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Redshift distribution uncertainty in weak lensing cosmology

by Juan P. Cordero

Cosmological information from weak lensing surveys is maximised by dividing source
galaxies into tomographic sub-samples for which the redshift distributions are estimated.
Uncertainties on these redshift distributions must be correctly propagated into the cos-
mological results to fully account for statistical and systematic errors on the estimations
of these distributions. In this thesis I present a new method for marginalising over red-
shift distributions in gravitational weak lensing and clustering cosmological analyses,
called HYPERRANK, which allows discrete samples from the space of possible redshift
distributions to be used, meaning the full uncertainty can be explored. In HYPERRANK

the set of proposed redshift distributions is ranked according to a small (∼ 1) number of
summary values, which are then sampled as hyper-parameters along with other nuisance
parameters and cosmological parameters in the Monte Carlo chain used for inference.
This work focuses on the case of weak lensing cosmic shear analyses and demonstrate our
method using simulations made for the Dark Energy Survey. HYPERRANK is compared
to the common mean-shifting method of marginalising over redshift uncertainty, its nu-
merical performance assessed and the resulting confidence contours used to validate its
use in the DES Year 3 cosmology results. I also introduce the process to estimate and cal-
ibrate the distribution of source galaxy redshifts for the Dark Energy Survey Y3 analysis,
including details of the SOMPZ scheme, a machine-learning algorithm to leverage deep
field photometry to constrain the color-redshift relation of the wide survey galaxies. We
describe the process to estimate the uncertainty associated to the different systematic ef-
fects involved in the estimation of the source redshift distributions, with an emphasis on
the effect of sample variance and the stochastic nature of the SOMPZ training phase.
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Chapter 1

Principles of Modern Cosmology

Cosmology is perhaps one of the oldest scientific disciplines, given the questions it typi-
cally tries to answer. As such, it has evolved from a philosophical and speculative affair
to a highly technical branch of modern science where multiple independent and detailed
analysis of large datasets converge to help understanding the details of complex models
used to describe the Universe and its constituents. The current era of Cosmology, usu-
ally referred to as the era of precision Cosmology, is characterized by the analysis of large1

surveys where different probes are used to test the models believed to describe the large
scale structure of the Universe and its evolution.

Because of the large size of these datasets, the dominant source of uncertainty in the
measurements is quickly migrating from statistical uncertainty to model and method-
ological uncertainty, caused by our effort to measure various continuous properties of
the Universe using sets of discrete data with increasingly complex tools. Another con-
tributing factor to this paradigm is the fact that many of the current experiments are
carried out by large collaborations with hundreds of members. This requires a level of
coordination and trust that can become a systematic itself; blinded analyses have become
a necessary step to shield us from confirmation biases.

We are in an era where we spend more and more time trying to identify and account
for statistical and systematic errors associated to our observations and analysis tools and
choices. Still, there are several sources of tension which must be resolved either by iden-
tifying the systematic effects causing them or adding complexity to our models. Dis-
crepancy between low and high redshift probes, for instance, is one big open question
which new surveys will aim to answer in the next decades. Nevertheless, the current
model has been tremendously successful at predicting the observations made at large
scale ranges and evolutionary stages of the Universe. In this introduction we will de-
scribe the current standard cosmological model and give a qualitative description of the
main observational probes used in modern experiments. We will start by introducing
the standard model of gravity in section 1.1 which describes the interplay between the
components of the Universe and the expansion of space-time and how structures form

1Here, large refers to the size of datasets, which can be achieved by either surveying a large fraction of the
sky, observing it with more sensitivity, or both.
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from primordial fluctuations. Then, in section 1.3 we will provide a review of the current
observational probes to constrain the parameters of the standard model and finalize with
a brief description of future planned cosmological surveys in section 1.4.

1.1 The standard cosmological model

The Universe and the structures that exist in it evolve over time as a consequence of
the interaction between its fundamental constituents. The framework describing these
relations is called the Standard Cosmological Model, which encompasses not only the
physical phenomena in a mathematical form, characterized by a set of parameters which
establish the limits, intensities, relative importance and general properties of this mathe-
matical description. While the employed parameterisation for an accurate model can use
an arbitrarily large number of parameters, it is often desirable to being able to describe
it with as little parameters as possible. Not only this is more easily manageable from a
practical point of view, but helps accepting the idea that multiple aspects of the model
can be explained from a simpler and more fundamental origin.

1.1.1 A expanding Universe

The current standard model of the Universe is called the ΛCDM model, and it assumes
the three components, radiation, matter, and Dark Energy, interact with each other ac-
cording to General Relativity, via the Einstein field equations

Gµν + Λgµν =
8πG

c4 Tµν

Rµν −
1
2

Rgµν + Λgµν =
8πG

c4 Tµν (1.1)

Einstein Field Equations describe how spacetime, a four-dimensional representation of
the physical and temporal coordinates of space, curves as a consequence of the mass,
energy and momentum of the components residing on it. Gµν is the Einstein tensor de-
scribing the curvature of space, Rµν is the Ricci curvature tensor which can be broadly
interpreted as the deviation of an Euclidean geometry, Tµν is the stress–energy tensor
which describes the energy and momentum of the components, which are assumed to
form a perfect fluid with isotropic pressure p, Λ is the cosmological constant, G is the
gravitational constant and R is the scalar curvature. These equations solve for the metric
tensor gµν which describes geometry of spacetime in the presence of mass, energy and
momentum, can be used to describe the geodesic trajectories, which describe the motion
of inertial bodies and photons. Einstein field equations relates this set of symmetric 4×4
tensors, which reduce to a set of 10 partial differential equations. In this framework, the
space is distorted and can expand or contract as a consequence of the presence of the
different components of the Universe. To accommodate for this potential expansion or
contraction, we start by defining a system of reference where the physical distances r
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between points in space can be described by

r(χ, t) = a(t)χ, (1.2)

where χ is the distance the points would have in the absence of any contraction or expan-
sion, called comoving distance; and a(t) is the scale factor that describes the the expan-
sion factor of the coordinates of space at a given time t. This scale factor is normalized
such that it becomes unity today (t = t0). Because of the relation between proper and
comoving distance given in equation 1.2, we can infer that the distance to a source in an
expanding universe will be proportional to the rate at which the space expands.

d
dt

r(χ, t) =
d
dt

a(t)χ + vpec

ṙ(χ, t) =
ȧ(t)
a(t)

r(χ, t) + vpec

ṙ(χ, t) = H(t)r(χ, t) + vpec (1.3)

where H(t) is called the Hubble parameter, typically expressed in units of kms−1 Mpc−1,
which indicates how much the space is expanding per unit time, per unit distance, and
vpec is the peculiar velocity of the source with respect to its local environment, which for
cosmological distances is typically very small and negligible. The value of this parameter
at the present time, H0 = H(t)|t0 is referred to as the Hubble constant and its value has
been measured to be around 70 kms−1 Mpc−1 (Planck Collaboration et al., 2020; de Jaeger
et al., 2020; Riess et al., 2019). Two useful quantities can be derived from H0: the Hubble
time, H−1

0 , which can be interpreted as the age of the Universe as inferred from its current
size and assuming a constant expansion given by H0; and the Hubble radius, c/H0, which
determines the size of the observable Universe, had it existed for a period of time equal
to the Hubble time.

1.1.2 Friedmann equations in a FLRW metric

A metric that describes distances between two points in space-time considering the po-
tential expansion or contraction of the Universe is the Friedmann-Lemaitre-Robertson-
Walker metric,

dr2 = c2dt2 − a2(t)
[
dχ2 + S2

K(χ)(dθ2 + dφ2 sin2 θ)
]

, (1.4)

which introduces the remaining coordinates of a spherically symmetric system, (θ, φ),
in addition to the comoving distance χ. This metric describes a solution to the Einstein
field equations when the distribution of mass, energy and momentum is isotropic and
homogeneous. While this is clearly not the case on small scales (the solar system, for ex-
ample, is very inhomogeneous and non-isotropic), it holds on large cosmological scales.
Because of the expansion (or contraction) of space, distances between points depend on
the induced curvature which is parameterised by the parameter K. SK(χ) is defined to
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account for the three possible geometries of the isotropic homogeneous universe

Sk(χ) =


1√
K

sinh
(√

Kχ
)

K > 0; Positive curvature

χ K = 0; No curvature
1√
|K|

sin
(√
|K|χ

)
K < 0; Negative curvature

(1.5)

describing an spherical, flat, and hyperbolic spacetime, respectively.
By assuming a homogeneous and isotropic universe via 1.4, and that it is filled by

an ideal, collisionless fluid the Einstein field equations 1.1 greatly simplify from a set of
10 non-linear differential equations to two independent differential equations describing
the behaviour of the scale factor a(t), called the Friedmann equations(

ȧ(t)
a(t)

)2

=
8πG
3c2 ρ(t)c2 − Kc2

a2(t)
(1.6)(

ä(t)
a(t)

)2

= −4πG
3c2 [ρ(t)c2 + 3p(t)], (1.7)

where ρ(t) and p(t) describe the density and pressure of the perfect fluid. From this
equation we can separate three cases for the three possible curvature values K which
describe an eternally expanding universe (K < 0), a universe which initially expands
and then collapses on itself (K > 0), and a critical case where expansion asymptotically
halts as t → ∞ for K = 0. The critical mass density required for such scenario, ρcr is
found by setting t = t0 and defining

ρcr =
3H2

0
8πG

. (1.8)

We can define the relative energy density of all components with respect to ρcr as

ΩX =
ρX

ρcr
(1.9)

1.1.3 Cosmological redshift

The relation between proper distance and the rate at which cosmological objects move
away from each other is a fundamental tool used to compute distances since it provides
an accurate estimation in the regime where the peculiar velocities of objects is small com-
pared to cosmic expansion. To estimate this distance we typically measure the scale factor
a by using the concept of redshift z, which measures the change in wavelength of radiation
emitted from sources caused by the expansion of the Universe. To find this relation, we
assume that light emitted from a source travels radially along a null geodesic (dr2 = 0) on
an homogeneous, isotropic universe. Hence, it stays at a fixed set of angular coordinates
(θ, φ). From equation 1.4 we have for a radial trajectory towards the observer that

c
dt

a(t)
= dχ. (1.10)
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If we integrate the total proper distance traveled by radiation emitted from the origin at
t = te until observed at distance χ at the time t = t0, and then repeat for the same type of
radiation emitted one wave period after the first one, ∆t = λ/c, because of the expansion
(or contraction) of the Universe the difference in arrival time between these two waves
will not necessarily be the same as the difference in emission time, but in all cases the
proper distance traveled will be the same. Hence, we have

∫ t0

te

dt
a(t)

=
∫ t0+λ0/c

te+λe/c

dt
a(t)

. (1.11)

Subtracting
∫ t0

te+λe/c
dt

a(t) to both sides and assuming that the scale factor does not change
significantly in the period of time ∆t, then we get

1
a(te)

∫ te+λe/c

te

dt =
1

a(t0)

∫ t0+λ0/c

t0

dt (1.12)

which reduces to
λe

a(te)
=

λ0

a(t0)
. (1.13)

This last equation relates the wavelengths from radiation emitted and observed to the
scale factors of the Universe for those two times. Redshift z is then defined as the frac-
tional change in wavelength between emitted and observed radiation,

z =
λ0 − λe

λe
,

which leads to
1 + z =

1
a(te)

. (1.14)

This useful relation allows us to interpret redshift as a measure of distance and time,
since we can relate it to a specific evolutionary state of the Universe described by the
scale factor a(t). All of the time dependent quantities in the Friedmann equation can be
written as a function of redshift instead.

Since the speed of light c is finite, and in theory any interaction or information travels
slower that c, the sphere of influence of the environment around any point in space is
determined by the distance light has had the time to travel from that point. We can define
the horizon distance at a time t (or redshift z), rH,com as the comoving distance traveled
by light from t = 0 up to that instant

rH,com =
∫ t

0

cdt
a(t)

rH,com =
∫ 1/(1+z)

0

cda
a2H(a)

. (1.15)

Where we have used the definition of the Hubble parameter, H = ȧ/a and 1.14. This
definition will be useful when we describe the growth of structures in the Universe and
how different physical scales become causally connected as they enter the horizon.
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Component ΩX ωX Evolution
Radiation 10−4 1/3 (1 + z)4

Baryonic Matter 0.049 0 (1 + z)3

Cold Dark Matter 0.264 0 (1 + z)3

Dark Energy 0.684 ∼ −1 constant?

TABLE 1.1: Summary of relative energy densities ΩX with respect to the critical density ρc,
equation of state ωX and scale factor / redshift dependency of the energy density for each
identified component of the standard model. Values shown here correspond to the reported

TT,TE,EE+lowE+lensing values reported in Planck Collaboration et al. (2020)

1.1.4 Equations of state and expansion history

The Friedmann equations (1.6) cannot fully describe the dynamics of the expansion of
space-time on their own, since they depend on three separate quantities, a(t), ρ(t) and
p(t), and only provide a system of two equations. The standard model assumes there
are three main components in the Universe, each described by its own equation of state
which relates the energy density ρ and the excerpted pressure p in the form

pX = ωXρXc2, (1.16)

where X refers to a particular fluid or component of the Universe. We can find the evolu-
tion of the energy density by assuming first that in a homogeneous universe, the perfect
fluid expands adiabatically. For a sphere of fluid of comoving radius rs, its volume will
be V = 4πr3

s
3 a(t) and its total energy will be E = Vρc2. Energy conservation tells us that

dQ = dE + PdV = 0

Ė + PV̇ = 0

V̇ρc2 + Vρ̇c2 + PV̇ = 0

From the expression for the volume of the sphere we find that

V̇ = 3
ȧ
a

V

Replacing in the above expression for the energy conservation, we find the fluid equation

ρc2 + 3
ȧ
a
(
ρc2 + ωρc2)

which has solutions of the form

ρX(z) = ρX,0(1 + z)3(1+ωX), (1.17)

where ρX,0 is the present day mean energy density for component X.
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Radiation

Strictly speaking, radiation refers to any kind of particle moving at relativistic speeds,
with radiation in the form of photons being the most common. A very small fraction of
this radiation comes from stellar or baryonic sources, while the vast majority corresponds
to the relic radiation of the cosmic microwave background (CMB). Radiation pressure is
related to its energy density ργ via

Pγ =
1
3

ργc2 (1.18)

which allows us to infer the equation state of radiation is characterized by ωγ = 1/3.
From this, we can obtain the dependence of the energy density on the scale parameter by
substituting ωγ in 1.16 to obtain

ργ ∝ (1 + z)4 ∝ a−4. (1.19)

The exponent on the scale factor dependency comes from its spatial dependency which
contributes a factor a−3, similar to non-relativistic matter and the stretching of wave-
length λ due to cosmological expansion which contributes a factor a−1 originating in the
photon energy equation E = hc/λ.

Neutrinos are another type of particle that also fits the definition of radiation, and
are predicted by the standard model of particle physics. They exist in three flavors, |νe〉,
|νµ〉 and |ντ〉, each associated to the decay of its associated leptons; electrons, muons and
τ leptons respectively. Unlike photons, neutrinos interact via gravity and weak nuclear
force with other species but not via electromagnetism, but like them, their equation of
state is also characterized by ων = 1/3, which means their energy density evolves as
ρnu ∝ a−4.

Because of the way they interact with other species, they directly impact cosmological
observables such as the Cosmic Microwave Background and the Matter Power Spectrum.
At early epochs, when moving at relativistic speeds they enhance the radiation density,
moving the radiation-matter equality to lower redshift, suppressing CMB peaks as the
period of expansion during radiation dominated epoch is longer. When the temperature
of the neutrino component decreases to non-relativistic levels, the neutrino component
enhances the dark matter component as they do not interact with radiation in the same
way as baryonic matter. This produces an enhanced formation of small scale features in
the matter power spectrum. The neutrino component is typically characterized by the
effective number of species and the sum of the masses of the different neutrino species.
CMB and Matter Power Spectrum measurements can be used to constrain both parame-
ters of the neutrino components.
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Baryonic matter

In the standard model of particle physics baryons are particles formed by three or more
odd number of quarks, and part of the hadron family of particles. Out of the many com-
patible combinations of quarks which can result in a baryon only electrons, protons and
neutrons are stable, and the last two are the most massive, with the mass of the electron
being a small fraction to that of the proton. Baryons combine to form atoms, with a vast
majority of the baryonic matter of the Universe being made of Hydrogen (∼ 75%) and
Helium ∼ 25%. A small fraction of other stable elements like Deuterium and Lithium
were formed shortly after the Big Bang in a process called Big-Bang nucleosynthesis
(BBN), and the rest of the heavy elements are formed predominantly in stellar interiors,
Supernovae, Neutron star collisions (Chakrabarti et al., 1987) and in the accretion disks
of black holes (Berger et al., 2013). An important aspect of baryons is that they absorb and
emit photons which means their dynamics are closely connected to that of radiation. Cur-
rent best estimates of the baryon density from BBN and cosmic microwave experiments
(Planck Collaboration et al., 2020) yield Ωb ∼ 0.049, although surveys based on stellar
distributions of galaxies, interstellar and intergalactic medium and small compact ob-
jects only account for a fraction of it. The remaining fraction is believed to exist in highly
hot and diffuse gas barely visible in the X-rays in halos and filaments of the large-scale
structure (e.g. Gupta et al., 2012). From 1.16 and the assumption that the matter compo-
nent can be approximated as a collisionless, pressureless fluid, we have that ωm = 0 and
hence the energy density of matter scales as

ρm ∝ (1 + z)3 ∝ a−3. (1.20)

Dark Matter

We mentioned above that the surveys to quantify the sources of baryonic matter barely
add up to the values expected from BBN and CMB experiments. Furthermore, even if we
were able to find all the sources of matter to account for the primordial Ωb we would still
have a problem, since a series of basic observations made in the early twentieth century
suggested that the total matter density of the Universe is almost an order of magnitude
larger.

• Velocity dispersion of cluster galaxies Virial theorem can be used to estimate the
mass of galaxy clusters and globular clusters from the dispersion of velocities of its
members, which can be estimated from its radial velocities using redshift (Zwicky,
1933). Comparison with the estimated mass of the luminous component usually
results in a ∼ 80% deficiency with respect to the virial masses, which suggest a
large fraction of the mass is in non radiation emitting form.

• Galaxy rotation curves Similarly to the velocity dispersion argument, the mass of
rotating galaxies can be estimated from tracing the luminous components, like gas
and stars. For a spiral galaxy with a mass distribution traced by this component it is
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expected that the tangential speed V⊥ of stars around the galactic centre decreases
at high radii as ∼ 1/

√
r. This can derived from assuming that the acceleration of a

particle in circular orbit of radius r, enclosing a mass M(< r) is

a⊥ =
V2
⊥
r

=
GM(< r)

r2

where a⊥ is the centripetal acceleration and V⊥ is the tangential velocity of the par-
ticle in circular orbit. At large radii the enclosed mass M(< r) is essentially con-
stant, hence V⊥ ∝ 1/

√
r Several observations suggest that the rotation curves of

many spiral galaxies, including Andromeda, are flat up to very large values of r,
well past its stellar component, which suggests galaxies are embedded in a large
extended halo of invisible matter (See e.g.: Babcock, 1939; Rubin et al., 1980; Persic
et al., 1996).

If we then assume that this missing matter has the same properties as baryonic matter,
we then enter in conflict with the estimates of BBN and CMB. While General Relativity
is widely considered as the most successful theory of gravity, alternative models based
on modifications of the classical Newtonian dynamics exist to explain some these phe-
nomena (MOND, see Famaey & McGaugh (2012) for a review), usually based on the
assumption that Newtonian dynamics behave differently at different scales. Under the
assumption of General Relativity, there is a massive component of the Universe, which
accounts up to 27% of the critical density Ω ∼ 0.27, interacts gravitationally with the
rest of the components but does not interact with radiation at all. We call it dark matter,
almost as a recognition of our current ignorance on its exact nature. Matter in general is
assumed to be pressureless when moving to speeds v � c. We usually refer to it as cold
dark matter. For this reason, the equation of state parameter of Dark Matter is assumed to
be very close to zero, similar to baryonic matter. Hence, the evolution of the Dark Mat-
ter energy density follows the same dependency with the scale factor shown in equation
1.20.

Dark Energy

During the early twentieth century Einstein pictured the Universe to be infinitely old,
spatially finite and stationary, which required the addition of a component with negative
pressure balancing the effect of gravity. He added this component to his field equations
using a constant negative term Λ, known as the cosmological constant. Soon afterwards
Edwin Hubble reported the first measurements of the receding velocity of distant objects
which when compared against their redshifts gave evidence of a expanding Universe.
This constant expansion solved the inconsistencies seen in the field equations, removing
any need for a cosmological constant. It wasn’t until the discovery of the accelerated
expansion of the Universe (See section 1.3.2) that the concept was brought back to life.

A constant scale independent energy density eventually dominates the total energy
density as the rest of the components eventually dilute because of their dependency with
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the scale factor. In order to cause an expansion of the space-time its equation of state
must be described by a negative pressure. These two conditions result in a equation of
state parameter ω = −1. In more general terms, the equation of state that allows for
an accelerated expansion can allow for a time dependent energy density. A common
parameterisation of the equation of state parameter then takes the form (Chevallier &
Polarski, 2001)

ω(a) = ω0 + ωa(1− a). (1.21)

allowing for a time-dependent departure from a constant equation of state ω = −1
The simplest explanation for the origin of this component assumes that the vacuum in
space posses a base energy level denoted Λ, which when applied to the Einstein’s field
equations 1.1 predicts an accelerated expansion of the scale factor when it dominates
over the matter component. Other alternative theories to explain observations include
Quintessence models (Ratra & Peebles, 1988) in which Dark Energy corresponds to the
potential energy of a dynamic field which can vary as a function of time and space, un-
like the cosmological constant models. Because of our ignorance about its true origin, we
employ an placeholder name to refer to it: Dark Energy. As a consequence of the ob-
served flat curvature of the Universe and the estimations of the matter component, it is
estimated that the Dark Energy energy density relative to the critical density is ΩΛ ∼ 0.7.

1.1.5 Hubble expansion

The three components, matter (Dark and Baryonic), radiation and Dark Energy are char-
acterized by their equation of state values ωX, listed in table 1.16. Combining 1.17 and 1.6
using the values from table 1.1 yield the known differential equation for the expansion
history

ȧ(t)
a(t)

= H(t) = H0

[
Ωma(t)−3 + Ωra(t)−4 + ΩKa(t)−2 + ΩΛ

]1/2
, (1.22)

where ΩK = is a term describing the curvature of space-time, and Ωr is the energy den-
sity of radiation coming from photons and neutrinos. While this equation can only be
solved numerically, a quantitative description of the Hubble expansion can be made by
assuming the dominance of the components at different ages of the Universe. Because of
the dependency of their energy densities with the scale factor a, the different components
dominate the energy budget of the Universe at different redshift ranges, starting with ra-
diation shortly after the big-bang and up until the instant of matter radiation equality.
Up to that point, equation 1.22 exhibits a slow growth of a(t) proportional to t1/2. Be-
cause of the small radiation energy density and its steep decline proportional to a−4 the
matter domination era starts not long after the big-bang when the Universe is approxi-
mately 50,000 years old. Equation 1.22 can be solved for a matter dominated Universe
resulting in an expansion proportional to t2/3. After dominating for approximately 15
billion years, matter energy density becomes subdominant to Dark Energy, which has an
energy density evolution independent of the scale factor. Solutions to equation 1.22 in
this era are exponential functions a(t) ∝ e2H0ΩΛ t. Figure 1.1 shows a numerical solution
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FIGURE 1.1: Scale factor a(t) as a function of cosmic time, as obtained by numerically inte-
grating equation 1.22, using Ωm = 0.3, ΩΛ = 0.7, Ωγ = 10−5 and ΩK = 1−Ωm −ΩΛ −Ωγ.
The three shaded regions separate the three eras on which each component dominates the ex-
pansion history, with a growth proportional to t1/2, t2/3 and e2H0ΩΛt for a radiation, matter,

and Dark Energy dominated universe respectively.

to the expansion equation showing the three dominance eras of radiation, matter, and
Dark Energy.

1.2 Formation of structure

One of the fundamental assumptions of the standard cosmological model is that the Uni-
verse is homogeneous and isotropic on large scales. This assumption quickly breaks
down on smaller scales where galaxy clusters, super-clusters and voids can be clearly
seen on scales of around 100 Mpc or less. The formation of these structures follows a
simple argument: small inhomogeneities of the primordial plasma in which the density
of matter deviates slightly above the mean density of the surroundings grow in intensity
as over-densities attract matter from under-densities because of their larger gravitational
potential.

To quantitatively describe the growth of these primordial anisotropies we start by
assuming the matter component is a pressureless fluid in which the relative over- and
under-densities are small and cen be described by the density contrast

δ(r, t) =
ρ(r, t)− ρ̃(t)

ρ̃(t)
, (1.23)

where ρ̃(t) denotes the mean density of matter at time t. Because of the small inhomo-
geneities, we can use a Newtonian description of gravity, where the behaviour of the
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matter field is described by the equations of mass and momentum conservation

∂ρ

∂t
= ∇ · (ρv) = 0 (1.24)

∂v
∂t

+ (v · ∇)v = −∇Φ, (1.25)

where v is the velocity of the fluid field and Φ is the gravitational potential which satisfied
the Poisson equation

∇2Φ = 4πGρ. (1.26)

Combining these equations with the Friedmann equations 1.6 one finds that the density
contrast satisfies a second-order differential equation

δ̈ + 2Hδ̇ = 4πGρ̃δ. (1.27)

Since the equation does not contain any terms depending on spatial coordinates or deriva-
tives with respect to them, the solutions to this differential equations are of the form

δ(r, t) = D(t)δ̃(r), (1.28)

with δ̃(r) being an arbitrary primordial density contrast field, and D(t) a time dependent
function called the Growth function, which satisfies

D̈ + 2HḊ− 4πGρ(t)D = 0. (1.29)

This means that the density contrast change is stationary, with its shape remaining un-
changed spatially, and only becoming larger in-situ. The solutions to these equations are
linear combinations of two families, D−(t) and D+(t) which describe monotonically de-
creasing and increasing functions, respectively. Out of the two, we are only interested in
D+(t) since they become dominant as t increases.

The evolution in time of these inhomogeneities is tightly connected to the cosmolog-
ical model as the solutions to the growth factor differential equation 1.29 depend on the
relative density of dark matter and cosmological constant via the Hubble parameter H.
Characterizing the matter component is a fundamental step to constrain the model and
estimate its parameters. Now, the model is not able to predict the behaviour at very small
scales and it has no business in trying to explain the observed distribution of mass on our
vicinity in particular. These peculiarities are dependent on the initial conditions which
require infinite information to be described. Instead, we aim to characterize a model ca-
pable of reproducing the statistical properties of the mass distribution we observe. Two
alternative and equivalent statistical descriptions of the mass distribution of the Universe
are the two-point correlation functions and power spectrum.
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1.2.1 Two-point correlation functions and the power spectrum

While the two-point correlation functions and the power spectrum do not unambigu-
ously define the exact distribution of matter, they provide a complete statistical descrip-
tion of it as long as the matter distribution follows the properties of a Gaussian random
field, in which the probability of finding a value of for the density contrast at any position
follows a Gaussian distribution. We can define the spatial two-point correlation function
of a quantity f (θ) as (Bartelmann & Schneider, 2001)

C f (θ) = 〈 f (φ) f (φ + θ)〉
= 〈 f̄ [1 + ∆ f (φ)] f̄ [1 + ∆ f (φ + θ)]〉
= f̄ 2 [1 + 〈∆ f (φ)∆ f ((φ + θ))〉] , (1.30)

where the 〈 〉 brackets denote an average over all possible points, The two-point corre-
lation describes the excess probability of finding two values of a continuous function
above an average value f̄ expected from a completely random distribution at an angular
separation θ. The two-point correlation function between two sets of points A, B can be
estimated when a large sample of values of f at different positions are obtained, using

Ĉ f (θ) =
1

NANB

NA,NB

∑
a,b

f (θa) f (θb), (1.31)

where |θa − θb| = |θ| = θ. It can also be applied to the discrete case where the observed
sets of points A, B describe measurable properties of each individual point, like the posi-
tion or ellipticity of a single galaxy. The power spectrum of the function f is defined as
the Fourier transform of the correlation function C f (θ)

Pf (k) =
∫

Rn
dθ eik·θC f (θ) (1.32)

The matter power spectrum is then defined from the density contrast two-point correla-
tion function

Pδ(k) =
∫

dr eik·r〈δ(r)δ(r′)〉. (1.33)

Because of the linearity of the Fourier transform, and ideal linear growth of the primor-
dial density fluctuations, we should expect the present matter power spectrum to be a
scaled version of the primordial power spectrum, P0(k). A common assumption on the
primordial power spectrum of inhomogeneities is that it follows a power law

Pδ(k) = Askns−1, (1.34)

where As and ns are the amplitude and spectral index of the primordial power spec-
trum. This is called the Harrison-Zel’dovich-Peebles power spectrum, who first pro-
posed it as the power spectrum of scale-invariant primordial fluctuations, characterized
by ns ∼ 1
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We see in reality that on smaller scales the Universe does not follow the shape of this
primordial power spectrum This deviation is mainly caused by three effects

• We have assumed that dark matter is cold, meaning that it moves at non-relativistic
speeds. If a fraction of dark matter is hot dark matter (HDM) , it may not be gravi-
tationally bounded to the matter overdensities. This effect of free streaming prevents
small scales structures of HDM to form.

• As we saw in 1.1.5, in the early Universe radiation dominates over matter and the
expansion rate a(t) is different from that in the matter-dominated phase.

• Causal physical interactions can only occur on scales smaller than the horizon ra-
dius rH,com. For scales larger than this, the Newtonian approximation is no longer
valid.

To account for these effects, the time and scale dependency of the matter power spectrum
is assumed to take the form

Pδ(k, t) = T2(k)
D2

+(t)
D2

+(t0)
P0(k), (1.35)

where T(k) is called the Transfer function which accounts for different scales entering the
horizon at different times. The assumptions to linear growth of structure include that the
Universe is dominated by matter, but in reality right after recombination the Universe is
dominated by radiation with an energy density which we saw decays as ργ ∝ a−4. The
resulting expansion prevents the perturbations to efficiently grow as they would if the
Universe was dominated by matter. In addition to this, the local effect of radiation and
pressure gradients smoothing out the inhomogeneities is only valid out to the horizon,
dhor which is the radius around the center of a perturbation which is in causal connection.
This effectively means that super-horizon (small k values) structures grow unimpeded,
while small under and over-densities are suppressed until matter starts dominating. This
results in an unequal growth of structure below and above the scale defined by the hori-
zon at the moment of matter-radiation equality, L0 (With corresponding wavenumber k0),
typically of the shape

T(k) ≈

1 for k� 1/L0

(kL0)−2 for k� 1/L0

(1.36)

Since the primordial power spectrum is characterized by a spectral index close to unity,
this results in a power spectrum which grows almost linearly up to k0 and then decays
sharply as P(k) ∝ k−3 for smaller scales, which is clearly seen in figure 1.2.
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FIGURE 1.2: Matter power spectrum of linear density perturbations for different ranges of
the spectral index ns (top left), primordial amplitude As (top right), present day matter den-
sity Ωm (bottom left) and Hubble constant H0. Fiducial values when not being varied are
(ns, As, Ωm, H0) = (1, 2.2× 10−9, 0.3, 70 kms−1 Mpc−1) In all cases the effect of the transfer
function is visible, with a linear growth up until k ∼ k0 and a sharp decay proportional to

k−3 afterwards.
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From the definition of horizon distance in 1.15 (Schneider, 2006)

L0 =
∫ aeq

0

cda
a2H(a)

=
c

H0
√

Ωm

∫ aeq

0

da√
a + aeq

=
(√

2− 1
) 2c

H0

(
aeq

Ωm

)1/2

∼ 16(Ωmh2)−1Mpc, (1.37)

we can define the shape parameter Γ = Ωmh. As we saw above, the shape parameter de-
termines the break point of the power spectrum and the start of the k−3 decay. While ns

and Γs, shape the current matter power spectrum, the complete normalization is defined
by the characteristic amplitude of density fluctuations. The most common parameterisa-
tion for this amplitude is given by the fluctuations of the density inside spheres of radius
R. The R−smoothed density field can be written as

δR(x) =
∫

dx′δ(x′)WR(|x− x′|), (1.38)

with WR(x) being top hat filter of radius R, which fulfills the conditions
∫

WR(x)dx = 1.
The power spectrum for the smoothed density field is then obtained as

PR(k) = |WR(k)|2 Pδ(k), (1.39)

and the dispersion of fluctuations on the smoothed density field is then

σ2
R = 〈δ2

R(x)〉 =
1

(2π)3

∫
dk
∣∣Ŵ(k)

∣∣2 Pδ(k). (1.40)

where ŴR(k) is the Fourier transform of the top hat filter. A commonly used value for
R is 8h−1 Mpc, which at the density of matter in the Universe, corresponds to a sphere
containing approximately the total matter of a galaxy cluster, so cluster counting directly
measures σ8. σ8 is commonly referred to as the amplitude of density fluctuations. The
abundance of structures is also dependent on the matter density Ωm, as an increased
matter component is expected to favor the growth of fluctuations. This yields a degener-
acy of Ωm and σ8, which manifests as a ’banana shaped’ confidence region in parameter
constrains analysis of galaxy clustering and weak lensing analysis. This leads to joint
constrains for the two parameters expressed by

S8 = σ8(Ωm/Ω∗m)
α (1.41)

where Ω∗m is a fixed reference value, typically 0.3 and α usually observed to be 0.5.

Non linear growth of structure

The model for linear growth is restrictive in terms of the assumptions made about the
components filling space-time and the regime over which they are applicable, with it
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FIGURE 1.3: Zoom sequence centered around a single galaxy cluster halo formed in the Mil-
lennium simulation, showing color-coded density of dark matter particles from large linear

scales to highly non-linear small scale structures. Image credit: (Springel et al., 2005)

only being an adequate approximation for scales where the density contrast δ is much
smaller than unity. These assumptions don’t hold at small scales (large k values) since
the collapse of large structure into compact regions result in large values for the density
contrast and the effects of radiation and pressure become more evident. The prediction of
the behaviour of the matter power spectrum at small scales requires a numerical analysis
in most cases, unless severe simplifications are made. N-body simulations (See fig 1.3;
Springel et al., 2005; Alimi et al., 2012) can be used to track the evolution of dark matter
beyond the scales of homogeneity, but their precision depends on how accurate are the
models employed for density collapse and feedback, and typically come at the expense
of large computation times.

The formation of galaxy clusters and smaller structures requires a more detailed de-
scription to include the effects observed at small scales, typically incompatible with the
more broader picture presented by the linear density evolution model. The spherical
collapse model assumes that instead of perpetually collapsing, dense concentrations of
mass will result in stable concentrations as a consequence of virial equilibrium, with typ-
ical density contrasts of about δ ∼ 200. The halo model (Peacock & Smith, 2000; White,
2001) assumes that all the mass in the Universe is contained within one of such halos, and
the statistical properties of the matter at those scales can be predicted from the clustering
properties of the halos.
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1.2.2 Inflation and origin of primordial fluctuations

The standard model used to describe the evolution of the structure in the Universe through
the interaction of mass with space-time has been very successful at predicting a variety
of observations, like the Helium to Hydrogen ratio of metal-poor gas or the existence of
the CMB. In addition to the expansion caused by Dark Energy and the growth of struc-
ture by the gravitational interactions of the components, it characterizes the very early
instants (10−35 − 10−34s after the Big Bang) of the Universe with a fast, exponential ex-
pansion. This expansion is driven by the inflaton scalar field, possessing primordial quan-
tum fluctuations which grow to become the primordial density fluctuations (Albrecht &
Steinhardt, 1982; Linde, 1983; Vázquez et al., 2018).

The inflation model not only provides a natural explanation for the origin of primor-
dial density fluctuations, but also explains some observational properties of the large
scale structure. The horizon problem originates from the fact that several properties of the
large scale structure are remarkably constant across the sky (CMB temperature, shape of
the power spectrum), even at angular separations larger than the horizon distance at their
respective redshifts. This contradicts the fact that at such separation there is no causal
connection between them. The flatness problem refers to the fact that a flat universe today
requires very precise initial conditions or fine-tuning. The monopole problem originates
from the prediction that a large number of heavy, stable "magnetic monopoles" should
have been produced in the early Universe. However, magnetic monopoles have never
been observed, which can be explained by the rapid decline in number density during
the inflationary period. (Guth, 1981; Linde, 1982) The inflationary proposes that shortly
after the big bang follows a period of rapid exponential expansion due to the dominance
of vacuum energy in the Hubble expansion. This expansion explains why two regions
of the sky which would be causally disconnected under the standard expansion theory
share so many similar properties. At the same time, this rapid expansions smooths out
any initial curvature of the Universe, resulting on a flat geometry almost independent of
the initial conditions; now any geometry different from flat requires fine-tuning of the
initial conditions.

Inflation also provides an explanation to the origin of the primordial fluctuations
which later evolve to become today’s large scale structures. Heisenberg’s uncertainty
principle predicts that on quantum scales the matter distribution cannot be homoge-
neous. With inflation, these quantum fluctuations are amplified to macroscopic scales
which by the end of the inflationary period are large enough to seed the growth of struc-
ture in the way we have described in previous sections.

1.3 Observational probes

Perhaps the two most important cosmological discoveries of twentieth century were the
observation of the Cosmic Microwave Background (CMB), and the evidence of an accel-
erated expanding Universe revealed by the recession velocity and luminosity distances
of type Ia supernovae. But several other observational tools have been also developed
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and employed since then to characterize the cosmological model. In what follows we
present a brief description of the historical and physical background and along with a
description of the specific cosmological information they provide.

1.3.1 Cosmic Microwave Background

First identified by Penzias & Wilson (1965), the Cosmic Microwave Background (CMB)
is the relic radiation remaining from the moment where the first atoms formed, leaving
trapped radiation to stream free in all directions from the primordial hot plasma. Since
the plasma was in thermodynamic equilibrium, the spectrum of this radiation is that of
a black body. Using Sahaś equation, one can find the redshift for plasma temperature of
3,000 K corresponding to a redshift of approximately zrec ∼ 1100. At this temperature the
fraction of high energy photons (hν > 13.6 eV) is barely enough to keep the plasma ion-
ized. Since then, this radiation has traveled across space and as the Universe expanded,
its wavelength increased along with it, shifting the black body temperature to today’s
value of 2.725K.

While the measured isotropy of the temperature is one the strongest evidences for an
inflationary period shortly after the Big-Bang, small fluctuations in the measured black
body temperature can be observed at different positions in the sky. These fluctuations are
believed to originate due to the interplay between the radiation, which tends to smooth
out the density of primordial plasma, and baryons, which attract to each other via gravity.
This interplay generated sound waves, or Acoustic Oscillations until radiation decoupled
from the baryons at the epoch of recombination. Hence, the small anisotropy on the
black body temperature at different positions in the sky is an indicator of the primordial
structures that gave rise to the large scale structure of the Universe. While its existence
was predicted early in the twentieth century, it wasn’t until the early 90’s when the first
detection of anisotropy at the ∆T/T ∼ 10−5 level was made by the COsmic Background
Explorer mission (COBE; Bennett et al., 1996). The power spectrum of the temperature
fluctuations of the CMB is one of the main probes to characterize the ΛCDM model. The
angular scale of the peaks of the CMB power spectrum constrain a degenerate relation
between the curvature and matter content Ωm of the Universe. The physical scale of the
acoustic oscillations at the time of recombination depends on the matter content, and
these physical scales can be related to an angular scale via the expansion history of the
Universe, which in turns depends on the Hubble function H(z). For different curvatures,
the apparent angular sizes of these structures will change as a consequence of the photons
traveling over the null geodesics of the curved space. The location of the first peak at
` ∼ 220, first characterized by the BOOMERANG (Crill et al., 2003) and MAXIMA (Jaffe
et al., 2001) experiments, is consistent with the angular scales of primordial imprints in
the primordial plasma for a universe with no curvature. The relative amplitude of the
second peak with respect to the first (and in general, of even numbered with respect to
odd numbered peaks) is an indicator of the baryonic density of the primordial plasma,
which act by adding gravitational and inertial mass, making the over-densities associated
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FIGURE 1.4: Angular power spectrum for temperature anisotropy of the CMB black-body
radiation, observed by the Planck satellite. Red dots show the measurements with a log
scale for 2 ≤ ` ≤ 29, and a linear scale for ` > 30. Light blue solid line shows the predicted
ΛCDM spectrum for the best fit values of the cosmological parameters obtained by the Planck

collaboration.
Image credits: Planck Collaboration et al. (2020)

to odd peaks even more dense, while leaving the zones of under-density unchanged,
which are in turn associated to even peaks.

In addition to the temperature fluctuations the CMB radiation is also polarized, and
the spatial distribution of the different polarization measurements is a crucial measure-
ment to constrain the cosmological model. This polarisation, which corresponds to the
alignment of the electromagnetic field of photons with respect to the direction of propa-
gation, is caused by inhomogeneities in the plasma at the Surface of last scattering which
is the last scatter suffered by radiation just before streaming free at the time of recom-
bination. This scattering, when caused by scalar perturbations, only generates a certain
type of polarization orientation, called E-modes. Polarization can provide insight into
the epoch of inflation as well, immediately after the Big Bang as inflation is believed to
produce a background of gravitational waves, which can induce a second type of polar-
ization orientation, called B-modes (Kamionkowski & Kovetz, 2016). While the polar-
ization has already been detected, the observation of B-modes which could be related to
primordial gravitational waves is still elusive, and only upper limits have been obtained
(Nørgaard-Nielsen, 2018; de la Hoz et al., 2020).

Because of the interference of Earth’s atmosphere at microwave wavelengths, most
CMB experiments are either conducted with high altitude balloons, in the poles, or us-
ing satellite telescopes. The later experiments have provided the most detailed observa-
tions of the CMB on their respective eras. After the mentioned COBE was launched by
NASA in 1989, followed the Wilkinson Microwave Anisotropy Probe (WMAP; Spergel
et al., 2003), which allowed to map the fluctuation power spectrum past the first peak,
constraining the curvature of the Universe and its age simultaneously. Currently, the



32 Chapter 1. Principles of Modern Cosmology

strongest cosmological parameter constraints from CMB measurements have been pro-
vided by the Planck satellite (Planck Collaboration et al., 2020), launched by the European
Space Agency in 2009. They have provided the most stringent measurements of large
scale geometry, combining Planck CMB data with low redshift galaxy clustering data
from the Sloan Digital Sky Survey (SDSS; Alam et al., 2015). It is important to note that
CMB measurements are not exempt from tension with other experiments. In recent years,
a significant discrepancy in the measurement of the Hubble constant H0 with low red-
shift measurements using strong gravitational lensing and type Ia supernovae has arisen.
While Planck provides an estimate for today’s rate of expansion, H0 = 67.4± 0.5kms−1

Mpc−1 (Planck Collaboration et al., 2020), the measurement of the redshift-velocity rela-
tion for standard candle supernovae yields a higher value of H0 = 70− 75kms−1 Mpc−1

(Depending on the particular experiment; see e.g: Phillips et al., 2019; Riess et al., 2019;
de Jaeger et al., 2020). While it is remarkable that the estimation made based on the relic
radiation emitted when the Universe was only 380,000 years old agrees so well with the
estimations based on local structure, the 5-sigma tension between these values is still
source of an intense debate and it will be interesting to see what will settle it.

1.3.2 Type Ia Supernovae

Type Ia supernovae are a particular type of supernova which provide valuable informa-
tion for cosmology studies, based on the relative similarities of their light curves (Inten-
sity as a function of time). They occur in binary systems where a carbon-oxygen burning
white dwarf accretes material from a close companion, typically a diffuse red giant. Be-
cause of the fixed mass limit at which thermonuclear reactions are able to counteract the
effect of gravity, the collapse and subsequent explosion of these stars result in a fairly sta-
ble luminosity output and decay, with some small variations coming from star rotation,
metallicity, surrounding interstellar medium, and magnification effects by the gravita-
tional lensing effect of the large scale structure. This transforms Type Ia supernovae in a
standard candle, that is, an object with predictable intrinsic luminosity which is indepen-
dent of its distance to any observer. Comparison between their observed and absolute
magnitudes yields an estimate of its luminosity distance DL, which can be used to derive
the Hubble constant H0 from equation 1.22. Calibration of their distances at low redshift
are made using variable Cepheid stars observed in close galaxies such as Andromeda
and the Magellanic clouds. This calibration has been the subject of recent debate on the
determination of H0, which we have already mentioned (Riess et al., 2019; Di Valentino
et al., 2021; Efstathiou, 2020).

In addition to the determination of the Hubble parameter, Type Ia supernovae played
a fundamental role in the discovery of the accelerated expansion of the Universe in the
late 90s, with two seminal papers (Riess et al., 1998; Perlmutter et al., 1999) describing the
apparently large luminosity distances for intermediate redshift Ia SN, under the assump-
tion of an Einstein-de Sitter universe, described by (ΩK, Ωm) = (1, 0). The interpretation
of these observations was that the Universe is expanding more rapidly than predicted,
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FIGURE 1.5: Left: Low and high-z Sn Ia Hubble diagram and distance modulus residuals
with low, high, and Einstein-DeSitter cosmology from the MLCS method presented in Riess
et al. (1998). Right: Hubble diagram and magnitude residuals for 42 high-redshift Type
Ia SNe from the Supernova Cosmology Project, and 18 low-redshift Type Ia SNe from the

Calán/Tololo Supernova Survey presented in Perlmutter et al. (1999)

which is consistent with the presence of a cosmological constant Λ with a relative density
ΩΛ ∼ 0.7 (See figure 1.5).

1.3.3 Gravitational lensing

General relativity predicts that the path of light emitted by an astrophysical source will
follow a null geodesic, which from the perspective of Euclidean geometry, can appear as
non-straight lines around massive sources distorting the space-time around them. This
phenomena results in the apparent bending of light in the presence of a gravitational
field, and can be used as a tool in various astrophysical fields. Here we focus on its
application to cosmology, separating two regimes in which gravitational lensing can be
detected: strong lensing and weak lensing. We will provide a brief qualitative description
and general historical context for both here, and dive deeper into the formalism of weak
lensing in chapter 2.

Strong gravitational lensing

Strong lensing refers to the regime where the distortion of space-time by a mass concen-
tration is large enough to cause the light traveling from background sources to deviate
significantly from a Euclidean straight line along its null geodesic. This can result in light
coming from a source to arrive to an observer via multiple different paths and occurs
when the projected surface mass density Σ is greater than a critical mass value

Σcr =
c2

4πG
Dds

DdDs
(1.42)
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FIGURE 1.6: Left: Sample of lensed quasars employed for the determination of the Hub-
ble constant H0 by the H0liCOW experiment showing a variety of multiple images and arcs
around lensing galaxies. Right: Marginalized 1D posterior distributions for the Hubble pa-
rameter H0 obtained from time delay ∆t estimations using the 6 strong gravitational lenses

shown in the left panel.
Image credit: Wong et al. (2020)

where Ds and Dd are the distances from the observer to the source and lens respectively
and Dds = Ds − Dd. Depending on the extension of the source this can result in either
multiples images for point sources or long elongated arcs for extended sources around
the lensing structure. Although first conjectured by Einstein as a consequence of his
theory of general relativity, the first detection of multiple images of a single source caused
by strong gravitational lensing was made by Walsh et al. (1979), when two point sources
at the same redshift and with similar spectrum were observed a massive galaxy inside a
cluster. Since then, several other multi-object lens systems have been discovered, along
with many arcs-shaped structures around galaxy clusters. A few examples of strongly
gravitationally lensed sources and lens systems are shown in figure 1.6.

Strong gravitational lenses are of particular importance in cosmology as they provide
a tool to independently measure the expansion rate of the Universe since the time de-
lay ∆t between the arrival of light in different images of the strongly lensed sources is
proportional to H−1

0 (Refsdal, 1964). This time delay has two origins2 (i) the trajectories
followed by photons are geometrically different which make the length of their paths
different for each image, causing a geometrical time delay, and (ii) light rays travel through
a gravitational potential which retards them causing a gravitational time delay. The total
time delay ∆t is the sum of these two effects and is typically measured by monitoring
variable sources such as QSOs and cross correlating their time curves.

2Actually, a third effect is associated to the increase of traveled distance as a consequence of the expansion
of the Universe, but this effects cancels out for both trajectories when computing ∆t
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As mentioned in section 1.3.1, the estimation of the Hubble parameter has generated
an intense debate in recent years as a consequence of the tension between estimations
from Planck and the value obtained type Ia Sn. Recent independent estimations using
2 - 20 strong lensed systems have been made (Saha et al., 2006; Paraficz & Hjorth, 2010;
Suyu et al., 2013; Wong et al., 2020) and while their results are broadly consistent with
estimates of other probes, the uncertainties associated to the modelling of the lenses are
still too large to draw conclusions with respect to the H0 tension.

Weak gravitational lensing

When the projected surface mass density is smaller than the critical mass Σcr the effect
of gravitational lensing becomes less pronounced, only slightly affecting the shapes of
background objects without creating multiple images. The fact that it doesn’t require a
perfect alignment between lensing and background sources and that it is measurable over
large fractions of the sky make it a very suitable tool to measure the large scale structure.
Moreover, weak lensing constitutes a direct probe of the mass distribution regardless of
whether it is dark or baryonic matter. The integrated effect of the large scale structure
gravitational potential over the shapes of distant galaxies results in a magnification and
shearing of the source shape. The cosmological principle ensures that no preferential di-
rection exists on the Universe, from where it can be assumed that the average ellipticity
of unsheared galaxies will average to zero, although in reality the effect of intrinsic align-
ments contributes a significant deviation from this assumption and must be accounted
for. The same cannot be said about magnification as there is no first principle to constrain
the sizes of galaxies making the shear the main observable of weak lensing experiments.
The shear excerpted by the large scale structure is referred to as cosmic shear, and the main
challenge of detecting this signal resides in the fact that the effect is typically small and
difficult to differentiate from the intrinsic shapes and orientations of individual galaxies.
In order to measure the effect of cosmic shear the angular correlation of shapes ξ(θ) is
measured at the typical expected angular scales of the large scale structure, using sur-
veys of galaxy shapes and positions with significant surface number densities. These
angular correlations are directly related to the power spectrum of the projected 2D mass
density, which in turn can be obtained from the 3D matter power spectrum Pδ(k) via the
limber integral. This can be exploited to constrain the shape of the power spectrum, up
to a degenerate combination of the matter density Ωm and amplitude of perturbations
σ8 characterized by S8 (1.41) We will present a detailed description of the weak lensing
formalism in chapter 2.

An important aspect of weak lensing surveys is that the relative effect of the large
scale structure on galaxy shapes depends on the total distance traveled by light from
emission to observation. The determination of the distribution of sources along the line
of sight then becomes a key ingredient in weak lensing as it allows to estimate the rela-
tive intensity of the cosmic shear on individual sources. A precise determination of the
shapes of these distributions is key as biases can significantly alter the resultand inferred
cosmological parameters (Ma et al., 2006; Samuroff et al., 2017). Another important use of
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FIGURE 1.7: Graphical representation of the cosmic shear effect caused by the presence of a
foreground mass concentration on the images of distant background galaxies. The upper left
plane shows the unlensed images of galaxies projected on the plane, while the lower right
plane shows the resultant effect of gravitational lensing with background galaxies aligning

tangentially to the mass concentration.
Figure credits: Michael Sachs [CC BY-SA 3.0 or GFDL], via Wikimedia Commons

the redshift determination is the use of tomographic binning in which galaxy samples are
split into a finite number of redshift slices. This makes it possible to study the 3D matter
distribution instead of only a projection of it in 2D, and provides additional information
about the temporal evolution of the matter distribution as demonstrated by Hu (1999).
Because of the limitations of spectroscopy, weak lensing experiments typically employ
multi-band photometry to estimate redshift using a family of techniques called photomet-
ric redshifts (See e.g.: Abbott et al., 2016; Troxel et al., 2018; Abbott et al., 2018b; Heymans
et al., 2021, , etc.).

First detection of the cosmic shear signal was made simultaneously by four indepen-
dent groups at the beginning of the 2000’s (Kaiser et al., 2000; Bacon et al., 2000; Van
Waerbeke et al., 2000; Wittman et al., 2000), based on observation of small datasets typi-
cally covering less than 1 square degree and a few tens of thousands of galaxies. While
the limited sky coverage made it impossible to overcome the effect of cosmic variance,
these observations set the foundations for a series of increasingly wider and deeper sur-
veys. The first significant cosmological results were presented by CFHTLens (Heymans
et al., 2013) and DES Science Verification (Abbott et al., 2016) (See figure 1.8) with both
teams surveying around 150 square degrees and doing a tomographic analysis of the
shear angular correlation functions.

Current weak lensing and galaxy clustering are already providing very competitive
constraints on the expansion history of the Universe as shaped by Dark Energy, with
HSC (Hamana et al., 2020), KiDS (KiDS1000; Heymans et al., 2021) and DES (DES Y1;
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FIGURE 1.8: Left: Comparison of the 2D marginalized posterior of the (Ωm, σ8) cosmological
parameters obtained from the weak lensing analysis of DES SV (Purple) and CFHTLens (Or-
ange) and from CMB analysis of Planck (Red). The degeneracy direction S8 = σ8(Ωm/0.3)0.5

can be clearly seen in the first two cases. Right: 2D marginalized posterior of the (Ωm, S8)
cosmological parameters obtained from the weak lensing analysis of DES Y1 (Black) and
KiDS-450 (Blue) and from CMB analysis of Planck (Green). Weak lensing experiments, which
probe the late Universe large scale structure yield consistently low estimates of S8 compared

to CMB predictions.
Image credits: Abbott et al. (2016); Troxel et al. (2018)
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Troxel et al., 2018) recently providing results based on analysis of 100s to 1000s of square
degrees of data and combining it with large spectroscopic surveys to better characterize
the color-redshift relations in photometric redshifts. These results not only have sparked
significant discussion given the apparent tensions in the inferred cosmological parame-
ters between them (for an in-depth discussion see 3.2.1), but also have provided estimates
of the clustering parameter S8 consistently lower (2-3σ) than those of cosmic microwave
experiments like Planck.

Multiple cross-reanalysis of the different datasets reach no consensus on the source
of these discrepancies, with some pointing to flat-sky approximations of the Limber in-
tegral (Kitching et al., 2016), inaccurate intrinsic alignment models (Kitching et al., 2017)
and photometric redshift calibration errors (Choi et al., 2016). Next generation surveys,
some of which are described in the next section, will provide orders of magnitude more
data and constraining power which will allow weak lensing to achieve estimations of
cosmological parameters competitive with those of CMB and perhaps will shed light on
the origin of the observed tensions.

1.3.4 Galaxy clustering, galaxy-galaxy lensing and Baryon Acoustic oscilla-
tions

The evolution of the dark matter density field leads galaxies to form inside halos by
its gravitational interaction with baryonic matter. From this scenario galaxies would be
expected to cluster in the same way as dark matter, but early wide galaxy surveys quickly
revealed that is not the case. In general it is assumed that the number density of galaxies
is different from that of dark matter, but they can be related via a galaxy bias parameter
bg such that

Pb(k, z) = bg(k, z)Pδ(k, z), (1.43)

where Pb is the galaxy over-density power spectrum, defined similarly to the density
contrast power spectrum. The measurement of galaxy positions and their large scale
arrangement can be used to infer properties of the underlying matter density and its
evolution as long as we are able to provide an accurate model for galaxy bias. Above the
scales assumed for the validity of the cosmological principle (& 100 Mpc) there doesn’t
seem to be a significant scale or redshift dependency of bg (Desjacques et al., 2018).

Galaxy clustering and galaxy-galaxy lensing

Large optical surveys constrain the clustering signal by computing the two-point corre-
lation function of galaxy positions, ω(θ), typically using a sample of large scale structure
tracers. DES Y1 used the REDMAGIC algorithm (Rozo et al., 2016) to select bright red
sequence galaxies from massive clusters as tracers, while HSC used a photo-z quality
metric to select galaxies. Alternatives include the use of precise spectroscopic samples
of bright galaxies which are less affected by the limitations of spectroscopy observed in
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FIGURE 1.9: Cosmological parameter constrains from 3x2pt analysis combining weak lens-
ing, galaxy clustering and galaxy-galaxy lensing correlation functions from DES Y1 (Abbott
et al., 2018b) and KiDS-1000 (Heymans et al., 2021), clearly showing the increase in constrain-

ing power over pure weak lensing inference.

the faint end. An example of this is the clustering analysis made by the KiDS collabo-
ration (Heymans et al., 2021), which employs spectroscopy from the Baryon Oscillation
Spectroscopic Survey (BOSS; Dawson et al., 2013)

A third two-point correlation can be employed to further constrain the matter dis-
tribution, taking advantage of the connection between the position of lensing structures
and the cosmic shear observed on distant galaxies. The cross correlation between cos-
mic shear and galaxy position, γt, provides additional information about the connection
between the underlying matter density distribution and the baryonic distribution alone.
The assumption follows a similar argument to that of cosmic shear in the sense that the
effect of a foreground sample of galaxies will exert a deformation on the shapes of back-
ground galaxies with the magnitude of the tangential shear being determined by the
mass of the foreground distribution.

The three two-point correlations described so far commonly called 3x2pt, ξ(θ), ω(θ),
γt can be used simultaneously to better constrain the properties of the matter distribution
and its evolution or at the very least can serve as a mutual consistency check. Both DES
(Abbott et al., 2018b) and KiDS (Heymans et al., 2021) have performed 3x2pt analysis
using weak lensing, galaxy clustering and galaxy-galaxy lensing correlation functions,
with noticeable increases in constraining power over weak lensing alone (See figure 1.9).

Baryon Acoustic Oscillations

The acoustic oscillations caused by the interplay between radiation pressure and gravi-
tational attraction in the primordial plasma not only left their mark on the temperature
distribution of radiation escaping the last scattering surface, but also generated a series
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of wave patterns in the primordial baryonic matter distribution, or baryon acoustic os-
cillations (BAO). By the time matter and radiation decoupled, the imprints of these os-
cillations left on the matter density field grew to become today structures. The typical
size of structures at that time is called the sound horizon, which then becomes the typical
distance between today’s galaxy clusters and can be used as a standard ruler to constrain
the expansion history of the Universe. The role of dark matter and Dark Energy can be
revealed by comparing the observed typical distances between the largest structures in
the Universe and the predictions based on the size of the sound horizon.

To detect the BAO signal, the positions of galaxies tracing the large scale structure are
measured and with it the overabundance of galaxies separated at physical distances. By
comparing against a completely random distribution of galaxies in the same area of the
sky, the BAO signal should appear as an excess probability of finding galaxy pairs at an
angular distance consistent with that of the sound horizon.

First detection of the BAO was made simultaneously by the 2dF Galaxy Redshift Sur-
vey (Eisenstein et al., 2005) and SDSS (Cole et al., 2005) where a small excess in number
of pairs of galaxies separated by ∼ 150 Mpc was observed. While these pioneer observa-
tions required the use of spectra to accurately measure the three dimensional positions
of galaxies, modern experiments have been able to detect this signal in purely photomet-
ric surveys using photometric redshifts (Padmanabhan et al., 2007; Abbott et al., 2019b),
or resorting to alternative astrophysical sources such as quasars (Ata et al., 2018) or the
Lyman-α forest (Slosar et al., 2013).

1.4 Future cosmological surveys

Time has given us the perspective to identify different milestones achieved by gener-
ations of scientists and collaborations aiming at characterising the ΛCDM model. As
Albrecht et al. (2006) proposed

... we describe dark-energy research in Stages: Stage I represents dark-energy projects
that have been completed; Stage II represents ongoing projects relevant to dark-energy;
Stage III comprises near-term, medium-cost, currently proposed projects; Stage IV
comprises a Large Survey Telescope (LST), and/or the Square Kilometer Array (SKA),
and/or a Joint Dark Energy (Space) Mission (JDEM).

we are currently approaching the end of what, at the time, corresponded Stage III ex-
periments. The Dark Energy Survey finalized its observing runs in January 2019, after
six years and 5000 square degrees of sky covered, and the KiDS collaboration has already
published preliminary results of cosmic shear measurements of over 1000 square degrees.
While there is still plenty of data to be analysed, with DES just starting to publish fully
reduced data of observation made up to the third year and three more years in the queue
and KiDS set to provide an analysis of around 1500 square degrees when completed, new
surveys spectroscopic and photometric surveys with an order of magnitude increase in
coverage, data throughput, and expected lifetime, are just around the corner.
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Vera C. Rubin Telescope and the Legacy Survey of Space and Time

Perhaps one of most heavily publicised new generation surveys is the Large Synoptic
Survey Telescope (LSST; LSST Science Collaboration et al., 2009; Ivezić et al., 2019) which
is expected to begin full operations atop the Vera C. Rubin telescope in Cerro Pachón,
northern Chile, at the end of 2022. One of the key aspects, aside from the large increase
in coverage with respect to Stage III surveys, is that the telescope instruments and survey
design are specifically tuned for studies of cosmology (among other few scientific goals).
Covering nearly 20,000 square degrees of southern sky in 6 optical bands and mapping all
available sky every few nights, not only the survey will reach unprecedented deep mag-
nitudes (mr . 27) but it will also provide enough cadence to reduce systematics on study
of transient events, including Supernovae and time delays in strong gravitational lenses.
Similarly to current optical surveys, LSST will aim at constraining the Dark Energy equa-
tion of state and characterize the evolution of large scale structure from observations of
type Ia supernovae, BAO, weak lensing and galaxy clustering.

The Square Kilometer Array

Optical surveys are limited by their ability to constrain the instrumental and atmospheric
response and are typically limited to detect galaxies with z . 1 at competitive signal-
to-noise ratios. Radio surveys on the other hand are able to detect sources at higher
redshift via their synchrotron emission, and does not have to deal with stochastic PSF
effects as the beam size is deterministic and based on the quantifiable limitations of the
interferometric setup.

The Square Kilometer Array (SKA; Square Kilometre Array Cosmology Science Work-
ing Group et al., 2020) will become the largest interferometric survey of its generation, by
mapping the very early Universe in a frequency range from 50 Mhz to 14 Ghz and di-
vided into two stages, SKA1 (Low to mid frequency range, start of operations in 2023)
and SKA2 (Full frequency range, 2030). Detectors will form baselines of up to 3,000 km,
and will soon be construction in Australia and South Africa. The main cosmological goals
of SKA are to provide high redshift galaxy surveys by detecting their HI emission as well
as providing maps of extended HI intensity from the intergalactic medium. The possibil-
ity to perform cosmological analysis from these galaxy surveys, such as weak lensing and
BAO detections have been proposed in Harrison et al. (2016) and Yahya et al. (2015); Bull
(2016) respectively. An important aspect that makes such analysis important is the fact
that several systematic associated to the determination of shapes and positions of galaxies
are uncorrelated across the wavelength spectrum. This allows the use of cross-correlation
of the measurements to characterize and alleviate the uncertainties associated.

Euclid & the Nancy Grace Roman space telescope

An important limitation in optical and radio surveys originates from the effect of Earth’s
atmosphere on the observed properties of astronomical sources which adds up on top of
the instrumental response and accounts for a large fraction of the uncertainty associated
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to its systematic effects. A way to circumvent this limitation is to carry out surveys using
space-based instruments. Euclid and the Roman space telescope are two future near-
infrared satellite missions currently under construction which will observe ∼ 15, 000 and
∼ 2, 000 square degrees each, in addition to both having spectroscopic capabilities.
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Chapter 2

Weak gravitational lensing

The first observational evidence of the effect of gravity on light was obtained on 1919
when Arthur Eddington detected the slight shift in the position of background stars when
appearing close to the surface of the Sun, during a total solar eclipse (Dyson et al., 1920).
The deflection angle was precisely predicted earlier by Albert Einstein on his General
Relativity formalism. Following the discovery of the first extra-galactic gravitational lens,
observed as multiple images of quasar QSO 0957+561, lensed by the YGKOW G1 galaxy
(Walsh et al., 1979), arcs around dense, massive galaxy clusters have been found all across
the sky. While the above examples can be classified as strong lensing effects, weak lensing
in turn deals with the regime where the distortions of distant sources, caused by the large
scale mass distribution of the Universe, are very small, typically a magnitude smaller
than the apparent size of the galaxy. These effects cannot be identified by looking at just
one galaxy, since the intrinsic shape of the galaxy is not known a-priori. One relies on
the observation of multiple galaxies and a series of assumptions regarding the intrinsic
distributions of shapes and alignments.

Weak lensing has steadily become a very competitive probe of the expansion history
of the Universe and its constituents, as it can directly characterise massive structures by
measuring the coherent distortions of the observed shapes of distant background galax-
ies caused by gravitational fields along the line of sight. The statistical significance of
the detection of the weak lensing signal needs to be improved by either observing large
regions of the sky, increasing the depth of the optical surveys to lower surface brightness,
or both simultaneously.

In chapter 1 we learned about the many observational probes to study the large scale
structure of the Universe and how each of the main cosmological parameters of the stan-
dard model can be constrained from independent observations. We identified the follow-
ing cosmological parameters:

• Hubble parameter H0

• Matter density Ωm

• Baryon density Ωb

• Dark Energy density ΩΛ
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• Amplitude and spectral index of primordial power spectrum As, ns

• RMS amplitude of density fluctuations σ8

In section 2.1 we describe the formalism to describe the deflection angles caused by
the lensing of distant galaxy images caused by the large scale structure gravitational in-
fluence. We then derive the relation between the statistical description of the shear signal
and the matter power spectrum, and the concept of tomography. In section 2.2 we de-
scribe what observables can be used to generate this statistical description: the observed
shapes of distant galaxies, the covariance matrix describing the uncertainty on these mea-
surements, and the distribution of sources along the line of sight. Finally, in section 2.3
we describe the main systematic effects that can affect the estimation of the cosmic shear
signal.

2.1 Weak gravitational lensing formalism

2.1.1 The lens equation

We start by deriving a relation to describe the deflection angle from a light ray coming
from a source, being lensed by the large scale structure and then received by an observer.
A common simplified model is to assume that the lensing structure has dimensions along
the line of sight much smaller than the typical source-lens and lens-observer distances.
Under this picture the mass distribution at each relative position on the sky θ is inter-
preted as a thin sheet characterized by a surface mass density Σ(θ) (the thin lens approxi-
mation), and the light traveling from the distant source is only lensed once, when passing
through the plane of the lensing mass distribution. Before and after the light is assumed
to travel in straight lines (the Born approximation).

In the steps shown here we assume a more complete picture in which the lensing
structures can span the full line-of-sight range, but employing simplifications which have
the same spirit as the above approximations. We start by assuming the shear signal we
observe on Earth is a consequence of the distorted light path a photon follows due to the
presence of an inhomogeneous gravitational field on small scales which spans the whole
space. This space is characterized by the metric (Bartelmann & Schneider, 2001)

ds2 = dt2
(

1 +
2Φ
c2

)
c2 − a2(t)

(
1− 2Φ

c2

)
dχ2. (2.1)

where Φ(t, χ) is the Newtonian potential of small inhomogeneities, expected to be much
smaller than c2. This metric is obtained by solving the Einstein Field equations 1.1 for
a stress energy Tensor Tµν described by a small overdensity ρ which varies slowly with
time, and satisfies Poisson equation 1.26. The metric described a slight variation of the
Minkowski metric of flat spacetime. Light travels along null geodesics, with ds = 0,
hence (

1 +
2Φ
c2

)
c2dt2 = a2(t)

(
1− 2Φ

c2

)
dχ2 (2.2)
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We define the refraction index η = c/c′ which characterizes the relative speed of the light
ray moving in this space, with

c′ =
dχ

dt
= ca(t)

√
1 + 2Φ/c2

1− 2Φ/c2

∼ ca(t)
(

1 +
2Φ
c2

)
(2.3)

We can obtain the total time for a light ray to travel from point A to point B as

T =
∫ B

A
dt =

1
c

∫ B

A
η(χ)dχ

=
1
c

∫ B

A

(
1− 2Φ

c2

)
a(t)dχ. (2.4)

where χ is the comoving distance along the light path and we have used the approxima-
tion

1
1 + 2Φ

c2

∼ 1− 2Φ
c2 (2.5)

Fermat’s principle of least time dictates that the above expression is a minimum, hence
δT = 0. Applying Euler-Lagrange equations (See appendix A) we obtain the total angle
deflection by a mass concentration

α̂ = − 2
c2

∫
∇p
⊥Φdχ, (2.6)

where ∇p
⊥Φ is the gradient of the potential perpendicular to the photon path. Figure 2.1

shows a representation of the deflection of a light ray with respect to a reference light
path. The distance between two rays, expressed by x, subtends an angle θ given by:

x(χ) = fK(χ)θ, (2.7)

where fK, defined in 1.5, depends on the curvature of the Universe. At the distance χ′, a
mass concentration with a transverse gradient ∇p

⊥Φ deflects the light ray by an angle α̂.
In the absence of a deflector, the source at comoving distance χ would have subtended
an apparent angle β = x(χ)/ fk(χ). The change in separation is then given by:

dx = fK(χ− χ′)dα̂. (2.8)

Replacing this expression in 2.6 yields the separation between the two rays at any given
distance χ, both being subject to deflections along their paths:

fK(χ)θ =
2
c2

∫ χ

0
dχ′ fK(χ− χ′)

[
∇⊥Φ(χ′)−∇0

⊥Φ(χ′)
]

, (2.9)

where the term ∇0
⊥Φ(χ) refers to the perpendicular gravitational potential at the path

of the reference ray. If we introduce an approximation by substituting the unperturbed



46 Chapter 2. Weak gravitational lensing

χ′ χ− χ′

χ

dx(χ)

x(χ)
β

θ

α̂∇⊥Φ(χ′)

FIGURE 2.1: Two light rays coming from a single source, indicated by the red lines. The
top ray is deflected by the presence of a Newtonian potential at comoving distance χ′. The
deflection angle dα̂ is proportional to the perpendicular gradient of the potential at comoving
distance χ′. The angular position ~θ indicated by the dashed line is then observed instead of

the original angular position ~β indicated by the blue line.

trajectory x0(χ) = fK(χ)θ on the integral, divide both sides of this equation by fk(χ), and
write the second term on the right hand side as the deflection angle α, then we can write:

β = θ− α, (2.10)

which is called the lens equation and describes the transformation between the original
position of a source and the observed position due to the deflection caused by a gravita-
tional potential. We can now map each point of the source image to the observed image
using the Jacobian of the transformation between β and θ, A = ∂β/∂θ, where

Aij =
∂βi

∂θj
= δij −

∂αi

∂θj

= δij −
2
c2

∫ χ

0
dχ′

fK(χ− χ′) fK(χ
′)

fK(χ)

∂2

∂xi∂xj
Φ( fK(χ

′)θ, χ′) (2.11)

Using
∂

∂θi
= fK(χ)

∂

∂xi
,

we can define the lensing potential (Bartelmann & Schneider, 2001; Scheneider P., 2006):

Ψ(θ, χ) =
2
c2

∫ χ

0
dχ′

fK(χ− χ′)
fK(χ′) fK(χ)

Φ( fK(χ
′)θ, χ′), (2.12)

and the Jacobi matrix A can be written as

Aij = δij − ∂i∂jΨ, (2.13)
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κ > 0 ; γ1 = γ2 = 0

κ < 0 ; γ1 = γ2 = 0

κ = 0 ; γ1 = 0 ; γ2 > 0

κ = 0 ; γ1 = 0 ; γ2 < 0

κ = 0 ; γ1 < 0 ; γ2 = 0

κ = 0 ; γ1 > 0 ; γ2 = 0

FIGURE 2.2: Illustration of the effects of the distortion matrix A as a function of its compo-
nents, the convergence κ, and shear (γ1, γ2). The value κ indicates the magnification or de-
magnification of the sources, with magnified sources having a negative convergence value κ.
Because of the symmetry of the ellipticity definition, the shear is a spin-2 field: a π/2 rotation

of the galaxy results in the same shear value.

which can be further parameterized by introducing two new quantities, the convergence
κ and the complex shear γ = γ1 + iγ2, which are obtained as the second derivatives of
the lensing potential:

κ =
1
2
(∂1∂1 + ∂2∂2)Ψ =

1
2
∇2Ψ

γ1 =
1
2
(∂1∂1 − ∂2∂2)Ψ

γ2 = ∂1∂2Ψ. (2.14)

where δi corresponds to the partial derivative with respect to the i−th coordinate of
the position θ. In this parameterisation, the lensing of the 3D matter distribution can
be treated as an equivalent lens plane with deflection potential Ψ, effective surface mass
density κ and shear γ. The Jacobian matrix can be rewritten as:

A =

[
1− κ − γ1 −γ2

−γ2 1− κ + γ1

]
(2.15)

Under this parameterization, the images of circular galaxies appear as ellipses whose
semi-axes values with respect to the original circular radius depend on the eigenvalues
of the matrix, and the orientation is given by the phase ϕ of the complex shear γ = |γ|e2iϕ

(See figure 2.2). We can further rewrite the Jacobi matrix as

A = (1− κ)

[
1− g1 −g2

−g2 1 + g1

]
, (2.16)
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where the reduced shear g is defined as

g =
γ

1− κ
= g1 + ig2 = |g|e2iϕ

The interpretation of this parameterization is that images of distant galaxies are magni-
fied isotropically according to the convergence value 1− κ, and sheared according to the
complex value γ. Since, in principle it is not possible to directly infer what is the level
of magnification from the galaxy images without any knowledge on the intrinsic size of
the source objects, the reduced shear g becomes the main observable of a galaxy distri-
bution, since the orientation of galaxies is expected to be completely random under the
cosmological principle of no preferential directions. Nevertheless, magnification can be
estimated indirectly by cross-correlating the number density of observed distant objects
with the positions of foreground lensing galaxies (See e.g. Garcia-Fernandez et al., 2018),
as the magnification effect typically results in slightly increased galaxy detection num-
bers because of the increase in magnitude of magnified objects. The reduced shear can be
estimated from the apparent observed shapes of galaxies, and the spatial correlation of
these measurements is the main piece of information used in weak lensing experiments
to probe the large scale structure.

2.1.2 Limber’s equation

So far we have described the effect of a particular distribution of mass along the line
of sight on the observed shapes of distant objects projected around it. Typically we do
not know what the mass distribution is and a few measured shapes tell us little about
the underlying properties of the Universe, such as the total mass density or the shape of
the power spectrum. We are in a middle ground that connects the general observables
of weak lensing with the higher level descriptions of the Universe. In what follows we
describe how the formalism described so far can be related to the matter power spectrum.
Then in the next section we describe how to build up from the fundamental observations
to constrain the complete statistical description of the Universe.

We defined the convergence κ as

κ =
1
2
∇2Ψ (2.17)

where Ψ is the lensing potential defined in equation 2.12. We mentioned above that the
convergence is the two-dimensional projection of the mass distribution along the differ-
ent lines of sight θ

κ(θ, χ) =
1
c2

∫ χ

0
dχ′

fK(χ− χ′)
fK(χ)

fK(χ
′)∇2Φ. (2.18)

In order to find the connection between the convergence field and the matter power spec-
trum, we can relate κ to the density contrast parameter δ introduced in 1.23. Using Pois-
son equation 1.26, plus the definition of the density parameter we obtain a linear relation
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between the convergence and the density contrast (See appendix B):

κ(θ, χ) =
3H2

0 Ωm

2c2

∫ χ

0

dχ′

a(χ′)
W(χ, χ′)δ( fK(χ

′)θ, χ) (2.19)

W(χ, χ′) =
fK(χ− χ′)

fK(χ)
fK(χ

′) (2.20)

where δ is the density contrast parameter which describes the relative matter over-density
with respect to the mean matter density, and W is a term to describe the effect of spatial
curvature. If we assume that the distribution of mass along the line of sight is given by a
probability distribution n(χ), then we can obtain an effective surface mass density κeff

κeff(θ) =
∫ χmax

0
n(χ)κ(θ, χ)dχ

=
3H2

0 Ωm

2c2

∫ χ

0

dχ

a(χ)
g(χ) fK(χ)δ( fK(χ

′)θ, χ) (2.21)

where
g(χ) =

∫ χmax

χ
dχ′n(χ)

fK(χ
′ − χ)

fK(χ′)
(2.22)

is called the lensing efficiency function.
As we mentioned in chapter 1, we can only predict the statistical behaviour of the

matter density, encoded in the matter power spectrum Pδ(k). What we have so far is a
collapsed 2D distribution from the 3D density field through an efficiency function kernel
g(χ) which can only be expected to be estimated from averaging over many lines of
sight, so we can’t reconstruct the 3D matter density field. What we can do is predict its
statistical properties from the statistical properties of the collapsed effective convergence,
both encoded by their two-point correlation functions. Following the If δ( fK(χ

′)θ, χ) is a
homogeneous and isotropic Gaussian random field, then any projection of the form

κ(θ) =
∫

dχq(χ)δ( fK(χ)θ, χ) (2.23)

is also an homogeneous and isotropic Gaussian field, this time only in 2D. The angular
auto-correlation of κ(θ) (see 1.30) will only be

Cκ = 〈κ(ϕ1)κ(ϕ2)〉 = Cκ(|ϕ2 −ϕ1|) (2.24)

and its power spectrum will be the Fourier transform of the correlation function

Pκ(`) =
∫ ∫

dϕ1dϕ2eiϕ1`eiϕ2`〈κ(ϕ1)κ(ϕ2)〉 (2.25)

where we use ` as the wavenumber instead of k to avoid confusion with κ. If we expand
this using 2.23 (Bartelmann & Schneider, 2001; Scheneider P., 2006) we obtain

Pκ(`) =
∫ ∫

dϕ1dϕ2eiϕ1`eiϕ2`
∫

dχq2(χ)〈δ( fK(χ)ϕ1)δ( fK(χ)ϕ2)〉 (2.26)
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Taking the change of variables θi = fK(χ)ϕi and re-arranging the integrands

Pκ(`) =
∫

dχ
q2(χ)

f 2
K(χ)

∫ ∫
dθ1dθ2eiθ1

`
fK (χ) eiθ2

`
fK (χ) 〈δ(θ1, χ)δ(θ2, χ)〉 (2.27)

Here we note that the second integral on the right hand side is the definition of the
Fourier transform of the density contrast correlation function, but for a scaled wavenum-
ber `/ fK(χ). Replacing q(χ) with the corresponding values from 2.21 we find

Pκ(`) =

(
3H2

0 Ωm

2c2

)2 ∫
dχ

g2(χ)

a2(χ)
Pδ

(
`

fK(χ)
, χ

)
(2.28)

where we have found that the convergence power spectrum is directly related to the
density matter power spectrum Pδ(k). This result, which can be derived from the ap-
proximations and formulation presented in Limber (1953), is typically called the Limber
integral and tells us that we can completely describe the 3D matter power spectrum from
only knowing the statistical properties of the effective convergence, encoded on its power
spectrum Pκ(k). In the next section we will see that the convergence power spectrum can
be directly obtained from the shear field.

2.1.3 Shear correlation functions

We can write the effective convergence κ(θ) as an inverse of its Fourier transform

κ(θ) =
1

(2π)2

∫
d`κ̂(`)e−i`θ (2.29)

and in a similar way define the Fourier transform of the lensing potential, Ψ̂(`). In gen-
eral, the correlation function of the Fourier transform κ̂(`) can be written in terms of its
power spectrum Pκ(`) as

〈κ̂(`)κ̂∗(`′)〉 = (2π)2δD(`− `′)Pκ(`) (2.30)

where δD is the Dirac delta function. From the definition of the convergence in terms of
the lensing potential (2.14) we can write:

− |`|2Ψ̂(`) = 2κ̂(`) (2.31)

where we have used the fact that differentiation in real space can be replaced by a −i`i

multiplication in harmonic space. Using the definition of the shear components γi in 2.14
and replacing in 2.31 we find that the Fourier transform of the shear field γ(θ) can be
written as a function of the transform of the convergence κ

γ̂(`) =

(
`2

1 − `2
2 + 2i`1`2

|`|2
)

κ̂(`)

= e2iβκ̂(`) (2.32)
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> 0 < 0

〈γtγ×〉
〈γ×γt〉

〈γ×γ×〉

〈γtγt〉

FIGURE 2.3: Shear pairs with different orientations and the resulting correlation functions
〈γtγt〉, 〈γ×γ×〉 and 〈γtγ×〉. While the individual γ = γ1 + iγ2 values for each object change
depending on the orientation of the reference frame, the resulting cross- and tangential-
shears γ×, γt change accordingly because of the orientation of the pair angle ϕ (ϕ = 0 in

this figure). Both changes result in an invariant set of correlation functions ξ±.

where β is the polar angle of the wavenumber vector `. Using equation 2.30 and 2.32 we
find that

〈γ̂(`)γ̂∗(`′)〉 = (2π)2δD(`− `′)Pκ(`) (2.33)

This tell us that the power spectrum of the shear field γ(θ) is exactly equivalent to that
of the convergence field κ(θ). Instead to trying to estimate the convergence field power
spectrum, we can obtain it from the shear which can be estimated easily from the shapes
of galaxies.

Two particular correlation functions of the shear can be used to estimate Pκ, which are
easily measurable from a large catalog of observed galaxy shapes and their positions. If
we consider two points characterized by γi = γi

1 + iγi
2 each, and separated by an angular

distance θ along the direction angle ϕ, we can define the tangential and cross-component
of the shear at these positions as

γt = −Re(γe2iϕ) γ× = −Im(γe2iϕ) (2.34)

from where we can define two correlation functions1

ξ± = 〈γt(θ)γt(θ)〉 ± 〈γ×(θ)γ×(θ)〉 (2.35)

1A third cross-correlation ξ×(θ) = 〈γtγ×〉 vanishes due to the symmetry of the shear field under a mirror
transformation
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If we replace γ(θ) in terms of its Fourier transform γ̂(θ) and use 2.33 we find (Bartelmann
& Schneider, 2001; Scheneider P., 2006)

ξ+(θ) =
∫ d``

2π
J0(`θ)Pκ(`) (2.36)

ξ−(θ) =
∫ d``

2π
J4(`θ)Pκ(`) (2.37)

where the first kind Bessel functions of order n are used

Jn(`θ) =
1

inπ

∫ π

0
ei`θ cos ϕ cos(nϕ)dϕ (2.38)

Owing to the orthonormality of the Bessel functions these two equations can be inverted
to obtain

Pκ(`) = 2π
∫

dθξ+(θ)J0(`θ) (2.39)

Pκ(`) = 2π
∫

dθξ−(θ)J4(`θ) (2.40)

At last, we have found a set of quantities, usually obtainable directly from data, which
relate directly to the convergence power spectrum Pκ(`), which in turn can help us find
the matter power spectrum Pδ(`). In the next sections we describe how the shear cor-
relation functions can be estimated from data, and what are the observational products
necessary in a weak lensing experiment to perform a full cosmological analysis.

2.1.4 E- and B- modes

We saw that the lensing potential is related to the lensing potential via the Poisson equa-
tion

κ =
1
2
∇2Ψ (2.41)

We can then define the field vector u such that

u = ∇κ (2.42)

which, using the relations 2.14, can be written as

u =

[
∂1γ1 + ∂2γ2

∂1γ2 + ∂2γ1

]
(2.43)

By definition, the curl ∇× u vanishes which introduces second order derivatives con-
strains for γ1 and γ2. The constrains imposed on the shear and the fact that both compo-
nents of the complex shear γ are can be obtained from a single lensing potential, implies
that the two components are not completely independent from each other. This leads to
only certain combinations of (γ1, γ2) being possible in the presence of a lensing structure
(See figure 2.4). If the field fulfills this conditions completely, then it is called and E-mode
field.
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B-Modes

E-Modes

FIGURE 2.4: E- and B- modes of the shear. Upper row shows the E-mode pattern coming
from either a spherical over density (left) or under density (right), where tangential and per-
pendicular alignments with respect to the position of the density distribution. B-modes are
45 degree rotation of E-modes which cannot occur due to the presence of a lensing structure.

In practice, the observed shear field can have non-vanishing curl, ∇× u, or B-mode
which can be associated to several effects:

• Higher order terms neglected from the Born approximation.

• Higher order terms arising from the shear to reduced shear transformation (γ→ g).

• Selection biases in galaxy samples.

• Shape-shape and shear-shape correlations.

• Image quality and and errors in the shape analysis.

B-modes have been consistently used to test systematics on weak lensing surveys, as they
are expected to vanish because of the parity of the shear field under the Born approxima-
tion. With the advent of larger surveys, the non detection of this signal must be treated
with care as it is known that physical effects can produce a non systematic B-mode.

2.1.5 Tomography

We recall from equation 2.21 that the effective convergence κeff(θ) can be interpreted as
the projected surface mass density of the underlying density field, weighted by the lens
efficiency from equation 2.22. The lensing efficiency determines the relative contribution
to the total shear field of the different lensed sources at different comoving coordinates,
given by the distribution n(χ)dχ along with the effect of geometry via the term fK(χ). We
can obtain the distribution of lensed sources by observing a large sample of galaxies and
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obtaining their redshifts, which we can relate easily to their comoving coordinates. Con-
sidering that the effective convergence is a 2D projection of the mass distribution along
the line of sight, most of the three dimensional effects, and therefore the time evolution
of the underlying fields parameters is lost due to this projection. The introduction of to-
mographic binning allows more precise constraining of the cosmological parameters and
their evolution with cosmic time. If we define a binning of the comoving distance range
[0, χmax] composed of Nb bins, we can compute the lensing efficiency for each bin as

Wi(χ) =
∫ χlim

0
dχ′ni(χ

′)
fK(χ

′ − χ)

fK(χ′)
(2.44)

where ni(χ) is the distribution of sources along the line of sight for that particular bin.
Replacing in 2.19 we obtain the projected convergence for that redshift bin, and using
2.28 we can obtain Nz(Nz − 1)/2 different convergence power spectra,

Pκ,ij =
9H4

0 Ω2
m

4c2

∫ χlim

0
dχ′

Wi(χ
′)Wj(χ

′)
a2(χ′)

Pδ

(
`

fK(χ′)
, χ′
)

The lensing efficiency is a broad function of the redshift, and in addition, photometric
redshift error broadens it even more, thus the different power spectra are not indepen-
dent from each other. Also, large scale structure contributes to the overlapping and corre-
lation of the spectra, since the structure can extend over more than a redshift bin and low
redshift structure affects the observed shear in larger redshift galaxies. While in prin-
ciple, one could be tempted to choose a large number of redshift bins, uncertainties in
photometric redshifts wash away any possible fine details in the cosmological parameter
evolution that could possible arise of such a binning. Fine tuning is necessary to find
the appropriate number of bins in terms of the expected uncertainties in the obtained pa-
rameters of the survey, but it has been shown (Hu, 1999; Simon et al., 2004) that a small
number of bins Nb . 10 is sufficient to improve the cosmological constrains over analysis
with no binning at all.

2.2 Weak lensing observables

It is worth mentioning that alternative approaches exist to estimate the convergence and
matter density power spectrum by directly measuring the shear power spectrum (Bond
et al., 1998; Seljak, 1998; Hu & White, 2001; Köhlinger et al., 2017). These techniques mea-
sure the average shear inside sky ‘pixels’ and compute the Fourier transform of the shear
field to estimate the convergence power spectrum (which we saw in the last section is
equivalent to the shear power spectrum). Since surveys typically don’t cover the full sky
and mask or weight regions differently to account for several observational conditions,
these methods require a careful description of the footprint window function.

Nevertheless, the two-point shear correlation functions in real-space (equations 2.36)
constitute the main observables of many modern weak lensing experiments because of
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the simplicity of their estimation. Assuming a catalog of observed shears at several posi-
tions θi, an estimator for the shear correlation functions can be written as:

ξ̂±(θ) =
∑i ∑j wiwj

[
γt(θ

i)γt(θ
j)± γ×(θi)γ×(θj)

]
∑i ∑j wiwj

where w represent the relative weights assigned to each individual shear measurement,
and the sum is done over all points separated by an angular distance θ = |θi− θj|. In real-
ity it is virtually impossible to employ this estimator since the angular distance between
pairs of points is a continuous value which will never repeat for any two pair of points,
rendering the average useless. The usual approach is to bin the complete angular range
and compute the correlation functions for all points separated by an angular distance
θ ∈ [θk, θk + ∆θ). Usually this estimator is very computationally intensive as the num-
ber of pairs and cross- and tangential-shears to be computed is very large. A commonly
used approximation is to perform a partition of the observed positions and their asso-
ciated shears using clustering algorithms such as kd-trees (Schneider et al., 2002; Jarvis,
2015), where the mean shear inside compact groups of points are used in the estimator
instead of individual points. The fundamental required measurements are the positions
and shapes of distant galaxies from where we estimate the cosmic shear based on the
cosmological principle.

2.2.1 Shear

Assuming the intensity of a galaxy as a function of position θ, can be described by a
surface density profile I(θ), we can find the coordinates of the centroid (θc

1, θc
2) of the

intensity distribution as the first moment of the intensity

θc
i =

∫
dθI(θ)θi∫
dθI(θ)

(2.45)

Using this centroid we can define the second order moments

Qij =

∫
I(θ)(θc

i − θi)(θ
c
j − θj)∫

dθI(θ)
(2.46)

where i and j are the two coordinates of the position vector θ. The most widely used
definition of ellipticity ε is given by

ε =
Q11 −Q22 + 2iQ12

Q11 + Q22 +
√

Q11Q22 − 2Q12
(2.47)

It can be shown (Schneider & Seitz, 1995) that the Jacobi matrix defined in 2.16 transforms
the unlensed profile I(θ) of a source such that the lensed ellipticity εlensed can be written
as

εobs =
εsource + g

1 + εsourceg∗
(2.48)
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where εsource is the ellipticity of the unlensed profile, and g, g∗ are the reduced shear and
its complex conjugate, respectively. If we average over multiple ellipticity measurements,
the cosmological principle which tells that there is no preferential direction results in
〈εsource〉 = 0. Then, the average observed ellipticity will be 〈εobs〉 = g, an unbiased
estimator of the reduced shear g.

Two families of methods can be identified from the literature: estimation of image
moments, and parametric fitting. Image moment methods directly compute the image
quadrupoles of equation 2.46 in real (e.g. KSB+; Kaiser et al., 1995; Luppino & Kaiser,
1997; Hoekstra et al., 1998) or Fourier space (Hosseini & Bethge, 2009), under the assump-
tion that the observed shape is a combination of the effects described in figure 2.5. This
allows the observed ellipticity to be decomposed into individual components, including
those of the PSF and the shear.

Parametric model fitting techniques attempt to reproduce the observed intensity dis-
tribution I(θ) using sums of elliptical parametric models, such as the Sérsic profile. In-
stead of deconvolving a post-PSF galaxy image, the model is generated on top of the at-
mosphere, and then convolved by the previously estimated PSF to be compared to the
noisy image. The main advantage of model fitting methods is that the ellipticity of these
parametric models is well known. Other similar approaches such as Shapelets (Refregier
& Bacon, 2003) decompose the galaxy image into a finite sum of polynomial linearly in-
dependent basis 2D functions. Last generation surveys methods mostly employ model
fitting algorithms (NGMIX, IM3SHAPE, LENSFIT; Sheldon, 2015; Zuntz et al., 2013; Miller
et al., 2007, respectively), with some more sophisticated implementations (e.g. META-
CALIBRATION Huff & Mandelbaum, 2017; Sheldon et al., 2020) being able to perform a
full photometric analysis plus estimation and calibration of the shear.

2.2.2 Covariance matrix of the angular correlation functions

Weak lensing observables, either two-point shear correlation functions at different angle
bins θk or the lensing power spectrum on each tomographic bin are correlated due both
physical and systematic effects: the distribution of large scale structure and the relative
density contrast in terms of galaxies per unit volume can impact the detectability of struc-
ture due to large Fourier modes, correlating low and high angular scales. Also, the extent
of structure in the radial direction can impact the correlation of low redshift structures
with the shear of high redshift sources (See 2.3.1). Finally, the assumption of a Gaussian
shear field for the Limber integral is not perfect, owing to the non linear evolution of the
density field at small scales. Photometric redshift errors and the highly degenerate color-
redshift relation can also lead to galaxies being placed into incorrect bins or result in with
wide lensing efficiency functions with large overlaps between tomographic bins. This
can introduce spurious correlations making the observed two-point correlations func-
tions not completely independent from each other. The usual assumption made in the
process of parameter inference is that the distribution of measurement errors of these ob-
servables is Gaussian, and along with its correlation, it can be described by a covariance
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matrix C
Cij = cov(xi, xj) (2.49)

where xi are the elements of the vector of observables, or datavector x, typically two-
point shear correlation functions estimated at angular bins θk. The importance of this
covariance matrix is that it allows us to compare the observed datavector to a theoretical
value predicted by a set of cosmological parameters ϑ via the likelihood function L

L(x|ϑ, M) =
1

(2π)m/2|C|1/2 exp
[
−1

2
(x− xt)

TC−1(x− xt)

]
, (2.50)

In chapter 4 we will formally introduce the concept of Bayesian inference and how this
likelihood function is employed to estimate the confidence regions of parameter space
for our models, given the observations made in the cosmic shear pipeline. Several ap-
proaches can be taken to estimate the covariance matrix both from data or simulations.
Analytical models (Joachimi et al., 2008; Schneider et al., 2002) estimate the covariance
matrix directly from the definition of second order statistics, under the assumption of the
shear being a Gaussian field. Depending on the complexity of the model, these methods
can provide an inverse covariance matrix suitable for cosmological inference, as long as
they are able to account for the non-Gaussian effects such as the correlation of modes of
the density field inside the survey footprint which could be correlated with super-survey
modes, cosmic variance and shot noise.

A widely used family of methods for covariance matrix estimation rely on the real-
ization of multiple N-body simulations where ξ± are obtained from projected particle
densities in the redshift range of the simulations. Hartlap et al. (2007) showed that the
main requirement for this procedure is to have a number of simulations, p, larger than
the vector of correlations ξ±, otherwise the estimated matrix C cannot be inverted. But
even if the matrix is not singular, the use of an estimator for equation 2.49, while being
unbiased, could lead to a biased estimation of the inverse matrix C−1. Anderson (2003)
showed that an inverted estimator Ĉ−1 can be biased by a factor (p − 1)/(n − p − 2)
where p is the number of realizations and n is the length of the data vector ξ± we defined
before; correcting factor for this bias is known as the Anderson-Hartlap correction.

Jackknife methods are a simple estimation of C where in a similar fashion to the es-
timation using N-body simulations, the terms of the covariance matrix are estimated
taking the average over many realizations of ξ± over ’incomplete survey samples’. A
simple way to implement this is to measure the correlation function in sub-samples of
the total survey footprint. In addition to the fact that the estimate of C−1 is also biased
and must be corrected using the Anderson-Hartlap correction factor, this method will be
also biased by any general bias associated to the estimation of the two-point correlation
functions.
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FIGURE 2.5: Illustration of the forward problem. From left to right the panels show how
the original image is sheared by the cosmic shear, blurred by the point spread function of
the atmosphere and instrument response, pixelised by the detectors and noised by multiple

sources including thermal effects on the telescope and readout noise.

2.2.3 Photometry and Redshifts

Estimation of the matter density power spectrum using Limber integral requires pre-
cise knowledge of the lensing efficiency kernel defined in equation 2.22, which in turns
depends on the line of sight distribution of lensed sources, n(χ) along the comoving
distance range [0, χmax]. We typically estimate n(χ) by computing the line of sight dis-
tribution as a function of redshift, which as we saw in 1 is an indicator of distance. Be-
cause of the limitations of spectroscopy, both in terms of budget and time constraints and
completeness, redshifts are estimated using a family of techniques called photometric
redshifts, which often provide less accurate point estimates of the distributions, but are
more complete down to fainter magnitudes, and reasonably accurate for large ensembles
of sources. These estimate the redshift using measurements of the incident galaxy flux
through few narrow and/or filter bands

fb =
∫

dλWb(λ)Fb(λ)I(λ) (2.51)

where Wb and Fb represent the instrument response and filter passband, and I is the
spectral energy distribution of the source, all as a function of wavelength λ. We will
discuss the formalism and literature on this particular measurement in chapter 3.

2.3 Systematics and their effects on cosmology

The forward process described in figure 2.5 and the photometric redshift approach describe
in a very simplified way the main challenge faced by cosmic shear experiments: detect-
ing the effect of cosmic shear from small, noisy, pixelised images of distant galaxies and
estimating the redshift from only a handful of photometric measurements. In addition to
that, large cosmological surveys are tasked with estimating these quantities for several
million objects, which is only accomplished by developing complex computational tools
to perform these measurements accurately and efficiently. A significant fraction of the
time and effort spent on these large experiments is devoted to the testing, validation and
characterisation of these methods and their associated biases or uncertainties.

Through this thesis we will frequently use the concepts of systematic bias and un-
certainty. A bias is defined as a the deviation of a measured statistic from its true value,



2.3. Systematics and their effects on cosmology 59

typically caused by errors associated to deviations from optimal measurement condi-
tions, simplification of complex behaviour of these measured systems, or assumptions
made over the theoretical models to interpret the data. Systematic errors are constant
deviations from these optimal conditions and result in biases which are not averaged out
over multiple repetition of the experiment; statistical errors on the other hand, typically
average out over the ensemble of the experiment. While random and systematic errors
are difficult to minimize, they can be characterized by their effect on the observables, and
propagated into the model being constrained. This characterization, usually presented
as a function describing the range and associated confidence each point of this range is
the true value, is called the uncertainty, and plays a fundamental role in the inference of
cosmological parameters: large uncertainties in the measurements necessarily translate
to large uncertainties in the parameters we are interested in measuring.

In this section, we will briefly describe the main sources of uncertainty in shear esti-
mates and how biases in the measured fundamental quantities of weak lensing affect the
cosmological parameters. In the next chapter we will do a similar description of photo-
metric redshift biases.

2.3.1 Shear biases

The response of an optical system to an ideal point source is referred as the point spread
function, or PSF, which indicates how light deviates and with what intensity at different
locations around the expected position of the source, meaning that true intensity distribu-
tion of sources are convolved by this PSF resulting in the observed images. This evidently
complicates the task of measuring the ellipticity of sources as it deforms the light distri-
bution, and typically make small extended sources appear rounder that they otherwise
would appear in the absence of a PSF distortion. In order to account for this effect, a
deconvolution of the PSF must be done using a model that can be either estimated theo-
retically or obtained empirically from the data. But the PSF is usually dependent on the
position of the source and orientation of the telescope and also can vary over time, which
complicates the task even further. A model of a PSF can be built by acquiring many
images of stars at different positions of the detector, which can be considered as point
sources. Globular clusters offer an excellent target for obtaining stars on small fields of
view at the expense of having to make specific observations at different times where the
conditions of the optics may have changed. By interpolating the properties of the PSF to
all positions in the CCD a general model can be used for specific positions of galaxies (for
examples of modern sophisticated methods, see Liaudat et al., 2020; Jarvis et al., 2021,
and references therein). Another option is to obtain a PSF using a physical model of the
telescope and its optics, such as Tiny Tim for the HST (Krist et al., 2011), where several
parameters can be fine adjusted to match the desired conditions of the observations.

Another important systematic effect called blending comes from the non-zero proba-
bility that two extended sources appear close enough in the projection of the sky to be
mistakenly identified as a single object (for a more in depth description, see e.g. Dawson
et al., 2016; Gaztanaga et al., 2021). This typically results in the detection of apparently
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single objects with a larger ellipticity orientated along the vector that connects the pair.
Because of the complex survey footprints shapes masking, it is usually more convenient
to estimate the total effects of blending using suites of image simulations rather than
trying to predict the probability and spatial distribution of pairs analytically (see for ex-
ample MacCrann et al., 2020b).

Some other astrophysical and observational effects can also have an effect on the ob-
served distributions of galaxies from a sample. For instance, dense outskirt dust struc-
tures can significantly obscure or redden the intensity from edge-on observed galaxies
(Padilla & Strauss, 2008). This can result in them falling outside of the selection function
of the survey, which can potentially lead to biases in the two-point correlation functions.
Incorrect galaxy-star identification can also lead to an underestimation of the shear

The most common parameterisation for the biases of observed galaxy shear is of the
form

γobs
i = (1 + mi)γ

true
i + ci (2.52)

where mi, ci are called the multiplicative and additive shear biases, respectively. Since
the contributors to the additive biases and to the differences between m1 and m2 usually
originate from the effect of the PSF in the shear field, it is common to assume that any
residual bias after correction for it is independent from the measured component m1 =

m2 = m, and ci = 0. In a tomographic analysis, each bin is typically characterized by its
own multiplicative shear bias parameter. Assuming that the tomographic shear biases
are position independent, then the biased convergence power spectra from equation 2.25
(which we showed are equivalent to the convergence power spectrum) can be written as

Pκ,ij(`)
bias =

∫ ∫
dϕ1dϕ2eiϕ1`eiϕ2`〈(1 + mj)γ(ϕ1)(1 + mj)γ(ϕ2)〉

= (1 + mi)(1 + mj)
∫ ∫

dϕ1dϕ2eiϕ1`eiϕ2`〈γ(ϕ1)γ(ϕ2)〉
= (1 + mi)(1 + mj)Pκ,ij(`) (2.53)

This results in an over- or underestimation of the convergence power spectrum by a factor
(1 + mi)(1 + mj), and from the Limber equation 2.28, this carries on as an under- or
overestimation of the matter density power spectrum amplitude, which from equation
1.40 can directly impact the inferred value of σ8

Intrinsic alignments

The cosmological principle of no preferential directions in the Universe means that at
large, galaxy orientations must be uncorrelated and that on average their orientations
must average to zero. We have used this to justify the use of ellipticity measurements
as an unbiased estimator of cosmic shear by taking the average of equation 2.48 over
many galaxies. This assumption, however, neglects the fact that individual galaxies form
and evolve on scales where the cosmological principle does not hold true. The processes
involved in this evolution, including tidal torquing, gas accretion and merging are typi-
cally highly in-homogeneous in the evolution timescales of galaxies, meaning that their
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FIGURE 2.6: Illustration of the intrinsic alignment correlations. The top panel depicts the GI
correlation caused by shapes of foreground objects being correlated with the shapes of back-
ground lensed objects. The blue foreground object tidally interacts with a matter structure
at a similar redshift zi pointing towards it. Background objects lensed by the same struc-
ture (red) appear to orientate tangentially, thus generating a negative correlation. Bottom
panel shows the direct alignment between galaxies at similar redshift, typically resulting in

a positive correlation I I as objects point radially toward mass overdensities

effects on orientation cannot be expected to average out. As an example, brightest cluster
galaxies typically show an orientation comparable to that of the cluster to which they be-
long, which in turn is heavily influenced by the large scale filamentary structure. (Jõeveer
et al., 1978; Foëx et al., 2017). In the presence of a non-zero intrinsic alignment ellipticity
correlation, the shear correlation of equation 2.48 can be written as

〈eobs(θ)eobs(θ
′)〉 ∼ 〈γ(θ)γ(θ′)〉

+
(
〈esrc(θ)γ(θ

′)〉+ 〈γ(θ)esrc〉(θ′)
)

+ 〈esrc(θ)esrc(θ
′)〉

= GG + GI + I I (2.54)

where GG refers to the cosmic shear correlation components and GI, I I each describes the
correlation of the intrinsic ellipticity with the shear field and itself, respectively. A basic
interpretation of the origin of these alignment terms is presented in figure 2.6. The general
idea is that galaxies correlate both with the structure nearby because of the dynamical and
gravitational effects such as tidal torquing, merging, gas accretion (I I correlation), and
correlate with the shapes of background objects which are sheared by the same structures
they are correlated with in the first place (GI correlation). Each of these effects can be
modelled as an additive bias term to the shear power spectrum, and has been shown to
be a significant contributor to the total bias in cosmic shear inferences (Kirk et al., 2012;
Krause et al., 2016).
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2.3.2 Photometric redshift biases

Until now we have focused primarily on establishing the weak lensing formalism and
explained the general challenges and associated biases of measuring shapes, which are
affected by the cosmic shear of the large scale structure. While this is an important step
to reconstruct the statistical properties of the matter density, the total effect of the large
scale structure on the images of background images cannot be fully described by the
shear field. As we saw in equation 2.22, the lensing efficiency depends directly on the
distribution of mass along the line of sight, n(χ). This dependency determines what is the
relative effect of mass formations at different distances and is fundamental to reconstruct
the 3D nature of the matter power spectrum.

The number density distribution of sources as a function of distance is typically es-
timated by measuring the redshift of sources, which for cosmological distances is an ac-
curate measure of distance. Because of the limitations of spectroscopy and because most
of the time we are more interested in the shape of this distribution n(z) rather than in-
dividual galaxy redshifts, weak lensing surveys employ a family of techniques called
photometric redshifts. In chapter 3 we will explain in detail the formalism, observables and
associated biases of the n(z) estimation process and will describe the process employed
in the analysis of the Dark Energy Survey first three years of data.



63

Chapter 3

Photometric redshifts in the Dark
Energy Survey Y3 analysis

As we described in chapter 2, the measurement of the cosmic shear signal imprinted by
the large scale structure on the shapes of distant galaxies is a powerful tool to directly
characterize the mass distribution and expansion history of the Universe. In addition
to the precise measurement of shapes and positions of galaxies, weak lensing and galaxy
clustering surveys require a precise knowledge of the line-of-sight distribution of sources
and a detailed description of the potential sources of uncertainty to correctly determine
the uncertainty of the parameters describing the cosmological model.

In this chapter, we will focus on the observational challenge of obtaining these dis-
tributions and characterizing the uncertainties coming from different systematic sources.
In section 3.1 we will introduce the concept of photometric redshift, and its importance
in wide cosmology surveys, with an emphasis on its use for weak lensing and galaxy
clustering experiments. Then we will describe the general aspects of the Dark Energy
Survey and the DES Y3 analysis, paying special attention to the validation of the redshift
distribution estimation pipeline presented in Myles et al. (2020). Here we will describe
the characterisation of the different systematic effects and the steps employed to quantify
their associated uncertainty, showing the results for the contribution to the uncertainty
from a number of systematics.

We will focus on two particular sources of uncertainty in which we directly con-
tributed to their estimation: sample variance in the deep photometric estimations, and
uncertainty associated to the random nature of the Self-organizing map training.

The author of this contributed by designing and performing the test to quantify the
source of uncertainty associated to the Self-organizing training consisting on running
several repetitions with different random seeds. The author also aided in the setup to
quantify cosmic variance by running the SOMPZ scheme on the BUZZARD simulated data
to generate a set of n(z) realisations which were also used in the tests in chapter 5. This
also included methods to select the randomized BUZZARD catalogues and analysis of the
intermediate results, as well as help in developing the SOMPZ code.
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3.1 Photometric redshifts

Weak lensing and galaxy clustering experiments rely on the auto- and cross-correlation of
shapes of a sample of galaxies, typically referred to as the source sample and the positions
of set of large scale structure tracer galaxies, called the lens sample. The angular corre-
lation functions describe the scales at which these quantities are related on the projected
sky. Along with the description of the expansion history of the Universe they link these
angular scales to physical distances to characterize the large scale structure. As shown in
equation 2.22 to extract the relative weights of these signals detected in these correlation
functions, encoded in the lensing efficiency functions, it is imperative to know the dis-
tances to the sources being measured. Moreover, separation of these samples into slices
or tomographic bins along the line-of-sight provides additional insight on the evolution of
these correlations (Hu, 1999).

3.1.1 Biases in the line of sight distributions of sources

Biases in the characterisation of the line-of-sight distribution of galaxies and how they
are assigned to each bin have a large impact on the derived cosmological parameters. If
unaccounted for or undetected, these can lead to a wrong interpretation of the history
of the Universe. It has been shown that properties of the redshift distributions above
their mean have a subdominant effect on cosmology (Huterer et al., 2006), specially con-
sidering the smoothing they are subject to in the lensing efficiency functions (Tessore &
Harrison, 2020). Nonetheless, small biases in the mean of the distributions can have no-
ticeable effects on the inferred cosmology. For example, if distances are systematically
underestimated then we will be observing a younger Universe than we realise, leading
to an underestimation of the growth factor. This can lead, for instance, to an overestima-
tion of the matter density Ωm or the amplitude of density fluctuations σ8. An example of
how the inference of those two parameters change from a simple Monte Carlo analysis
given biased estimates of the distribution of sources along the line of sight is shown in
figure 3.1. Furthermore, a given observed angular scale will be assigned an underesti-
mated angular diameter distance, leading to an overestimation of its physical size. The
exact bias in the cosmological parameters will depend on the combination of parameters
being inferred.

At cosmological scales, the very definition of distance is a complex process: the Uni-
verse is constantly expanding and the physical distances change as a consequence of this
expansion. Because of the homogeneous expansion at large scales expected from the
cosmological principle, redshift becomes a convenient quantity to describe the distances
to objects as it is directly related to their distances via Hubble’s Law and is a relatively
straightforward quantity to obtain. Modern optical surveys map ever-increasing frac-
tions of the sky, at deeper limiting magnitudes resulting in catalogs containing tens to
hundreds of millions of sources. While spectroscopy provides accurate measurements of
redshift, it is prohibitively expensive even for the largest fiber-fed spectrographs being
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FIGURE 3.1: Evolution of the (Ωm, σ8) confidence contours as a function of bias on the line-
of-sight distribution function. Each contour represents a MCMC chain obtained with a dis-
tribution biased by a factor proportional to σ ∼ 0.005 in the negative direction for all to-
mographic bins, effectively underestimating the distances to objects, making the Universe
appear to have formed the same structures at a lower redshift (later time), which is consis-
tent with a Universe with a lower matter density Ωm and/or a lower amplitude of density

fluctuations σ8.

able to obtain only a couple hundred objects at a time under very tight constraints of lo-
cation and relative brightness. Another disadvantage of spectroscopy is the fact that it is
typically only accurate up to relatively bright magnitudes, with high incompleteness be-
ing an issue for I > 24 (DESI Collaboration et al., 2016). A family of techniques that over-
come these limitations, called photometric redshifts (PZ), utilizes information contained
in wide-band photometry to constrain the redshift of galaxies using different sources of
ancillary information to constrain the color-redshift relation of sources. The main limita-
tions of these techniques is the characterization of the degeneracies in the color-redshift
relation: two sources with different measured fluxes in a set of photometric bands can be
equally consistent with more than one unique redshift. Figure 3.2 depicts this degener-
acy by showing how different galaxy types can be observed to have the same measured
colors when observed at different redshifts. In order to break these degeneracies, either
additional or more precise photometric measurements and ancillary data are required.

Depending on the procedure used to extract information from photometry and the
available ancillary data, PZ techniques can be broadly classified into three main cate-
gories:

• Template Fitting: This is perhaps the most widely utilized type of PZ technique. It
involves fitting the observed band photometry to a series of Spectral Energy Dis-
tribution (SED) templates that broadly describes the expected types of galaxies in a
survey. These templates, integrated over a band transfer function Wb(λ) and a in-
strument specific optical response curve provide a redshift-dependent expected set
of colors which can be compared to the input values inside a likelihood function.
(Benítez, 2000, BPZ) first introduced the use of galaxy type priors to accommodate
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FIGURE 3.2: Left: panel shows the evolution of the color-color position of 6 spectral energy
distribution templates as they get redshifted. Each line intersection corresponds to a degen-
eracy where two templates at different redshift appear to have the same colors. Right panel
shows the same degeneracy, this time with a 0.2 magnitude error, showing how the degen-

eracies increase.
Figure credit: Benítez (2000)
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for the fact that certain SED templates are not expected with the same probabil-
ity in the full redshift range. This approach was used in DES SV (Bonnett et al.,
2016) and Y1 (Hoyle et al., 2018) weak lensing and galaxy clustering cosmology re-
sults, as well as in CFHTLens (Erben et al., 2013) and KiDS (Kuijken et al., 2015).
Bayesian approaches for template fitting return a full probability distribution for
the photometric redshift of a source given its photometric measurements and sim-
ilarities with a library of SEDs. n(z) distributions are then obtained by stacking of
these distributions, which typically means drawing a random sample from each
redshift probability distribution obtained and constructing a histogram of sam-
pled values. A recurring problem with this a approach is that the degeneracies in
the color-redshift relation lead to multiple peaked probability distributions which
when stacked can lead to high rates of catastrophic failures, where the true redshift
and estimated photometric redshift differ significantly.

• Machine Learning: This category encompasses a series of techniques which use
different training sets to characterize the color-redshift space and its mapping to the
photometric measurements. While the specific set of ancillary data used can spawn
its own sub-classification, these methods typically use a sub-set of data with pre-
cise redshift information and photometry measured in conditions similar to those
of the bulk of the data to be analysed. Using this data a model of the color-redshift
relation is constructed by a process called training, in which a mapping between
the two, characteristic of the particular training set, is generated. Several different
approaches have been used to estimate photometric redshifts, including the use of
Neural Networks (Gerdes et al., 2010), decision trees and random forests (Carrasco
Kind & Brunner, 2013), Gaussian processes (Way et al., 2009) among others. DES
SV and Y1 provided alternative PZ estimations using two of such methods: ANNZ
(Collister & Lahav, 2004), a method based on Neural Networks and DNF (De Vi-
cente et al., 2016) which builds a metric in color space to assign best-fit galaxies to
training set elements. HSC employed and compared several machine learning al-
gorithms for its first data release (Tanaka et al., 2018) and KiDS (Wright et al., 2020)
recently employed a Self-organized map algorithm.

• Angular correlations: This family of PZ techniques relies on constraining the red-
shift distribution of sources by using their angular correlation with a tracer popu-
lation with well constrained redshifts. These methods are becoming increasingly
popular as the number of surveyed sources increases, allowing the statistical sig-
nificance of the methods to increase. They also provide independent constraints
to conventional PZ methods and are subject to uncorrelated systematics which fur-
ther help breaking the color-redshift degeneracies. These methods typically rely
on the cross correlation of source samples with the positions of a physically close
tracer sample (Newman, 2008; Ménard et al., 2013), and with the measured shear of
a non-physically related tracer sample (Sánchez et al., 2020a). The former approach
has been used in DES (Davis et al., 2017) and KiDS (Hildebrandt et al., 2021).
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Current generation surveys aim at estimating the positions, shears and photometric
redshifts of tens to hundreds million galaxies, which requires efficient, yet accurate esti-
mations of their properties. The Dark Energy Survey, in particular, has generated a large
catalog of shapes for over 100 million objects which will be used to estimate the two-point
shear correlation functions and an accurate estimation of their redshift distribution is fun-
damental to fully take advantage of its statistical power. In the next section we describe
the main characteristics of the survey and provide some detail in the process to obtain
to estimate the redshift distributions, calibrate the methods employed and characterize
their uncertainty.

3.2 DES Y3: Redshift Calibration of the Weak Lensing Source
Galaxies

3.2.1 The Dark Energy Survey

The Dark Energy Survey1 (DES) is an optical and near infrared survey of the southern sky,
aimed at characterizing Dark Energy by constraining the evolution and geometry of large
scale structure through obtaining multi-band imaging of nearly 5000 square degrees, up
to a limiting magnitude for extended sources of 23 in the i band using a purposely built
CCD camera, DECam, mounted on the 4m Blanco telescope at CTIO, Chile. While the
survey benefits from multiple ancillary data to help perform its analysis, including over-
lap with spectroscopic and many-band photometric redshift surveys, the main data com-
ponent are observations carried over a period of over 6 years with first light starting in
September 2012 and last science images obtained in January 2019. The survey aims to
characterize more than 300 million objects with 4 primary probes of the large scale struc-
ture of the Universe in mind. Since we already presented a detailed description of these
probes in 1.3, here we only present a few highlights related to the latest published results
obtained up until the release of the Y1 analysis of data, with Y3 currently underway.

• Supernovae: DES presented its first SNe cosmological parameter constrains using
a sample of 207 spectroscopically confirmed SNe Ia in the redshift range 0.07 <

z < 0.85 (DES-SN sample) in combination with a low-z sample (z < 0.1) from
the literature. The SNe detection was made by comparing high cadence observa-
tions of ten 2.7 deg2 fields over three periods of five months each between Aug.
2013 and Feb. 2016. Results presented in (Abbott et al., 2019c) report a value
for Ωm = 0.331 ± 0.038 based purely on the SN observations, while combina-
tion with CMB yield a dark energy equation of state ω = −0.978 ± 0.059 and
Ωm = 0.321± 0.018, consistent with a cosmological constant. A combination with
BAO to constrain absolute magnitudes of the SN is also used in Macaulay et al.
(2019) to provide constrains of the Hubble parameter, finding H0 = 67.8 ± 1.3
kms−1 Mpc−1, consistent with estimates derived from CMB in a ΛCDM Universe.

1https://www.darkenergysurvey.org
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• Baryon Acoustic Oscillations: Abbott et al. (2019b) presented the measurements of
the BAO scale on a sample of 1.3 million galaxies in the redshift range 0.6 < z < 1.0,
providing constraints on the ratio of the angular diameter distance to the sound
horizon at the drag epoch, DA/rd. The measurement was obtained at the effective
redshift of the sample, z = 0.81 and parameter likelihoods were obtained using a
set of 1800 DES mocks which simulate the redshift distributions of sources of DES
data. Reported values for the ratio, DA/rd = 10.75 ± 0.43, obtained using three
separate estimators for the clustering signal (Angular correlation function ω(θ),
angular power spectrum measured through the spherical harmonics C`, and pro-
jected comoving separation correlation function ξ(s⊥, s‖)) are both self consistent
and consistent with estimates from different probes in the context of a flat ΛCDM
model.

• Galaxy Clustering and Weak Lensing Cosmological parameters from joint analy-
sis of galaxy clustering and weak lensing analysis have been presented in Abbott
et al. (2018a), where shapes and photometric redshifts of 26 million galaxies in the
redshift range 0.2 < z < 1.3, separated into 4 tomographic bins have been used to
obtain the two-point shear correlation functions ξ±(θ). Positions and photometric
redshifts of a sample of ∼ 650, 000 bright red sequence galaxies selected using the
REDMAGIC algorithm (Rozo et al., 2016), with redshifts between 0.15 < z < 0.9,
separated into 5 tomographic bins were also used to compute the galaxy clustering
angular correlation ω(θ). Shapes have been measured using the METACALIBRA-
TION (Sheldon et al., 2020) method and both samples employ the BPZ photometric
redshift code, described in section 3.1. In addition to the two correlation functions
above, the cross correlation between shapes and positions of both samples of galax-
ies, γt(θ), have been used to constrain the matter density Ωm and clustering param-
eter S8 ≡ σ8 (Ωm/0.3)0.5 both in the ΛCDM (S8 = 0.773+0.029

−0.020 , Ωm = 0.267+0.030
−0.017)

and ωCDM models (S8 = 0.782+0.036
−0.024 , Ωm = 0.284+0.033

−0.030, ω = −0.82+0.021
−0.020), which

are consistent across the three correlation functions. Both results appeared to be
slightly in tension with CMB results from Planck (Planck Collaboration et al., 2016)

Abbott et al. (2019a) presents cosmological constraints from the four probes described
above, independent from any other external experiment and consistent with a spatial
flatness and ruling out a Universe with no dark energy (See figure 3.3). These are the
most constraining results to date for cosmological parameters obtained purely from an
optical survey.

In addition to the tension with CMB experiments that most weak lensing experiments
show, tension between DES and the results reported in the analysis of the first release of
450 square degrees of multi-band data of KiDS+VIKING (KV450; Hildebrandt et al., 2017)
sparked an interesting discussion regarding the origin of these inconsistencies, citing cal-
ibration of photometric redshifts as a probable source of inconsistencies. KV450 utilized
a Direct calibration approach where the redshift distribution of a spectroscopic sample
is weighted using a k-nearest-neighbor matching method to the source sample in color
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FIGURE 3.3: Left: 68% and 95% contour levels of the joint marginalized posterior for the dark
energy density Ωλ and matter density Ωm comparing the best external datasets to the date of
publication (May 2019, green contours), DES-SNe alone (Dashed orange) and four combined
DES probes (Black). Dotted and dashed black lines identify a flat universe (Ωk = 0) and the
interface between a decelaring and accelerating Universe, respectively. Right: Constraints on
the dark energy equation of state ω and matter density Ωm. Color scheme is the same as
in right, with the added green dashed contours showing the impact of adding a low-z SNe

dataset.
Figure credit: Abbott et al. (2019a)

space, while DES used a set of precise many-band photometric redshifts (COSMOS30;
Laigle et al., 2016) to calibrate the photometric redshift estimates obtained with BPZ and
to quantify their uncertainties. Joudaki et al. (2020) argues that the high fraction (∼ 6%)
of catastrophic outliers in the COSMOS30 photometric redshifts is enough to bias the
mean S8 estimates by ∼ 0.8σ. They also comment on the use of uncorrelated nuisance
parameters as a potential source of discrepancies. Gruen & Brimioulle (2017); Hartley
et al. (2020b) show that the use of spectroscopic samples for redshift calibration is subject
to large incompleteness because of selection biases, which can result in biases in the mean
redshifts of weak lensing samples of the order of ∆z ∼ 0.04. In any case, it is extremely
difficult to arrive to any conclusions on the true source of discrepancy since both surveys
construct their datasets based on observations which are not equivalent. Regardless, the
approach devised for the Y3 analysis of DES data is conscious of these sources of uncer-
tainty, and hence aimed at including a scheme which alleviates the effect of catastrophic
outliers and includes information coming both from precise spectroscopic redshift sam-
ples and precise photometric redshifts which do not suffer from incompleteness at lower
magnitudes.

3.2.2 DES Y3 source redshift calibration

The redshift calibration of DES Y3 weak lensing source galaxies combines a machine
learning photometric redshift algorithm SOMPZ, and two angular correlation techniques
to further constrain the fiducial distribution obtained using independent measurements
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FIGURE 3.4: Flowchart illustrating the weak lensing redshift distributions calibration scheme
for the DES Y3 weak lensing and galaxy cluster analysis. The three main redshift distribution
likelihood functions of the analysis, shown in gray, are SOMPZ, clustering redshifts, and

shear ratios.
Figure credit: Myles et al. (2020)

of the angular correlation with galaxy positions and shears from complementary galaxy
samples:

• Self-Organizing Map p(z) (SOMPZ; Buchs et al., 2019; Myles et al., 2020) leverages
the Y3 DES Deep Fields to accurately determine the number density of galaxies
in deep ugrizJHKs color space. Since redshifts are well-constrained at a given
ugrizJHKs color, this number density can be used to properly weigh galaxies within
a sample of credible redshifts in a way that is not subject to selection biases. In brief,
this method relies on determining the p(z) at a given cell in 8-band color space from
galaxies with deep 8-band coverage, the probability of each cell in 8-band color
space contributing to the galaxies in a given cell in noisy 3-band color-magnitude
space, and the abundance of galaxies in 3-band color-magnitude space, to compute
the overall redshift distribution of the Year 3 lensing source galaxy sample. We
describe this method in detail in section 3.2.3

• Clustering redshifts (WZ; Gatti et al., 2020a; Cawthon et al., 2020) constrains the
distances to source galaxies from their angular correlation with the positions of a
reference sample of galaxies with secure redshifts estimates. This method is based
on the fact that the amplitude of this correlation function is proportional to the frac-
tion of source galaxies in physical proximity to those reference galaxies. Clustering
redshifts validate and refine photometric n(z) with the key benefit of avoiding any
reliance on the statistical color-redshift relation and bypassing the completeness is-
sues associated with spectroscopic survey coverage.



72 Chapter 3. Photometric redshifts in the Dark Energy Survey Y3 analysis

• Shear ratios (SR; Sánchez et al., 2020a) provide additional constraining power by
measuring the position-shear correlation signal from the source sample with re-
spect to a sample of lens galaxies, in contiguous redshift bins and at small scales.
The ratio of this signal from two source bins reflects the ratio of mean lensing ef-
ficiencies of objects in those source bins with respect to the lens bin redshift. This,
in turn, depends on the redshift distribution of the sources. Because this methodol-
ogy utilizes lensing signals, it is virtually independent from SOMPZ and clustering
redshifts. Both the clustering and shear ratio redshift constraints are derived from
data on small angular scales, which allows the redshift constraints to remain largely
statistically independent of cosmological constraints based on larger-scale signals.

Each of these three methods provides a likelihood function for the redshift distribution
of sources, which can be combined into a three-step Dirichlet sampling (3SDIR) process
to provide samples of the n(z) posterior. Unfortunately this sampling procedure is slow
as many samples are rejected by the clustering likelihood. By contrast, a Hamiltonian
Monte-Carlo (HMC) sampler has the ability to draw from the joint combination of like-
lihoods and, although drawing individual samples is slower, sampling the joint space
becomes much more efficient and fast. A combined 3SDIR + HMC approach, described
in Alarcon et al. (2020); Bernstein (2020) is used to generate samples of the n(z) posterior
distribution.

In the following section we focus on describing the SOMPZ method and the charac-
terisation of the redshift uncertainty associated to the observables for the DES Y3. We
give special attention to two sources of uncertainty: Sample variance and shot noise, and
stochastic uncertainty from the SOM training.

3.2.3 The SOMPZ scheme

The SOMPZ scheme is based on the formalism proposed in Buchs et al. (2019) which takes
advantage of how precise deep photometry can help break the degeneracy between noisy
wide photometric measurements and a training set of secure redshifts z. We start by
assuming the wide sample consists of a large set of galaxies with photometry x̂ described
by a photometric error Σ̂, for which we want to infer its redshift distribution. The deep
sample refers to a set of galaxies for which its observed photometric properties, x, are
obtained with greater precision and/or in a larger number of bands which helps breaking
the color-redshift degeneracy, typically a sub-set of the wide sample. The condition of
overlapping is not a requirement, as long as both samples are complete and map the
same galaxy populations. Secure redshifts z can be obtained by alternative methods like
spectroscopy or many-band photometric redshifts, and must be obtained for a sub-set of
galaxies of the deep sample so the later can be used to leverage the redshift information
to characterize the wide sample (See figure 3.5).
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FIGURE 3.5: Cartoon representation of the samples employed in the estimation of the source
redshift distributions using the SOMPZ scheme. The n(z) distribution of the target wide sam-
ple is estimated by leveraging its overlap with a smaller sample of galaxies, the deep sample,
for which its photometry is acquired either with higher precision or in a larger number of
bands. A smaller set of very precise redshift estimates, the redshift sample, is then used to

anchor the transition matrix between the wide and deep sample discretizations.

For any single galaxy, an estimator of its redshift probability distribution given a set
of photometric measurements x̂ and associated photometric errors Σ̂ is given by:

p(z|x̂, Σ̂) =
∫

dx p(z|x) p(x|x̂, Σ̂), (3.1)

where it is assumed that the photometric errors do not add additional information to the
relation between redshift and deep photometry, (i.e. p(z|x, x̂, Σ̂) = p(z|x)). In reality, we
are interested in learning what is the distribution for an ensemble of galaxies,

p(z) =
1
N

N

∑
i=1

∫
dx p(z|x) p(x|x̂i, Σ̂i) (3.2)

but in any case, learning the mapping between the deep and wide photometric spaces
is infeasible given the high dimensionality and non-linearity of the color-redshift degen-
eracy. The SOMPZ scheme overcomes this difficulty by discretizing the color space into
cells called phenotypes. This term refers to the fact that observable quantities x and x̂ are
a result of underlying intrinsic properties of these galaxies. The main assumption is that
galaxies assigned to the same cells of this discretization share the same underlying prop-
erties, as long as the cells are small with respect to the errors Σ̂. Given a discretization of
the space of wide colors, c and deep colors ĉ the discretized version of equation 3.2 can
be written as

p(z) = ∑
c,ĉ

p(z|c) p(c|ĉ) p(ĉ) (3.3)



74 Chapter 3. Photometric redshifts in the Dark Energy Survey Y3 analysis

where the three terms can be determined from the specific partition c, ĉ and the assign-
ment of galaxies to each cell. p(z|c) is the distribution of secure redshifts for galaxies
assigned to the partition of the deep photometry, c. In order to determine this distribu-
tion there must exist a sub-sample of galaxies for which both deep photometry and secure
redshifts are provided. Not all galaxies in the deep sample have to have a secure redshift
measurement, but is expected that the redshift sample z is complete, meaning that all cells
c contain at least one member with a redshift measurement. The galaxies assigned to that
cell will be assumed to have a distribution equal to that of the galaxies which do have
redshift measurements. p(ĉ) is the fractional assignment of galaxies in the wide partition
ĉ, and p(c|ĉ) is called the transfer matrix, which indicates the probability of galaxies with
noisy photometry assigned to discretization ĉ of having precise photometry correspond-
ing to a cell c in the deep partition. This last term is computed using a set of galaxies
with observations made both in the deep subset and the wide sample, called the overlap
sample, or alternatively simulated injection of galaxies with known properties into the
wide imaging.

Once galaxies have been categorized into phenotypes based on their photometric ob-
servations, tomographic bins are constructed and assign each phenotype ĉ to a bin ac-
cording to the following procedure:

1. To construct a set of n tomographic bins b̂, begin with an arbitrary set of n + 1 bin
edge values ej.

2. Assign each galaxy in the redshift sample to the tomographic bin b̂ in which the
best-estimate median redshift value of its p(z) (or its secure redshift z) falls. This
yields an integral number of galaxies Nspec,(ĉ,b̂) satisfying the dual condition of
membership in a wide discretisation cell ĉ and a tomographic bin b̂.

3. Assign each wide cell ĉ to the bin b̂ to which the majority of its constituent Redshift
Sample galaxies are assigned

4. Adjust the edge values ej post hoc such that the numbers of galaxies in each tomo-
graphic bin b̂ are approximately equal and repeat the procedure from step (ii) with
the final edges ej.

The approach taken by the SOMPZ is to use a smart discretization of the space of colors
employing Self-organized maps, both in the deep and wide samples, which allows for a
relatively uniform number of samples assigned to each discretization element, and an
easy two dimensional representation of data.

Self-Organized Maps

A self-organized map (SOM; Kohonen, 1982, 2001) is a data structure generated via an
iterative machine learning algorithm which generates an adaptive discretization of the
parameter space containing the input samples, or features. This discretization is mapped
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FIGURE 3.6: Graphical representation of the SOMPZ scheme. Not all galaxies in a cell c of
the deep SOM have a measured redshift, so all of them are assumed to follow the same
distribution as the ones who do have a measurement, shown in the left panel. Galaxies
from several cells in the deep SOM would be assigned to wide SOM cells ĉ due to its noisy
photometry. These cells are highlighted in the central panel and contribute their histogram,
weighted by the transition matrix computed previously either using simulated data or the

overlap sample.
Figure credit: Buchs et al. (2019)

to a lower l-dimensional representation of this multidimensional input space. The pro-
cess is unsupervised, meaning that the features of data aimed at being identified and
classified are not used as input information in the process. Depending on the correlation
between the features and the unsupervised properties, the map will generate a smooth
mapping along the dimensions of the low-dimensional representation, preserving the
notion of locality. This applies very well to the problem of estimating redshifts (the unsu-
pervised property) from a set of colors or fluxes (the features). The process of generating
self-organized maps is divided into two stages for a given set of data.

• The training stage is a competitive process in which a series of randomly initialized
points in the input feature space, called nodes, are iteratively rearranged to resemble
the distribution of the input sample. These nodes are represented by weight vectors:
points on the input space defining the boundaries of the discretization around them
based on a pre-defined distance metric. The training starts by defining a set of C
weight vectors ωk ∈ Rm where m is the number of features describing each sample.
These can be either assigned randomly, from a pre-defined prior, or by randomly
choosing C elements from the input sample.

Once the training stage is completed, either after a fixed number of iterations or
based on a metric to quantify the similarity between the distribution of weight vec-
tors and the input sample, during the assignment phase, each element of input sam-
ple is matched to the node whose weight vector best resembles it, according to the
metric defined above.
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While the relative positions of these weight vectors will change in input space dur-
ing training, their definition of neighborhood remains constant in the low dimensional
representation space. Their topology can be defined a priori as well, and in the case of
SOMPZ, the cell grid is assumed to be square with a periodic boundary condition, thus
resembling a three dimensional torus.

On each step t of the training stage a sample from the training set with values x(t) is
chosen at random, and the closest weight vector is identified, according to

d2(x, ωk) = (x−ωk)
>Σ−1(x−ωk) (3.4)

where Σ is a covariance matrix which describes the relative importance of the elements of
the input vector x in the distance metric. Once the closest node is identified, its position
and the positions of a subset of nodes around it are updated by moving them in the
direction of the sampled point, inversely proportionally to its distance according to

ωk(t + 1) = ωk(t) + a(t)Hb,k(t) [x(t)−ωk(t)] . (3.5)

It is worth noting that the closeness of nodes is defined on the fixed low-dimensional
grid rather than the input space. a(t) is the learning rate function, and is in charge of
modulating the relative effect of new samples as the distribution of nodes starts resem-
bling the input sample. Without it, the effect of the first samples would be completely
erased by the samples taken at later stages of the training. It takes the form a(t) = at/tmax

0

with a0 ∈ [0, 1). Similarly, the subset of neighbouring nodes which are updated in each
successive sample also decreases according to the function Hb,k(t), which is defined by a
Gaussian kernel centered around the closest node to the sample at iteration t:

Hb,k(t) = exp
[
−D2

b,k/σ2(t)
]

(3.6)

with Db,k being the Euclidean distance between nodes in the grid:

Db,k =
l

∑
i=1

(cb,i − ck,i)
2 (3.7)

The width of the Gaussian kernel is parameterized by σ(t) = σ1−t/tmax
s and similarly

to the learning rate function, prevents the map to be over-trained at later iterations by
reducing the volume of nodes around the central node which are affected in equation 3.5.
A graphical representation of one step of the training stage is shown in figure 3.7.

3.2.4 Applying the SOMPZ scheme to DES Y3 data

The application of the SOMPZ scheme in the DES Y3 analysis employs data products ob-
tained from different stages of the weak lensing pipeline. The wide sample for which the
n(z) distribution is to be obtained consists of over 100 million galaxies with measured
r, i, and z METACALIBRATION photometry and shapes. While photometry in the g band
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FIGURE 3.7: Graphical representation of the self-organizing map training stage. A sample
from the training set is chosen randomly (green circle in right panel) and the closest weight
vector in feature space x = (x1, x2) is identified, both in the feature space (blue circle in right
panel) and in the low dimensional map (7th grid point in left panel). The neighbouring grid
points in the low-dimensional map (Gray squares on left panel and gray circles in right panel)
are identified according to Hb,k(t) (Black circle on left) and their positions adjusted propor-
tionally to the distance and in the direction of the sampled point. The process is repeated tmax

times with each set of neighbouring points changing depending on the sampled point.

exists, the determination of the PSF model is particularly challenging and estimates of
the shear and photometry using METACALIBRATION have shown to be unreliable. De-
tails about the catalog and the PSF issues are described in detail in Gatti et al. (2020b) and
references therein. The deep sample corresponds to approximate 2.8 million objects ob-
served in 4 regions of the DES Y3 footprint overlapping with the UltraVista (McCracken
et al., 2012) and VIDEO (Jarvis et al., 2013) near-infrared surveys, providing photome-
try in the ugrizJHK bands. The redshift sample is a compilation of spectroscopic and
many-band secure redshifts from surveys with overlap with the deep sample. Spectro-
scopic surveys include zCOSMOS (Lilly et al., 2009), C3R2 (Masters et al., 2017, 2019),
VVDS (Le Fèvre et al., 2013) and VIPERS (Scodeggio et al., 2018), and secure photometric
redshifts are obtained from COSMOS2015 30-band PZ catalogue (Laigle et al., 2016) and
PAUS+COSMOS which combines photometric data from the PAU Survey (Padilla et al.,
2019; Eriksen et al., 2019) and COSMOS2015. In order to characterize the transition matrix
P(ĉ|c) DES uses nearly 2.5 million injection-redetection BALROG galaxy pairs. BALROG

(Everett et al., 2020) is a procedure in which artificial galaxies with photometric proper-
ties drawn from the deep sample are injected into real images and then recovered by the
main photometry pipeline.

The training of the deep and wide SOM employs galaxy magnitudes µ based on the
definition given in (Lupton et al., 1999), called luptitudes:

µ ≡ −a
[
sinh−1

( x
2b

)
+ ln b

]
(3.8)

where a, b are constants, with b a softening parameters setting the flux x at which the
new magnitude systems starts resembling the traditional one using logarithms. This
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definition ensures that a value is defined even in the case of negative fluxes, which can
occur when detections of sources are based on a single band. The feature vector x for the
deep SOM is a set of lupticolors µx − µi defined from the observed luptitudes µi, µr, and
µz, all with respect to luptitude in the i band. For the wide SOM the feature vector is the
same as the deep SOM, plus the luptitude in the i band, µi.

x = {µx − µi} (3.9)

x̂ = {µi, µxm − µi}. (3.10)

The choice of number of cells and dimensions of the 2D SOM maps must take into con-
sideration two competing effects. On one hand, a large SOM map allows for a more
precise discretization of the feature space x, as long as the associated errors Σ are small
compared to the typical resultant distances between weight vectors for each node. On the
other hand, a large number of cells can result in a noisy fractional assignment if the num-
ber of galaxies is low or even comparable to the number of cells. The wide and deep maps
employed in DES Y3 use 32× 32 and 64× 64 cells respectively. While empty cells after
assignment is not an impediment to compute the tomographic redshift distributions, it
can be a symptom of the SOM training failing to correctly distribute the weight vectors
across the input space.

Figure 3.8 shows the resulting ensemble of redshift distributions obtained by sam-
pling from the 3SDIR + HMC combining the estimates of the SOMPZ, clustering redshifts
WZ. The 3SDIR + HMC also combines the uncertainty estimates directly into the sam-
pling, hence these n(z) realisations all incorporate the total uncertainty identified in the
pipeline. In the next section we describe what are the identified systematic effects in the
pipeline, and how their associated uncertainties impact the n(z) estimates.

3.3 Uncertainty characterisation of the DES Y3 source redshift
distributions

Identifying the sources of uncertainty across the entire weak lensing analysis pipeline is
a fundamental step to construct a reliable set of estimations on the cosmological param-
eters. The uncertainties associated to these systematic effects must be clearly identified
and characterized to be propagated into the model parameters. Six main contributor
effects to the uncertainty on the DES Y3 pipeline are identified in Myles et al. (2020):

(i) Sample variance: Fluctuations in the underlying matter density field determine the
abundance of observed deep field galaxies of a given 8-band color and at a given
redshift in the footprint of the DES survey.

(ii) Shot Noise: shot noise in the counts of deep field galaxies of a given 8-band color
and at a given redshift

(iii) Redshift Sample Uncertainty: biases in the redshifts values and incompleteness of
the secure redshift galaxy sample
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FIGURE 3.8: Visualization of the ensemble of redshift distributions in four tomographic bins,
as inferred from SOMPZ only (open), and from SOMPZ combined with WZ (filled), obtained

using the 3SDIR + HMC formalism.
Figure credit: (Myles et al., 2020)
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Bin 1 Bin 2 Bin 3 Bin 4
n(z) mean values 0.0—0.358 0.358—0.631 0.631—0.872 0.872—2.0
〈z〉 SOMPZ 0.332 0.520 0.750 0.944
〈z〉 SOMPZ + WZ 0.339 0.528 0.752 0.952
Effective 〈z〉 SOMPZ + WZ + Blending 0.336 0.521 0.741 0.935
Effective 〈z〉 SOMPZ + WZ + SR + Blending 0.343 0.521 0.742 0.964
Uncertainty Method
Shot Noise & Sample Variance 3SDIR 0.006 0.005 0.004 0.006
Redshift Sample Uncertainty Sampling 0.003 0.004 0.006 0.006
BALROG Uncertainty None <0.001 <0.001 <0.001 <0.001
Photometric Calibration Uncertainty PIT 0.010 0.005 0.002 0.002
Inherent SOMPZ Method Uncertainty PIT 0.003 0.003 0.003 0.003
Combined Uncertainty: SOMPZ (from 3SDIR) - 0.012 0.008 0.006 0.009
Shot Noise & Sample Variance 3SDIR MFWZ 0.011 0.007 0.005 0.010
Combined Uncertainty: SOMPZ (from 3SDIR-MFWZ) - 0.015 0.010 0.007 0.012
Combined Uncertainty: SOMPZ + WZ - 0.016 0.012 0.006 0.015
Effective Combined Uncertainty: SOMPZ + WZ + Blending - 0.018 0.015 0.011 0.017
Effective Combined Uncertainty: SOMPZ + WZ + SR + Blending - 0.015 0.011 0.008 0.015

TABLE 3.1: Values of and approximate error contributions to the mean redshift of each tomo-
graphic bin at each stage of the analysis. We find that Sample Variance in the deep fields is the
greatest contributor to our overall uncertainty for our fiducial result. The Shot Noise & Sam-
ple Variance term here is computed with the SPC sample. At low redshifts, the photometric
calibration uncertainty is also significant, motivating improved work on the deep field photo-
metric calibration. As expected, the uncertainty due to choice in Redshift Sample is a leading
source of uncertainty for the third and fourth bins, motivating follow-up spectroscopic and
narrow-band photometric observations. Note, the uncertainties combine non-linearly, so the
combined uncertainties are not necessarily the quadrature sum of the contributing factors.
Note, we label all results that incorporate blending as ‘Effective’ because we expect non-zero
shifts on the mean redshift due to blending, but we do not expect non-zero shifts on the mean

redshift between SOMPZ and WZ.

(iv) Photometric Calibration Uncertainty: uncertainty in the 8-band color of deep field
galaxies, and the estimated photometric zero-points

(v) BALROG uncertainty: imperfections in the procedure of simulating the wide field
photometry of deep field galaxies in BALROG for the computation of the transfer
matrix

(vi) SOMPZ Method Uncertainty: uncertainty associated to the stochastic nature of the
SOM training and bin assignment

Methods for propagating these uncertainties are presented in chapter 4, here we identify
and quantify these uncertainties, with an emphasis on the estimation of sample variance
and the procedure to quantify the SOMPZ uncertainty.

3.3.1 Redshift sample, photometric calibration and BALROG uncertainties

We briefly describe the other three sources of uncertainty and the methods to estimate
them. More detail about these estimations are presented in section 5 of Myles et al. (2020),
and the estimated error contributions are summarized in table 3.1.

Redshift sample uncertainty

The redshift sample employed to characterize the color-redshift discretization of the SOMPZ

method comes from three independent sources:
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• Spectroscopic surveys (S): zCOSMOS (Lilly et al., 2009), C3R2 (Masters et al., 2017,
2019), VVDS (Le Fèvre et al., 2013) and VIPERS (Scodeggio et al., 2018)

• COSMOS2015 (C): 30-band PZ catalogue (Laigle et al., 2016)

• PAUS+COSMOS (P): Combination of PAU Survey (Padilla et al., 2019; Eriksen et al.,
2019) and COSMOS2015.

Each of these sources is characterized by its own selection criteria, z uncertainties, com-
pleteness. As a consequence, the obtained distribution can vary when using each sample
independently in the SOMPZ scheme.

In order to quantify these variations, three combinations of sources for the redshift
samples R are defined: SPC = all combined, PC = PAU+COSMOS, SC = Spectra + COS-
MOS. Each combination is assigned a probability p(R) of being the correct combination,
and the 3SDIR + HMC sampling is done accepting samples obtained from each combina-
tion R with that probability. The uncertainty is then computed by measuring the typical
deviation in mean redshift from the n(z) ensembles with respect to the global average, af-
ter assigning p(R) = 1/3 for all source combinations. The mean observed deviation from
the average is ∆zRedshift ∼ 0.003− 0.006 across the 4 tomographic bins. This uncertainty
is naturally transferred into the final n(z) ensemble.

Photometric calibration uncertainty

The deep field photometric observations are performed over 4 separate fields of the sur-
vey footprint, each with an independent solution of the photometric zero-point (See sec-
tions 3.2.1). The instability of the photometric solution from field to field can result in
small variations of the fluxes used to compute the luptitudes and lupticolors, which re-
sult in incorrect assignment of galaxies to SOM cells.

To quantify the effect of these uncertainties, zero-points from each field are perturbed
by a small magnitude shift ∆mfield drawn from a Gaussian distribution. A n(z) ensemble
is then generated by applying the SOMPZ scheme to each realisation of the zero-point per-
turbed photometric catalogs. The observed deviation in mean redshift from the average
of the ensemble are of the order of ∆zZP ∼ 0.002− 0.010 across the 4 tomographic bins.
In order to transfer this measured uncertainty to the 3SDIR + HMC realisations, each re-
alisations is shifted using a Probability Integral Transform (PIT) based on the ensemble
of realisations generated by shifting the zero-points. This results in a recomputed set of
3SDIR + HMC realisations with the uncertainty already encoded on them.

BALROG uncertainty

The injection and re-detection of galaxies in the wide imaging using BALROG is used to
estimate the transfer matrix P(c|ĉ) between cells of the deep and wide SOM (Everett et al.,
2020). The determination of this transfer matrix is crucial to use the deep fields to connect
the wide photometry to the redshift sample. Since the observing conditions across the
entire footprint change significantly because of differences in depth, PSF estimation and
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zero-points, it is expected that the transfer matrix of a sub-set of the footprint could vary
from the average. In order to estimate effect of this variability, the transfer matrix is
computed for subsets of the data covering contiguous patches of the footprint, using a
bootstrap approach. Since the observed variability in the n(z) ensemble obtained from
the bootstrap transfer matrices ∆zBALROG is observed to be smaller than 10−3, the effect of
the BALROG uncertainty is neglected.

3.3.2 Sample variance and shot noise

A large uncertainty contributor in the DES Y3 n(z) pipeline is expected to come from
the sample variance associated with the limited coverage and completeness of the dif-
ferent samples employed in the SOMPZ scheme. Because of the small size of the redshift
and deep samples, variation of the large scale matter distribution can result in the ob-
served sample not being fully representative of the true underlying galaxy populations
Nevertheless, these two samples provide a comparable amount of information to break
the color-redshift degeneracy and the effect of sample variance can have a large impact
on the n(z) estimations. Common approaches to estimate these effects usually rely on
bootstrapping (Repeating the n(z) estimation on random subsamples of the data) or on
scaling the uncertainty measured in multiple simulated datasets. The first approach can
be inaccurate at measuring the effect of cosmic variance (Friedrich et al., 2016), while the
second requires a careful fine-tuning of the simulation-to-data scaling of uncertainty.

The method to estimate sample variance in DES Y3 follows the formalism described in
(Sánchez et al., 2020b), where an analytical model of sample variance is constructed using
a three-step Dirichlet sampling procedure (3SDIR). This procedure discretizes the redshift
range into bins zi and estimates the probability fz,c that a galaxy in the deep samples has
a redshift z and is assigned to SOM cell c such that ∑ fz,c = 1 and fz,c ∈ [0, 1). This means
that the distribution of fz,c values follows a Dirichlet distribution

Dir({ fz,c}; {αz,c}) ∝ ∏ f αz,c−1
z,c (3.11)

If the redshift sample used to inform the color-redshift relation of deep sample was com-
pletely representative of the deep sample then fz,c would be proportional to Nz,c, the
number of galaxies from the redshift sample assigned to a two dimensional histogram in
z, c space. Given that the redshift sample used to describe the color-redshift relation is
only finite, and potentially correlated with large scale structure because of cosmic vari-
ance, the αz,c associated to each bin are transformed in a way that they match the observed
variance estimated from large N-body simulations.

To validate this method and to simulate the effect of sample variance on the determi-
nation of the redshift distribution of the wide sample, 300 SOMPZ n(z) realisations of a
fixed simulated catalog were generated, using randomized mock deep fields and redshift
catalogs from the BUZZARD simulations (Buchs et al., 2019; DeRose et al., 2019). This esti-
mate of sample variance, typically quantified by the width of the distribution of moments
of the n(z), can be then compared to the obtained values using the 3SDIR approach. The
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simulated catalogues used for these realisations, which we will describe in detail in chap-
ter 5, are built to match the properties of the DES survey and provide true redshifts and
magnitudes and their respective realistic errors in the same bands of the deep and wide
fields.

To generate the mock deep fields, 3 square regions of 3.32, 3.29 and 1.94 square de-
grees respectively are cut from the simulation footprints and used as deep data. 100,000
true redshifts are drawn from a 1.38 deg2 square region from the simulations. The condi-
tions for generating these 4 regions is that they are not overlapping between them or with
the survey edge. In order to simulate the BALROG catalogs, photometric noise is added
to the deep galaxies in order to match the expected photometry errors of the wide sample
and then the relative assignment to the deep and wide SOM is recorded. This procedure
is repeated with multiple realisations of the noise model to better constrain the transition
matrix P(c|ĉ). In all of these realisations, the training and assignment of galaxies from
the wide sample is kept fixed to minimize the effects associated to the random nature
of the training stage. Figure 3.9 shows the obtained ensemble of realisations, where it
can be seen the large uncertainty associated to the histogram values of the realisations
coming exclusively from cosmic variance. These peculiarities can potentially result in
differences in the inferred cosmology if they are not accounted for. We discuss this in
detail in the remaining chapters, where we use this ensemble of realisations to test the
effect of peculiarities and other high order uncertainties in the inferred cosmological pa-
rameters. Regardless of this apparent variability, the average distribution (dashed color
lines) very closely resemble the truth distributions from the BUZZARD samples (solid
color lines) which serves as a powerful re-validation of the SOMPZ scheme, previously
tested in Buchs et al. (2019).

The equivalent ∆zsv+sn error, which is the standard deviation of the difference in mean
redshift from each tomographic bin with respect to the average from the generated n(z)
ensemble, is around 0.06 for each tomographic bin, and in most cases is the main contrib-
utor to the total uncertainty.

3.3.3 SOMPZ method uncertainty

The SOMPZ scheme described above uses an unsupervised machine learning technique to
obtain a direct mapping from input space to a low-dimensional representation which can
be used to easily visualize the arrangement of the unsupervised quantities. Because of
the number of moving parts in this scheme the final mapping obtained can be expected
to change as a consequence of the stochastic nature of the training stage. The weight
vectors are initialized at random, either from a sample of points from the training set,
or at random positions on a predefined region. Even if the sequence of samples on the
iterative process described in equation 3.5 was exactly the same, the randomized initial
positions plus the decaying learning rate a(t) would result in different final positions for
the weight vectors. This difference is amplified once the randomized sampling comes
into play.
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FIGURE 3.9: Estimated n(z) in four tomographic bins from the BUZZARD simulations using
an ensemble of 300 different sets of deep fields on the BUZZARD sky (colorful fine dashed
lines). The similarity of the mean of the estimated n(z) (colorful broad dashed lines) relative
to the truth (color broad solid lines) is a basic illustrative validation of the method. The Red-
shift Sample used here has 100000 galaxies drawn from 1.38 deg2, the Deep Sample in each
realisation is drawn from three fields of size 3.32, 3.29, and 1.94 deg2, respectively from the
BUZZARD simulated sky catalogue. The variation in estimated n(z) reflects the uncertainty

of the SOMPZ method primarily due to sample variance in the deep fields.
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FIGURE 3.10: Four different self-organized map arrangements showing the distribution of
the first component of the weight vectors of each node. The arrangements are built using the
same input dataset and the same dimensionality for the SOM map, only changing the random
seed used for the iterative training process. While the structure show some resemblance with
each other, they are not identical, which can lead to a different assignment of the input sample

and potentially different n(z) distributions.

The effects of different weight vector positions becomes evident in the assignment
phase where objects from the target sample are assigned to the closest node in input
space according to equation 3.4. Two samples with similar photometric properties, once
assigned to the same cell c can end in different cells depending on the relative positions of
their closest weight vectors. Following the bin assignment procedure described in 3.2.3,
this in turn can result in objects being assigned to different tomographic bins in extreme
cases. An example of this effect can be seen in figure 3.10 where different arrangements
of the first component values of the weight vectors assigned to each node are shown for
four different SOM training of the same dataset.

We perform a simple test to estimate the effects of this random sampling can be con-
structed by fixing the wide, deep, BALROG and redshift samples and training the deep
and wide SOM maps with different random seeds each time. This will result in a different
map and assignment each time and potentially different redshift distributions. The width
of the distribution of mean redshifts from an ensemble of n(z) samples can be used as a
quantifier of the total uncertainty, similarly to the characterisation of sample variance.
We run the SOM training 100 times and compute the n(z) for a fixed sample of BUZZARD

galaxies using the SOMPZ scheme described above, only changing the initial conditions
for the positions of the weight vectors and the random seed for the training sampling.
This results from an ensemble of 100 n(z) realisations shown in figure 3.11 from where
the uncertainty contribution is estimated to be approximately ∆zSOMPZ ∼ 0.003 in all to-
mographic bins. In figure 3.12 it can be seen this is a significant source of uncertainty,
comparable to the other sources mentioned in this section.

3.3.4 Summary

In this chapter we have described the fundamentals of photometric redshift estimations
and their importance in weak lensing experiments. We also showed the effect on cosmo-
logical parameter inference of biases in the determination of the line-of-sight distribution
of sources.
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FIGURE 3.11: Left: Ensemble of redshift distributions obtained using the SOMPZ scheme,
where each realisation is obtained by training the deep SOM using a different initial random

seed.
Right: Distribution of ∆zSOMPZ values for the ensemble of realisations shown on the left

panel.

z̄ = 0.343 0.521 0.742 0.964

FIGURE 3.12: Variance of each source of uncertainty in each tomographic bin. As shown
here the redshift sample uncertainty becomes a larger contributor to the uncertainty for
higher redshift tomographic bins. Note, the contributing sources of uncertainty combine
non-linearly. As a result, to illustrate the relative magnitude of each source of uncertainty in
each bin, and the relative importance of each contributing source of uncertainty as a function
of redshift, total variance in this figure is rescaled to match the combined uncertainty shown
in Table 3.1). The small uncertainty associated to tomographic bin 3 can be attributed to the
fact that galaxies assigned to that bin span the narrowest range (0.631 ≤ z ≤ 0.872), see Table
3.1. Since the bin widths are set so all bins have roughly the same number of galaxies, this

redshift range has the highest density of sources per redshift range.
Figure credit: Myles et al. (2020)
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Within this context, we introduced the Dark Energy Survey Y3 analysis pipeline to
estimate the distribution of galaxies from measurements of its photometry in multiple
bands. This pipeline employs a novel machine learning technique based on Self-organizing
maps, SOMPZ, which takes advantage of deep photometry obtained for a subset of the
data to build a transition matrix which helps breaking the color-redshift degeneracy. In
addition to SOMPZ, the DES Y3 analysis includes the use of angular correlations with
positions and shears of a secure redshift sample to further constrain the distribution
of sources. These constrains are combined into a three-step Dirichlet and Hamiltonian
Monte Carlo sampling scheme to provide samples from the redshift distribution poste-
rior.

Finally, we described the identified sources of uncertainty caused by systematic ef-
fects associated to the SOMPZ scheme and the different measurements employed in the
process: sample variance and shot noise, non-uniformity of the redshift sample, photo-
metric calibration errors, imperfections in the BALROG simulations and stochastic uncer-
tainty of the SOMPZ method. We also described the procedures to quantify each of these
uncertainties, and presented the results for sample variance and the SOMPZ stochastic
uncertainty, in which we directly contributed.

The 3SDIR + HMC samples obtained in this process encode the full uncertainty associ-
ated to the redshift distribution estimation pipeline. In chapter 4 we present HYPERRANK,
a scheme to directly propagate the uncertainties mentioned above into the cosmological
parameters.
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Chapter 4

The HYPERRANK algorithm

In chapter 2 we described the formalism for weak lensing experiments and the potential
source of systematic errors that can bias cosmology, both associated with the observables
of weak lensing and the processing of data in the pipeline. We also described in detail
the process to obtain the line of sight distribution of sources required for this analysis us-
ing a novel technique, called SOMPZ. In this chapter we introduce HYPERRANK, a novel
technique to propagate the uncertainties arising from photometric redshift estimation
into the cosmological parameters using the products obtained from the SOMPZ scheme.
To put this technique in context, we first describe the process of parameter estimation
using Bayesian Statistics and the use of stochastic sampling techniques, specially nested
sampling algorithms. The main motivation behind HYPERRANK is to provide a scheme to
propagate higher order descriptions of uncertainty into the inferred cosmological param-
eters. We explain what aspects of the scheme can have an impact on sampling efficiency
and how these can be mitigated.

The methodology and validation tests presented here have been submitted for pub-
lication in Cordero et al. (2020) as part of the DES Y3 analysis, and the description of
tests and results from applying this methodology to simulations and data are presented
in chapters 5 and 6 respectively. We describe the Bayesian parameter inference formal-
ism and the concept of uncertainty propagation in 4.1 and then present the HYPERRANK

method in 4.2
The author of this thesis designed the HYPERRANK formalism described in this chap-

ter, and implemented it as a module in CosmoSIS (Zuntz et al., 2015), including the one-
and multi-dimensional approaches shown in sections 4.2.1 and 4.2.2, and the alternative
ranking schemes using the solution to the linear sum assignment and the uneven grid
approach.

4.1 Bayesian Parameter Inference

The scientific method provides us with a powerful tool to develop knowledge by testing
hypothesis based on observations of different phenomena in physics. By the constant
repetition and accumulation of results from multiple experiments we are able to predict
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the behaviour of certain physical systems by summarizing their properties using mod-
els. These models typically describe these behaviours in a mathematical language which
not only makes it easy to concatenate to other models for other physical phenomena, but
also provides a numerical context to understand the relative values and limits of these
models relative to already established ones. Determination of these parameters requires
direct observation of the physical behaviour of the systems and measurements of observ-
ables, by means of an experiment. These observables are manifestations of the properties
of these systems and must be carefully defined for them to usefully contribute to the de-
termination of the model parameters. But given the practical and physical limitations in
the setup of an experiment and observation, our interpretation of the results is never that
of certainty, but reliant on the concept of probability.

There are two main interpretations of what a probability is: The frequentist interpre-
tation assumes that a probability is a quantification of the frequency a result will occur
after an infinitely large number of repetitions of an experiment or observation. The as-
sumption is that each repetition is independent from all others and it is performed under
similar conditions. The Bayesian interpretation, in contrast, defines probability as a quan-
tification of the degree of certainty of the results of an experiment, constructed based on
fundamental properties of the experiment:

• The particular set of observations defined to extract the properties of the model

• Pre-defined knowledge about the possible results

• Identified sources of systematic and random errors which can contaminate obser-
vations

• Metrics used to compare the observed results against their expected values.

There is an immediate restriction which makes the frequentist approach unsuitable
for cosmological experiments like weak lensing: repeating an experiment an infinitely
large number of times, or even more than once under similar conditions is impractical be-
cause of the sheer scale of the experiment (one purposely build CCD camera, 6 years
of observations, 200+ collaborators, etc), and the impossibility to have independent re-
alisations since we only have one Universe to draw observations from. The Bayesian
approach fits in nicely because it gives us an interpretation of probability which relies on
a description of our own limitations and expectations, which is certainly more practical.
In what follows, we describe the foundations of Bayesian inference and how it is applied
to cosmological analysis using today’s computational tools.

4.1.1 Bayes’ theorem

Bayes’ theorem quantifies the probability of a set of parameters θ being a good descrip-
tion of the model M, given a set of observations x as P(θ|x, M), called the posterior:

P(θ|x, M) =
L(x|θ, M)π(θ|M)

p(x|M)
. (4.1)
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L(x|θ, M) defines the parameter likelihood, which is a quantification of the similarity or
concordance between the observables and their expected values for a set of parameters
θ under model M. This concordance usually factors in the associated measurement er-
rors on the observations. A common approach is to assume those errors are Gaussian-
distributed. Under that assumption, we define the Gaussian likelihood L(θ) as:

L(x|θ, M) = P(x|θ, M) =
1

(2π)m/2|C|1/2 exp
[
−1

2
(x− xt)

TC−1(x− xt)

]
, (4.2)

where C is the covariance matrix describing the amplitude of the expected errors and
their correlations with the observations of x, m is the dimensionality of the observed data
vector, and xt is the expected vector obtained at a the model parameters θ. π(θ|M) is
the parameter prior, which quantifies the previous expectation about the values of the
parameters. Its definition can have physical motivations coming directly from limits
characteristic of the employed model, or encode the subjective description of parame-
ter restrictions, which can be based, for instance, on observations made by independent
previous experiments. P(x|M) is the evidence, denoted Z which quantifies to total con-
tribution by the data to constrain the model, and it is of central importance when using
Bayesian inference to perform model selection. Because of its independence to the model,
it can be interpreted as a factor required to normalize the posterior over the model pa-
rameters θ, such that

Z =
∫
L(θ)π(θ)dθ. (4.3)

This description helps understanding the notion of evidence as that of the goodness of
the fit to a model, since it is the average of the likelihood over the prior, which grows for
a more compact parameter space (represented by the prior π(θ)), or when the data and
model agree well (represented by the likelihood L(θ)). The ratio of the evidence between
two models, called the Bayes Factor, can help comparing two models given an observed
dataset x and their respective likelihoods.

We saw in section 1.1 that the standard cosmological model can be described by a
small set of parameters, some of which are heavily constrained by cosmic shear and
galaxy clustering. Moreover, additional parameters are used to describe different sources
of systematics or model extensions, all of which are usually inferred simultaneously in
the cosmological inference pipeline. The result is a multivariate probability distribution
which we want to use to infer statistical properties of the model parameters, and need to
integrate to obtain the evidenceZ . The naïve approach to evaluate these functions would
be to discretize the space of parameters and ask a computer to evaluate the function on
each of the grid points. For a cosmic shear experiment this is typically of the order of 20
parameters to be simultaneously sampled. As an example, the likelihood pipeline em-
ployed for DES typically takes around ∼6 seconds. For a very coarse grid of 10 points
along each dimension, 1020 points would require 19.7 trillion CPU-years, which in Cori1,
one of the largest HPC computers in the US, would take approximately 298 millions years

1https://docs.nersc.gov/systems/cori/
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assuming we are allocated all the nodes. And that the SSH link does not break.
In order to efficiently obtain samples describing the posterior or to calculate the evi-

dence of a set of observations for a given model, which are both of very high dimensional-
ity in the context of cosmology with weak lensing and galaxy clustering, we often employ
a family of techniques, called Monte Carlo Markov Chain (MCMC) methods, which rely
on efficient stochastic sampling of the space of parameters to map the posterior.

4.1.2 Monte Carlo Markov Chain methods

Monte Carlo methods refers to a broad family of mathematical and computational tech-
niques which involve the use of pseudo-randomly2 generated numbers to find the so-
lutions to problems where deterministic approaches cannot be applied. The main idea
behind these methods is that the results are computed based on statistical analysis of the
random samples rather than via an attempt to do it analytically and exactly. In the con-
text of probability distribution characterisation and multidimensional integration, which
are the two main goals of Bayesian inference, the proposal of new samples and its ac-
ceptance/rejection are adjusted in a way that over long chains of randomly generated
numbers and evaluations of the integrand, the statistical properties of the samples ap-
proach those of the true underlying distribution. These adjustments define a family of
methods called Markov Chain Monte Carlo, where the distribution of generated samples
converge to the underlying probability distribution. The general principle of these meth-
ods is based on the fact that the acceptance probability is equal to the ratio between the
posterior values of the current value of the chain and the proposed value. This way all
points from the parameter space have a probability to be sampled, which is proportional
to its posterior value: for a sufficiently long chain, the multidimensional histogram of
points is proportional to the posterior, which removes the need to resort to the actual
values of the posterior to perform a statistical analysis of the parameters.

When dealing with parameter estimation, the most common methods all work based
on a similar principle, on which samples are proposed from a specific probability distri-
bution and accepted or rejected according to properties of the underlying target posterior
distribution. The Metropolis-Hastings algorithm (Metropolis et al., 1953; Hastings, 1970)
for example, proposes values drawn from a generic distribution conditional on the cur-
rent value of the chain. A special case, the Metropolis algorithm defines the distribution
as a symmetric Gaussian characterized by a covariance matrix which strongly determines
the general efficiency of the methods. A variant of this method, called Hamiltonian
Monte Carlo Sampling (Duane et al., 1987) uses a physical argument to propose samples
assuming their posterior value is analogous to a potential energy and their kinetic energy is
drawn from a known normal distribution. Using the Canonical probability distribution
for energy levels of a system and the Hamilton equations of motions, it provides samples
from the posterior which can be then accepted or rejected following a similar criteria to

2Every computational method to generate numbers is ultimately deterministic. Pseudo random number
generator only approximate the properties of truly random numbers, such as having very long periods of
repetition or low correlation between successive samples.
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that of Metropolis Hastings. If the posterior distribution is unknown but the conditional
probability of the model parameters are known or can be sampled, then a Markov chain
of samples can be obtained using an iterative process called Gibbs sampling (Geman &
Geman, 1984).

For the case of evidence evaluation, perhaps the most popular approach related to
MCMC algorithms is Thermodynamic integration (Kirkwood, 1935), by which the loga-
rithm of the Bayes factor for an unknown distribution with respect a known one is esti-
mated by running a series of MCMC chains at regular intervals, defining a series of con-
tinuous variations of the proposal distribution. This method is effective but very com-
putationally intensive, as it essentially means running a separate independent MCMC
several times.

Most MCMC methods mentioned above have some serious disadvantages which be-
come more noticeable at higher dimensions. Most notably, they require fine-tuning on
some of the parameters that control the acceptance / rejection probabilities and the dis-
tributions used to propose new samples. They also either fail to provide a reliable formal-
ism to estimate the errors on the computation of the evidence, or require large number of
likelihood evaluations or realisations of the computation. A family of techniques which
overcome some of these difficulties are called Nested sampling algorithms, which pro-
vide an improved error calculation of evidences and produce samples of the posterior as
a by-product.

4.1.3 Nested Sampling

Nested sampling techniques, initially developed by Skilling (2004), are primarily targeted
at efficient computation of the evidence by exploiting the relation between the likeli-
hood and prior volume to transform the multidimensional evidence integral (4.3) into a
one-dimensional integral. It starts by defining the prior volume X enclosed by an iso-
likelihood surface as

X(λ) =
∫
L(θ)>λ

π(θ)dθ. (4.4)

Since the prior is a probability distribution, this function goes from 1 when considering
the full prior volume, to 0 when λ reaches the maximum likelihood value for the poste-
rior. Equation 4.3 can be rewritten in terms of a one-dimensional value:

Z =
∫ 1

0
L(X)dX, (4.5)

where L(X) is the inverse of equation 4.4, the likelihood value of a surface enclosing
a prior volume X- Nested sampling finds an approximation of the evidence by finding
samples of nested iso-likelihood surfaces L(Xi) (Hence the name nested sampling), and
summing them using

Z ≈
M

∑
i=1

wiL(Xi), (4.6)
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FIGURE 4.1: Graphical representation of the nested sampling algorithm, showing (a) the
nested iso-likelihood surfaces progressively enclosing areas of higher likelihood from where
new points can be added to the chain, and (b) the corresponding prior volumes enclosed by
each iso-likelihood surface. The area under the curve corresponds to the evidence which can

be integrated using quadrature methods.
Image credit: Skilling (2004)

where wi is a weight based on the quadrature used for integration. A graphical represen-
tation of this concept is shown in figure 4.1. In order to obtain the samples, the procedure
starts by drawing N points, called live points from the prior, and ranking them according
to their likelihood values. The point in parameter space θ corresponding to the smallest
likelihood is stored and replaced by a random new point, provided it has a larger likeli-
hood value than the point to be replaced. After the new sample is selected, the replaced
point is added to the chain and assigned a weight

pi =
Liwi

Z (4.7)

which can then be used to characterize the posterior distribution if desired. One impor-
tant problem with this approach is that as the volume enclosed by iso-likelihood surfaces
decreases the fraction of samples from the prior which have likelihood values higher
than Li also decreases steadily as i grows. The iso-likelihood surface is never actually
determined, and only enforced by the evaluation of the likelihood for a sample. Ellip-
soidal nested sampling attempts to overcome this limitation by approximating the iso-
likelihood surface as an ellipsoid whose axis are defined by the covariance matrix of the
live points. Sampled points are first required to lie inside this ellipsoid, and then its like-
lihood is computed, significantly reducing the number of times a low likelihood sample
is tested. MULTINEST (Feroz et al., 2009) proposes a more sophisticated nested sampling
based on the concept of ellipsoidal nested sampling to overcome further limitations of
the standard approach when the posterior is not unimodal or has pronounced banana-
shaped degeneracies, by identifying these modes and/or separating the posterior into
multiple subregions bounded by ellipsoid approximations of the iso-likelihood surface.
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4.1.4 Sampling efficiency

We want our Monte-Carlo samplers to provide samples from the posterior both accurately
and efficiently. Accurately in that their distribution closely resembles that of the underly-
ing true distribution, and efficiently in that it gives a decent approximation in as few steps
as possible. Typically these two requirements are in direct contradiction with each other:
for a basic Metropolis algorithm, a narrow Gaussian proposal around the current step of
the chain will result in a large rate of rejection but will ensure the samples actually map
the true distribution. The opposite will result in samples being accepted despite their low
likelihood, resulting on a distribution completely prior dominated. A similar behaviour
occurs with nested samplers, where the proposals are accepted based on their likelihood
being larger to that of the current live point. In order to correctly map odd-shaped non
ellipsoidal posteriors and degeneracies between parameters, the ellipsoidal regions from
where the trial samples are drawn is slightly expanded around the iso-likelihood surface
L(Xi). This results in a slightly slower convergence towards high likelihood regions as
the effective volume to sample is increased, but more accurate posterior samples as those
regions are allowed to be explored.

Another important aspect of the sampling efficiency comes from the fact that most
sampling techniques are designed under the assumption the posterior they are sampling
is relatively smooth with respect to the typical distance between the trial samples and the
current steps of the chain. This way, relatively small steps in parameter space result in
controlled small increases in likelihood in a consistent way. If the posterior is not smooth,
this can result in the sampler identifying only local peaks or difficulties in evaluating
the conditions for convergence. An example of this is shown in figure 4.2 where the
nested sampler must find a parameter θ with likelihood L(θ) > L∗ for two posterior
distributions with different smoothness. Since the probability of finding such value θ is
proportional to the fraction of θ ranges where L(θ) > L∗, the sampling of the smooth
posterior will be significantly more efficient that the non-smooth case.

4.1.5 Propagation of uncertainty

In section 4.1 we described the process by which many modern scientific experiments
evaluate their data and prior knowledge to constrain the characteristics of their models
using Bayesian inference. The end result is often a multidimensional probability distribu-
tion encoding the level of confidence in a combination of parameters correctly describes
the model, based on a series of observations and accompanied by previous information
regarding the nature of these parameters. While we are mainly interested in the individ-
ual values of these parameters, these are not only correlated between them, but also with
other less interesting parameters we have used to describe aspects like model extensions
or systematic errors. The process by which we isolate the parameters of interest is called
marginalisation, and refers to the process of finding the marginal probability distribution
for the set of parameters of interest. Given a multivariate probability distribution P(θ),
where theta is a vector of parameters, θ = α ∪ β = {α1, . . . , αn, β1, . . . , βm}, we can find



4.2. Hyperrank 95

FIGURE 4.2: Toy example of showing the differences in sampling efficiency between a
smooth (lower panel) and non-smooth posterior (upper panel). Horizontal dashed lines rep-
resent the iso-likelihood surfaces and likelihood thresholds L∗ above which the proposal
values L(θ) are accepted into the chain. The vertical dashed lines define the elliptical bound-
aries (intervals in 1D) from where parameters can be initially sampled, including additional
allowed areas on the edges to account for non elliptical posteriors. The shaded regions denote
all θ intervals from where samples would be accepted, showing clearly the lower probability

in the non-smooth case.

the joint distribution of a subset of parameters {α = α∗1 , . . . , α∗n} marginalised over the
subset of parameters {β = β∗1, . . . , β∗m}

P(~α) =
∫

Ωβ

P(~θ) dβ1 . . . dβm (4.8)

This process accounts for all the possible effects the marginalised parameters can have
over the target parameter distribution, and it returns a distribution which summarizes
their effect regardless of the correlation between the parameters.

As mentioned in section 4.1.2, in practice the Bayesian inference techniques do not
provide a functional form for these distributions, but samples from the posterior prob-
ability distribution, from where the marginal probability distribution can be approxi-
mated.

4.2 Hyperrank

In previous chapters we showed how the biases on the different measurements used in
weak lensing and galaxy clustering can result in significant shifts on the cosmological pa-
rameter confidence contours. In section 4.1.5 we learned that in order to correctly account
for the uncertainty associated to these measurements we must marginalize the posterior
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FIGURE 4.3: Graphic representation of the ∆z marginalisation scheme, where a fiducial red-
shift distribution (black dashed) is shifted horizontally at each Monte Carlo step by a value
drawn from a Gaussian distribution (inset, with draw from the 2σ tail highlighted in red).
Any higher order moment and peculiarity of the distribution remains unchanged, which can

lead to an underestimation of the total cosmological parameter uncertainty.

by integrating all the potential effects of these systematics can have on the parameters of
interest.

An important aspect of this is the identification of the sources of uncertainty and what
is their effect on the measurements used in the analysis. While these dependencies are
typically intractable, simplified models can be made to describe their effect. One of these
approximations is that uncertainty on the determination of photometric redshifts can be
described by a set of nuisance parameters describing a shift on the mean of the redshift
distributions, ∆zi:

ni(z)→ ni(z− ∆zi). (4.9)

The motivation for this approximation, depicted in figure 4.3 is that uncertainty in the
mean of the redshift distribution n(z) have been shown to be the main contributors to
the uncertainty of inferred values for σ8.

Future large surveys will depend more on the precise determination of systematics
and the effect of systematics on higher order moments than the mean may become im-
portant to keep under control. Unfortunately a simultaneous parametric description of
the uncertainty for multiple high order moments is not possible, since the skewness and
kurtosis of a distribution are highly degenerate with its mean and standard deviation,
even for a well defined Gaussian distribution.

Here we present HYPERRANK, an alternative approach to marginalize over redshift
systematics in which, instead of propagating the uncertainty using a set of parameters
characterizing the statistical properties of the n(z) posterior, we directly use an ensemble
of samples of this posterior by choosing a new redshift distribution in each likelihood
evaluation. The main concern is the potential loss in sampling efficiency as the finite
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size of the ensemble can result in an uneven exploration of the posterior distribution. As
described in section 4.1.2, a smooth posterior as a function of the sampled parameters
results in a faster convergence, specially in nested samplers which rely on shrinking the
sampled parameter space.

Once a discrete set of realisations for ni(z) have been generated using a method such
as the DES Y3 approach described in section 3.2.1, we wish to use these realisations in the
Monte Carlo algorithms used to generate samples from the joint posterior of cosmological
and nuisance parameters, which we then use to do inference. Here, instead of modifying
a fiducial distribution according to a nuisance parameter like the one in equation 4.9, the
sampling strategy chooses a completely new distribution from the set of realisations to
evaluate the likelihood. We introduce the idea of HYPERRANK-ing in which the full set of
realisations is mapped onto a small (∼ 1) number of rank parametersH, which are a priori
expected to correlate strongly with values of the cosmological parameters of interest.
The realisations are then placed in rank order according to a set of descriptive values
d, and the rank parameters H become the nuisance parameters which are sampled (and
subsequently marginalised over) in the cosmological analysis. The descriptive values d
are chosen to allow the likelihood to vary as smoothly as possible along each of the rank
parameters. Also, the ordering must be such that realisations with similar descriptive
values are mapped close to each other and all realisation have the same volume of d
parameter space assigned to them to avoid the introduction of an implicit prior.

4.2.1 One dimensional case

We initially consider the case in which a single HYPERRANK parameter is used to rank all
realisations. Since realisations are comprised of a fixed combination of tomographic bins,
we consider a basic approach which maps distributions based on the weighted average
of a combination of values describing each tomographic bin,

d =
∑ widi

∑ wi
, (4.10)

where i is the index of each tomographic bin and wi is a weight, which can be defined
based on number of assigned galaxies to each tomographic bin, or their relative contri-
butions in the likelihood computation, and di is a descriptive value for each tomographic
redshift distribution. The realisations are then ranked according to their descriptive value
d and mapped to a continuous hyper-parameterH ∈ [0, 1), which is sampled by the MC
on each likelihood evaluation. For a set of Np ranked proposal n(z), the rank of the reali-
sation to be used in the likelihood evaluation is

rank = bH × Npc, (4.11)

where the brackets are the floor function. This is demonstrated in figure 4.4 which shows
a small sample of realisations color-coded by their mean redshift and assigned a range of
H values depending on their ranked position.
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FIGURE 4.4: Discrete realisations of possible n(z) are shown with colours corresponding to
the mean redshift of each realisation 〈z〉, which can be mapped to a ranking hyper-parameter
H which is then marginalised over on the Monte Carlo chain. Inset shows the uniform dis-
tribution for H which is sampled from, and the centres of the regions corresponding to each

coloured n(z) realisation.

It has been shown (Huterer et al., 2006; Ma et al., 2006) that the mean of the redshift
distributions have the biggest impact in derived cosmology, so a good first choice for di

is the mean redshift,
〈zi〉 =

∫ zmax

zmin
z ni(z)dz. (4.12)

An alternative set of descriptive values are the mean inverse comoving distance of
sources, 〈1/χ〉, which is expected to be more closely correlated with the eventual poste-
rior value calculated by the analysis pipeline, since it is closely related to the shape of the
lensing efficiency functions used in the Born and Limber approximations, which can be
written as,

Pκ(`) =
9H4

0 Ω2
m

4c4

∫ χH

0
g2(χ)

Pδ(`/χ; χ)

a2(χ)
dχ , (4.13)

where χH, a(χ) and Pδ are the comoving horizon, scale factor and matter power spectrum,
respectively and the lensing efficiency g(χ) at comoving distance χ is defined as:

g(χ) =
∫ χH

χ
n(χ′)

χ′ − χ

χ′
dχ′ , (4.14)

and depends on the comoving distance distribution n(χ) of sources, or equivalently their
redshift distribution n(z). By evaluating at χ = 0 and differentiating the above definition
for the lensing efficiency we obtain

g(χ)|χ=0 = 1 (4.15)

g′(χ)
∣∣
χ=0 = −〈1/χ〉n, (4.16)
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FIGURE 4.5: Three sets of 100 gamma probability distributions, obtained from shifting a fidu-
cial distribution along the horizontal axis with a value ∆z drawn from a Gaussian probability
distribution. From top to bottom the distributions are randomly scaled at different z values

to simulate increasing effects of noise.

FIGURE 4.6: Scatter plot showing the relative ranking of the three sets of distributions shown
in figure 4.5. For realisations without noise, this translates into all of them having the same
values for higher moments, which ultimately results in the ranking with 〈z〉 and 〈1/χ〉 being
equivalent. As the noise added to each realisation goes up, their higher order moments start
becoming more different, which translates into the two sets of descriptive values d yielding

different rankings.

which are boundary conditions for the lensing efficiency functions and their overall shape.
The two sets of descriptive values above not necessarily result on the same ordering.

To visualize this difference we generate a set of probability distribution functions resem-
bling the shape of a tomographic redshift distribution and compute the 〈z〉 and 〈1/χ〉
rankings. We shift a single gamma distribution according to equation 4.12, drawing 100
∆z values from a zero-centered Gaussian distribution with a σ = 0.05 standard deviation.
Gamma distributions are characterized by a probability density function parameterized
by a shape parameter k and a scale parameter θ such that

n(z; k, θ) =
zk−1e−z/θ

θkΓ(k)
(4.17)

and allow us to generate a distribution which vanishes for negative redshift values while
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behaving reasonably well on the tail end of the redshift range. We then generate separate
additional ensembles by adding a different noise realisation to each value n(zi) according
to the following formula

n(zi)→ (1 + fi(η))n(zi) (4.18)

where f (η) is a random factor drawn from a [−η, η) uniform distribution. In the case of
noiseless shifts (η = 0), the realisations retain their shape, which results in a one-to-one
monotonic transformation between 〈z〉 and 〈1/χ〉. When noise is added (η > 0) this
results on a non-monotonic transformation which can alter the relative ordering of the
distributions. We generate three ensembles with the values η = [0, 0.25, 0.5], shown in
figure 4.5, and rank them using the above descriptive values. The resulting dispersion
of rankings is shown in figure 4.6, where it can be seen that for noisier distributions the
impact on ranking is more noticeable. In chapter 5 we test the impact of the different
ranking schemes on sampling efficiency.

4.2.2 Multi-dimensional case

While the one-dimensional approach presents a clean and simple strategy to arrange and
select realisations on each likelihood evaluation, it does not shield against cases where
two sets of realisations with very different di values (i.e. the mean per tomographic bin)
are assigned a similar rank due to having similar d (See equation 4.10) over all the to-
mographic bins. Here we describe a generalisation to rank distributions using multiple
dimensions, which allows to use more than one descriptive parameter d to assign the
proposal n(z) realisations to a space of hyper-parametersH.

The set of Np proposal n(z) is assigned a position in a uniform multi-dimensional
grid of N1 × · · · × NNd = Np points, u, according to a set of Nd descriptive values d =

d1, ..., dNd . This grid is contained inside a Nd−dimensional unit cube, and the coordinates
of the hyper-cube are the continuous hyper-parameters Hj ∈ [0, 1) which are sampled
in the MCMC chain. Each time a set of hyper-parameters is chosen by the sampler, the
method returns the closest point in the grid, which has been previously assigned to a n(z)
realisation. The dimensions of the grid depend on the number of proposal n(z), which
ideally must be a product of similar integers. In the extreme case Np is a prime number,
the multidimensional grid will have dimensions of 1Nd−1 × Np, which will result in an
ordering equivalent to the one dimensional case. If, in turn, Np can be decomposed in
Nd non trivial integers, we want them to be as similar and large as possible, since we
want each of the hyper-parameters sampled by the MCMC to span the largest possible
uncertainty encoded by the descriptive parameters di they represent. While ideally one
would want to use a large number of dimensions to help constructing a space where the
posterior is as smooth as possible, this comes at the expense of having to construct a grid
with a low number of points per dimension. This can result in a noisy posterior as a
function of the hyper-parameter H since all the realisations in the same row or column
of grid points have no further ordering along that dimension. All of the realisations
located inside each sub-interval of the grid are essentially randomly sampled from the
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perspective of their corresponding hyper-parameter. If the sub-interval is a significant
fraction of the totalH, this can result in a low sampling efficiency due to the sampler not
being able to properly reduce the volume of parameters along that dimension. To find the
optimal integer decomposition for a number of samples Np we use a simple algorithm:

def factors (f , dim=N ) :
i f dim == 1 :

re turn f
p = np . zeros ( dim , dtype= i n t )
s = i n t ( f * * ( 1 / dim ) )
f o r i in range (s , 1 , − 1 ) :

i f f % i == 0 :
p [ 0 ] = i
p [ 1 : ] = factors ( i n t ( f/i ) , dim= dim−1)

re turn p

In the case of a Nd = 1, where a single characteristic value describes each realisation and
the arrangement of points is done over a grid in the interval [0, 1), the optimal distribu-
tion is the one which ranks the points in order, which is equivalent to the one-dimensional
scheme described in 4.2.1.

Linear sum assignment

One approach to find the optimal relative positions of the descriptive values is to use the
solution to the linear sum assignment problem (Kuhn, 1955a). Given a set of Np workers
(points in the descriptive value space) we want to find an assignment to Np fixed jobs
(Fixed grid positions in the unit hyper-cube) such that the sum of the cost to assign each
worker to one and only one job (the distance from descriptive value space to hyper-cube
position) is minimised:

min ∑ CijXij, (4.19)

where Cij is the cost matrix of assigning each sample di to each point uj of the grid,
and Xij is a binary matrix indicating which position is assigned to each set of descriptive
values. If we use an Euclidean distance metric such that Cij = |di − uj|2, the resultant
assignment minimises the total distance moved by the points to the positions on the
grid ensuring that any notion of neighbourhood between points in the original space of
descriptive parameters is preserved in their new unit hyper-cube grid positions. Figure
4.7 shows a basic example of this ordering in two dimensions with 16 random points
being assigned to the grid coordinates of the hyper-cube.

To solve the linear sum assignment, we first normalize the positions of the points in
descriptive value space to have unit variance and a mean located at the center of the unit
hyper-cube, and use the SCIPY.OPTIMIZE implementation of the Hungarian Algorithm
(Kuhn, 1955b) to find their final positions. The algorithm finds row and column permu-
tations of the cost matrix such that the sum of the diagonal, representing the assigned
positions of the realisations to the points of the multidimensional grid, is minimized. To
do this, a constant value can be added or subtracted to each row or column which does
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FIGURE 4.7: Basic example showing the concept of the linear sum assignment ranking scheme.
A set of 16 random points, whose positions are marked by numbers on the (d1, d2) plane are
shifted to the position of fixed grid points such that the sum shifts (length of the arrows)
is minimized. This minimization results in no arrows crossing paths, which indicates the
preservation of the neighborhood of the points in the original distribution. Right panel shows
the sampling procedure, in which a pair of values (H1,H2) = (2.1, 3.4) results in realisation

9 being sampled by HYPERRANK.

not change the optimal solution, but only the total cost associated to it. Then the method
becomes a matter of finding a zero-diagonal. The method employed to solve the assign-
ment problem scales as O(n3) and can’t be parallelized, which makes it only viable for
values of Np of the order of a few thousands, with ∼ 3000 realisations taking up to 24h
in a single core. While this is close to the expected number of realisations for the DES Y3
analysis, larger number of realisations require faster alternatives to map realisations to
the multi-dimensional grid.

Uneven grid assignment

One such alternative is to use an uneven grid of dimensions N1 × · · · × NNd = Np where
Nd is the number of dimensions and descriptive values used for ranking. Samples are
ranked according to the first descriptive value, d1, and separated into N1 subsets of
Np/N1 realisations each. (See figure 4.8) Because of the constraitn on the dimensions
of the grid, this number must be an integer. Each of the subsets will then be assigned
in corresponding order to the grid along its first dimension. Each subset of Np/N1 sam-
ples is then ranked according to their second descriptive value, d2, and separated into N2

smaller subsets containing Np/(N1 × N2) samples each. The procedure is then repeated
until all descriptive values are used to separate the samples, or equivalently, until each
sample has been isolated into a single grid, corresponding to a coordinate which can be
mapped to the uniform grid and a single combination of hyper-parameters H. It must
be noted that while this scheme can result in equivalent orderings to the one using the
linear sum assignment approach, this is not always the case, and even for the same set
of points in descriptive value space, the order each of them is used to rank along the
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FIGURE 4.8: Similar to 4.7, this shows a basic example of the uneven grid approach to map the
same set of points randomly distributed and marked by their respective number. Top panel
shows the resultant arrangement once the ranking first uses descriptive value d1 to generate
subsets of realisations which are then ranked according to their d2 values. This results in
exactly the same ordering as in the linear sum assignment scheme. Bottom panel shows the
resultant ordering if the order of the rankings is inverted to use d2 first and then d1, which

results in a different ordering to the one used before.

dimensions can significantly change the results, which is evident from the second panel
of figure 4.8. One disadvantage of this approach is that for a finite set of n(z) samples,
an attempt to map descriptive values d in high dimensions becomes less effective for the
last dimensions to be mapped, because of the variance on the lower and upper limits and
distribution of di on each subset of the uneven grid. This can result on two samples being
assigned contiguous points in the grid and having large differences in the values for their
last descriptive values dNd . A palliative measure to reduce the effect of this variance is to
start the ranking with the values whose equivalent uncertainty have the biggest impact
on the posterior.

A quick example of the two schemes in two dimensions is presented in figure 4.9,
where 400 random points are drawn from a three-dimensional Gaussian distribution in
the XYZ volume and their XY coordinates used to train the uniform grid. The first panel
shows the distribution of X and Y coordinate values arranged into a 20× 20 uniform grid
using the linear sum assignment solution, showing that similar points are located close
to each other and the variation of the coordinate values is smooth along the dimensions
of the hyper-cube.



104 Chapter 4. The HYPERRANK algorithm

FIGURE 4.9: 20 × 20 ranking map generated using the X and Y coordinates of randomly
points from a 2D Gaussian. Each panel shows the locations of the points on the uniform grid,
but the color scale shows the values for the corresponding coordinate It can be seen that the
mapping scheme permits the points to remain close to others with similar descriptive values
used for the mapping, and has a smooth variation on the directions of the hyperparameters

mapped to each dimension of the grid.

Analogous to the one dimensional case, various descriptive values can be used to de-
fine the points to be arranged into the hyper-cube, with 〈z〉 and 〈1/χ〉 still being suitable
options. As mentioned above, the big advantage is the fact that multiple descriptive val-
ues from the ensemble of realisations can be used to arrange the distributions into the
hyper-cube, which can help break the degeneracy between d and the posterior distribu-
tion.

An additional sophistication is to directly identify the most important features of the
n(z) variation in determining the inferred cosmology. To do this we find which com-
ponents (or linear combinations of components) of the cosmic shear data vector (in our
case the two-point correlation function of galaxy shapes as a function of angular scale
ξ(θ)) are the main contributors to the variation in χ2 goodness of fit (at a fixed cosmol-
ogy) computed between the observed data vector and simulated data vectors using each
available n(z) realisation.

The different samples ni(z) influence the likelihood through their impact on the theo-
retical data vector ξi that is produced when sample i is chosen. Let’s consider a nominal
data vector ξ0 to come from a model with a reference cosmological and nuisance param-
eters and value of n(z). Then we have the χ2 shift induced by changing from nominal to
sample i as

χ2
i = (di − d0)

T C−1 (di − d0) (4.20)

where C is the adopted covariance matrix for the data vector. If we define the matrix D
such that Dij is equal to the jth element of ξi − ξ0, then the total variation of χ2 over all
samples is

V ≡
M

∑
i=1

χ2
i = Tr

(
DC−1D

)
. (4.21)
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If we can factor the symmetric square matrix in the trace by taking its eigenvalues and
eigenvectors such that

DC−1D = UΛUT, (4.22)

where U is an orthonormal matrix and

Λ = diag(λ1, λ2, . . . , λN) (4.23)

(where N is the length of the data vector now), then we obtain

V =
M

∑
i=1

χ2
i = Tr

(
UΛUT

)
= Tr

(
ΛUTU

)
=

N

∑
j=1

λj =
M

∑
i=1

N

∑
j=1

λjU2
ij (4.24)

Now let’s assume that the λj are in decreasing order (they are all positive when M > N),
and let’s assume that we want our descriptive values d to have K elements. Then follow-
ing the usual logic of principal component analysis, the strategy which would leave the
smallest residual V after controlling for d would be to choose the first K coefficients of
the PCA as the indicator variables:

di = {Ui1, Ui2, . . . , UiK}. (4.25)

In this case the sampler, choosing to sample at some d, can expect that the χ2 value
(relative to nominal data) to be

χ2 =
K

∑
j=1

λjx2
j + r (4.26)

where the "roughness" function r has an RMS value over the samples of

〈r〉 = 1
M

N

∑
j=K+1

λj. (4.27)

This formula also tells us that, ideally, we should increase K until the quantity on the
previous line is� 1.

4.3 Summary

In this chapter we have described the Bayesian approach to inferring model parameters
using a family of techniques which stochastically samples the space of parameters. Us-
ing specific acceptance rules, high dimensionality distributions can be sampled efficiently
not only giving insight into the best fit parameters of a model, but also on the degree of
confidence given our prior expectations and their associated uncertainties. We described
the concept of nested sampling, how it can be employed to compute evidences and ob-
tain samples from the posterior distribution, and how specific conditions can impact the
efficiency of such techniques. In this context, and in view of the proposed scheme for the
estimation of source redshift distributions for the DES Y3 analysis, presented in chapter
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3 we presented HYPERRANK, a novel technique to propagate photometric redshift uncer-
tainties in weak lensing and galaxy clustering experiments. By sampling from a uniform
space of hyper-parameters mapped to an ensemble of proposal redshift distributions, HY-
PERRANK is able to propagate any type of uncertainty described by the ensemble. This
provides an alternative to simpler approaches where the uncertainty is only described as
a shift of the distributions along the redshift direction.

In chapter 5 we will describe a series of tests devised to validate and explore the per-
formance of HYPERRANK in simulated data and compare it to the more traditional ∆z
marginalisation approach. In chapter 6 we will present the results of applying HYPER-
RANK to the data products of the DES Y3 analysis.
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Chapter 5

Testing and validation of
HYPERRANK in the Buzzard
simulations

In chapters 3 and 4 we presented the plan for the estimation of the redshift distribu-
tion of weak-lensing sources in the DES Y3 analysis and the process to characterize and
propagate their uncertainties into the inferred cosmological parameters. As with all the
methods employed in the pipeline these steps must be validated in order to understand
potential sources of biases and to characterize their associated uncertainties. We start
this chapter describing the main characteristics of BUZZARD in section 5.1, a set of N-
body simulations purposely built to mimic the properties of real DES data and to be used
for validation of several aspects of the full pipeline, including the SOMPZ scheme and HY-
PERRANK. Then we present the tests for validation of the HYPERRANK marginalisation
technique applied to the BUZZARD simulations.

The author of this thesis designed and conducted the tests to validate and quantify
HYPERRANK sampling efficiency under different equivalent uncertainties, number of re-
alisations, choice of descriptive values d and ranking schemes. The author also generated
the samples describing the different types of uncertainty and configures CosmoSIS to run
HYPERRANK on those ensembles. The designed tests and their results shown here are also
presented in Cordero et al. (2020).

5.1 BUZZARD simulations

The BUZZARD simulations are a set of mock DES Y3 surveys created from a suite of
18 dark-matter N-body simulations using a memory-optimised version of L-GADGET2
(DeRose et al., 2019, 2020) which separates the full redshift range into three boxes which
are simulated independently. A single set of these simulations is able to provide a light-
cone with an area of 10,413 square degrees up to a redshift of z = 2.35. Galaxies and
their main morphological properties are added using ADDGALS (DeRose et al., 2019).
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Each galaxy is assigned an absolute magnitude based on an empirical luminosity func-
tion from obtained from the Sloan Digital Sky Survey Main Galaxy Samples (SDSS-MGS),
and their positions assigned based on clustering statistics from the same survey. Based
on the absolute magnitude, a spectral energy distribution is assigned to each galaxy and
DES ugriz and VISTA JHK photometry is obtained from the simulated spectral energy
distributions. Intrinsic ellipticity for the simulated galaxies are assigned based on the
obtained empirical luminosity function and then lensed and magnified by the simulation
large scale structure using ray tracing. The samples of galaxies are then "observed" by
DES, by rotating their positions to the footprint of DES, and applying a noise model to
the fluxes. This is necessary since the noise model is position dependent, based on Galaxy
extinction and the depth at each band on the real observations of DES.

The end result is a large catalog of sources with true photometry in any arbitrary
band, true redshifts, ellipticity values and noisy simulated values of the photometry as
observed by DES. These are fundamental ingredients for the validation of the method-
ologies in the DES Y3 analysis, since comparison between obtained and true values can
be used to assess the performance and associated uncertainties of each method.

In the case of HYPERRANK, BUZZARD presents an appropriate testing ground to eval-
uate its performance and suitability for use in the pipeline of the DES Y3 analysis by
generating different sets of n(z) samples covering the types of uncertainty for which HY-
PERRANK is expected to provide a better marginalisation than the fiducial ∆z approach.

5.1.1 n(z) Ensemble from the BUZZARD simulations

In 3.3 we described the process to characterize the uncertainty associated with the SOMPZ

scheme, which employs a smart discretization of the deep and wide colour spaces of two
galaxy samples to build a transformation between the two by assigning galaxies with real
and simulated photometry available for both samples. In section 3.2.2 we also described
the 3SDIR process in which the histogram uncertainties due to cosmic variance and shot
noise are incorporated into an ensemble of n(z) obtained from the best-estimate SOMPZ

n(z) distribution using a three-step Dirichlet sampling process. The pipeline described
above was applied to the simulated galaxy catalogs generated from the BUZZARD sim-
ulations as part of the validation process described in (Myles et al., 2020) and resulted
in 500 n(z) distributions (Figure 3.10) which we use here as the base for the validation
and performance tests. While this set of realisations does not span the full range of types
of uncertainties we expect HYPERRANK to be effective over, they do represent a realistic
scenario expected for DES Y3 data. We can use them as a base to construct additional sets
of realistic realisations, keeping their consistency with the simulated data-vectors we use
in our analysis. We use this ensemble of realisations to define a fiducial redshift distri-
bution, nFid(z) by averaging the values for each histogram bin across all 500 realisations.
We then use this distribution as the base to construct several additional distribution en-
sembles encoding different types of uncertainty.
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5.2 Validation and performance tests

We aim to validate the HYPERRANK method for marginalising over redshift distribution
uncertainty and explore its configuration, with the target of using it for the weak lensing
source redshift distributions in the DES Year 3 cosmological analysis. To do so we explore
the effects of marginalizing over ensembles of n(z) distributions constructed to represent
four main types of uncertainty:

• Uncorrelated Gaussian mean shifts: Distributions from these ensembles are shifted
versions of nFid(z) along the z-direction according to equation 4.9, with shifts for
each tomographic bin corresponding being drawn from a Gaussian distribution
which is uncorrelated between tomographic bins. This is similar to the ∆z approach
described in 4.2, with the exception that ∆zi values are limited to the values drawn
before marginalization, and not obtained arbitrarily by the sampler.

• Uncorrelated non-Gaussian mean shifts: Similar to the above, but ∆z values are
drawn from an asymmetric Gamma distribution with long tail towards high red-
shift, parameterized by a set of shape and scale parameters to match the variance
of an equivalent reference Gaussian distribution.

• Correlated Gaussian mean shifts: ∆z values are drawn from a multi-dimensional
Gaussian distribution characterized by a covariance matrix which can be adjusted
to result in different levels of correlation between pairs of tomographic bins.

• Amplified peculiarities: The histogram values n(zi) of each of the 500 SOMPZ +3SDIR

realisations are amplified with respect to their average values in nFid(z) to accentu-
ate the peculiarities of each realisation.

We investigate the HYPERRANK method’s ability to marginalise over these types of
uncertainty and compare it against the results obtained from marginalizing uncertainty
using the standard ∆z approach, which is only able to accurately describe Gaussian ∆z
shifts. We also investigate whether hyperrank is able to marginalise these types of un-
certainty both correctly in terms of the coverage of the input space of possible n(z) which
each ensemble represents and efficiently by requiring as few likelihood evaluations in the
MCMC as possible to converge. We test the correctness by comparing the error bars on
Ωm, σ8 and S8 = σ8

√
Ωm/0.3 parameters obtained from a cosmological parameter infer-

ence pipeline. Efficiency is tested by comparing the number of likelihood evaluations
under several configurations of HYPERRANK including the one- and multi-dimensional
implementations described in 4.2.1 and 4.2.2 respectively, as well as descriptive values d
used to rank the n(z) realisations.

An important goal of these validation tests is to provide a baseline configuration to
be used in the DES-Y3 cosmology pipeline, and the expectation regarding the input n(z)
ensemble. We estimate an approximate minimum number of n(z) realisations required
before systematic errors on the cosmology parameters from the discreteness introduced
by HYPERRANK become negligible. Throughout these tests we use the DES-Y3 modelling
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TABLE 5.1: Summary of cosmological, systematic, and astrophysical sampling parameters
used in the fiducial analysis and their priors. In the case of flat priors, the prior bound to the
range indicated in the Value column while Gaussian priors are described by their mean and

1σ width.

Parameter Symbol Type Value
Cosmological
Matter density Ωm Flat [0.1, 0.9]
Baryon density Ωb Flat [0.03, 0.07]

Scalar spectrum ampl. As × 10−9 Flat [0.5, 5.0]
Hubble parameter h Flat [0.55, 0.91]

Spectral ind. ns Flat [0.87,1.07]
Neutrino mass Ωνh2 Flat [0.0006,0.00644]

Curvature Ωk Fixed [0.0]
Optical depth τ Fixed [0.0697]
Observational

Shear calibration 1 m1 Gauss. ( 0, 0.005 )
Shear calibration 2 m2 Gauss. ( 0, 0.005 )
Shear calibration 3 m3 Gauss. ( 0, 0.005 )
Shear calibration 4 m4 Gauss. ( 0, 0.005 )

Intrinsic alignments
Tidal alignment ampl. a1 Flat [−5, 5]

Tidal torque ampl. a2 Flat [−5, 5]
Tidal alignment redshift ind. η1 Flat [−5, 5]

Tidal torque redshift ind. η2 Flat [−5, 5]
Tidal alignment bias bta Flat [0, 2]

choices, likelihood and pipeline software and configuration, which are described in detail
in Amon et al. (2020); Secco et al. (2020). The choice of parameters limits and priors is
similar to the analysis choices presented on those references and is presented in table 5.1.

We only consider cosmic shear in our data vector, which reduces the dimensionality
of the space of parameters to be sampled in the MCMC inference and enhances the ef-
fect of redshift systematics in the source sample. Nevertheless, this method can also be
applied to the distribution of lensing sources and used simultaneously in both redshift
distributions.

5.2.1 Sampling Efficiency

In addition to the correct exploration of the uncertainties, we also wish to see the effect
of the HYPERRANK procedure on the efficiency of mapping the posterior of cosmological
and nuisance parameters. For a randomly sampled set of distributions the likelihood is
not a smooth function of the parameters being sampled. Therefore, the parameter space
volume cannot be sampled consistently in higher likelihood regions since there is no cor-
relation between the sampled nuisance parameter and cosmology posterior. In this case,
any proposal step in the Monte Carlo algorithm typically do not have the intended ef-
fect, since proposed jumps in the redshift nuisance parameters are now across a random,
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FIGURE 5.1: Left: Histogram of ∆z values (blue) for the ensemble of 500 SOMPZ +3SDIR real-
isations obtained from the BUZZARD simulation. Each ∆z value is obtained from computing
the difference between mean redshift from each tomographic bin from each realisation and
the mean redshift from the fiducial distribution nFid(z), which is computed from averaging
all 500 realisations. A Gaussian fit (solid orange line) describes the corresponding equivalent
Gaussian prior, characterized by σ(∆z). Right: Corner plot of mean redshift values for all
four tomographic bins for the three n(z) ensemble generated by amplifying the equivalent
σ(∆z) from the 500 SOMPZ +3SDIR realisations. The amplification preserves the correlation

and non-Gaussianity of the ∆z distributions.

discontinuous likelihood. This leads to the sampler requiring many more likelihood eval-
uations to find new samples of the posterior. In the case of nested samplers like the ones
described in 4.1.3, a non-smooth posterior can result on its inability to consistently re-
duce the volume of parameters it samples, since the replacement of live points becomes
highly non-deterministic. HYPERRANK mapping of distributions using descriptive values
d seeks to arrange the ensemble of n(z) realisations such that the posterior is a smooth
function of the space of hyper-parametersH.

To quantify the relative performances we define the sampling efficiency η as the num-
ber of replacements (samples of the posterior) made by MULTINEST over the total num-
ber of likelihood evaluations required for convergence. We choose this instead of just
using the number of likelihood evaluations, as this quantity is highly dependent on the
dimensionality and volume of the space of sampled parameters. We test the different
mapping schemes described in sections 4.2.1 and 4.2.2 (1D and 3D 〈z〉, 3D 〈1/χ〉 and 3D-
PCA) and compare the sampling efficiency between them and against a naïve random
sampling of realisations. To do this we employ three different sets of realisations, the 500
SOMPZ +3SDIR n(z) and two additional sets obtained by shifting each tomographic bin
from the realisations using 4.12 by a value ∆z proportional to the difference between their
mean that of the nFid(z) bins.

∆zi = fm [〈nFid(z)〉 − 〈ni(z)〉] (5.1)
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FIGURE 5.2: The sampling efficiency η for the different mapping schemes described in sec-
tions 4.2.1 and 4.2.2, for three σ(∆z) amplifications values fm ( fm = 1 corresponds to the
original BUZZARD redshift distributions). Ranking schemes are sorted from left to right ac-
cording to its perceived complexity, with “random” corresponding to the simplest scheme in
which realisations are sampled completely at random. Each ranking scheme and prior ampli-
fication is repeated 5 times to better discern the effect of the ranking over random sampling

noise.

where fm is a proportionality constant we arbitrarily set to 1, 5 and 10. This preserves the
correlations between tomographic and histogram bins, small peculiarities of each inde-
pendent realisations, and non-Gaussianity of the sample (See figure 5.1) while allowing
us to explore the effect of larger equivalent uncertainties. Through this chapter we use
the concept of equivalent uncertainty of an ensemble of n(z) distributions, which we de-
fine as standard deviation of the distribution of mean redshift values, σ(∆z). To reduce
the effect of sampling noise due to the stochastic nature of the sampler, we repeat each
run five times with different initial random seeds for the sampler. Figure 5.2 shows the
individual sampling efficiencies η for each run at different fm values and as a function
of descriptive values d. For all fm values it is clear that the more complex choices of d
using multiple dimensions are more efficient at exploring the space of uncertainties, with
3D〈z〉 and 3D〈1/χ〉 leading at all fm values. This is expected since the addition of more
dimensions helps breaking the degeneracy of the posterior values present when a single
parameter is used and all the information of the n(z) realisations is compressed into a
single hyper-parameterH.

The PCA approach, also tested in three dimensions, provides an improvement over
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random and 1D sampling, but does not reach the same levels of efficiency for methods of
equal dimensionality. This may be caused by the fact that the principal components are
computed for the variations in ξ l

k(θ) with respect to a reference data vector obtained at a
fixed cosmology, and the relative importance of each data point reflected in the principal
components of the ∆ξ l

i,j(θk) matrix can change as the sampler moves in cosmology.
Perhaps one surprising result occurs when comparing the random approach against

1D〈z〉 in the un-amplified case ( fm = 1), in which the former does not appear to be
consistently less efficient. We believe this is caused by the relatively small contribution of
n(z) uncertainty to the posterior in the fm = 1 regime, as all realisations have very similar
mean redshift values in all tomographic bins. This can lead to a very small change of
smoothness of the posterior at a fixed cosmology when moving from a random ordering
to a 1D ordering, resulting on similar efficiencies. While we do not show the effect of
additional dimensions for a similar type of descriptive value d (i.e. 4D 〈z〉), some test
runs suggest their efficiency is not noticeable better than a 3D approach, at the expense
of noisier posteriors on theH parameters.

Based on these results we consider a 3D approach an appropriate default configura-
tion, with a preference for 〈z〉 since its computation does not involve the use of a fiducial
cosmology, unlike 〈1/χ〉.

5.2.2 Minimum number of samples

In HYPERRANK, discrete samples from the posterior over the sub-set of redshift nuisance
parameters are generated outside of the main chain used to sample over the cosmological
and other nuisance parameters. This means a limited and discrete set of values of the nui-
sance parameters are available to the main sampling, as opposed to the continuous range
of parameters within a specified prior which would be available otherwise. There will
be a transition from the regime in which there are two few realisations of n(z) available
to effectively explore the redshift distribution uncertainty, and the limit where infinitely
many realisations would be available, corresponding to the continuous case. Here we
investigate the convergence of HYPERRANK marginalisation with respect to the number
of n(z) samples generated, for the case of our DES-Y3 simulated data set.

We first generate several sets of distributions where each realisation is a shifted ver-
sion of the fiducial nFid(z), and the shifts are drawn from a Gaussian prior, following
a similar approach to the ∆z method. We generate 8 sets of redshift distributions, each
containing 33, 43, 53, 63, 73, 83, 93, 103 realisations which are then ranked using the 3 di-
mensional default configuration described at the end of 4.2.2.

Since we expect the approximate minimum number of realisations required for this
convergence to depend on the level of uncertainty in the n(z), we generate two additional
sets of proposal distributions by multiplying the σ(∆z) obtained above, by a factor fm =

5, 10 We then repeat the generation of proposal realisations with five different random
seeds for each of the three fm values, and for each of the 8 sets of realisations containing
different number of proposals. By comparing the standard deviation on the central, lower
and upper confidence values for the derived S8 parameter as a function of the number
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FIGURE 5.3: Standard deviation of the lower (purple), central (red), and upper (cyan) values
for the S8 parameter obtained using HYPERRANK for 5 realisations of the ensemble of n(z)
samples, as a function of the total number of distributions to form the ensemble. From top to
bottom, the equivalent σ(∆z) width is amplified by a progressively larger number, fm, with
respect to the original distributions of BUZZARD samples. Horizontal dashed lines indicate

the typical standard deviation for runs using the traditional ∆z marginalisation approach
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of realisations, we can find an approximate minimum number of realisations required
for the standard deviation of error bars from HYPERRANK converged to that obtained
using the ∆z approach (which is formally correct for this set of realisations). In 5.3 we can
observe that for all three levels of uncertainty, described by the amplification factor fm,
1000 realisations yield standard deviation of the error bars obtained using HYPERRANK

comparable to the ones using the ∆z approach (typical deviations with respect to the
stacked contours are around 0.09σ on all parameters).

5.2.3 Correct marginalisation of uncertainty

In order to test the correctness of HYPERRANK when propagating the uncertainty de-
scribed by the input proposal redshift distributions into the cosmological parameters, we
generate a series of n(z) ensembles each describing a different type of uncertainty. In
each case we explore what is the impact of the uncertainty in the inferred cosmological
parameters and compare the performance of HYPERRANK with results obtained by using
the standard marginalisation approach ∆z using a Gaussian prior obtained directly from
each ensemble of distributions.

Gaussian distributions for ∆z

A simple representation of uncertainty with which redshift distributions can be biased by
a constant shift ∆z along the z-direction assumes these effects are uncorrelated between
tomographic bins. The first test we devise utilizes an ensemble of n(z) distributions
shifted by the same distribution used in the standard ∆z approach. Within each tomo-
graphic bin we draw 1000 values of ∆z from a Gaussian distribution with width σ(∆z).
Realisations for n(z) are then generated by shifting the fiducial nFid(z) along the redshift
axis by the drawn ∆z. Aside from the fact that the ∆z values are defined prior to the
MCMC sampling, unlike the case of the standard nuisance parameter marginalisation
approach, the application of HYPERRANK to this ensemble of realisations is the closest to
an apples to apples comparison between the two. The results of this test can serve as our
first confirmation that the code and the approach to utilize a transformation between the
descriptive value d space and the hyper-parameters H yields the expected contours for
that particular uncertainty.

In order to assess performance and convergence we test HYPERRANK for three differ-
ent levels of uncertainty described by σ(∆z). For each level of uncertainty we amplify
the width of the Gaussian prior by multiplying σ(∆z) by a multiplicative factor fm. We
arbitrarily select three values for fm = 1 (No amplification), 5 and 10.

For our fiducial σ(∆z) we use the values appropriate obtained from the ensemble of
500 SOMPZ +3SDIR realisations (σ(∆z) = {0.0091, 0.0063, 0.0043, 0.0076}, see left panel of
figure 5.1). For reference, the values obtained from the DES Y1 source redshift calibra-
tion (Hoyle et al., 2018) are σ(∆z) = {0.016, 0.013, 0.011, 0.022} ( fm . 3), and the ones
obtained for the Y3 analysis, shown in section 3.3, are σ(∆z) = {0.015, 0.011, 0.008, 0.015}
( fm . 2). The unaltered case reflects a very optimistic calibration, fm = 5 describes a
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FIGURE 5.4: Corner plot showing the distribution of mean redshift values 〈z〉 from the en-
semble of 1000 n(z) distributions generated using a set of uncorrelated Gaussian distributed
∆z values. Blue, green and red contours show the distributions for the three levels of ampli-
fication of the equivalent width σ(∆z) by the factors fm = {1, 5 and 10}, respectively. It is
evident that for large values of the equivalent prior width σ(∆z), significant fractions of the
distribution of ∆z values are clipped at low redshifts, as a consequence of the imposed limit

at z = 0.

somewhat pessimistic but still realistic uncertainty given the typical values from current
and past DES analysis and fm = 10 represents a scenario with highly uncertain redshift
distributions. It is important to note that large negative values of ∆z can result in a high
probability mass at low redshift and potentially a relatively large fraction of it shifting to
negative ranges of z, especially for the first tomographic bin. When shifting realisations
we employ the same shifting algorithm used by CosmoSIS, in which any negative value
of n(z) is set to zero and the probability distribution is clipped to be zero for any negative
z value. The distribution of ∆z values with respect to the fiducial means from nFid(z) for
all three amplification values can be seen in figure 5.4.

Independent of the amplification value fm used the tomographic bin with the small-
est σ(∆z) corresponds to that of tomographic bin 3. Following the recommended con-
figuration we proposed in the previous section we use the mean redshift 〈z〉 from to-
mographic bins 1, 2 and 4 as descriptive values d. We then run the full cosmological
parameter estimation pipeline on the simulated data vector using these redshift distribu-
tions, marginalising over the uncertainties using both the ∆z method and HYPERRANK.
For the ∆z values we recompute the σ(∆z) from the generated n(z) ensemble instead of
using fmσ(∆z). This ensures the effects of clipping at z = 0 are accounted for and more
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FIGURE 5.5: Summary plots showing the 1D marginalised S8, Ωm and σ8 error bars obtained
from running the cosmic shear MCMC pipeline using HYPERRANK and ∆z marginalisation
schemes. The ensemble of n(z) distributions used in HYPERRANK describes an uncertainty
characterized by uncorrelated Gaussian ∆z shifts to the fiducial distribution nFid(z). Purple,
red and blue error bars correspond to the three amplification cases described by the fm values
1, 5 and 10, respectively. Vertical dashed line and light blue filled region represent the 1-
σ error bars from running the MCMC assuming no redshift uncertainty with the fiducial

redshift distribution nFid(z).

closely follows what the standard procedure would be, in which the σ(∆z) are computed
from the available samples.

Figure 5.5 shows the 1D marginalized error bars for each run used to compare HY-
PERRANK and the ∆z approach, for the three levels of uncertainty described both by the
ensemble of n(z) distributions and the equivalent prior widths σ(∆z). We see that HY-
PERRANK gives consistent error bars in S8, Ωm and σ8 when comparing to those obtained
using the standard ∆z marginalisation approach. We also plot the contours obtained from
running the analysis using nFid(z) as the input distribution and assuming it to be noise-
less (σ(∆z) = 0) and observe that for wider equivalent priors the Ωm and σ8 drift as much
as 1− σ. This is most likely caused by the condition imposed at z = 0 resulting on true
sampled distributions having slightly larger mean redshift than what is predicted from
the ∆z shifts alone, especially in the first tomographic bin.

While at first glance this is a trivial example, it shows that the method is at the very
least able to recover the same effects of redshift uncertainty when samples describe the
same type of uncertainty we typically describe by means of a ∆z nuisance parameter.

Non-Gaussian distributions for ∆z

Modelling the distribution of ∆z for each tomographic redshift bin as a Gaussian con-
stitutes an approximation to the true level of uncertainty which can potentially result in
an incorrect propagated uncertainty depending on the true ∆z distribution shape. In the
left panel of 5.1 we show histograms of the ∆z between nFid(z) and the 500 realisations
generated using the full uncertainty model for DES Y3. These show appreciable non-
Gaussianity, with skews and heavy tails which can be accentuated by the hard boundary
at z = 0 for all distributions. An alternative is to describe the ∆z prior using a more
complex functional form to account for these high order effects, or sample directly from
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the histogram of mean values obtained from an ensemble of distributions. HYPERRANK

is able to deal with these high order effects as it doesn’t require any functional form to
be fitted to the uncertainty description, abandoning the idea of uncertainty only being
described by a shift ∆z.

The test presented here serves an illustrative goal since the case for a non-Gaussian
uncertainty can be easily solved with the above alternatives. We investigate the impact
of the Gaussian approximation by generating sets of proposal distributions by sampling
∆z values from a highly skewed Gamma distribution to shift our fiducial distribution
nFid(z), and then marginalising over the uncertainty in a cosmological chain using HY-
PERRANK. We employ the shape-scale parameterisation for the Gamma distributions:

f (∆z; k, θ) =
∆zk−1ex/θ

θkΓ(k)
(5.2)

where Γ(k) is the Gamma function. The distribution is defined for ∆z > 0 and parame-
terized by the shape parameter k and scale parameter θ, both having positive values. The
shape parameter dictates how skewed the distribution is: small values of k define a dis-
tribution with a long tail towards positive ∆z values and a steep cutoff at 0, while larger
values make the distribution appear more symmetrical. The scale parameter θ typically
describes how “spread out” the distribution is. The convenience of using this parameter-
isation comes from the fact that its first moments are easy to compute in terms of k and θ,
with its mean being kθ and its variance equal to kθ2.

Using the prior definitions based on σ(∆z) we obtain the scale parameter θ such that
the standard deviation of our Gamma distribution is equal to that of a Gaussian by fixing
the shape parameter to a set of arbitrary low values k = 1, 2, 3 to ensure the distribution of
mean shifts of all tomographic bins have a long tail to high values and to explore the effect
of different degrees of non-Gaussianity. The distribution of values is then centered so that
the mean shift value is equal to zero, which generates a set of Gamma distributed ∆z with
the same variance and mean of that of a Gaussian, but with a skewness that cannot be
captured by the use of a standard Gaussian prior. We saw in the previous section when
using uncorrelated Gaussian draws that the effect of the smallest prior ( fm = 1) barely
inflates the contours with respect to the case where no redshift uncertainty is considered.
For this reason, we decide to draw the ∆z values from a distribution characterized by the
largest amplification values, fm = 10. The distributions of ∆z values for the three shape
parameters used here are shown in figure 5.6

The effect of uncertainty being better described by a Gamma distribution with a high
skewness does not seem to significantly affect the S8 error bars shown on figure 5.7, but is
evident on individual cosmological parameters, with Ωm values typically ∼ 0.2σ above
the ones obtained using the ∆z, and ∼ 0.3σ below for σ8. These values are larger than
the typical sampling noise for 1000 realisations, characterised in 5.2.2, and apparently in-
dependent of the shape parameter k, although it is worth noting that the three selected
values represent a fairly asymmetric distribution, as opposed to the Gaussian distribu-
tions characterised by k → ∞. The differences observed seem to suggest a moderate but
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FIGURE 5.6: Histogram of ∆z values computed with respect to the fiducial distribution
nFid(z) for the ensemble of 1000 n(z) distributions generated using a set of uncorrelated
Gamma distributed ∆z shifts. Blue, orange and green histogram show the distributions for
the increasingly non-symmetric distributions described by the shape parameters k = {3, 2
and 1}. Gray filled plot shows a Gaussian distribution with an equivalent σ(∆z), which

would have been used in the standard ∆z marginalisation approach.

non-negligible impact of non-Gaussianity on cosmological parameters, and are consis-
tent with the chosen direction of the tail of the distributions towards higher redshifts,
which favours higher values for Ωm, but are also obtained for an extremely wide equiva-
lent σ(∆z) prior, with typical deviations for smaller equivalent priors expected to be even
smaller.

Correlations between tomographic bins

Another aspect of uncertainty the standard ∆z scheme fails to account for is the potential
correlation between the uncertainty from different tomographic bins and histogram bins.
Since each tomographic bin is shifted independently, combinations of ∆z values which
would not be expected to appear in multiple realisations of the survey or photo-z analysis
are equally sampled. In addition to this, the use of a single fiducial shifted n(z) negates
the potential effect of correlation at the histogram bin level. Correlation can come from
the binning of galaxies and from how the shapes of the distributions and their moments
can change when galaxies are re-assigned to another histogram or tomographic bin in a
different realisation of a photo-z analysis. Depending on the nature of the colour-redshift
degeneracy, correlation can also appear between non contiguous tomographic bins. In
this case, the standard ∆z scheme can not be expected to preserve the effects of such
correlations, as the set of Ntomo ∆z nuisance parameters are sampled independently from
their corresponding priors in the Monte-Carlo chain. This has been previously mentioned
as a potential source of tension between DES Y1 and KiDS results (Joudaki et al., 2020). A
way to address the issue of correlated uncertainty between tomographic bins is to sample
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FIGURE 5.7: Summary plots showing the 1D marginalised S8, Ωm and σ8 error bars obtained
from running the cosmic shear MCMC pipeline using HYPERRANK and ∆z marginalisation
schemes. The ensemble of n(z) distributions used in hyperrank describes an uncertainty
characterized by uncorrelated ∆z shifts to the fiducial distribution nFid(z), drawn from a
Gamma distribution. Purple, red and blue error bars correspond to the non-Gaussian cases
described by the k values 3, 2 and 1, respectively. Vertical dashed line and light blue filled
region represent the 1-σ error bars from running the MCMC assuming no redshift uncertainty

with the fiducial redshift distribution nFid(z).

the ∆z values jointly from a multidimensional Gaussian distribution characterized by an
adequate covariance matrix.

Drawing a value of the HYPERRANK parameter(s) in a chain jointly specifies the n(z)
to be used in all tomographic bins and preserves these correlations, which can potentially
lead to tighter contours on the cosmological parameters since the space of ∆z values is
restricted to those allowed by the samples. Depending on the sign of the correlation, this
can also result in a shift of the contours if the ∆z values favour a combination of high or
low mean redshift only (positive correlation), instead of a combination of low and high
mean redshift (negative correlation).

To explore the potential effects of these correlations at the tomographic bin level on in-
ferred cosmological parameters, we generate three sets of mean-shifted realisations of the
fiducial nFid(z) with values of ∆z sampled from a covariance matrix with increasing cor-
relation between arbitrarily selected tomographic bin pairs. To generate the covariance
matrices which describe these correlations we separate the correlation into two pairs of
bins: (1,2) and (3,4). This way we can control the correlation via the Pearson correlation
coefficient:

ρi,j =
cov(∆zi, ∆zj)

σ(∆zi)σ(∆zj)
(5.3)

We arbitrarily set ρ1,2 = ρ3,4 = {0.25, 0.5, 0.75} and generate each pair of correlated ∆z
values independently making sure their final σ(∆z) correspond to the ones for the desired
prior. To better visualise the effects of these correlations once again we use an amplified
σ(∆z) prior to describe the diagonal of the covariance matrix, equal to the fm = 10 prior
described in section 5.2.3. The correlations between ∆z values can be seen in figure 5.8
for the three choices of ρ.

The effect of correlated uncertainties can be seen in figure 5.9, where small deviations
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FIGURE 5.8: Corner plot showing the distribution of mean redshift values 〈z〉 from the en-
semble of 1000 n(z) distributions generated using a set of correlated Gaussian distributed ∆z
values. Blue, green and red contours show the distributions for the three levels of correlation
described by the Pearson coefficients ρ = {0.25, 0.50 and 0.75}, respectively. Despite their
correlation, all samples of ∆z have the exact same equivalent σ(∆z) widths. All ensembles of
distribution have the same values for the ∆z1 and ∆z3, wich are used as the base to generate
the correlated values ∆z2 and ∆z4 respectively. Hence, their distribution appear identical for

all three ensembles.
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FIGURE 5.9: Summary plots showing the 1D marginalised S8, Ωm and σ8 error bars obtained
from running the cosmic shear MCMC pipeline using HYPERRANK and ∆z marginalisation
schemes. The ensemble of n(z) distributions used in hyperrank describes an uncertainty
characterized by correlated Gaussian ∆z shifts to the fiducial distribution nFid(z). Purple,
red and blue error bars correspond to the three levels of correlation described by the ρ values
0.25, 0.5 and 0.75, respectively. Vertical dashed line and light blue filled region represent the
1-σ error bars from running the MCMC assuming no redshift uncertainty with the fiducial

redshift distribution nFid(z).

on the S8 parameter (∼ 0.3σ) can be observed, above the typical sampling noise value ex-
pected for 1000 realisations, observed in section 5.2 It is worth noting that there does not
seem to be a correlation between the deviation of the central values and the level of corre-
lation, although for some tests done with an even larger correlation between the pairs of
tomographic bins the contours obtained are heavily biased and their 1− σ confidence in-
tervals shrink significantly. A notable feature of these results is the fact that the direction
of the deviation of the S8 parameters changes to a higher value than the one obtained for
the ∆z approach when increasing the correlation between tomographic bins, to a Pearson
correlation coefficient of 0.75. This is perhaps caused by a strong self-calibration effect,
as the lower values of equivalent ∆z on one tomographic bin are accompanied by a sim-
ilarly low value on the corresponding pair, resulting in low posterior values each time
that part of the ∆z space is visited. In all cases, ρ = 0.25− 0.75 are relatively large values
compared to the correlation observed for the 500 BUZZARD realisations ρ ∼ 0.34 for the
bin pair with highest correlation), more in line with the values expected in real data.

Higher order modes of uncertainty

Finally, we create as set of realisations of n(z) which represent a fully flexible model of
the uncertainty in n(z), following the approach in which histogram bin heights as a func-
tion of redshift within a tomographic bin are treated as the nuisance parameters to be in-
ferred. These are the 500 realisations of possible n(z) generated using the SOMPZ +3SDIR.
As above for the different values of fm, we additionally apply a procedure to these real-
isations to artificially increase the level of uncertainty they represent. Starting from the
set of 500 realisations, we amplify the difference between each of the n(zi) values and
the value of the fiducial distribution nFid(z), such that n′(zi) = n(zi) + λ

[
n(zi)− n f (zi)

]
.

For this test we generate three sets of distributions: one with no amplification, λ = 0;
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FIGURE 5.10: Violin plot showing an example of the amplified peculiarities for the three
levels of amplification of tomographic bin 1, described by λ = 0 (No amplification, green),

1.5 (blue) and 3.0 (red).

and two with amplified peculiarities, λ = {1.5, 3}. While the average n(z) obtained
from the amplified realisations remains unaltered, this procedure can result in a slightly
wider equivalent Gaussian prior σ(∆z) to those of the un-amplified realisations. Thus,
we also obtain the σ(∆z) values for each set of distributions and use them to compare
HYPERRANK to the standard ∆z marginalisation. An illustration of this amplification can
be seen in the violin plots presented in figure 5.10.

From figure 5.11 it can be seen that the effects on the S8 parameters are fairly small,
compared to the typical sampler noise seen for 500 realisations in the fm = 1 case. Con-
tours for the λ = 0, consistent with the typical uncertainties obtained using the SOMPZ
scheme on BUZZARD show very little differences to the contours obtained the standard
∆z marginalisation approach. The case for larger amplification values the contours ap-
pear to shrink slightly in S8, by a larger factor than the typical value expected from sam-
pling noise.

5.3 Summary

In chapter 4 we presented the formalism for a new approach to marginalising redshift
systematics in weak lensing and galaxy clustering experiments by ranking and mapping
a set of proposal n(z) distributions encoding the photometric redshift uncertainty to a
continuous hyper-parameter which is then sampled in the MC chain. In this chapter
we showed that this approach, while resulting in a ∼ 50% penalty in total number of
likelihood evaluations, provides an equivalent result to standard marginalisation using
nuisance parameters when the uncertainty can be described by just a shift in mean red-
shift ∆z. It can also marginalise over higher order uncertainties caused by method sys-
tematics, photometric errors or other sources of error which are difficult to parameterize
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FIGURE 5.11: Summary plots showing the 1D marginalised S8, Ωm and σ8 error bars ob-
tained from running the cosmic shear MCMC pipeline using HYPERRANK and ∆z marginal-
isation schemes. The ensemble of n(z) distributions used in hyperrank describes an uncer-
tainty characterized by amplified peculiarities of the SOMPZ +3SDIR n(z) ensemble. Purple,
red and blue error bars correspond to the three amplification cases described by the λ val-
ues 0, 1.5 and 3.0, respectively. Vertical dashed line and light blue filled region represent the
1-σ error bars from running the MCMC assuming no redshift uncertainty with the fiducial

redshift distribution nFid(z).

to be marginalised as nuisance parameters. Additionally, this approach preserves the
correlation between these effects at the tomographic and histogram bin level which, if
unaccounted for, can lead to an overestimation of the confidence levels in cosmological
parameters, previously ignored in weak lensing experiments.

We used this approach to test the effect of these high order variations on the red-
shift distributions used for weak lensing by generating a series of n(z) ensembles repre-
sentative of different potential descriptions of systematics typically ignored when using
nuisance parameters to describe uncertainty as a ∆z shift in the mean redshift of each
tomographic bin. We showed that while there are observable differences in the resultant
contours exceeding their expected variance caused by sampling noise, these are only ap-
preciable when uncertainty is large in comparison to the expected levels for current weak
lensing experiments.

A set of tests were conducted to obtain an approximate optimal configuration for the
descriptive values used to rank the distributions and its effect on sampling efficiency, re-
sulting in the use of mean redshift of a sub-set of tomographic bins, 〈z〉n being the ranking
with the lowest typical number of likelihood evaluations required for convergence.

In chapter 6 we will explore the performance of HYPERRANK for the particular levels
of uncertainty expected for DES Y3 analysis and discuss its applicability to in the fidu-
cial DES Y3 data analysis, based on the difference in obtained confidence contours with
respect to the standard approach using ∆z shifts.
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Chapter 6

Results of using HYPERRANK on DES
Y3 data

In chapters 3 and 4 we presented the plan to estimate the line-of-sight distribution of
weak lensing sources using the SOMPZ scheme, quantify the associated uncertainty to
these estimates and the strategy to propagate this uncertainty into the inferred cosmo-
logical parameters using HYPERRANK.

In this chapter we discuss the application of HYPERRANK to propagate uncertainty of
the photometric redshift distributions into the cosmological parameter inference in the
DES Y3 weak lensing analysis. In section 6.1 we briefly discuss the differences between
HYPERRANK and standard ∆z marginalisation approach by comparing the sampling ef-
ficiency and cosmological parameter contours obtained on a set of BUZZARD n(z) real-
isations closely resembling the uncertainty expected for the DES Y3 real data. Then, in
section 6.2 we describe the main DES Y3 cosmic shear pipeline, its data products and
the application of HYPERRANK to the ensemble of realisations obtained using the SOMPZ

scheme, presented in chapter 3. The results of applying HYPERRANK to the DES Y3 data
realisations are also presented in Amon et al. (2020) in which the author of this thesis has
contributed as co-author. The contributions of the author of this thesis include the config-
uration of the HYPERRANK module to accommodate for the n(z) ensemble coming from
the SOMPZ + 3SDIR scheme and configuration of the standard marginalization modules
using ∆z.

6.1 Forecasts on efficiency and correctness

Here we discuss the recommended baseline configuration for DES Y3 data analysis based
on the results obtained in chapter 5 for the BUZZARD simulations, and specifically for the
set of realisations that better describes the expected magnitude of photo-z systematics
from real data. This configuration is being applied to real DES Y3 data, including the
analysis of cosmic shear data (Amon et al., 2020; Secco et al., 2020) and cosmic shear
plus galaxy-galaxy lensing and clustering (3x2pt; DES Collaboration et al., 2020). Given
the magnitude of these systematics, we discuss the benefits of using HYPERRANK as an
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alternative to marginalise photo-z uncertainty and whether the ∆z approximation is still
a compelling option given its better sampling efficiency.

6.1.1 Configuration

In chapter 4 we described HYPERRANK as a dimensional reduction of all the modes of
uncertainty described by a set of Np n(z) realisations, into a set of n hyper-parameters
H ∈ [0, 1)n using a set of descriptive values d. These hyper-parameters can be sampled
continuously by the Monte Carlo sampler and act as the set of nuisance parameters to
marginalise from the joint posterior distribution. This reduction is then a function of
three main components: Np, n, and d, from which we can only tune the last two, while
providing a minimum recommended value for Np. This value is ultimately determined
by the ability of the photometric redshift pipeline to generate the n(z) samples.

We have argued in section 5.2.2 that the number of realisations Np ultimately deter-
mines how well the different modes of uncertainty are described and has a large impact
on the marginalised contours of cosmological parameters. For DES Y3, the 3sDir+HMC
sampling scheme is able to provide enough samples to overcome this limitation so the
only concern is whether we can find the positions of the n(z) in the multi-dimensional
grid in a reasonable time. For the level of uncertainties expected for DES Y3 ( fm ∼ 2; see
Myles et al., 2020) we expect Np ∼ 1000 realisations to be an adequate minimum number.
Still, the linear sum assignment can to map up to 163 realisations in a time comparable to
what a full MC chain takes to run, taking approximately a couple days on a single core.
If the ensemble of distributions and the set of descriptive values d does not change, then
the computation of the mapping can be done only once and then provided to each MC
run as a pre-computed array. This is useful if multiple chains are run using a different
datavector (e.g. 3x2pt analysis) or sets of priors (ωCDM versus ΛCDM).

Alternative approaches to speed-up the mapping of n(z) realisations to the multi-
dimensional hyper-cube include solutions of the linear sum assignment using parallel
computing (e.g. Date & Nagi, 2016), or the use of simpler space discretization methods
like the uneven grid assignment we presented in 4.2.2. We do not explore those meth-
ods here, although we expect alternative arrangements to only have a minor impact on
sampling efficiency and not on the shape of the final contours.

The choice of descriptive values d and number of dimensions n plays a significant
role in achieving optimal sampling efficiency. Results from our tests presented in 5.2.1
suggest that choosing an appropriate set of descriptive values can result in a reduction
in likelihood evaluations over a purely random approach (See 5.2), and moving from a
single dimension to 3 has a large effect too. From those results we find that while 〈z〉
and 〈1/χ〉 trade the lead in terms of efficiency, for the case that better represents the set
of uncertainties expected for DES Y3 the use of three tomographic bin mean redshifts
from the bins with the highest expected σ(∆z) show the best sampling efficiency, and we
suggest it to be used in DES Y3 data.
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FIGURE 6.1: Figure showing the correlation between redshift distribution uncertainty nui-
sance parameters in the BUZZARD simulated DES-Y3 analysis, comparing the standard ∆z
approach (red) with the HYPERRANK approach presented in this work (blue). Top shows
the recovered posteriors on mean redshifts of redshift distributions within the tomographic
bins considered. bottom shows the recovered cosmological parameters for both approaches,
and the HYPERRANK ranking parameters. Both show good agreement between the two ap-

proaches for the modelled uncertainty expected in DES-Y3.
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6.1.2 Forecasts

The left panel of 6.1 shows the distribution of ∆z nuisance parameters, and the posterior-
weighted mean redshifts of the n(z) realisations used in HYPERRANK. This explicitly
shows the important result of HYPERRANK exploring the same space of uncertainty as
the ∆z for these simulated data and realisations. The right panel of 6.1 shows the joint
posteriors for σ8 and Ωm obtained from the ensemble of 500 n(z) distributions obtained
with BUZZARD, using an equivalent σ(∆z) prior for the ∆z scheme, and the full ensemble
of realisations for HYPERRANK, with the mean redshift from tomographic bins 1, 2 and
4 as descriptive values in a 3D hyper-cube configuration (as in our suggested configura-
tion). We can see that for the level of uncertainty expected for DES Y3, the differences
between the ∆z approach and HYPERRANK are minor, and consistent with the sampling
noise for a similar set of realisations at an equivalent σ(∆z) regime. We also show the
joint posterior for the HYPERRANK parameters H which should be contrasted with the
uniform prior on each H, showing smooth variation of the posterior and favouring of
a particular sub-set of n(z) realisations. Together, the results in 6.1 indicate that the ∆z
model appears adequate for the redshift uncertainties which are thought to be present in
the DES-Y3 data, meaning it may be used in place of HYPERRANK without bias or loss
of constraining power on cosmological parameters. In this particular run, HYPERRANK

requires close to 50% more likelihood evaluations per posterior sample than the ∆z ap-
proach.

These results suggests that for the level of uncertainty expected for DES Y3, where
the correlation between tomographic bins is expected to be small and the mean redshift
values of each tomographic bin of the n(z) ensemble are close to Gaussian-distributed,
the ∆z marginalisation approach is still a compelling option. Given these observations,
it has been decided that the fiducial analysis presented in the DES Y3 publications will
use ∆z instead of HYPERRANK, but the comparison and test of robustness to the choice of
systematic modelling will still be shown.

6.2 Application to DES Y3 data

The methodological infrastructure and robustness of the DES Y3 cosmic shear is pre-
sented in detail in Secco et al. (2020) and Amon et al. (2020). Secco et al. (2020) primar-
ily deals with the robustness to the modeling of intrinsic alignments, baryon physics,
high order lensing effects and neutrinos. It also presents consistency tests with exter-
nal datasets. Amon et al. (2020) in turn presents the analysis choices and testing of
methodologies related to shear measurements, image simulations and redshift distribu-
tions. Both of these are complementary works and present the constraints obtained using
cosmic shear, which are combined with the estimates of galaxy clustering (Rodríguez-
Monroy et al., 2020) and galaxy-galaxy lensing (Prat et al., 2020) into a joint 3x2pt analysis
which will be presented in DES Collaboration et al. (2020).

The summary of the complete analysis can be given in context with the supporting
publications of the DES Y3 analysis:
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• New PSF modelling (Jarvis et al., 2020) combined with weak lensing shape mea-
surement based upon METACALIBRATION (Sheldon & Huff, 2017) gives a catalogue
of 100 million selected galaxies that are validated in Gatti et al. (2020b). The shear
correlation functions ξ± are computed using TREECORR (Jarvis, 2015) in 20 angular
bins logaritmically spaced between 2.5 and 250 arcmins.

• Redshift calibration methodology is summarised in Myles et al. (2020) and in chap-
ter 3. This calibration scheme employs data from narrow-band photometric and
spectroscopic sources and DES deep observations presented in (Hartley et al., 2020a)
to estimate the line-of-sight distribution of wide sources using a transition matrix
characterizing the deep-to-wide color relation, characterized by BALROG. The full
scheme incorporates new independent methods, a two-step reweighting with self-
organising maps (Buchs et al., 2019), clustering redshifts (Gatti et al., 2020a), and
small-scale shear ratios (Sánchez et al., 2020a), to precisely constrain the redshift
distributions.

• Alternative techniques for modelling and marginalising over the uncertainty on the
tomographic distributions are tested including HYPERRANK (Cordero et al., 2020),
presented in chapter 4. The method is compared against a standard marginalisation
approach where uncertainty is described by a set of independent tomographic bin
shiftt ∆z, drawn from a Gaussian prior computed from the uncertainty presented
in table 3.1.

• State-of-the-art shear calibration with realistic image simulations and new method-
ology to account for the impact of blending on the effective redshift distribution for
lensing measurements in MacCrann et al. (2020a).

• The general methodology, likelihood analysis and covariance are presented in Krause
et al. (2020) and Friedrich et al. (2020) independently validated using realistic simu-
lations in DeRose et al. (2020). The MCMC chains are run using COSMOSIS (Zuntz
et al., 2015), a modular cosmological analysis software.

• The statistical framework to assess the internal consistency of the DES data and
measurements is presented in (Doux et al., 2020) and the consistency with indepen-
dent, external data in (Lemos et al., 2020).

Three main aspects of the redshift calibration pipeline are to be tested in Amon et al.
(2020): (i) the robustness to the choice of redshift information to inform the SOMPZ scheme
(spectra, COSMOS, COSMOS+PAU), (ii) the consistency between the three independent
methods used to constrain the redshift distributions (SOMPZ, clustering redshifts and
shear rations), and (iii) robustness to the how the uncertainty is modelled and propa-
gated (∆z vs HYPERRANK).

We are primarily interested in the robustness to the choice of uncertainty modelling,
and whether our prediction that for the level of uncertainty expected for DES Y3 data
the use of a ∆z marginalisation provides similar results to those of using HYPERRANK
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is correct. We then proceed to compare the cosmological parameters inferred using the
fiducial choices of the DES Y3 cosmic shear analysis. These include parameter bound-
aries and priors described in table 5.1. The ensemble of redshift distributions consists
of 1000 realisations obtained using the 3SDIR + HMC sampling procedure presented in
section 3.2.2 and depicted in figure 3.8. Following the recommended configuration pro-
posed in chapter 5, we map the mean redshift from tomographic bins 1,2 and 4 to three
hyper-parameters, since these tomographic bins are the three with the largest equiva-
lent uncertainty σ(∆z). The standard marginalisation ∆z nuisance parameters are drawn
from Gaussian priors described by σ(∆z) from table 3.1.

Figure 6.2 shows the cosmological parameters inferred from the two marginalisation
approaches described above. Both runs employ the same datavector describing the two-
point shear correlation functions and the same sets of nuisance parameters describing
intrinsic alignments and multiplicative shear biases. It can be seen that the inferred cos-
mology is robust to the choice of marginalisation scheme. Figure 6.3 shows a comparison
of the sampled uncertainty for each case, where the consistency between the standard
∆z approach and HYPERRANK can also be seen. These results confirm the predictions
made in 6.1: modelling only the mean of the redshift distribution captures the full effect
of photo-z bias uncertainty as analysed with HYPERRANK, illustrating that differences in
the shape of the redshift distribution are sub-dominant for cosmic shear at the uncertainty
of DES Y3.

6.3 Summary

In this chapter we have briefly discussed the applicability of the HYPERRANK scheme to
propagate source redshift distribution uncertainty in the DES Y3 cosmic shear analysis.
While HYPERRANK allows us to include higher order uncertainty effects than the stan-
dard ∆z approach, the observed differences in inferred cosmological parameters for the
levels of uncertainty expected for DES Y3 are small. This, in addition to the increased
number of likelihood evaluations required to achieve convergence suggests that the use
of nuisance parameters describing uncertainty as an independent shift ∆z in the z direc-
tion for each tomographic bin is a good enough approximation to be the fiducial choice
of marginalisation.

To test the robustness of this conclusion, we compared the two marginalisation ap-
proaches on real data form the DES Y3 cosmic shear analysis and indeed confirm that the
inferred cosmology is robust to the choice of uncertainty modelling.
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FIGURE 6.2: Comparison of DES Y3 cosmic shear cosmological parameter constrains ob-
tained using HYPERRANK (blue) versus using ∆z to model uncertainty. Consistency of the
contours shows that the ∆z is a good approximation for the level of uncertainty expected for
DES Y3. The slightly tighter posteriors can be explained as a consequence of the correlations
between tomographic bins not considered by the standard ∆z approach, and the slightly nar-

rower ∆z posteriors seen in figure 6.3
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FIGURE 6.3: Comparison between the sampled ∆z nuisance parameters and the distribu-
tion of shifts from the sampled realisations using HYPERRANK with respect to the fidu-
cial realisation nFid(z). The shifts for the HYPERRANK chain are computed as ∆zHyp =
〈nHyp(z)〉 − 〈nFid(z)〉 for all of the sampled realisations in the HYPERRANK chain. Figure
shows that HYPERRANK explores uncertainty of the mean redshift of the tomographic bins

similarly to the ∆z approach.



133

Chapter 7

Final remarks

In this chapter we give a brief overview of the work presented in this thesis along with
some remarks regarding specific areas where the approaches employed can be improved,
and the perspectives for their importance in the wider field.

7.1 Summary and remarks about the current work

In chapter 1 we presented the basic concepts of the standard model of cosmology, which
describes the evolution of the largest structures in the Universe and the formalism to sta-
tistically describe their distribution. This evolution is driven by the interactions between
the Universe components within the fabric of space-time where they are embedded, as
described by General Relativity. Since a large fraction of the energy distribution is be-
lieved to come from two components for which we have little knowledge about their
origins, dark energy and dark matter, understanding their impact on the evolution of the
large-scale structure is a necessary step to unveil their fundamental properties. We also
described the observational probes at our disposal, which allow us to constrain the prop-
erties of the large-scale structure by observing the effects of its distribution both at high
and low redshift.

In chapter 2 we described the formalism of weak gravitational lensing, one of the
most rapidly evolving techniques to characterize the large-scale structure in the late Uni-
verse. By measuring the correlated shapes of observed distant galaxies sheared by the
gravitational lensing effect of the large structures, weak lensing is able to directly probe
the mass distribution irrespective of its nature (Dark or Baryonic). Because the effect of
cosmic shear is very small compared to the intrinsic shapes of galaxies, its effect can only
be detected by measuring the shapes of many galaxies and under the assumption that
they do not orientate towards any preferential direction. In order to determine the rel-
ative lensing effect of the large-scale structure along the line of sight, the distribution of
distances to the lensed sources must be obtained accurately. The determination of this
distribution using photometric redshifts is a major source of uncertainty, and modest bi-
ases in the low order moments of the tomographic distribution can potentially lead to
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large biases in the derived cosmological parameters (Huterer et al., 2006), which can po-
tentially lead to incorrect model selection to describe the importance of Dark Energy and
Dark Matter.

In chapter 3 we described a family of techniques to estimate these distances using
measurements of the flux from distant galaxies in many bands, called photometric red-
shifts. Photometric redshifts are a suitable alternative to spectroscopy since they provide
efficient estimations for surveys containing millions of galaxies while not suffering from
the same incompleteness effects at faint magnitudes. We described the main types of pho-
tometric redshift codes and introduced the SOMPZ scheme, a machine learning algorithm
to estimate photometric redshift distributions using Self-organizing maps, developed for
use in the analysis of the first three years of observations of the Dark Energy Survey (DES
Y3). We described the identified sources of systematic effects in the photometric redshift
pipeline of the DES Y3 analysis, and described the methods to estimate its associated un-
certainty in the n(z) distributions, presenting the result on the effects of sample variance
and the uncertainty associated to the random training of SOMPZ scheme. Then we de-
scribed the 3SDIR + HMC, a three step Dirichlet sampling method to incorporate the es-
timates from the SOMPZ scheme, clustering redshifts and the measured uncertainty. This
method generates samples from the redshift distribution posterior which can be used to
describe the full uncertainty of the photometric redshift estimation pipeline.

In chapter 4 we introduced HYPERRANK, a novel technique to propagate the uncer-
tainty encoded as an ensemble of n(z) realisations like the one obtained using the 3SDIR

+ HMC sampling into the cosmological parameter estimates. To put HYPERRANK in
context, we described the process of Bayesian inference, the use of nested samplers to
draw samples from a high dimensional posterior distribution, and how some conditions
can impact sampling efficiency. HYPERRANK maps the proposal distributions to a set of
continuous hyper-parameters which are then marginalized in the Monte Carlo sampling
pipeline. The aim is to generate a transformation between some descriptive values of
the n(z) ensemble and a set of hyper-parameters which allows the sampler to efficiently
explore the set of distributions, while being able to propagate descriptions of uncertainty
typically neglected by simpler nuisance parameter approaches.

In chapter 5 we devised a series of test to validate this new technique and to compare
its performance against a standard marginalisation approach using a set of nuisance pa-
rameters describing a shift ∆z of the redshift distributions along the redshift direction. We
applied these tests to a ensemble of n(z) distributions obtained by applying the SOMPZ

scheme to BUZZARD, a suite of N-body simulations that replicate the expected obser-
vational conditions of DES. A series of n(z) ensembles were also generated to describe
different types of uncertainty and the ability of HYPERRANK to propagate all of them to
the inferred cosmological parameters. We investigated the optimal set of descriptive pa-
rameters and number of hyper-parameters for a set of realisations described by different
levels of uncertainty, including similar uncertainty to the one expected in the DES Y3
analysis.
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In chapter 6 we discussed the possibility that HYPERRANK becomes the fiducial marginal-
isation approach for the DES Y3 analysis, considering the sampling efficiency penalty in-
troduced in comparison with the standard marginalisation and given the small observed
differences in inferred cosmological parameter contours. We concluded that for the level
of uncertainty expected for DES Y3, the standard approach to marginalize uncertainties
using a shift in the redshift distributions, ∆z, is still a valid approximation. Finally we
briefly described the DES Y3 cosmic shear pipeline and presented the results of applying
HYPERRANK to propagate the source redshift distribution uncertainties of real DES Y3
data.

Perhaps one immediate observation that can be made is the fact that the HYPERRANK

approach can be applied to any type of systematic to be marginalized, as long as a proce-
dure to generate proposal samples exist. An example of this is presented in (MacCrann
et al., 2020a) and (Amon et al., 2020) where a set of multiplicative shear biases m are in-
ferred from each n(z) realisation. On the other hand, it is harder to justify the use of a
scheme like HYPERRANK for models which can be easily encoded as single parameters,
where arbitrary models of uncertainty are easier to sample from. Cases where this can be
useful is when uncertainty is associated to a heterogeneous systematic, such as the dif-
ferent sets of spectroscopic samples used for calibration of the SOMPZ scheme, or when
the uncertainty of a given systematic effect is characterized by multiple parameters as is
the case of, for example, the intrinsic alignment model used in DES Y3 which utilizes five
parameters. The caveat is that for sets of parameters covering different numeric ranges
the descriptive values d and mapping scheme have to be carefully chosen.

On the topic of mapping schemes, we have presented two alternatives which have
the commonality of mapping the descriptive values d to the set of hyper-parameters H
such that there is a monotonic relation between di and Hi. An third alternative was con-
sidered early on the development of HYPERRANK, where we used Self-organized maps
(SOM, the same machine learning algorithm used for SOMPZ) to arrange distributions
into a m-dimensional grid in a similar way to the linear sum assignment and uneven
grid work. One disadvantage of this approach was that the SOM scheme generated a
grid to which distributions were not assigned in a one-to-one basis, but using a metric
which could potentially assign more than one distribution to a single grid point. While
each hyper-parameter H can be easily assigned to the coordinates of the SOM map, an
additional step would be required to select a realisation from a cell with multiple n(z)
realisations, or to provide one when the sampled cell is empty. An interesting follow-
up to this project can explore more efficient ways to assign realisations to the uniform
grid. In its current fiducial implementation HYPERRANK uses the solution to the linear
sum assignment problem using the Hungarian algorithm (Kuhn, 1955a) as implemented
by SCIPY. This algorithm scales as O(n3), and quickly becomes unmanageable for more
than a few thousand realisations1. The uneven grid method presented in 4.2.2 is signif-
icantly faster, but suffers from poor ranking performance for higher dimensions. This
can be potentially harmful in cases where many more bins are used for a tomographic

1The method required 14 hours to find the solution for a set of 5000 realisations
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analysis, such as in the case of the DES Y3 lens sample redshift calibration for galaxy
clustering and galaxy-galaxy lensing where up to 6 tomographic bins are used (Porredon
et al., 2020, prep) although the effects of these mapping differences on sampling efficiency
or correctness were not tested on this thesis.

Another aspect not explored in detail in this thesis is the fact that the standard ∆z
approach, described as an approximation of the total uncertainty of the source redshift
distributions, can be adapted to marginalize over more complex representations of the
uncertainty. Correlations between tomographic bins can be modelled by a covariance ma-
trix and the individual ∆zi values for each tomographic bin sampled using its Cholesky
decomposition. Arbitrary non-Gaussian ∆z distributions can be sampled directly with
CosmoSIS by providing a tabulated normalized prior π(∆z). We have plans to test these
modifications in (Cordero et al., 2020) before publication.

7.2 Prospects for the future

At the time of writing this thesis, the Dark Energy Survey is preparing to submit a series
of publications describing the analysis of the first three years of observations carried out
to measure the cosmic shear, galaxy clustering and galaxy-galaxy lensing signals from
more than 4,000 square degrees of sky. As stated in Abbott et al. (2019a), where constrains
of the dark matter equation of state, matter density and amplitude of fluctuations of the
matter density field were obtained from a single homogeneous set of calibrated data,
optical surveys are starting to rival estimates obtained from early Universe made from
the Cosmic Microwave Background. With triple the area covered and close to four times
the number of observed galaxies than Y1, DES Y3 is expected to produce one of the most
competitive constraints of the standard model parameters, setting the ground for the final
analysis to be carried out on the full six years of observations, which perhaps will mark
the end of the Stage III era of cosmological surveys. Many of the novel techniques applied
at this stage will carry on to become standard procedures in large synoptic surveys of
Stage IV, expected to begin operations during this decade.

A particular aspect which will surely continue to generate debate is the use of spec-
troscopy and photometric redshifts in the analysis of weak lensing and galaxy cluster-
ing. The calibration scheme presented in DES Y3 employs a hybrid approach where
both types of redshift estimates are used simultaneously. Still being too early to con-
clude whether this choice helps reconciling the observed tensions between similar early
universe probes, we remain expectant to what the final published results and their inter-
pretations will be.

Regardless of what aspect of the analysis is to be tested and validated, a framework to
generate realistic simulations of the observed properties of optical surveys will continue
to be a cornerstone of any similar analysis. In the case of DES, BUZZARD (DeRose et al.,
2020) has been an invaluable tool providing high quality simulated catalogs. With the
advent of more complex machine learning techniques and the need to generate reliable
training data, simulations will continue to play this fundamental role. This is equally
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true with new approaches to tackle the inference of model parameters such as the forward
modelling process, which depends on the fine tuning of simulation parameters to replicate
observed data. Significant progress has been made in this regards with alternative esti-
mates of redshift distributions (Herbel et al., 2017) and weak lensing observables (Brud-
erer et al., 2018), In this context, the SkyPy package (SkyPy Collaboration et al., 2021)
arises as a promising tool to generate powerful simulations to serve as testing ground of
future optical surveys.

As Stage IV surveys begin their operations, characterization of systematics associ-
ated to their methodologies will become more important, as the statistical uncertainty
becomes less dominant thanks to the large datasets which they will generate. Because of
the overlap in terms of sky coverage and time of expected operation, these surveys will
benefit from each other, joining forces to pursue common scientific goals. As an example,
the large photometric redshift catalogs expected to be obtained from the Legacy Survey
of Space and Time (LSST) can be used to enable studies of radio weak lensing from the
Square Kilometer Array (SKA), while estimates of spectroscopic information of HI emis-
sion can be used to calibrate photo-z estimates from the LSST (Bacon et al., 2015). Many
more combinations like this will result in a significant increase in the statistical power
of large cosmological surveys, as independent observables will help break degeneracies.
Several approximations made over different aspects of the analysis will have to be re-
viewed in order to minimize their effect on the inferred cosmology and in some cases the
heterogeneous origin of the sources of data and their uncertainty will require complex
tools to propagate them into the cosmological parameters. Hopefully HYPERRANK will
help us move into that direction.
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Appendix A

Deflection angle from Fermat’s
principle

Finding the deflection angle is a variational problem that starts with looking for the path,
x(l), for which

δ
∫ b

a
η(l)x(l)dl = 0 (A.1)

where a and b are fixed endpoints. We let

dl =
∣∣∣∣ dx
dχ

∣∣∣∣ (A.2)

where χ is the comoving distance which we use it as curve parameter. Equation A.1
becomes

δ
∫ χb

χa

L(x, ẋ, χ)dχ = 0 (A.3)

and L is a Lagrangian

L(x, ẋ, χ) = η(x(χ))
∣∣∣∣ dx
dχ

∣∣∣∣ (A.4)

which satisfies the Euler-Lagrange equations:

d
dχ

∂L
∂ẋ

=
∂L
∂x

(A.5)

Since ∂L
∂x = |ẋ| ∂η

∂x = ∇η|ẋ| and ∂L
∂ẋ = η ẋ

|ẋ| , we have

d
dχ

(ηẋ)−∇η = 0 (A.6)

which implies
ηẍ = ∇η − ẋ(∇η · ẋ) (A.7)

The right hand side is equal to the gradient of η perpendicular to the light path since the
second term of the right hand side is equivalent to the derivative along the light path.
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Therefore,

ẍ =
1
η
∇⊥η = ∇⊥ ln(η) (A.8)

Recalling that

η =
c
c′

=
1

1 + 2Φ
c2

≈ 1− 2Φ
c2 with

Φ
c2 � 1 (A.9)

Then equation A.8 becomes

ẍ ≈ −2
c2 ∇⊥Φ (A.10)

Since the new deflection angle satisfies α̂ =
∫ χb

χa
ẍdχ we can therefore write the deflection

angle as

α̂ = − 2
c2

∫
∇⊥Φdχ (A.11)
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Appendix B

Convergence as a function of density
contrast

We wish to find the connection between the convergence field κ(θ, χ) (Equation 2.19) and
the matter power spectrum Pδ(`). We recall that the convergence κ is defined from the
lensing potential Ψ as

κ =
1
2
∇Ψ =

1
2

(
∂2

∂θ2
1
+

∂2

∂θ2
1

)
Ψ, (B.1)

where
Ψ(θ, χ) =

2
c2

∫ χ

0
dχ′

fK(χ− χ′)
fK(χ′) fK(χ)

Φ( fK(χ)θ, χ′), (B.2)

Combining B.1 and B.2 we obtain

κ(θ, χ) =
1
c2

∫ χ

0
dχ′

fK(χ− χ′)
fK(χ)

fK(χ
′)
[

∂2

∂θ2
1
+

∂2

∂θ2
1

]
Φ( fK(χ)θ, χ′). (B.3)

The terms in the square brackets are the two first components of the Poisson equation

∆Φ = 4πGρ (B.4)

which, for a matter dominated universe, can be written in terms of the density contrast
parameter δ and the matter density Ωm as

∆Φ =
3H2

0
2a

Ωmδ (B.5)

We can add the third term ∂2Φ/∂χ′2 to equation B.3 which vanishes from the full integral
as it averages out from the integral along the line of sight χ′, and use B.5 to obtain

κ(θ, χ) =
3H2

0 Ωm

2c2

∫ χ

0
dχ′

fK(χ− χ′)
a(χ′) fK(χ)

fK(χ
′)δ( fK(χ)θ, χ′)

=
3H2

0 Ωm

2c2

∫ χ

0

dχ′

a(χ′)
W(χ, χ′)δ( fK(χ)θ, χ′). (B.6)
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