhaus
SOC. This appears via the interlayer mixing of the op-
posite z-parity bands.

We construct a bilayer Hamiltonian using monolayer
Hamiltonians described in Ref. 33 taking into account
interlayer hopping33 and the intralayer interband spin-
orbit coupling49,

Ĥ = Ĥ(0) + δĤ =

(
Ĥ

(0)
11 + δĤ11 Ĥ

(0)
12 + δĤ12

Ĥ
(0)
21 + δĤ21 Ĥ

(0)
22 + δĤ22

)
, (4)

For the analysis of SOC in the bilayer, band edge states
in the constituent monolayers,

ΨT ≡ [c↑, c↓; c↑1, c
↓
1; v↑, v↓; v↑,px1 , v↓,px1 ; v

↑,py
1 , v

↓,py
1 ;

v↑,px2 , v↓,px2 ; v
↑,py
2 , v

↓,py
2 ],

for the bands described in Section II, will be characterised
by their respective band energies, neglecting an almost
parabolic band dispersion,

Ĥ
(0)
11(22) =




−U1(2) 0 0 0 0

0 Ec1 − U1(2) 0 0 0

0 0 Ev − U1(2) 0 0

0 0 0 (Ev1 − U1(2))̂Iν 0

0 0 0 0 (Ev2 − U1(2))̂Iν



. (5)

Here Îν is the identity operator in the 2 × 2 space of atomic px, py orbital components of v1 and v2.
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Ec1 , Ev, Ev1 and Ev2 are the energy differences between
the lowest conduction band and the c1, v, v1 and v2

bands, respectively, (see Fig. 4). In addition, we take

into account linear in momentum interband terms in the
monolayer Hamiltonian , discussed earlier in relation to
the optical selection rules for the interband transitions49,

δĤ11(22) =




0 0 0 ib54k ·Λ iλ46(s×Λ)

0 0 0 0 ibc1v216 (k ·Λ)

0 0 0 iλ15(s×Λ) ib16(k ·Λ)

−ib54(k ·Λ)T 0 −iλ15(s×Λ)† 0 0

−iλ46(s×Λ)† −ibc1v216 (k ·Λ)T −ib16(k ·Λ)T 0 0



, (6)

Here 1×2 matrices Λy=[0,1] and Λx=[1,0] operate in the
px, py orbital components of v1 and v2 valence bands and
the coefficients b45, b16 and bc1v216 characterise the c− v1,
v − v2 and c1 − v2 intra-layer couplings (associated with
interband optical transitions excited by the in-plane po-
larised photons). Spin Pauli matrices sx,y produce spin
flips upon the interband mixing which can be rooted

to atomic S · L coupling (between px/y and pz orbitals
which contribute to c, v, v1, v2 bands captured by param-
eters λ15 and λ46). Note that k ·Λ ≡ kxΛx + kyΛy and
s×Λ ≡ sxΛy − syΛx.

Hopping between neighbouring layers is accounted for
by the following two terms,

Ĥ
(0)
12 =




tΓcc 0 0 0 0

0 0 0 0 0

0 0 tΓvv 0 0

0 0 0 0 0

0 0 0 0 0



, (7)

δĤ12 =




0 (tcc1 + δc1c) (tΓcv + δcv) 0 0

(−tcc1 + δc1c) 0 0 0 0

(−tΓcv + δcv) 0 0 0 0

0 0 0 0 0

0 0 0 0 0



. (8)

The first of them describes the resonant interlayer
hybridization of separately lower conduction and the
top valence band edges, which was identified33 as the
strongest hybridization effect, determined by the sub-
stantial weight of s and pz chalcogen orbitals in the sub-
lattice composition of the band edge states. The second
term takes into account interband interlayer hybridiza-
tion, which produces a much weaker effect on the band
edge energies, but is sensitive to the mirror symmetry
breaking set by stacking of the layers (see Fig. 4).

According to the table in Fig. 4, the on-layer states in
bands c are odd under z → −z reflection while bands v
and c1 are even under the same transformation. Because
of this, for a mirror symmetric arrangement of the layers,
the corresponding interband interlayer couplings would
obey the relation tΓcv = −tΓvc and tc1c = −tcc1 . To capture

the mirror plane symmetry breaking for γ-stacking, we
introduce parameters δαβ such that tΓcv = tΓcv + δcv, t

Γ
vc =

−tΓcv + δcv, tv1v2 = tv1v2 + δv1v2 , tv2v1 = −tv1v2 + δv1v2 ,
tcc1 = tcc1 + δc1c, and tc1c = −tcc1 + δc1c. Overall, the
z → −z symmetry breaking in the bilayer (which gives
rise to the 2D SOC in the lowest conduction subband of
the bilayer) is produced by the interplay between δH11

and the contributions from δαβ in Eq. (9). For this we
use 3rd order pertubation theory with respect to param-
eters δc1c, δcv, b54, b16, b

c1v2
16 , λ15, and λ46, and this results

in the spin-orbit coupling constant,

α0 = 2

(
b54λ15δcv

∆Ecv1∆Eg1
+

b16λ46δcv
∆Ecv2∆Eg1

+
bc1v216 λ46δc1c
∆Ecc1∆Ecv2

)
.

(9)
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Here we also account for asymmetry induced by an exter-
nal electric field so its effect on the on-layer energy of the
orbitals in Eq. (5), captured by ∆Ecv1 ≡ −(tΓcc + Ev1),
∆Ecv2 ≡ −(tΓcc +Ev2) and ∆Ecc1 ≡ −(tΓcc +Ec1) are the
energy differences between the lowest conduction sub-
band and v1, v2 and c1 bands while ∆Eg1(2) = −(tΓcc +

Ev)± tΓvv is the energy difference between the lowest con-
duction subband and the 1st or 2nd topmost valence sub-
band, respectively.

In the absence of external electric field, U1 = U2 = 0,
and using parameters in Table III, we estimate that
Ez(α0 = 0) = 0.35Vnm−1. The dependence on a per-
pendicularly applied electric field Ez is approximated by

ℵ ≡ dα

dEz

∣∣∣∣
U1=U2=0

=
(b54λ15 + b16λ46)eazt

Γ
cv

∆Ecv1
(10)

×
(

2tΓvv
∆Eg1∆Eg2

)(
1

2tΓcc
− 1

2tΓvv

)
.

Here, az = 8.32 Å is the interlayer distance between the
central planes of two neighbouring InSe monolayers. Us-
ing parameters in Table I we estimate that for a bilayer
ℵ = 38meVÅ/Vnm−1, this also means that an electric
field Ez = 0.35 Vnm-1 would reduce the 2D SOC cou-
pling strength to zero.

In addition to the above-discussed effects, mirror sym-
metry breaking may be caused by the encapsulation
environment50 coupling on the Se orbitals in the outer
top/bottom sublayers of the crystal. This asymmetry
may be due to the difference between the encapsulat-
ing materials, or even due to a different orientation of
the top/bottom encapsulating layers of the same com-
pound, e.g., hexagonal boron nitride (hBN). To describe
this effect, we introduce an additional term in the bilayer
Hamiltonian responsible for c − v, v1 − v2 band mixing
with randomly different strength in the top and bottom
layers,

δĤ
(I)
11(22) =




∆Ec1(2) 0 ±Υ
t/b
cv 0 0

0 0 0 0 0

±Υ
t/b
cv 0 ∆Ev1(2) 0 0

0 0 0 ∆Ev11(2)Îν ±Υ
t/b
v1v2 Îν

0 0 0 ±Υ
t/b
v1v2 Îν ∆Ev21(2)Îν




. (11)

Here, ∆Ec1(2) and ∆Ev1(2) are the energy shifts of the

c and the v bands in the 1st and 2nd layer respectively;
∆Ev11(2) and ∆Ev21(2) are the energy shifts of the bands

v1 and v2 and Îν is the identity operator in the 2 × 2
space of atomic px, py orbital components of the v1 and v2

bands. The terms Υt
cv and Υt

v1v2 are responsible for c−v
and v1 − v2 band mixing in the top layer: the interfacial
z → −z symmetry breaking couples states of opposite
parities. In the bottom surface, the interfacial effect is
inverted, which is the reason for the inverted signs, −Υb

cv

and −Υb
v1v2 of the corresponding terms in δĤ

(I)
11(22). In

Table II, we quote values of all those parameters obtained
using DFT modelling described in Section II. In order

InSe/hBN stacking ∆Ec ∆Ev |Υcv| |Υv1v2 |
1 140meV 141meV 35.6meV 36.98meV

2 155meV 95meV 20.5meV 32.77meV

3 146meV 141meV 35.6 meV 39.37meV

TABLE II. DFT-estimated parameters describing the effect of
hBN substrate or overlay on an InSe monolayer in Eq. (11).

to extract those parameters, the wavefunctions of bands
c and v1 were obtained for the three different atomic ar-
rangements described in Section II. By comparing their
wavefunction distribution with the DFT-computed wave-
functions of suspended monolayer InSe, the mixing terms
between opposite z-parity bands Υcv and Υv1v2 was ex-
tracted for each configuration. Finally, from the DFT
energy eigenvalues, the shifts in energy of bands c and
v were obtained for each of the three different configu-
rations; the energy shifts of bands v1 and v2 were ne-
glected due to the very weak interlayer hybridization of
those bands which results in a negligible contribution to
the conduction band SOC strength. Using pertubation
theory, we calculate the contribution of these additional
terms towards bilayer SOC and find that the dominant
effect comes from the c− v band mixing, resulting in,

α(I) =
[ b45λ15

∆Eg1∆Ecv1
+

b16λ46

∆Eg1∆Ecv2

](
Υt
cv −Υb

cv

)
.

(12)

The above equation suggests that encapsulation of InSe
with the same material in the top and bottom would
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result in the cancellation of the main part of such an
additional contribution. Due to misalignement or an off-
set of the encapsulating crystals, this cancelation would
never be exact leaving a residual effect due to the varia-
tion of InSe and, e.g., hBN stacking. Taking into account
the random nature of such a variation, in the mechani-
cally assembled structures, we estimate characteristic size
of the residual SOC contribution using the characteristic
difference of the Υcv parameters for two InSe/hBN stack-
ings analysed in Section II (Configuration 1 and 2 in Ta-
ble II and Fig. 3). This gives |α(I)| ∼ 3.5meVÅ, which
is an order of magnitude smaller than α0 = 13meVÅ.
As a result, for InSe bilayer encapsulated with hBN on
both sides, the value and displacement field dependence
of SOC can be well described using Eq. (9) and (10).

IV. SPIN-ORBIT COUPLING IN MULTILAYER
InSe

Here, we combine the analysis of two factors that de-
termine the strength of SOC in multilayer γ-InSe: the
asymmetry embedded into the interlayer hybridization
and the effect of an externally controllable electric field.

A. Self-consistent analysis of subband
electrostatics in doped multilayer InSe films

In this section, the effect of an externally applied elec-
trostatic potential (gating) for electrons in the lowest
conduction subband is calculated self-consistently, and
its effect on the charge distribution and on the band gap
is discussed for the dual and single-gated FET geometry

as sketched in insets of Fig. 11 and Fig. 13, respectively.
To quantify the SOC in the lowest conduction subband of
few-layer InSe films, we describe the subband structure
of the latter (both dispersion and wavefunctions) taking
into account the electrostatic potential profile induced by
doping and gating. Our ‘workhorse’ is a 2-band hybrid
k · p tight-binding (HkpTB) model previously discussed
in Ref. 35, formulated in the basis of conduction, c and
valence, v band states in each layer [c1, v1, c2, v2, ...]. The
HkpTB Hamiltonian has the form,

ĤN
k·p ≈




~2k2

2mc
+ U1 0 tcc tcv · · ·
0 Ev + U1 −tcv tvv · · ·
tcc −tcv ~2k2

2mc
+ U2 0 · · ·

tcv tvv 0 Ev + U2 · · ·
0 0 tcc 0 · · ·
...

...
...

...




(13)

Here, tcc(vv) parameterize the interlayer conduction-

conduction (valence-valence) hops (tcc ≡ tΓcc + tcc2k
2),

while tcv (tcv ≡ tΓcv + tcv2k
2) is the conduction to valence

band hop. The zero of energy is set to the monolayer con-
duction band edge, so that Ev ≈ −2.8 eV is the energy
of the monolayer’s topmost valence band at the Γ-point.
We neglect the valence band dispersion in InSe mono-
layers, as earlier studies1,51–53 have shown that it is ap-
proximately flat over a large central part of the Brillouin
zone. We also neglect any k-dependence in tvv for the
same reason. The terms Uη account for the electrostatic
potential in layer η, and they are calculated as35,

Uη>1 = U1 + eaz

κ=η∑

κ=2

E(κ−1)κ, (14)

where az = 8.32 Å is the distance between adjacent layers
and E(κ−1)κ is the electric field between layers κ− 1 and
κ. E(κ−1)κ is obtained from the electron density on each
InSe layer, nη, as

E(κ−1)κ =
e

εzε0

η=N∑

η=κ

nη, (15)

where N is the total number of InSe layers in the device,
nη is the carrier concentration at the ηth layer and εz
is the dielectric constant of InSe in the z -direction. We
then approximate the electric field across a single layer
as the mean of the fields either side of it,

Eκ ' (E(κ−1)κ + Eκ(κ+1))/2. (16)

Values of the parameters in the above Hamiltonian are
listed in Table III. They are obtained by fitting the re-

sults of the numerical analysis of the 14-band model de-
scribed in Ref. 33, 35, 55, and 56. It is also common, in
order to obtain more flexibility in gating, to have both a
back gate and a top gate applied to the device as shown
in the dual-gated geometry in the inset of Fig. 11. To
demonstrate the behaviour of the SOC coefficient in the
dual-gated case, we reproduce the gating configuration
used for transport experiments on a six-layer device stud-
ied in Ref. 11. In that work, a fixed positive top gate
voltage was applied to dope the system. At Vbg = 0,
the carrier density in the InSe films was measured to be
ne ∼ 4× 1012 cm-2 indicating that the charge density in
the top plate was that same amount. To include a fixed
top gate in our electrostatic calculations, we amend Eq.
(15) to read

E(κ−1)κ =
e

εzε0

[
η=N∑

η=κ

nη − ntg
]
, (17)

where ntg is the fixed top gate carrier density and nη the
carrier density in layer η. In considering the single-gated
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FIG. 6. (a) Band gap dependence on carrier density for a single (solid) and dual-gated (dashed) device with a fixed top gate carrier
density ntg = 4 × 1012cm-2. A reduction in the band gap with increasing electric field is expected from the displacement of electrons
towards lower energies along with an increase in electrostatic energy of the holes (quantum-confined Stark effect)8,54. (b) Fraction of the
total carrier density at each layer η in a single-gated six-layer InSe device. The first layer is defined as the one closest to the metallic gate.
(c) Fraction of the total carrier density at each layer η against displacement field in a six-layer InSe device in a dual-gated configuration
at two fixed carrier concentrations of ne = 2.5× 1012cm-2 for the solid line and ne = 7.5× 1012cm-2 for the dotted line. The same color
to layer correspondence applies as in Fig. 2(b).

FET geometry, a band gap modulation in the range of
10−20 meV is obtained for carrier densities in the range
of 0− 3× 1012cm-2 for 6−9 layers as shown in Fig. 6(a).
Such band gap tunability11 is a lot more efficient in the
dual-gated configuration, due to a reduced electrostatic
screening, with the band gap increasing up to 50 meV for
an 8 layer device with a doping density of 2× 1012 cm-2

and an applied top gate carrier density of ntg = 4× 1012

cm-2. This reduction in screening also makes the charge
redistribution more efficient in the dual-gated FET de-
vice compared with the single-gated configuration, see
Fig. 6(b) and 6(c).

L Band gap (eV) mc/m0

1 2.87 0.266

2 2.14 0.220

3 1.83 0.204

4 1.67 0.197

5 1.58 0.192

6 1.52 0.189

7 1.48 0.187

8 1.46 0.186

9 1.44 0.185

10 1.42 0.184

TABLE III. Dependence of the energy gap and of the effective
mass of the lowest conduction subband as a function of the number
of layers L; m0 is the free electron mass.

B. SOC in multilayer films from few-layer HkpTB

In analyzing the SOC in multilayer InSe, two main
mechanisms are found to determine the SOC strength.

First, there are the intralayer dipole moments which mix
wavefunctions of opposite parities within each layer un-
der an applied electric field. Second, there is an interplay
between the intrinsic inversion asymmetry of the lattice
structure of γ-InSe, and the overall wavefunction z → −z
symmetry breaking due to the applied electrostatic po-
tential. For the analysis of SOC in multilayer InSe it is
necessary to include deeper valence bands v1 and v2 dom-
inated by the px, py orbitals necessary for atomic SOC
mixing with the pz orbitals in c and v (see the orbital
composition of each band in the character table on top
of Fig. 4). On including the deeper valence bands, the

hybrid k · p tight-binding Hamiltonian Ĥ of an N -layer
InSe43 in the vicinity of the Γ-point (kx, ky → 0) previ-
ously discussed in Section III is rewritten as the sum of
an unperturbed Ĥ(0) and a perturbative part δĤ,

Ĥ = Ĥ(0) + δĤ. (18)

Writing the wavefunction eigenstates of the multilayer
Hamiltonian Ĥ in a 14 × N band basis as Ψ =
[Φ1,Φ2,Φ3,Φ4, ...,ΦN ], where Φw is the 14-band mono-
layer basis in layer w defined as

Φw ≡ [c↑(w), c↓(w), c
↑(w)
1 , c

↓(w)
1 , v↑(w), v↓(w), v

↑,px(w)
1 , v

↓,px(w)
1 ,

v
↑,py(w)
1 , v

↓,py(w)
1 , v

↑,px(w)
2 , v

↓,px(w)
2 , v

↑,py(w)
2 , v

↓,py(w)
2 ],

(19)

yields the following expression for Ĥ, Ĥ0 and δĤ
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Ĥ =




Ĥ
(0)
11 + δĤ11 (Ĥ

(0)
12 + δĤ12) 0 0 · · ·

(Ĥ
(0)
12 + δĤ12)T Ĥ

(0)
22 + δĤ22 (Ĥ

(0)
23 + δĤ23) · · · · · ·

0 (Ĥ
(0)
23 + δĤ23)T

. . . (Ĥ
(0)
(η−1)η + δĤ(η−1)η) · · ·

0
... (Ĥ

(0)
(η−1)η + δĤ(η−1)η)T Ĥ

(0)
ηη + δĤηη · · ·

...
...

...
...

. . .




(20a)

Ĥ(0)
ηη =




−Uη 0 0 0 0

0 (Ec1 − Uη) 0 0 0

0 0 (Ev − Uη) 0 0

0 0 0 (Ev1 − Uη )̂Iν 0

0 0 0 0 (Ev2 − Uη )̂Iν




(20b)

δĤηη =




0 Eηdc1c Eηdcv ib54(k ·Λ) iλ46(s×Λ)

Eηdc1c 0 0 0 ibc1v216 (k ·Λ)

Eηdcv 0 0 iλ15(s×Λ) ib16(k ·Λ)

−ib54(k ·Λ)T 0 −iλ15(s×Λ)† 0 Eηdv1v2 Îν

−iλ46(s×Λ)† −ibc1v216 (k ·Λ)T −ib16(k ·Λ)T Eηdv1v2 Îν 0




(20c)

Ĥ
(0)
(η−1)η =




tΓcc 0 0 0 0

0 0 0 0 0

0 0 tΓvv 0 0

0 0 0 0 0

0 0 0 0 0



, δĤ(η−1)η =




0 (tcc1 + δc1c) (tΓcv + δcv) 0 0

(−tcc1 + δc1c) 0 0 0 0

(−tΓcv + δcv) 0 0 0 0

0 0 0 0 (tv1v2 + δv1v2)

0 0 0 (−tv1v2 + δv1v2) 0



.

(20d)

Here, indices η and κ label layers. The basis of each ma-

trix Ĥ
(0)
ηκ and δĤηκ is the 14-band monolayer InSe basis.

In Ĥ
(0)
ηη , Uη is the electrostatic potential in the ηth layer,

Ev is the monolayer topmost valence band energy as pre-
viously defined in the 2-band model, Ev1 , Ev2 and Ec1
are the energies of the v1 v2 and c1 bands, and Îν is the
identity operator in the space of atomic px, py orbitals.

In Ĥ
(0)
(η−1)η, parameters tΓcc and tΓvv are the neighbouring

conduction-conduction (valence-valence) interlayer hop-
pings; no spin index has been included in Eq. (20d) and
in Eq. (20b) as all non-zero matrix elements are spin in-

dependent. In δĤ(η−1)η, tΓcv and δcv are the z -symmetric
and z -antisymmetric c − v mixing interlayer hoppings,
respectively (see Appendix A). In δĤηη, dcv, dv1v2 and
dc1c are the out-of-plane dipole moments (see Fig. 4).
Coefficients b45, b16 and bc1v216 are k · p mixing terms be-
tween c − v1, v − v2 and c1 − v2 respectively, while λ46

and λ15 are the atomic orbital SOC strengths for c− v2

and v − v1 spin-flip mixing, with values given in Table
I. The latter is included using spin matrices sx and sy.
Matrices Λy and Λx are 1 × 2 matrices [0, 1] and [1, 0],
respectively, operating in the px, py orbital component of

the v1 and v2 valence bands and k · Λ ≡ kxΛx + kyΛy

and s×Λ ≡ sxΛy − syΛx.
In the absence of interband hoppings, and having ne-

glected the interlayer hoppings between the deeper va-
lence bands v1 and v2 and between band c and the upper
conduction band c1, the subband eigenstates formed by
Ĥ0 define the orthogonal basis used in the Löwdin pro-
jection. The eigenstates of the jth conduction and va-
lence subband states in this unperturbed Hamiltonian

therefore have the form |cj〉 =
∑η=N
η=1 αjη|cη〉, |vj〉 =∑η=N

η=1 βjη|vη〉, |vj1(2)〉 = |v1(2)η〉, |cj1〉 = |c1η〉 where |cη〉
, |vη〉, |v1(2)η〉 and |c1〉 are the c, v, v1(2) and c1 mono-
layer eigenstates in layer η, respectively. In the following
analysis we will only focus on the lowest conduction sub-
band α1

η ≡ αη. For the purpose of calculating the SOC
coefficient as a function of carrier density, the v1, v2 and
c1 subbands are approximated as all being located at
E′v1 ≡ Ev1 − Uav, E′v2 ≡ Ev2 − Uav and E′c1 ≡ Ec1 − Uav
respectively, where Uav is the average electrostatic po-
tential per layer. This is due to a small change in the
on site electrostatic potential, ∆U(η−1)η = Uη−1−Uη, as
compared with the Ev1 , Ev2 and Ec1 energy denomina-
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tors (0.1−0.3 eV, as compared to about 3.5 eV for c to
v1(2) energy denominator terms and to about 1.4 eV for
the c to c1 terms). When applying the Löwdin partition-
ing method57,58 (see Appendix D), the A block is chosen
to act on the ↑ and ↓ spin states of the lowest conduction
subband and the B block on every other subband in the
InSe multiband structure.

In order to obtain the SOC term perturbatively, we ac-
count for three effects: an inversion symmetry breaking
(such as an electric field or the interlayer pseudopoten-
tials); SOC interband mixing; and k · p mixing elements.
Consequently, the lowest-order non-zero terms in the per-
turbation theory have to be third-order in the expansion.
Defining,

H ′ρω ≡ 〈ρ|δĤ|ω〉, (21)

where |ρ〉 and |ω〉 are two eigenstates of Ĥ0, the corre-
sponding third-order terms in quasi-degenerate pertur-
bation theory have the form,

∆H
(3)
mm′ = −1

2

∑

l,m′′

H ′mlH
′
lm′′H ′m′′m′

(Em′ − El)(Em′′ − El)

− 1

2

∑

l,m′′′

H ′mm′′H ′m′′lH
′
lm′

(Em − El)(Em′′ − El)

+
1

2

∑

l,l′

H ′mlH
′
ll′H

′
l′m′

(Em − El)(Em − El′)

+
1

2

∑

l,l′

H ′mlH
′
ll′H

′
l′m′

(Em′ − El)(Em′ − El′)
, (22)

where the m,m′ indices correspond to Ĥ0 subband eigen-
states in block A and the l, l′ index to any subband eigen-
state in block B (see Appendix D). Energies Em(l) corre-

spond to the energy of the mth or lth eigenstate. Contri-
butions to SOC originate from the 3-step loop Feynman
diagrams in Fig. 7-10, with spin reversed initial and final
states c↑(↓) and c↓(↑).

The Feynman diagrams, originating from the inversion
asymmetric parameter δcv and δc1c in combination with
the mixing with deeper valence bands and SOC as shown
in Fig. 7 and Fig. 8, give a term,

∆H ′′′11 = 2

[
j=N∑

j=1

κ=N∑

κ=1

(
b54λ15δcv

∆Ecv1∆Ecvj
+

b16λ46δcv
∆Ecv2∆Ecvj

)

× ακ(βjκ+1 + βjκ−1)

ξ=N∑

ξ=1

αξβ
j
ξ +

η=N∑

η=1

(
bc1v216 λ46δc1c
∆Ecc1∆Ecv1

)
×

(23)

αη(αη+1 + αη−1)

)]
(s× k),

where δcv and δc1c is the z-asymmetric parameters be-
tween c and v and between c1 and c defined in Eq. (20d)
and further discussed in Appendix A. In the presence of

FIG. 7. (Left) Feynman diagram of the interlayer spin-flip loops
due to the γ-stacking involving the upper conduction band c1.
(Right) Feynman diagram of the interlayer spin-flip loops due to
the γ-stacking involving the deeper valence bands v1 and v2. Such
contribution is only relevant for the Dresselhaus SOC in the valence
band v as shown in Appendix A. Doted lines (· · · ) label the terms

in δĤ responsible for inversion symmetry breaking. Dashed lines
(−−−) label the intra-atomic SOC mixing between different bands.

Solid lines label the k · p interband mixing terms in δĤ. Different
colors label pairs of loops that produce competing contributions in
the same order of perturbation theory.

FIG. 8. Feynman diagram of the interlayer spin-flip loops due to
the γ-stacking responsible for breaking the z → −z symmetry in
the c to v hopping parameters tcv and tvc. Doted, dashed and solid
lines follow the same convention as in Fig. 7.

an external electrostatic potential, the signs of δcv and
δc1c become important, as it can be related to placing a
single electrostatic gate on one of the surfaces and the ori-
entation (up/down) of externally controlled electric field,
Ez.

The two diagrams in Fig. 9, give a SOC term in the
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FIG. 9. Feynman diagram of the SOC originated from the asym-
metry induced by the electrostatic potential distribution Ui com-
bined with the z → −z symmetric interband hopping parameter
tcv . Doted, dashed and solid lines follow the same convention as in
Fig. 7.

form of,

∆H ′11 = 2

[
j=N∑

j=1

κ=N∑

κ=1

( b54λ15t
Γ
cv

∆Ecv1∆Ecvj
+

b16λ46t
Γ
cv

∆Ecv2∆Ecvj

)

× ακ(βjκ+1 − βjκ−1)

(
ξ=N∑

ξ=1

αξβ
j
ξ

)]
(s× k), (24)

where ακ and βjκ are the components of the lowest con-
duction subband and the jth valence subband respec-
tively; κ labels the layer index. ∆Ecvj ≡ Ec −Evj is the
energy difference between the lowest conduction subband
and the jth valence subband and ∆Ecv1(2) ≡ Ec − E′v1(2)
is the energy gap between the lowest conduction subband
and the v1 and v2 subbands located at Ev1(2) −Uav. The
loops shown in Fig. 10 for the dipolar mixing terms give
a SOC term in the form of

∆H ′′11 = 2

[
j=N∑

j=1

κ=N∑

κ=1

(
dcvλ15b54

∆Ecvj∆Ecv1
+

dcvλ46b16

∆Ecvj∆Ecv2

)

× (Eκακβjκ)

(
ξ=N∑

ξ=1

αξβ
j
ξ

)
+

η=N∑

η=1

α2
ηEη ×

(
dv1v2b54λ46

∆Ecv1∆Ecv2

+
dc1cb

c1v2
16 λ46

∆Ecc1∆Ecv2

)]
(s× k), (25)

where dcv is the matrix element of the out-of-plane dipole
operator between the monolayer conduction and valence
bands, dv1v2 is the out-of-plane dipole moment between
v1 and v2 and dc1c the out-of-plane dipole between c1
and c. Eη is defined as the electric field in layer η and
∆Ecc1 ≡ Ec − E′c1 is the energy difference between the

FIG. 10. Feynman diagram of the SOC from the dipolar mixing
terms. Dots, dashed and solid lines follow the same convention as
in Fig. 7. Different colors label the different 3-step loops included
in Eq. (22) in the same order of perturbation theory.

lowest conduction subband and the set of c1 subbands lo-
cated at Ec1 − Uav. In accounting for the dipolar terms,
some care must be taken in choosing its sign in the few-
layer case, as is further explained in Appendix B.

Combining all these contributions enables us to de-
scribe the dependence of SOC strength, α, on the number
of layers, electric field, and doping in the film as shown
in Figs. 11,12 and 13. For example, as illustrated in
Fig. 12, in multilayer InSe in a single-gated FET, doping
the device to carrier densities > 1013cm-2 can lead to the
compensation of the intrinsic SOC by the contribution of
the gate-induced electric field.

C. SOC analysis in InSe films using a quantum
well model

To describe thicker films, it is more practical to use
a quantum well model for InSe films8,35. For this, we
describe the dispersion of electrons in the k · p theory
expansion near the A-point conduction band edge of bulk
InSe as

Ec(p, pz) =

(
~2

2mA
+ ξp2

za
2
z

)
p2 +

~2p2
z

2mAz

+ α∞

(
1− χa2

zp
2
z

π2

)
(s× p), (26)

where mA and mAz are the in-plane and out-of-plane
effective mass at the A-point and the parameters ξ and χ
take into account the anisotropic non-parabolicity of the
electron’s dispersion characteristic for layered systems.
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FIG. 11. SOC strength dependence on displacement field and car-
rier density for a six-layer InSe dual-gated FET device as shown in
the inset. The solid and dotted lines indicate respectively when the
applied displacement field suppresses or enhances the Dresselhaus
SOC.

FIG. 12. 2D SOC coefficient α in the lowest conduction subband
of N-layer InSe film against carrier density for different number
layers in a single-gated FET geometry. Inset: shift in momentum
of the minimum of the lowest conduction subband as a function of
the number of layers when no electrostatic doping is present. The
dielectric constant, used for this calculation, was εz=9.9. The solid
and dotted lines indicate respectively when the applied displace-
ment field suppresses or enhances the Dresselhaus SOC.

In Fig. 13(b) we show the pz-dependence (around the A-
point) of the linear in kx, ky spin-orbit coupling computed
by DFT for bulk InSe using QSGW approach55,59, to
compare with the SOC form in Eq. (26). This has to be
complemented with the generalised Dirichlet-Neumann
boundary conditions for the quantum well wavefunction
Ψ(z) at the encapsulating interfaces,

Ψ± νaz∂zΨ = 0, ν ≈ 1.42. (27)

The latter determines the values for the wave numbers of
the electron’s standing waves,

pz =
nπ

(N + 2ν)az
, (28)

which determines the subband and layer-number-
dependence of the subband mass and SOC parameter,

1

mn
≈ 1

mA

(
1− 6.2n2

(N + 2ν)2

)
, (29)

αn|N (n << N) ≈ α∞
(

1− χ

(N + 2ν)2

)
.

By fitting α1|N described in Eq. (2) to the values of the
lowest subbands SOC strength in Fig. 13 we find that
α∞=34.5 meVÅ and χ=14.9 respectively. Additionally,
the results of the calculations, performed in the same
films subjected to an electric field Ez perpendicular to
the layers shown in Fig. 1 and 11 show an approximately
linear SOC strength dependence on Ez. We describe the
latter as

α(N, Ez) = α(N)− Ezℵ(N), (30)

with the vales of ℵ(N) for N ≥ 2 shown in the inset
of Fig. 1. Further to the DFT calculations for the few-
layer case, in Fig. 3(b) we use previous quasiparticle self-
consistent GW (QSGW) calculations for bulk γ-InSe55,59

to extract the kz-dependence of the coefficient of the lin-
ear component of SOC for small in-plane momentum near
kx = ky = 0, for both the conduction and valence bands.
This shows that as kz approaches the bulk band edge
(located at kz = π/az) the SOC strength increases, im-
plying that as kz is restricted by confinement in thin films
of InSe, the SOC strength can be expected to decrease
from its bulk value, with smaller strengths for thinner
films.

V. MAGNETOTRANSPORT STUDIES OF InSe
FILMS IN THE FET GEOMETRY AND THEIR

COMPARISON WITH THEORY

In order to probe the nature of SOC in InSe, we fab-
ricated a dual-gated multiterminal 6 layer γ-InSe device
using mechanical exfoliation and hexagonal boron nitride
(hBN) encapsulation, which were carried out in an in-
ert atmosphere of a glovebox60. Such encapsulation was
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FIG. 13. (a) SOC coefficient α computed for InSe films with var-
ious thicknesses and carrier densities in a single-gated FET geom-
etry (inset), calculated assuming εz=9.9 for the InSe. The data
shown in circles (©) were obtained by exact diagonalization of the
14-band Hamiltonian in Ref. 55 and compared with the pertur-
bation theory results obtained by Löwdin partitioning (4) (note
that for N=1, α = 0 for ne = 0× 1012cm-2). Inset shows the usual
configuration of a single-gated FET device. The solid and dashed
lines indicate the fitted dependence of the Dresselhaus term as a
function of the number of layers when the quantum well approx-
imation holds (N ≥ 4) and when it does not respectively. (b) In
red, the QSGW-calculated SOC strength as a function of pz in bulk
γ-InSe for the conduction band56,59. As pz approaches the band
edge located at pz = π

az
= 0.378 Å−1, the SOC strength increases

following a quadratic dependence on momentum pz shown in green(
α(pz) = α∞

(
1− χa2zp

2
z

π2

)
, where α∞ = 34.5meVÅ and

χ = 14.9

)
. This increasing trend indicates that for greater

confinement under a decreasing number of layers, a weaker
linear Dresselhaus SOC is expected.

needed to protect air-sensitive InSe flakes from the en-
vironment (see Fig. 14(a)). In addition, electrical con-

tact to InSe was provided by few-layer graphene (FLG)
flakes which in turn were connected to metal leads by
standard nanofabrication techniques as illustrated in Fig.
14(a) (see Ref. 11 for further details). The gate-tunable
work function of graphene ensured ohmic contacts be-
tween FLG and 2D InSe61 and thus enabled us to explore
InSe properties using conventional four-terminal mea-
surements. To characterize the fabricated device, we first
measured its longitudinal resistivity, ρxx, as a function of
gate-induced carrier density, ne. The latter was obtained
via Hall-effect measurements that provided full ne(Vbg)
dependence presented in Fig. 15. In contrast to ear-
lier studies of the quantum Hall effect in InSe/graphene
interfaces62, the perfectly linear ne vs Vbg trend shown
in the inset of Fig. 15 does not indicate any substan-
tial charge transfer from the InSe to the gating surface.

FIG. 14. (a) Optical photograph of an encapsulated InSe flake
(light blue) equipped with few-layer graphene (FLG) contacts
(red). Yellow polygons illustrate gold leads contacting FLG. Green
colour corresponds to the bottom hBN flake deposited on top of an
oxidized Si wafer (dark blue). (b) Calculated charge density dis-
tribution along the different layers in the dual-gated device under
study. At a carrier concentration of ne = 8 × 1012 cm-2, the dis-
tribution of charges becomes z → −z symmetric as the top plate
carrier density is fixed at ntg = 4× 1012 cm-2.
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FIG. 15. Weak antilocalization feature in conductivity measured
in a 6-layer dual-gated InSe device with corresponding optimal
fits (Black). Carrier densities were measured in the range from
1.7−2.2×1012 cm-2 in steps of 0.1×1012 cm-2. Blue indicates the
upper and lower bound fits of the corrections to magnetoconduc-
tivity. Top inset shows the carrier density at each back gate voltage
obtained from Hall-effect measurements. The finite carrier density
at Vbg=0 is due to the applied top gate voltage corresponding to
Vtg = 8 V. The linear relation between the carrier density and the
back gate voltage for a fixed top gate of Vtg = 8 V was found to
be ne = Υ(Vbg − V ′bg(Vtg=8V)

) where V ′
bg(Vtg=8V)

= −67.6V and

Υ = 5.71× 1010 V-1cm-2.

Using Drude formula we determined the mean free path
of charge carriers, λ, and respective scattering time, τ ,
important parameters critical for further analysis. The
effective mass for the lowest conduction subband used to

FIG. 16. Inverse spin relaxation time and phase relaxation length
vs diffusion coefficient. The proportionality relation between the
diffusion coefficient obtained by varying the carrier density ne and
the inverse of the spin relaxation time indicates Dyakonov-Perel
mechanism of spin relaxation.

extract τ was mc = 0.12me, obtained from an accurate
calculation of the bulk effective mass accounting both for
electron-electron and electron-phonon interaction effects
in the bulk conduction band.63.

An experimental manifestation of the SOC strength
can be found in the weak antilocalization (WAL) cor-
rections to magnetoconductance64–67 produced by the
interference of electron waves propagating along closed
loops of random walks68,69. Such behavior has been ob-
served in recent studies of few-layer single-gated GaSe70

and InSe71,72.
In Ref. 72, the fitting procedure used to extract the

SOC strength from the corrections to magnetoconduc-
tance was the formalism developed by Hikami, Larkin
and Nagaoka66 for systems where the spin relaxation
mechanism is dominated by scattering with magnetic
impurities73,74. As the γ-stacked phase in InSe is non-
centrosymmetric and therefore the spin relaxation mech-
anism is expected to be Dyakonov-Perel, their extracted
spin relaxation parameters from WAL fits were overes-
timated. In Ref. 71 the enhancement of the SOC as
compared to our estimated bulk SOC strength value at
the band edge (α∞ ≈ 34 meVÅ) is a result of an impurity
deposition layer formed at the interface of the suspended
device; this forms a sharp potential barrier at the inter-
face and therefore increases the SOC strength.

From our weak antilocalization measurements, the spin
and phase relaxation times can be obtained by fitting the
corrections to conductivity with respect to these two pa-
rameters in the range of magnetic fields where the mini-
mum in magnetoconductance appears.

The WAL corrections to the conductivity of the 6-layer
device with the same characteristics as reported in Ref.
11 were measured as a function of the magnetic field with
1 mT magnetic field step. As shown in Fig. 15, at mag-
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netic fields 10-30 mT, a clear minimum in the magneto-
conductance is observed. The corrections to conductivity
∆σ(B)−∆σ(0) were measured in the range of 0−90 mT,
and both the spin and phase relaxation time were fitted
with the formalism developed by Iordanskii, Larkin and
Pitaevskii75,76 (ILP) for systems where the lack of in-
version symmetry leads to the electron’s spin precessing
and to relaxation by Dyakonov-Perel mechanism. Such
formalism was used for carrier densities < 2× 1012cm-2;
above that carrier densities, the assumption of the ILP
formalism that the precession angle φ = Ωτ << 1 (Ω be-
ing the spin precession frequency and τ the momentum
relaxation time), and that the magnetic field B << Btr

(where Btr ≡ ~
2eλ2 and λ is the mean free path) breaks

down. The spin precession frequency Ω is then related
to the spin-orbit coupling strength α through the sim-
ple relation Ω = αkF where kF is the Fermi momentum.
In these cases, we employ the approach developed by
Golub77,78, which goes beyond the diffusion approxima-
tion for arbitrarily large precession angles and for mag-
netic fields comparable to the transport field Btr.

For the magnetoconductance fits performed at carrier
densities ne ≥ 2× 1012 cm-2, the non-backscattering cor-
rections to conductivity were found to be negligible, and
therefore corrections to conductivity only came from the
backscattering loops,

σback = − e2

2π2~

(
λ

lB

)2 ∞∑

N′=0

(
Tr
[
Â3
N′(Î − ÂN′)−1

]
− P 3

N′

1− PN′

)
, (31)

ÂN ′ ≡



PN′−2 − S(0)

N′−2 R
(1)

N′−2 S
(2)

N′−2

R
(1)

N′−2 PN′−1 − 2S
(0)

N′−1 R
(1)

N′−1

S
(2)

N′−2 R
(1)

N′−1 PN′ − S(0)

N′


 ,

PN ′ ≡ lB
λ

∫ ∞

0

exp

(
− lB

l̃
x− x2

2

)
LN ′(x2)dx,

S
(µ)
N ′ ≡ lB

λ

√
N ′!

(N ′ + µ)!

∫ ∞

0

exp

(
− lB

λ
x− x2

2

)
xµLµN ′(x

2) sin2

(
Ωτ

lB
λ

)
dx,

R
(µ)
N ′ ≡ lB√

2λ

√
N ′!

(N ′ + µ)!

∫ ∞

0

exp

(
− lB

λ
x− x2

2

)
xµLµN ′(x

2) sin

(
2Ωτ

lB
λ

)
dx,

Here, lB ≡
√

~
eB is the magnetic length, and in Eq.

(31), l̃ is defined as l̃ ≡ λ
1+ τ

τφ

where τφ is the phase

relaxation time. The precession frequency is related to
the spin relaxation time τSO through 1

τSO
= 2Ω2τ . As

done previously with the ILP formalism, both the phase
and spin relaxation times were taken as fitting parame-
ters. In Fig. 16, the inverse proportionality between the
spin relaxation time and the diffusion coefficient D con-
firms that the spin relaxation mechanism is Dyakonov-
Perel79,80. From τSO, the SOC coefficient is extracted
and compared with our theoretical calculation in Fig. 18.
In Fig. 18 the SOC coefficient at different carrier den-
sities was calculated at the experimentally established
dielectric constant εz = 9.9 for InSe32. Very good agree-

ment was found between the calculated SOC coefficient
and the experimentally extracted SOC strength. Fur-
thermore, by looking at the two different branches origi-
nated from the orientation of the crystal being parallel or
antiparallel to the applied electric field, it was found that
at a carrier density of ne = 8×1012 cm-2 the two branches
converged at a single point. This indicates no dependence
neither on crystal orientation nor on electrostatic profile.
As shown in Fig. 14, at that exact carrier density, the
electrostatic profile is expected to be z → −z symmet-
ric and therefore the only contribution to the SOC must
originate from the intrinsic z → −z asymmetry of the
crystal (see comparison in Fig. 18 with SOC strength at
zero electric field).

VI. CONCLUSION

Overall, the description of SOC strength (as a func-
tion of the number of layers and the applied electric
field piercing the multilayer film) obtained using the few-
layer HkpTB study and a quantum well model give the
matching results, and the theoretically computed SOC

strengths are compared with the results of weak antilo-
calization measurements on dual-gated multilayer InSe
films showing a good agreement between theory and ex-
periment.

The size of SOC constant we compute for InSe films
with 2-10 layers thickness is comparable to the SOC
strength in quantum wells of conventional semiconduc-



16

FIG. 17. (a-d) SOC strength as a function of the displacement field and carrier density for different number of layers. Crystal orientation
is chosen such that the applied displacement field counteracts the Dresselhaus SOC when the displacement field is positive. The dark
black lines indicate the disappearance of SOC due to the application of a displacement field which compensates the SOC from the intrinsic
lack of inversion symmetry in the different multilayers.

FIG. 18. SOC coefficient α as experimentally extracted from weak
antilocalization measurements of the dual-gated 6 layer device11,
compared to the value obtained in the self-consistent calculation.
The blue dashed line indicates the value of α in the absence of any
electrostatic gating and doping. The same notation for the solid
and dotted lines is used as in Fig. 1,12 and 11.

tors, such as GaAs, InAs, HgTe. What makes 2D InSe
different from those spintronic systems is that the SOC
strength in it can be tuned over a wide range. Addi-
tionally contribution originating from the asymmetry of

an hBN/InSe interface was analysed and shown to be
negligible (as compared with the intrinsic SOC in the
film) for InSe encapsulated in hBN both on top and in
the bottom, and also to decay as N−3. Moreover we
demonstrate that spin-orbit coupling strength for elec-
trons near the conduction band edge in few-layer γ-InSe
films can be tuned over a wide range, from α=0 to
α ≈ 70meVÅ. This tunability illustrated in Fig. 17
for the films of various thicknesses is the result of a com-
petition between film-thickness-dependent intrinsic and
electric-field-induced SOC, potentially, allowing for elec-
trically switchable spintronic devices. As shown in Fig.
17 and Fig. 1, displacement fields in the range of 1-2
Vnm-1 can turn the SOC on and off.
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Appendix A: Determination of parameters δcv, δc1c
and δv1v2 from bulk SOC

For the calculation of subband energies and disper-
sions, it was sufficient to approximate the interlayer hops
as being entirely between the inversion symmetric sub-
lattices of selenium atoms on the outside of each layer.
This causes the hops to be inversion symmetric, which
when combined with the opposite z -symmetries of the
monolayer conduction and valence under σh reflection
(i.e. z → −z symmetry) gives tcv = −tvc, tc1c = −tcc1
and tv2v1 = −tv1v2 . It is transparent from Eq. (1) that
inversion symmetry would prohibit the existence of ex-
trinsic SOC. Consequently, we require terms in our model
which break inversion symmetry (such as an applied elec-
tric field or the interlayer pseudopotentials arising from
the γ-stacking81). The indium atoms provide such an
asymmetry-in the γ stacking there is a vertically oppo-
site interlayer In/Se pair heading in one direction along
the z -direction, while in the other direction the indium
atom is opposite an empty space in the adjacent layer.
In the k ·p model, the effect of this symmetry breaking is
to give tcv, tc1c and tv1v2 slightly different magnitudes as
compared with −tcv, −tc1c and −tv1v2 , so we define three
new parameters: 2δcv ≡ tcv+tvc 2δc1c ≡ tc1c+tcc1 and
2δv1v2 ≡ tv1v2+tv2v1 . In order to obtain the parameters
δcv and δc1c relevant for the analysis of the Dresselhaus
SOC in the conduction band, the linear SOC splittings
at each individual kz are obtained from the QUESTAAL
package by linearly fitting the energy differences between
the two spin split bands (see Fig. 19). Firstly, the param-
eters δcv and δc1c were fitted for the α vs kz-dependence
of band c (red curve in Fig. 19), and then the δv1v2 pa-
rameter was fitted from the α vs kz-dependence of band
v (green curve in Fig. 19). Using the same perturbative
analysis as in Section IV in the bulk limit, the Dressel-
haus SOC at each kz is obtained both for the c and v
bands respectively, namely

αc(pz) = 4 cos (pzaz)

(
δcvb54λ15(

Ec − Ev
)(
Ec − Ev1

)+

δcvb16λ46(
Ec − Ev

)(
Ec − Ev2

) +
δc1cb

c1v2
16 λ46(

Ec − Ec1
)(
Ec − Ev2

)
)

(A1)

and

αv(pz) = 4 cos (pzaz)

(
δcvb54λ15(

Ev − Ec
)(
Ev − Ev1

)+

δcvb16λ46(
Ev − Ec

)(
Ev − Ev2

) +
δv1v2b16λ15(

Ev − Ev1
)(
Ev − Ev2

)
)
.

(A2)

where pz = π
az
− kz. The fitting parameters considered

are the terms δcv, δc1c, δv1v2 and λ46 as the 14-band fit
applied to the InSe bulk dispersion did not account for
any them. The optimal parameters found in order to fit
the spin splitting vs kz-dependence in the vicinity of the
band edge where perturbation theory is best applicable
were δcv = 0.014 eV, δc1c = 0.022 eV, δv1v2 = −0.001 eV
and λ46 = −0.09eV.

FIG. 19. (Solid) Bulk SOC as a function of pz for c and v bands.
(Dots) SOC strength at different pz obtained from the perturbative
analysis in Eq. (A1) and (A2).

Appendix B: Determination of the signs of dcv, dv1v2
and dc1c

While on their own the signs of dcv and tcv may be
chosen arbitrarily through an appropriate choice of basis
in the monolayer Hamiltonian, the product of dcv and tcv
does not have such degree of freedom. In order to deter-
mine the relative signs of the different dipole moments,
it is necessary to look at their k-dependence as we move
away from the Γ-point. In considering the conduction to
valence band interlayer hopping (both the z -symmetric
and z -antisymmetric) as a perturbation to our conduc-
tion or valence subband wavefunctions, the k-dependence
of the bilayer valence band dipole moment follows easily
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FIG. 20. Dipole moments between monolayer bands c and v (dcv)
and between monolayer bands v1 and v2 (dv1v2 ) computed using
the tight-binding model in Ref. 33.

as:

〈v2L|ez|v2L〉 = 2δcv

[
dcv
Eg2L

+
tcveaz

2Eg2LE′g2L

]
(B1)

for the valence band, and

〈c2L|ez|c2L〉 = −2δcv

[
dcv
Eg2L

+
tcveaz

2Eg2LE′′g2L

]
(B2)

for the bilayer conduction band. In the above equa-
tion, dcv = |〈c|ez|v〉| = 1.68 eÅ is the matrix element
of the out-of-plane dipole operator between the mono-
layer conduction and valence bands and v2L and c2L are
the topmost valence subband and lowest conduction sub-
band wavefunctions in a bilayer system at the Γ-point.
Eg2L = Ec−Ev− (tcc− tvv), E′g2L = Ec−Ev + tcc + tvv,

and E′′g2L = Ec−Ev−(tcc+tvv) are the energy differences
between the bilayer bands in the absence of the interband
hoppings. Comparison of these expressions with the signs
of the quantities calculated using DFT gives, for a choice
of positive tcv and negative dcv, a positive δcv when the
+z direction is chosen such that the vertical In-Se inter-
layer pair in the interface between two layers the Se atom
lies above the In atom in the γ-stacking. Conversely, a
negative δcv is obtained for the opposite orientation. On
calculating perturbatively the value of dcv at a finite k,
the following result is obtained

dcv(k) ≡ 〈v|ez|c〉 = 〈v0|ez|c0〉+
b54b16k

2dv1v2
∆Ev1c∆Ev2v

. (B3)

By looking at the negative trend of |dcv| and the hy-
brid k · p tight-binding values quoted in Table III, it is
transparent that if dcv is positive dv1v1 is as well positive.
Furthermore, if dcv is negative, the value of dv1v2 should
be negative as well. In order to find the sign of the dipole

moment dc1c a similar perturbative analysis is applied for
dv1v2 ,

dv1v2(k) ≡ 〈v1|ez|v2〉 = 〈v1,0|ez|v2,0〉+
b54b16k

2dcv
∆Ev1c∆Ev2v

(B4)

+
b54b

c1v2
16 k2dc1c

∆Ev1c∆Ev2c1
.

In comparing the red and the green curve in Fig. 20,
the much more pronounced steepness of the red curve as
compared to the green curve at low values of k indicates
that dc1c must be negative for a positive dv1v2 and vice-
versa.

Appendix C: Interfacial contribution to multilayer
InSe SOC

In addition to the crystalline and the electrostatically
induced z → −z asymmetry, few-layer InSe is a ma-
terial sensitive to interfacial effects due to its limited
thickness. Such effects may have an impact in the SOC
strength of multilayer InSe and must therefore be taken
into consideration50. The same two InSe-hBN configura-
tions used for the analysis of interfacial effects in bilayer
InSe shown in Table II (configuration 1 and 2) were also
used for the calculation of the interface-induced SOC in
multilayer InSe as their contribution in the absence of
an external electrostatic potential is only dependent on
the encapsulating substrates and on the film thickness.
Interface effects are taken into account by adding into
the multilayer Hamiltonian two additional contributions
identical to Eq. (11). Firstly, bands c and v with a rel-
evant Se pz orbital composition, experience in the outer
layers a shift in energy due to the interaction with the
pz orbitals of the encapsulating hBN. Therefore, an ad-
ditional energy shift is added to the c,v,v1 and v2 bands
of the 1st and the N th layer.

Additionally, the hBN interfaces break z → −z sym-
metry in the outer layers mixing bands with opposite
z-parity but identical in-plane symmetries. The follow-
ing perturbative term accounting for all these effect is
introduced in the multilayer Hamiltonian,

δĤ
(I)
11(NN) = (C1)




∆Ec1(N) 0 ±Υ
t/b
cv 0 0

0 ∆Ev1(N) 0 0 0

±Υ
t/b
cv 0 0 0 0

0 0 0 ∆Ev11(N)Îν ±Υ
t/b
v1v2 Îν

0 0 0 ±Υ
t/b
v1v2 Îν ∆Ev21(N)Îν




,

where Υt
cv and Υt

v1v2 are the mixing terms between bands

c − v and v1 − v2 in the top interface and −Υb
cv,−Υb

v1v2
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are ones mixing bands c − v and v1 − v2 at the bottom
interface. Note that such mixing terms require an op-
posite sign due to the opposite sign due to the opposite
direction of the interfacial effective electric fields at the
two InSe/hBN interfaces. Given the very small inter-
facial energy shift of bands c and v and the very weak
hybridization between bands v1 and v2, the dominant
contribution to the conduction band SOC strength orig-
inates from the interfacial terms mixing bands of oppo-
site parity (see Fig. 22). Among them, the most relevant
contribution originates from the term Υcv mixing bands
c and v, which, in the absence of an applied electric field,
yields to the following contribution to the SOC strength,

∆H
(I)
11 = 2

([ b45λ15

∆Eg1∆Ecv1
+

b16λ46

∆Eg1∆Ecv2

]
(Υt

cvα1β1−

(C2)

Υb
cvαNβN )

)
(s× k),

where ∆Eg1 is the energy between the lowest conduction
subband and the topmost valence band (i.e. the energy
gap) and ∆Ecv1(2) is the energy difference between the
lowest conduction subband and the v1(2) subbands. The
number of layers dependence of the interfacial SOC
strength can be extracted expanding ∆Eg1 , ∆Ecv1(2) ,
α1(N) and β1(N) as a function of the number of layers
in the quantum well approximation presented in Ref.
35. In such approximate framework, the out-of-plane
wavevector kz depends on the number of layers as
kz = π

az
+ nπ

(N+2ν)az
and the wavefunctions for both the

FIG. 21. Interfacial SOC as a function of the number of layers
in the absence of an externally applied electric field Ez . (Dashed)
Fit of the interfacial SOC strength as a function of the number of
layers. A 1

(N+2ν)3
dependence is expected from the quantum well

model presented in Ref. 35.

FIG. 22. Feynman diagram of the interlayer spin-flip loops due
to the interfacial electric fields experienced by the electrons in the
outer Se orbitals of the 1st and Nth layer. Dots, dashed and solid
lines follow the same convention as in Fig. 7.

conduction and the valence bands are approximated as
the eigenstates of a quantum well size L = (N + 2ν)az

(Φnc ≈ Φnv ≈
√

1
(N+2ν)az

cos
(

nπ
(N+2ν)az

)
). From this

quantum well model, a 1
(N+2ν)3 dependence of the

interfacial SOC strength is expected, as confirmed by
the fit presented in Fig. 21. Given the smallness of the
interfacial SOC strength compared to the layer-number
dependent Dresselhaus SOC, any contribution coming
from the hBN/InSe interface will be neglected for the
rest of our analysis.

Appendix D: Löwdin partitioning method

In order to obtain the 3rd order corrections to the
hybrid k · p tight-binding Hamiltonian, the standart
method of Löwdin partitioning57 is applied. The total
multilayer Hamiltonian is written in the basis of the un-
perturbed subbands eigenstates obtained from diagonal-
izing the Ĥ0 part of the Hamiltonian in Eq. (20b),

Ĥ = Ĥ0 + Ĥ ′ (D1)

where Ĥ ′ is the perturbative part, namely the projec-
tion of δĤ in the orthogonal subband basis formed by
Ĥ0 (H ′ρω ≡ 〈ρ|δĤ|ω〉). In the partitioning method, two
diagonal blocks are defined, A and B and a unitary trans-
formation is applied to the entire Hamiltonian matrix in
order to remove the non-block-diagonal elements. The
set A is defined as the elements within the lowest con-
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duction subband c1

ĤA =

(
〈c1↑|ĤA|c1↑〉 〈c1↑|ĤA|c1↓〉
〈c1↓|ĤA|c1↑〉 〈c1↓|ĤA|c1↓〉

)
, (D2)

while the set B are the matrix elements within the valence
subbands or the upper conduction subbands,

ĤB =




〈v1↑|ĤB |v1↑〉 〈v1↑|ĤB |v1↓〉 〈v1↑|ĤB |v2↑〉 〈v1↑|ĤB |v2↓〉 . . .
〈v1↓|ĤB |v1↑〉 〈v1↓|ĤB |v1↓〉 〈v1↓|ĤB |v2↑〉 〈v1↓|ĤB |v2↓〉 . . .
〈v2↑|ĤB |v1↑〉 〈v2↑|ĤB |v1↓〉 〈v2↑|ĤB |v2↑〉 〈v2↑|ĤB |v2↓〉 . . .
〈v2↓|ĤB |v1↑〉 〈v2↓|ĤB |v1↓〉 〈v2↓|ĤB |v2↑〉 〈v2↑|ĤB |v2↑〉 . . .

...
...

...
...



, (D3)

where the numerical indices such as 1 and 2 refer to the
1st or 2nd subbands. The non-block-diagonal elements.
Hnbd are the elements mixing the terms of the A and B
block namely

Ĥnbd =

(
〈c1↑|Ĥ|v1↑〉 〈c1↑|Ĥ|v1↓〉 〈c1↑|Ĥ|v2↑〉 . . .
〈c1↓|Ĥ|v1↑〉 〈c1↓|Ĥ|v1↓〉 〈c1↓|Ĥ|v2↑〉 . . .

)
.

(D4)

The expression in Eq. (D1) is rewritten in terms of Ĥ ′1
(the matrix containing the perturbations within block A

and B), and Ĥ ′2 (the non-zero perturbations between sets
A and B)

Ĥ = Ĥ0 + Ĥ ′1 + Ĥ ′2. (D5)

Transforming the Hamiltonian with a unitary transfor-

mation of the form eŜ ,

H̃ = e−ŜĤeŜ , (D6)

the deeper valence band states are projected into the low-
est conduction subbband. From the definition of the A
block, the matrix elements 〈c↑|Ĥ|c↓〉 and 〈c↓|Ĥ|c↑〉 are
the terms responsible for the SOC splitting. We get
the following expressions for the block and non-block-
diagonal matrix elements,

Ĥbd =

∞∑

j=0

1

(2j)!
[Ĥ(0) + Ĥ(1), Ŝ](2j)+

∞∑

j=0

1

(2j + 1)!
[Ĥ(2), Ŝ](2j+1),

Ĥnbd =
∞∑

j=0

1

(2j + 1)!
[Ĥ(0) + Ĥ(1), Ŝ](2j+1)+

∞∑

j=0

1

(2j)!
[Ĥ(2), Ŝ](2j). (D7)

The non-block-diagonal terms are then set to 0 forcing
the third order in the perturbation Hamiltonian (∆H(3))
to be

∆H
(3)
mm′ = −1

2

∑

l,m′′

[ H ′mlH
′
lm′′H ′m′′m′

(Em′ − El)(Em′′ − El)
+

H ′mm′′H ′m′′lH
′
lm′

(Em − El)(Em′′ − El)
]

(D8)

+
1

2

∑

l,l′

[ H ′mlH
′
ll′H

′
l′m′

(Em − El)(Em − El′)
+

H ′mlH
′
ll′H

′
l′m′

(Em′ − El)(Em′ − El′)
]
,

where (m,m′) are elements within A and (l, l′) are ele-
ments within B. Having identified the loops responsible
for the SOC splitting shown in Figs. 7-9 and 10, the

mixing between the conduction and the deeper valence
bands projected into the lowest conduction subband has
the form,
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∆H
(3)
11 = 2

j=N∑

j=1

η=N∑

η=1

〈c↓|δĤ|v↑2,η〉〈v↑2,η|δĤ|vj,↑〉〈vj,↑|δĤ|c↑〉
∆Ecv2∆Ecvj

+ 2

j=N∑

j=1

η=N∑

η=1

〈c↓|δĤ|v↓1,η〉〈v↓1,η|δĤ|vj,↑〉〈vj,↑|δĤ|c↑〉
∆Ecv1∆Ecvj

(D9)

+ 2

η=N∑

η=1

〈c↓|δĤ|v↑2,η〉〈v↑2,η|δĤ|v↑1,η〉〈v↑1,η|δĤ|c↑〉
∆Ecv1∆Ecv2

+ 2

η=N∑

η=1

〈c↓|δĤ|c↓1,η〉〈c↓1,η|δĤ|v↓2,η〉〈v↓2,η|δĤ|c↑〉
∆Ecc1∆Ecv2

.

Knowing the origin of the 3-step loop processes described
in Section IV, the Hamiltonian that contributes to the
SOC in the absence of a relevant interfacial term can be
decomposed as

∆H
(3)
11 = ∆H ′11 + ∆H ′′11 + ∆H ′′′11, (D10)

where the different terms correspond to the different
mechanisms behind SOC in band c,

∆H ′11 = 2

[
j=N∑

j=1

κ=N∑

κ=1

( b54λ15t
Γ
cv

∆Ecv1∆Ecvj
+

b16λ46t
Γ
cv

∆Ecv2∆Ecvj

)
ακ(βjκ+1 − βjκ−1)

(
ξ=N∑

ξ=1

αlβ
j
ξ

)]
(s× k), (D11)

∆H ′′11 = 2

[
j=N∑

j=1

κ=N∑

κ=1

( Eκdcvλ15b54

∆Ecvj∆Ecv1
+
Eκdcvλ46b16

∆Ecvj∆Ecv2

)
(ακβ

j
κ)

(
ξ=N∑

ξ=1

αξβ
j
ξ

)
+

η=N∑

η=1

α2
η

(Eηdv1v2b54λ46

∆Ecv1∆Ecv2
+

Eηdc1cbc1v216 λ46

∆Ecc1∆Ecv2

)]
(s× k),

∆H ′′′11 = 2

[
j=N∑

j=1

κ=N∑

κ=1

(
b54λ15δcv

∆Ecv1∆Ecvj
+

b16λ46δcv
∆Ecv2∆Ecvj

)
ακ(βjκ+1 + βjκ−1)

(
ξ=N∑

ξ=1

αξβ
j
ξ

)
+

η=N∑

η=1

(
bc1v216 λ46δc1c
∆Ecc1∆Ecv1

)
×

αη(αη+1 + αη−1)

]
(s× k).

Finally, using Eq. (D9) the interfacial contribution to the SOC strength coming from the dominant Υ
t/b
cv term

in Eq. (C2) has the form

∆H
(I)
11 = 2

[
j=N∑

j=1

( b45λ15

∆Ecvj∆Ecv1
+

b16λ46

∆Ecvj∆Ecv2

)
(Υt

cvα1β
j
1 −Υb

cvαNβ
j
N )

(
ξ=N∑

ξ=1

αlβ
j
ξ

)]
(s× k). (D12)

Considering the limit where the applied electric field is zero, this term simplifies to

∆H
(I)
11 = −2

[ b45λ15

∆Eg1∆Ecv1
+

b16λ46

∆Eg1∆Ecv2

]
(Υt

cvα1β
1
1 −Υb

cvαNβ
1
N )(s× k). (D13)
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respectively, are somewhat larger than those predicted by
the model presented in this work - this is due to the sub-
stantial underestimation of the band gap of InSe by DFT.
We therefore base the parametrization of the model on GW
results for bulk crystals.

48 G. Dresselhaus and M. S. Dresselhaus, Phys. Rev. 140,
A401 (1965).
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Chapter 5

Crossover from weakly indirect to

direct excitons in multilayer InSe

thin films

5.1 Introduction

The optical properties of two-dimensional post-transition metal monochalco-
genides are fundamentally governed by the formation of strongly correlated
electron-hole bound states known as excitons. In such systems, the small thick-
ness of the multilayer film relative to the exciton size has dramatic effects on the
excitonic properties of these 2D materials. As the exciton is expected to have a
size much larger than the sample thickness, the dielectric constant mediating the
electron-hole interaction will be determined both by the dielectric constant of the
environment and the in-plane polarisability of the thin film. This hugely modi-
fies the electrostatic interaction, making excitons bind much more strongly when
encapsulated in hBN due to the much reduced dielectric constant of the hBN in
comparison to the InSe thin film dielectric constant (ε||hBN = 6.8, εzhBN = 3.7 while
ε
||
InSe = 10.9, εzInSe = 9.9). Furthermore, in dealing with systems with quantised
energy levels, one has to account for any eventual intersubband scattering when
the binding energy of the bound pair is larger or comparable to the intersubband
energy.

In addition to adding the possibility of intersubband scattering, the forma-
tion of subbands broadens the wavefunction distribution along the confinement
direction. Such distribution is needed to be taken into account when considering
the electron-hole interaction since it substantially differs from the usual point-
charge interaction and may increase the binding energy of the exciton. To account
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for such effect, two additional forms of the electrostatic interaction were consid-
ered (see Appendix.C.1 of this thesis). Firstly, the wavefunction distribution
was assumed uniformly distributed over the entire InSe film thickness, then the
wavefunction was assumed to follow a sinusoidal distribution in a similar fashion
to a quantum well eigenstate. Both electrostatic interactions were demonstrated
to generate similar excitonic binding energies with slight increase in the binding
energy as compared to the point-like potential originally derived by Keldysh[63].
The calculation of the exciton binding energies and dispersions in multilayer InSe
were performed projecting the exciton Hamiltonian in the harmonic oscillator
basis. The exciton binding energy was shown to decrease significantly with an
increasing number of layers (from ∼200meV in the monolayer to approximately
50meV in a 10-layer film) due to a greater influence of the very large InSe di-
electric constant. The excitonic dispersion was shown to transition from having
a minimum in energy at a finite centre of mass momentum Qmin to becoming
a direct exciton with an increasing number of layers. The activation energy of
the dispersion (energy difference between Qx = 0 and Qmin) was found to tran-
sition from approximately 40meV in the monolayer case to 0meV in the 7-layer
case, corroborating the observation of an indirect to direct excitonic transition
with increasing film thicknesses. Finally, a similar transition was reported in the
calculation of excitons in bulk InSe when they acquired a finite centre of mass
momentum in the z-direction.
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5.2 Crossover from weakly indirect to direct ex-

citons in atomically thin films of InSe

The results presented in this chapter were reported in Ref.[64]: “Crossover from
weakly indirect to direct excitons in atomically thin films of InSe”. In:Phys. Rev.
B 101 (24 June 2020).

My contribution to this work: A. Ceferino performed the calculation of the
exciton binding energies, exciton dispersions and exciton radii both in few-layer
and in bulk InSe using a real space quantum harmonic oscillator basis. A. Ceferino
also extracted the Mexican hat parameters in Appendix.A, calculated the binding
energies shown in Table III and contributed to the writing of the manuscript.

Full author list: Adrián Ceferino, Kok Wee Song, Samuel J.Magorrian, Viktor
Zólyomi and V.I. Fal’ko.

Author contribution: K.W.Song performed as well every calculation of exciton
binding energies, exciton dispersions and exciton radii using an equivalent method
to the one used by A. Ceferino. He also calculated the excitonic dispersion
using the Fourier transform method presented in Appendix.C and contributed
to the writing of the manuscript. K.W. Song developed the package presented
in the supplementary material in Ref.[64]. S.J. Magorrian wrote Appendix.B
and, together with V. Zólyomi performed the necessary DFT calculations for the
parameters in Table II. V.I. Fal’ko supervised the project and contributed to the
writing of the manuscript.



PHYSICAL REVIEW B 101, 245432 (2020)

Crossover from weakly indirect to direct excitons in atomically thin films of InSe

Adrián Ceferino ,1,2,* Kok Wee Song ,2,† Samuel J. Magorrian ,2 Viktor Zólyomi,3 and Vladimir I. Fal’ko1,2,4

1Department of Physics and Astronomy, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
2National Graphene Institute, Booth Street East, Manchester, M13 9PL, United Kingdom

3STFC Hartree Centre, Daresbury Laboratory, Daresbury, Warrington, WA4 4AD, United Kingdom
4Henry Royce Institute for Advanced Materials, Manchester, M13 9PL, United Kingdom

(Received 14 January 2020; accepted 23 March 2020; published 22 June 2020)

We perform a k · p theory analysis of the spectra of the lowest energy and excited states of the excitons
in few-layer atomically thin films of InSe taking into account in plane electric polarizability of the film and
the influence of the encapsulation environment. For the thinner films, the lowest-energy state of the exciton is
weakly indirect in momentum space, with its dispersion showing minima at a layer-number-dependent wave
number, due to an inverted edge of a relatively flat topmost valence band branch of the InSe film spectrum, and
we compute the activation energy from the momentum dark exciton ground state into the bright state. For the
films with more than seven In2Se2 layers, the exciton dispersion minimum shifts to � point.

DOI: 10.1103/PhysRevB.101.245432

Two-dimensional (2D) materials create new opportuni-
ties for semiconductor optoelectronics [1–3]. Among those
new materials, post-transition metal chalcogenides (InSe and
GaSe) occupy a special place, as they offer a flexibility to
choose a desirable size of their bandgap (in the range from
3 to 1.3 eV) depending on the number of atomic planes in a
thin film [4–8]. While the experimental studies of the band
gap and optical properties of few layer films of InSe [7,9–11]
and GaSe [12–15] have found a reasonably close quantitative
interpretation at the single-particle level, based on density
functional theory (DFT) [16–22] and the DFT-parametrized
tight-binding model [23], the fine tuning of the theory requires
taking into account excitonic effects in the system, which
remains an open question for atomically thin InSe films.

Here, we develop a mesoscale theory for the binding
energies, dispersions, and excited state spectra of excitons in
mono-, bi-, tri-, and few-layer InSe films (γ polytype), taking
into account the strongly nonparabolic features of the valence
band dispersion in these 2D materials and the influence of
various encapsulation environments. In particular, we study
the role of a weak inversion of the hole dispersion near the top
of the valence band [18,19,24–26], established in the thinnest
InSe and GaSe films using angle-resolved photoemission
spectroscopy [10,27] and high field magneto-optics studies
[23], and analyze the crossover of the excitons from weakly
indirect to direct in momentum space, as a function of the
InSe film thickness. The crossover of the exciton dispersion
from indirect [ε(Q) = min at Q �= 0] to direct [ε(Q) = min
at Q = 0] exciton was found at L = 7 layers. For films with
1 � L � 10, we compute the binding energies of the excitons
for hBN-encapsulated InSe films and the activation energies
from the momentum-dark excitonic bound states, with the
results summarized in Fig. 1.

*adrian.ceferino@postgrad.manchester.ac.uk
†kokwee.song@manchester.ac.uk

In the analysis presented below, we describe
excitons using two-particle wave functions, �

†
Q =∑

nm

∫
d2kψQ,nm(k)a†

k+Q,nck,m, written in the wave-number
representation for the constituent electrons and holes
occupying states with wave numbers k + Q and k in
sub-bands [11,28] n and m on the conduction (ak+Q,n)
and valence (ck,m) band side of few-layer InSe film spectrum.
Below, we project all electron and hole states onto the lowest
sub-bands (n = 1) in the film, which is justified by the much
larger inter-sub-band energies, as compared to the exciton
binding energies in the thin films (with L � 10 see Fig. 2). As
a result, the exciton creation operator takes the approximate
form �

†
Q = ∫

d2kψQ(k)a†
k+Q,1ck,1 where ψQ ≡ ψQ,11. This

gives the Bethe-Salpeter equation [29–33]:∫
q
[(εc(k)−εv (k−Q)− �)δq,0+V (q)]ψQ(k+ q)=0, (1)

for an effectively 2D exciton with momentum Q and energy
� (the latter is a sum � = Eg + Eb of the gap Eg and the

binding energy Eb). Here, we use the notation
∫

q ≡ ∫ d2q
(2π )2 .

The electron-hole (e-h) attraction is accounted for by the
Fourier transform of the interaction potential,

V (q)=−4πe2

ε0

∫∫
|φeke (z)|2W (q, z, z′)|φhkh (z′)|2dzdz′,

W (q, z, z′)= cosh
[
q̃
(

d
2 −z

)+η
]

cosh
[
q̃
(

d
2 +z′)+η

]
√

ε‖εzq sinh(q̃d + 2η)
;

q̃ = √
ε‖/εzq; η = 1

2
ln

√
ε‖εz + √

κ‖κz√
ε‖εz − √

κ‖κz
, (2)

designed to take into account both the dielectric polarizability
of the 2DM and the dielectric environment [34–37] (e.g., hBN
[38,39], with κ‖ = 6.9 and κz = 3.7). For L-layer InSe, film
thickness is d = Laz, where az = 8.32 Å is the interlayer dis-
tance and ε‖ and εz are the in- and out-of-plane permittivities
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FIG. 1. The dependence of the exciton binding energy on the
number of layers (L) for hBN encapsulated InSe films. Binding
energies at � point, Eb(0) are compared for two values of bulk InSe
dielectric constants ε‖ and εz. The inset shows the activation energy
εact = Eb(0) − Eb(Qmin ) (closed blue circles) where Qmin is approx-
imately the wave vector between the � point and the edge of the
highest valence band. The radius of the exciton, aexc =

√
〈|re − rh|2〉

is also shown (closed red square). The red dashed line shows the
thickness of the InSe film.

of bulk InSe [40]. The above expression takes into account
the z dependence of the lowest electron-hole sub-band wave
functions φe/h,k(z), and W is quoted for z � z′ (for z < z′, z
should be interchanged with z′). We note that, for L = 1 and
2, the 2D potential V (q) can be simplified to the Keldysh

potential [34,35,37,41],

V (q)≈− 2πe2

√
κzκ‖

1

q(1+r∗q)
, r∗ =

√
εzε‖ − 1

2
√

κzκ‖
d.

In the above equation, r∗ is the screening length [42] indi-
cating the region dominated by the logarithmically divergent
potential at length scales smaller than r∗ and the region
dominated by the Coulombic interaction potential at distances
greater than r∗. However, for L � 3, the exciton radius (aexc)
appears to be smaller than the film thickness, so that the
electron/hole charge distribution along the z axis in Eq. (2)
needs to be taken into account in full details. To do that,
we use the quantum-well approximation for the z distribution
of the lowest sub-band [28,43], φe/h,k(z) ≈ √

2/d cos(πz/d ).
We note that separating wave-function variables and dis-
carding higher energy sub-bands in Eq. (1) is applicable if
the quantization energy due to confinement is much larger
than the excitonic energy scale, which will be justified later
by comparing the inter-sub-band energies to the calculated
exciton binding energies.

To implement numerical diagonalization of the Bethe-
Salpeter equation (1), we use a basis of harmonic
oscillator functions for the bound electron-hole states
[44], ψQ(k) = ∑Nmax

0�nx+ny
AQ

nx,ny
ϕnx (kx )ϕny (ky) where ϕn(k)=√

λ
π1/22nn! (−i)ne−k2λ2/2Hn(kλ) and Hn(x) is the nth Hermite

polynomial. In the above described basis, the choice of the
length λ and the cutoff Nmax are optimized for speeding
up a converging calculation (see Appendix C for details).
We also checked the performance of the developed code by
comparing its results to the exact solution of the 2D hydrogen
problem, aiming at <2% error as compared to the ground-
state energy of the Rydberg series. A software package for

FIG. 2. The bound electron-hole states and the quasiparticle dispersion in momentum space: (a)–(c) The plots for L =1–3 layers film.
The solid (dashed) yellow and blue curves are conduction and valence (sub)band tight-binding dispersions [23]. The gray curves are the k · p
dispersion where εc and εv are expanded into a polynomial of k. The sizes of the red (blue) circles are proportional to the probability density
|ψQ(k)|2 with Q = 0 (Q = Qmin being the total momentum of the lowest energy exciton. (d) Plot for bulk InSe dispersion near A point: Each of
the bands plotted both in conduction and in valence band correspond to kz = 0 − 0.06 Å−1 in steps of 0.01 Å−1. Blue shaded region indicates
the region in in-plane momentum and in energy covered by the ground-state exciton in the bulk limit as determined by the size of the Gaussian
wave packet and the exciton binding energy. (Insets) (a) Brillouin zone of 2D-InSe, blue circles showing C6-symmetric localization of holes;
(b) a comparison of the Q = 0 exciton binding energy (closed black circles) with the sub-band energy splittings. �e (open yellow circles) and
�h (open blue circles) correspond to the e-e1 and h-h1 splitting at the � point, respectively. The closed black circles are the total splitting,
�e + �h; (c) schematic of hBN-encapsulated InSe, with their different dielectric constants; (d) Brillouin zone of bulk InSe.
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the implementation of numerical diagonalization of Eq. (1)
with arbitrary parameters for InSe films and encapsulation
environment and instructions for interested users are included
in the Supplemental Material [45].

With this numerical setting, we solve Eq. (1) using the
DFT-parametrized k · p theory for InSe films with dispersions
illustrated in Fig. 2. In particular, we used a polynomial expan-
sion around � point both for the conduction and valence bands
[46] computed using the GW-parametrized hybrid k · p tight-
binding model (see Appendix B), εc/v (k) = ∑

i, j=0 Ae/h
i j ki

xk j
y

also plotted in Figs. 2(a)–2(c). For comparison, in Fig. 2(d),
we show the conduction and valence band dispersion of bulk
InSe near the band edges (which are at A point in the 3D
Brillouin zone), where the inversion of εv (k, kz ) develops
upon the increase of z-axis momentum kz (counted from
A point).

In Fig. 3(a), we show the first eight bound states energies
of the �-point exciton with Q = 0 (solid line) [47] and the
lowest-energy momentum-dark state of the exciton at Q =
Qmin (dashed line) for 1 � L � 3. A minimum at Q = Qmin

in the exciton dispersion for each state [Fig. 3(b)] is due to the
sombrero of the h band (see Fig. 2). The non-hydrogen-like
energy sequence [48,49] is due to the 2D screening of the e-h
interaction in the film leading to a Keldysh-like potential for
L = 1 and 2.

To illustrate the layer-number dependence of the exciton
dispersion, we compare the exciton binding energy at the �

point, Eb(0), and at its dispersion minimum, Eb(Qmin), for L
up to 10 layers. In the inset in Fig. 1, we plot the activation
energy εact from the dark exciton state (at Q = Qmin) to the op-
tically active state (at Q = 0). We find that εact → 0 at L∗ = 7,
which indicates that an indirect to direct crossover for the ex-
citon occurs before the expectation based on a single-particle
valence band dispersion (at L∗ = 10, see Appendix B). For
completeness, we also analyzed excitons in bulk 3D InSe
using bulk band dispersions shown in Fig. 2(d) and V (q, qz ) =
− 4πe2/ε0

ε‖q2+εzq2
z
. We solve the Bethe-Salpeter equation for bulk InSe

using the 3D harmonic oscillator basis, and use dielectric
constants [40] ε‖ = 10.9, εz = 9.9 for InSe, together with the
GW-computed valence band masses (mv‖ = −5.35m0, mvz =
−0.078m0) and the conduction band masses (mc‖/m0 = 0.16
and mcz/m0 = 0.086 where m0 is the free electron mass)
which are close to those measured in cyclotron resonance
experiments [50]. The examples of computed bulk exciton
dispersions, E3D(Q, Qz ) are shown in Fig. 3(c). Using (Qz ≈
π

Laz
) for the quantization of the transverse exciton motion,

we find that the crossover into indirect spectrum should be
expected at L ≈ 6–7 layers, in agreement with the transition
number of layers L∗ found in the layer dependence of the
activation energy εact (inset in Fig. 1). We note that the com-
puted bulk (3D) exciton binding energy is about 30% lower
than the experimentally claimed [51,52] values of 13–15 meV.
Binding energy can be increased to 14.6 meV by choosing
ε‖ = 9.5, εz = 8.6 (with

√
εz/ε‖ = 0.95 as in Ref. [40]). For

this reason we computed and compared the exciton spectra in
the films using two choices of dielectric parameters ε‖ = 10.9,
εz = 9.9 and ε‖ = 9.5, εz = 8.6. We find that in thin films
L � 10 such a variation of InSe dielectric parameters has a
much weaker influence on the exciton bindings than in the

FIG. 3. (a) The first eight low-energy states of the exciton
at Q = 0, Qmin in hbN-encapsulated InSe. Insets on the right are
the schematic exciton wave functions ψ0(re, 0) in the real space
(ψQ(re, rh ) ≡ ∑

k ψQ(k)eik·(re−rh )) which are sorted from higher to
lower binding energies (bottom to top). The dark and bright region
correspond to a negative and positive value for the wave-function
amplitude. (b) The exciton dispersion for the first four low-energy
states. The schematic real-space probability distributions of a bound
electron, |ψQmin (re, 0)|2, are illustrated by the insets. (c) The energy
dispersion of the exciton ground state in bulk InSe with Qy = 0. The
different Qz values are indicated in the plot. We use the adjusted
dielectric parameters in the plot which are ε‖ = 9.5 and ε‖ = 8.6.
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TABLE I. Polynomial fit of the sombrero dispersion as for the
topmost valence band and parabolic dispersion of the lowest conduc-
tion band. m0 is the free electron mass.

L Ah
8 (eVÅ8) Ah

6 (eVÅ6) Ah
4 (eVÅ4) Ah

2 (eVÅ2) mc/m0

1 −1188.591 471.809 −68.601 3.674 0.266
2 −1210.270 388.158 −49.004 1.989 0.223
3 −1308.626 371.401 −43.048 1.372 0.207
4 −1411.696 364.846 −39.437 0.985 0.198
5 −1565.869 366.036 −36.797 0.703 0.193
6 −1745.505 368.254 −34.556 0.487 0.189
7 −1938.337 369.112 −32.543 0.316 0.187
8 −2130.725 367.119 −30.684 0.179 0.184
9 −2302.573 361.073 −28.941 0.068 0.183
10 −2085.138 331.905 −27.004 −0.026 0.181

bulk material. These calculated binding energies compare well
with the values observed in the recent experiments [11] on
hBN-encapsulated thin InSe films. In summary, we present a
mesoscale theory which is particularly useful for investigating
the energy spectrum of a Wannier-Mott exciton in large gap
semiconductors (Eg � |Eb|). Most interestingly, this theoreti-
cal framework can also be applied to study direct and indirect
excitons in complex van der Waals heterostructures [53–61].
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APPENDIX A: PARAMETRIZATION OF
ELECTRON-HOLE DISPERSION IN L-LAYER INSE

Here, we give the details on the parametrized electron and
hole dispersion by using polynomial fit. The conduction and
valence band dispersions near the � point are approximated
by

εc(k) = 1

2mc
k2, (A1)

εv (k) = Ah
2k2 + Ah

4k4 + Ah
6k6 + Ah

8k8, (A2)

where the hexagonal wrapping terms are ignored, because
the exciton wave function is strongly localized in k-space.
These polynomials are obtained by fitting to bands from the
GW-parametrized hybrid k · p tight-binding (HkpTB) model,
Appendix B, and the fitted values for 1- to 10-layer InSe film
are listed in Table I. We note for L � 9 that the quadratic term
in the valence band dispersion corresponds to negative effec-
tive hole masses. This yields a sombrero-shaped dispersion in
the valence band and requires one to retain higher-order terms

in the expansion for fitting. The hole mass becomes positive
at L = 10. For the 3D bulk dispersion near the conduction
and valence band edges of γ -InSe, we employ the following
polynomial of the form,

εc(k, kz )= k2

2mc‖
+ k2

z

2mcz
, (A3)

εv (k, kz )= k2

2mv‖
+ k2

z

2mvz
+γ k4+αk2k2

z +γzk
4
z . (A4)

Here, kz is measured from the A point. In the fit, ob-
tained using GW-DFT computed bands, the effective in-plane
and out-of-plane masses for the electron are mc‖ = 0.16m0

and mcz = 0.086m0, close to the experimentally measured
[50] values of mc‖ ≈ 0.14m0 and mcz ≈ 0.08m0, respectively.
For the valence band, the fitted parameters are as fol-
lows: mv‖ = −5.35m0, mvz = −0.078m0, γ = −10.84 eVÅ4,
α = 1074 eVÅ4, and γz = 1688 eVÅ4.

APPENDIX B: HYBRID MULTIBAND k · p
TIGHT-BINDING THEORY WITH PARAMETERS FROM

QUASIPARTICLE SELF-CONSISTENT GW
CALCULATIONS

1. Hybrid multiband k · p tight-binding model

The model used in this study is built using two main
components: a multiband k · p model describing the mono-
layer bands (following Refs. [20,62]), and interlayer cou-
pling in few-layer and bulk systems, described using a
tight-binding approach based on the monolayer k · p bands
(similar to the hybrid k · p tight-binding approach taken in
Refs. [28,63]).

In this description we model the bands of few-layer and
bulk InSe near the � point using a Hamiltonian with the form,

H =
∑
k,σ

[
N∑

n=1

Hn
ML,k,σ +

N−1∑
n=1

Hn,n+1
IL,k,σ + H.c.

]
, (B1)

where Hn
ML,k,σ is the monolayer k · p Hamiltonian on layer n

of the N-layer crystal, at k with z projection of spin σ = ± 1
2 .

Hn,n+1
I−L includes the interlayer tight-binding hops between the

monolayer bands.

a. Monolayer k · p Hamiltonian

The monolayer Hamiltonian follows the multiband k · p
approaches of Refs. [20,62]. While in our previous works
[23,28] the basis of monolayer bands was a basis of single-
band k · p expansions, so that matrix elements such as cou-
plings to electromagnetic fields and the interlayer hops men-
tioned above had to depend on k, here we follow the multiband
approach and take as our basis the bands at �, and introduce
k-dependent off-diagonal terms to account for the variation
of the bands with k. At the expense of an increase in the
dimensionality of the parameter space, this allows us to make
the approximation that the interlayer hops are independent of
k, and assists in the capture of higher-order effects, such as
the offset valence band maximum, while keeping the k · p
expansions to order k2. The monolayer Hamiltonian for layer
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n of an N-layer crystal takes the form,

Hn
ML,k,σ = (εc1 + αc1 k2)aσ†

n,c1,k
aσ

n,c1,k + (εc + αck2)aσ†
n,c,kaσ

n,c,k + (εv + αvk2)aσ†
n,v,kaσ

n,v,k

+ (
εv1 + (

αv1 k2 + α′
v1

(
k2

x − k2
y

))
aσ†

n,v1x,k
aσ

n,v1x,k + (
εv1 + αv1 k2 + α′

v1

(
k2

y − k2
x

))
aσ†

n,v1y,k
aσ

n,v1y,k

+ (
εv2 + (αv2 k2 + α′

v2

(
k2

x − k2
y

))
aσ†

n,v2x,k
aσ

n,v2x,k + (
εv2 + αv2 k2 + α′

v2

(
k2

y − k2
x

))
aσ†

n,v2y,k
aσ

n,v2y,k + 2α′
v1

kxkyaσ†
n,v1x,k

aσ
n,v1y,k

+ 2α′
v2

kxkyaσ†
n,v2x,k

aσ
n,v2y,k + βc1,vk2aσ†

n,c1,k
aσ

n,v,k + iβc1,v2

(
kxaσ†

n,c1,k
aσ

n,v2x,k + kyaσ†
n,c1,k

aσ
n,v2y,k

)
+ iβv,v2

(
kxaσ†

n,v,kaσ
n,v2x,k + kyaσ†

n,v,kaσ
n,v2y,k

) + iβc,v1

(
kxaσ†

n,c,kaσ
n,v1x,k + kyaσ†

n,c,kaσ
n,v1y,k

)
− 2λv1,2 iσ

(
aσ†

n,v1x,k
aσ

n,v1y,k + aσ†
n,v2x,k

aσ
n,v2y,k

) + λv,v1

( − 2σaσ†
n,v,ka−σ

n,v1x,k
+ iaσ†

n,v,ka−σ
n,v1y,k

)
. (B2)

The bands which form the basis of the model are the mono-
layer �-point bands in the absence of spin-orbit coupling
(SOC) [23]. The operator aσ (†)

n, j,k annihilates (creates) an elec-

tron in layer n, band j, with spin σ = ± 1
2 and in-plane

momentum k. As singly degenerate bands which are totally
in-plane symmetric at �, bands c1, c, v are assigned �-point
energies εc1,c,v with quadratic “onsite” dispersions with re-
spective coefficients αc1,c,v . In contrast, in the absence of SOC
bands v1 and v2, being dominated by px and py orbitals, are
twice degenerate at � with energies εv1,v2 . The dispersions of
their two light- and heavy-hole branches are handled using
two components corresponding to a basis of their px and py

components, with quadratic intra- and intercomponent contri-
butions with coefficients α(′)

v1,2
. In the multiband k · p picture

away from � the bands are modified by off-diagonal terms
between them. These terms must preserve the σh symmetry of
the monolayer, so only involve the pairs c1, v, c, v1 and v, v2.
Of these, c1, v is between bands which are totally in-plane
symmetric at �, so the off-diagonal term is quadratic, while
terms involving the x and y components of v1,2 are linear
in kx and ky, respectively. The coefficients of these terms
are denoted as βc1,v , βc,v1 , and βv,v2 , respectively. Finally,
spin-orbit coupling (SOC) is included within the components
of v1 and v2 (lzsz with coupling strength λv1,2 ) and between v1

and v (the “spin-flip” lxsx + lysy with coupling strength λv,v1 ).
Cross-gap “spin-flip” terms are neglected.

b. Interlayer tight-binding hops

The nonzero interlayer tight-binding hops between the
monolayer bands, and their form, can be inferred from the
symmetries of the bands involved in the hop. The resulting
interlayer contribution to the Hamiltonian takes the form,

Hn,n+1
IL,k,σ

=
∑

j=c1,c,v

t ja
σ†
n, j,kaσ

n+1, j,k

+ tc1,c
(
aσ†

n,c1,k
aσ

n+1,c,k − aσ†
n,c,kaσ

n+1,c1,k

)
+ tc,v

(
aσ†

n,c,kaσ
n+1,v,k − aσ†

n,v,kaσ
n+1,c,k

)
+ tv1,2

∑
i=x,y

(
aσ†

n,v1i,k
aσ

n+1,v1i,k − aσ†
n,v1i,k

aσ
n+1,v2i,k

− aσ†
n,v2i,k

aσ
n+1,v2i,k + aσ†

n,v2i,k
aσ

n+1,v1i,k

)
. (B3)

Since the γ stacking preserves the C3 rotational symmetry of
the monolayer, the bands may be divided into two groups,
with no hopping between the singly and doubly degenerate

basis bands, with the x and y components also not mixed by
the interlayer hops. We have made the approximation that,
since interlayer hops are dominated by interlayer Se-Se pairs
[23], they may be taken as z/ − z symmetric. As a result, hops
between c1 and c, and between c and v, which are pairs of
bands with opposing symmetry under z/ − z reflection in the
monolayer, are antisymmetric under exchange of layers. We
neglect the hop tc1,v as the bands are well separated in energy,
and interlayer hops involving c1 are expected to be weak
owing to the dominance of the c1 wave function by orbitals on
the indium atoms in the center of each layer. Finally, using the
domination of v1 and v2 by Se px and py orbitals, we assume
that all hops within and between v1 and v2 are of the same
magnitude, tv1,2 .

2. Parametrization—bulk γ-InSe

Since DFT can often underestimate band gaps, signifi-
cantly so in the case of thicker 2D and bulk InSe, a means by
which one may obtain spectra of more use in comparison with
experiments is the use of a “scissor operator”—a rigid shift
upwards in energy of the unoccupied bands with respect to the
occupied bands. In other words, one assumes that features of
the DFT bands, such as effective masses, band widths, matrix
elements, and so on, are all correct, other than the size of the
gap itself. This has been shown to be a useful procedure in
theoretical studies of semiconductors [64–66], and in 2D InSe
[7,23]. However, the magnitude of the underestimation of the
gap (approaching a factor of ∼4 in the bulk limit) for InSe can
make the procedure more complex. For example, a straight
scissor correction without taking into account other effects of
the underestimation of the gap can lead to an overestimation
of the interband out-of-plane electric dipole matrix element
[23], or an underestimation of the band-edge effective masses
in the bulk case and hence an overestimation of the splitting of
sub-bands in the few-layer case [28]. While there are means
by which some of these problems may be overcome (for
example, the out-of-plane effective mass was corrected in Ref.
[28] by applying a scissor correction to the monolayer bands
after parametrization of the interlayer hops), the presence of
cross-gap off-diagonal matrix elements in even the monolayer
Hamiltonian presents challenges in the determination of the
appropriate means of compensating for an underestimation of
the band gap in a DFT reference.

In this case, therefore, we take as our first-principles refer-
ence a quasiparticle self-consistent GW (QSGW) calculation
for the bulk crystal. For this we use the QUESTAAL package
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[67,68], using the Bethe-Salpeter equation (BSE) to determine
the polarization in the calculation of W. Since the bands
and gaps of InSe have been shown to be sensitive to strain
[69,70], we use an experimental lattice with crystal structure
parameters found using x-ray diffraction [71]. The DFT part
of the calculation sampled the Brillouin zone with a 24 ×
24 × 24 k-point grid, while for the QSGW part a 6 × 6 × 6
grid was used. In the calculation of W, nine occupied bands
and fifteen unoccupied bands were handled using the BSE,
while the rest of the bands were handled at the random-phase
approximation level. In the DFT part, the G-vector cutoff
for the interstitial density mesh was 9.1 Ry1/2, while in the
QSGW part the cutoffs for the plane-wave expansions of
the eigenfunctions and the Coulomb integrals were 3.4 a.u.
and 2.9 a.u., respectively. The QSGW calculation of the self-
energy is carried out without taking SOC into account, with
the effects of SOC included at the DFT level afterwards. We
choose a calculation of the bulk crystal as a reference for
finding model parameters as a QSGW calculation for few-
layer InSe would be prohibitively expensive given the number
of atoms in a unit cell. The calculation gives a quasiparticle
band gap of 1.367 eV for the bulk, close to the experimentally
obtained 1.351 eV [72].

In the case of the model, Eq. (B1) is amended to describe
the bulk with a unit cell corresponding to a single layer as

H = H1
1L + H1,1

IL eikzaz + H.c., (B4)

where kz is the out-of-plane momentum and az = 8.315 Å is
the distance between successive layers [71]. The parametriza-
tion is carried out in two steps. First, we fit bands for 50 kz

points between kz = 0 and kz = π/az for k = 0, as we show in
Fig. 4, then holding the 2D �-point parameters fixed, we fit the
in-plane dispersions for small k near � up to k = K/5 for each
kz used in the first stage of the fitting. In Fig. 4 we show the
in-plane QSGW and model dispersions for kzaz = 0, π/2, π .
The model parameters are given in Table II.

3. Few-layer bands

Having found a parameter set for the model, we now
explore its behavior in the few-layer case, with an overview of
some of the key features of the bands of few-layer InSe shown
in Fig. 5. The dispersive nature of the bulk conduction and
valence bands, arising from the strong interlayer hops tc, tv, tcv
between bands with strong wave-function contributions from
selenium pz orbitals, translate to large splittings between
sub-bands in the few-layer case. It is this strong interlayer
hybridization which is responsible for the large variation of
band gap with crystal thickness [7,23], reaching >2.8 eV for
monolayer films. In contrast, v1 and v2, being dominated by
px,y orbitals which lie mostly in the 2D crystal plane, have
weak interband hops and exhibit much weaker splitting. As a
consequence when the conduction and valence bands acquire
contributions from v1 and v2 (due to, in the model, interband
k · p mixing) away from � their splitting becomes weaker.
In the conduction band this manifests itself as a difference
between the effective masses of successive sub-bands, which
in Ref. [28] was handled by a k-dependent tc.

For the valence band the situation is more complex. As
has been theoretically predicted [17,19] and shown in ARPES

FIG. 4. Upper panel: QSGW (dots) and fitted model (lines) out-
of-plane dispersions for bulk γ -InSe, for in plane momentum k = 0.
Lower panels: in-plane dispersions (along kx) for (from left to right)
kzaz = 0, π/2, π . 0 eV set to valence band edge in all cases.

experiments [10], for the thinnest films an offset in the valence
band maximum develops, leading to a slightly indirect band
gap, in contrast to the direct gap found in thicker films and
in the bulk crystal. In the multiband k · p picture a key
contribution to this phenomenon can be understood [62] as
repulsion away from � between bands v and v2. When in
the few-layer case v splits much more than v2 this repulsion
becomes much weaker. Coupled with a weaker splitting of v

itself at larger k in a similar manner to that of the conduction
band, this causes the depth and radius of the “Mexican hat”
offest to decrease rapidly with increasing crystal thickness,
ultimately leading to a direct gap in the model for N � 10
layers.

APPENDIX C: NUMERICAL IMPLEMENTATION
OF HARMONIC OSCILLATOR BASIS

In the harmonic oscillator basis described in the text, the
BSE (1) takes the form,∑

n′
xn′

y

[
H0

nxny;n′
xn′

y
− Vnxny;n′

xn′
y

]
AQ

n′
xn′

y
= �AQ

nxny
, (C1)
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TABLE II. Model parameters for Eqs. (B2)
and (B3) fitted to QSGW bands for bulk InSe. 0 eV
is set to the valence band edge in the bulk.

εc1 3.064 eV
εc 2.015 eV
εv −0.855 eV
εv1 −1.449 eV
εv2 −1.538 eV

λv1,2 0.142 eV
λv,v1 0.119 eV

tc1 −0.011 eV
tc 0.333 eV
tv −0.420 eV
tv1,2 −0.048 eV
tc1,c 0.019 eV
tc,v 0.251 eV
αc1 1.54 eVÅ2

αc −18.7 eV Å2

αv −4.95 eVÅ2

αv1 6.48 eVÅ2

α′
v1

−10.51 eVÅ2

αv2 −0.28 eVÅ2

α′
v2

−4.20 eVÅ2

βc1,v 3.77 eVÅ2

βc1,v2 8.51 eVÅ
βc,v1 10.54 eVÅ
βv,v2 −2.78 eVÅ

with the kinetic energy matrix,

H0
nxny;n′

xn′
y
(Q) =

∫
d2k[εc(k) − εv (k−Q)]

× ϕ∗
nx

(kx )ϕ∗
ny

(ky)ϕn′
x
(kx )ϕn′

y
(ky), (C2)

and the interaction matrix,

Vnxny;n′
xn′

y
=

∫
d2kd2q

(2π )2
V (q)

× ϕ∗
nx

(kx )ϕ∗
ny

(ky)ϕn′
x
(kx + qx )ϕn′

y
(ky + qy). (C3)

In the following, we explain how to choose an optimal har-
monic oscillator basis set to speed up the convergence in a
calculation. We also give the details for how to construct the
matrix equation in Eq. (C1).

Choice of basis set. To diagonalize the BSE in Eq. (C1), we
first need to specify the harmonic oscillator basis set which
is determined by the parameters: λ, the length scale of the
oscillator, and Nmax, the cutoff of the oscillator modes with
nx + ny � Nmax. In principle, λ can be arbitrary since a unique
result can be obtained provided that Nmax is large enough.
In practice, working with a large basis set is undesirable
because large matrix diagonalization is a very demanding
computational task. In the following, we show that a good
convergent result can be obtained with a relatively small basis
set if a proper choice of λ is used.

The procedure for obtaining the optimal λ is to maximize
the exciton binding energy against λ (inset of Fig. 6). This λ

corresponds to the optimal coverage of the exciton by the basis
set in the momentum/real space. In Fig. 6, we demonstrate
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FIG. 5. (Upper panels) 2D model dispersions for monolayer,
bilayer, and five-layer InSe. (Middle panel) Vertical band gaps at �

for N = 1- to 15-layer InSe. Solid line is the bulk band gap. (Lower
panels) Position (left) and magnitude (right) of offset of valence
band maximum from � point for N = 1- to 15-layer InSe, showing
indirect-direct gap transition at 10 layers.

how the binding energy depends on λ of a finite basis set with
nx + ny � Nmax = 12. We note that the optimal λ for each dif-
ferent states need to be determined separately since each states
have a very different characteristic localized length scale. In
Fig. 6, one can see that once the optimal λ is determined,
we obtain a good convergent result for the binding energy at
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FIG. 6. The convergence in the calculation of exciton ground-
state binding energy by using the optimal λ for a monolayer InSe
with Keldysh potential. The optimal λ for each state is determined
by maximizing their corresponding binding energy which are marked
by the closed circles in the inset. The optimization for the first four
�-point exciton binding energy in the inset is performed with fixed
Nmax = 12.

Nmax ∼ 12. Increasing the number of basis beyond Nmax = 12
only leads to no more than 2 meV correction.

Kinetic energy matrix. For a general band dispersion such
as those in tight-binding model, analytical expression may not
be available and the query of the band energy may be compu-
tationally expansive. Therefore, a straightforward numerical
integration in Eq. (C2) is not a practical approach. A feasible
numerical method is to expand the band dispersion (periodic
function) into a fast convergent Fourier series. Namely,

εc(k) − εv (k − Q) =
∞∑

s=−∞
[Cs − Vse

i2πs·Q̄]e−i2πs·k̄, (C4)

where s = (sx, sy), k̄ = (kx/Tx, ky/Ty), and Q̄ =
(Qx/Tx, Qy/Ty) with the (Tx, Ty) are the periodicity of
the dispersion in each dimensions. The Fourier coefficients
are therefore defined as[

Cs
Vs

]
=

∫ Tx
2

− Tx
2

dkx

Tx

∫ Ty
2

− Ty
2

dky

Ty
ei2πs·k̄

[
εc(k)
εv (k)

]
. (C5)

With this expansion, we can integrate out the momentum
explicitly. Hence, the band energy matrix in Eq. (C2) become

H0
nxny;n′

xn′
y
(Q)

=
∞∑

sx,sy=−∞
[Cs − Vse

i2πs·Q̄]
x,y∏

j

2ζ j− 1
2 (n j+n′

j )ζ j!(ā js j )� j

in′
j−n j+� j

√
n j!n′

j!

× e− 1
4 ā2

j s
2
j L

� j

ζ j

(
1

2
ā2

j s
2
j

)
, (C6)

with ζ j = min[n j, n′
j], � j = |n′

j − n j |, ā j = 2π/(Tjλ), and
Lα

n (x) is the associated Laguerre polynomial. Since the band
dispersion is periodic, only a few of the Fourier modes are

FIG. 7. The convergence of the Q = 0 exciton ground-state en-
ergy with different grid size for constructing the Fourier series of εc

and εv .

relevant to the series. Moreover, we note that the higher order
term in the sum are exponentially suppressed. This implies
that we have transformed the numerical integration problem
into a fast convergent summation.

To calculate the Fourier coefficients, we can approximate
the integral in Eq. (C5) as a Riemann sum by discretizing
the momentum space into a uniform grid. The calculation of
Riemann sum is the same as calculating the discrete Fourier
transformation which can be very efficiently evaluated by
the fast-Fourier transformation. In this numerical approach,
the tight-binding Hamiltonian only needs to be diagonalized
once in constructing the uniform grid. Depending on the
smoothness of the band structure, typically, the grid size
greater than 50 × 50 points is good enough for a desirable
convergent result (see Fig. 7). In this paper, we use 100 × 100
grid points for the calculation.

Although we have used a straightforward method with fast-
Fourier transformation. The idea of our method is essentially
the same as K-point sampling in Refs. [73–75]. The K-point
sampling method is much more efficient since it utilizes all
the symmetry in the function and regrouping the Fourier series
into a faster convergent series. The Fourier coefficient in the
series can be very efficiently calculated by the Monkhorst-
Pack grid in the reduced Brillouin zone. This method was
originally discussed in Ref. [75] as a “hybrid method.”

We can further simplify the calculation in Eq. (C2) if
only the low-energy exciton is in our interest. As indicated
in Fig. 2, only the low-energy electronic modes (red/blue
shaded region) which are well described by the k · p model
are relevant for exciton binding. In this low-energy regime,
one may approximate εc/v by expanding it into polynomial.
Thus, in this approach, we can use the following identity to
calculate Eq. (C2) analytically,∫

dkkl e−k2
Hm(k)Hn(k)√
πm!n!2m+n

=
√

n!

m!

�l/2�∑
r=0

min[m,l−2r]∑
s=0

(
m

s

)
2s−l− 1

2 (m−n)l!

r!(l − 2r − s)!
δl+m−2r−2s,n,

(C7)
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TABLE III. Comparison of binding energies in meV as obtained
from the harmonic oscillator basis against analytical and calculated
results [49] for suspended MoS2. Basis size used in the comparison
with MoS2 monolayer corresponded to Nmax = 12 (basis size=91
states) and λ was optimized. For the 2D hydrogen atom with a
reduced effective mass of μ = 0.14 and ε = 9 the basis size used
for the comparison was Nmax = 20 for every states in the table except
the 1s. As for the 1s state a greater basis size of Nmax = 24 as used.

HO basis 2D hydrogen HO basis Suspended MoS2 [49]

0s 92.5 94.2 554 555
1px,y 10.38 10.47 315 316
1s 9.6 10.47 257 258
2dxy 3.76 3.77 209 209
2px,y 3.69 3.77 184 185

where �l/2� is the largest integer that is equal or smaller than
l/2.

Interaction matrix. In this paper, we assume in-plane ro-
tational symmetry in the e-h interaction. Hence, the k inte-
gration in Eq. (C3) can be carried out explicitly by using
Hn(x + y) = ∑n

s=0( n
s )Hs(x)(2y)n−s and this yields

Vnxny;n′
xn′

y
=

∫
qdq

(2π )2
V (q)e− 1

4 q2λ2
x,y∏

j

min[mj ,n j ]∑
s j=0

(λq)σ j ,

×
(

n j

s j

)(
mj

s j

)( − 1
2

) 1
2 σ j s j!√

mj!n j!
2B

(
σx + 1

2
,
σy + 1

2

)
,

(C8)

where σ j = n j + mj − 2s j and B(x, y) is the beta function.
For the Keldysh potential, V (q) = − 2πe2√

κ‖κzq(1+r∗q) , we have the

following analytical expression for∫
qdq

(2π )2
V (q)(λq)σx+σy e− 1

4 q2λ2

= −e2

2π
√

κ‖κz

(
− λ

r∗

)σx + σy

⎧⎨
⎩e

− λ2

4r2∗

2r∗/λ

[
πerf

(
λ

2r∗

)
− Ei

(
λ2

4r2∗

)]

−
σx+σy−1∑

j=0

�

(
j + 1

2

)(
−2r∗

λ

) j
⎫⎬
⎭,

where �(x) is the gamma function, Ei(x) is the exponential
integral, and erf (x) is the error function.

Comparison with hydrogenlike exciton levels for V ∝ −1/r
and Keldysh interaction. As shown in Table III, in comparing
the binding energy as obtained from the harmonic oscillator
basis with the analytically obtained 2D hydrogen atom energy
levels, the discrepancy between the two was found smaller
than 2% as for the ground-state energy and even lower for
the states with l �= 0. The higher excited states with l = 0
required a very large basis size in order to accurately calculate
the binding energy due to the very sharp singularity of the
wave function appearing at r = 0 (Kato cusp). This situation
is similar to the well-known problem in the Slater-type versus
Gaussian-type orbitals in quantum chemistry [76], since the

harmonic oscillator is essentially a Gaussian basis. Such a
sharp feature in the excitonic wave function is mitigated in
the Keldysh potential as the 1/r divergence becomes logarith-
mic. In this case, the harmonic oscillator basis yields better
accuracy for each binding state in the spectrum. In comparing
our binding energy calculation with the calculated bindings
for MoS2, the error was significantly reduced for the same
basis size with <0.3% as for the ground state and lower for the
l �= 0 states.

Connection to the real-space formalism. It is also in-
structive to describe the excitonic problem in terms of real
space. To do this, we can Fourier transform the Bethe-Salpeter
equation in (1) by using

ψ (re, rh) =
∑
ke,kh

ψQ(k)ei(ke·re−kh·rh ). (C9)

We remind that ke = k and kh = k − Q. This transformation
turns all momentum in the dispersion in Eq. (1) into derivative
operators and yields

[εc(−i∇re ) − εv (i∇rh ) − � + V (re − rh)]ψ (re, rh) = 0,

(C10)

where V (r) = ∫
q eir·qV (q) is the Fourier transformation of the

potential. The above equation yields the Mott-Wannier model
if only the quadratic mass term in εc/v is kept. However, in
our model, we need to retain higher-order terms in the hole
dispersion.

Similar to the Mott-Wannier model, Eq. (C10) can be
reduced to a one-body problem by using the canonical trans-
formation. Since the hole effective mass is not well defined
due to the sombrero-shaped dispersion, instead of using the
center-of-mass frame coordinate system, we choose

[
X
x

]
= 1√

2

[
re + rh

re − rh

]
,

[
P̂
p̂

]
= − i√

2

[∇re + ∇rh

∇re − ∇rh

]
.

The crucial requirement for this transformation is that the
new coordinate system satisfies [x j, p̂ j] = [Xj, P̂j] = i such
that the physical phase space volume is preserved. Using the
(X , x) coordinate, Eq. (C10) in the real space reads

[
εc

(
p̂ + P̂√

2

)
− εv

(
p̂ − P̂√

2

)
− � − V (

√
2x)

]
ψ (X , x) = 0.

(C11)

We note that, in this coordinate system, the correspondence
between momentum and real space representation of the
exciton momentum is Q = ke − kh ↔ −i∇re − i∇rh = √

2P̂.
First, it is noted that [P̂, H] = 0 where H (independent

of X ) is the electron-hole two-particle Hamiltonian in (C10)
indicating that P is a well-defined quantum number which
gives the exciton momentum Q = √

2P. Therefore, the wave
function is uniquely dependent on x:

ψ (X , x) = eiP·Xχ (x), (C12)
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which is the eigenfunction of H . Substituting the above ansatz
wave function into Eq. (C10), we reduce the equation into a
one-body Shrödinger equation as

[
εc

(√
2p̂ + Q

2

)

−εv

(√
2p̂ − Q

2

)
− � + V (

√
2x)

]
χ (x) = 0. (C13)

Expanding χ (x) into the harmonic oscillator basis as
χ (x) = ∑

n CQ
nxny

ϕnx (ρx )ϕny (ρy) where ρ = re − rh = √
2x is

the relative coordinate of electron and hole. The real-space
basis function, ϕn(ρ), is the Fourier transformation of ϕn(k)
which is also a harmonic oscillator. Therefore, the matrix
representation for Eq. (C13) is

∑
n′

xn′
y

[
H0

nxny;n′
xn′

y
+ Vnxny;n′

xn′
y

]
CQ

n′
xn′

y
= �CQ

nxny
, (C14)

with the kinetic Hamiltonian,

H0
nxny;n′

xn′
y
(Q) =

∫
d2ρϕnx (ρx )ϕny (ρy)

[
εc

(√
2p̂ + Q

2

)

− εv

(√
2p̂ − Q

2

)]
ϕn′

x
(ρx )ϕn′

y
(ρy), (C15)

and the Coulomb interaction matrix,

Vnxny;n′
xn′

y
=

∫
d2ρV (ρ)ϕnx (ρx )ϕny (ρy)ϕn′

x
(ρx )ϕn′

y
(ρy).

The integration in Eq. (C15) can be carried out exactly by
using the chain rule to rewrite p̂ = −i∇x = √

2(−i∇ρ ) and
then using the recursive relation of the Hermite functions.
Alternatively, one may also calculate it by turning −i∇ρ into
the simple harmonic ladder operators and carrying out the
commutation algebra. Nevertheless, the calculated result from
both methods is identical to the momentum space calculation
in Eq. (C7).
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5.3 Supplementary material

As well as using the harmonic oscillator basis projection method presented
in Section.5.2 to calculate the excitonic binding energies and exciton dispersions
in hBN-encapsulated InSe thin films, in Table III of Appendix.C of the above
publication we presented a comparison between our calculated binding energies
in a suspended TMD with the binding energies obtained in Ref.[65] using finite-
element methods. With our algorithm, we also calculated the exciton binding
energy of an indirect exciton in a van der Waals heterostructure, namely, 1L-
MoS2/hBN/1L-MoS2. Using DFT-calculated effective masses of monolayer MoS2

provided by Celal Yelgel, we obtained the exciton binding energy as a function of
the number of intermediate hBN layers projecting the solution of the Schrödinger
equation in the harmonic oscillator basis. The Schrödinger equation for such
bound state had the form

[~2k2

2µ + ~2Q2

2M + V (re − rh)
]
Φ = EΦ, (5.1)

where µ ≡ memh
me+mh

is the reduced effective mass of the electron-hole pair, V (re−rh)

Figure 5.1: Calculation of the indirect exciton binding energy of a 1L-MoS2/hBN/1L-MoS2
heterostructure (see Ref.[66] for a comparison)using the electrostatic formalism developed in
Ref.[11] for a generalised van der Waals heterostructure. The dielectric constants used for the
MoS2 layers were ε|| = 14 and εz = 6.8 (see Ref.[66]) and the thickness of each hBN and MoS2
layer was assumed to be d = 0.33nm.
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is the electrostatic electron-hole interaction and M = me +mh is the total mass
of the exciton. In Appendix.C.3 of this thesis we show how the electrostatic
potential V (re− rh) was obtained using a previously developed method presented
in Ref.[11] and Ref.[12] for van der Waals heterostructures.



Chapter 6

Magnetic focusing in twisted bi-

layer graphene

6.1 Introduction

When a magnetic field is applied to a 2D electron gas, electrons perform
closed cyclotron orbits due to the Lorentz force. If electrons rotate very close
to the sample edge, the boundary potential may scatter the incident electron
and rebound the incoming particle. Such open orbits (known as skipping orbits)
become really interesting for transport measurements since they provide very
clear electronic signals when electrons are injected through a narrow channel in a
2-terminal device (see Fig.6.1). In addition to providing a measurable signal, the
concentration of infinitely many skipping orbits forms what is known as caustics.
Caustics are a continuum of points in the region near the sample edge where the
electron density becomes singular due to purely geometrical effects. Therefore, at
such points in space, the measured voltage is expected to significantly increase
due to the natural tendency of electrons to focus towards those regions. This
technique became extremely interesting in transport studies of 2D materials thanks
to theoretical predictions in graphene pn-junctions[67, 68] of perfectly collimated
electron focusing.

For a general band structure, the equations of motion of an electron under
an applied electric field E and a magnetic field B, can be obtained from a purely
quasiclassical formulation accounting for the effect of a non-zero Berry curvature
Ωn, [69, 70]

~k̇ = −e(E + ṙ×B), ṙ = 1
~
∂ε(k)
∂k

− k̇× Ωn(k). (6.1)

84
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Figure 6.1: a) Skipping orbits (red) and cyclotron orbits (black) in an arbitrary material.
The focusing of skipping orbits when electrons are injected is responsible for the formation of
caustics and magnetic focusing. b) Formation of caustics and a cusp. The very clear tendency
of the cyclotron orbits to concentrate along specific points in space generates these specially
high electron density locations.

From the equations of motion, the real space trajectory can be parameterised as
a function of time t and θ (i.e. r(t, θ)) where t labels the time and θ any relevant
parameter at the moment of injection. From each of the electron’s position at a
time t, the electron density at an arbitrary point r can be obtained from[71]

ρ(r) =
∫
δ(r− rn(t))dtdθ. (6.2)

From the expression above, we can demonstrate after a sequence of substitutions
that for circular cyclotron orbits of radius R whose centre after n rebounds is
located at (ζn(θ), ηn(θ)), the electron density is singular when

F = f(x, y; ζn, ηn, R) ≡ (x− ζn)2 + (x− ηn)2 −R2 = 0, dF

dθ
= 0. (6.3)

Consequently it is expected to observe peaks in the electron current when such
high electron concentration curves exactly hit the detector[68].

In this chapter we present how the technique of magnetic focusing was ap-
plied to twisted bilayer graphene in order to probe its band structure. Using a
self-consistent algorithm similar to the one presented in Section.3, the transverse
magnetic focusing signal was calculated at different carrier densities, magnetic
fields and displacement fields. The application of a displacement field was shown
to generate an opposite shift in the energy of the two different K and K′ points,
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therefore suppressing the contribution from one valley and enhancing the contribu-
tion from the opposite one. This has a huge potential in the field of valleytronics
as a technique to filter valley currents by means of electrostatic gating.
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6.2 Minibands in twisted bilayer graphene probed

by magnetic focusing

The results of this publication were reported in Ref.[72]: "Minibands in
twisted bilayer graphene probed by magnetic focusing”. In:Science Advances 6.16
(2020).

My contribution to this work: A.Ceferino contributed to the theoretical under-
standing of the magnetic focusing technique and helped with the calculation of
the transverse magnetic focusing signal in twisted bilayer graphene.

Full author list: A. I. Berdyugin, B. Tsim, P. Kumaravadivel, S. G. Xu, A.
Ceferino, A. Knothe, R. K. Kumar, T. Taniguchi, K. Watanabe, A. K. Geim, I.
V. Grigorieva and V. I. Fal’ko.

Author contribution: P. Kumaravidavel and S. G. Xu fabricated the necessary
samples. A. I. Berdyugin performed the transport measurements with the help of
R. K. Kumar. The transport measurements were analysed by A. I. Berdyugin, B.
Tsim, V. I. Fal’ko, and I. V. Grigorieva. B. Tsim made the necessary transverse
magnetic focusing calculations with help of V. I. Falko as well as A. Knothe.
T. Taniguchi and K. Watanabe provided the hexagonal boron nitride crystals
necessary for the device encapsulation. A. I. Berdyugin, B. Tsim, I. V. Grigorieva,
and V. I. Fal’ko wrote the manuscript with additional comments from A. K. Geim,
P. Kumaravidavel, and S. G. Xu.
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C O N D E N S E D  M A T T E R  P H Y S I C S

Minibands in twisted bilayer graphene probed by 
magnetic focusing
A. I. Berdyugin1*, B. Tsim1,2, P. Kumaravadivel1,2, S. G. Xu1,2, A. Ceferino1,2,  
A. Knothe2, R. Krishna Kumar1,2, T. Taniguchi3, K. Watanabe3, A. K. Geim1,2,  
I. V. Grigorieva1,2,4, V. I. Fal’ko1,2,4*

Magnetic fields force ballistic electrons injected from a narrow contact to move along skipping orbits and form 
caustics. This leads to pronounced resistance peaks at nearby voltage probes as electrons are effectively focused 
inside them, a phenomenon known as magnetic focusing. This can be used not only for the demonstration of 
ballistic transport but also to study the electronic structure of metals. Here, we use magnetic focusing to probe 
narrowbands in graphene bilayers twisted at ~2°. Their minibands are found to support long-range ballistic transport 
limited at low temperatures by intrinsic electron-electron scattering. A voltage bias between the layers causes 
strong minivalley splitting and allows selective focusing for different minivalleys, which is of interest for using 
this degree of freedom in frequently discussed valleytronics.

INTRODUCTION
Crystallographic alignment of atomically thin crystals stacked together 
in a van der Waals heterostructure is a powerful tool that enables 
fine-tuning of their electronic spectra. For crystals with similar honey-
comb lattices, the spectra are modified by the presence of a long-range 
interference (moiré) pattern with a period S dependent on the twist 

angle  between the layers (see Fig. 1A) (1–18). The additional spatial 
periodicity reduces the size of the Brillouin zone and introduces 
secondary Dirac points, as illustrated in Fig. 1B. So far, the most 
pronounced twist-engineered changes in the electronic properties 
of two-dimensional (2D) crystals have been achieved in twisted 
bilayer graphene (TBG), where the twist at discrete “magic” angles 
results in narrowbands, periodically modulated interlayer hybrid-
ization, and strong enhancement of electron correlations, leading to 
superconductivity and Mott insulator transitions (6–8). At larger , 
the TBG spectrum corresponds to a metal with several minibands 
at each K and K′ valley in the Brillouin zone (Fig. 1B). Electronic 
properties of such a metal are expected to be quite different from 

1School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, 
UK. 2National Graphene Institute, University of Manchester, Manchester M13 9PL, 
UK. 3National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan. 
4Henry Royce Institute for Advanced Materials, Manchester M13 9PL, UK.
*Corresponding author. Email: alexey.berdyugin@manchester.ac.uk (A.I.B.); vladimir.
falko@manchester.ac.uk (V.I.F.)

Copyright © 2020 
The Authors, some 
rights reserved; 
exclusive licensee 
American Association 
for the Advancement 
of Science. No claim to 
original U.S. Government 
Works. Distributed 
under a Creative 
Commons Attribution 
License 4.0 (CC BY).

I

Fig. 1. Moiré minibands and TMF measurements. (A) Schematics of the moiré superlattice induced by the twist of graphene layers. Here, two graphene sheets are 
rotated by an angle  relative to each other, which creates an additional spatial periodicity S = a/[2 sin (/2)] (a is graphene’s lattice constant) with the unit cell area of 
  A  S   =  √ 

_
 3   / 2   S  2  . (B) Band structure of TBG graphene in the K valley of the Brillouin zone calculated for the twist angle  = 1.87°, as discussed in section S3. (C) Optical image 

of TBG device D1 with  = 1.87°. Scale bar, 4 m. (D) Two examples of TMF signals measured in device D2 (D = 0 V nm−1) at 5 K for the carrier density 3.7 × 1012 cm−2 (left) 
and 9.3 × 1012 cm−2 (right) at a distance of 4.9 m from the injector. The latter is close to the main and secondary neutrality points, respectively, as illustrated in (B). The 
insets are examples of focusing caustics near the main (left) and secondary (right) neutrality points (see more examples in fig. S4). Arrows highlight the focal points for 
caustics, red star marks the current injection point, and red lines show typical trajectories that extend from the injector to the first focal point.
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the behavior of Dirac electrons in monolayer or bilayer (aligned 
to Bernal stacking) graphene but so far remain largely unexplored. 
Here, we use transverse focusing of electrons in a perpendicular 
magnetic field (TMF) (12, 19–23) to probe the properties of moiré 
minibands in TBG and demonstrate an exceptionally high quality 
of the “artificial metal” in TBG, as well as a possibility to use verti-
cal displacement field, D, to break the valley degeneracy in the 
two constituent layers and selectively enhance transport in one of 
the minivalley.

RESULTS
Studied devices
We studied two high-quality dual-gated TBG devices encapsulated 
with ~30- to 50-nm-thick hexagonal boron nitride (hBN) crystals: 
D1, with  = 1.87° ± 0.01° (shown in Fig. 1C), and D2, with  = 2.60° ± 
0.01° (fig. S1A). The procedure used to determine  is described in 
section S1. The devices were fabricated using standard dry-transfer 
(24, 25) and tear-and-stack (4, 26) techniques (see section S2 for 
details). To ensure a clean interface between the two graphene layers, 
special care was taken to avoid any contact between graphene and 
the polymer during the transfer (section S2). In transport measure-
ments, both devices showed similar behavior, with low-temperature 
mobilities in excess of 400,000 cm2 V−1 s−1 for carrier density n ~ 
1012 cm−2. All data shown below were obtained at a constant dis-
placement field, D, that was achieved by a simultaneous sweep of 
the top and bottom gates (section S2).

Transverse magnetic focusing
The high mobility for both devices enabled observation of TMF 
(12, 19–23), which is a manifestation of ballistic motion of electrons 
and had been used to characterize the shape of Fermi surfaces in 
both 3D (19, 20) and 2D (12, 21–23) metals. To measure the effect 
of TMF in our TBG devices, we used a nonlocal geometry illustrated 
in Fig. 1C, where narrow contacts 1 and 2 at one end of the device 
were used for current injection (driving current I12) and contacts 
3 and 4 at the other end were used to detect a voltage V34. In the 
presence of a perpendicular magnetic field, electrons injected from 
contact 1 propagate along the device edges in skipping orbits and 
form a characteristic caustic pattern determined by the shape of 
the Fermi surface, as illustrated in the insets of Fig. 1D. Caustics are 
focused into equidistant focal points along the sample edge, and the 
drift direction of the skipping orbits is determined by the sign of the 
magnetic field such that electron- and hole-like carriers propagate 
in opposite directions. As the positions of focal points vary with the 
magnetic field, whenever they coincide with the position of the volt-
age probe (contact 3 in Fig. 1C), one observes a focusing peak in the 
nonlocal resistance Rf = V34/I12. Figure 1D gives two examples of the 
observed focusing peaks measured at different carrier densities.

Figure 2A shows a typical dependence of Rf on the carrier density 
and magnetic field at zero displacement field, D = 0 V nm−1. Here, 
the appearance of an Rf signal in a particular quadrant of the B-n 
diagram reflects the sign of the cyclotron mass, while the change of 
the quadrant upon doping indicates an inversion of the electron 
dispersion (i.e., a change of sign of the mass from electrons to holes 
or vice versa). Accordingly, a fan-like pattern in the center of Fig. 2A, 
which converges and changes direction at zero carrier density, indi-
cates a neutrality point. Two additional, qualitatively similar, changes 
of the cyclotron mass appear at higher electron and hole densities, 

showing inverted fan-like patterns at higher energies. These indicate 
that the electron dispersion converges toward a new (secondary) 
neutrality point, such as shown in Fig. 1B. The crossover between 
these two regimes (at n ≈ 3 × 1012 cm−2 and −3 × 1012 cm−2) must 

D = 0 V/nm D ≠ 0 V/nmC

D = 0 V/nm Experiment D = 0 V/nm Theory

D = 0.75 V/nm Experiment TheoryD = 0.75 V/nmED

BA

Fig. 2. Transverse magnetic focusing map. (A) Focusing signal Rf as a function 
of the magnetic field and carrier density measured at 2 K for device D1 in zero 
displacement field, D = 0 V nm−1. Color scale: blue to red, ±3 ohms. (B) TMF map 
calculated from the energy spectrum shown in Fig. 1B using a numerical method 
described in section S4. The angle between the zigzag edge of one of the monolay-
ers and the sample boundary is taken as 45° to avoid any spurious effects of crystal-
lographic alignment. As demonstrated in section S4, the calculated TMF map is only 
very weakly sensitive to the mutual orientation between graphene and the sample 
edge, confirming the generality of our results. (C) Contour plot of the first conduction 
miniband shown for the K valley of the Brillouin zone for zero (left) and nonzero 
(right) displacement fields. Black and red dashed lines outline the shape of the 
Fermi surfaces for carrier densities marked by black and red dashed lines in (A); the 
latter corresponds to equivalent doping levels relative to the main (black) and 
secondary (red) neutrality points. The color scale is from 0 to 154 meV. (D) Rf as a 
function of magnetic field and carrier density for device D2 measured at T = 2 K and 
D = 0.75 V nm−1 at a distance of 8.5 m from the injector (more data are shown 
in fig. S5). Color scale: blue to red, ±0.2 ohm. (E) TMF map calculated numerically 
for device D2 in a displacement field (see sections S3 to S5 for details), which 
shows the splitting of the focusing peaks originating from the different miniband 
dispersion at  and ′.
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correspond to a van Hove singularity (vHS) in the moiré miniband 
spectrum. For a quantitative comparison, Fig. 2B presents the results 
of TMF modeling for device D1. Here, we used the model from (3) 
to compute the electron spectrum shown in Fig. 1B (see section S3 
for details) and to perform numerical analysis of caustics (12), where 
the contributions to Rf from trajectories of electrons leaving the in-
jection contact at different angles were weighted proportionally to 
∣∇kE∣−1 (section S4). A good agreement between the experiment 
(Fig. 2A) and theory (Fig. 2B) suggests that the band structure of 
TBG is well described by the spectrum shown in Fig. 1B.

It is noticeable that the fan-like patterns in Fig. 2 (A and B)—
corresponding to the main and secondary neutrality points of the 
TBG superlattice (around zero carrier density and above the vHS, 
respectively)—have different periodicities. This difference is caused 
by different sizes of the Fermi surfaces at equivalent doping levels 
(black and red dashed lines in Fig. 2A), due to the degeneracy of the 
miniband dispersion at  and ′. The Fermi surface contours are 
shown in Fig. 2C by black dashed lines around  and ′ points of the 
mini Brillouin zone (main neutrality point) and a red dashed line 
around the  point (secondary neutrality point). Furthermore, our 
theoretical analysis suggests that the Fermi surfaces close to the  
point have a triangular shape (Fig. 2C), which can be traced to the 
strong interlayer hybridization of those states. At the same time, the 
Fermi surfaces around  and ′ points (that coincide with the valley 
centers K of the top and bottom graphene layers) are almost isotropic, 
as in monolayer graphene, pointing toward weak interlayer hybrid-
ization of these states.

Effect of the displacement field
The absence of appreciable interlayer coupling at  and ′ can be 
used to disentangle the TMF contributions from different minivalleys. 
To this end, we used a finite displacement field, up to D = 0.75 V nm−1 
(achievable without a risk of damaging our devices), which shifts 
the on-layer potential for electrons and therefore shifts the energies 
of the Dirac cones at  and ′, as illustrated in Fig. 2C. Such layer- 
symmetry breaking lifts the degeneracy between  and ′ and sepa-
rates the motion of electrons from different minivalleys in a magnetic 
field, as they now have different sizes of cyclotron orbits. This generates 
two different magneto-oscillation frequencies of Rf at low carrier den-

sities, |n| < 1012 cm−2, as seen in Fig. 2D, where separate focusing 
peaks appear for the electrons from each minivalley.

DISCUSSION
Further information about carrier dynamics in TBG can be obtained 
by studying the temperature dependence of TMF and its evolution 
for consecutive focusing peaks. In Fig. 3A, we show how the ampli-
tude of TMF oscillations depends on temperature T in the range 2 K < 
T < 30 K, in the vicinity of both main and secondary neutrality 
points. For quantitative analysis, we extract the relative scattering 
length as (12)

     L  s   ─  L  path     =   (  ln [     A( T  base  ) ─ A(T)   ]   )     
−1

   (1)

where Lpath is the length of trajectories extending from the injector to 
the first focal point as shown in Fig. 1D, and A1(2)(T) and A1(2)(Tbase) 
are the areas under the first (second) focusing peak in Fig. 3A at T and 
Tbase = 2 K, respectively. The results are shown in Fig. 3B. The mea-
sured scattering lengths Ls for both carrier densities and all focusing 
peaks follow a T−2 scaling, which is different from the T−1 dependence 
characteristic of phonon-dominated scattering (23, 27). Such scaling 
points toward the dominance of low-angle electron-electron scattering 
that was also found to be responsible for the TMF suppression in 
graphene/hBN superlattices (12). Furthermore, the ratio between the 
areas under the second and first focusing peaks in Fig. 3A, A2/A1, 
characterizes the reflection of electrons at the sample boundary: The 
closer it is to one, the higher the probability for the incoming elec-
trons to undergo specular reflection. In our experiment, electrons 
with energies near the main neutrality points (n ≈ 1.8 × 1012 cm−2; 
Fig. 3A, right) undergo almost specular reflection (A2/A1 ≈ 0.8), while 
reflection of the electrons with energies near the secondary neutrality 
point (n ≈ 6.6 × 1012 cm−2; Fig. 3A, left) is notably less specular 
(A2/A1 ≈ 0.65). This indicates a higher probability of diffusive scat-
tering in the latter case, which is consistent with the greater sensitivity 
of the corresponding part of the miniband spectrum to inevitable 
perturbations of the moiré pattern near the sample edge. Because of 
little hybridization between the layers near  and ′, the scattering 
of Dirac electrons should be little affected by the termination of 

A B

Fig. 3. Temperature dependence of magnetic focusing. (A) Temperature dependence of the TMF signal measured at two characteristic carrier densities for device D1 
(see legends). T was varied from 2 to 30 K (blue to red). (B) T dependence of the relative scattering length (see text) extracted from experimental data for consecutive 
focusing peaks. Absolute scattering lengths for several relative orientations of the crystallographic axes and the sample edge are shown in fig. S6. Dashed line shows 
T−2 dependence. The inset shows the ratio of the areas under the first and second focusing peaks in (A) as a function of T. Arrows correspond to A2/A1 = 0.8 and 0.65 
(see text). Error bars indicate the accuracy of determining A2/A1; large errors at T > 20 K are due to the relatively large background signal as the focusing peaks become 
strongly suppressed.
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superlattice periodicity near the edge, while its part near the sec-
ondary neutrality points should be affected substantially, promot-
ing diffusive scattering.

Last, we note that the above observations of superlattice effects 
in TMF correlate well with the bulk transport properties of the same 
TBG samples studied using local geometry. The longitudinal and Hall 
resistivity shown in Fig. 4 (A and B) displays secondary neutrality 
points (indicated by black arrows) and vHS (red arrows) at the same 
carrier densities as those inferred from the TMF experiments. Further-
more, the presence of a moiré superlattice in the studied TBG samples 
is seen from the presence of Brown-Zak oscillations (13, 14) that 
dominate the magnetotransport above T ~ 30 K (Fig. 4C): While at 
low temperatures the magnetoresistance is dominated by Shubnikov–
de Haas oscillations (see T = 2 K curve in Fig. 4C), these are rapidly 
suppressed as T increases and give way to another 1/B-periodic os-
cillations, with period determined by the relation between the magnetic 
flux through the moiré supercell area, AS, and the magnetic flux quan-
tum 0 = h/e, i.e., BAS = 0/q (where q is an integer).

To conclude, we have demonstrated that TBG supports ballistic 
propagation of electrons in multimicrometer devices, with electron 
transport determined by the reconstruction of the energy spectrum 
in the presence of a long-period superlattice. This offers new oppor-
tunities to study fundamental phenomena, such as Bloch oscillations 
in moiré superlattices (28–30) and their use for, e.g., terahertz gen-
eration. Moreover, we have shown that the sensitivity of the TBG band 
structure to the displacement field allows selective manipulation of 
electrons from different minivalleys, which may be implemented in 
electronic devices exploiting the valley degree of freedom.

MATERIALS AND METHODS
Device fabrication
To make TBG, we used the standard tear-and-stack method as de-
scribed in section S2. TBG stacks were encapsulated between hBN 
crystals and assembled onto SiO2 substrate with doped silicon under-
neath, which served as a bottom gate electrode. Then, devices were 
shaped into hall bars using standard electron-beam lithography and 
reactive-ion etching techniques (section S2).

Measurement details
We used standard low-frequency lock-in measurement technique 
with excitation frequency of 10 to 30 Hz. To independently control 

the carrier density and interlayer displacement field, we used dual- 
gated geometry, as discussed in section S2.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/16/eaay7838/DC1
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Section 1. Determining twist angle. 

We used two independent methods to find the actual twist angle 𝜃 between the two graphene 

layers. First, the twist angles were found from 𝜌xx(𝑛) and 𝜌xy(𝑛) measurements using the position 

of the secondary neutrality points (NP): 

𝜃 = 2arcsin(√
√3𝑎2

8𝐴
),  (S1) 

where 𝑎 is graphene’s lattice constant, 𝑛 the carrier density, 𝐴 = 4/∆𝑛 the superlattice unit cell 

area, and ∆𝑛 the position of the secondary NP. For device D1, NP are shown in Figs 4A and 4B in the 

main text yielding Δ𝑛 = 8.1 × 1012 cm-2 and 𝜃 = 1.87°. For device D2 it was impossible to reach 

secondary NPs using electrostatic gating; to find the twist angle in this case we used the fact that 

NPs can be found by extrapolation of the reciprocal Hall resistivity, (𝜌xy)
−1

as shown in Fig. S1A. The 

main neutrality point is clearly seen at zero carrier density and two van Hove singularities (vHS) are 

shown by red arrows. To find the secondary NPs, the linear dependences below and above the vHS 

were extrapolated as shown in Fig. S1A, with NPs corresponding to the intersections with 

(𝜌xy)
−1
= 0. The positions of the secondary NPs for this device, marked by black arrows, give 

Δ𝑛 = 15.7 × 1012 cm-2 corresponding to  = 2.60 ˚.  

Another way to determine the twist angle is from the periodicity of Brown-Zak oscillations (13, 14), 

which are shown in Fig. 4C for D1 and in Fig. S1B for D2. The superlattice area can be found as 

𝐴 = ∆(
1

𝐵
)𝜙0, where  ∆ (

1

𝐵
) is the period of Brown-Zak oscillations in the reciprocal magnetic field, 

and 𝜙0 the flux quantum. This gives ∆ (
1

𝐵
) = 0.0119 ± 0.0005 T-1 for D1 and 0.00616 ± 0.00005 T-1 

for D2 corresponding to  = 1.87±0.01˚ for device D1 and  = 2.60±0.01˚ for D2, in good agreement 

with the values found from Hall resistivity. 

 

Fig. S1. Hall resistivity and Brown-Zak oscillations in device D2. (A), Reciprocal Hall resistivity as a function of 

carrier density in a magnetic field of 1T measured at 3.5K. Black arrows indicate positions of neutrality points 

and red arrows show positions of vHS. Black dashed lines are extrapolations that allowed us to find positions 

of the secondary NPs. (B), Longitudinal resistivity vs magnetic field measured at different temperatures for 

device D2 at the carrier density n = 5.8x1012 cm-2
.  

  



Section 2. Device fabrication and measurement details 

The heterostructures studied in this work were assembled using the standard dry-transfer technique 

(24, 25), and for the fabrication of the twisted bilayer graphene (TBG) we adapted the tear-and-stack 

(26, 4) method. Details of these methods are outlined below.  

First, the top hexagonal boron nitride (hBN) crystal was picked up using a polypropylene carbonate 

(PPC) polymer spun onto a polydimethylsiloxane (PDMS) film. Then we used a micromanipulator to 

place the hBN crystal so as to cover only a part of the monolayer graphene located on a SiO2/Si 

substrate. Next, hBN was slowly peeled off the substrate, tearing the graphene flake into two pieces 

while picking up the part covered with hBN. The remaining part of the graphene flake was rotated by 

2˚ and picked up with the first half attached to hBN to produce TBG. The temperature of the 

substrate was kept at 70˚ C throughout this process in order to reduce thermally induced strain or 

relaxation of the layers. By carefully controlling the micromanipulator, we ensured that graphene 

layers had no contact with the PPC polymer, guaranteeing a clean interface between the two 

graphene monolayers. Finally, the bottom hBN crystal was picked up to encapsulate the TBG, and 

the whole stack released onto a SiO2/Si substrate. To define 1D contacts, we used reactive ion 

etching to selectively remove the heterostructures areas, followed by deposition of Cr (3 nm) and Au 

(60 nm). An additional lithography step was used to make a gold top gate, which also served as an 

etching mask to define the mesa. An example of the final device is shown in Fig. S2A, where we show 

one of our dual gated TBG samples. For this sample we used p-doped Si as the bottom gate and Au 

as the top gate. 

Resistance measurements were carried out using the standard low-frequency lock-in technique with 

a small excitation current ~100 nA; this ensured negligible heating effects down to the lowest 

measurement temperature, T = 2K. The dual-gated geometry allowed us to control the total carrier 

density and the displacement field independently. The total carrier density is the sum of carrier 

densities induced by the top and bottom gates: 𝑛total =
1

𝑒
(𝐶tg𝑉tg + 𝐶bg𝑉bg), where 𝑉tg and 𝑉bg are 

the top and bottom gate voltages, 𝑒 is the electron charge, 𝐶tg and 𝐶bg  are the respective 

capacitances per unit area of the top and bottom gate (here 𝐶tg and 𝐶bg were obtained from the Hall 

measurements). The displacement field is calculated using 𝐷 =
1

2𝜀0
(𝐶tg𝑉tg − 𝐶bg𝑉bg), where 𝜀0 is 

the vacuum permittivity. To achieve a fixed displacement field, 𝑉tg and 𝑉bg were varied 

simultaneously according to the above formula, so that only the total carrier density changed.  An 

example of such measurements is shown in Fig. S2B.  

 



 

Fig. S2. Dual-gate measurement setup.  (A), Optical image of device D2. Scale bar, 7 µm. (B),  𝜌xx as a function 

of top and bottom gate voltages for device D2 at T = 3.5K. Red dashed line corresponds to the conditions of 

zero carrier density and black dashed lines show the direction of double gate sweeps at D=0 and 0.5 V/nm.  

  



Section 3. Calculations of TBG band structure 

To calculate the band structure of TBG, we used the model reported in ref. (31), where the 

Hamiltonian is given by: 

ĤTBG =

(

 
 
 
 
 

Δ

2
νπ†

νπ
Δ

2

𝑤 ∑ 𝑒−𝑖Δ𝐊j ∙𝒓
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.(S2) 

This is equivalent to the continuum-model Hamiltonian derived in ref. (3) up to a gauge 

transformation. The on-diagonal blocks describe the top and bottom layers of graphene where ν  is 

the Dirac velocity for the monolayer and Δ the energy shift induced by the perpendicular 

displacement field. The off-diagonal blocks describe the interactions between the two layers, with 

the interlayer coupling strength given by w=110 meV.  

The original band touching point of the top layer is placed at the corner of the mini Brillouin zone 

(mBZ) κ, and the band touching point of the bottom layer is placed at κ’. The vectorsΔ𝐊j accounting 

for the shift between Brillouin zone corners for the two layers (as illustrated in Fig. S3) are given by: 

Δ𝐊j =
4𝜋𝜃

3𝑎
(−sin (

2𝜋𝑗

3
) , cos (

2𝜋𝑗

3
)) , (S3) 

where 𝜃 is the twist angle between the two layers in radians and a=2.46 Å is graphene’s lattice 

constant.  

 

Fig. S3. Brillouin zone of two twisted graphene layers. Red and black hexagons are the original Brillouin zones 
of the two monolayers overlaid with a relative twist. The vectors 𝚫𝐊𝐣 (defined in Eq. (S3)) account for the shift 

between the original Brillouin zone corners of the two graphene layers making up a twisted bilayer graphene.  

The Hamiltonian in Eq. (S2) is shown for the K valley of the original Brillouin zone. To obtain the band 

structure in the K’ valley, we use a π-rotation of this Hamiltonian. 



The miniband spectrum is calculated by zone folding (32), i.e., by bringing the states in the K valley 

with momenta connected by the reciprocal lattice vectors of the moiré pattern to the first mBZ. The 

basis of k-states of the top and bottom layer are formed from the reciprocal lattice vectors 

∆𝐊0 +m𝐆1 + n𝐆2 and 2∆𝐊0 +m𝐆1 + n𝐆2, respectively, where 𝐆1 =∆𝐊0 − ∆𝐊1 and 𝐆2 =

∆𝐊0 − ∆𝐊2. The number of basis states is chosen to ensure convergence of the first three 

conduction and valence bands. The resulting Hamiltonian that contains the matrix elements 

between the basis states is diagonalised using a similar method to ref. (33). 

  

 

 

 

 

 

 

 

 

 

 

 

 

  



Section 4. Numerical simulations of transverse magnetic focusing 

To simulate TMF maps shown in Fig. 2 in the main text, we first calculate the band structures to 

extract the Fermi surfaces and then determine the cyclotron orbits in real space by rotating the 

Fermi surfaces by 90° and scaling by ħ/eB (the scaling factor is obtained from the quasi-classical 

equations of motion (32)). Charge carriers propagate either clockwise or anticlockwise, depending on 

the sign of the effective charge. We assume specular boundary conditions, so that in a magnetic field 

the carriers travel along the edge of the sample following cyclotron (skipping) orbits and caustics of 

skipping orbits focus onto equidistant points. The drift direction of the skipping orbits depends on the 

effective charge of the carriers and the direction of the magnetic field.  

To achieve consistency with the experiment we select the states that are moving away from the 

injection point with energies between εf and εf+eV (where εf is the Fermi energy and V the applied 

voltage). The group velocity is calculated from the band structure using v ∝ 𝛁𝐤𝐄, i.e., it is related to 

the energy dispersion (for example, the velocity is smaller in flatter parts of the dispersion). 

Accordingly, as the applied voltage elevates the Fermi level, it results in extra states being occupied 

such that the available states are populated with a probability proportional to |𝛁𝐤𝐄|
−1  and different 

injection angles should be weighted with a probability proportional to the density of states.  

The TMF spectra shown in Fig. 2B, E in the main text are calculated numerically by using a similar 

method to ref. (12). This is achieved by counting how many electrons enter contact 3 (Fig. 1C in the 

main text) having a finite width w. The non-local resistance (V3 − V4)/I1 is then found by calculating 

(N3 −N4)/N1, where N1 is the total number of injected electrons, N3is the number of electrons 

entering contact 3 and N4is a smooth background given by N4 = ∑ w/di
N1
i .  Here the subscripts 

correspond to the device contacts in Fig. 1C and di is the distance between consecutive skips along 

the edge of the ith trajectory.  

To investigate whether the TMF spectra are sensitive to the crystallographic orientation of graphene 

layers with respect to the skipping direction (the edge of the sample), Fig. S4 compares TMF maps 

simulated for different edge orientations characterised by an angle Ф. To this end, we fix the 

orientation of one of the monolayers so that Ф = 0° corresponds to the zig zag edge and Ф = 90° to 

the armchair edge. The results for parameters of device D1 at |n| = 6.6x1012 cm-2 give triangular 

skipping orbits with the distance between the focusing peaks along the sample boundary weakly 

dependent on Ф – see Fig. S4. Similar results are obtained for all carrier densities where the Fermi 

surfaces are anisotropic, i.e., for |n| > 3x1012 cm-2 where the Fermi surface around the  point has a 

pronounced triangular shape (see Fig. 2C in the main text). Corresponding TMF maps show focusing 

peaks at slightly shifted positions relative to each other. The 3-fold symmetry of the triangular Fermi 

surface means that the TMF maps should repeat after 60° as is indeed seen for Ф = 30° and 90°  in 

Fig. S4, where the results are identical. At low carrier densities, near the main neutrality point, the 

Fermi surfaces are almost isotropic and the TMF maps are independent of Ф. The positions of vHSs 

are independent of Ф as well, in agreement with ref. (12). 



 

Fig. S4. TMF maps and simulated skipping orbits for different edge alignment. The TMF maps are simulated 
for Ф = 𝟎°, 𝟐𝟎°, 𝟑𝟎°, 𝟒𝟓° and𝟗𝟎° for device D1. The orientation of one of the monolayers is fixed such that 
𝟎° corresponds to the zig zag edge and 𝟗𝟎° to the armchair edge. The skipping orbits are shown at |n| = 
6.6x1012 cm-2.  



Section 5. Electrostatic screening in a finite displacement field   

The TMF map in Fig. 2E in the main text shows the effect of a finite displacement field between the 

two graphene monolayers. To find the effective electric field for each n in this figure, we need to 

take into account electrostatic screening. At twist angles ~2° and low carrier densities, the two 

monolayers are almost decoupled. To take into account electrostatic screening in this case, we 

include a screening term as proposed in ref. (34, 35): 

𝑒𝑑

𝜀0𝜀
(𝜀0𝐷 − (

1 + 𝜀

4
) (𝑛1 − 𝑛2)𝑒) = 

ℎ𝑣

2√𝜋
(𝑠1√|𝑛1| − 𝑠2√|𝑛2|),(S4) 

𝑛 = 𝑛1 + 𝑛2.(S5) 

where n1 and n2 are carrier densities in the two parallel graphene layers separated by a distance d, D 

the applied displacement field, 𝑣 the Dirac velocity, the band indices s1 and s2 are given by si=ni/|ni|, 

and the electron charge e < 0. In case of the TBG, we use 𝑑 ≈ 0.34 nm and following Refs. (35, 36, 

37), the dielectric constant for twisted bilayer 𝜀 = 2.7. The total carrier density n is given by Eq. (S5). 

To find the effective electric field for each value of n and D used in the experiment, the two 

equations are solved simultaneously using the Dirac velocity for monolayer graphene, v=106 m/s. In 

our calculations, we take n1 to be the bottom layer and n2 to be the top layer. The positive direction 

of D is from the top to the bottom (pointing downwards). 

 

Fig. S5. Further examples of TMF in a displacement field. (A), Rf as a function of a magnetic field and carrier 

density measured for the device D2 at 2K at a distance 4.9 µm from the injector in a displacement field 0.5 

V/nm. Colour scale: blue to red ±2.5 Ω. (B), Rf as a function of a magnetic field and carrier density measured 

for the device D2 at 5K at a distance 4.9 µm from the injector in a displacement field 0.75 V/nm. Colour scale: 

blue to red ±1.5 Ω. (C), TMF map calculated numerically for panel (A). (D), TMF map calculated numerically for 

panel (B). 



Section 6. Temperature dependence of electron scattering length 

Fig. 3B of the main text shows the temperature dependence of the relative scattering length 
𝐿𝑆
𝐿𝑝𝑎𝑡ℎ
⁄  for the electrons near the main and secondary neutrality points, where 𝐿𝑆is the electron 

scattering length and 𝐿𝑝𝑎𝑡ℎ is the length of the trajectories extending from the injector to the first 

focal point. To extract the absolute scattering lengths we have calculated 𝐿𝑝𝑎𝑡ℎ such that the 

position of the first focal point coincides with the position of the voltage probe. For the electrons 

near the main neutrality point,  𝐿𝑝𝑎𝑡ℎ ≈ 𝜋
𝐿

2
, (see inset in Fig. 1a in the main text), where 𝐿 is the 

distance from the current injector to the voltage probe, which is independent of the angle between 

the crystallographic axes orientation of graphene layers and the sample edge. Near the secondary 

neutrality point 𝐿𝑝𝑎𝑡ℎ is sensitive to the relative orientation of the graphene layers and the sample 

edge, as can be seen in Fig. S4. We have calculated 𝐿𝑝𝑎𝑡ℎ and extracted the corresponding scattering 

lengths for several characteristic angles between the device edge and zig zag axis of the top 

graphene layer: 𝐿𝑝𝑎𝑡ℎ0° = 1.11𝐿; 𝐿𝑝𝑎𝑡ℎ10° = 1.25𝐿; 𝐿𝑝𝑎𝑡ℎ20° = 1.58𝐿; 𝐿𝑝𝑎𝑡ℎ30° = 1.77𝐿; 

𝐿𝑝𝑎𝑡ℎ45° = 1.93𝐿. Using these values we extracted the scattering lengths, presuming different 

crystallographic orientations and compare them in Fig. S6. This showed that in all cases scattering 

lengths vary between ~100 µm at low T and a few µm  at T =30K, indicating the importance of 

electron-electron scattering at elevated T as discussed in the main text. 

 

Fig. S6. Temperature dependence of electron scattering length. Electron scattering lengths corresponding to 

different relative orientations of the graphene’s crystallographic axes and the sample edge were extracted 

from the temperature dependence of the first focusing peak in Fig. 3B of the main text using 𝐿𝑝𝑎𝑡ℎ  calculated 

as described in Supplementary section 6. 
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Chapter 7

Conclusion
This thesis presents a complete description of the electric field-dependent

intersubband optical transitions in multilayer InSe, its tunable spin-orbit coupling
strength with an applied electric field and the excitonic properties derived from
the Mexican hat dispersion in its valence band. Furthermore, we also explored
the possibility of filtering valley currents in twisted bilayer graphene.

The intersubband optical absorption peaks in multilayer InSe indicated that
the energy difference between the quantum-confined energy levels ranged in the
infrared and far-infrared part of the optical spectrum. The electric field was found
to be a crucial ingredient to understand the optical properties of the confined
electrons as it shifts the resonant frequencies towards higher energies and enhances
the magnitude of the absorption peaks. This is due to an increase in the effective
mass of the lowest conduction subband and an enhancement of the intersubband
oscillator strength. Using a quantum well model, a mathematical description of
this phenomena was reached and exact calculations on the effect of an applied
displacement on the intersubband energies were performed.

As far as the spintronic properties of multilayer InSe was concerned, the
application of a perpendicularly applied electric field was found to enhance or
suppress the electron’s SOC strength depending on the direction of the electric
field relative to the crystal stacking. This makes InSe an excellent platform for
new spintronic devices as it was demonstrated that its SOC strength in the con-
duction band could be tuned up to exactly 0meVÅ. Three main mechanisms
were found to affect the conduction band SOC, firstly the intrinsic z → −z and
inversion asymmetry of the crystal, then the wavefunction’s z → −z asymme-
try due to an applied electrostatic potential, and finally the intralayer dipole
moments which mix bands of opposite z-parity. The extracted SOC strengths
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were compared with weak antilocalization measurements and the perturbative
calculation was found to slightly overestimate the magnitude of the SOC strength.

Excitons in multilayer InSe were studied projecting the exciton Hamiltonian
in the harmonic oscillator basis. The excitonic properties of multilayer InSe were
calculated using a hybrid k · p tight-binding Hamiltonian around the Γ-point.
Using the quantum harmonic oscillator basis, it was found that in the process of
decreasing the number of layers from the bulk to the monolayer limit, excitons
transitioned from direct to indirect. The harmonic oscillator projection method
was used to calculate binding energies in suspended MoS2 and the obtained re-
sults were compared with exact solutions previously obtained with finite element
methods. A very good agreement between the two was reached demonstrating
the validity of the numerical method proposed. Using a Fourier expansion of
the electron and hole dispersion, the exciton binding energy was calculated in
monolayer InSe, demonstrating the potential of this method to extract the entire
exciton band structure.

Transverse magnetic focusing experiments were performed in twisted bilayer
graphene. It was clearly shown how a perpendicularly applied displacement field
could filter currents from the two different valleys due to an asymmetric shift in
energy at the K and K′ points. Theoretical calculations using a continuum-model
Hamiltonian demonstrated very good agreement between theory and experiment.

Future work on InSe could include studying the effect in the SOC strength of
different interfaces other than hBN. This could be useful in order to quantify the
effect that interfacial electric fields have on the spin-split bands. From the optics
side, one could try to generalise the proposed method to study more complex
situations like excitons trapped in impurity potentials or other bound states like
trions or biexcitons.



Appendix A

A.1 Self-consistent analysis of bilayer InSe

To obtain a self-consistent expression for bilayer InSe in a similar fashion
to bilayer graphene[73, 74, 75, 76, 77], we will apply the Löwdin partitioning
method (see Section.4.2 for a more detailed explanation) together with elementary
electrostatics. We start with the usual 4×4 hybrid k · p tight-binding Hamiltonian
matrix of bilayer InSe which, as shown in Eq. (2.23) looks like

Ĥk.p =



Eg
2 + ~2k2

2m + ∆
2 tcc 0 tcv

tcc
Eg
2 + ~2k2

2m −
∆
2 −tcv 0

0 −tcv −Eg
2 + γ2k

2 + γ4k
4 + ∆

2 tvv

tcv 0 tvv −Eg
2 + γ2k

2 + γ4k
4 − ∆

2

 .

(A.1)

For convenience, we simplified the notation as done in Eq. (2.23), where the
tcc ≡ tc + tcc2k

2, tvv ≡ tv + tvv2k
2 and tcv ≡ tc,v + tcv2k

2. The terms ±∆
2 account

for the electrostatic energy difference between the two InSe layers in the bilayer.
We use Löwdin partitioning up to second order in order to project the tcv hopping
into the two blocs corresponding to the two conduction and two valence band
states. This results in two 2×2 Hamiltonians for the conduction and valence
bands respectively, each one of the form

Ĥc =

Eg
2 + ~2k2

2m + t2cv
Ec−Ev + ∆

2 tcc

tcc
Eg
2 + ~2k2

2m + t2cv
Ec−Ev −

∆
2

 , (A.2)
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and

Ĥv =

−Eg
2 + γ2k

2 + γ4k
4 − t2cv

Ec−Ev + ∆
2 tvv

tvv −Eg
2 + γ2k

2 + γ4k
4 − t2cv

Ec−Ev −
∆
2

 .
(A.3)

In these two Hamiltonians, the electrostatic energy difference between the two
InSe layers, ∆, is assumed to be negligibly small in comparison to the monolayer
InSe band gap (around 2.8eV). The eigenenergies of Eq. (A.2) and Eq. (A.3)
result in the following two expressions:

ε±c = Eg
2 + ~2k2

2m + t2cv
Ec − Ev

±
√
t2cc + ∆2

4 , (A.4)

and

ε±v = −Eg2 + γ2k
2 + γ4k

4 − t2cv
Ec − Ev

±
√
t2vv + ∆2

4 . (A.5)

The probability amplitudes in layer 1 and 2 for the lowest conduction subband
eigenvectors can be obtained from Eq. (A.2) to be

|Ψc1|2 =

∆−
√

4t2cc + ∆2

2

4t2cc +
∆−

√
4t2cc + ∆2

2 . and |Ψc2|2 = 4t2cc

4t2cc +
∆−

√
4t2cc + ∆2

2 .

(A.6)

For the valence band, its topmost valence subband probability amplitudes follow
from Eq. (A.3) as

|Ψv1|2 =

∆ +
√

4t2vv + ∆2

2

4t2vv +
∆ +

√
4t2vv + ∆2

2 and |Ψv2|2 = 4t2vv

4t2vv +
∆ +

√
4t2vv + ∆2

2 .

(A.7)
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The self-consistent calculation then proceeds calculating the carrier density in the
conduction band for each layer

n1 = 1
π

∫ pF

0
dpp

∆−
√

4t2cc + ∆2

2

4t2cc +
∆−

√
4t2cc + ∆2

2 , (A.8)

and

n2 = 1
π

∫ pF

0
dpp

4t2cc

4t2cc +
∆−

√
4t2cc + ∆2

2 , (A.9)

where n1 and n2 label the carrier density in layer 1 and 2 such that n = n1 + n2.
On purely electrostatic grounds, for a single-gated geometry we get

∆ = e2n2L
2

Cb
= e2(n− n1)L2

Cb
, (A.10)

where Cb is the capacitance of the InSe bilayer of area L2. In the presence of a
back gate, the above formula becomes

∆ = e2(n2 + nback)L2

Cb
. (A.11)

Finally we put everything in terms of the total carrier density, which relates to
the Fermi wavevector as n ≡ p2

F

2π . For the valence band, the analysis is identical,
but one has to be slightly more careful about the range of the momentum inte-
gration due to the Mexican hat dispersion. As we need to calculate n2, the first
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approximation consist in assuming ∆
2 << tcc and we therefore get

n1 = 2
(2π)2

∫ pF

0
2πdpp

∆−
√

4t2cc + ∆2

2

4t2cc +
∆−

√
4t2cc + ∆2

2 = 1
π

∫ pF

0
pdp

∆− 2tcc

2

4t2cc +
∆− 2tcc

2

(A.12)

= 1
π

∫ tc+tcc2p2
F

tc

dq

2tcc2

2q + ∆′
2

4q2 +
∆′ + 2q

2 = 1
2πtcc2

q
2 −

∆
8 ln (8q2 − 4q∆ + ∆2)

tc+tcc2p2
F

tc

where
√

2πn = pF and ∆′ = −∆. We therefore obtain

n1 = 1
2πtcc2

tcc2p2
F

2 − ∆
8 ln

(8(tc + tcc2p
2
F )2 − 4(tc + tcc2p

2
F )∆ + ∆2

8t2c − 4tc∆ + ∆2

), (A.13)

which is related to ∆ through Eq. (A.10), resulting in a self-consistent analytical
expression for the electrostatic energy difference in bilayer InSe.



Appendix B

B.1 Localization corrections to conductivity

Localization corrections to conductivity arise due to the self-interference ef-
fects between two counter-propagating paths along a closed-loop (see Fig.B.1).
Such loop corrections can be diagrammatically represented in the recursive di-
agram shown in Fig.B.1(a), where the interaction potential between the two
counter-propagating electrons (shown in dashed) is an impurity scattering event,
and the two counter-propagating solid lines label the two electron propagators.
In considering the spin relaxation due to spin-flipping events such as scattering
with magnetic impurities or any interband spin-orbit coupling mediated scattering
event, a sufficiently short spin relaxation time could alter the coherence between
the two counter-propagating electrons and suppress constructive interference. Sim-
ilarly, the Peierls phase acquired due to an externally applied magnetic field would
as well contribute to decohere the counter-propagating electrons, reducing the
constructive interference corrections to conductance.

Such contributions can be considered through a two-particle correlator known
as the Cooperon and defined as the Green’s function of the diffusion equation in
the presence of all possible relaxation mechanisms[82]

[
D
(
i~5+ 2eA

c~

)2
+ Γj + τ−1

φ

]
Cj(r, r′) = δ(r− r′). (B.1)

In the above equation, D is defined as the diffusion coefficient, Γj is the relaxation
rate of the jth component of the Cooperon and A is the magnetic vector potential.
The Cooperon Cj(r, r′) is a four-dimensional vector with C0 being the spin singlet
state formed by the two particles and C1,2,3 the three spin triplet states. The
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Figure B.1: (Left) Maximally crossed diagram (Λ) for the impurity-loop corrections of conduc-
tivity inspired from Ref.[78, 79, 80, 81]. The greek letters label the spin sate of the two particles
before and after the impurity scattering processes. (Right) Real space scattering process giving
rise to the loop corrections to conductivity. The blue line labels the trajectory of the electron
while the red line labels the trajectory of the counter-propagating particle.

two-particle correlator can then be related to the conductivity corrections through

δσ = e2D

π~
∑

j=0,x,y,z
cjCj(r = r′) = −e

2D

π~
∑

j=x,y,z

∫ (τD)−1/2

0
(Cj(q)− C0(q))qdq2π ,

(B.2)

where τ is the momentum relaxation time and cj = 1 or −1 if j = 0 or j = x, y, z.
In Fourier transforming Eq. (B.1), it is easy to obtain



Π 0 0 0
0 Π + τ−1

so 0 0
0 0 Π + τ−1

so 0
0 0 0 Π + τ−1

so


~C = ~1,

where Π ≡ D(i~5 + 2eA/c~)2 + τ−1
φ , τSO is the spin relaxation time and ~1 ≡

[1, 1, 1, 1]T . Isolating the four-vector ~C and using Eq. (B.2), the following expres-
sion for the corrections to magnetoconductance is obtained[83]

∆σ(B)−∆σ(0) = e2

2πh

1
2Ψ

(1
2 + Hφ

B
+ 2HSO

B

)
− 1

2 ln
(
Hφ + 2HSO

B

)
(B.3)

+ Ψ
(1

2 + Hφ

B
+ HSO

B

)
− ln

(
Hφ

B
+ HSO

B

)
− 1

2Ψ
(1

2 + Hφ

B

)
+ 1

2 ln
(
Hφ

B

),
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where HSO ≡ c~
4eDτso and Hφ ≡ c~

4eDτφ
. To correctly account for the backscattering

corrections to conductivity, it is crucial to know exactly the dominant spin relax-
ation mechanism.

In inversion symmetric systems, the spin relaxation is known to be domi-
nated by the presence of magnetic impurities and by momentum scattering events
which, in conjunction with the electron’s spin-orbit coupling could flip the par-
ticle’s spin. Therefore, a direct proportionality between the momentum and the
spin relaxation time is expected (τSO ∝ τ)[84]. In non-centrosymmetric systems,
the spin relaxation mechanism is expected to come from the spin precession of
the electron due to an effective momentum-dependent magnetic field (Dyakonov-
Perel spin relaxation mechanism)[85]. Therefore, spin relaxation is expected to
occur in the flying time between successive scattering events implying an inverse
proportionality between the momentum and the spin relaxation time. Further-
more, as demonstrated in Ref.[85], if such spin relaxation mechanism is dominant,
the in-plane spin relaxation time is identically twice as long as the out-of-plane
spin relaxation time

(
1

τsxx
= 1

τsyy
= 1

2τszz

)
for [001] quantum wells. In non-

centrosymmetric systems, the electrons may acquire a net Berry phase when they
undergo closed-loop corrections. This would therefore modify the phase difference
between the counter-propagating particles and, by extension, the interference
corrections to conductivity.

Depending on whether the electrons have a linear or cubic in momentum
spin-splitting, the resulting corrections to conductivity can differ dramatically.
This is due to the acquired Berry phase in the precession motion of the electron
once it fully completes a 2π rotation. The corrections to magnetoconductance
in this situation were first derived by Iordanskii, Larkin and Pitaevskii[80] for
a two-dimensional particle. We start from the electron propagator including a
general form of the SOC

G±(k, ω) = 1
ω − E(k)− ~σ · ~Ω± i

2τ

, (B.4)
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where E(k) is the electron dispersion, ~σ · ~Ω is the k-dependent SOC, τ is the
momentum relaxation time and ω is the energy of the particle. The following
expression was obtained for the Cooperon amplitude C = C(q, θ, kF ) when ex-
panding it in Fourier harmonics of θ and including higher harmonics terms written
in terms of C0 (0th harmonic):

L̂C0 = 1
2πν0τ0

, (B.5)

where ν0 is the density of states in the two-dimensional system and the operator
L̂ is defined as

L̂ = τ
( 1
τφ

+ 1
2v

2
F q

2τ1 + 2(Ω2
1τ1 + Ω2

3τ3)(1 + σ+ρ− + σ−ρ+)− τ1vFΩ1[(σ+ + ρ+)q+

(B.6)

+ (σ− + ρ−)q−]
)
.

In the above expression, σ is the spin index of the particle and ρ is the spin index of
the counter-propagating particle such that σ± = 1

2(σx± iσy) and ρ± = 1
2(ρx± iρy)

while Ω1 and Ω3 are both the linear and cubic SOC spin splittings in Eq. (B.4).
The q± terms are the momentum transfer terms shown in Fig.B.1 and defined as
q± = qx ± iqy, while the terms τ0, τ1 and τ3 are the different angular harmonics
of the scattering probability per unit time at angle φ, W (φ). The terms τn are
therefore defined as 1

τn
=
∫
W (φ)(1−cos(nφ))dφ. Finally, the phase relaxation rate

1/τφ is introduced as an energy cutoff parameter for sufficiently small momentum
transfer processes. The solutions of Eq. (B.5) of the Cooperon can be represented
in the form[80]

Cαγ
βδ (q) = 1

2πν0τ0

τ=4∑
τ=1

1
Eτ

Ψτq(α, β)Ψ∗τq(γ, δ), (B.7)

where τ = 1 stands for the spin singlet state and τ = 2, 3, 4 for the three spin
triplet states. The wavefunction Ψτq and the energy Eτ are the eigenfunctions
and eigenenergies of the operator L̂ defined in Eq. (B.5). The indices α, β, γ and
δ label the spin indices of the initial and final counter-propagating particles.
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In the presence of a magnetic field B, the creation and annihilation operator
identities used to solve the harmonic oscillator problem can be related to the
momentum operator q such that q+ =

√
2Sa and q− =

√
2Sa† where S2 ≡ 2eB/c.

Such identities are then applied to obtain the Cooperon to solve Eq. (B.5).
Projecting Ψτ,q in the harmonic oscillator basis and using[86]

δσWL = −2πe2ν0τ
2
0D

π

∫ (τ1D)−1/2

0

j=3∑
j=1

Cj − C0(q)qdq2π , (B.8)

where the subindex j labels whether the Cooperon is in a singlet singlet (C0) or in
a triplet state (C1,2,3) and D is the diffusion coefficient defined as D = 1

2v
2
F τ1, the

following expression for the magnetoconductance corrections to conductivity[87,
80] can be derived from Eq. (B.8)

∆σ(B) = −e2

4π2~

 1
a0

+ 2a0 + 1 + (BSO/B)
a1[a0 + (BSO/B)]− 2(B′SO/B)) −

n=∞∑
n=1

[ 3
n
− (B.9)

3a2
n + 2an(BSO/B)− 1− 2(2n+ 1)(B′SO/B)

[an + (BSO/B)]an−1an+1 − 2(B′SO/B)[(2n+ 1)an − 1]

]
+ 2 ln

Btr

B


+ Ψ

1
2 + Bφ

B

+ 3C
.

In the above expression, Bso ≡ c~
4eDτso where 1

τso
is defined as 1

τso
≡ 2(Ω2

1τ1 + Ω2
3τ3).

The terms B′so, Bφ, Btr and an are defined as B′so ≡
c~2Ω2

1τ1
4eD , Bφ ≡ c~

4eDτφ
, Btr ≡

c~
4eDτ and an ≡ n+ 1

2 + Bφ
B

+ Bso
B

. Finally, the constant C is the Euler-Mascheroni
constant defined as C ≡ 0.57721 and Ψ the digamma function. In systems such
as InSe where the cubic in momentum SOC is negligible, at sufficiently small
wavevectors, the fitted parameter τSO can be directly related to the Rashba
SOC strength α and to the precession frequency Ω1 through α = ~2

2mc
√
Dτso

and
1
τso

= 2Ω2
1τ1. Finally it is relevant to point out that the above formalism was

developed assuming Btr << B and Ωτ << 1, so that the accumulated Peierls
phase is not strong enough to completely destroy the necessary coherence and
that the spin precession frequency is much slower than the momentum scattering
rate[88, 81].



Appendix C

C.1 Electron-hole interaction in 2D thin films

Figure C.1: Dielectric constants as a function of momentum transfer for the three different
types of electrostatic potentials under consideration. For a general 2D electrostatic potential
V (q) the dielectric constant follows from V (q) = 2πe2

√
ε||sεzsqε2D(q) .

To perform accurate calculations of the excitonic binding energies, it is nec-
essary to account for the distribution along the z-direction of the electron and
hole wavefunction, as they may enhance or suppress the electrostatic interaction
between the two particles. Knowing the approximately sinusoidal distribution
of the wavefunction along the z-direction of the InSe thin film, three different
approximations were used to consider both the electron and hole wavefunction
profile along the confinement direction. Firstly, electrons and holes were modelled
with a uniform distribution and then a sinusoidal distribution was used to model
the quantum-confined eigenstates. Finally, the usual Keldysh interaction which
considers both the electrons and holes as point-like particles was employed (see
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Table C.1 for a comparison between the exciton binding energies according to the
three different approximations and Fig.C.1 for the dependence of the dielectric
constant on the wavevector k according to each electrostatic model).

Distribution N = 1 N = 2 N = 3 N = 4 N = 5 N = 6 N = 7
Keldysh 195.4 119.0 90.4 74.2 63.9 56.2 50.7
Sinusoidal 202.3 124.9 95.8 79.2 68.6 60.6 55.1
Uniform 201.9 125.2 95.8 79.2 68.6 59.9 55.2

Table C.1: Binding energies in meV of different InSe few-layer systems according to the
different form of the electrostatic interaction considered to account for the wavefunction profile
along the confinement direction. The dielectric constants used for the InSe thin film were
εInSe|| = 9.9 and εInSez = 10.9 and for the hBN substrate εhBN|| = 6.8 and εhBNz = 3.5.

C.1.1 Keldysh interaction

In 2D materials, the dielectric tensor of the encapsulating environment (most
often, hexagonal boron nitride) crucially reduces the electrostatic screening in the
electron-hole coulombic[63] interaction therefore hugely increasing the binding
energy of the exciton as well as its lifetime. While in the 2D hydrogen atom
problem[89] the electrostatic interaction is the usual 1/r potential, a slightly more
accurate potential is needed to account for the dielectric contrast between the
substrate and the thin film[90, 91]. The electrostatic interaction for a thin film
of thickness d and a point charge located at z = z′ inside the thin film, can be
obtained from solving the Poisson equation (in cgs units) in the three different
regions:

ε||hBN
 ∂2

∂2x
+ ∂2

∂2y

+ εzhBN
∂2

∂2z

Φh↑(~r, z) = 0, (C.1)
ε||a

 ∂2

∂2x
+ ∂2

∂2y

+ εza
∂2

∂2z

Φa(~r, z) = −4πeδ(3)(z − z′), and
ε||hBN

 ∂2

∂2x
+ ∂2

∂2y

+ εzhBN
∂2

∂2z

Φh↓(~r, z) = 0.
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In the above expression, h ↑ and h ↓ label the hBN on top and on the bottom of
the thin film, labelled with the subscript a. After adding the continuity equations
for both the electrostatic potential and the electric field at ±d/2, four boundary
condition equations are obtained, and the electrostatics problem can be solved
exactly. Upon performing an in-plane Fourier transform of Φa(~r, z),Φh↑(~r, z) and
Φh↓(~r, z) (i.e. Φi(~r, z) → φi(k, z)) and isolating φa(k, z) we get the following
electrostatic potential for the thin film when z ≥ z′

V (k, z, z′) =
−4πe2 cosh

[
k
(
d/2− z

)
+ η

]
cosh

[
k
(
d/2 + z′

)
+ η

]
√
ε||aεzak sinh

[
kd+ 2η

] , therefore

(C.2)

V (k, 0, 0) ≈ −2πe2

√
ε||hBNεzhBNk(1 + r0k) ,

where η ≡ 1
2 ln

√ε||aεza+√ε||hBN εzhBN√
ε||aεza−

√
ε||hBN εzhBN

 and r0 =
√
ε||aεzad√

ε||hBN εzhBN
. The last step in Eq.

(C.2) required to consider the limit when the dielectric constant of the thin film
is much larger than the substrate dielectric constant (√ε||aεza >>

√
ε||hBNεzhBN)

and when the film thickness to tend to zero (d → 0). Upon inverse Fourier
transforming Eq. (C.2) to extract the dependence on real space coordinates, we
get the following expression for the electrostatic interaction[63]

V (r) = −e2π

2√ε||hBNεzhBNr0

H0

(
r

r0

)
− Y0

(
r

r0

). (C.3)

In Eq. (C.3), ε ≡ √ε||aεza, r0 ≡
√
ε||aεzad

2√ε||hBN εzhBN
and H0 and Y0 are the zero-order

Struve and Neumann special functions.

C.1.2 Electrostatic interaction between two uniform charge

distributions

We aim at calculating the electrostatic energy between two uniform rods
embedded in a substrate as a function of the in-plane wavevector k. This can
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be done integrating over the entire electron and hole distribution a Keldysh-like
interaction at each point of the two uniform rods assuming both of them have a
uniform density ρ. We start considering z ≥ z′ to calculate the total electrostatic
potential, ignoring any prefactor in Eq. (C.2) included in the term ρ2,

φ(k) = ρ2
∫ d/2

−d/2

∫ z

−d/2

cosh (k(d/2− z) + η) cosh (k(d/2 + z′) + η)dzdz′
k sinh (kd+ 2η) . (C.4)

The first integral with respect to z′ simplifies to

∫ z

−d/2
cosh (kz′ + kd/2 + η)dz′ = 1

k

 sinh (kz + kd/2 + η)− sinh (η)
,

where

η = 1
2 ln

ε+ ε1
ε− ε1

,
and ε = √ε||aεza, ε1 = √ε||hBNεzhBN . We now integrate with respect to z, and the
resulting expression will have two terms, which look like

φ(k) ∝ 1
k

∫ d/2

−d/2
cosh (k(d/2− z) + η) sinh (kz + kd/2 + η)dz (C.5)

−
∫ d/2

−d/2
cosh (k(d/2− z) + η) sinh (η)dz

.
For the second term, we obtain

sinh (η)
∫ d/2

−d/2
cosh (k(d/2− z) + η)dz = 1

k
sinh (η)

 sinh (kd+ η)− sinh (η)
,
(C.6)
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while for the first term we get

∫ d/2

−d/2
cosh (k(d/2− z) + η) sinh (kz + kd/2 + η)dz = (C.7)∫ d/2

−d/2
(cosh (a) cosh (kz)− sinh (a) sinh (kz))× (sinh (a) cosh (kz) + cosh (a) sinh (kz)) =

A
∫ d/2

−d/2
cosh (kz)2dz − A

∫ d/2

−d/2
sinh (kz)2dz = Ad,

where a ≡ kd/2 + η and A ≡ cosh (a) sinh (a) = sinh (2a)/2. Putting all terms
together, we therefore obtain the final result for the situation z ≥ z′:

Vε(k) = ρ2

− sinh (η)
(

sinh (kd+ η)− sinh (η)
)

k3 sinh (kd+ 2η) + d

2k2

. (C.8)

We then have to add the situation when z < z′ which requires to swap z and z′

in Eq. (C.4)

φ(k) = ρ2
∫ d/2

−d/2

∫ d/2

z

cosh (k(d/2 + z) + η) cosh (k(d/2− z′) + η)dzdz′
k sinh (kd+ 2η) (C.9)

= ρ2

− sinh(kd+ η) sinh(η) + sinh2(η)
k3 sinh (kd+ 2η) + d

2k2

.
The total result therefore yields to the following electrostatic interaction

Vε(k) = ρ2

−2 sinh (η)
(

sinh (kd+ η)− sinh (η)
)

k3 sinh (kd+ 2η) + d

k2

. (C.10)

If we were to properly include the dielectric anisotropy, the result will be modified
as follows:

Vε(k) = ρ2

−2 sinh (η)
(

sinh (k̃d+ η)− sinh (η)
)

k̃3 sinh (k̃d+ 2η)
+ d

k̃2

, (C.11)
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where k̃ =
√

εa||
εza
k, accounting for the dielectric anisotropy in the momentum

variable.

C.1.3 Electrostatic interaction between two sinusoidal charge

distributions

The distribution of the electrons and holes considered here has the form Pe(z) =
A cos2 (πz

d
) and Ph(z) = A cos2 (πz′

d
). We therefore use the same integration

procedure as used for the uniform distribution including all the prefactors in ρ,

V (k) = ρ2
∫ d/2

−d/2

∫ d/2

−d/2

cos2 (πz
d

) cos2 (πz′
d

) cosh (k(d/2− z) + η) cosh (k(d/2 + z′) + η)dzdz′

k sinh (kd+ 2η) .

(C.12)

This integral can be evaluated exactly by splitting the integral limits into two
and repeatedly using the two identities

∫
cosh (ax+ b) sin(cx+ d)dx = a

a2 + c2 sinh (ax+ b) sin (cx+ d) (C.13)

− c

a2 + c2 cosh (ax+ b) cos (cx+ d) + C,∫
cosh (ax+ b) cos (cx+ d)dx = a

a2 + c2 sinh (ax+ b) cos (cx+ d)

+ c

a2 + c2 cosh (ax+ b) sin (cx+ d) + C. (C.14)

Using Wolfram Mathematica, the following electrostatic potential was derived
from Eq. (C.12)

V (k) = ρ2

k

−4 sinh2 (k̃d/2) sinh2 (η)− sinh (2η) sinh (k̃d)
(1 + k̃2d2

4π2 )k̃2d2 sinh (k̃d+ 2η)
+

(1 + 3k̃2d2

8π2 )
(1 + k̃2d2

4π2 )k̃d

.
(C.15)
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C.2 Relevant integrals for the calculation of the

full excitonic dispersion

In the tight-binding calculation, we expanded both the conduction and the
valence band dispersion in a Fourier series such that:

εc(k)− εv(k−Q) =
s=∞∑
s=−∞

(Cs − Vsei2πsQ̃)e−i2πsk̃. (C.16)

where Q̃ ≡ (Qx/Tx, Qy/Ty) and k̃ ≡ (kx/Tx, ky/Ty). Tx and Ty are defined as the
periodicity in reciprocal space of the Fourier harmonics as described in Section.5.2.
We then projected this term into the harmonic oscillator basis obtaining

Hnx,ny ;n′x,n′y(Q) =
∫
d2k

s=∞∑
s=−∞

(Cs − Vsei2πsQ)e−i2πskφnx(kx)φny(ky)φn′x(kx)φn′y(ky).

(C.17)

Firstly the x and y coordinates were separated such that each integral had the
form

∫
e−x

2
Hnx(x)eiqxxHmx(x)dx =

∫
e−x

2+iqxxHnx(x)Hmx(x)dx (C.18)

and then we used the following integral identity[92]

∫ ∞
−∞

e−(x−y)2
Hm(x)Hn(x)dx = 2n

√
πm!yn−mLn−mm (−2y2). (C.19)

Performing a coordinate transformation of the form x′ = x − iqx√
2 the following

result is obtained

∫
e−x

2
Hn(x)eiqxxHm(x)dx = 2n

√
πm!

 iqx√
2

n−mLn−mm

− 2
(
iqx√

2

)2
e− q2

x
4 .

(C.20)
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The final result for the dispersive term therefore had the form

Hnx,ny ;n′x,n′y(Q) =
∞∑

sx,sy=−∞

[
Cs − Vsei2πs·Q̄

]
×

x,y∏
j

2ζj−
1
2 (nj+n′j)ζj!(ājsj)∆j

in
′
j−nj+∆j

√
nj!n′j!

e−
1
4 ā

2
js

2
jL

∆j

ζj
(1

2 ā
2
js

2
j), (C.21)

where ∆j = |n′j − nj|, ζj = min[n′j, nj] and ãj = 2π
Tjλ

. The Keldysh potential is
then projected in the harmonic oscillator basis. Each matrix element therefore
has the form

Vnx,ny ;n′x,n′y =
∫ d2kd2q

(2π)2 V (q)φnx(kx)φny(ky)φn′x(kx + qx)φn′y(ky + qy) = (C.22)

∫ qdq
(2π)2V (q)e− 1

4 q
2λ2

x,y∏
j

min[mj ,nj ]∑
sj=0

(λq)σj
(
nj
sj

)(
mj

sj

)
(−1

2) 1
2σjsj!√

mj!nj!
2B(σx+1

2 , σy+1
2 ).

Using the following Hermite polynomial identity for Hn(x+ y)

Hn(x+ y) =
s=n∑
s=0

(
n

s

)
Hs(x)(2y)n−s (C.23)

we rewrite Eq. (C.22) in polar coordinates and remove the angular integral
through the substitution t = cos (θ), which results in a Beta function given the
following identity

B(x, y) =
∫ 1

0
tx−1(1− t)y−1dt. (C.24)

Finally, the radial integral was explicitly evaluated using Wolfram Mathematica
as:

∫ qdq
(2π)2

−2πe2

√
κ‖κzq(1 + r∗q)(λq)σx+σye− 1

4 q
2λ2 = −e2

2π√κ‖κz

(
− λ

r∗

)σx+σy
 e−

λ2
4r2
∗

2r∗/λ

[
πerf( λ

2r∗ )−

(C.25)

Ei( λ2

4r2
∗
)
]
−

σx+σy−1∑
j=0

Γ( j+1
2 )(−2r∗

λ
)j
.
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C.3 Electron-hole interaction in van der Waals

heterostructures

In Ref.[11], the electron-hole interaction for a general van der Waals het-
erostructure was calculated using the method of electrostatic transfer matrices
(ETM). This method models the van der Waals heterostructure as a sequence of
dielectric slabs each one with an in-plane and an out-of-plane dielectric constant.
This method consists in rewriting the Poisson equation at each dielectric slab
and to match both the electric field and electrostatic potential at each interface,
turning a complex electrostatic problem into a system of matrix equations. For
each dielectric slab, the Poisson equation (in SI units) reads as[11]

ε
||
j∇2

ρ,θΦj + ε⊥j
∂2Φj

∂2z
= δ(z − zj)qj. (C.26)

where qj is a point charge located at zj and Φj(ρ, θ, z) is the electrostatic potential
at the jth slab written in cylindrical coordinates. The solution at any layer n
given a charge located in layer c is written as:

Φn(ρ, z) = e

4πεcε0

∫ ∞
0

J0(kρ)[An(k)ekz +Bn(k)e−kz + e−k|z|δn,c]dk. (C.27)

We will only look at the effect that a charge in layer c has on every other layer of
the heterostructure. Its potential in its most general form would look like

V n,c
eh (ρ) = e2

4πε0

∫ ∞
0

J0(kρ)
εn,c(k)dk, (C.28)

given that the potential is isotropic in the in-plane direction. The effective
dielectric constant at a distance zt from a point charge in layer c is therefore
given by[11]

ε(k)n,c = εc
An(k)ekzn +Bn(k)e−kzn + δn,c

. (C.29)
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Boundary conditions at the 1st and last layers are also added preventing any
unphysical divergence of the electrostatic potential as z → ±∞. This is done
by setting B1 = AN = 0. The boundary conditions can be proven to generate a
matrix system of equations of the form[11]:

Mn

 An+1

Bn+1

 = M̃n

 An

Bn

−
 ekdc−1

εce
kdc−1

 δn,c−1 +

 e−kdc

−εce−kdc

 δn,c, (C.30)

where

M̃n =

 ekdn e−kdn

εne
kdn −εne−kdn

 and Mn =

 ekdn e−kdn

εn+1e
kdn −εn+1e

−kdn

 . (C.31)

Combining all boundary conditions together, the following equation is obtained
relating A1 and BN

 0
BN

 = M

 A1

0

−M ′

 ekdc−1

εce
kdc−1

+M ′′

 e−kdc

−εce−kdc

 , (C.32)

where

M = M−1
N M̃N−1 . . .M

−1
1 M̃1,

M ′ = M−1
N−1M̃N−1 . . .M

−1
c M̃cM

−1
c−1,

M ′′ = M−1
N−1M̃N−1 . . .M

−1
c+1M̃c+1M

−1
c . (C.33)

The previous expression allowed us to obtain the coefficients A1 and the BN for
a charge in layer c in a very straightforward way, namely

A1 = (M ′
11 + εcM

′
12)ekdc−1 − (M ′′

11 −M ′′
12εc)e−kdc

M11
, and (C.34)

BN = A1M21 − (M ′
21e

kdc−1 + εcM
′
22e

kdc−1) + (M ′′
21e
−kdc − εce−kdcM ′′

22).

The coefficients Aj and Bj for the jth layer can be obtained recursively using Eq.
(C.30) to extract (An+1, Bn+1) from every (An, Bn).
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