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Abstract

Breast screening programmes, in which mammograms are examined for signs of can-
cer, have been implemented in many countries. In the UK, all mammograms are re-
viewed by two expert medical readers. Because abnormalities are variable, subtle, and
infrequent, this task is difficult and prone to human error. Computer aided detection
(CAD) systems aim to improve the performance of expert readers by indicating po-
tentially abnormal regions that may otherwise have been missed. CAD can improve
performance of some readers, but often at the cost of an increase in the false positive
rate due to the high number of prompts on normal regions.

This thesis explores the role of CAD in mammography through a series of visual
search experiments, using simulated images and targets analogous to mammography
screening. First, CAD was evaluated as a second reader, where the image is first viewed
unaided and then once again with CAD. This initial unaided search was found to be
truncated in terms of review time and the amount of the image viewed (p<0.001).

Subsequently, an interactive CAD system was investigated where prompts are only
displayed when readers actively query regions. Scores accompanied the prompts to
denote the likelihood that they marked a target, and they had a much greater impact on
whether the prompt would be marked by the observer (p<0.001) than an image score
indicating the likelihood that a target was present somewhere in the image (p=0.72).

CAD systems often use different prompts to indicate the type of abnormality. A fur-
ther study was conducted with two target types and multiple different prompts on single
images. Readers’ ability to detect targets was unaffected by false prompts, whether or
not they indicated the same target as the true prompt (p≥0.30).

A methodology is outlined for tracking eye movements across a clinical radiology
workstation using eye tracking glasses. An observer experiment showed that recali-
brating the glasses every 5 minutes would maintain a reasonable level of accuracy and
precision in future studies.
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Chapter 1

Introduction

1.1 Clinical motivation

Female breast cancer is the most common cancer worldwide (Sung et al., 2021). Large-

scale screening programmes, using x-ray mammography to detect signs of cancer, have

been implemented in many countries around the world in order to reduce mortality

rates. In the UK, as part of the NHS Breast Screening Programme (NHSBSP), mam-

mograms are read by two medical experts who decide whether further investigations

are required. Despite this, some cancers are missed at screening. Furthermore, there is

a critical shortage of radiologists in the UK (The Royal College of Radiologists, 2020).

This results in high workloads and increased wait times for patients. A potential tool

for reducing workload and improving performance is computer aided detection (CAD).

CAD is a technology designed to aid expert medical readers in the detection of

cancer and disease in medical images by prompting readers to evaluate potentially ab-

normal regions. While CAD has not yet been formally adopted in the UK, it is widely

used in the US. CAD has been shown to improve breast screening performance of a
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single radiologist in terms of sensitivity but at the cost of a significant increase in re-

calls (Nishikawa et al., 2012), and has not yet been shown to be a better option than, or

even equivalent to double reading (Gilbert et al., 2008b; Azavedo et al., 2012). The in-

crease in recalls is a consequence of the high number of false positive prompts (around

0.5 per image (The et al., 2009; Cole et al., 2012)) from CAD systems, one of the

biggest issues with CAD. The interaction between medical experts and CAD systems

is also not well-understood. Many studies have implemented fixed operating points

(i.e. the balance between sensitivity and specificity of the prompting algorithm) but

the interaction between the prompts of multiple algorithms has not been investigated.

To gain a better understanding of human-CAD interactions, experiments were car-

ried out using non-expert observers and synthetic mammogram-like images with small

and subtle targets. The effects of the type of prompt used, the interaction between

multiple algorithms each with a different operating point, distraction caused by false

positive prompts marking non-target areas, and how prompts affect overall search per-

formance were investigated. In addition to detection and error rates, eye tracking was

used to further analyse visual search behaviour, particularly the effects of false prompts

on how the image is evaluated by the observers.

The typical workflow for reading with CAD is for the medical expert to first in-

terpret the mammogram unaided and then to interpret the image again with the aid of

CAD, referred to as second reader CAD. It was explored whether the anticipation of

a second search aided by CAD leads to a less thorough initial search compared to ob-

servers not using CAD (described as the ‘safety-net’ effect (Astley and Gilbert, 2004)),

and the implications of this in relation to previous CAD studies.
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An alternative approach to second reader CAD is interactive CAD, where prompts

are only displayed when the reader requests them at a particular region in the image,

provided there is a prompt available at that region. Interactive CAD software often pro-

vides a score with the prompt to denote the likelihood of the region being malignant

and a global image score to denote the likelihood of a lesion being present somewhere

in the image. It was investigated how observers’ search and behaviour are affected by

interactive CAD prompts and how the prompt-level and image-level scores influence

decision making.

Since mammograms contain multiple types of abnormalities, separate CAD algo-

rithms must be deployed to prompt each type. Typically, the shape or symbol used for

prompts will be unique to each abnormality. On many images therefore, there will be

multiple prompts denoting different abnormalities. It was measured how the presence

of a prompt of one target type impacts how observers behave on the prompt of another,

and how they react to multiple prompts denoting the same target type.

Experiments with medical experts in mammography require the eye tracking sys-

tem to be able to track across a wide field-of-view with two monitors to replicate

the clinical setting of standard breast screening. A methodology was developed to

track eye movements across a dual-screen radiology setup using wearable eye track-

ing glasses. Using this methodology, a study was planned to investigate the impact of

CAD prompts on the search behaviour of medical experts.
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1.2 Aims

The principal aim of the research described in this thesis is to increase understanding of

human-CAD interaction through visual search experiments, identifying the strengths

of CAD and where improvements need to be made.

Specific aims are:

1. Analyse the impact of a second viewing with CAD on an initial unaided viewing

of an image, in terms of search thoroughness and observer sensitivity.

2. Investigate the impact of interactive CAD prompts on observer behaviour and

visual search, and how local and global confidence scores affect how observers

react to prompts.

3. Investigate the interaction between multiple CAD prompts of different target

types, and how the presence of one prompt type affects how observers react to

another.

4. Develop a methodology for dual-screen eye-tracking for a clinical radiology

workstation.

5. Examine how CAD prompts affect the visual search behaviour of expert readers

and the distraction caused by false positive prompts on a full clinical radiology

setup with CAD as a second reader.
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1.3 Thesis overview

This section provides a brief overview of the remaining chapters in this thesis. Chapters

2 to 5 review the relevant literature and Chapters 6 to 10 detail observer experiments.

Chapter 2 provides an overview of breast cancer and breast screening in the UK, in-

cluding the arguments for and against screening. This chapter outlines the motivation

for CAD, highlighting the need for improved cancer detection rates and a reduced

workload for radiologists.

Chapter 3 introduces CAD, describing the history of algorithm development for breast

screening, the general methodology of CAD algorithms for mammography, and its us-

age around the world. The efficacy of CAD is presented, along with the different modes

of operation. Literature on human-CAD interaction is reviewed and the motivation for

gaining a better understanding of how observers are influenced by CAD is presented.

Chapter 4 describes the key features of eye movements and the various fundamental

models of visual search. This chapter concludes with a literature review of the factors

that affect visual search in mammography and other imaging modalities.

Chapter 5 presents the various methods for tracking eye movements and a description

of the eye tracking devices used in this thesis. This is followed by a literature review

of visual search studies in mammography and with CAD, and alternative methods to

improve observer performance without eye tracking.
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Chapter 6 describes an observer study investigating the safety-net effect with CAD.

Eye tracking was used to compare search behaviour between conditions with and with-

out CAD.

Chapter 7 focuses on interactive CAD and presents two observer studies that inves-

tigated how lesion likelihood scores and overall image scores influenced the way ob-

servers reacted to prompts. Eye tracking was used once again to quantify how long

participants attended to prompts and target regions, in addition to the amount of the

image that was viewed in the CAD and no-CAD conditions.

Chapter 8 describes the methodology used for tracking eye movements across a dual-

screen clinical radiology setup. Furthermore, this chapter presents the results of an

observer study used to measure the accuracy of the system and provides recommenda-

tions for running experiments using the setup.

Chapter 9 describes an online observer study that evaluated the impact of multiple

prompts of different target types on observer performance and the potential for dis-

traction due to the presence of false prompts. This chapter also presents comparisons

between the performance of participants completing studies online versus in a labora-

tory setting.

Chapter 10 presents the methodology for a planned observer study with expert readers

using a dual-screen eye tracking setup. Due to the COVID-19 pandemic, no data was

collected for this study. The possible outcomes of the study in relation to the literature

are also discussed.
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Chapter 11 concludes the thesis, and discusses the main contributions and the possible

direction of future work.



Chapter 2

Breast Cancer and Mammographic

Screening

2.1 Introduction

Breast cancer is the most common cancer in the UK. Between 2015 and 2017, an av-

erage of 55,200 new cases were registered each year, accounting for 15% of all cancer

cases (Cancer Research UK, 2021a). In England, breast cancer incidence increased

from 165.5 to 176.4 cases per 100,000 females between 2008 and 2015, and down to

166.7 in 2017 (Office for National Statistics, 2019). The WHO estimated that 2.26

million new breast cancer cases were diagnosed worldwide in 2020; in less developed

regions it is the most frequent cause of cancer death for women, and in more developed

regions it is the second most frequent (WHO, 2020). Early detection of breast cancer

is important for a good prognosis; for example, in the UK, 97.9% of women diagnosed

at the early stage survive for five years or more, compared with 26.2% at the late stage

(Cancer Research UK, 2021a). Breast cancer screening programmes have been imple-

mented in a number of countries with the aim of reducing mortality rates and enabling

less intensive treatments.
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An overview of breast screening programmes currently implemented in 26 coun-

tries is given in Table 2.1. The majority of the screening programmes were started in

the 1980s and 90s, and cover similar age groups between 40 and 75 years old. The

participation rate varies between countries, which is likely to be most affected by ac-

cess to affordable screening. The effectiveness of these programmes is the subject of

much debate (see Section 2.3). These programmes typically use mammography, which

are low-dose x-rays of the compressed breast. During acquisition of a mammogram,

the breast is compressed between two plates and a single projection will be taken of

the flattened breast. Two views are typically acquired, the craniocaudal (from the top

down) and the mediolateral oblique (from the side at an angle).

It is important to note the different categories of expert readers who interpret mam-

mograms and other breast images in the UK. These are: radiologists (doctors with one

of their specialisms in diagnosis and treatments of breast diseases), advanced practi-

tioner radiographers, and breast clinicians. In the NHSBSP, all mammograms are read

by at least one radiologist (Jenkins et al., 2013). From here onwards, all trained clini-

cal image interpreters will be referred to as ‘readers’ unless otherwise stated. Quality

assurance measures are used to maintain the professional standards of all readers in

screening programmes. Readers in the NHSBSP are required to review a minimum of

5,000 cases per year and undergo performance audits (The Royal College of Radiolo-

gists, 2013). Also, readers in the UK partake in the PERFORMS (PERsonal perFOR-

mance in Mammographic Screening) scheme (Gale, 2010), which is a self-assessment

and training programme.
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2.2 Breast anatomy and types of cancer

The anatomy of the female breast is shown in Figure 2.1. The main components are

fibrous tissue, glandular tissue, fat, and neurovascular structures. The fibrous tissue

is the connective or supportive tissue, and the glandular tissue is the functional tissue

(parenchyma), which includes the ducts and lobules (Jesinger, 2014). Milk is produced

by the lobules and is supplied to the nipple through the ductal network. The fibrous

and glandular tissue is often referred to collectively as fibroglandular tissue, and the

relative amounts of fibroglandular tissue and fat determine the breast density. Figure

2.2 shows a labelled mammogram. The radiodense fibroglandular tissue and the vas-

cular structures appear brighter than the fat.

Figure 2.1: Illustration of breast anatomy, adapted from Lynch (2006).
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Breast cancer is generally classified as invasive or non-invasive, and usually forms

within the lining of the ducts (in 85–90% of cases), but can also form in the lobules

in 10–15% of cases (Du et al., 2018). Invasive cancers are those that have spread out

of the ducts or lobules and into the surrounding tissue. Non-invasive cancers have not

spread from where they originated and are called ductal carcinoma in situ (DCIS) and

lobular carcinoma in situ (LCIS) when the cancer is in the ducts and lobules, respec-

tively. Many non-invasive cancers still require treatment, since up to 40% of DCIS

progress to invasive cancers if left untreated (Cowell et al., 2013). Similarly, women

with LCIS have a 30%–40% lifetime risk of developing invasive breast cancer, com-

pared to the average lifetime risk of 12.5% (Breastcancer.org, 2016). Invasive breast

cancers may enter the lymph nodes under the arm and travel through the lymphatic sys-

tem, spreading to other parts of the body. This is metastatic breast cancer and accounts

for around 90% of deaths for women with breast cancer (Fouad et al., 2015).

Triple negative breast cancer accounts for 15% of cases and is called triple nega-

tive because the cancers do not have receptors for oestrogen, progesterone and HER2

protein, and therefore treatment targeting these is ineffective (Cancer Research UK,

2021b). Triple negative breast cancer is the most aggressive subtype of breast cancer

and has the poorest prognosis (Bao and Prasad, 2019). There are also rare cancers such

as inflammatory breast cancer and Paget’s disease (Cancer Research UK, 2021b).
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Figure 2.2: Craniocaudal (CC) view mammogram. The main features are labeled as
skin (s), chest wall (cw), fat (f), nipple (n), fibroglandular tissue (fg) and vascular
structures (v).

There are three main appearances of abnormalities visible on mammograms. These

are masses, microcalcifications, and architectural distortions. The mass shown in

Figure 2.3(a) is known as a ‘spiculated mass’, it has an irregular outline with lines

(spicules) radiating from the central density, and is the strongest sign of malignancy

for a mass; Liberman et al. (2002) reported an 80% positive predictive value (PPV) for

spiculated margins detected with with MR imaging and had the highest PPV among

mammographic features (Mahoney et al., 2012). Microcalcifications, seen in Figure

2.3(b), are small (<1 mm in diameter) calcium deposits and can be an early sign of

breast cancer. The probability that a microcalcification is a sign of malignancy is de-

termined by their appearance, distribution, and density. Microcalcification clusters
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that are more tightly packed are more likely to be due to a malignant cancer. Usually,

tightly packed is defined as >5 calcifications in 1 cm3 (Henrot et al., 2014). Architec-

tural distortions, such as the one shown in Figure 2.3(c), are characterised by radiating

lines of tissue or distorted tissue, but with no central mass. They are indicative of

breast cancer – an estimated 67% of screening mammograms showing architectural

distortions represented malignancy (Bahl et al., 2015). In a study investigating areas in

need of improvement for readers in the NHSBSP, architectural distortions were rated

as the most difficult abnormal feature for readers to detect amongst malignant cases

(p<0.05) (Scott and Gale, 2006).

Figure 2.3: Common abnormalities in digital mammograms: mass (a), microcalcifica-
tion cluster (b), and architectural distortion (c). Images a and b adapted from Al-Ghaib
(2015), and c from Baker et al. (2003).
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2.3 Breast screening

The NHSBSP offers breast screening to women in the UK every three years between

the ages of 50 and 70, with a current trial extending the age range in some regions of

the country by three years at both ends. Two-view mammograms are taken for each

breast, in the mediolateral-oblique (MLO) and craniocaudal (CC) views. Mammo-

grams are read independently by two expert readers with review in case of disagree-

ment. Around 1 in 25 women will be recalled, and approximately one quarter of those

will be diagnosed with breast cancer (Cancer Research UK, 2020). The NHSBSP is

also responsible for monitoring women at high risk of developing breast cancer due to

factors such as high breast density, significant family history or previous radiotherapy

(Jenkins et al., 2013). According to guidelines set by the National Institute for Health

and Care Excellence (NICE), women at high risk receive formal assessment and may

be eligible for yearly MRI scans (NICE, 2017).

Breast cancer mortality rates decreased in the UK between 1988 and 2018 from

59.1 deaths to 33.3 deaths per 100,000 females (Cancer Research UK, 2021a). This de-

crease in mortality corresponds to the introduction of the NHSBSP (Table 2.1). How-

ever, the extent to which this decrease is attributable to mammographic screening, and

the benefits of screening in general, is an area of extensive debate.

A case-control study by Massat et al. (2015), nested within the NHSBSP, reported

that breast cancer mortality was 39% lower for women who attended screening than

those who did not, after correcting for self-selection bias. The Independent UK Panel

on Breast Cancer Screening reviewed the benefits and harms of breast screening, and

estimated there was a 20% reduction in mortality for women invited to screening asso-

ciated with the NHSBSP, preventing 1,300 deaths a year (Marmot et al., 2013). They

also acknowledged overdiagnosis as a cost of screening – where cancers are found that
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would not have otherwise been detected or have been life-threatening and subsequently

undergo unnecessary treatment. It is not currently possible to distinguish between the

detected cancers that should be treated and those that should not. The panel estimated

that for each cancer death prevented, around three cases will be overdiagnosed and

unnecessarily treated (Marmot et al., 2013).

More recently, a large-scale study was conducted of 549,091 women eligible to

attend breast screening in Sweden (Duffy et al., 2020). They demonstrated that there

was a 41% reduction in breast cancer mortality risk within 10 years (p<0.001) for

women attending screening versus those not attending. Furthermore, this reduction

in mortality risk was accompanied by a 25% reduction in the rate of advanced breast

cancers.

The Cochrane Breast Cancer Group’s review of breast screening (Gøtzsche and

Jørgensen, 2013) was more critical of screening than the UK panel. The review looked

at seven randomised trials with over 600,000 women in total, and concluded that for

every 2,000 women invited to screening for 10 years, one life will be saved, 10 healthy

women will be overdiagnosed, and 200 women will experience psychological distress

from a false alarm. While some studies argue that screening has a significant im-

pact on reductions in breast cancer mortality rates (Heywang-Köbrunner et al., 2011;

Marmot et al., 2013; Massat et al., 2015; Duffy et al., 2020), others argue that other

factors such as improvements in cancer treatment and ‘breast awareness’ (awareness of

importance of self-examinations) have been more effective (Gøtzsche and Jørgensen,

2013; Jørgensen and Gøtzsche, 2010; Narod et al., 2015). It should be noted that im-

provements in cancer treatment could not explain the reduction in mortality reported

by Duffy et al. (2020), since the analysis period of 10 years would have seen the same

treatments applied for both screened and non-screened cohorts. The benefits of screen-

ing are clear and mostly agreed upon, but the extent of overdiagnosis associated with

screening is likely to continue to be debated.
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Mammography, both screen-film and digital, is the most widely used imaging

modality for breast cancer screening (see Table 2.1). Whilst it is proven to be effective

for cancer detection and is also the most cost-effective screening technique, it has its

limitations. A disadvantage of mammography is the use of harmful ionising radiation,

but the risk of developing fatal breast cancer from a mammogram is small – between

1.3 and 1.7 cases per 100,000 for women aged 40 at exposure and 1 in 1 million for

women aged 80 at exposure (Hendrick, 2010). Also, for women with dense breast tis-

sue, mammography has a reduced sensitivity due to the masking of cancers. Sensitivity

of mammography was found to decrease from between 85.7%–88.8% for women with

fatty breast tissue to between 62.2%–68.1% for women with extremely dense breast

tissue (Freer, 2015). Denser breasts are more prevalent for pre-menopausal women,

and since the study by Hendrick (2010) focused on 40 and 80 year olds, the results

are not directly applicable to the NHSBSP since both ages fall outside of the screening

age group. MRI has been investigated as an alternative to mammography, and may

offer improved sensitivity (DeMartini and Lehman, 2008). However, MRI would not

be suitable for primary modality of a screening programme due to the high cost, long

scan times, unsuitability for larger women, and use of a contrast agent. Research is on-

going into the use of abbreviated MRI for particular groups of women within stratified

screening programmes (Comstock et al., 2020). Abbreviated MRI uses a single phase

to reduce the cost, scan time, and interpretation time of MRI imaging (Comstock et al.,

2020).

Digital breast tomosynthesis (DBT) is an x-ray imaging technique that has also

been investigated as an adjunct or alternative modality to mammography. During ac-

quisition of a DBT image, the x-ray tube moves in an arc around the breast, taking

multiple 2D projections to create a volumetric image of the breast. Each projection is a
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fraction of the dose of FFDM, with the total dose from DBT similar to FFDM. A study

investigating the effectiveness of DBT in the NHSBSP found that DBT significantly

improved specificity compared to mammography and achieved a similar sensitivity

(Gilbert et al., 2015). Since DBT images use multiple projections, many slices are

generated, and the viewing time for readers is longer than for conventional mammog-

raphy, which puts further strain on readers’ workload. DBT is often used alongside

FFDM, resulting in an overall higher dose. Furthermore, microcalcifications are of-

ten easier to detect in 2D, whereas masses are easier to detect in 3D because they are

disambiguated from overlying tissue, and therefore it is preferable to have both views.

For women with dense breasts attending screening in the US and Germany, abbrevi-

ated MRI was found to have a significantly higher detection rate for invasive cancers

compared to DBT (Comstock et al., 2020).

Another imaging modality that is currently being investigated as an adjunct to

mammography is automated breast ultrasound (ABUS), targeted specifically at women

with dense breasts. During image acquisition, the scanner is pressed onto the breast

and the transducer moves automatically to take multiple image slices, which form a

3D image of the breast. Since the scanning is automated, it eliminates the issue with

hand-held ultrasound of operator variability. Screening studies have reported increases

in sensitivity between 26.7% and 50.0% using mammography and ABUS combined

compared to mammography alone (Kelly et al., 2010; Brem et al., 2015; Wilczek et al.,

2016). ABUS also increased specificity by 3.5 percentage points in one study (Kelly

et al., 2010), but decreased specificity by 0.7 percentage points (Wilczek et al., 2016)

and 13.4 percentage points (Brem et al., 2015) in the other studies. Like DBT, ABUS

has the advantage of being a 3D technique and therefore reduces the effect of overly-

ing tissues for mass detection. However, unlike both DBT and mammography, ABUS

does not use ionising radiation.
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2.4 Motivation for CAD

There is currently a critical shortage of radiologists in the UK. With 8.1 radiologists

(including trainees) per 100,000 people, the UK ranks well below the European me-

dian of 12.7 per 100,000 (The Royal College of Radiologists, 2020). Between 2014

and 2019 there was a mean increase of 4% per year in the consultant radiologist work-

force. However, over the same period, there was an estimated 7% per annum increase

in the number of x-rays, CTs and MRIs reported. This disparity between increase in

workload and increase in workforce has led to 99% of radiology departments being un-

able to complete required work within contracted hours in 2019 (The Royal College of

Radiologists, 2020). This has had a damaging impact for NHS patients. For example,

in the month of December 2019 alone, over 42,000 patients were waiting more than 6

weeks for diagnostic tests and procedures (Office for National Statistics, 2020).

In addition to their workload, expert readers face a difficult challenge when search-

ing for cancers in mammograms. It has been reported that between 20%–30% of can-

cers present in a screening population are initially missed at screening (Bird et al.,

1992; Majid et al., 2003). These missed cancers are either due to features of the mam-

mogram itself or search errors by the reader. Mammographic features responsible for

missed cancers include dense breast tissue, improper positioning of the breast during

imaging, and poor technique from the mammographer (Bird et al., 1992; Majid et al.,

2003). Expert readers are also affected by low prevalence effects; Evans et al. (2013)

observed an 18% decrease in cancer miss rate between high (50%) and low (1%) preva-

lence conditions. Furthermore, there are factors that may cause readers to make errors

in how they actually search the images. These include: satisfaction of search (presence

of an abnormality, potentially benign, causing the reader to terminate search early and
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miss another abnormality), search errors (abnormality never fixated), recognition er-

rors (abnormality fixated but not long enough to recognise as an abnormality), and

decision errors (abnormality fixated but wrongly dismissed) (Kundel, 2004; Berlin,

2007; Krupinski, 2010).

Computer aided detection (CAD) systems have been developed to detect potential

abnormalities in mammograms and other imaging modalities, with the aim of increas-

ing the number of cancers detected with screening. CAD systems may reduce visual

search errors made by radiologists by prompting them to look at suspicious areas of

images that they may have missed. If CAD systems were proven to improve sensitivity

without increasing the number of recalls, single reading with CAD could replace dou-

ble reading and therefore reduce the workload of radiologists. Furthermore, it is well

known that there is a large variation amongst the performance of readers of mammo-

grams (Elmore et al., 1994; Sickles et al., 2002; Elmore et al., 2009), and CAD has the

potential to reduce this variance (Jiang et al., 2001).

2.5 Summary

Women aged between 50 and 70 are invited for a mammogram every 3 years as part

of the NHSBSP. Subject to the availability of readers, each mammogram is double

read, as is standard practice across Europe. Screening programmes have been cred-

ited with reductions in mortality rates among the populations of women invited to

screening. There is also an associated cost of screening in overdiagnosis, where non-

life-threatening cancers are detected and women undergo unnecessary treatments.

Mammograms are the standard choice for breast screening but are known to have

reduced sensitivity for dense breasts. There is potential for other imaging modalities

such as DBT and ultrasound to be used more frequently in screening for women with

dense breasts or using these as an adjunct to mammography.
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There are severe problems currently facing the radiology workforce in the UK, with

the critical shortage of radiologists expected to increase. There is a need for a solution

to reduce workload and improve cancer detection. CAD has the potential to replace

the second reader, reduce reader variance, and give a boost to the cancer detection rate.

However, the relationship between expert readers and CAD is complex, and this will

be discussed in more detail in the next chapter.



Chapter 3

Computer Aided Detection

3.1 Introduction

Systems that aid detection and diagnosis are referred to as computer aided detection

(CADe) and computer aided diagnosis (CADx). CADe systems locate and prompt the

reader to potentially suspicious regions of an image, such as a mass or microcalcifica-

tion cluster. CADx systems are used to help the reader decide if abnormal regions are

probably benign or malignant, and whether they should be further investigated with a

biopsy or additional imaging. In this thesis, the focus will be on detection systems and

so ‘CAD’ will refer to computer aided detection only.

The first methods of computerised analysis of mammograms used optical scanning

techniques to produce density images that could then be used for automated analysis of

abnormalities (Winsberg et al., 1967). Twenty years later, when screen-film mammo-

grams could be digitised, the first paper describing a system for aiding readers in de-

tecting microcalcificiations in digital mammograms was published (Chan et al., 1987,

1990). The first CAD system to receive approval from the US Food and Drug Adminis-

tration (FDA) for use as a ‘second reader’ was ImageCheckerM1000 (R2 Technology,

46
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Inc.) in 1998 – a commercial system for the detection of suspicious regions in digitised

screen-film mammograms (FDA, 2008). Second reader CAD systems work as follows:

the expert reader initially reviews the mammogram unaided, and then again with the

use of the CAD output.

The rise of FFDM led to the adaptation of commercial CAD systems to be able to

support both digitised screen-film and fully digital mammograms (Yarusso et al., 2000;

Li et al., 2006). An estimated 92% of mammograms read in 2016 in the US used CAD

systems as a second reader (Keen et al., 2017). More recently, CAD has been used to

replace a second reader for cases where the reader agrees with CAD (McKinney et al.,

2020), and alternative modes of CAD operation have been explored, where prompts

only appear when a region of an image has been queried by the reader (Rodrı́guez-

Ruiz et al., 2019a).

This chapter describes the general methodology of CAD systems and how they are

operated, including potential methods that have been explored to improve how readers

use them. It will also discuss the usage of CAD around the world and the success of

CAD in various observer studies. Finally, this chapter will review studies investigating

the relationship between readers and CAD systems, and the ways in which this can be

optimised.

3.2 CAD methodology

3.2.1 General CAD workflow

There is a multitude of CAD algorithms, and whilst there are large variations in how

they operate and in their implementation, they generally follow the steps outlined in

Figure 3.1. First, a digital mammogram is used as the input, either directly from a
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digital mammography system or from a digitised screen-film mammogram. The im-

age is then processed to enhance anatomical and pathological features specific to the

task, and also to remove background (particularly for digitised film images). For exam-

ple, pre-filtering to enhance the breast edge, which if ill-defined can lead to inaccurate

CAD results (Karssemeijer, 1993). This stage also acts to remove noise and any image

artefacts that may have appeared during the image acquisition process. Initial seg-

mentation procedures are often required to label image structures such as the pectoral

muscle, chest wall, nipple, breast tissue, as well as the image background. Some CAD

systems implement a signal detection stage prior to segmentation, where potential le-

sions are then identified and subsequently segmented from the background and normal

mammographic features, and region boundaries are outlined (Nishikawa, 2007).

Figure 3.1: General stages of a CAD algorithm.

Features such as shape, size, and texture, are extracted from the segmented regions.

Segmentation and feature extraction methods are sensitive to the particular abnormality

that the algorithm is designed to detect. These features are then fed into a classifier,
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such as a support vector machine or neural network, to discriminate between true and

false positives, and each feature is assigned a probability of malignancy. Comparisons

may be made between different views of the same breast to look for similarities, and

the same view of different breasts to look for asymmetries (Hologic Inc., 2014). A

threshold is applied to determine which regions should be marked on the image, and

those above this threshold, i.e., those with the highest probability, are marked. An

example of a typical CAD output is shown in Figure 3.2. Algorithms are first trained

on a set of images containing the specific abnormalities of interest, called the training

set. Developers are careful not to over-train the algorithms – where the system becomes

specific to the training set it cannot be applied effectively to a different set of images.

Figure 3.2: Example output of ImageChecker 10.0 on a mammogram Hologic Inc.
(2014). The triangle indicates a microcalcification cluster, the asterisk indicates a mass,
and the cross indicates a ‘malc’ – a microcalcification cluster and mass at the same
location.
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3.2.2 Microcalcification cluster detection

Microcalcifications can be difficult for readers to find in mammograms due to their

small size and low contrast, especially in dense tissue. However, it is an easier task for

a computer since the properties of microcalcifications are considerably different from

normal breast structures (Astley, 2004). Examples of methods for detecting microcal-

cifications are discussed below, but many more can be found in the literature (Sampat

et al., 2005; Nishikawa, 2007; Rizzi et al., 2012; Jing et al., 2015; Yassin et al., 2018).

Most methods detect and classify calcifications according to their most important char-

acteristics: their size, shape, density, and distribution (Sampat et al., 2005).

Image enhancement methods are among the simplest approaches, where the con-

trast between the calcifications and background tissue is increased (Jing et al., 2015).

An early method developed by Nishikawa et al. (1995) consists of three stages. Firstly,

a difference-image technique uses two filters, one to enhance small structures and an-

other to suppress them. The resulting suppressed image is subtracted from the en-

hanced image to produce a difference image that highlights small structures and sup-

presses background tissue. Second, signal extraction is achieved by global threshold-

ing to reduce 98% of pixels to background level, and a series of morphological struc-

turing elements are used to remove signals <3 pixels in size. This stage is completed

with local thresholding to suppress signals outside of a chosen factor of the standard

deviation of pixel values for that area. Finally, a feature extraction process assesses

the properties of the remaining signals to identify potential microcalcification clusters

through filtering and grouping of signals.

The process of grouping individual calcifications into clusters is important for clas-

sifying malignant clusters and reducing the number of false positives. Typical false



CHAPTER 3. COMPUTER AIDED DETECTION 51

positives result from crossing linear structures, calcified arteries and benign calcifica-

tions (Nishikawa, 2007). Qian et al. (2002) outline a method for grouping that analy-

ses clusters based on the separation between calcifications rather than the cluster size,

and found a reduction in the number of false positives compared to methods using

cluster size alone. Global and local thresholding used in methods such as Nishikawa

et al. (1995) may not handle image noise optimally. Instead, noise equalisation tech-

niques can be used to improve the contrast of calcifications and improve detection rates

(McLoughlin et al., 2004). The results of this method are shown in Figure 3.3.

Another method is multiscale processing, where wavelet transforms are used to

filter the high-frequency microcalcifications from their surroundings. The wavelet is

tuned to selectively highlight calcifications (Rizzi et al., 2012). Bazzani et al. (2001)

combined a wavelet filtering approach with a statistical classifier to reduce the number

of false positives. To make predictions, the classifier used the area, average pixel value,

edge gradient, degree of linearity, and average local gradient of the calcifications. The

differences in statistical properties of microcalcifications compared to the surround-

ing tissue are utilised by stochastic modeling methods (Jing et al., 2015). One of the

earliest of such methods was proposed by Karssemeijer (1992), where a random field

approach was used to compare neighbouring pixels and classify whether or not they

formed a cluster. A more recent approach used spatial point process modeling to anal-

yse the spatial distribution of clusters (Jing et al., 2010). Pixels are labelled to describe

their properties, which are used to analyse calcifications according to various features.

These include their amplitude, the average number of calcifications in an image, and

the interactions of neighbouring calcifications within a cluster. These parameters in-

form a detection algorithm to locate clusters within the image.
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Figure 3.3: Stages of the algorithm developed by McLoughlin et al. (2004). (a) Patch
of the input mammogram. (b) Microcalcifications highlighted as extremes of negative
contrast at their location. (c) Standard deviation of contrast plotted against gray level
across the mammogram, with a fit based on the square root of the noise. (d) CAD
output showing detected microcalcification cluster after noise equalisation.

The majority of methods for the classification of microcalcification use machine

learning. More recently, detection methods have focused on deep learning, which is

discussed in Section 3.2.4. Machine learning methods use data from training images

to form a model that typically makes a binary classification of whether or not a mi-

crocalcification is present at a given location. One of the most widely used machine

learning techniques is a Support Vector Machine (SVM) (Yassin et al., 2018), where

objects are represented as a point in N-dimensional space according to their features

(where N is the number of features). Each point is separated into one of two categories

by a hyperplane, and the SVM works to maximise the distance between points in each
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category. One study used a wavelet transform for feature extraction followed by an

SVM classifier to achieve a sensitivity of 83.5% with 1.85 false prompts per image

(Jian et al., 2012).

Another of the most popular machine learning methods is an artificial neural net-

work (ANN) (Yassin et al., 2018). ANNs are composed of connected layers of nodes.

The first layer receives the image data and processes the information according to a

specific ‘transfer function’ and feeds an output a node in the next layer multiplied by a

given weight, which in turn processes the data and passes it to nodes in the next layer,

etc. The final layer outputs a classification for the given task. The weights are adjusted

through training according to the classification error rate, in order to teach the net-

work how to effectively classify the image data. ANNs were shown to be an effective

method for classification of benign and malignant microcalcifications 25 years ago,

achieving a better detection rate than radiologists (Jiang et al., 1996). Various network

architectures have been proposed for classification, reduction in reader variability, and

patient risk estimation (Ayer et al., 2013).

Commercial CAD systems use a combination of these methods and have a high

sensitivity for locating microcalcifications. ImageChecker CAD 10.0 reports sensi-

tivities of up to 99% for biopsy proven microcalcifications at a specificity of 29% –

this is the standalone performance, not the performance of a reader using the software

(Hologic Inc., 2014). Several studies have measured the standalone performance of

commercial CAD systems that are routinely used in mammography clinics in the US,

the results of which are given in Table 3.1. For the detection of microcalcification clus-

ters, CAD sensitivity ranged between 83% and 100%, with a false prompt rate between

0.26 and 1.76 per case.
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3.2.3 Mass and architectural distortion detection

A dense region with radiating spicules is indicative of a mass and radiating spicules

with no central density are indicative of an architectural distortion, and these are the

features CAD algorithms search for. Masses with an irregular shape, with ill-defined

or spiculated margins are more likely to be malignant, and round or oval masses with

well-defined margins are more likely to be benign (Bassett and Conner, 2003). De-

tecting masses and distortions is often more difficult than microcalcification clusters,

due to the complex nature of normal features in mammograms, such as fibroglandu-

lar tissue and neurovascular structures. Image enhancement methods are often used

to remove these structures from the mammogram, to improve the efficacy of mass de-

tection. These processes must be careful not to impact on the spiculation of masses

through smoothing, which would reduce the ability of algorithms to detect them, and

so some methods may instead classify these regions rather than remove them (Karsse-

meijer, 2015).

In a mass detection scheme developed by Rojas-Domı́nguez and Nandi (2008),

mammograms are initially enhanced to improve the contrast between structures and

the background. The transform that is applied to each pixel is based on the statistics

of the local neighbourhood of that pixel. Multiple binary image thresholds are applied

to the image to segment image features. The characteristics of the features are used to

rank and select potential masses. Another method that is used in both calcification and

mass detection is wavelet analysis. A technique designed for mass detection in dense

tissue was developed by Sakellaropoulos et al. (2006). Dense tissue is identified within

the mammogram, and wavelet filtering is applied to those regions to extract features

that could be used for mass classification. Image enhancement methods may produce
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a large number of false positives due to the amount of dense normal tissue in mam-

mograms resulting in a large number of potential mass regions. False positives may

be reduced by performing bilateral comparisons to measure the similarity of potential

regions across breasts (Li et al., 2015).

Machine learning techniques are widely used for mass detection and classifica-

tion, particularly SVMs and ANNs. The considerable variability in the appearance of

masses poses a difficult problem for CAD systems, since it is difficult to define fea-

tures that correspond to a wide range of lesion shapes, sizes and contrast. A method

proposed by Campanini et al. (2004) omits the feature extraction step as a way to get

around this problem. Instead, cropped image data that has been filtered with a wavelet

transform to highlight structures in the image is classified using an SVM. A second

SVM is used to reduce the number of false positives, and the overall sensitivity of the

system was reported as 80% with 1.1 false positives per image. Other studies extract

large numbers of features from images to better classify potential masses. Fauci et al.

(2004) extract 12 features (based on the morphology, pattern and intensity) from ROIs

and feed them into an ANN for classification with an area under the receiver operating

characteristics curve (AUC) of 0.856. Varela et al. (2007) used 20 features based on

morphology, texture, contour-related, gray level, and those from an image produced

using an iris filter tuned for mass detection that transforms the image to highlight re-

gions with a gradient towards a central point. The features were again used with an

ANN, achieving a sensitivity of 88% with 1.02 false positives per image.

Many studies have directly compared the performance of machine learning tech-

niques on the same dataset (Yassin et al., 2018). In a study by Lesniak et al. (2012),

five machine learning classifiers (including an SVM and an ANN) were trained on a

database of 2,516 mammograms and used for mass detection and reduction of false
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positives. The SVM was significantly better at both detection and false positive re-

duction compared with the other methods. Garcı́a-Manso et al. (2013) compared the

performance of an SVM and an ANN on the classification of masses in 2,620 cases,

containing 2,324 benign and malignant masses. The performance of the classifiers was

similar, with an AUC of 0.937 for the SVM and 0.925 for the ANN.

Methods may focus on the detection of spiculation (Karssemeijer, 2015), since this

is a key feature of many malignant masses. Sampat et al. (2008) enhance spiculations

in mammograms by applying spiculated lesion filters. These filters are designed as

‘matched filters’, based on the structures of spiculated masses. In addition to enhanc-

ing spiculations, a set of Gaussian filters are used to detect the central mass, as well

as difference-of-Gaussian filters to suppress the normal linear structures. To obtain the

overall algorithm output, the output from the normal structure filter is subtracted from

the sum of the filter outputs for spicules and central masses. Instead of highlighting

spiculated masses, Muralidhar et al. (2010) developed a method that traces the path of

individual spicules using active contours that grow and deform along spicules, shown

in Figure 3.4.

Taplin et al. (2006) demonstrated that the sensitivity of CAD was significantly

worse for masses and architectural distortions compared to calcifications (67% versus

86%). As shown in Table 3.1, standalone CAD sensitivity for masses ranged between

69% and 98%, with a false prompt rate between 0.81 and 3.24 per case. This means

segmentation methods are often not very specific, and normal features are considered

as possible candidates for abnormalities.
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Figure 3.4: Visualisation of the active contour growth along a spicule over 3 iterations,
adapted from Muralidhar et al. (2010). The process of growth and deformation contin-
ues until a stopping criteria is met (when the curvature exceeded 30◦).

Since mass detection algorithms will often search for signs of spiculations, ar-

chitectural distortions may also be detected as a result. However, without directly

searching for distortions, this can often lead to low sensitivity. The standalone CAD

performance for architectural distortions was measured in five studies, shown in Table

3.1. The sensitivity ranged between 33% and 88% with a false prompt rate between 0.7

and 1.27 per case, with the false prompt rate only reported by Baker et al. (2003). The

relatively low performance of these systems means that it is desirable to incorporate

methods specifically designed for the detection of architectural distortions.

Karssemeijer and te Brake (1996) describe a method for the detection of stellate ob-

jects in mammograms (lesions and architectural distortions). Initially, estimates of the

orientation of line-based structures are made. These estimates are then used to iden-

tify radial patterns. This method achieved a sensitivity of 90% with 1 false positive

per image. Breast tissue has been shown to approximate a fractal object, and Tourassi

et al. (2006) use this for the detection of distortions. The fractal dimension (measure of

pattern complexity) was estimated for both normal image patches and those contain-

ing a distortion, with a significantly higher fractal dimension estimated for distortions.
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A similar method by Rangayyan et al. (2010) used fractal and texture analysis com-

bined with various classifiers (including an ANN and an SVM) for the detection of

distortions in prior mammograms of interval cancers. The best classifier achieved an

80% sensitivity with 7.6 false positives per image, an improvement over previous work

using prior mammograms. Another study used three texture filters to enhance architec-

tural distortions and suppress normal breast tissue structures (Yoshikawa et al., 2014).

This produced a sensitivity of 82% with 1.06 false positives per image.

3.2.4 Recent advances

Recent studies have proposed promising CAD systems using deep neural networks

(Kooi et al., 2017; Dhungel et al., 2017; Chougrad et al., 2018; Ragab et al., 2019;

Rodrı́guez-Ruiz et al., 2019a). The major difference between conventional machine

learning methods and deep learning is in feature selection and extraction. In deep

learning, features are learned from the data itself, rather than using features defined

by humans (LeCun et al., 2015). A comparison between the general architecture is

shown in Figure 3.5. Consequently deep learning methods require large amounts of

training data and this, combined with the increased number of network layers, requires

high computational power (Ramadan, 2020). A review of studies that directly compare

conventional machine learning and deep learning demonstrated that, in the majority of

cases, deep learning outperforms conventional machine learning methods (Jiménez-

Gaona et al., 2020).

In an effort to reduce the recall rate of women attending breast screening, the Digi-

tal Mammography DREAM Challenge (DM Challenge) was initiated, in which teams

from across the world presented machine learning or deep learning methods for de-

termining the cancer status of a participant given their mammograms (DM Challenge,

2017). The winners of the challenge achieved an AUC score of 0.8735 (Nikulin et al.,
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Figure 3.5: Comparison between the structure of traditional machine learning and deep
learning methods, adapted from Jiménez-Gaona et al. (2020). ML-CAD requires fea-
tures to be defined by a human, whereas deep learning CAD learns the features itself.

2017). Ribli et al. (2018) achieved second placed in the challenge with an AUC of 0.85

and reported a 90% sensitivity with 0.3 false positives per image on a separate dataset

of 115 mammograms.

The high performance of deep learning CAD is promising and gives rise to other

potential uses in breast screening that is not possible with traditional CAD. Deep learn-

ing CAD could be used in the same way as traditional CAD as a second reader, where

the reader reviews the mammogram again with prompts after an initial unaided review.

Furthermore, with a sensitivity and specificity comparable with expert readers, CAD

could also be used as an independent second reader (Geras et al., 2019). Furthermore,

CAD could be used as a pre-screener, selecting the cases that should be reviewed by

an expert reader in an effort to reduce workload without a drop in detection rate (Raya-

Povedano et al., 2021) – discussed further in Section 5.4.3. Pre-screening is possible

by using case-based scores that indicate the probability of malignancy for that case, in

addition to lesion-based malignancy probability scores, which is explored in Chapter 7.

A limitation of many studies measuring the performance of these systems is that

they use image databases that are homogeneous, where the cases are all from a sin-

gle manufacturer or do not contain a wide range of abnormalities, and so may not

generalise well across clinics. However, Rodriguez-Ruiz et al. (2019b) measured the
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standalone performance of their deep learning CAD system with 2,652 cases from four

different manufacturers and multiple reader assessments for each case. They demon-

strated that their AI-CAD achieved an of AUC of 0.840, compared to an average AUC

of 0.814 across 101 expert readers. However, this study used an enriched dataset, with

a cancer prevalence of 24.6%. Therefore, there still needs to be large-scale clinical

studies to compare performance with and without deep learning CAD, such as those

conducted for conventional CAD (discussed in Section 3.5).

Deep learning CAD is a rapidly moving field across medical imaging and particu-

larly breast imaging. It has been referred to as the new frontier (Gao et al., 2019) and

CAD 2.0 (Kohli and Jha, 2018). However, the challenges that have faced traditional

machine learning CAD remain when you are tasked with merging human and machine,

and this will be discussed further in Section 3.6.

3.3 Analysis of performance

Before discussing how CAD is used and observer search performance is evaluated, it

is important to define the metrics that are used for this analysis. The method used to

analyse performance of CAD and readers is specific to the task and should be modified

accordingly.

True or false positives or negatives can have different meanings depending on the

task. In the context of mammography and CAD they are usually defined as by either

case-level or region-level, defined in Table 3.2.
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Table 3.2: Definition of performance metrics in mammography for both case-level and
region-level.

Image-level Region-level

True Positive (TP)
Mammogram containing cancer
correctly identified as a cancerous

Mark placed by a reader or CAD indicating
a cancer on a cancerous region

False Positive (FP)
Normal mammogram incorrectly
identified as containing cancer

Mark placed by a reader or CAD indicating
a cancer on a non-cancerous region

True Negative (TN)
Normal mammogram correctly
identified as normal

Absence of a reader or CAD mark
on a non-cancerous region

False Negative (FN)
Mammogram containing cancer
incorrectly identified as normal

Absence of a reader or CAD mark
on a cancerous region

Using the definitions in Table 3.2, sensitivity is defined as:

sensitivity =
T P

T P+FN
(3.1)

Furthermore, specificity is defined as:

speci f icity =
T N

T N +FP
(3.2)

While it is useful to use sensitivity and specificity in observer studies, often the

cancer detection rate (proportion of cancers in image set correctly identified) is used

instead. This will usually be reported in addition to the recall rate of the women in the

study (number of women recalled for an additional follow up scan) or the number of

false positives responses per case.

Another important metric for observer performance analysis is the sensitivity in-

dex, or d′. It is defined as d′ = z(H)− z(F), where z(H) and z(F) are the z transforms

of the hit rate H and false alarm rate F , respectively (Green and Swets, 1966). In addi-

tion to sensitivity and specificity, there is also the positive predictive value (PPV) and

negative predictive value (NPV). The PPV gives the fraction of all positive cases that

are true positives, and the NPV the fraction of negative cases that are true negatives.

These are defined as PPV = TPs/(TPs+FPs) and NPV = TNs/(TNs + FNs). These
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provide a measure of performance that is dependent on the prevalence of true and false

cases and give the likelihood of a positive or negative outcome.

One of the most common methods for evaluating observer performance is by plot-

ting a receiver operating characteristic (ROC) curve (Figure 3.6) - a plot of the true

positive rate (sensitivity) against false positive rate (1−specificity) (Hanley and Mc-

Neil, 1982). The area under the ROC curve (AUC) represents the probability that an

abnormal image is distinguished from a normal image, and takes a value between 0

and 1. The AUC is described as the ‘figure-of-merit’ for ROC analysis, and is often

used to compare performance between two conditions or imaging modalities. An AUC

of 0.5 represents chance level, illustrated by the dashed line in Figure 3.6, and a value

of 1 represents a perfect classifier of healthy and abnormal. It is not always appropriate

to take the whole area under the ROC curve, for example when the low sensitivity re-

gions are not of interest (such as for CAD), and instead the partial AUC (pAUC) can be

used instead (Ma et al., 2013). The pAUC is the area under the curve above a chosen

threshold, divided by the total area above that threshold.

The ROC does not take into account the location of abnormalities or cases with

multiple abnormalities, limiting readers to a single rating per image. Therefore, it

may be more appropriate to use the free-response ROC (FROC) method to evaluate

performance. Here, readers are no longer limited to reporting a single lesion per case

and provide a rating to each region they mark (e.g. from 1 to 5 or 1 to 100) denoting

their confidence that the marked region is abnormal. TPs and FPs are defined according

to lesion localisation – if a mark is placed within a predefined boundary from a lesion it

is classified as a TP, otherwise it is a FP. The FROC curve is plotted as the TP fraction

versus the number of FPs per image. The FROC curve does not have an associated

figure-of-merit. Therefore, to obtain a meaningful equivalent of the AUC in ROC

analysis, an alternative FROC (AFROC) curve can be plotted instead. The AFROC



CHAPTER 3. COMPUTER AIDED DETECTION 64

Figure 3.6: An example ROC curve. For an ideal observer, the curve would pass
through the top left corner, which corresponds to 100% sensitivity and specificity. Im-
age from MedCalc (2021).

curve is the number of marks indicating lesions divided by the total number of lesions

versus the false positive fraction (FPF), and the area under this curve can be used as a

figure-of-merit for FROC analysis.

However, in AFROC analysis, for cases with multiple responses, only the high-

est rated response is considered and the other false positive responses are ignored

(Chakraborty and Berbaum, 2004). Furthermore, cases with multiple lesions have a

stronger influence on the results than cases with a single lesion. To overcome this,

jackknife free-response ROC (JAFROC) analysis was introduced (Chakraborty and

Berbaum, 2004), which does not make the same assumptions. Software is available to

run JAFROC analysis, available on Github (https://github.com/dpc10ster/Win

dowsJafroc). JAFROC ignores false positive responses on normal images, and alter-

native JAFROC models were introduced to take this into account (JAFROC1), which

was shown to have the highest statistical power compared to other FROC methods

(Chakraborty and Yoon, 2009).

https://github.com/dpc10ster/WindowsJafroc
https://github.com/dpc10ster/WindowsJafroc
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Studies of the effectiveness of CAD can be categorised as longitudinal, where

cancer detection rates are compared before and after the introduction of CAD into

a screening unit, and cross-sectional, where reader performance is compared for read-

ing without and then with the aid of CAD. Nishikawa and Pesce (2009) explain how

these evaluation methods will yield different conclusions (see Figure 3.7): Each year,

a radiologist is presented with 100 new cases of breast cancer, of which they detect 80

and miss 20, and the missed 20 are subsequently detected the following year (in addi-

tion to the 80 new cases that year). After 6 years, CAD is introduced and an additional

10 cancers of the new 100 cancers are detected (a total of 110 cancers for year 6).

After that year, 100 cancers will be detected each year, 80 new cases unaided, 10 new

from CAD and a further 10 missed from the previous year. A longitudinal study would

conclude there is no difference in cancer detection rate from CAD being introduced

(year 6 would be considered noise), whereas a cross-sectional study would report an

increase of 11% in detection rate. The fact that CAD could help find extra cancers

without increasing the detection rate (besides year 6) was due to the populations in

two time periods being different, and so the reduction in cancer prevalence after year

6 is a direct result of introducing CAD. Therefore, cross-sectional studies are better

suited to evaluating the efficacy of CAD systems.
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Figure 3.7: Number of cancers over time. CAD is introduced in year 6, and in longitu-
dinal studies, the increase in cancers detected is dismissed as noise. Image taken from
Nishikawa and Pesce (2009).

3.4 Modes of use and prompting techniques

The threshold that a CAD algorithm applies to determine which prompts to display on

the image is called the operating point. The choice of operating point for an algorithm

is a trade-off between sensitivity and specificity (Figure 3.8) – higher sensitivity comes

at the cost of an increased number of false positives per image. CAD systems detecting

both masses and microcalcifications use different algorithms and operating points for

each abnormality type, which are either preset or chosen by the reader.
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Figure 3.8: Algorithm sensitivity versus false mark rate for the ImageChecker 10.0
CAD system for masses (left) and microcalcifications (right). There are three choices
of operating points for each abnormality: relatively low sensitivity and high specificity
(0) and relatively high sensitivity and low specificity (2), and a midpoint between them
(1). Image from (Hologic Inc., 2014).

The operating points determine the number of prompts that are displayed. CAD

systems may also limit the maximum number of prompts that are displayed per image

and per case. For example, with ImageChecker, the maximum number of prompts per

image is 4 for microcalcification clusters, and 2 for masses and ‘malcs’ (mass and mi-

crocalcification cluster at the same location) (Hologic Inc., 2014). These are limited

further when the images are processed as part of a case, at 8 per case for microcalcifi-

cation clusters, and 4 for masses and malcs. When the number of prompts is limited,

the prompts associated with lesser suspicious regions are removed.

The type of prompt used is an important factor for CAD systems. While some

systems, such as ImageChecker (Hologic Inc., 2014), use solid prompts overlaying

suspicious regions (Figure 3.2), other systems use prompts which outline the abnor-

malities (iCAD, 2016; ScreenPoint, 2021). This has the benefit of not obscuring the

marked area. The prompt style can change the readers behaviour; for example, using

ImageChecker’s EmphaSize feature which scales the prompt size by the probability of
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malignancy, larger prompts were shown to be significantly more likely to be recalled

(Gilbert et al., 2008a). ScreenPoint has an interactive support function, where CAD

prompts only appear when their location is queried by the reader.

The trust between a human and a computer aid will often determine how they use

it (Parasuraman and Riley, 1997). Muir (1987) modeled the trust between humans

and machine by extending the model of trust between humans, where humans were

more likely to believe computer aids they consider reliable and less so those that let

them down. Individuals may have an initial bias towards a computer aid leading to

inappropriate levels of trust (Dzindolet et al., 2003). In this study, participants trust was

improved when they were shown why the aid made mistakes. Therefore, understanding

the trust between the reader and machine can be highly beneficial to the output of the

system.

There are a number of ways that trust between the reader and the CAD system can

be improved, such as providing confidence ratings on the prompts. This is something

that is done with interactive CAD systems (such as ScreenPoint) and means that a

reader is more likely to believe the output of a CAD system if the prompts they would

have dismissed anyway have a low confidence rating (Jorritsma et al., 2015). Giger

et al. (2002) proposed an ‘intelligent workstation’, where readers are provided with

various visual prompts, such as likelihood of malignancy for a lesion and similar cases

with known diagnoses. A clinical example of this is ImageChecker’s PeerView mode,

where the regions that are detected by CAD can be queried by the reader and the

masses and individual calcifications are highlighted for further evaluation (Hologic

Inc., 2014).

Similar to the prompt confidence ratings with interactive CAD, Cunningham et al.

(2016) describe an ‘analogue’ CAD approach, where the probability that the prompt is

marking a target is denoted purely by its colour (see Figure 3.9). They demonstrated



CHAPTER 3. COMPUTER AIDED DETECTION 69

that non-expert observers were more efficient at distinguishing between specific clus-

ters of coloured dots using analogue CAD than traditional binary CAD that simply

indicated whether a target was present or not. ScreenPoint (2021), for example, use

a combination of prompt confidence scores and coloured prompts in their software,

ranging from yellow (low confidence) to red (high confidence).

Figure 3.9: Image from Cunningham et al. (2016) showing analogue CAD prompt
approach. The task involved participants selecting the item with the average colour
most likely to be a target (red). Participants also selected their confidence in their
decisions on the 6-point scale shown. Note the difference between binary and analogue
CAD prompts, binary prompts are a single colour with a lower operating point so mark
the two stimuli most likely to be a target. Whereas analogue CAD marks each stimuli
with varying colour to denote likelihood of it being a target, ranging from grey (most
likely a distractor) to turquoise (most likely a target).

Instead of markers, it has been proposed that highlighting may be more effective

(Hatton et al., 2004; Kneusel and Mozer, 2017). Hatton et al. (2004) found that using

CAD prompts which made subtle changes to the colour or brightness of target regions
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or the background (Figure 3.10) interfered less with the way that participants were

looking at the images when compared to conventional prompts, which place markers

directly over the region of interest. Therefore, subtle prompts more closely resembled

their viewing behaviour under unaided conditions.

Figure 3.10: Image from Hatton et al. (2004) showing one of their subtle prompt tech-
niques – the suspicious regions have had their brightness increased relative to the back-
ground.

Kneusel and Mozer (2017) proposed a technique called ‘soft-highlighting’, which

combines subtle and analogue prompts; targets are highlighted with a saliency based

on the confidence level of the classifier. They found that soft-highlighting increased

performance of naive observers searching for targets in satellite images, compared to

‘hard-highlighting’ where boxes were drawn around potential targets. An interesting
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method was proposed by Chen and Gale (2010a): it uses eye tracking to record search

patterns of mammograms and combines this information with the CAD system to dis-

play more informative prompts. For example, different prompt styles can represent

areas that have been fixated but not marked by CAD, areas that have been marked by

CAD but not fixated, and areas that have been both marked by CAD and fixated and

therefore more likely to be an abnormality (Chen and Gale, 2010a).

3.5 Usage and effectiveness

Only four of the 26 countries or regions in the ICSN discussed in Section 2.1 use

CAD in their screening programmes: the US, Poland, Luxembourg, and the Navarra

region of Spain (National Cancer Institute, 2012b). In Europe, double reading is stan-

dard practice, rather than single reading with the addition of CAD. Unlike the US, in

Europe there is no reimbursement for using CAD, which could partly explain this dif-

ference. A major reason why single reading with CAD (or second reader CAD) has

not replaced double reading is due to contradictory reports on the effects of doing so.

Skaane et al. (2007) reported that single reading with CAD achieved a higher can-

cer detection rate than independent double reading for both screen-film and digital

mammography. However, they used a relatively small sample of 3,683 women with a

total of 55 cancers and could not determine how CAD affected the recall rate. A larger

study by Gilbert et al. (2008b) of 31,057 women with a total of 227 cancers found that

single reading with CAD was equivalent to double reading in terms of sensitivity but

resulted in a significant increase in recall rate. A meta-analysis reported that double

reading increases cancer detection rate and recall rate, but double reading with arbi-

tration (where readers confer on the cases or a third reader reviews them) increases

detection rate while also decreasing recall rate (Taylor and Potts, 2008). Whereas,



CHAPTER 3. COMPUTER AIDED DETECTION 72

CAD did not have a significant impact on the detection rate and increased the number

of recalls.

A review by Azavedo et al. (2012) concluded that there was insufficient evidence

to suggest that single reading with CAD is equivalent to double reading. A review

of five studies by Henriksen et al. (2018) showed that there was no significant differ-

ence in sensitivity for single reading with CAD compared to double reading, with only

one study (Gilbert et al., 2008b) having a significant increase in recall rates for sin-

gle reading with CAD relative to double reading. A deep learning CAD methodology

developed by Google was able to achieve a non-inferior performance to double read-

ing in terms of both sensitivity and specificity compared to 6 radiologists (McKinney

et al., 2020). They simulated how this could be used clinically; replacing the second

reader in instances where there is agreement between the first reader and CAD with

the first reader decision taken as final, and the usual arbitration process where there is

disagreement. This resulted in an equivalent performance but with an 87.98% reduc-

tion in workload for the second reader.

Several cross-sectional studies have evaluated the impact of CAD on detection and

recall rates (Freer and Ulissey, 2001; Helvie et al., 2004; Birdwell et al., 2005; Dean

and Ilvento, 2006; Ko et al., 2006; Morton et al., 2006; Georgian-Smith et al., 2007).

The increase in detection rates due to CAD range from 0% (Georgian-Smith et al.,

2007) to 19.5% (Freer and Ulissey, 2001) with a mean of 9.3%, and a mean increase

in recall rate of 12.4%. The increase in sensitivity with CAD is promising but has not

been convincingly replicated in clinical settings without an unacceptable increase in

recalls.

The ability of readers to identify false CAD prompts will determine how prompts

influence the recall rate. This ability, along with the reader’s trust in the CAD system,

will depend in part on the reproducibility of prompts. This describes how often a CAD
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system will prompt regions that are similar in appearance and structure. This has been

measured directly by comparing the position of prompts across digital mammograms

from the same women with a short interval between acquisitions. Kim et al. (2008)

reported that true prompts had a significantly higher reproducibility than false prompts

(85% versus 9%). Another study found that false prompts on normal digital mammo-

grams had a reproducibility of 12% (Kim et al., 2009). These results are in agreement

with previous work with screen-film mammograms that were repeatedly digitised and

assessed by CAD, with a reproducibility of 13.8% for false prompts (Tiew et al., 2008).

Changes in patient position between image acquisitions can result in changes in the

distribution of breast tissue and therefore how the image is processed by CAD. The

low reproducibility of false prompts means that readers will be less likely to recognise

them as incorrect and thus more likely to mark them as a cancer.

Lehman et al. (2015) conducted a large-scale study investigating the effectiveness

of single reading with CAD versus single reading alone. This study compared the

performance of 271 radiologists who examined a total of 495,818 mammograms with

CAD and 129,807 without. These mammograms were read between 2003 and 2009.

No benefit with CAD was found: the sensitivity was 85.3% with and 87.3% without

CAD, and specificity was 91.6% with and 91.4% without CAD. The impact of CAD

on intrareader performance was also measured by comparing the 107 readers who read

cases both with and without CAD. In this case, sensitivity significantly decreased with

CAD from 86.9% to 83.3% (OR=0.53). Specificity was 90.7% with CAD and 89.6%

without, but this was not significant (OR=1.02).

These results are counter-intuitive to the use of CAD as a second reader, where

an improvement in both sensitivity and recall rate is expected. This is likely an out-

come of CAD misuse in two possible forms (Nishikawa and Kyongtae, 2018). First,

readers may be using CAD to reduce their recall rate by not recalling cancers that are
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not prompted by CAD, rather than using it to detect cancers they may have otherwise

missed, which results in the lower sensitivity observed in Lehman et al. (2015). It may

also be that readers use CAD as a concurrent (from image onset). This again can result

in a reduction in sensitivity for unprompted cancers (Alberdi et al., 2004; Zheng et al.,

2004).

Despite AUC values of the latest deep learning CAD algorithms continuing to in-

crease, there are various human-CAD interaction issues that need to be addressed,

which Nishikawa and Kyongtae (2018) argue cannot be resolved simply by improving

the accuracy of the algorithm.

3.6 Human-CAD Interaction

The full potential of CAD will not be achieved if the reader-CAD interaction is not

optimised. A key issue with CAD is the high number of false prompts, typically 0.5

per image (The et al., 2009; Cole et al., 2012), compared to an estimated 0.3% cancer

prevalence in screening mammography (Evans et al., 2013). In current CAD systems

high sensitivity comes at the cost of high false positives. Consequently, readers are

more likely to dismiss prompts without properly reviewing them (Philpotts, 2009).

This is known as under-trust, where readers are under-reliant on a useful aid (Parasura-

man and Riley, 1997). For example, Nishikawa et al. (2012) showed that readers failed

to act on 71% of correct CAD prompts marking cancers in mammograms. However,

given that the system had a false-positive rate of 0.6 per image and the pressures on

readers to maintain low recall rates, this result is not entirely surprising since deciding

which prompts to act on is difficult (Philpotts, 2009).
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An alternative to overcome the high false positive rate of traditional CAD is interac-

tive CAD systems such as ScreenPoint (2021). Since on any given image the prompts

are only seen by the reader if they query the locations where they are present, you

can afford to operate CAD at an operating point with a higher sensitivity and a greater

number of false positive prompts, as they are unlikely to be seen anyway. One study

using interactive CAD reported to have a significant improvement in the partial AUC

(pAUC) compared to unaided and conventional CAD (Hupse et al., 2013), and another

showed a significant increase in AUC compared to unaided reading (Rodrı́guez-Ruiz

et al., 2019a).

Less experienced readers tend to rely more on CAD (Nishikawa et al., 2012; Hupse

et al., 2013). This is known as over-trust and is a form of automation misuse (Parasur-

aman and Riley, 1997). Over-trust in false prompts may also explain the increase in

recall rates in many CAD studies. Another potential issue with over-trust is that the ab-

sence of a prompt could give the reader false reassurance that no cancer is present. In a

study by Alberdi et al. (2004), the detection rate of cancers in mammograms decreased

from 77% without CAD to 55% with CAD for incorrectly marked cancers (prompt in

wrong location), and from 54% to 33% for unmarked cancers (no prompt present). In

this study, overreliance on prompts may have caused a drop in sensitivity for the cases

where prompts failed to mark a cancer either by being in the wrong location or were

absent entirely.

Zheng et al. (2004) investigated how performance varied with different CAD oper-

ating points and found that CAD with 80% mass sensitivity and 0.5 false prompts per

image improved performance, but 80% sensitivity and 1.2 false prompts per image sig-

nificantly decreased performance. However, it is important to note that the readers in

these studies were reading the cases with CAD initially, not as a second reader, which

goes against recommended usage. In fact, when the CAD output was displayed after
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an initial interpretation, Zheng et al. (2004) reported that there was little difference in

the overall performance of readers.

This reduction in sensitivity for targets that were failed to be marked by CAD

was also observed for non-expert readers (Drew et al., 2012). Another study with

non-expert participants reported that the presence of false positive prompts on images

where targets were not marked by a CAD prompt led to a reduction in sensitivity

(Ionescu et al., 2018). As with the studies with expert readers mentioned above, in the

CAD condition of the studies by Drew et al. (2012) and Ionescu et al. (2018), prompts

were displayed from image onset and not as a second reader. Therefore, this will have

affected how participants search compared to how readers search typically using CAD

in mammography as they do not get an initial unaided search without the presence of

prompts.

3.7 Summary

CAD algorithms have seen a rapid increase in usage in the US over the past two

decades after initial clinical studies boasted promising results, demonstrating improved

cancer detection rates over single reading alone. This led to a rapid increase in the use

of CAD systems across the US. Now, most mammography clinics in the US use CAD.

However, this has not been adopted in Europe where double reading is standard prac-

tice, since there has not been sufficient evidence to suggest that single reading with

CAD is equivalent in performance.

As CAD continued to grow in popularity across clinics in the US, studies began to

highlight various issues. Studies were reporting increases in recall rates with little or

no benefit in cancer detection rates, seemingly due to the high false prompt rate of the

CAD systems. Readers were shown to dismiss correct CAD prompts in the majority

of instances, and when prompts failed to mark a cancer, there was a significant tail-off
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in performance. There is a balance between reader-machine trust at play, which is a

difficult relationship to maintain when the reader is unaware of why the CAD system

has made certain decisions.

Therefore, providing readers with additional information can be beneficial to im-

prove confidence in a CAD system. Interactive CAD systems withhold prompts un-

til readers query their locations and may also provide lesion likelihood scores at the

prompt locations. Indicating the probability of malignancy or providing similar cases

with known outcomes are two examples of how readers can gain a better understand-

ing of the mechanisms of the CAD they are using and in turn build better trust in the

system.

Deep learning CAD methods are certainly going to be the future. However, they

must be able to overcome the challenges of the interaction between reader and algo-

rithm if they are to succeed where traditional CAD has fallen short. High accuracy with

a reduction in the false positive prompt rate will be crucial, but it will not be enough

by itself.

The next chapter will discuss in further detail the mechanisms behind the search

task facing readers of mammograms. Chapter 5 will explore how eye tracking is used

to study reader behaviour in mammography and with CAD.



Chapter 4

Visual Search

4.1 Introduction

Many tasks faced by readers of medical images require them to locate signs of abnor-

mality. In these visual search tasks, the reader uses the ‘human search engine’ (Wolfe

et al., 2015a). There are a number of different theories of human visual search, but

before reviewing these it is first necessary to briefly discuss human vision and how the

eye operates.

The main features of the eye are shown in Figure 4.1. Light incident on the eye

is refracted by the cornea and passes through the pupil (the opening of the iris), and

is focused by the lens onto the retina. The retina contains millions of light-sensitive

receptor cells called cones and rods, approximately 6 million cones and 120 million

rods. The distribution of rods and cones varies across the retina. At the fovea, there

are no rods and a high concentration of cones, which are responsible for high spatial

resolution, and therefore this region has the highest visual acuity (Atchison and Smith,

2000). Since only a small proportion of the overall visual field is focused onto the

fovea, it must be moved around an image, such as a mammogram, to capture all of

78
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the fine details present. For expert readers viewing mammograms, Kundel and Nodine

(2004) defined a useful field-of-view (equivalent to the FVF discussed previously) with

a diameter of 5 degrees visual angle, centred around the gaze location.

Figure 4.1: Diagram of the human eye, image from National Eye Institute (2019).

Fixed gaze on a single location for a period of time, usually defined as around

250ms (but can be shorter or longer than this), is known as a fixation. Between fixa-

tions, the eyes make rapid movements called saccades. The latency of a saccade, which

is the time difference between the signal for a saccade to begin and the movement of

the eyes, can be used to categorise them. Typical latency of saccades ranges between

150 and 500 ms (Klein and Ettinger, 2019). Saccades with shorter latencies (150 to 200

ms) are reactive saccades, where the eyes move in response to the appearance of a stim-

ulus in the FOV. There are also express saccades with latencies around 80 to 120 ms
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(Kingstone and Klein, 1993), which can be observed during tasks where participants

must fixate a target away from an initial fixation point, if the fixation point is removed

around 200 ms before the target appears. Those with longer latencies (>250 ms) are

called voluntary saccades, which are purposeful movements to explore the visual en-

vironment. The amplitude of a saccade is often discussed in visual search literature,

which is the difference between the start and end points of the saccade. The rela-

tionship between the amplitude and acceleration of saccades is described as the ‘main

sequence’ (Gibaldi and Sabatini, 2020); for small saccades, velocity increases linearly

with amplitude, whereas for large saccades the peak velocity is reached asymptotically.

Even when the eyes are fixating, they still make miniature movements of less than

1 degree visual angle in amplitude called microsaccades; the eyes are never truly sta-

tionary. Microsaccades are generally made involuntarily. In between microsaccades

exist smooth eye movements around one tenth of the amplitude called drift. These are

accompanied by another movement called tremor, a rapid movement that occurs ap-

proximately 100 times a second with amplitudes of around 0.001◦. During a fixation,

visual information is acquired, but at the same time, the next saccade is also being

planned. This ‘asynchronous parallel processing’ improves the efficiency of search,

since it means planning the next movement does not have to wait until all information

has been processed (Hooge and Erkelens, 1996): as part of the planning process, it is

believed that visual information at the location of the next fixation is processed before

gaze has moved to that location (Godwin et al., 2021).

Fixations show where attention is focused and when visual information is being

acquired, while saccades move this attention between locations. Measuring fixations

and saccades made by observers while reading images gives a deeper understanding of

how the images are being analysed, as it is possible to record search patterns as well

as search performance.
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4.2 Visual search theory

Visual search theories aim to explain the cognitive processes involved as we search en-

vironments for information. The leading theories are Feature Integration Theory (FIT),

Guided Search (GS), and Attentional Engagement Theory (AET). These models are

all ‘item-based’, where individual items are the central unit of search, but alternative

‘fixation-based’ models have also been proposed (Hulleman and Olivers, 2017).

Visual search is often studied with basic tasks where participants search for a target

item amongst distractor items, with the total number of items present known as the ‘set

size’ (Wolfe, 1998). Typically, a participant in these tasks responds to indicate whether

they believe the target is present or absent in each trial. The time taken to respond is the

reaction time (RT) and the percentage of correct decisions is the accuracy. Often the

task will be analysed by plotting the RT versus the set size, called the ‘search slope’

(shown in Figure 4.2), which describes the change in RT as a function of set size.

Search slopes are used as an indicator of search efficiency.

Theories of visual search may describe serial and parallel search, and feature and

conjunction search. Serial search is where items are attended to one after another

and parallel search involves the processing of multiple items at once (Palmer, 1995).

In feature search the target is distinguished from the distractors by a single feature

(colour, orientation, size, and motion). For example, search for a red circle among

distractor green circles. Search where the target shares one or more features with the

distractors, is known as conjunction search. An example of conjunction search would

be searching for a red circle among red squares and green circles; the target cannot be

defined by the colour or shape alone but rather a conjunction of both (red and circular).
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Figure 4.2 shows the search slopes for various tasks. Feature search results in a flat

search slope (efficient), since the target is easily distinguished from distractors, regard-

less of the number of distractors. Conjunction search results in steeper search slopes

(quite efficient), where the common features between targets and distractors mean that

search takes longer with more items present. Inefficient search slopes are produced

with ‘configuration search’ tasks, where the targets and distractors are composed of

different configurations of vertical and horizontal lines (e.g. digital 2 among digital 5s

or T among Ls). Very inefficient search slopes, where the search display is processed

in excess of 30 ms per item, may result from search involving the conjunction of two

orientations. For example, search for a vertical rectangle containing a tilted bar among

distractors of vertical rectangles with horizontal bars and horizontal rectangles with

tilted bars (Bilsky and Wolfe, 1995).

Figure 4.2: Search slopes of various efficiencies, from Wolfe (1998). A conjunction
search involves detecting a target amongst distractors that share one or more feature
with the target.
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Search slopes are plotted for target present and target absent trials separately. Error

rates are generally higher for target present trials than target absent. Rather than speed-

accuracy trade-off, this reflects the fact that participants will end their search with

a target-absent response when they did not find the target. But this is an incorrect

response only for target present trials. Reaction times are slower for target absent

trials. In principle, an observer must attend to all items before a target absent response

can be given. For target present trials though, on average, only around half of the items

need to be attended before a target present response (Wolfe, 1998).

The ‘quitting threshold’ determines when observers’ terminate their search. When

the target has been detected, this is an obvious point to stop searching. However, it

is more complicated when the target has not been found and will depend on a variety

of factors, such as the memory of previously visited items and the preceding trials.

Observers do not have a perfect memory of the items that have already been visited and

items are often re-examined, even with a set size as small as six (Young and Hulleman,

2013).

Feature Integration Theory, proposed by Treisman and Gelade (1980), explains the

mechanisms of feature search and conjunction search. In FIT, features such as colour

and orientation, are preattentively registered in separate ‘feature maps’. Feature search

is where targets differing from distractors by a single feature can be found by inspect-

ing the relevant feature map. For targets that consist of a conjunction of features,

attention must be applied serially so that feature maps can be bound together using a

master map with the locations of the items. Feature searches are more efficient than

conjunction searches since they are independent of the number of items in the display

and the feature map can be monitored for activity signifying the presence of a target.

Whereas in conjunction searches, inspecting the feature map does not help since, to

decide whether an item is a target, attention must be applied serially to bind features

of an item.
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Wolfe et al. (1989) proposed Guided Search as an alternative to FIT. GS does not

make the same distinction between parallel and serial search, and instead combines

signals from feature maps into a single activation map. Attention is guided first towards

the location with the highest activation, and then the next highest, and so on until the

target is found or a target absent decision is made. There have been multiple updates

to GS, and the latest version is GS 6.0 (Wolfe, 2021a). GS 2.0 assumes that search has

perfect memory and that the search slope represents the time it takes to process an item

(Wolfe, 1994). The assumption of perfect memory was shown to be false (Horowitz

and Wolfe, 1998) and was removed in GS 4.0 (Wolfe, 2007), which now assumed that

the search slope represents the selection rate of items. GS 4.0 also introduced the ‘car

wash model’ for the processing of items: selected items enter processing one at a time,

but multiple items are processed in parallel (since the time taken to select an item is

less than the time taken to process it). In GS 5.0, Wolfe et al. (2015b) discussed that

observers were capable of multi-tasking in their search for multiple targets, where they

would keep track of target locations and mark a target at the same time as searching

for further targets.

The most recent update, GS 6.0 (Wolfe, 2021a), describes how items are stored in

a map that is constantly updated and a new item is selected every 50ms, with search

being guided by items nearer to the point of fixation. Unlike previous GS models,

6.0 accounts for eye movements with the inclusion of a functional visual field (FVF)

that plays a pivotal role in fixation-based search models such as Hulleman and Olivers

(2017), discussed later in this section. Another key addition to GS 6.0 is the various

forms of guidance, which is discussed below.

An overview of the GS 6.0 model is shown in Figure 4.3. With reference to Figure

4.3: (1) The visual system receives the image from the retina and (2) all informa-

tion is processed through the non-selective pathway and information about the scene
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is extracted. (3) For the identification of individual objects, information is passed

through the selective bottleneck. (4) and (5) The selective bottleneck is fed via five

types of guidance. Bottom-up guidance describes search driven by image features such

as salience, even without a target in mind readers may be drawn to particular regions

(guided by the stimuli). With top-down guidance, attention is directed by the reader

themself (determined by the properties of the target specific to the search task). Value

guidance describes how features that are more valuable (e.g. participant is rewarded

for finding these) will attract more visual attention. What was previously searched will

influence current visual attention (history guidance). Finally, with scene guidance, at-

tention is directed by the background as opposed to the stimuli. The various types of

guidance form an attentional priority map that directs search through the selective bot-

tleneck, resulting in a generally efficient search process. (6) The object that is currently

being attended to is held in the Visual Working Memory (VWM), which also holds the

top-down guiding template.

Figure 4.3: Schematic representation of Guided Search 6.0, from Wolfe (2021a).
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(7) The target template is held in long-term memory and objects in the VWM are

compared to identify targets and discard distractors. (8) Search items are passed into

a parallel processing stage around every 50ms, where multiple items are processed at

once (over several hundred milliseconds) to either recognise it as a target or dismiss it

– referred to as the ‘asynchronous diffuser’. (9) A quitting threshold determines when

the search is terminated, with the threshold lowering after true-negative responses since

the scene is now easier to search with a distractor dismissed. On the other hand, the

threshold is raised when a target is missed.

Attentional Engagement Theory is another alternative theory to FIT, proposed by

Duncan and Humphreys (1989, 1992). FIT asserts that attention must be applied seri-

ally to bind features together that are present at a given location during a conjunctive

search. This is not the case with AET, there is no serial stage of search and there is

no qualitative difference between the processes behind parallel and serial search. In

AET, stimuli compete to enter the VWM, weighted by their target similarity. Search

efficiency decreases when the similarity between targets and distractors increases, and

when dissimilarity of distractors increases. Müller et al. (1994) present a model called

parallel SEarch via Recursive Rejection (SERR), a computational implementation of

the fundamental ideas of AET. Templates units are used to group targets and distrac-

tors by their similarity. During search, templates will ‘fire’ – if a distractor template

fires then the locations of distractors that fit this template are inhibited, while a tar-

get template firing will lead to a target present response. Distractors are recursively

rejected until there are no items left or the target is detected. GS 2.0 (Wolfe, 1994)

included how search efficiency varies with target-distractor similarities in reaction to

AET (Chan and Hayward, 2013).



CHAPTER 4. VISUAL SEARCH 87

These item-based models make two implicit assumptions: shallow search slopes

(reaction time versus set size) are the most informative about the cognitive processes

of visual search, and eye movements are not an important factor in the search process.

It is argued by Hulleman and Olivers (2017) that these assumptions have prevented all

aspects of search being explained by current models, whereas a fixation-based model

is not restricted by these assumptions. Hulleman and Olivers (2017) presented a sim-

ulation of a fixation-based model, with four fixed parameters and one free, based on

the results of previous experiments. The main assumption in this model is that there

is a functional visual field (FVF), defined as the area of the visual field around a fix-

ation from which a target can be expected to be detected. The processing may not

necessarily be complete before attention is diverted elsewhere.

The size of the FVF depends on the task difficulty, as shown in Figure 4.4. It is

larger for easy tasks and smaller for hard tasks. Items within the FVF are processed

in parallel and fixations are set to a constant duration (250ms). Since memory of

previously visited locations in visual search is limited, avoidance of re-fixation on

previously visited locations was limited. Finally, once 85% of items had been visited,

the search was terminated. When compared to experimental data for three tasks of

varying difficulty, the model was shown to correspond well for both reaction times and

number of fixations as functions of the display size. The variability in reaction time

and number of fixations as a function of display size was also well matched by the

simulations.

Young and Hulleman (2013) and Hulleman and Olivers (2017) provided experi-

mental evidence for the need for a fixation-based theory by investigating how different

difficulty search tasks affected observer performance. The results of Hulleman et al.

(2019) form another piece of evidence that there is a clear difference between medium

difficulty search and hard search. In this paper, the targets and distractors were formed
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Figure 4.4: Estimated size of the FVF (dotted circle) for tasks of different difficulties.
The easy task (left) is search for a diagonal amongst vertical lines, the medium task
(middle) is search for a T amongst Ls, and the difficult task (right) is search for square
with a small square in the top left corner amongst squares with a small square in a
different corner. Image adapted from Hulleman and Olivers (2017).

from sets of lines. The tasks were completed with half of the search items created from

the same line set as the target (50% eligibility) and with all items from the same set

(100% eligibility). The difference in eligibility was achieved by rotating distractors

relative to targets. This design was used since item-based models predict that per-

formance will improve for 50% eligibility. When half of the items are rotated, FIT

predicts that the orientation map would suppress distractors in the master map result-

ing in a smaller set size. In GS, the bottom-up and top-down guidance will be dictated

by orientation, boosting the activation of non-rotated items. Finally, in AET, a group of

distractors would be coded by their orientation and would no longer compete to enter

the VWM since they do not match the target template, and therefore the target can be

detected more easily.

Hulleman et al. (2019) demonstrated that for a medium difficulty search task,

search performance was reduced for 50% eligibility compared to 100% eligibility.

However, in difficult search tasks, search performance was improved in the 50% con-

dition. This suggests that for difficult search tasks, item-based models are compatible

with this result, and suggest that single items are processed per fixation. For medium

difficulty tasks, the size of the FVF is increased, and multiple items are processed per
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fixation – in contrast with item-based models where similar results would be obtained

for tasks of different difficulties. This work demonstrates the importance of a search

model to account for more than just the target template, since the surrounding items

also have an impact on detectability, as demonstrated with the medium difficulty search

task. These results do not directly follow from a fixation-based theory, but unlike an

item-based theory they can be understood within a fixation-based theory.

In GS 6.0, while Wolfe (2021a) disagrees with the fundamental idea of a fixation-

based search model, the importance of the FVF is acknowledged. The FVF loads

multiple items into the asynchronous diffuser (stage 8 in Figure 4.3), but the main

search process is governed by individual item processing. However, the definition of

the FVF differs between GS 6.0 and that described by Hulleman and Olivers (2017).

In GS 6.0, attention is restricted to the area around the fixation and cannot roam the

entire search display, and does not provide an explanation for why the FVF reduces in

size when the search difficulty increases (Hulleman et al., 2019).

These cognitive models are typically based on laboratory studies using search tasks

such as finding Ts amongst Ls, rather than complex medical images, since they are

concerned with the fundamental mechanisms of visual search. The search of images

used in visual search literature can differ greatly from medical images. Visual search

studies often use a single target and generally do not involve a diagnosis stage. Yet,

there are visual search studies that have modelled the conditions in complex search

scenarios such as airport baggage screening and radiology. In particular, multiple target

search has been investigated and the impact of low target prevalence was highlighted.

Hybrid search (Wolfe, 2012) and mixed hybrid search (Wolfe et al., 2017a) describe

the search of multiple targets, where targets are either specific items or categories of

items (discussed further in Section 4.3). In radiology, readers often search through
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multiple image views for various types of abnormalities. This sort of complex search

has been modelled through hybrid foraging search (Wolfe et al., 2016). Here, there

are multiple targets to search for and the number of each of these targets is not known.

In a study in which observers completed a hybrid foraging task, readers searched the

image in ‘patches’ (an example of one of these patches is shown in Figure 4.5), moving

between each patch to review items and verify if they were one of the desired target

types via a memory search (Wolfe et al., 2016). In doing so, around 25 to 33% of

targets remained undetected when moving to the next patch. The readers also had

a tendency to select a single target type and go on ‘runs’ of detecting those targets,

instead of the other types that were also available. These single-type runs were found

to be more efficient in terms of reaction times rather than searching for multiple types

at once, since readers memories were reconfigured in such a way that the classification

of that target type would be faster.

It has also been investigated whether target prevalence has an impact in hybrid

search (Wolfe et al., 2017b). The effect of target prevalence was initially reported in

visual search literature by Wolfe et al. (2005). In this study, observers searched for

semi-transparent objects in noisy backgrounds at a target prevalence of 1%, 10%, and

50%. It was found that the miss error at 1% prevalence was around double the error

at 10% prevalence and four times higher than at 50% prevalence. Measuring the effect

of prevalence is key for radiology, where the rate of targets is often well below 1%.

In a hybrid foraging study, observers searched for four target types that had varying

prevalence rates of between 7% and 53% (Wolfe et al., 2017b). Targets that were

more common were detected at a significantly higher rate than less common targets.

Therefore, prevalence has a clear impact for both single and multiple target search.

These hybrid foraging tasks are more similar to real world search than those typi-

cally used in basic visual attention research. The fact that there are parallels between
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Figure 4.5: An example of a patch used in the hybrid foraging task in Wolfe et al.
(2016). The items would move around the display. Observers were required to hold
8, 16, 32, or 64 possible targets in memory. The set size ranged between 60 and 105
across patches, with a target prevalence of 20–30%. There were multiple of each target
type present across patches.

hybrid foraging and basic search suggests that the fundamental processes described in

visual search theories are likely to be applicable to real world search. By better repli-

cating real world search such as medical image interpretation, a deeper understanding

of the processes can be gained, and importantly methods to reduce errors and improve

performance can be investigated.

Before hybrid (and hybrid foraging) search entered the visual search literature, dif-

ferent approaches were developed to describe search in medical settings by monitoring

the search behaviour of medical experts. Outside of the basic visual attention research,
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Nodine and Kundel (1987) outlined radiologists’ visual search of medical images with

five stages. This initial work was based on the search of chest x-rays for lung nodules.

A later study evaluated this approach for mammography and altered the order of search

stages (Kundel and Nodine, 2004). The first stage is global impression: the image is

analysed globally, lasting a few hundred milliseconds. This initial global impression

has been shown to be enough for readers to determine whether a mammogram contains

a cancer or not, with an above chance level of accuracy (AUC = 0.75), when shown the

image for just 500ms (Evans et al., 2016). The next stage is foveal verification: areas

of the image that attracted attention in the global analysis are inspected (foveal vision)

and located, which takes a few seconds. Then discovery search: given a specific task,

the observer begins a cognitively guided search, examining areas with a high probabil-

ity of finding the search target of that task. This is followed by reflective search: the

whole image is re-examined to confirm initial suspicions and to aid in decision making

on any abnormalities. Finally, post-search recall: the observer reports on findings.

4.3 Factors affecting visual search

A variety of different factors can be detrimental to visual search, some of which were

discussed in Section 2.4 in the context of mammographic interpretation. These factors

can lead to a range of reader errors. The most common of which are perceptual errors,

where retrospectively apparent findings are simply missed, accounting for an estimated

60% to 80% of total errors (Bruno, 2017). As previously stated, perceptual errors can

be classified as search, recognition or decision errors, depending on how long (if at

all) targets were fixated. Examples of search and decision errors are shown in Figure

4.6. The cause of these errors may be that targets are subtle or masked by normal

tissue, or due to an ineffective visual search (Krupinski, 2010). Kim and Mansfield

(2014) defined 12 types of diagnostic errors in radiology, and in their study found
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that underreading, where otherwise obvious findings are missed, accounted for 42% of

errors.

Figure 4.6: Example of perceptual errors in radiology, from Krupinski (2010). The red
circles are fixations and lines between them are saccades, while the green circle marks
the position of the tumour. (a) Search error: the reader does not fixate the tumour and
does not report it. (b) Decision error: the reader fixates the tumour multiple times but
does not report it.

The prevalence effect is a well known effect in visual search literature (Wolfe et al.,

2005; Horowitz, 2017), where search performance decreases as targets become rarer.

Evans et al. (2013) compared the performance of expert readers at different prevalence

conditions (see Figure 4.7). A total of 100 cases were inserted into the normal work-

flow of 14 readers in a hospital clinic over a 9-month period resulting in a prevalence

of around 1%. Six of those readers later interpreted the same 100 cases at 50% preva-

lence in a laboratory setting. There was a significant increase of 18% in the number

of false negatives when moving from the high to low prevalence condition. Therefore,

low prevalence is likely to account for a portion of the missed cancers in screening

mammography.
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Figure 4.7: Results from Evans et al. (2013) demonstrating the low prevalence effect.
Green bars represent the 50% prevalence condition and red bars the 1% condition. The
different shades of each colour are a result of filtering out readers to account for case
familiarity, since some cases were used in both the high and low prevalence sets. The
dark bars represent the data for all readers (N=14) and the light bars are the average
rates for the 6 readers who completed both conditions (light red) or when cases used
in both prevalence conditions were removed (light green).



CHAPTER 4. VISUAL SEARCH 95

The effect of prevalence on the ability of 14 expert readers to detect abnormalities

in chest x-rays was investigated by Gur et al. (2003). A total of 1,632 cases were used

in this study. Five prevalence levels were used, ranging from 2% to 28% across three

main abnormality types. Readers were required to give a rating between 1 and 100 to

indicate their confidence that an abnormality was present in an image. In contrast to

the results found in mammography, they found that there was no effect of prevalence

on the AUC values of readers or case review time. In a follow-up study, the data

was reanalysed to examine the effect of prevalence on reader confidence ratings (Gur

et al., 2007). They observed a significant trend in the confidence rating as a function

of prevalence, with confidence ratings increasing as the prevalence decreased. Since

the study was completed in a laboratory setting, it is unclear on whether they would

generalise to a clinical setting.

Instead of changing the true target prevalence, Reed et al. (2014) examined how

changing the readers’ expectation of prevalence can affect their behaviour when re-

viewing chest x-rays. Readers were split into three groups, with each group reading a

set of 30 cases (containing 15 abnormalities) twice over two sessions, separated by a

few days. Each group was told a different prevalence at the beginning of each session:

9, 22, or not told, in one session versus 15 (true prevalence) in the other. Across all

groups, higher prevalence expectation on normal images led to a significant increase in

duration of image scrutiny and number of fixations. For normal images, the confidence

ratings of one group (9 versus 15) was significantly increased at higher prevalence ex-

pectation. This is the opposite trend to that observed by Gur et al. (2007), however,

it compared the expectation of prevalence as opposed to changing the true prevalence.

Therefore, the expectation of prevalence caused readers to inspect normal images more

thoroughly and increased their confidence that the image was normal, despite the fact

actual prevalence remained unchanged. However, despite higher confidence and longer
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interpretation times at higher prevalence expectation, no significant differences in sen-

sitivity, specificity, false positives, or false negatives were observed. In mammography,

prevalence is much lower than the 9% used for the low prevalence condition in this

study and therefore there may have been an impact on performance too had a lower

target rate been used. As demonstrated by Wolfe et al. (2005), the performance is

reduced drastically at 1% prevalence, with errors almost doubling compared to 10%

prevalence (error rate of 30% versus 16%).

Studies have also investigated how prevalence can interact with CAD prompts.

Russell and Kunar (2012) conducted a series of experiments examining the viewing

behaviour of non-expert participants searching for Ts amongst Ls in a high (50%) an

low (2%) prevalence condition. The first experiment was conducted without CAD and

reported a low prevalence effect where miss error was higher at low prevalence. In

another experiment with 9 participants aided by CAD prompts, there were 240 trials in

the high prevalence condition and 5,000 trials in the low prevalence condition. Miss er-

rors were higher in the low prevalence condition, for all target present images (prompt

marking target, prompt marking non-target region, and no prompt present), with the

fewest errors made when prompts marked the target. Errors were also reduced when

allowing participants to self-correct their responses, i.e., go back and change their re-

sponse if they realise they made a mistake after they had moved onto the next image.

Prompts reduced the low prevalence effect, with participants more willing to mark

targets that were prompted compared to the no prompt condition, however it was not

completely eliminated.

A later study by the same group with a similar methodology investigated the low

prevalence effect in the search of mammograms with CAD, using non-expert readers

trained to read mammograms (Kunar et al., 2017). In one experiment, a single mass



CHAPTER 4. VISUAL SEARCH 97

target was used, and in another a range of masses were used. Both studies had 24 par-

ticipants, with 80 mammograms in the high (50%) prevalence condition and 1,000 in

the low (2%) prevalence condition. With a single target to search for, the low preva-

lence effect was observed, consistent with Russell and Kunar (2012). However, the low

prevalence effect was not observed when searching for a range of masses. This was

due to a higher than anticipated error rate in the high prevalence condition, rather than

a reduction in miss errors in the low prevalence condition. The CAD prompts caused

participants to miss a higher number of masses when the prompts were on non-target

regions, and believe that masses outside of prompts were more likely to be benign.

These results suggest that participants had become overreliant on CAD. There was a

higher miss error and false alarm rate when a range of targets was used, which was hy-

pothesised to have occurred due to a weakening of target representations in the Visual

Working Memory (discussed below). This may have in turn caused participants to rely

even more on the prompts.

Visual search tasks that involve more than one target require multiple target rep-

resentations to be held in the Visual Working Memory (Oberauer, 2002). VWM de-

scribes the capacity of visual information to be stored at any one time and accessed for

search tasks. These target representations must be held in focus while searching, with

the limit on the number of targets that one can retain within their VWM was argued to

range from just one (Oberauer, 2002) to four (Cowan, 2001). However, Wolfe (2012)

demonstrated that while search efficiency decreased for the number of targets memo-

rised, participants were able to search for as many as 100 targets with a miss error of

2% and 19% for set sizes of 1 and 16, respectively, suggesting it is possible to retain

many target representations at once. This may not be the case for complex targets (as

is the case in mammography), where there is a trade off between the complexity of

the targets and the number of items that can be stored (Alvarez and Cavanagh, 2004;
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Eng et al., 2005). Studies have demonstrated that visual search tasks involving two tar-

gets incur a dual-target cost, resulting in a less accurate search when participants were

tasked with finding two targets compared with just one (Menneer et al., 2007; Mestry

et al., 2017). This reduction in accuracy was argued to be due to a weakening of the

target representations in the VWM for the non-preferred target (Mestry et al., 2017).

When observers are engaged in a specific task, they may miss important (some-

times obvious) but unexpected information – a phenomenon known as ‘inattentional

blindness’. In one study with readers searching for lung nodules in chest CTs, 83% of

observers failed to see an image of a gorilla inserted into the CT (Drew et al., 2013),

shown in Figure 4.8a. However, the gorilla had a lower brightness than the nodules

and was only present in 5 slices out of the total 239, but does demonstrate that even

expert observers are not exempt from this limitation of human visual search. Expert

medical readers may argue that a small gorilla is not something that would be found

in a chest CT and therefore means it would not be regularly detected. However, it has

also been found that readers tasked with detecting lung cancer missed signs of breast

cancer and enlarged lymph nodes, at a rate of 66% and 30%, respectively (Williams

et al., 2020), shown in Figure 4.8b. When those same readers were instead directed

to search for a range of abnormalities, these miss rates were reduced to 3% and 10%,

respectively. Although, this instruction is not particularly relevant in mammographic

screening where the task is already pre-defined to search for a range of abnormalities.

An analogue of this problem was presented by Wolfe et al. (2017a), described as

‘mixed hybrid search’. Hybrid search involves searching displays for multiple targets,

and mixed hybrid search involves searching for both specific targets (e.g. this hat or

this dog) and categorical targets (e.g. clothes or animals). These categorical targets are

analogous of the unexpected (incidental) findings in medical imaging. In experiments
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with non-expert readers, the miss error for categorical targets was higher than for spe-

cific targets; when both target types could appear on any trial, the miss rate was 3.6%

for specific targets and 36.6% for categorical.

Figure 4.8: Images used to test inattentional blindness of expert readers. (a) chest CT
containing a gorilla from Drew et al. (2013) and (b) chest CT containing the target lung
nodule (yellow arrow) and unexpected abnormalities of a breast mass (red arrow) and
enlarged lymph nodes (blue arrow) from Williams et al. (2020).

Nartker et al. (2020) investigated methods to reduce the miss error rate of cate-

gorical targets in mixed hybrid search. There were three methods used: non-search

trials containing outlined categorical targets were inserted between trials to remind the

observers of their presence; asking the observers to respond separately regarding the

presence of specific and categorical targets; and finally requiring participants to record

their responses on a six-response checklist to indicate the presence or absence of each

target (3 specific and 3 categorical targets). Only the last method led to a reduction

in the error rate for categorical targets (18% for last method versus >30% for first

two methods). The use of a checklist resulted in a significant increase in the average
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trial time compared with the other methods, which would be problematic in a clini-

cal environment. Furthermore, there are many possible incidental findings in imaging

modalities such as lung CT, thus requiring readers to mark a checklist for the pres-

ence/absence of all possible findings is not feasible.

In mammographic screening and other imaging modalities, the whole image must

be searched adequately to find all signs of cancer. However, there is also pressure on

readers to get through a large number of cases, and so the reader must decide when to

terminate the search and make a decision on the case. If a reader has already detected a

sign of cancer, they will be less likely to detect an additional sign (if present) - an effect

known as ‘satisfaction of search’ (Berbaum et al., 1990). Krupinski (2010) estimated

that between one fifth and one third of errors can be attributed to satisfaction of search.

Although a more recent study, with 20 readers interpreting 64 chest CTs with and

without the addition of simulated nodules, found no evidence of this effect (Berbaum

et al., 2015). While accuracy was unchanged, readers reported fewer abnormalities

in the condition with simulated nodules, as measured by a significant reduction in the

centre of false positive range of ROC operating points.

It has been suggested that satisfaction of search may be due to a ‘suppression of

recognition’ (Kundel and Nodine, 2010). That is to say, when a reader fixates on an

abnormality that is dissimilar to an abnormality that has already been detected, the

reader is less likely to perceive it as abnormal. Preliminary analysis of this concept

by Mello-Thoms et al. (2014) found evidence to support it; previously made decisions

biased readers decisions on abnormalities they fixated but did not report, suggesting

they were too dissimilar in appearance to the reported abnormality to also be accepted

as abnormal. However, this study did not follow Berbaum’s protocol, in which satis-

faction of search cannot be credited as the reason for any abnormality being missed if

it cannot also be demonstrated that it would not have been missed without a distractor
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present (Berbaum et al., 1990). Therefore, further research is needed to confirm the

idea of recognition suppression.

In addition to satisfaction of search, where search decisions are influenced by pre-

vious fixations and decisions within the same case, reader behaviour can also be biased

by previous cases or information provided before they review a case. Prior knowledge

of the locations of potential nodules in chest radiographs (reported previously by at

least one other reader) disrupted the usual visual search of radiologists and led to a

reduction in accuracy compared to an independent review of the images (Swensson

and Theodore, 1990). When readers of chest scans were told that the set of images

originated from patients who developed a lung tumour 6 months after the image was

taken and provided the location of that tumour (for normal images, fictitious locations

were used), there was a significant improvement in nodule detection compared to an

initial read without this information (Littlefair et al., 2016). However, this information

also led readers to over-read the cases and specificity decreased on the potential tumour

locations. The increase in false positives is likely due to the increased expectation to

find an abnormality at those locations, even when there was not a nodule to be found.

The effect of prior knowledge has also been explored in mammography. A study

by Elmore (1997) analysed the differences in performance when readers were provided

with clinical history for each case versus when no information was provided. The

overall diagnostic accuracy was 67% without patient history and 72% with, but this

difference was not significant. This may have been due to low statistical power with

10 readers reviewing just 50 cases. However, clinical history did influence the recom-

mendations made by readers. For example, providing details of the patient’s family

history of breast cancer caused more readers to recommend a follow-up. Reviewing

cases with clinical history available is standard practice in the majority of radiology,

including mammography.
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A review article of sixteen studies of various imaging modalities, only one of which

used mammograms (Elmore, 1997), concluded that clinical history should be provided

(Loy and Irwig, 2004). In the majority of these studies, reading with clinical infor-

mation leads to a significant improvement in accuracy and in no instances was there a

significant reduction in accuracy. They also suggest that there should be efforts made

to improve how this information is provided to readers (Loy and Irwig, 2004), such as

presenting the information to readers after an initial review (Littlefair et al., 2016) – in

a similar way as second reader CAD. Not only does the information provided directly

(or made available) to readers affect behaviour, but it has also been demonstrated that

judgements on the current case are influenced by the judgements and features of previ-

ous cases in the sequence of cases examined (Alamudun et al., 2018). By monitoring

eye movements during review of mammograms, the visual search behaviour and deci-

sions of readers on previous cases were shown to be significant predictors of behaviour

on the current case being reviewed.

4.4 Summary

Visual search of an image or environment comprises of a series of fixations, where the

eyes are relatively still and visual information is gathered, and rapid movements called

saccades that move fixation to a new location. The underlying processes are complex

and are aimed to be described by visual search models.

Models are either item-based and fixation-based, depending on the central unit

of search. The most established item-based model is Guided Search. The general

principle of this model is that the visual system takes in the image, the whole image is

processed to extract scene information which contributes to an attentional priority map

that directs search for individual items. Target templates held in long-term memory
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are compared with the item that is currently being fixated, and it is either accepted or

discarded.

Fixation-based models challenge the idea that search is dictated by the processing

of individual items, and is instead governed by fixations. The key idea is that there is

a functional visual field around fixations, in which parallel processing of items within

that region occurs. The size of the FVF varies according to the difficulty of the task,

decreasing in size as task difficulty increases. The processing that occurs within the

FVF describes the statistical probability that a target signal is present, and attention

may be diverted before this process is complete.

The search of mammograms has also been described. Search is thought to begin

with a global impression, where the whole image is rapidly analysed and suspicious

areas of the image are flagged up, which are then attended to individually over a longer

period. The image will then be searched in a process guided by the task, attending to

areas of highest suspicion. Finally, the whole image is examined again to confirm any

initial suspicions before decisions are reported.

The search of medical images can be affected by the conditions of the task or the in-

formation available, and may increase the number of perceptual errors made. The low

prevalence effect has been shown to impact expert readers interpreting mammograms,

where miss errors increase when the prevalence of cancer decreases. Previous work

has demonstrated that CAD prompts that fail to mark targets increase the miss error

compared to unaided viewing and this effect was shown to worsen at low prevalence.

Readers engaged in a specific task are also more likely to miss incidental findings,

and when several of the same targets are present in an image, they are less likely to

find further targets once the first has been detected. In mammography, the availability

of clinical history for a given case was shown to not impact overall accuracy but did

increase recall rate where history suggested an increased cancer risk.
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In order to study visual search in detail, eye tracking is often used. Chapter 5

discusses the methodology behind eye tracking techniques and various studies using it

in mammography, with CAD, and elsewhere.



Chapter 5

Eye Tracking

5.1 Introduction

Eye tracking aims to calculate the location of a participant’s gaze, either by measur-

ing eye movements relative to the head, or by measuring the orientation of the eye in

space. Eye tracking has a wide range of research and commercial applications, includ-

ing cognitive psychology, marketing, defense, medicine, sport, and computer vision.

There has been a wide variety of eye tracking studies in radiology (van der Gijp et al.,

2016) and in breast imaging specifically (Gandomkar and Mello-Thoms, 2019).

The first measurements of eye movements were obtained in 1879 by observing a

participant with the naked eye as they read text, where the experimenter(s) counted the

number of saccades per line and listened to the sound of the contracting muscles in the

eye using a rubber tube placed on the eyelid (Wade, 2010). The first measurements

with experimental apparatus were highly intrusive, involving a cup pressed onto the

eye, with the lids held open, and the head heavily constricted (Huey, 1898; Delabarre,

1898).

105
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A technique that was developed in the 1930s, and is still in use, is electro-oculography

(EOG), whereby electrodes are affixed around the eyes to measure the voltage caused

by rotations of the eye (Mowrer et al., 1935). The negatively charged retina and the

positively charged cornea form a dipole, and when the direction of gaze is changed, the

direction of the dipole also changes, which can be measured by the electrodes around

the eye. Typically, the spatial resolution of this technique is >1 degree visual angle.

Another, more intrusive method, where thin copper wires wrapped into a coil and em-

bedded in a silicone annulus (called scleral search coils) are applied to the eye, with

a local anaesthetic applied to the eye (Robinson, 1963). When the participant is sat

within large coils generating a magnetic field, eye movements will induce a voltage on

the coil which can be measured. With two magnetic field coils, horizontal and vertical

eye movements can be measured. This technique has a high spatial resolution (<0.5

degrees visual angle) but is not as common now due to its invasive nature.

Video based eye trackers are advantageous in that they do not require the applica-

tion of anything to the participants face or eyes, although some may still require them

to be restricted in some capacity or actually wear the system if it is head-mounted (e.g.

glasses). They work on the principle of using reflections of infrared (IR) light from the

surface of the cornea, the relative position to the pupil is recorded by a camera, and

this is used to determine gaze position. Spatial resolutions are typically <1 degrees

visual angle. This will be discussed in further detail in the following section.

5.2 Eye tracking methodology

The most common method for eye tracking is corneal reflection (CR) with video based

systems. An IR light source is directed towards the eye, which produces a reflection

on the cornea (see Figure 5.1). A camera records the eye and measures the relative
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position of the reflection and the centre of the pupil. Image processing algorithms are

used to find the locations of the reflection and pupil centre.

Figure 5.1: Corneal reflections (white dot on the pupil) for various eye positions. Re-
flections are shown for (a) eye looking straight ahead, (b) eye looking straight ahead
but translated horizontally, (c) eye looking to the side, and (d) eye looking upwards.
As shown for each of the four diagrams, depending on the rotation or translation of
the eye, the corneal reflection will appear in a different position relative to the pupil.
Image from Merchant et al. (1974).

Two techniques for CR exist: dark pupil and bright pupil, which depend on the

position of the camera relative to the IR source (see Figure 5.2). When the IR source

and the camera are coaxial, the light reflects off the retina and creates a bright pupil
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(similar to red eye) with a high contrast between the pupil and the iris. When the

IR source is offset from the optical path then the pupil appears dark. The relative

position of the CR and pupil centre can be used to determine the gaze direction, since

these change with pure eye rotation, but are relatively independent of head movements

(Duchowski, 2017).

Figure 5.2: Schematic of eye tracking setup for bright and dark pupil corneal reflection.
Image from Tobii Pro (2017).

With reference to Figure 5.3, the separation between the pupil centre and CR, d, is

given by d = K sinθ, where θ is the angle between the optic axis (line of gaze) and the

light source, and K is the distance between the centre of corneal curvature and the pupil

centre. To map the gaze direction onto a screen, the observer screen distance must also

be known. Furthermore, the tracker requires a number of ground truth measures of the

line of gaze, acquired through a calibration procedure. Using these reference points,

the images of the eye are then linked by an algorithm to locations on the screen.
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Figure 5.3: Diagram for the calculation of gaze direction. Image from Merchant et al.
(1974).

There are two types of eye trackers: remote and head-mounted. Remote trackers

are desk-mounted and record the eye from a distance, and head movements are mostly

restricted. Head-mounted systems use cameras and illuminators close to the eye to

track gaze direction, and co-register this data to video from a forward facing scene

camera to show where the reader is looking. Although, with EyeLink II, the scene

camera is optional and can connect directly to the computer for on-screen tracking (SR

Research, 2021). Remote trackers are typically used for screen-based experiments and

tend to have a higher spatial resolution compared to head-mounted trackers, whereas
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head-mounted trackers are commonly used for studies in natural environments. How-

ever, because remote systems often restrict head movements and have a narrower field-

of-view than head-mounted trackers, head-mounted systems are often used instead for

large displays like those used in radiology.

While head-mounted systems use IR illuminators for pupil tracking, not all require

the use of CRs for gaze estimation. Since the head is fixed relative to the eye camera

and IR source, the CR is not necessary (Klein and Ettinger, 2019). The general ap-

proach for gaze estimation without the use of CRs is to build a 3D model of the eye

and to estimate the position of the eyeball centre using the pupil centre. From there,

the optical axis can be estimated and gaze estimation can be made using further mea-

surements of the pupil from the eye camera(s).

There are general considerations for every eye tracker regarding the setup and use

to maintain high spatial accuracy during recording. Arguably, the most important of

which is the calibration, since it underpins the model for gaze mapping. This usually

involves the subject looking at a series of points, or in some cases a single point. For

remote systems, the calibration procedure provides reference points to map raw eye

tracking data to screen coordinates, and for head-mounted systems to points in the en-

vironment video. Calibration may be followed by a validation sequence to verify the

accuracy of the calibration, and if necessary, the calibration is repeated.

Godwin et al. (2021) provides an in-depth review of important methodological con-

siderations and common mistakes to avoid in eye tracking experiments. These range

from the setup and calibration to the data analysis, to advise on how to most accurately

track participants and appropriately extract information from the data.

Various factors can cause issues with the calibration procedure. Eye make-up such

as mascara can interfere with the pupil detection, since it makes eyelashes thicker and
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darker, causing problems if they overlap the pupil edge. It is often advised that par-

ticipants remove any eye make-up prior to a recording session. However, mascara is

only an issue when the edge of the pupil is close to the eyelid; when there is a rea-

sonable amount of white (sclera) visible around the pupil, mascara does not interfere.

There may also be a problem when the top or bottom part of the pupil is covered by

the eyelid.

Glasses and contact lenses commonly cause issues with many video-based eye

trackers by interfering with the reflections from the IR source or creating additional

reflections to the corneal reflection that will defeat the tracking algorithm. Soft contact

lenses are generally not an issue compared to hard lenses. Solutions for obtaining

an accurate calibration with glasses and contact lenses include changing the distance

of the eye camera(s) from the eye and tilting the angle relative to the eye, or (for

monocular tracking) changing the eye that is being tracked (Klein and Ettinger, 2019).

Glasses usually work fine with the EyeLink1000 desktop eye tracker, as does the Pupil

Core eye tracking headset when using the provided extensions to the eye-camera arms

to increase eye-camera distance.

If calibration accuracy starts to drift during the experiment, some trackers allow

for drift corrections to be performed during the experiment. This usually consists of

the participant fixating a single point and the experimenter pressing a button once they

have done so. If the fixation point is beyond a given tolerance from the drift correc-

tion point, the calibration procedure is repeated. The eye video is also shown during

the recording session for most video trackers so researchers can manually monitor the

participant to check that their eye(s) are still being tracked correctly. For example, the

pupil and corneal reflection are still in focus, or that the eye has remained within the

ROI window (particularly important for head-mounted trackers where the headset may

be knocked during use).
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Fixation durations can vary greatly, both between and within participants. Since

there is no definition of a fixation in terms of duration, algorithms detect saccades and

everything that is not registered as a saccade is thus a fixation. The fixation location

is defined as the average X-Y location of all samples that are between consecutive

saccades. The minimum and maximum threshold for the duration of fixations must

be set by the algorithm. A tracker may split a single fixation into two separate fixa-

tions, resulting in two short fixations at a single location. Alternatively, it could group

two fixations into a single long fixation at the same location. Of course, how fixa-

tions are registered will also depend on the tracker’s definition of a saccade. Godwin

et al. (2021) argue that a minimum duration of 60ms captures all short fixations, and

fixations with a duration below this value are not long enough for any meaningful in-

formation to have been acquired for them to be included in the analysis. An upper

limit of 1200ms was suggested, although this is less clear on how it should be decided

since it is somewhat arbitrary and dependent upon the experimental design. Another

suggested method was to remove fixations with durations greater than, for example,

2.5 standard deviations from the mean.

In addition to the duration of fixations, it is important to only include fixations that

are within the area of the display that are of importance to the analysis, and experi-

menters should remove fixations according to their location (Godwin et al., 2021). For

experiments on displays in radiology, the most appropriate way to do this would be to

remove fixations falling outside of the images. Of course, fixations falling outside of

the image may be due to measurement errors, so experimenters should take this into

consideration when excluding fixations from analysis. Finally, it is often of interest

to measure whether a region or object has been fixated. Since fixations are normally

distributed around the centre of objects (Godwin et al., 2021), and there is some error

in the accuracy of the tracker, the analysis must provide some tolerance to account for
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this. In radiology, and in visual search literature in mammography, a 2.5◦ visual angle

radius is associated with the useful field-of-view (Kundel and Nodine, 2004). There-

fore, this value can be used as a tolerance around objects for accepting or rejecting

whether they were fixated.

5.3 Eye tracking devices

The experiments of this thesis have used two eye trackers, one remote and one head-

mounted. The details of each of these will be explored in more depth in this section.

5.3.1 EyeLink1000

The EyeLink1000 is a remote desk mounted eye tracker, shown in Figure 5.4. As

shown, there are infrared illuminators that produce a CR, which is then recorded by a

high-speed camera. The position of the tracker and camera is adjustable with a number

of knobs and screws, making it possible to change the angle of the illuminators and

camera. The EyeLink setup screen is shown in Figure 5.5. From here, there are a

number of important settings that can be altered, including: the thresholds for the

pupil and CR that can be set automatically (and manually adjusted), the sample rate,

and the power of the illuminator. The eye camera should be adjusted so that the eye is

positioned centrally in the top camera image in Figure 5.5. The lower camera image

in Figure 5.5 shows the dark pupil and the CR; the camera lens should be adjusted so

that both of these are in focus, such that the pupil appears as a full circle and without

shadows around other parts of the eye (particularly around the eyelashes).
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Figure 5.4: Diagram of EyeLink1000, taken from SR Research Ltd (2009).

The setup screen (Figure 5.5) is also where the calibration is initiated from. This

is a 9-point calibration procedure where the position of each point is randomised. The

process is automated, with the position of each point changing once the participant

has fixated it. Once the calibration is completed, a validation procedure can be per-

formed, which follows the same process and checks the accuracy of the calibration in

calculating gaze position. If any fixation deviates by greater than 1◦ visual angle then

the calibration should be repeated. Once an accurate calibration has been accepted,

the gaze positions can be calculated using the pupil and CR centres (as described in

Section 5.2).

The technical specifications for the EyeLink1000 are provided in Table 5.1. The

accuracy is typically high (<0.5◦) and a sampling rate of 1000 Hz for gaze location

was used in our experiment. Participants are supported by a chin and forehead rest to
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Figure 5.5: Screenshot of the EyeLink setup screen. The lower camera image shows
the pupil centre crosshairs and CR centre crosshairs. Image taken from SR Research
Ltd (2009).

restrict head movements. It is important to keep the camera within the optimal camera-

eye distance (40−70cm) for data quality purposes. The data output is in the form of

a single EyeLink data file (EDF). Raw gaze position and pupil size are generated au-

tomatically, with button and message events generated by the experiment programme

and sent to the EyeLink system to be recorded. The real-time operator feedback is what

can be monitored during the experiment, shown in Figure 5.6, where the eye camera

image is shown along with the tracking status (‘OK’ or ‘MISSING’). The stimuli that

the participant is viewing can also be displayed on this screen with the gaze cursor

overlayed. Alternatively, a trace of their gaze coordinates as a function of time can be

viewed instead.
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Table 5.1: Specifications for the EyeLink1000 tracker (SR Research Ltd, 2009).

Property

Average accuracy 0.25◦−0.5◦ typical
Sampling rate 250, 500, or 1000 Hz
Spatial resolution <0.01◦ RMS @ 1000 Hz
Allowed head movements ±25 mm horizontal or vertical, ±10 mm depth
Eye tracking principle Dark pupil corneal reflection
Gaze tracking range 32◦ horizontally, 25◦ vertically
Optimal camera-eye distance 40−70 cm

Data output

raw eye position
gaze position
pupil size
button events
message events

Real-time operator feedback
Gaze position cursor or position traces
Camera images and tracking status

Figure 5.6: Screenshot of the EyeLink record screen. The trace of the participant’s
gaze coordinates is displayed in real-time. The lower camera image shows the pupil
centre crosshairs and CR centre crosshairs. The box on the right signals the tracking
status. Image taken from SR Research Ltd (2009).
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5.3.2 Pupil Labs

Pupil Labs - Pupil Core Headset (referred to as Pupil Core from here onwards) is a

wearable eye tracking headset, shown in Figure 5.7. The headset consists of two 200

Hz eye cameras and a forward facing 120 Hz world camera mounted on a lightweight

frame (total weight 22.75g). Each of the eye cameras can be adjusted along an arm

to extend them further away from the eye or bring them closer, or they can be moved

around a ball joint to change the angle relative to the eye. The world camera can

be tilted up or down to change the field-of-view (FOV). Pupil Core allows for free

movement of the head, and can be connected to either a laptop or mobile device via a

USB-C connection for data collection. All of the Pupil Labs software is open-source,

making it possible to adapt the software to specific needs and even add custom features.

There are many third-party features available (https://github.com/pupil-labs/

pupil-community) that can be easily added to the software provided by Pupil Labs.

Figure 5.7: Photograph of Pupil Core. The world camera can be titled vertically about
the frame to align with the desired FOV. The two eye cameras can be moved around
a ball joint and along the camera arm either closer or further from the eye. Image
provided by Pupil Labs with permission to reproduce, with added annotations.

Figure 5.8 shows a screenshot of the Pupil Capture software used for the setup

of Pupil Core. The eye camera images can be viewed to ensure that the cameras are

properly positioned. Pupil detection is an automated process, discussed in further detail

https://github.com/pupil-labs/pupil-community
https://github.com/pupil-labs/pupil-community
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below, but may require fine tuning. This can be done by altering the ROI around

the eye, changing the minimum intensity value of a pixel to be considered as part of

the pupil, or setting the minimum and maximum pupil sizes. Once the participant is

positioned in the experiment environment, the world camera should be adjusted so that

the experiment screen or task is in view in Pupil Capture, and the camera lens can be

focused if necessary.

Figure 5.8: Screenshot of Pupil Capture software used for data collection with Pupil
Core. The eye camera images are shown on the right: red circles around the pupil
indicate that they have been properly detected.

There are three different calibration types to choose from with the Pupil Core. First,

which is the standard in visual search tasks, is the screen marker calibration, where a

series of calibration targets are displayed on a screen to be fixated. For search tasks that

are not screen-based, calibration can be performed either using a single target (printed

or otherwise displayed), or by fixating a series of natural features in the environment.

The accuracy of the calibration can be estimated in Pupil Capture with an accuracy
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test, repeating the calibration procedure and displaying the errors between estimated

gaze and the reference targets.

Surrounding each eye camera are IR LEDs that illuminate the eye (dark pupil

method), and from these camera images both the pupil boundary and centre are ex-

tracted. This process uses an algorithm involving a series of image processing trans-

formations (Kassner et al., 2014). The eye algorithm view in Pupil Capture is shown

in Figure 5.9. First, the image is converted to greyscale and an initial rectangular esti-

mate of the pupil region is made. Next, an edge detection process is followed to find

contours, which are then filtered based on the pixel intensities. The dark pupil region

is identified by thresholds set by the user (discussed previously), detecting the lowest

pixel intensities in the histogram of the image. Other reflections in the image are fil-

tered out that do not fall inside the dark pupil region. The remaining edges around the

dark pupil region are connected to form sub-contours, and subsequently used to create

various candidate pupil ellipses via ellipse-fitting. Finally, the properties of the ellipses

are assessed and if they meet a confidence threshold, the best of those that are above

the threshold are used to define the pupil contour and centre.

In addition to the 2D pupil detection, Pupil Capture also models the eye in 3D

using the camera images of the eye. The initial steps are based on a method developed

by Swirski and Dodgson (2013): the position of the eyeball is estimated without the

use of corneal reflections, and instead uses multiple measures of the pupil in a process

of ‘least-squares intersection of lines’. This method is outlined in Figure 5.10, where

the eye is modeled as a sphere of radius R. A series of images taken over a period of

time from the eye camera provides a set of 2D pupil edges (using the process described

previously), and the lines normal to the pupil centre are parallel to the gaze direction.

This set of lines, normal to the gaze direction and through the centre of the eyeball,

provides an estimate for the position of the eyeball.
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Figure 5.9: Screenshot of eye camera image showing algorithm view in Pupil Capture.
The two red circles indicate the pupil min and max sizes set by the user, and the small
green circle is the current pupil size. The debug visualiser (left) also shows the eyeball
model.

However, additional steps are added to the estimation of eyeball position, expand-

ing on the model by Swirski and Dodgson (2013). Pupil use a two-sphere model,

accounting for the curvature of the corneal surface, detailed in Dierkes et al. (2019).

The model expands upon that shown in Figure 5.10, with sets of 3D pupil contours

defining sets of intersecting lines through the eyeball centre to estimate its position.

Once the eyeball position has been estimated, the gaze estimation can take place. This

is done by estimating the centre point of the pupil in 3D, and therefore the line through

the pupil centre and eyeball centre gives the optical axis. Finally, a correction is ap-

plied to account for the effects of corneal refraction, which can incur systematic errors

into the calculation of eyeball and gaze position (Dierkes et al., 2019).
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Figure 5.10: Diagram of method of estimating eyeball position using the intersection
of lines based on pupil measurements proposed by Swirski and Dodgson (2013). (A)
Initially, the 3D pupil surface is mapped to a 2D ellipse (black circle shown in side
view). The red dashed line is formed through the centres of the circular unprojections
of the 2D pupil ellipse from the eye to the camera, passing through the pupil centre.
The eyeball to pupil centre distance, R, is fixed, and therefore the eyeball centre is
constrained to lie on the red solid line, parallel to the red dashed line. (B) A change in
gaze direction gives rise to an independent constraint for eyeball position. (C) Eyeball
position is estimated by a least-squares intersection of constraining lines derived from
a set of pupil contours from N gaze direction measures. Diagram taken from Dierkes
et al. (2019).
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Calibration and gaze mapping can be performed within Pupil Capture with the

gaze position overlayed on the world video during recording, but calibration can also

be done post-hoc once the recording has finished. This is done in Pupil Player, the

analysis software for Pupil Core, shown in Figure 5.11. An offline calibration can

be performed if, within the recording calibration, targets have been displayed and a

correct procedure has been followed by the participant (i.e., reference locations known

to have been fixated by the participant). Calibration targets are automatically detected

by the software and can be manually removed or added if required. A range of the

targets can be chosen to be used as a validation set. Once the offline calibration has

been completed, gaze mapping and fixation detection can be (re)calculated using this.

Another feature in Pupil Player is the option to add annotations, which allows the user

to add a custom label to a given timestamp to flag the occurrence of an event in the

recording.

Pupil Capture and Player also offer surface tracking, where surfaces can be defined

by using QR-code like markers within the experiment environment. An example of

this is shown in Figure 5.11, where surface markers are displayed around the edge of

each monitor. Using the markers, four surfaces were defined by selecting appropriately

positioned markers to define them (minimum of 2 markers required for surface defini-

tion) and then creating the desired shape within the environment. The surface will then

remain fixed within the video according to the chosen parameters and visible while the

markers are within view. Once the surfaces have been defined, gaze and fixations can

be mapped onto the surfaces and heatmaps of the recording are produced.
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Figure 5.11: Screenshot of Pupil Player software used for data analysis with Pupil
Core. On the left-hand side are the hotkeys to export the data, add an annotation,
and skip through fixations. On the right-hand side is the menu to change the settings,
manage plugins, and initiate the offline calibration and gaze mappings. The QR-like
markers around the edge of the screen are highlighted in green when properly detected.
They are used to define surfaces, which in this case are the four pink rectangles over the
two displays. The gaze position is displayed on the left screen (green circle with red dot
at centre) and a yellow circle indicates a fixation at this point. The eye camera overlays
are displayed in the top right of the screen, showing the detected pupil features.

Through the use of surface markers, Pupil Player is able to build a 3D model of the

environment to support head pose tracking (an example is shown in Figure 5.12). This

provides the head pose of the world camera within a 3D coordinate system with one

of the markers set as the origin. The data output of the head pose tracking provides

the rotation and translation of the headset in the 3D coordinate system relative to the

origin marker.



CHAPTER 5. EYE TRACKING 124

Figure 5.12: Screenshot of head pose tracking visualiser in Pupil Player software. The
markers around the edge of the screens are shown in red in this view, with the Pupil
Core headset on the left. The marker third down on the right is set as the origin for the
coordinate system.

The technical specifications of the Pupil Core headset are given in Table 5.2. The

typical accuracy is stated as 0.60◦, but will vary depending on the experimental setup

and has been shown to drift over the course of the experiment (Ehinger et al., 2019).

Head movements are not restricted with Pupil Core, however rapid movements may

cause slippage of the headset and will lead to the software briefly losing track of any

surface markers in the environment. In addition to the gaze position and fixations (both

in the world video and mapped onto surfaces), the pupil size and position data are also

exported from Pupil Player. As shown in Figure 5.8, while the recording session is

taking place, the researcher can monitor the gaze position on the world video (provided

a calibration has already occurred) and the eye camera images, which display the pupil

ellipses and centre, and the respective algorithm confidence threshold values.
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Table 5.2: Specifications for Pupil Core (Pupil Labs, 2021a).

Property

Average accuracy 0.60◦ typical

Sampling rate
200 Hz eye camera
120 Hz world camera

Spatial resolution <0.02◦ RMS
Allowed head movements Unrestricted
Eye tracking principle Dark pupil with 3D model
World camera FOV 100◦ horizontally, 74◦ vertically

Data output

gaze position
pupil size and position
fixations
annotations
surface tracking data
head pose tracking data

Real-time operator feedback
Gaze position cursor
Camera images and pupil contours
Pupil tracking confidence

5.4 Visual search studies

5.4.1 Studies in mammography

Eye tracking has been used in studies in mammography to gain a better understanding

of how readers search mammograms, how different workstation setups affect perfor-

mance, and ultimately to find methods to improve diagnostic performance. Kundel

et al. (2007) recorded the eye positions of trained readers of mammograms with vary-

ing levels of experience whilst they interpreted 40 mammograms, half containing a

subtle cancer (see Figure 5.13). Half of the cancers were fixated in around 1 second,

with a median time to fixate a cancer of 1.13 seconds. In another similar study, the

majority of cancers (approximately 57%) were fixated within 1 second (Kundel et al.,

2008). The fact that abnormalities were fixated so quickly indicates that there was

some initial rapid interpretation of the image and supports their model (Kundel and
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Nodine, 2004) of a global analysis of the entire image followed by a closer examina-

tion of regions identified as suspicious.

This global approach was shown to be more proficient than an exclusive use of

the ‘search-to-find’ technique where a focal search is carried out by scanning the im-

age to recognise and evaluate abnormalities (Kundel et al., 2007). Furthermore, it

demonstrated that the process of a global impression leading to a rapid review of the

suspicious region was occurring before the scanning phase of the model (as opposed

to an earlier model where scanning was believed to occur prior to foveal verification

(Nodine and Kundel, 1987)).

Figure 5.13: Image from the study by Kundel et al. (2007) showing the visual search
path of a mammographer viewing an abnormal mammogram. The search starts with
an initial saccade to the mass in the CC view, followed by a long saccade to the mass
in the MLO view. Comparisons between the views are made and finally both views are
searched completely.
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The search strategy of the reader also depends on their level of expertise (Kundel

et al., 2007). Less expert readers were not able to employ the initial global impres-

sion of the mammograms that would rapidly guide them to potential abnormalities.

Instead, they adopted the slower search-to-find method, which also resulted in more

errors (Kundel et al., 2007). Once it was established that experienced readers follow

this model of search, Mello-Thoms (2009) investigated the impact of the initial global

perception of the image being incorrect. When readers were initially drawn to a false

positive area, they were significantly more likely to make false negative errors (fixate

abnormalities without reporting); effectively they became blinded to the characteristics

of true positives in those mammograms due to an initial erroneous view.

The commonalities between visual search strategies of expert readers of mammo-

grams was investigated by Mello-Thoms (2008), and while the agreement between

pairs of readers varied, there tended to be a similarity between search patterns once

readers had fixated the location of response. Studies of how the most experienced

readers search images could be particularly useful in the training of new readers. Al-

though it is important to note that there is not going to be a search approach suitable

for all images, rather, useful techniques such as how comparisons between views could

be formulated (Mello-Thoms, 2008).

A later study by Gandomkar et al. (2018) investigated the use of eye tracking pa-

rameters to pair radiologists with the aim of optimising overall performance. They

extracted 14 metrics from the eye tracking data and grouped readers by experience be-

fore pairing, with an example of how three of these metrics are obtained demonstrated

in Figure 5.14. The eye tracking metrics differed greatly between experience groups

compared to within groups. In >50% of all possible pairings, the maximum benefit

was not achieved, suggesting that double reading may not always provide improved
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outcomes and depends on the combination of readers. In terms of maximising perfor-

mance, pairing readers using cognitive measures, rather than their AUC values, was

more robust to small sample sizes (Gandomkar et al., 2018).

Figure 5.14: Cross-recurrence plot for two radiologists, adapted from Gandomkar et al.
(2018). (a) Scanpaths from two readers (one in blue and one in orange), where the
circles are fixations and lines are saccades between fixations. (b) Cross-recurrence plot
corresponding to the scanpaths. This plot indicates the order that fixations occurred for
each reader. A point in the ith column and jth row indicates that these fixations were
within 2.5◦. From these plots, three metrics were extracted: recurrence (regions fixated
by both readers), determinism (similarity in their sampling strategies), and laminarity
(for regions covered by both readers, the proportion of consecutive fixations).

Further studies have explored the differences in visual search behaviour of read-

ers varying in experience. Less experienced readers were shown to fixate for shorter

periods than those with more experience, and also looked in different regions of the

image (Lévêque et al., 2019). Less experienced readers were also shown to have a

more dispersed search (fixations had a greater spread across the image) than experi-

enced readers who tended to focus for longer on single regions (Leveque et al., 2021).
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In this study, all cases were lesion-free and so from these results it is not possible to

know whether more experienced readers would spend more time fixating abnormal re-

gions. Similarly, in an earlier study (Krupinski, 1996) experienced readers detected

lesions earlier and spent less overall time in the image, covering less of it than more

novice readers. These results align the search model discussed by Kundel et al. (2007),

with less experienced readers opting for the slower search-to-find technique, and may

also indicate that experienced readers have a better understanding of where they should

look in an image.

There has been a number of studies that have tracked readers’ gaze to gain a deeper

understanding of the errors made in mammography. Krupinski (1996) reported that

experienced readers made more decision than recognition errors, whereas this pattern

was reversed for less experienced readers. This suggested that the latter were not

fixating for long enough on potential abnormalities to register them as such. Mello-

Thoms (2003) observed similar results for less experienced readers, however reported

that experienced readers made equal numbers of decision and recognition errors. This

contradiction is likely due to the difference in case sets between studies: single view

versus two-view (Mello-Thoms, 2003). The time spent interpreting the image can also

impact the error rate, with longer interpretation times (Saunders and Samei, 2006) and

total dwell time (Voisin et al., 2013b) both being correlated with an increased chance

of making a diagnostic error. Carney et al. (2012) reported that for each additional

minute of viewing a cancer case, the chance of a true positive increased by 12%. How-

ever, for normal cases, longer interpretation times were associated with an increased

risk of a false positive response, which was significant across all confidence levels.

Each additional minute of viewing increased risk of a false positive by 20% for readers

who were not at all confident in their decisions and by 42% for readers who were very

confident.
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A detailed study into the errors made in mammography and visual search of mam-

mograms in general was conducted by Wolfe et al. (2021b). Seventeen readers of

varying experience reviewed 80 (60 target present) single-view mammograms, tasked

with detecting the presence of a single mass. No differences in performance or eye

tracking parameters were found between readers of different experience levels. The

proportion of errors made were in line with Krupinski (1996), with 25% search, 25%

recognition, and 50% decision for trials where targets were missed without a false pos-

itive response. To investigate the nature of these errors in more detail, the proportion of

saccades that went to the target region immediately following a fixation at various dis-

tances from the target was measured, shown in Figure 5.15a. As shown, the proportion

of saccades that went to the target was ≈33% when the fixation was 2◦ from the target.

This rises a small amount to around 50% when looking at the proportion of the next

three saccades from a fixation 2◦ from the target (Figure 5.15b). Therefore, it suggests

that even when attention is focused inside the UFOV in mammography of 2.5◦ radius

estimated by Kundel and Nodine (2004), it does not necessarily mean that a target will

be detected. This result may also go some way to explain inattentional blindness, dis-

cussed in Section 4.3, since readers may fixate near a target without processing it as

such.

A reasonable assumption with search errors, where the target is not fixated and

subsequently unreported, may be that the image was not searched as completely as in

true negative responses or compared with recognition and decision errors. However,

in terms of image coverage, this was not found to be the case (Wolfe et al., 2021b).

Coverage did not vary between cases where a true negative response was given and

cases where the target was missed. On cases where a target was missed and without

a false positive response, the image coverage did not vary between error type. Search

errors, it seems, did not result as a consequence of readers quitting search too early

(Wolfe et al., 2021b). The high target prevalence of 75% and the experimental setup
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may have impacted the way in which observers searched the mammograms, since the

images were single-view with no access to other views for a single case or indeed prior

mammograms as would be available in the clinic. However, the interesting insight into

how targets are missed is unlikely to change under more realistic circumstances, but

this should be verified.

Figure 5.15: Image from the study by Wolfe et al. (2021b) showing (a) proportion of
next saccades that hit the target and (b) proportion of the next 3 saccades that hit the
target, versus distance of current fixation from the target. Distributions are shown for
all trials, and split further by correct and incorrect trials. A simulated chance distribu-
tion is also shown, which estimates how an observer would perform if attention was
moved around the image to check locations where a mass may be expected, rather than
moving to a location that has already raised suspicion.

The type of image and the way they are presented to readers is important to search

behaviour and performance. Radiologists were found to have different visual search

behaviour, in terms of time to hit first lesion and median dwelltimes on cancers, for

digital mammograms compared to digitised screen-film mammograms (Mello-Thoms,

2010). Digital mammograms reduced the number of cancers that did not attract any

visual attention and increased the number of cancers that did attract visual attention for

over 1 second. It is conventional for mammography workstations to use two clinical
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monitors for displaying the mammograms, however using a larger and higher resolu-

tion single monitor may be more beneficial for visual search (Krupinski, 2016). Using

a single monitor significantly reduced search time without a reduction in diagnostic

accuracy.

Drew et al. (2015) conducted a study with 23 expert readers comparing the con-

ventional method of viewing past and present mammograms side by side on a 21 inch

clinical monitor, with a method where images could be ‘toggled’ between one another.

There was an average 6 second reduction in the time taken to reach a decision with

the toggle mode, and a small but not significant improvement in diagnostic accuracy

of 5%. Eye tracking was not used in this study, but it is likely the improvements were

partly due to fewer long saccades and subsequent fixations between side by side past

and present images to compare regions of interest, relative to toggled images where

gaze is fixed at a single location. The features of the image, in addition to how they

are displayed, will also impact the visual search of readers. Mousa et al. (2014) in-

vestigated how breast density changed the visual search patterns of seven radiologists.

Lesions that were overlying fibroglandular dense tissue in both low and high density

images were fixated faster and for longer than lesions located outside dense regions.

These are the regions where lesions may typically be hidden by dense tissue and so the

gaze of the reader is likely to be attracted first.

An alternate modality that requires the reader to ‘toggle’ through a stack of im-

ages is DBT, discussed briefly in Section 2.3. Since DBT images are 3D, visual search

behaviour must adapt. Aizenman et al. (2017) tracked eye movements of radiologists

reading single-view DBT and digital mammography cases on a 21 inch clinical mon-

itor, finding significantly improved sensitivity and specificity for DBT. Readers made

longer fixations in DBT, but similar amplitudes of saccades. A smaller area of the

images was covered for DBT than digital mammography, but the 3D nature of DBT
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images complicates this calculation somewhat. For the DBT images, Aizenman et al.

(2017) marked regions defined by a useful field-of-view (UFOV), for slices visited

during each fixation and also the slices directly above and below. Coverage could then

be calculated by dividing the marked regions by the total image volume.

Dong et al. (2018) studied eye movements of radiologists experienced in reading

DBT images, with the aim of gaining a deeper understanding of their visual search

strategies that could potentially be used as a training tool for future trainees starting to

use DBT. Readers were presented with the synthetic 2D-DBT image first, followed by

the 3D-DBT image. Gaze analysis was performed to track overall visual coverage and

on AOIs, and scrolling behaviour was recorded throughout. Readers used the initial

2D view to perform a global-focal scan, identifying possible abnormalities. They then

scrolled through the 3D view to inspect those regions in greater detail, spending more

time fixating them than in the 2D view. Another study using eye movement data in

DBT is Jiang et al. (2017), which recorded naive reader (physicists) gaze while read-

ing DBT images to extend a visual search model observer for mass detection.

There is a need to improve the perceptual ability of less experienced readers through

training from experienced readers. Nodine et al. (1999) studied performance of various

levels of expertise groups reading mammograms. Less experienced readers struggled

with perceptual recognition and decision making (identifying differences between nor-

mal, benign and malignant image regions) due to lack of ‘perceptual-learning experi-

ence’ during training. Methods have been proposed to use gaze information to improve

diagnostic accuracy, with the idea that false negatives tend to have significantly longer

dwell times than true negatives (Krupinski, 2010), and so feeding back areas that at-

tracted attention but were not reported on could lead to a reduction in missed cancers.

These are known as computer assisted perception (CAP) tools.
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Nodine et al. (2001) implemented a method called ‘computer-assisted visual search’

(CAVS), where regions that were fixated for 1 second or longer were used as feedback

after initial unaided viewing. CAVS increased the detection and localisation of le-

sions by 12%, but this was not significant (this may have been a power issue with

only 6 readers and 40 cases). Similarly, Tourassi et al. (2010) describe an interactive

information-theoretic CADe (IT-CADe) system for mammography which recorded re-

gions that were fixated for longer than 1 second but not reported by the reader. These

regions of interest are compared with a database of mass and normal templates to

determine the probability of that region being malignant. This system demonstrated

potential to reduce false negatives, detecting 4/6 decision errors and 5/8 search errors.

An interesting idea presented by Gandomkar et al. (2017) combined the gaze data

of radiologists with extracted image features, of both the mass (if present) and the sur-

rounding background, to classify locations marked by radiologists as TPs or FPs. This

method improved performance of radiologists in the study; lesion localisation accu-

racy increased by an average of 12%, along with an average of 44.5% decrease in the

number of FPs per image from 0.46 to 0.21. Chen and Gale (2010b) proposed using

the gaze data of an experienced reader of mammograms as a training tool for inexpe-

rienced readers. However, Chen and Gale (2010b) state that this alone is unlikely to

improve performance significantly, but it may be useful to combine CAD output with

regions that attracted expert readers’ gaze.

Recent work has investigated using gaze recordings of expert readers to train deep

learning algorithms. Mall et al. (2018) used the eye tracking data of eight radiologists

to train a deep learning model to predict reader behaviour. The areas of the image that

were fixated directly, indirectly (peripherally), or not at all, were combined with the

behavioural data (decisions and their confidence in that decision). These combinations
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of fixated regions and decisions were used to train a model to predict the readers de-

cisions and the areas of mammograms that are likely to either attract the attention of

readers or to be ignored. These were able to be accurately predicted by the model.

Since for a given mammogram, the visual search pattern of a single reader is known to

be variable in repeat sessions, Mall et al. (2019a) modelled attention level rather than,

for example, scanpath. These attention levels were: ‘foveal areas’ where 3 sequential

fixations occur within 2.5◦ of each other, ‘peripheral areas’ where <3 sequential fix-

ations occur within 2.5◦ of each other, and ‘never fixated areas’ where none of the 8

readers fixated. In Figure 5.16, two of the attention levels (foveal and peripheral areas)

used to train the deep learning network are visualised. It was demonstrated that the

model was able to accurately predict the radiologists’ attention levels and decisions on

mammograms.

Finally, gaze data was used to explore the underlying features of regions for dif-

ferent error types: search, recognition and decision errors (Mall et al., 2019b). The

features for each error type were used to train machine learning methods to predict the

type of missed cancer and compared that to a CNN. The machine learning methods

were better suited to determining the type of missed cancer (false negative) compared

to the CNN, which learns the features by itself. By identifying the type of error that is

associated with a false negative region, it provides a better understanding of why the

cancer was missed and therefore training can be customised accordingly to improve

performance for those regions (Mall et al., 2019a).
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Figure 5.16: Images demonstrating how different attention levels were defined (Mall
et al., 2019a). Scanpath of a reader for a two-view mammogram. The red star indicates
an abnormality and a blue square where a reader has marked it as such. The green
points are fixations and dashed lines saccades between them. The white circles are
foveal areas and the red circle is a peripheral area. For this case there were areas that
were never fixated.

5.4.2 Studies with CAD

Prompts have been shown to affect the visual search patterns of naive observers (Hat-

ton et al., 2004; Drew et al., 2012). Drew et al. (2012) performed an eye tracking

study investigating the effect of CAD on visual search of novice observers search-

ing for target Ts amongst distractor Ls in a 1/f2.4 noise distribution. CAD improved

sensitivity by 7% and decreased specificity by 3%. However, when CAD missed a

target, sensitivity fell to 56% (significantly lower than the no-CAD group) compared

to 97% when CAD marked a target. This could be explained with the eye tracking

data. Where targets were not marked by CAD, observers spent less time fixating it

compared to the no-CAD group, or never even fixated it. Observers in the CAD group
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also had a much lower total image coverage (see Figure 5.17), mainly fixating around

the prompts. This was also seen in the study by Hatton et al. (2004) for naive observers

trained to interpret mammograms; more of the image was searched when there were

no prompts present. A similar result was found for CT colonography, where observers

gaze was attracted by CAD marks but areas not marked by CAD were viewed less than

observers not using CAD (Helbren et al., 2015). This effect was stronger for readers

with less experience.

Figure 5.17: Image from Drew et al. (2012) showing the visual search patterns for a
target absent trial, for a search of a target Ts amongst distractor Ls. Two CAD prompts
are present in the CAD condition (bottom row), focusing the participants visual atten-
tion around them.
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The main aim of Hatton et al. (2004) was to compare subtle prompts to traditional

CAD prompts (shown in Figure 5.18). They found that with subtle prompts the num-

ber of bilateral comparisons were most similar to the unaided condition. Furthermore,

participants turned the subtle prompts on and off a fewer number of times, since they

were not overlaying important features of the mammogram. As mentioned, partici-

pants focused their visual attention primarily around the prompts (see Figure 5.18), as

quantified by the percentage of overall time viewing prompts and percentage of total

fixations on prompts. Both of these metrics revealed significant differences in search

behaviour between prompts and no prompts, but no difference in the type of prompt

used. Subtle prompts provide an alternative to typical CAD prompts and may be less

disruptive to visual search in terms of switching prompts on and off and reducing

viewing time compared to traditional prompts, while still attracting attention to areas

readers might have missed in unaided viewing. However, since subtle prompts result

in significant reductions in image coverage, CAD should still preferably be used as a

second reader.

Figure 5.18: Scanpath of a non-expert participant reading a mammogram with (a)
subtle prompts versus (b) no prompts, from Hatton et al. (2004). The black circles are
fixations, with the longer the fixation duration the larger the circle. The lines joining
fixations are saccades.
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The effect of target prevalence on the visual search behaviour and error rates of

non-expert participants completing a task (searching for target Ts among distractor

Ls) with and without CAD was investigated by Drew et al. (2020). Two separate ex-

periments were conducted, one with traditional CAD prompts (referred to as binary

CAD) and the other with an interactive CAD approach, in which prompts only ap-

peared when participants clicked on the regions where they were present. In each

experiment there was a low prevalence (10%) and a high prevalence (50%) condition,

both completed with and without CAD. Eye tracking revealed that binary CAD caused

participants to search less thoroughly, with a significantly lower cumulative dwelltime

on distractors compared to the no-CAD condition, and a significantly lower fraction

of distractors fixated in target absent images. For interactive CAD, the opposite effect

was observed for distractor dwelltime, with participants fixating for longer in the CAD

condition than the no-CAD. The overall image coverage is visualised in Figure 5.19

for each condition, demonstrating similar results to Drew et al. (2012) for binary CAD.

Figure 5.19: Heatmaps of visual search of participants in no-CAD (left), binary CAD
(middle), and interactive CAD (right) conditions, from Drew et al. (2020). Each
heatmap shows the mean fixation dwelltime for the participants that completed that
condition.
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Drew et al. (2020) reported that binary CAD where the target was prompted led

to a significant improvement in the detection rate, with no effect of target prevalence.

Interactive CAD did not improve detection rate at high prevalence, but did lead to a

small benefit at the low prevalence condition. For targets that were not marked by

CAD, for binary CAD there was a significant increase in miss error for those targets

compared to the no CAD condition, which was significantly greater at low prevalence.

This result is in agreement to that reported by Kunar et al. (2017), who hypothesised

that participants became overreliant on CAD prompts leading to an increase in miss

errors when CAD failed to mark the target. In the study by Drew et al. (2020), the

miss rate for participants using interactive CAD did not increase when CAD failed to

mark targets, even at low prevalence. Therefore, although interactive CAD only led

to a modest improvement in detection rate at low prevalence, it eliminated one of the

main disadvantages of CAD.

The nature of computer feedback has been investigated in a number of studies, in

mammography (Giger et al., 2002; Hatton et al., 2004; Gilbert et al., 2008a; Hupse

et al., 2013) and in the visual search literature (Cunningham et al., 2016; Kneusel

and Mozer, 2017; Drew et al., 2020). A study by Drew and Williams (2017) inves-

tigated how providing simple feedback based on the eye tracking data of non-expert

participants affected their performance and behaviour while searching natural scenes

for simple targets (ovals and rectangles). Various types of feedback were examined

over a number of experiments. Firstly, participants could press a button to reveal un-

fixated regions and visited regions, displayed by splitting the image into a 6 by 4 grid

and highlighting the corresponding rectangles. Another feedback type was displayed

automatically while the participants were viewing the images, initially overlaying the

image with opaque grey rectangles, which became more transparent as they were fix-

ated. The final feedback type involved displaying the 10 regions which they had visited

least, after they had submitted a decision on the image.
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With most feedback types, no reliable benefit in performance was found. An im-

provement in accuracy was observed for the feedback where the 10 regions least fixated

were displayed post trial. This improvement was observed at 25% prevalence but not at

50%. This improvement at 25% was concluded to most likely be a false positive, since

the feedback only highlighted 8% of the target locations, and therefore was unlikely

to have been the reason that participants were able to improve their performance. The

lack of any apparent benefit may be due to the nature of the images or the fact that

the feedback was not linked with any information regarding target location. For exam-

ple, systems in mammography that could combine the gaze data of expert readers with

CAD output (abnormality location probabilities) and feed that back to the reader, such

as those described by Chen and Gale (2010a), will likely have better success. Further-

more, the methods described in Section 5.4.1 may make better use of combining eye

tracking data by combining it with AI algorithms.

5.4.3 Studies without eye tracking

Other methods of improving diagnostic performance and efficiency which do not in-

volve eye tracking have been proposed. For example, to reduce the workload of radi-

ologists, it has been investigated whether CAD could be used as a pre-screener (Astley

et al., 2003). Here, a CAD algorithm sorted cases into either ‘possibly abnormal’ and

‘almost certainly normal’. Radiologists would then only review the abnormal cases

and a small subset of normal cases. They found the CAD system only missed 3 of

approximately 90 cancers, but over 70% of cases had CAD prompts. Since then, it

has been argued that CAD should never be used as a pre-screener, because the stan-

dalone sensitivity of CAD would result in an unacceptable number of missed cancers

(Philpotts, 2009). However, the study by Astley et al. (2003) is over 18 years old, and

so pre-screening may be more feasible with present or future CAD systems.
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In fact, a recent study by Raya-Povedano et al. (2021) explored triaging cases with

AI to reduce the workload in both mammography and DBT using retrospective analy-

sis of a previous study with 16,067 participants interpreted by experts. The impact of

triaging cases was simulated using the AI risk score calculated for each case; low-score

cases (<8/10) were not read, the rest were double read, and any cases not originally re-

called by readers but in the top 2% of the most suspicious according to the AI were au-

tomatically recalled. Compared to double reading of DBT cases, this strategy resulted

in a non-inferior sensitivity (increase of 3.2% for DBT and 2.6% for mammography),

a reduction in the recall rate (16.7% for DBT and 16.9% for mammography), and a

reduction in workload (72.5% for DBT and 71.5% for mammography). Earlier work

in this group demonstrated that this method was capable of reducing workload without

a change in reader AUC (Rodriguez-Ruiz et al., 2019c). These results are similar to

another simulation study which used a deep learning method to triage cases, where

readers would only review cases not deemed to be cancer free (Yala et al., 2019).

Again, a reduction in workload was accompanied by an improvement in specificity

without a reduction in sensitivity.

One method in which all mammograms would still be reviewed by at least one

reader is where mammograms are sorted automatically into those which should be

single-read and double-read (Balta et al., 2020). An AI score between 1 and 10 denot-

ing the likelihood that a case contained a cancer was used to triage which cases would

be single-read and which would be double-read. Different thresholds were evaluated

to determine the optimal score to use for triaging, and it was found that single-reading

for cases with scores between 1 and 7 produced the best results. Using this threshold,

there was no change in cancer detection rate, a 0.56 percentage point decrease in recall

rate, and a 32.6% decrease in workload. A similar methodology was used by Lång

et al. (2021) to improve the detection rate of interval cancers in a screening cohort. By
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recalling all women with an AI score of >9 (approximately 10% of cohort), interval

cancers were found to reduce by 19.3%.

Another potential improvement could be to follow a similar approach to airport

baggage screeners, where fictional weapons are projected into luggage. This is used as

a method of quality assurance for screeners to maintain and improve detection rate of

real weapons. This could be applied to mammographic screening by inserting fictional

patient data with known diagnoses into the normal work-flow of readers. However,

only 31% members of the Association of University Radiologists in the US agreed

that this was a good idea (Phelps et al., 2017), due to concerns with the increase in

workload. Since a considerable number of fictional cases would need to be inserted to

see a significant improvement, concerns over increased workload would be valid.

5.5 Summary

Eye tracking has long been used to study visual search behaviour, with the earliest de-

vices developed in the late 19th century. Most modern devices are much less intrusive

than their predecessors, making use of video-based technology to record the eye and

experiment environment. Two main types of eye trackers exist: remote desktop track-

ers, which are typically used for screen-based experiments, and head-mounted trackers

that have a variety of uses, from tracking gaze across large displays to experiments with

participants moving in natural settings.

The two eye trackers that have been used in the experiments in later chapters are

the desktop EyeLink1000 and the head-mounted glasses Pupil Core. To estimate gaze

position, the EyeLink1000 uses dark pupil tracking with corneal reflections, and is able

to achieve typical accuracies of <0.5◦ at 1000 Hz. The Pupil Core creates a 3D model

of the eye, recording the eyes at 200 Hz and the experiment environment at 120 Hz,
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with typical accuracies of around 0.6◦. Both trackers provide the gaze coordinates and

fixations in their relative coordinate systems, and Pupil Core offers surface tracking to

map that data to user-defined surfaces within the world video.

Important considerations should be taken into account when setting up an eye

tracking device. Remote trackers should be positioned at the recommended distance

from the participant, and the eye camera of any tracker should be positioned so the

eye is centrally in view and focused. The calibration procedure is vital to achieving

high accuracy and is often followed by a validation procedure to check it was followed

correctly. Data cleansing for analysis will also improve the quality of data. This may

involve setting appropriate fixation duration limits and removing those which fall out-

side of these thresholds or removing all fixations that are outside of the AOI.

Many studies have used eye tracking to gain insight into how readers search mam-

mograms, and how their search is affected when the setup or nature of the images

is altered. Eye tracking has been used to model the visual search of mammograms,

highlighting that readers begin search with a global analysis before fixating regions

that were identified as potentially abnormal or where the prior probability of a lesion

is highest. Less experienced readers were shown to follow the slower search-to-find

strategy, resulting in a higher number of errors. Due to the differences in search be-

haviour between readers of varying experience, it may be possible to train those of

least experience by learning from the search of the most experienced readers. Gaze

patterns have also been combined with CAD outputs to make feedback more informa-

tive for readers. Machine learning and deep learning methods have used eye tracking

data to train models to predict image regions that will attract visual attention and the

error types of missed cancers.

CAD prompts have been shown to affect the performance and visual search of non-

expert participants reviewing images. A well-reported result in CAD literature is that

the absence of a prompt on a target leads to a significant reduction in sensitivity for
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those targets, compared to unaided reading. Eye tracking demonstrated that displaying

CAD prompts from image onset led to a significant reduction in image coverage, with

participants focusing their attention on the prompts. Alternative prompt types and

techniques such as subtle or interactive prompts have been demonstrated to have less

of an impact on visual search, and lead to fixation patterns that more closely resemble

unaided viewing. In non-experts, the cost of CAD missing targets increases at lower

prevalence using traditional prompts, but is not seen for interactive CAD, with a small

improvement in overall accuracy.

CAD algorithms may also be used earlier on in the screening process, triaging

cases before they are read by radiologists. Early studies suggesting this idea were met

with reservations on the basis that CAD systems were not accurate enough for this to

be viable, but recent improvements report promising results. It may be possible for AI

to decide which cases should be single read or not read at all (those with low levels of

suspicion) and those which should be double read (those with high levels of suspicion).

More unique concepts have also been explored, such as inserting fictional patients into

the usual workflow of the radiologists to increase cancer prevalence, in a similar way

as airport baggage screeners having fictional weapons projected into the luggage they

are checking. These ideas, however, must take into account the increase in workload

of an already over-worked profession if they were to be welcomed.

The next chapter explores the effect of using CAD as a second reader on visual

search and behaviour. In the studies that have been discussed combining eye tracking

and CAD, the prompts have been displayed from image onset, which is not the intended

use of CAD for mammography. It is investigated whether the initial unaided viewing

is affected by a secondary viewing with CAD – the so-called ‘safety-net’ effect.
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Safety-net effect with CAD

6.1 Introduction

In Section 3.3, we discussed how studies investigating the efficacy of CAD can be

categorised as either longitudinal or cross-sectional. Cross-sectional studies are where

readers sequentially review cases without and then with CAD, and longitudinal studies

are where the cancer detection rate is measured before and after CAD is introduced

into a clinic. As discussed in Section 3.3, cross-sectional studies are better suited

for evaluating CAD systems (Nishikawa and Pesce, 2009). This is because longitu-

dinal studies may not detect a change in cancer detection rate due to the prevalence

of cancers changing after the introduction of CAD. Whereas, this is not an issue with

cross-sectional studies since the same cases are read without and then with CAD.

The results of several cross-sectional studies are given in Table 6.1, where single

reading with CAD had a higher sensitivity than single reading alone on average by

9.3%, and achieving a similar sensitivity compared to double reading. However, the

recall rate is where there is a significant cost, with a 12.4% and 14.7% increase com-

pared to single and double reading, respectively.

146
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Most CAD systems are designed to be used as a second reader, where the reader

first searches the mammogram unaided, and then reviews the image using the CAD

output. In the majority of cross-sectional CAD efficacy studies, CAD is indeed oper-

ated sequentially this way: the reader searches a case initially unaided and gives their

verdict (which is taken as the unprompted no-CAD decision) and then again with the

aid of prompts (taken as the CAD decision), with the assumption that these two condi-

tions are independent from each other.

Table 6.1: Comparison of single reading with CAD to single reading alone and double
reading, in terms of sensitivity and recall rate. These are the percentage changes be-
tween no-CAD and CAD conditions, not percentage point differences. For the single
reading versus single reading with CAD, it is the average and range of several studies.

Method
Single Reading with CAD

Sensitivity Recall rate

Single readinga +9.3% (0.0−19.5%) +12.4% (6.3−25.8%)
Double readingb −0.6% +14.7%

aAverage percentage increase in sensitivity and recall rate going from single reading to single
reading with CAD (Freer and Ulissey, 2001; Helvie et al., 2004; Birdwell et al., 2005; Dean
and Ilvento, 2006; Ko et al., 2006; Morton et al., 2006; Georgian-Smith et al., 2007).
bChange in sensitivity and recall rate going from double reading to single reading with CAD
(Gilbert et al., 2008b).

Operating CAD in such a way may lead to a hypothesised safety-net effect (Astley

and Gilbert, 2004), where the initial unaided search is adversely affected by the fact

it is preliminary to a further search with the aid of CAD, and may therefore be less

thorough than if CAD was not available. The aim of this study is to evaluate whether

there is evidence for the existence of such an effect. If so, it may be that clinical stud-

ies that implement CAD as a second reader to evaluate its efficacy may overestimate
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its benefit, since the performance in no-CAD conditions will be underestimated. The

results discussed in this chapter have been published in Du-Crow et al. (2019).

6.2 Methods

This experiment was a visual search task with non-expert participants searching for

microcalcification clusters in 1/f noise distributions. Each participant searched 100

images in a no-CAD condition and 100 in a CAD condition, with the order varied

amongst participants. Eye-movements were tracked throughout the experiment. The

prompts used in this study were manually overlaid on the images and were not gen-

erated by a CAD algorithm. The operating point was chosen to replicate CAD in

mammography, discussed further in Section 6.2.3.

Fifty-two participants (median age 21, age range 18-59, 37 female) were recruited

for the study and informed consent was obtained. Four participants’ eye-movements

could not be accurately calibrated so only behavioural data was collected. Sixteen par-

ticipants were undergraduate psychology students and received course credit for taking

part, while the rest (students, university staff, and members of the public) received £10

in exchange for their time. The study was approved by the University of Manchester

Research Ethics Committee (2018-4586-6410).

6.2.1 Stimuli

The images used in this study comprised of synthetic mammogram-like backgrounds

combined with malignant microcalcification clusters used as targets. Clusters were

extracted from magnified images of slices of mastectomies (Warren et al., 2012). We

were provided with a total of 117 of these clusters, one example is shown in Figure

6.1a. Figure 6.1b shows a binary view of the cluster, to give a clearer picture of the
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shape of the individual calcifications. The cluster ROIs, defined as the bounding box

around the edge of the calcifications, ranged from 163×163 pixels to 873×903 pixels.

Two sets of clusters were formed by matching the cluster properties between the

sets. The following properties were used: mean cluster pixel intensity, number of

calcifications in cluster, total area of three largest calcifications, mean calcification area

in cluster, and maximum calcification area. However, before these could be calculated,

we first dilated and eroded the clusters in Matlab using the imopen function with a

disk-shaped structuring element with a radius of 3 pixels. The result of this process is

shown in Figure 6.1c.

(a) Example cluster (b) Binary cluster (c) Smoothed cluster

Figure 6.1: Example of a microcalcification cluster. Cluster in its (a) original form, (b)
as a binary image to highlight the full details of the calcifications, and (c) smoothed
using Matlab’s imopen function for cluster property analysis.

Once clusters were prepared for analysis, 80 were randomly chosen from the 117

and split into two groups of 40 (set A and B), and the cluster property distributions were

measured for each set. This process was repeated until their properties were matched,

as determined by a Kolmogorov-Smirnov test. The results of this are given in the first
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five rows of Table 6.2. Once the two sets of clusters were established, they could be

inserted into backgrounds. The backgrounds were created using open-source code in

Matlab, described as a fractal surface generator (Methven and Qi, 2018). They were

1/f1.5 noise distributions, which resemble the glandular component of mammograms

but lack linear structures. One hundred backgrounds were generated initially (set A)

and then rotated 180 degrees to form a second set of 100 (set B). Forty images were

randomly chosen from image set A to be used for cluster insertion, along with the

corresponding rotated images from image set B, giving a target prevalence of 40%.

Participants viewed both sets of images, one with CAD and one without.

Table 6.2: Results from Kolmogorov–Smirnov test for splitting calcification clusters
into two sets. H is the test decision for the null hypothesis that the distributions of
properties in the two cluster sets are from same continuous distribution, where H=1
rejects the null hypothesis at the 5% significance level. The condition for the samples
to be used was p > 0.99 for the first 5 properties, measured for clusters not yet inserted
into backgrounds. The final two properties were measured once the clusters has been
inserted into backgrounds to ensure they were similar.

Cluster property (not inserted) H p

Mean cluster pixel intensity 0 0.9998
Number of calcifications in cluster 0 0.9998
Total area of 3 largest calcifications 0 0.9998
Mean calcification area in cluster 0 0.9998
Maximum calcification area 0 0.9998

Cluster property (inserted) H p

Cluster region image entropy 0 0.9239
Cluster-background contrast 0 0.8403

For displaying the images on the experiment computer, they were displayed at

800×800 pixels. However, initially, backgrounds were created as 7500×7500 pixels

in size. The clusters were inserted by multiplying the background image ROI with the
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cluster ROI, and by not initially resizing the clusters, this process resulted in clusters

that were blended better with the background. Each cluster was placed at a random

point within a 5×5 grid on the background. Given that there were large variations in

the sizes of the clusters, the grid was programmed in such a way that the entirety of the

cluster would remain inside the image if it was placed at the edge of the grid.

Once the position was chosen, the cluster pixels were multiplied by the background

region pixels to insert it into the images of set A or B. The image was then resized to

800×800 pixels. Finally, the cluster region image entropy and cluster-background

mean pixel contrast within the cluster region were compared to confirm the similarity

between the target sets (see the bottom two rows of Table 6.2). To avoid the predictabil-

ity of target position within the sets of clusters, we used each of the possible 25 grid

positions once in each set and 15 were used twice. An example of one of the images

with a cluster inserted, highlighted in yellow, is shown in Figure 6.2.
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Figure 6.2: Example of experiment image with microcalcification cluster inserted
(highlighted in yellow).

6.2.2 Experimental setup

The experimental setup is shown in Figure 6.3. Participants’ head movements were

restrained with a chin rest, which was adjustable in height, at a viewing distance of

73cm. The images were displayed on a ViewSonic VX2268WM LCD monitor with

a resolution of 1680×1050, visual angle 36◦ × 23◦ at a viewing distance of 73cm.

Eye movements were tracked with an EyeLink1000 desktop eye tracker, described in

Section 5.3.1. The experiment code was written using PyGaze (v0.6.0) (Dalmaijer

et al., 2014), with a PyGame back-end (v1.9.2).
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Figure 6.3: Photo of experimental setup. Participants’ head movements are restrained
with a chin rest. When the experiment was taking place, the lights were turned off.

6.2.3 Experimental procedure

An inclusion criterion of the experiment was participants must have normal or cor-

rected to normal vision (20/20 or higher). We tested this using the Freiburg Vision Test

(FrACT) (Bach, 1996). This was done with a visual acuity test and a contrast sensi-

tivity test. The eye tracker was able to accommodate participants wearing glasses and

contact lenses.

A training set of images was used to familiarise the participants with the experi-

mental procedure, the appearance of the images and targets, and how to operate CAD.

The initial training screen, Figure 6.4, was used to introduce the participants to micro-

calcification clusters. It was noted on this screen that in the training, they were forced

to click somewhere on the image as a way of making them engage with the training
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set. However, it was made clear that in the experiment set, if they did not find a target,

they did not have to place a marker on the image.

Figure 6.4: Training screen to introduce participants to microcalcification clusters as
targets in the experiment. The screen features three example clusters and a different
cluster inserted into a background, with a magnified view of the cluster ROI.

Following the initial training screen, the participants were shown a total of 10 train-

ing images. First, two images were displayed with a cluster outlined for participants to

gain further familiarity with the targets.

Participants then began the interactive training images. The first four of these did

not contain CAD prompts and just explained to participants how to interact with the im-

ages by placing markers on suspicious regions and removing markers if they changed

their minds. When they finished placing markers, they pressed the right arrow key to
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move on. Each time they clicked in an incorrect location, they would receive a text

prompt to inform them that this was an incorrect attempt (see Figure 6.5). If they cor-

rectly identified a target, they would receive a text prompt to say it was a ‘Hit’, and

the cluster region would be outlined in orange. One of the no-CAD examples did not

contain a target and contained a text prompt that overlaid the image, once they pressed

the move on button, to inform them that fewer than 50% of images in the experiment

contain a target.

The training also included three examples with CAD that explained how to properly

operate it in second reader mode: search the image initially unaided, then press the up

arrow key to display the prompts, and search the image again with the aid of prompts.

One of the CAD examples is shown in Figure 6.5. The final training image featured a

pre-placed marker with an instruction on how to remove it, to make sure participants

were capable of removing markers they had placed if they needed to.
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Figure 6.5: Screenshot of interactive training with CAD. This example contains two
false CAD prompts (blue circles) and a user placed marker (red circle with cross hair),
which has triggered the message on the right hand side. The user has pressed the right
arrow key to reveal the target location (orange outline).

Once the training set had been completed, participants were given the opportunity

to ask the researcher any questions they may have had before starting the experiment.

All participants were given final instructions about the experiment to reiterate the key

points. These included:

• Images contain no more than one cluster and between 1% and 50% of the images

contain a cluster, so you do not have to place a marker if you cannot find one

• You can remove markers that you have placed

• In the prompted condition, there may be 0, 1 or 2 prompts
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• You can toggle prompts on and off with the up arrow key

• You will not get feedback in the actual experiment images

• You do not have to place multiple markers on a target, one on any part of it will

count as a hit

The experiment screen in the no-CAD condition (Figure 6.6) featured two instruc-

tions that remained visible throughout: search for a target and move on to the next

image when you are finished. The experiment screen in the CAD condition (Figure

6.7) started with two instructions: search for a target and then turn on the prompts.

Once the participants turned on the prompts, they received one of two further instruc-

tions below the image: either search again with the aid of the prompts or that there

were no prompts available for this image.

The order of the 200 experiment images was randomised for each participant. We

blocked our participants by CAD condition, half started with the no-CAD condition

and the other with the CAD condition. For the no-CAD and CAD groups, half of the

participants had images drawn from set A and half had images drawn from set B. We

randomly allocated participants to these groups. No time limit was enforced during

the experiment, but we advised participants not to spend longer than around 1 minute

on any single image. A break screen would appear after every 25 trials during the

experiment.

Participants completed a nine-point calibration and validation procedure at the be-

ginning of each condition. This was repeated if accuracy of fixations exceeded 1 degree

visual angle on any point in the validation sequence. The calibration procedure could

also be repeated at any point during the experiment if calibration accuracy began to

drift, detected by a ‘drift correction’ procedure where the participant looks at a central

fixation point and the experimenter presses a button to measure the displacement from
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Figure 6.6: Screenshot of experiment in the no-CAD condition. The cluster is outlined
(in orange) for illustrative purposes only. There is a user placed marker (red circle with
cross-hair) on a background region. There was a progress counter in the bottom right
corner to show image number out of 100.

that point. The drift correction was repeated mid-way between and immediately after

the break screens. If an accurate calibration could not be achieved, the experiment was

run without the eye tracking and behavioural data only was collected. For classifica-

tion of fixations, the maximum drift in eye position coordinates between start point of

fixation and end point of fixation should be less than 1.5 degrees visual angle, and the

minimum fixation duration was set at 100 ms.
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The target prevalence was 40%, and in the CAD condition 80% of the targets

were prompted by CAD. From each of the image sets, we selected 8 cluster targets

that would be unprompted. We matched the properties (listed in Table 6.2) using a

Kolmogorov-Smirnov test with all p’s>0.92. CAD prompts were manually placed

on the images, with true prompts placed on the most central part of the cluster and

false prompts typically placed on bright regions of the background. The false positive

prompt rate was 0.5 per image, with false prompts placed in the same positions be-

tween set A and B, but rotated 180 degrees for set B to match the initial rotation of

set B images. Out of the 8 unprompted targets in each image set, four contained false

positive prompts.
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Figure 6.7: Screenshot of experiment in the CAD condition. There are two prompts
(blue circles), a false prompt and a true prompt. The cluster is outlined (in orange)
for illustrative purposes only. Before the CAD prompts were displayed there was no
text below the image. If no prompts were available, the first line of text below the
image would instead read ‘No prompts to display’. There was a progress counter in
the bottom right corner to show image number out of 100.
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6.2.4 Analysis

To determine whether users successfully marked targets, we took the convex hull of

the calcifications in each of the clusters and then extended this outwards by a tolerance

of 10 pixels to create a border around the target (see Figure 6.2 for an example). Any

marker placed within this was recorded as a hit (maximum of one hit per target/image).

A preliminary test with 5 participants measured the accuracy of their clicking. These

participants viewed 25 images with a grey background and a single white dot (5 pixel

diameter) and clicked as closely as possible to the dot. Average distance from click and

target dot was 2.7 pixels. Therefore, a 10 pixel border around clusters was assumed to

be sufficient to capture all participant clicks on targets.

Sensitivity was defined as the fraction of targets correctly located. Participants

were not limited by the number of markers they could place on an image, and false

positive responses per image indicate the mean number of incorrect observer-placed

marks per image.

We used a circle of radius 2.5 degrees visual angle centred around fixations, typi-

cally associated with the useful field-of-view in mammography (Kundel and Nodine,

2004), for calculating the percentage of the image fixated (image coverage). Any lo-

cation inside that region was considered covered. For calculating the percentage of

targets that were fixated, we used a function that detects the collisions between rect-

angles (bounding boxes around clusters) and circles (fixations). A similar process was

done for the percentage of prompts fixated but with collisions between circles.

To determine whether the differences between conditions for trial time, image cov-

erage, sensitivity, false positives per image, and percentage of targets and prompts

fixated were significant, we used a bootstrap technique across participants and images

(Efron and Tibshirani, 1993). We were then able to calculate the t-statistic and cor-

responding p-value, and the 95% confidence intervals on the differences. This treats
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participants and images as random rather than fixed effects. This method produces a

more conservative estimate of an effect than a paired t-test.

To illustrate this approach, we can focus on a single variable as an example. We

recorded the time spent viewing each image and wished to compare that between the

no-CAD and CAD condition. We have N participants, each with M values for each

condition, where M is the number of images per condition (100). We repeat the fol-

lowing process B times, where B=10,000.

1. Choose N readers with replacement, where N is the number of participants in

our study

2. Choose M images with replacement, where M is the number of images in each

condition

3. Calculate the differences in trial time between the no-CAD and CAD conditions

within those participants for the chosen images

4. Calculate the mean within-participant difference

We then take the mean of the distribution of B differences to get the final mean

difference between conditions. The distribution of B differences is used to calculate

the 95% CIs. The t-value can be calculated by dividing the mean difference by the

standard deviation of the distribution of B differences. Using the degrees of freedom

(N-1), the p-value is calculated from the two-tailed t-distribution. It is important to note

that M is not necessarily equal to 100. For instance, when comparing the sensitivity

between conditions, we are of course only considering the 40 target present images in

each condition. This is further reduced to 32 and 8 images when comparing prompted

and unprompted targets, respectively.
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6.3 Results

Results are given for the no-CAD condition and the CAD condition. We split the

CAD condition further into the pre-CAD and the with-CAD conditions to distinguish

between visual search before and after participants enabled prompts on the images.

The error bars shown in the figures in this section are the within-subject confidence

intervals, described by Cousineau (2005), which illustrate the variation between par-

ticipants and conditions. However, these were not used for significance testing.

6.3.1 Eye tracking data

To illustrate the eye movement parameters we were able to extract for each experiment

trial, we have displayed the fixations and saccades for a single participant in Figure

6.8. This was an image in the no-CAD condition, so no prompts were available. This

participant started in the centre of the image before adopting a scanning technique

back-and-forth across the image until they fixated the target cluster in the bottom right

of the image. Overall, they spent 17.40s viewing the image, made 45 fixations, and it

took them 9.00s to fixate the target. In total, their dwell time on the target was 5.69s,

and they placed a marker on the target after 15.56s. The total image coverage was

84.1%.
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Figure 6.8: Eye movement data from a single participant on an image showing their
fixations (green circles) and saccades (arrows). The cluster is in the bottom right cor-
ner. Fixations are numbered from 1 to 45 from where they started and finished their
search on the image. The size of the fixation circles indicate the fixation duration – the
longer the fixation, the larger the circle.

6.3.2 Trial time and coverage

Trial time and coverage was measured for each image, and the mean across participants

is shown for each condition in Figure 6.9. Pre-CAD trial time was significantly lower

than for the no-CAD condition by 2.09s (95% CI, 1.11−3.09s; t(51)=4.14, p<0.001).

This was accompanied by a significant decrease in image coverage to 57.0% in pre-

CAD from 65.4% in the no-CAD condition, a difference of 8.4% (95% CI, 5.4−11.7%;

t(47)=5.29, p<0.001). The addition of CAD, i.e. pre-CAD + with-CAD (8.88s +

4.07s), led to a significant overall increase of 1.98s in trial time compared to no-CAD

(95% CI, 0.99−3.05s; t(51)=3.82, p<0.001). Despite the greater trial time in the CAD
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condition, it was not reflected in the percentage coverage of the image, with a non-

significant difference compared to no-CAD of 0.6% (95% CI, −1.4−2.7%; t(47)=0.58,

p=0.568).

(a) (b)

Figure 6.9: (a) mean trial time and (b) mean image coverage for each condition. The
red portion of the CAD bars is the additional trial time and coverage gained after
participants turned on the prompts.

6.3.3 Targets and prompts fixated

Figure 6.10 shows the mean percentage of targets fixated and dwell time on targets

for each condition. The percentage of targets fixated varied between conditions, with

significantly more targets fixated in CAD (96.8%) compared to no-CAD (89.7%) as

expected, a difference of 7.1% (95% CI, 3.8−10.8%; t(47)=3.96, p<0.001). In the

pre-CAD condition, only 81.5% of targets were fixated, 8.2% less than in the no-

CAD condition, which was a significant reduction (95% CI, 3.3−13.3%; t(47)=3.23,
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p=0.002). The mean dwell time on the targets was shorter in the with-CAD condition

than in no-CAD (1.33s with-CAD vs 2.06 no-CAD). This difference of 0.73s was

significant (95% CI, 0.39−1.06s; t(47)=4.26, p<0.001).

(a) (b)

Figure 6.10: (a) mean targets fixated percentage and (b) mean target dwell time for
each condition. The red portion of the CAD bars is the additional targets fixated and
target dwell time gained after participants turned on the prompts.

In the with-CAD condition, 76.2% of true prompts were fixated, a significantly

lower fraction than the 95.8% of false prompts fixated (difference of 19.5%; 95%

CI, 15.6−23.5%; t(47)=9.735, p<0.001) and participants spent significantly longer

viewing individual false prompts than individual true prompts (2.57s vs 1.89s). This

difference in dwelltime of 0.69s was significant (95% CI, 0.35−1.01s; t(47)=4.103,

p<0.001). There were a total of 32 true positive prompts and 50 false positive prompts
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in the CAD condition, and the proportion of these prompts that were acted on by par-

ticipants (marked as a target) is shown in Figure 6.11. On average, participants acted

on (34.0 ± 28.5)% of true prompts and (25.1 ± 21.8)% of false prompts. The rate that

participants acted on true prompts will have been in part reduced by the fact that, on

average, 55% of true prompt regions were already marked in the pre-CAD condition.

Therefore, in those situations they did not have to mark those true CAD prompts again.

Figure 6.11: Percentage of true and false prompts marked as a target by participants in
the CAD condition. The mean of each distribution is displayed as a red circle.

6.3.4 Observer performance

The mean observer sensitivity is shown in Figure 6.12 for all images and those with

and without targets prompted by CAD. There were 32 targets in each image set that

were prompted by CAD and 8 in each that were not prompted by CAD, also referred
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to as prompted and unprompted targets, respectively. Overall observer sensitivity sig-

nificantly increased by 15.8% to 81.9% in the CAD condition from 66.1% in no-CAD

(95% CI, 10.0−22.0%; t(51)=5.16, p<0.001), and by 20.4% for prompted target tri-

als to 88.2% in CAD from 67.8% in no-CAD (95% CI, 14.5−26.8%; t(51)=6.56,

p<0.001). However, there was no significant difference in sensitivity between no-CAD

and CAD for unprompted target trials, a difference of 2.9% (95% CI, −7.2−14.2%;

t(51)=0.54, p=0.59). Sensitivity in the pre-CAD condition was significantly lower

than the no-CAD and CAD conditions across all trial types; in all cases t(51)>2.62,

p<0.012.

Figure 6.12: Mean observer sensitivity for all target present trials, and for trials with
prompted and unprompted targets.

The mean rate of false positive responses per image are shown in Figure 6.13,

given for all trials and for target absent trials with and without false prompts. There

were a total of 60 target absent trials in each condition, and in the CAD condition 30
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contained false positive prompts and 30 did not. There was a significant increase in

the number of false positive responses per image from 0.28 in the no-CAD condition

to 0.35 in the CAD condition for all trials, an increase of 0.07 (95% CI, 0.01−0.13;

t(51)=2.27, p=0.028), and for target absent trials with false prompts up to 0.64 in

CAD from 0.36 for those same images in no-CAD, a significant difference of 0.26

(95% CI, 0.17−0.40; t(51)=4.66, p<0.001). For target absent trials with no prompts,

there was no significant difference between the no-CAD and CAD conditions, a differ-

ence of 0.02 (95% CI, −0.04−0.09; t(51)=0.67, p=0.51). False positive responses per

image for the pre-CAD condition were significantly lower than the no-CAD and CAD

conditions across all trial types; in all cases t(51)>2.16, all p<0.035.

Figure 6.13: Mean number of false positive responses per image for all trials, and
for all target absent trials without false prompts and with false prompts. For the ‘No
prompts’ and ‘False prompts’ groups, we used the same corresponding set of images
when comparing to the no-CAD condition.
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6.3.5 Target detectability

Target detection percentage is defined as the percentage of participants that success-

fully locate a given target, shown in Figure 6.14 for no-CAD and CAD conditions.

As expected, the majority of targets had a higher detection rate in the CAD condition,

since 80% were prompted by CAD. For the targets that were not prompted in the CAD

condition, overall, there was no significant difference in the detection rates between

the conditions (p=0.50, Wilcoxon signed-rank test), with the majority of points falling

on or near to the line of equality. There were 3 (out of 8) unprompted targets that had

a much lower detectability in the CAD condition compared to no-CAD. There were

no significant differences in the detectability of unprompted targets in images with and

without false CAD prompts (p=0.50, Wilcoxon signed-rank test).
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Figure 6.14: Percentage of participants that detected each target in the no-CAD and
CAD conditions. It is indicated whether a target was prompted or unprompted. There
were 2 targets that were not detected in either condition by a single participant (un-
prompted in CAD condition) and 8 targets that were detected by all participants in
both conditions (all prompted in CAD condition). A line of equality is displayed for
comparison purposes.

6.4 Discussion

Cross-sectional studies typically evaluate the efficacy of CAD in second reader mode,

where readers search initially unaided and then once again with the aid of CAD. The

initial search is taken as the no-CAD condition, but it was hypothesised (Astley and

Gilbert, 2004) that the fact this initial search was preliminary to a further search with

CAD means that it may become truncated. This was observed both in terms of less

time spent viewing the images and a lower percentage image coverage for pre-CAD
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search compared to unaided search. As with the clinical studies (see Table 6.1), CAD

improved detection rate at the cost of increased false positive responses.

Viewing time in the pre-CAD condition was reduced by 19% compared to the

no-CAD condition, with a corresponding 8.4 percentage points reduction in image

coverage. In addition, 8.2% fewer targets were fixated pre-CAD compared to the un-

prompted condition. A previous eye tracking study with non-experts has demonstrated

that presenting CAD from image onset leads to a significant reduction in image cover-

age compared to unaided viewing (Drew et al., 2012). We have extended this to second

reader CAD, demonstrating that the expectation of prompts is enough to truncate the

initial search of the image. Our main focus is on cross-sectional studies, where the

assumption is that pre-CAD search is similar to unaided search, since this is the most

common trial type for evaluating CAD. However, our results suggest that this assump-

tion does not hold, and it is not a valid comparison between unprompted and prompted

behaviour.

To control for the safety-net effect, it may be appropriate to adopt an alternative

study design. A fully-crossed design, such as the one used in this study, provides

entirely separate no-CAD and CAD conditions for each reader and therefore any im-

provements in CAD can be measured between those. However, it should be noted that

each reader completes different target sets for the no-CAD and CAD condition, with

the same backgrounds used between sets. We matched image properties between con-

ditions and with enough images and by bootstrapping the analysis, the variation across

images is taken into account. Another alternative is a randomised control trial with

separate CAD and no-CAD groups. Instead of image variability however, this may

create an issue with reader variability between groups, which is known to be a factor

in mammography interpretation (Elmore et al., 2009).
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The increase in sensitivity from the no-CAD condition to the CAD condition was

15.8 percentage points, which is consistent with literature for both experts (Samulski

et al., 2010; Alberdi et al., 2004; Taplin et al., 2006) and non-experts (Drew et al.,

2012; Russell and Kunar, 2012; Kunar et al., 2017; Ionescu et al., 2018). These studies

reported that for unprompted targets, sensitivity was significantly reduced. Out of these

studies, only Taplin et al. (2006) operated CAD in second reader mode, reporting an

approximate 7 percentage point drop in sensitivity for unprompted targets compared to

unaided viewing. In our study, there was no difference in observer sensitivity between

the no-CAD and CAD condition for unprompted targets. This discrepancy may be due

to the relatively small number of unprompted targets (8 out of 40) in each image set,

reducing the statistical power of the finding.

A study by Ionescu et al. (2018) reported that on unprompted target images, the

presence of false prompts caused a significant reduction in detection rate compared

to images without false prompts, when prompts where displayed from image onset.

However, by operating CAD in second reader mode instead, readers are able to search

the image initially without prompts present. This may reduce or eliminate the distrac-

tion of false prompts. This is indeed what we observed, with no difference between

unprompted target sensitivity for images with and without false prompts present. How-

ever, it is again possible this finding was underpowered. Furthermore, while Drew

et al. (2012) reported that CAD focuses visual attention around prompts, this was not

observed in our study since readers viewed the images initially unaided in the CAD

condition. With an initial unaided search, no significant difference was observed be-

tween the no-CAD and CAD image coverage.

In mammographic screening, the cancer prevalence is typically less than 1% (Evans

et al., 2013), whereas the target prevalence used in this study was 40%. Gur et al.

(2003) observed that target prevalence did not affect observers’ AUC. However, miss



CHAPTER 6. SAFETY-NET EFFECT WITH CAD 174

rate of cancers has been shown to increase under low prevalence conditions (Evans

et al., 2013). Furthermore, previous studies have shown that at low prevalence (⩽10%),

the miss rate of unprompted targets is significantly increased compared to at high

prevalence (50%) (Kunar et al., 2017; Drew et al., 2020). It is possible, therefore,

that we may have observed similar effects as reported here had the prevalence been

lower. In clinical settings where prevalence is <1% and readers are under greater pres-

sure, it may be expected that initial pre-CAD search is truncated further, but this has

yet to be demonstrated. The signal that observers get from CAD will also be affected

by the target prevalence (Russell and Kunar, 2012), since a greater number of targets

means that a higher proportion of the prompts that participants see are true positives,

and therefore they will likely have a greater confidence in the CAD system. In turn,

confidence in false prompts will also be greater and may increase false response rate.

However, Kunar et al. (2017) reported no effect of target prevalence on the false re-

sponse rate for images containing incorrectly placed CAD prompts.

While sensitivity was lower in the pre-CAD condition compared to the no-CAD

condition, it is not clear whether this is due to the safety-net effect. Participants fixated

significantly fewer targets pre-CAD (a consequence of the safety-net effect in itself)

and so it is plausible that there would be a sensitivity drop. However, it seems clear

that pre-CAD, participants were withholding many of their decisions until they had

the aid of prompts: in images with no prompts available, there was still a significant

increase in the false positive response rate. This reliance on the output of CAD to

make a final decision was most detrimental for target absent images containing false

prompts, where the false positive rate was almost double that of the unaided condition.
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6.5 Summary

In this chapter, we described an experiment investigating the hypothesised safety-net

effect with computer aided detection, where the expectation of prompts adversely af-

fects the initial unaided search of the image. Non-expert participants searched for

microcalcification clusters in 1/f noise distributions with their eye movements tracked

throughout.

There were 100 images in the no-CAD condition and 100 in the CAD condition. In

the CAD condition, participants viewed images initially unaided, and then once again

with the aid of CAD. Overall, 80% of targets were prompted with 0.5 false prompts

per image. The target prevalence was 40%. Eye movement data was used to calculate

the proportion of images viewed (image coverage) and the targets and prompts fixated

and their corresponding dwell time.

Experimental evidence for the safety-net effect was observed; before prompts were

displayed in the CAD condition, image coverage and trial time were significantly lower

than in the no-CAD condition. As a result, significantly fewer targets were fixated pre-

CAD.

For prompted targets, sensitivity was significantly greater compared to the no-CAD

condition, whereas there was no difference for unprompted targets. As with many

clinical studies, the increase in sensitivity with CAD came with an associated cost of a

significant increase in the false positive response rate.

Cross-sectional studies evaluating the efficacy of CAD should be aware of the

safety-net effect if they make the assumption that the initial pre-CAD viewing of im-

ages is equivalent to unaided viewing. There exist alternative methods of CAD im-

plementations that may have less of an influence of visual search behaviour, such as

interactive CAD (discussed in Section 3.4). We will explore this type of CAD system

further in Chapter 7.
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Interactive CAD

7.1 Introduction

Traditional CAD algorithms, where readers first search mammograms unaided and

then once again with the aid of prompts, are often associated with an increase in sen-

sitivity at the cost of a significant increase in false positives. This was observed with

non-expert readers, as well as the safety-net effect (Chapter 6). The increase in the false

positive response rate can easily be attributed to the high number of false prompts pre-

sented to readers with the method of prompting. Therefore, as discussed in Section 3.6,

methods such as interactive CAD offer an alternative which may improve sensitivity

compared to single reading alone without increasing the false positive rate by reducing

the number of false positive prompts the reader will see.

An example of interactive CAD (ScreenPoint, 2021) is shown in Figure 7.1. The

reader is free to review the image as in unaided viewing, but they may also wish to

‘query’ regions that raise suspicion and review the CAD output (if available) on that

region. Deep learning convolutional neural networks are used to assign confidence

values (between 1 and 100) to suspicious regions in the mammograms, displayed above

each prompt. In addition to individual confidence values on prompts, an overall image

176
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score (between 1 and 10) is provided, denoting the probability that the image contains

an abnormality. This score is based on the suspicious regions detected by the neural

network.

Figure 7.1: Clinical example of an interactive CAD system (ScreenPoint, 2021). MLO
and CC-view mammogram with invasive ductal carcinoma, with the abnormality out-
lined by a CAD prompt. The prompt has been displayed after a query by a reader and
is accompanied by a confidence value of 70/100 in the MLO-view and 39/100 in the
CC-view. The colour of the prompt also reflects the confidence, changing from yellow
(low confidence) to red (high confidence). The image score is 10/10, displayed in the
bottom right of the display, denoting the overall likelihood of an abnormality being
present in the case. Image from Rodriguez-Ruiz et al. (2019a).

Image scores give an indication to readers of the likelihood of finding a cancer in

a case from the onset before they have queried any region. The distribution of image

scores in a validation set of malignant cases is shown in Figure 7.2 for ScreenPoint’s

CAD algorithm. In a screening set of cases with a standard cancer prevalence, the

score distribution is set such that there is an even distribution of cases amongst each

score category (Rodrı́guez-Ruiz et al., 2019a).
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Figure 7.2: Distribution of image scores (referred to as Transpara score) amongst
screen-detected cancers in a test set using ScreenPoint Medical CAD. The majority
of cancer present cases are assigned a score of 10, with just 10% a score of 9, and just
a few in the remaining score categories. Image from FDA (2018).

Clinical results with this method of CAD have shown that it can significantly im-

prove pAUC compared to traditional CAD, from 0.57 to 0.62 (Hupse et al., 2013). An-

other study from the same group showed that AUC improved significantly from 0.87

with unaided reading to 0.89 with interactive CAD (Rodrı́guez-Ruiz et al., 2019a). Fur-

thermore, reading time was significantly correlated with the image score, with readers

spending more time on cases with a higher score (2% longer above a score of 5 and

11% shorter below a score of 6, compared to unaided reading) (Rodrı́guez-Ruiz et al.,

2019a).

Drew et al. (2020) investigated how an interactive CAD method affected visual

search behaviour in an eye tracking study with non-expert participants searching for

Ts amongst Ls in synthetic backgrounds, in two prevalence conditions. Participants
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queried regions and were informed with a text prompt whether it was a ‘likely target’

or ‘not likely target’, rather than receiving a prompt with a confidence score. In the

high prevalence setting (50%), d′ did not change between the no-CAD and CAD con-

ditions. However, in the low prevalence setting (10%) there was a small increase in d′

(p=0.039). Furthermore, when CAD failed to provide a text prompt on targets, there

was no associated miss cost with these compared to the no-CAD condition. This con-

trasted with the traditional CAD approach they used in the study, where a significant

cost was incurred when CAD failed to prompt a target. This suggests that interactive

CAD may eliminate the reduction in sensitivity associated with unprompted targets.

An interactive CAD approach, compared to traditional CAD, changes the way in

which the reader receives information from the system. Local information, at the site

of individual prompts, is more detailed and is only displayed when the reader actively

clicks on that region rather than displaying every prompt for the whole image. The

global information is in the form of an overall image score but does not provide spa-

tial details. This study aims to investigate how this method of prompting will affect

the overall performance of participants, and their behaviour on prompts and images

according to the confidence level of associated CAD scores. The results discussed in

this chapter have been published in Du-Crow et al. (2020).

7.2 Methods

This study comprised of two separate visual search tasks, Experiment 1 and Exper-

iment 2. Both experiments used 1/f1.5 noise distributions as in Chapter 6, with mi-

crocalcification clusters inserted into them as targets. In Experiment 1, there were

two conditions in which non-expert participants searched images: a no-CAD condi-

tion and an interactive CAD condition. In Experiment 2, CAD was available in both



CHAPTER 7. INTERACTIVE CAD 180

conditions. However, in one condition, there was an additional overall image score

provided below the image that denoted the likelihood that the image contained a target

(but not its location). These are referred to as the CAD and CAD+Score conditions. In

the CAD conditions, participants could query suspicious regions by clicking on them.

If a prompt was available on that region, it would be displayed, along with a prompt

confidence value (ranging between 1 and 100).

Forty-two participants (median age 22, age range 18-58, 34 female) and 43 partic-

ipants (median age 21, age range 18-47, 35 female) were recruited for Experiments 1

and 2, respectively, and informed consent was obtained. All participants had not taken

part in the study discussed in Chapter 6. The eye-movements of two participants in Ex-

periment 1 and one participant in Experiment 2 could not be accurately calibrated so in

those cases only behavioural data were collected. Sixteen participants in each exper-

iment were undergraduate psychology students and received course credit for taking

part. The rest (students, university staff, and members of the public) received £10 in

exchange for their time. The study was approved by the University of Manchester

Research Ethics Committee (2018-4586-6410).

7.2.1 Stimuli

The images used in this study were the same as those used in Chapter 6, referred to as

image sets A and B. These images were created in MATLAB using open-source code

(Methven and Qi, 2018), and are synthetic 1/f noise distributions. The targets used

in this study were malignant microcalcification clusters, which were extracted from

magnified images of slices of mastectomies (Warren et al., 2012). The images were

sized at 800×800 pixels.

Since the study in Chapter 6 was completed prior to the experiments described

in this chapter, we were able to use the target detection percentages in the no-CAD
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condition of that study to reorder the images into sets A′ and B′. This was to ensure

that any differences in the difficulties of detecting the targets between the two image

sets were evened out for these experiments. To do this, we shuffled the targets that were

prompted by CAD in sets A and B and compared the target detection percentage in the

no-CAD condition, until the medians were within 0.5% and the distributions of the 40

targets were matched according to a Kolmogorov–Smirnov test (p>0.98). In total, 4

target images were swapped between sets A and B to form A′ and B′, with the non-

target images remaining unchanged. The result of this is shown in Figure 7.3, where

the distribution of target detection percentages of sets A′ and B′ used for Experiments

1 and 2 is shown. The median value of sets A′ and B′ were 78.9%, and the means were

65.2% and 67.0% for set A′ and set B′, respectively.
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Figure 7.3: Target detection percentage in the no-CAD condition of the safety-net
experiment described in Chapter 6. Targets were swapped between sets until medians
and distributions were matched in terms of detection percentages.

7.2.2 Experimental setup and procedure

The experimental setup was the same as that shown in Figure 6.3, with participants at a

viewing distance of 73 cm. Eye movements were again tracked with an EyeLink1000

desktop eye tracker and the experiment code was written using PyGaze (v0.6.0) (Dal-

maijer et al., 2014). All participants were tested using the FrACT (Bach, 1996) soft-

ware to ensure their vision was normal (glasses or contact lenses were allowed).

Participants underwent a training set of images to gain an understanding of the

target and image appearance, the search task, and how to operate the interactive CAD

system. Initially, participants were shown isolated examples of the microcalcification

clusters as an introduction to the targets. This was accompanied by an example of one
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cluster inserted into a background. Following this, two further clusters were shown

inserted into the backgrounds with their positions outlined. This provided participants

with further familiarity with the targets before moving onto the interactive section of

the training set.

The interactive training set started with four images without CAD to familiarise

participants first with the controls, provide them with feedback on their input, and al-

lowed them to gain further practice with the targets. They would left click to place

a marker on suspicious regions and right click on those markers to remove them if

they changed their mind. On-screen text prompts would inform them if they had suc-

cessfully found targets. Once they had finished marking regions, they would press the

right arrow key to move on. After those four images without CAD, they were intro-

duced to how the interactive CAD system worked, which is shown in Figure 7.4. This

first example indicated where the prompts were and instructed them to query them (by

pressing down on the scroll wheel of the mouse) so they would receive the text prompts

stating whether it was a true or false prompt and explained the associated confidence

value.
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Figure 7.4: Screenshot of experiment training introducing interactive CAD used in
Experiments 1 and 2. Participants are instructed to ‘query’ the small coloured dots by
clicking on them, which brings up each prompt and the associated message informing
them whether it was a true or false prompt. The cluster has been outlined in yellow in
this example for illustrative purposes only since here the participant has only marked
a non-target region and received a message informing them that this was an incorrect
marker.

There were two further examples with CAD where there were no hints on where

to query the images. A screenshot of the first of these is shown in Figure 7.5. In

this example, there were three false prompts available, demonstrating that the CAD

software did not always prompt targets. The other example had two prompts available,

a true prompt and a false prompt.
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Figure 7.5: Screenshot of experiment training with interactive CAD example showing
false prompts used in Experiments 1 and 2. In this case, the participant has queries all 3
of the available prompts as well as 2 additional regions without prompts available. The
cluster is outlined in yellow for illustrative purposes and the participant has marked a
false prompt and received feedback on their click to the right of the image.
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In the training set for Experiment 2, there were further examples provided to intro-

duce participants to the overall image score. The first of these is shown in Figure 7.6.

In total, there were three examples with an image score in the training set. The image

score was presented below the image and was provided in addition to CAD. Finally, in

the training set for both experiments, there was an example to remind them on how to

remove markers once they had placed them.

Figure 7.6: Screenshot of experiment training introducing overall image score used in
Experiment 2. An image score of 9 indicates that there is a high probability that it
contains a target. In this case, the participant has queried 3 regions, all of which had a
prompt available at their location (2 false prompts and 1 true prompt). The cluster is
outlined in yellow for illustrative purposes only.
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Once the training was completed, participants were given the opportunity to ask

the researcher questions before starting the experiment. They were again given final

reminders (see Section 6.2.3), such as there being between 1 and 4 prompts available on

each image in the CAD conditions, toggling prompts on and off with the scroll button

instead, and the image score being provided in one of the conditions (in Experiment 2).

An example experiment screen is given for the CAD+Score condition in Experiment

2 in Figure 7.7. This is the same as the CAD-only conditions in Experiments 1 and 2,

just with the additional Score text below the image.
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Figure 7.7: Screenshot of experiment image in the CAD+Score condition in Experi-
ment 2. The text at the top is the same in both Experiment 1 and 2 for all conditions
with CAD. The only addition for the CAD+Score condition is the image score pro-
vided below the image. The cluster is outlined in yellow for illustrative purposes only.
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The order of the 200 images in image sets A′ and B′ were randomised for each

participant. For both Experiments 1 and 2, we blocked the participants by conditions.

Half of the participants started with condition 1 (no-CAD/CAD) and the other half with

condition 2 (CAD/CAD+Score). For both conditions 1 and 2, half of the participants

saw images drawn from set A′ and the other half saw images drawn from set B′. We

randomly allocated participants into these groups.

Target prevalence in each image set was 40%, with 4 out of the 40 targets having

no prompt available on its location (unprompted). Participants were not informed of

the exact target prevalence in the experiment, but were informed that it was within the

range of 1% to 50%. We did not enforce a time limit on the images but did advise

participants not to spend longer than 1 minute on a single image. A break screen

appeared after every 25 trials during the experiment.

In the CAD condition, 90% of targets had a prompt available on their location, with

an average of 2 false prompts available per image – a similar sensitivity and rate of false

prompts available as the interactive CAD system described in Hupse et al. (2013). To

assign the prompt confidence values to the prompts, we used the distribution of target

detection percentages measured previously in the no-CAD condition of the safety-net

experiment, shown in Figure 7.8. For true prompts, the confidence value was equal

to the target detection percentage in our previous experiment (Chapter 6). For false

prompts, this distribution was used to randomly assign values to each prompt. For

example, 9 out of 80 target images (11%) had a target detection percentage between

0% and 10%, therefore 11% of the 200 false prompts in each image set were randomly

assigned confidence values between 1 and 10. The colour of the prompts reflected the

confidence, ranging from yellow (low confidence) to red (high confidence).
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Figure 7.8: Distribution of target detection percentages in the no-CAD condition for
all 80 targets in image sets A′ and B′. These were used to assign the prompt confidence
values.

For Experiment 2, image scores were distributed for target present and target absent

images differently, as shown in Figure 7.9. The majority (28/40) of target present

images were assigned a score of 10, 3/40 a score of 9, 2/40 a score of 8, and 1 target

image per score from 7 to 1. For target absent images, the images where equally split

between the scores, with 6 images per score. These distributions were based on a

clinical example of an interactive CAD system (see Figure 7.2).

To track participant eye movements, a nine-point calibration procedure was com-

pleted at the beginning of each condition and repeated if accuracy of fixations exceeded

1 degree visual angle on any point in the validation sequence. A 9-point validation se-

quence followed, and if any fixation deviated by greater than 1 degree visual angle then

the calibration would be repeated. Drift correction procedures were completed mid-

way between and immediately after break screens and the calibration procedure would

be repeated if necessary. If an accurate calibration could not be achieved, participants

completed the experiment without eye tracking, and behavioural data was collected.
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(a) target present (b) target absent

Figure 7.9: Number of images with a given image score for (a) target present and (b)
target absent images.

As before, for classification of fixations, the maximum drift in eye position coordi-

nates between start point of fixation and end point of fixation should be less than 1.5

degrees visual angle, and the minimum fixation duration was set at 100 ms.

7.2.3 Analysis

To determine whether participants clicked on targets, we used the same process that

was outlined in Chapter 6, where the convex hull of calcifications was extended out-

wards by 10 pixels (approximately 0.25◦) and any marker placed inside this was clas-

sified as a hit. To determine whether a participant had queried a prompt region, and

therefore whether to display any prompt available for that region, we used a function

that detected any clicks within a circle with a radius the size of a prompt extended by

20 pixels or 0.45◦ (total radius of 38 pixels or 0.84◦). This larger tolerance was used to

capture a larger area around the prompt since queries are likely to be less precise than

marks on perceived targets. Participants could query as many times as they wanted,

and were able to toggle prompts on and off.
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Image coverage was calculated using a circle of radius of 2.5 degrees visual angle

centred around fixations, with any point inside that region considered covered. For cal-

culating dwelltime on queried regions, we used a function that detected the collision

between circles (useful field-of-view around centre of fixations and the circular-defined

queried region), and summed all fixations within this region. To compare the differ-

ences between conditions for trial time, image coverage, sensitivity, and false positive

response between conditions, we used the bootstrap approach that was outlined in

Chapter 6.

7.3 Results

Results are given for the no-CAD and CAD conditions in Experiment 1, and the CAD

and CAD+Score conditions in Experiment 2. Firstly, participant data were looked at

in terms of overall performance and thoroughness of visual search. Then we explored

how participants queried the prompts and the effect of prompt confidence on how par-

ticipants acted on those prompts. Finally, we analysed how the image score affected

the trial time and false positive rate, as well as the interaction with prompt confidence.

7.3.1 Observer performance

As shown in Table 7.1, the mean trial time was not significantly different in the CAD

condition compared to no-CAD in Experiment 1, although, numerically, the CAD con-

dition took 1.35s longer. There was also no difference in the percentage image cov-

erage. Overall sensitivity was numerically worse with CAD and went from 67.3% in

no-CAD to 65.7% in CAD, but this difference of 1.55% was not significant. The mean

number of false positive responses per image was 0.26 for no-CAD and 0.22 for CAD,

a non-significant difference of 0.04. The proportion of targets fixated was 89.4% in the

no-CAD condition and 90.4% in the CAD condition.
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Table 7.1: Experiment 1 results for no-CAD and CAD conditions. The 95% CIs, t-
statistic, and p-value were calculated using the bootstrap approach outlined in Section
6.2.4.

No-CAD CAD Diff. [95% CIs] t p

Trial time (s) 12.09 13.43 1.35 [− 0.17, 2.80] 1.78 0.083
Image coverage (%) 65.07 65.97 0.90 [− 1.85, 3.55] 0.65 0.517
Sensitivity (%) 67.30 65.70 1.55 [− 5.4 , 8.6 ] 0.45 0.658
FPs/image 0.26 0.22 0.04 [− 0.03, 0.13] 1.02 0.313

Table 7.2 shows the results for Experiment 2, where there was a significant in-

crease in mean trial time with the introduction of the image score of 1.87s. The three

other variables only differed numerically. The percentage image coverage was 2.52%

larger in the CAD+Score condition, but this difference failed to break the .05 threshold.

Overall sensitivity was 64.1% for CAD and 67.1% for CAD+Score, a non-significant

difference of 3.0%. The false positive rate was 0.40 per image for the CAD+Score

condition and 0.33 for CAD, a numerical difference of 0.06. The proportion of targets

fixated was 88.2% in the CAD condition and 90.6% in the CAD+Score condition.

Table 7.2: Experiment 2 results for CAD and CAD+Score conditions. The 95% CIs, t-
statistic, and p-value were calculated using the bootstrap approach outlined in Section
6.2.4. Statistically significant results are highlighted in bold.

CAD CAD+
Score Diff. [95% CIs] t p

Trial time (s) 13.86 15.73 1.87 [ 0.2 , 3.6 ] 2.13 0.039
Image coverage (%) 65.50 68.00 2.52 [− 0.19 , 5.21] 1.83 0.075
Sensitivity (%) 64.10 67.10 3.00 [− 2.5 , 9.1 ] 1.07 0.289
FPs/image 0.33 0.40 0.06 [− 0.004, 0.13] 1.79 0.081
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7.3.2 Effect of prompts

The distributions of the mean number of regions queried for Experiments 1 and 2

are shown in Figure 7.10. The median number of regions queried (with the 25th and

75th percentiles) for Experiment 1 was 1.44 (0.65−2.51) and 1.31 (0.45−2.11) for

Experiment 2. This demonstrates that participants were engaging with the CAD system

in both experiments.

(a) Experiment 1 (b) Experiment 2

Figure 7.10: Distribution of the mean number of regions queried per image in each
experiment. For Experiment 2, this is the mean across both conditions.

As shown in Table 7.3, participants were significantly more likely to place a marker

in reaction to true prompts than false prompts. In Experiment 1, 23.3% more true

prompts were acted on than false prompts (t(41)=4.018, p<0.001). In Experiment 2,

this difference was 17.9% (t(42)=3.033, p=0.004) and 17.4% (t(42)=3.677, p<0.001)

for the CAD and CAD+Score conditions, respectively. Participants were also signifi-

cantly more likely to mark any prompt (either true or false) compared to a region where

they had queried but no prompt was available (p<0.001 for all conditions).

For each query, we measured the dwelltime on that region before and after they

initiated the query (i.e. clicked on it). We averaged the dwelltime for each participant
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Table 7.3: Observer behaviour by prompt type for Experiments 1 and 2: true prompts
(TPs, where the prompt marks a target), false prompts (FPs, where the prompt does not
mark a target), and no prompts (where the participant queries but no prompt is available
for that location). For each prompt type, the median number of queries for that type is
given, along with the mean percentage of queries of that type where a marker is placed
by the participant.

Median number
regions queried

per image (range)

TPs (N=36) FPs (N=200) No prompts
Queried
(median)

Acted
on (%)

Queried
(median)

Acted
on (%)

Queried
(median)

Acted
on (%)

Exp. 1 CAD 1.44 (0.29−5.31) 15 89.8 10 66.6 107.5 6.2

Exp. 2
CAD 1.18 (0.03−5.09) 11 74.3 11 56.4 96 13.4

CAD+Score 1.39 (0.03−5.20) 10 77.7 11 60.3 106 16.4

and classified it by the type of query, i.e., whether it was on a true prompt, an un-

prompted target, false prompt, or no prompt available (non-target region). The results

of this are shown in Figure 7.11, separated by dwelltime before and after the query was

made. For comparing the dwelltimes, we were interested in target (true prompt vs un-

prompted target) and non-target regions (false prompt vs no prompt). All comparisons

were made using participants that had dwelltime data for both query type using paired

t-tests.

Before a participant queries a target region (true prompt or unprompted target),

there is no difference between these two query types, and so the distributions should

be the similar (the actual targets in each will be different so this may cause small vari-

ations). Before queries, the median time spent on unprompted targets was numerically

lower, but there was no significant difference between the distribution of true prompt

and unprompted targets (t(31)=1.842, p=0.07). Once the region is queried, despite

the lack of prompt on the unprompted target regions, we expected participants to dwell

on those regions for a period similar to prompted target regions, since they might

have wanted to verify whether it was a target region or not. The median dwelltime
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was numerically higher for unprompted targets, but there was no significant differ-

ence in dwelltime after querying between true prompt and unprompted target regions

(t(31)=1.772, p=0.08). Similarly, for non-target regions before the query was made,

the distribution of dwelltimes should be similar since there is no difference between

a false prompt region and a no prompt region. There was no significant difference

between false prompts and no prompt regions (t(37)=0.812, p=0.42). After query-

ing, participants were expected to move on quickly from non-target regions with no

prompt present. This was what was observed, with a significant difference between

false prompt and no prompt regions after querying (t(37)=6.914, p<0.001).

(a) (b)

Figure 7.11: Results for Experiment 1 only. Mean dwelltime (a) before and (b) after
participants had queried each region. Regions are classified by the query type. Partic-
ipants were only used if they had data available for both query types to be compared
(True prompts vs Unprompted targets and False prompts vs No prompts).

We were also interested in the proportion of participants that queried each individ-

ual target in the context of how ‘difficult’ that target was to detect. Figure 7.12 shows

the proportion of participants that queried each target versus the target detection per-

centage from the safety-net experiment (Chapter 6). There was a moderate positive
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correlation (r=0.53, p<0.001). However, this correlation was dependent on the ‘diffi-

cult’ targets, and when only targets with a detection rate of >40% are considered, the

correlation was no longer significant (r=0.19, p=0.14).

Figure 7.12: Percentage of targets that were queried by participants versus their detec-
tion rate in the safety-net experiment in Chapter 6.

In Figures 7.13 – 7.15 it can be seen how the confidence value affected how partic-

ipants acted on prompts. The higher the prompt confidence, the more likely a partici-

pant was to believe that it was a target and subsequently place a marker on that region.

True prompts were more likely to be acted upon than false prompts for all confidence

values, although this was less distinguishable for confidence values below 60 in the

CAD condition of Experiment 2 (Figure 7.14).
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Figure 7.13: Results for Experiment 1. Mean percentage of queries where a participant
subsequently clicked on that location or retained a marker they had already placed there
versus the prompt confidence. The error bars are the standard errors across participants.

Figure 7.14: Results for the CAD condition in Experiment 2. Mean percentage of
queries where a participant subsequently clicked on that location or retained a marker
they had already placed there versus the prompt confidence. The error bars are the
standard errors across participants.
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Figure 7.15: Results for the CAD+Score condition in Experiment 2. Mean percent-
age of queries where a participant subsequently clicked on that location or retained a
marker they had already placed there versus the prompt confidence. The error bars are
the standard errors across participants.

When participants fixate a target, if they recognise it as a potential target region,

they may choose to query it. Of the targets that were fixated but not marked as a target

by participants, we measured the proportion of those that were queried, given in Table

7.4. This was to gain an understanding of how CAD was used for detecting additional

targets that they ultimately dismissed. Participants only queried an average of 17.1%

of fixated but unmarked targets across the three CAD conditions. Even after fixating a

target region, only in a small fraction of cases was that region then queried.
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Table 7.4: The number of targets in each condition with CAD that were fixated but not
marked by participants. We measured the proportion of these targets that were queried.

Experiment 1 Experiment 2

CAD CAD CAD+Score

Median no. targets
fixated but not marked 9.5 8.0 9.0

Median proportion of
those targets queried

15.4%
(2.8−27.5%)

12.5%
(0−28.6%)

3.3%
(0−18.2%)

7.3.3 Effect of image score

As shown in Figure 7.16a, in Experiment 2, the higher the image score in the CAD+

Score condition, the longer participants spent on those images compared to the same

images in the CAD condition without a score. This correlation was significant (r(8)=0.96,

p<0.001). Above a score of 5, there was a >10% increase in viewing time, and below

4 there was a reduction of >5%. In Figure 7.16b, it can be seen that an image score

⩾5 led to a greater number of false positive errors compared to those same images in

the CAD condition, with a >34% increase above a score of 7. An image score of 1, 2

or 4 led to a decrease in the number of false positives, with a >13% reduction. This

correlation between the change in false positive error rate and image score was again

significant (r(8)=0.92, p<0.001).
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(a) (b)

Figure 7.16: Results from Experiment 2. Percentage change in (a) trial time and (b)
false positive responses per image when going from the CAD to CAD+Score condi-
tion as a function of image score. The same images were compared between the two
conditions.

We also investigated how image score affected observer sensitivity in the CAD and

CAD+Score condition. For the 28 images with a score of 10, the sensitivity was nu-

merically larger by 4.6% in the CAD+Score condition compared to those same images

in the CAD condition, but this was not significant (65.6% vs 61.0%, p=0.47). For the

remaining score values for target-present images, there were too few images for each

score (3 images or below) to reliably calculate sensitivity change.

In Figure 7.17, the interaction between prompt confidence and image score is

shown. For a given prompt, the likelihood the participant would act on it by plac-

ing a marker was mostly invariant to overall image score, and appears to be primarily

influenced by the confidence value of that prompt. So, when a prompt was available for

the area queried, it almost completely overruled the general tendency of participants to

rely on the image score (as shown in Figure 7.16b). However, it should be noted that

most of the time the image score was all participants had in Experiment 2, since most

areas queried did not contain a prompt.
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Figure 7.17: Results from the CAD+Score condition in Experiment 2. The percentage
of true and false prompts acted on (marked by a participant) as a function of prompt
confidence and image score. Both prompt confidence (1−100) and image score (1−10)
have been divided into five bands. The percentage of prompts acted on ranges from
25.0% to 90.5%. The number in each square is the number of data points available for
that combination of image score/prompt confidence.

We evaluated the trend between the proportion of prompts acted on and prompt

confidence or image score. For prompt confidence, as with Figures 7.13 – 7.15, the

proportion of prompts acted on was correlated with confidence. We plotted the propor-

tion of prompts acted on for each prompt confidence, shown in Figure 7.18. The corre-

lation between the proportion of prompts acted on and confidence was significant for

both true prompts (r(23)=0.70, p<0.001) and false prompts (r(63)=0.66, p<0.001).

In Figure 7.19, we compared the distribution of the proportion of prompts acted on for

each image score band. A Kruskal-Wallis test showed that there was no relationship

between the proportion of prompts acted on and image score (p=0.72).
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Figure 7.18: Percentage of prompts acted on versus prompt confidence, plotted for all
confidence values.

Figure 7.19: Percentage of prompts acted on versus image score.
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7.4 Discussion

Interactive CAD systems offer an alternative approach to traditional CAD, where ad-

ditional information is only provided to the reader when they request it. In our study,

CAD did not benefit them in terms of their sensitivity and achieved a similar specificity

compared to an unaided condition (Experiment 1). Furthermore, providing partici-

pants with an overall image score to indicate the probability of a target being present

within the image also did not change their performance in terms of sensitivity or speci-

ficity (Experiment 2), but did significantly increase the time spent on images in the

CAD+Score condition. Prompts were accompanied by a confidence value between

1 and 100, with participants more likely to mark prompts the higher the confidence

value. True prompts were more likely to be marked than false prompts for all confi-

dence values in Experiment 1, and for values above 60 in Experiment 2. Image score

was correlated with both time spent on the images and the false positive response rate:

images with a high overall score led to longer trial times and more false positive errors,

with the opposite being true for low score images. When a prompt was available on

images in the CAD+Score condition, we found that it was the confidence value of this

prompt that drove participants’ decision-making on whether or not to place a marker.

Clinical studies have reported improvements in sensitivity with interactive CAD

systems with radiologists (Hupse et al., 2013; Rodrı́guez-Ruiz et al., 2019a), contrast-

ing with the results of this study where the introduction of interactive CAD prompts

and an overall image score failed to improve sensitivity above the level of unaided

reading. The CAD system used in our study was modelled on those described in clin-

ical studies, using a similar operating point, prompt appearance, and distribution of

image scores. There are, however, key differences which may have contributed to the

lack of improvement in sensitivity in our study. One important difference is that we
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used non-expert readers searching synthetic images, as opposed to radiologists search-

ing mammograms. Although in the latter case motivation should be higher, given that

the costs in missing a target are far greater, we do not expect this to be a factor since we

are only interested in the within-participant differences between conditions. Further-

more, the motivation was assumed to remain consistent for the duration of the study,

and we used a fully crossed study design (blocked by CAD condition).

There are more likely explanations for the lack of improvement with CAD in our

study. If a participant did not find the target, they would not have queried it, would not

have been presented with the prompt, and therefore they did not benefit from CAD.

Also, the synthetic images used in this study did not have any particular region where

a target was more likely to be found, which contrasts with mammograms where the

likelihood of finding an abnormality depends on the underlying anatomy. Because

of this, participants may have struggled to make an informed choice on where they

should query the image. This was apparent in Table 7.3, where the majority of queried

prompts were on regions without a prompt available. Compared to traditional CAD,

participants saw far fewer true prompts, which in our case meant they did not improve

their sensitivity, but they also saw fewer false prompts and so the false positive error

rate did not change as with the previous study (see Chapter 6).

Furthermore, the number of targets that participants fixated was similar between the

CAD and no-CAD conditions (90% vs 89%). Therefore, participants were not finding

additional targets in the CAD condition and failed to recognise targets or dismissed

them at a similar rate in both conditions. There was an approximate 25% difference

in the number of targets fixated and detected. It was found that only a small fraction

(around 17%) of these targets were actually queried in the CAD condition, which may

also explain why CAD did not lead to an improvement in sensitivity. The low propor-

tion of queries on these undetected targets may be a result of participants fixating them

but not registering them as a potential target region.
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This is a disadvantage of interactive CAD, where there is no warning that you

have fixated a target even if there is a prompt available there. In traditional CAD, the

prompt will be automatically displayed, but may be accompanied by one or more false

prompts that you must distinguish between. A combination of interactive CAD and

methods which utilise eye tracking data by indicating regions that were both fixated and

prompted (see Chen and Gale (2010a)) could improve the use of interactive prompts.

With the AI-CAD system described by Rodrı́guez-Ruiz et al. (2019a), traditional CAD

is available in addition to the interactive prompts. Readers can choose to display the

most suspicious prompts, with a false positive prompt rate of 0.02 and 0.2 per image

for soft-tissue lesions and microcalcifications, respectively. This hybrid approach of

interactive and traditional prompts will likely reduce the number of potential cancers

that are prompted but overlooked, with a small increase in false prompts.

A similar result for sensitivity between no-CAD and CAD was observed in the

high prevalence condition in the study by Drew et al. (2020). Since they did report

a small benefit in sensitivity at low prevalence (10%), it may be that if we had run

our experiment at this level then we would also have observed an effect. There were

some differences between the two studies in terms of the stimuli that may not make

this the case, particularly the fact they had clear distractors (Ls amongst target Ts), and

so participants had clear potential regions to query, for example. Additionally, they

did not use prompts with confidence scores, which is further from clinical examples of

interactive CAD in mammography. We demonstrated in our study that the proportion

of prompts acted on scaled with the confidence score. However, in the study by Drew

et al. (2020), by making the CAD output ‘likely a target’ or ‘not likely a target’ it may

force the participants decision either way: mark or not mark as a target, respectively.

At a low prevalence, with a high number of the prompts being false prompts (90% had

a CAD output of ‘not likely a target’) they will probably dismiss those and then when

they come across the few true prompts (75% with a CAD output of ‘likely a target’)
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they are more likely to accept those and mark them. This may explain the benefit of

using CAD at low prevalence.

In our experiments, participants were in control of how they were receiving the

information from the CAD system, so despite there being a greater number of false

prompts available than a traditional CAD system, they only saw a fraction of these.

The CAD ‘signal’ (ratio of true to false prompts of the CAD system) in this study

was stronger than the traditional CAD used in the study described in Chapter 6 at

1:1.36 versus 1:1.56. Consequently, participants were probably more likely to believe

prompts when they came across them after querying a region with one available. This

was evident when looking at the proportion of false prompts acted on across the three

CAD conditions in Experiments 1 and 2, which was 68.0%, compared to just 14% in

the previous study with traditional CAD. However, in Experiment 1, the specificity

with CAD did not change compared to the no-CAD condition, which contrasts to the

previous experiment where it was significantly reduced. Importantly, even if trust in

prompts is higher and participants are marking a higher proportion of false prompts

that they come across, they encountered a much lower number (a median of between

10 and 11 were fixated in this study versus 48 in the previous), therefore the overall

false positive rate does not change.

Furthermore, the regions that participants queried that did not contain a prompt

will also have been used by participants to make informed decisions. Across the three

CAD conditions, participants queried a median of 107.5, 96, and 106 regions with-

out a prompt available, marking only 3.0% of these on average. When a participant

queried one of these regions, suspecting it might be a target region, they then received

no prompt and may have used it as a reassurance that it was not a target. As a result,

they may have decided not to place a marker on that region and therefore reduced their

false positive response rate.
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The most interesting results from this study are how participants interacted with the

prompt confidence values and image scores, rather than the overall impact of the CAD

on their performance. The relationship between the proportion of targets queried and

the target detection rate is difficult to predict. You might expect that participants would

query the harder targets more, since they would require help with these more, but of

course they need to find those targets first. On the other hand, for the ‘easier’ targets

(those with >70% detection rate), there was a large variation in how many participants

were querying them. These are targets that participants are more likely to actually find

and therefore more likely to query, however, they are also more likely to be confident

enough not to need the help of CAD.

Experiment 2 investigated the effect of the addition of an overall image score. Since

CAD-alone did not lead to an improvement in sensitivity but clinical examples of in-

teractive CAD used an overall score in addition to prompts and confidence values, we

hypothesised that the score may have been the missing factor. However, as discussed

above, this was not found to be the case. Sensitivity also did not change significantly

for images with a score of 10 (highest score) between the CAD+Score and CAD-only

condition. We did not have sufficient data in the remaining image score categories

for target present data to calculate sensitivity changes for those, so we will focus on

images with a score of 10. A possible explanation for the lack of benefit of the im-

age score in terms of sensitivity could be that in total there were 34/100 images with

a score of 10 (28 target present and 6 target absent). With an average sensitivity of

65.6% in Experiment 2 for target present images with a score of 10, participants will

have only believed there was a target in 54% of the 34 images with a score of 10, on

average. Therefore, there may have been a sense that the scores were not as reliable as

they actually were.
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The image score did affect observer behaviour in terms of both time spent on im-

ages and the false positive response rate. Trial time was correlated with image score

and was consistent with the results of a clinical study (Rodrı́guez-Ruiz et al., 2019a),

in which, cases with a score of ⩽5 reduced reading time by >5% compared to un-

aided reading, and cases with a score of 9 or 10 increased reading time by >5%. In

our study, the prioritisation of high-scored images had a detrimental impact on perfor-

mance in terms of the false positive rate, with a >34% increase for images with a score

above 7. The higher scores made participants search for a longer period and in many

cases may have given them a feeling that there must be a target in the image to find,

resulting in them making false positive errors.

Prompt confidence and image score had a clear impact on observer behaviour indi-

vidually, and we might have expected that the combination of the two in Experiment 2

would create a stronger CAD signal when a prompt was present. For example, an im-

age score of ⩽2 and a prompt confidence ⩽20 would have the lowest proportion of par-

ticipants acting on those regions, and an image score ⩾9 and prompt confidence ⩾81

would have the highest. However, this was not what was observed. When a prompt

was available, it was the prompt confidence was the deciding factor in how participants

chose to act on prompts, with no relation to image score for a given prompt confidence

band. In the CAD+Score condition, image score played a key role in guiding over-

all behaviour, allowing participants to choose which images to pay more attention to.

However, when prompts were available, image score was no longer a factor in decision

making. For example, >88% of prompts were acted on in images with a score of 1 or

2.
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7.5 Summary

This chapter described two experiments replicating interactive CAD to investigate how,

if at all, it benefited readers in detecting targets in a visual search task. Our other aim

was to measure how prompt confidence values and image score affected observer be-

haviour in terms of how they reacted to prompts. Both experiments involved partici-

pants searching for microcalcification clusters in 1/f noise distributions while their eye

movements were tracked throughout.

Experiment 1 had a no-CAD and a CAD condition, and Experiment 2 had a CAD

and a CAD+Score condition. In both experiments, there were 100 images in each

condition. In the CAD conditions, participants would query regions by clicking areas

they were thought were potential targets, and if available, a prompt would be displayed.

Target prevalence was 40%, the same as in Chapter 6, 90% of targets having a prompt

available, and 2 false prompts per image available. In the CAD+Score condition of

Experiment 2, the majority (70%) of target present images had an image score of 10,

while for target absent images the scores were evenly distributed amongst the images.

CAD did not improve sensitivity in either experiment. This is likely due to par-

ticipants not seeing a large proportion of the true CAD prompts. This also applied to

the false prompts, meaning that the false positive rate remained unchanged between

the unaided and CAD condition in Experiment 1, in contrast to the results obtained

with a traditional CAD approach in Chapter 6. Additionally, only a small proportion

of targets that were fixated but not detected were queried. Therefore, the fact that these

targets were not detected was not a result of participants dismissing true prompts but

more likely that they did not recognise them as a potential target.

The higher the prompt confidence value, the more likely a participant was to act on

it. This tendency was stronger for true prompts than for false prompts. In Experiment
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2, image score was correlated with time spent viewing the images and the false posi-

tive error rate. However, when a prompt was available, it was the prompt confidence

that was the key factor influencing the participant to act on the prompt rather than the

image score.

Interactive CAD switches the dynamic between the reader and the computer output.

Information is only given to the reader when they ask for it, and they are not overloaded

by false positives from the system. Medical images with clear anatomical structures

operated by expert readers, as opposed to synthetic images and non-expert readers, may

be better suited to measuring the efficacy of interactive CAD since they will have an

understanding of potentially suspicious regions in the images and thus where prompts

are more likely to be. The image score appears to be a useful tool in guiding readers

to pay more attention to certain cases, but in our study did not affect their choices on

individual prompts.

To study the effects of CAD systems on the performance and visual search of expert

medical readers, an eye tracking setup must be extended to a full radiology workstation

with dual-monitors. This will be discussed further in Chapter 8.



Chapter 8

Dual-screen eye tracking

8.1 Introduction

Eye tracking is a useful tool to gain a deeper understanding of the search of mammo-

grams and to investigate the effects of various interventions. Many studies are limited

to using a single monitor with a single image view and therefore do not mimic real-

istic clinical conditions. Moreover, eye tracking can be expensive, typically costing

more than £10,000 for commercial hardware and software packages. There is there-

fore a need for a relatively cheap and easy-to-use solution that allows dual screen eye

tracking.

8.1.1 Eye tracking in mammography

Eye tracking has been used extensively for a variety of visual search experiments in the

field of mammography (see Section 5.4.1). For instance, Kundel and Nodine (2004)

recorded gaze positions of readers to allow them to formulate a model of the search of

mammograms: a global analysis of the entire image followed by a closer examination

of regions identified as suspicious, and this global approach was shown to be more

proficient than a ‘search-to-find’ technique where reader gaze jumps around the image

212
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to inspect potentially abnormal regions (Kundel et al., 2007). Fixating near an abnor-

mality has been shown not to guarantee that readers will fixate it after; when initially

fixating 2◦ away, only in around 33% of cases was it fixated on the next saccade and in

50% of cases within the next three saccades (Wolfe et al., 2021b). Radiologists were

found to differ in their time to hit the first lesion and their median dwell time on cancers

between digital mammograms and digitised screen-film mammograms (Mello-Thoms,

2010). They also tend to make longer fixations and cover a smaller area of the image

with digital breast tomosynthesis vs full-field digital mammography (Aizenman et al.,

2017).

Many studies have investigated the use of eye tracking data to influence gaze be-

haviour either through training or interactively. Nodine et al. (2001) fed back to radiol-

ogists the areas of the image that they fixated for >1s but had not acted upon initially,

and reported an improvement in performance. There have been interesting methods of

combining radiologist gaze data with both their decisions and CAD output (Tourassi

et al., 2010) and with image texture characteristics to predict diagnostic error with a

machine learning model (Voisin et al., 2013a). Gaze data has also been used as an

input for a mass segmentation approach (Ke et al., 2012) and as a potential tool to train

less-experienced readers (Chen and Gale, 2010b). These studies were all constrained

by the use of a single monitor where readers are limited to a single mammographic im-

age. These single screens are half the size of what would usually make the full display

and not a large single screen as described by Krupinski (2016). This is not reflective

of clinical practice, where large dual screens are used. It is therefore desirable to work

with a more realistic dual-monitor setup.
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8.1.2 Eye tracking with dual screens

Mello-Thoms and Gur (2007) compared remote and head-mounted eye trackers for

observer studies with radiologists and found that restricted head movements (from the

use of a chin rest) with the remote system made them less natural than wearing a head-

mounted system. Although head-mounted systems can cause fatigue when used for

long periods of time, recent developments mean trackers are becoming less restrictive

and more lightweight, so this factor is now less of an issue. In fact, there have been

a number of observer studies that tracked gaze across dual clinical radiology monitors

via head-mounted trackers with scene cameras to compare search patterns of radiolo-

gists (Mello-Thoms, 2008), investigate the effect of dual screens versus single screens

on reader search (Krupinski, 2016), explore the use of radiologists gaze to inform

computer-aided diagnosis software (Gandomkar et al., 2017), and measure the impact

of interruptions on the visual search and accuracy of radiologists reading chest CTs

and radiographs (Drew et al., 2018). These studies used eye trackers that were widely

commercially available, but the authors did not give a detailed description of the accu-

racy of the systems.

Another method for dual-screen eye tracking was presented by Dong et al. (2016).

They used three remote eye trackers: one placed under each screen and another in the

middle. These trackers allowed free movement of the head. The study also used a

screen capture tool to monitor zooming and panning. However, the trackers used were

not capable of direct on-screen tracking, and so a virtual model of the two monitors

had to be created. Furthermore, the screen capture tool used to acquire the zoom and

pan information reduced the overall frequency of the tracking system from 60Hz to

10Hz.
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In order to choose the eye tracker for dual-screen tracking, we surveyed various

head-mounted eye trackers, shown in Table 8.1. The typical accuracies for these track-

ers range between 0.25◦ and 1.0◦. Though, this is accuracy under controlled tests and

not necessarily the accuracy that would be achieved across two large screens. Each

tracker offers different solutions for obtaining the coordinates on screens rather than

from the reference frame of the scene camera, some of which are discussed further in

Section 8.1.3. The Pupil Core glasses were chosen to be used for tracking on our dual-

screen setup since the specifications were comparable to other trackers and offered

open-source analysis software with useful plugins for on-screen tracking.

8.1.3 Pupil Labs glasses

We investigated the potential of Pupil Labs eye tracking glasses, referred to as Pupil

Core and discussed in Section 5.3.2, as a relatively inexpensive solution to dual-screen

eye tracking (Kassner et al., 2014). Similar to other eye tracking glasses, they are

lightweight (22.75g), and therefore are unlikely to cause fatigue for long reading ses-

sions. Eye tracking glasses allow observers to move as they would in normal viewing

conditions, which is particularly important for viewing large clinical displays.

With screen-based experiments, eye tracking glasses pose the problem that the gaze

coordinate system is given in reference to the coordinate system of the scene camera.

As the participant is free to move, the position of the screen is ever-changing, often

referred to as a dynamic region-of-interest (Ooms et al., 2014). There have been a

number of proposed methods to map gaze coordinates onto these dynamic ROIs, of-

ten involving extensive manual work such as correcting the position of objects in the

recording frame-by-frame (Tobii Pro, n.d.). A similar approach is used with SMI’s

BeGaze software, where the position and size of ROIs needs to be altered manually
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throughout the video recording when necessary (SMI, 2017a). BeGaze also uses ‘se-

mantic gaze mapping’, which is able to detect when a reference image of the scene is

visible in the recording, and subsequently map the gaze data onto that reference im-

age. However, this process is not automated and requires each fixation to be manually

mapped by selecting its position on the reference image according to where the fixa-

tion appears in the recording (SMI, 2017a).

There are other, more automated solutions, such as DynAOI (Papenmeier and Huff,

2010), but as with the method proposed by Dong et al. (2016) this requires the creation

of a 3D model of the experimental setup. Pupil Labs instead use a surface tracking plu-

gin that allows the user to define 2D surfaces within recording by displaying QR-like

markers, e.g. around the edges of displays, which act as reference points for the sur-

faces. These surface definitions can be loaded into any recordings which feature that

same marker setup and automatically track that surface in the scene video, but they

may require some level of manual correction to make sure they are correctly defined

within each recording.

A recent study by Ehinger et al. (2019) performed a detailed comparison between

the EyeLink1000 desktop eye tracker (see Section 5.3.1) and Pupil Core, and set out a

comprehensive testing framework for eye tracking devices. Overall, they found Pupil

Core to have a worse spatial accuracy compared to the EyeLink1000, 0.87◦ vs 0.52◦.

They also reported a strong initial decay in the calibration accuracy of Pupil Core of

0.25◦ after 4:42 mins, although this did stabilise after that point where the accuracy

only dropped a further 0.04◦ at 6:16 mins. Their analysis was done on a single 24-inch

monitor and only compared the accuracy at 2 time points after the initial calibration.

While this provides us with a good reference, we required greater temporal resolution

for our analysis, as well as an assessment of performance on a setup with a larger FOV.
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In this study, we explored using Pupil Core for a search task on a clinical radiology

setup with non-expert readers. We were primarily interested in how the spatial accu-

racy of the system varied over the duration of the experiment and across the display,

to allow us to make recommendations for future experimentation with similar setups.

This setup was planned to be used for an experiment with expert readers (see Chapter

10), so it was important to measure the performance of the device and recommend

the time period for recalibrations, for example. This methodology can be adapted to a

variety of large display setups and is therefore of interest to other research groups both

inside and outside of radiology. Our secondary aim was to determine the detectability

of our simulated masses in synthetic backgrounds. Firstly, this task is similar in nature

to a radiology search task, which makes it suitable for testing performance of the de-

vice for future work. Secondly, these mass images were to be used for the experiment

in Chapter 9, therefore it was desirable to get a reliable estimate for the detectability

of various mass targets that could be used to select appropriate images to use.

8.2 Methods

8.2.1 Materials

We used the Pupil Labs – Pupil Core Headset with 200Hz eye cameras and a 120Hz

world camera. A full description of Pupil Core and how it operates is provided in

Section 5.3.2. The experimental setup is shown in Figure 8.1, with two side-by-side

21.3-inch Dome E5 displays with resolution of 2048×2560 pixels each. As can be seen

in Figure 8.1, QR-type markers were placed around the edges of the monitors. Eight

markers were displayed on each screen, separated by 13.4cm (or 18.1cm across the

bezel) horizontally and 14.0cm vertically. These markers were used to define surfaces
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within the Pupil Labs analysis software (Pupil Player) onto which fixations and gaze

data are mapped. We defined 4 sub-surfaces that were later combined in the analysis to

make one surface for the whole display. This was necessary because the fish-eye lens

of the scene camera means that using one large surface covering both displays cuts off

large portions of the screens. By using four surfaces this effect can be minimised.

Figure 8.1: Experimental setup as seen from the scene camera of Pupil Core. Four
surfaces were defined, each covering one quadrant of the dual display. The scene
camera uses a fish-eye lens meaning straight lines can appear curved, so using four
surfaces instead of one reduced the amount of screen that was cut off by non-curved
edges of the surfaces. The lights were switched off during the experiment to mimic the
low lighting conditions used by radiologists reading mammograms.

8.2.2 Calibration procedure

Calibration involved displaying the calibration target (Figure 8.2a) sequentially at 14

different positions, where the start and end point were set at the top left of the displays

with other positions randomised. Preliminary tests were completed to determine the
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appropriate length of time to display the calibration target at each position during the

calibration procedure. This is important as it needs to be long enough for the analysis

software to detect where the target is. At the same time, it should be as short as possible

so participants remain focused for the whole calibration process. Figure 8.2b shows

the result of changing the presentation time in 1 second increments. This test was

completed by a single researcher, five times for each target duration. Since we wanted

to minimise the time taken to calibrate whilst maintaining accuracy, 3 seconds was

chosen as the most suitable target duration time, since this is where the validation

accuracy plateaued, measured using Pupil Labs’ ‘Pupil Player’ analysis software.

Figure 8.2: (a) Target used for calibration and validations (on-screen radius = 1.9cm)
and (b) validation accuracy for different display lengths of time for calibration targets
(time per target).

The monitors used are high contrast (typical brightness of 800 cd/m2) and as a re-

sult, when displaying the surface markers and calibration targets, the white portions
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of those became too bright to be reliably detected by the software. This was wors-

ened further when the lights were switched off to mimic the low lighting conditions

used by radiologists reading mammograms. To compensate for this, the white parts

(RGB = [255, 255, 255]) were made grey (RGB = [127,127,127]) so that they could

be accurately detected.

8.2.3 Calculating the useful field-of-view

The useful field-of-view is an important factor in eye tracking, and can be used to

calculate, for example, the proportion of an image that has been covered or whether

certain features have been examined. Since the size of the UFOV in pixels on the screen

depends on the distance of the participant from the screen, this has to be constantly

measured in experiments with wearable eye trackers where the participant can freely

move towards and away from the screen. Pupil Labs software has a head-pose-tracking

plugin, meaning the position of the observer is tracked relative to reference markers –

the same ones that are used for the surface tracking. At the start of the experiment, the

participant’s distance from the screen was measured with a tape measure and compared

to the z-coordinate for that time measured by the software. Using this reference, the

z-coordinates are converted to cm for calculation of the UFOV for the remainder of the

experiment using the formula UFOV (in cm) = 2d tan(VA
2 ), where d is the distance to

the screen in cm, and VA is the fixed visual angle of 5◦ diameter, commonly used for

mammography visual search studies (Kundel and Nodine, 2004). The UFOV was then

converted to pixels using the pixels per cm of the displays.

To check the validity of this approach, a test was conducted by placing the glasses

on a chin rest at 3 different distances. To test the variability of the head-pose tracking,

at each distance, the glasses were picked up and moved around before placing them

back at the same distance from the screen. The results from this manipulation are given
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in Table 8.2. The variation in the measurements of 1 unit of z per cm results in an error

for the size of the UFOV of around 8.5%. This is a reasonable size of error since it

provides a much more accurate estimation of the UFOV than if we were to estimate a

fixed distance for each participant.

Table 8.2: Results from the head pose tracking technique to measure distance to the
screen. Each z measurement was repeated 5 times and the mean and standard error is
given. The units of z per cm were used to calculate the size of the UFOV in pixels on
the screen throughout the experiment.

Distance (cm) Mean z 1 unit of z in cm

36.0±0.1 9.49±0.09 3.79±0.04
82.5±0.1 20.26±0.01 4.07±0.003

113.5±0.1 30.25±0.04 3.75±0.01

8.2.4 Stimuli

The images used in this study were similar to those used in Chapters 6 & 7, but with

different targets. Synthetic 1/f noise images were created in MATLAB using open-

source code (Methven and Qi, 2018), with a spectral roll-off factor (image roughness)

of 1.5. These backgrounds resemble the glandular component of mammograms, al-

though they lack linear structures. The targets used in the experiment were Gaussian

blobs, which resemble masses in mammograms. An example experimental image is

shown in Figure 8.3. As shown in Table 8.3, the masses varied in size, shape (either

circular or elliptical), and contrast (high or low) with their surroundings. Images were

sized at 2049×2049 pixels, centred between the two displays. Care was taken to en-

sure no mass targets were split across the displays. The 120 experimental images were

split into 3 sets of 40, each containing 20 simulated masses - a prevalence of 50%.

The experiment code was written using PyGaze v0.6.0 (Dalmaijer et al., 2014), with a

PyGame back-end (v1.9.2).
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Figure 8.3: Example experimental image positioned on display, the mass signal is
outlined by the red square for illustrative purposes.

Table 8.3: Size and brightness factors, and number of each of the eight target cate-
gories. For the mass targets, the size and brightness was selected randomly using the
factors given in the table for each category. These factors have been normalised using
the maximum value. The size refers to the diameter of the circles or the size of the
major axis for the ellipses with aspect ratios ranging between 1.5 and 3. The number
of targets of each category used in the experiment is given in the bottom row.

Circular High Contrast Circular Low Contrast Elliptical
Small Medium Large Small Medium Large Small Large

Brightness 0.78−1 0.78−1 0.78− 1 0.56−0.78 0.56−0.78 0.56−0.78 0.78−0.89 0.78−0.89
Size 0.13−0.31 0.36−0.51 0.56−0.75 0.13−0.31 0.36−0.51 0.56−0.75 0.25−0.50 0.50−1
No. targets 8 8 8 8 8 8 6 6

8.2.5 Experimental procedure

Each participant first completed 16 training images which familiarised them with the

experimental interface – clicking to place a marker where they believed there was a

target and right-clicking to remove a marker if they changed their mind. The train-

ing set contained 15 target-present images and 1 target-absent image. When viewing
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the target-absent image, participants were informed that only 50% of the experiment

images would contain a target. During training, participants were given feedback on

their clicks which informed them if they had found a simulated mass lesion and if so,

highlighted the whole mass. Once they had completed the training set, the glasses were

set up by adjusting the cameras to their eyes and setting the ROI window in the Pupil

Capture software to cover the whole eye as described by Pupil Labs (2021b) and in

Section 5.3.2. This took around 1 minute to setup. At the start of each run, the dis-

tance from the participant to the screen was measured and registered for that time point

by pressing a button. These measurements ranged from 51–76cm (median 61cm), but

participants were free to move, so this is only an estimate of the distance during the

experiment.

The experiment was split into 3 runs. Each run started with a calibration sequence

of 15 targets, where each appeared for 3 seconds. The positions of the calibration tar-

gets are shown in Figure 8.4. The position of the first and last target to appear was

always the top-left, which is the same as the Pupil Labs default calibration procedure.

The order of the other target positions was randomised. After this, an initial valida-

tion sequence was completed, which was the same as the calibration, but targets only

appeared for 2 seconds each. A shorter time was desirable to minimise time spent val-

idating but still allowing sufficient time for multiple fixations on the target after initial

correction saccades for calculation of accuracy.

It is important to note why we are able to use a shorter time for validations com-

pared to calibrations: calibrations were done using Pupil Player software which needs

to detect the location of the targets using the scene camera – the time needed for cal-

ibration targets to be displayed for accurate results is 3s, as shown in Figure 8.2b.

However, for validations we calculated the accuracy with our own software post-hoc

where we knew exactly where the targets were displayed and for how long. We used
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the fixation data to calculate validation accuracy, which was possible to do with a target

duration of 2s. Search of the experimental images was conducted with the lights turned

off to more closely replicate conditions in the clinic and thus test performance of the

glasses in low light conditions. During the experiment, after 1 minute had passed from

the end of the previous validation sequence, the validation was repeated. The order of

the experimental images was randomised for each run.

Figure 8.4: Schematic indicating the positions of the targets used for calibration. The
rectangles represent the screen edges (not to scale).

8.2.6 Data analysis

There were two stages to our data analysis. The first stage is outlined in Figure 8.5,

which details how the raw data from Pupil Capture was analysed in Pupil Player. The

first step was calibration, referred to as ‘offline calibration’ since it is undertaken post-

hoc, using the reference calibration targets in the video. This requires time points to be
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selected where the calibration has taken place and where the gaze should be mapped

to. Marker detection is an automatic process which identifies and locates the surface

markers displayed in the video footage; these are then used for surface and head pose

tracking. Surface definitions were performed in Pupil Capture and were loaded into

Pupil Player. If the corners of a surface did not align with the edge of the display or

at the halfway point of the screen (a horizontal line was displayed across the screen to

measure this), they were adjusted in Pupil Player. The four surface definitions used in

this study are shown in Figure 8.1, where each covered a quadrant of the dual-screen

display. The size of the surfaces were set in Pupil Player to be half of the size of a

display, in pixels. Therefore, calculated gaze coordinates on the surfaces would match

the screen coordinates in pixels. After they were defined, they remain fixed in place,

around the markers used to define them, while the FOV changes according to head

position. On export, the fixations and gaze positions on each surface are automatically

generated. Additional files include the positions of each surface in the world coordinate

system for every frame and the time points that any surface entered or exited the FOV.

The head pose tracking and fixation detection are also automatic processes, which

require the researcher to set a reference marker for the head pose tracking, and a max-

imum dispersion threshold (1.5◦ visual angle) and minimum and maximum duration

thresholds (100ms and 800ms, respectively) for fixation detection. The annotations

were added to mark the time point where the distance measurement occurred, as well

as the start of each validation sequence. The data were then exported to be analysed in

Python.
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Figure 8.5: Flowchart of the data analysis in Pupil Player software. These processes
require manual input to select appropriate time points or selection of areas for surface
tracking.

The analysis in Python and Matlab is outlined in Figure 8.6. Fixations on each of

the four surfaces (shown in Figure 8.1) were first mapped onto a single joint surface

covering the whole screen area. Since the surface sizes were defined to match the pixel

size of the display, coordinates on the surfaces could be directly mapped to screen co-

ordinates. It was then necessary to synchronise the times between the data saved on the

experimental computer and the data exported from Pupil Player. The experiment data

includes the time and positions of user clicks, the time of the distance measurement,

when validation sequences occurred, and the start time and duration of different im-

ages. To synchronise the times from the experiment computer with the time recorded

by Pupil Capture, we compared the time of the onset of the first validation sequence

recorded on both computers. Once the times were synchronised, fixations were as-

signed to either a specific image or validation sequence. From here, for individual

images, the image coverage, number of fixations and saccades, and target dwell time

were calculated. For validation sequences, the median distance from validation targets

was calculated, in addition to individual accuracies for each target. This was done

by taking the median distance between the fixation and the validation target across all

fixations on that validation target. To calculate the distance between the fixations and

validation target, we used Equation 8.1, outlined in Ehinger et al. (2019):

θ = arccos
(

f · t
∥ f∥∥t∥

)
(8.1)



CHAPTER 8. DUAL-SCREEN EYE TRACKING 228

where θ is the angular distance in radians (converted to degrees), the fixation posi-

tion f =
( fx

fy

)
, and the validation target position t =

(tx
ty

)
. In addition to accuracy, we also

calculated the angular precision of the system using Equation 8.2, which calculates the

standard deviation of fixation positions on a validation target:

θsd =

√√√√1
n

n

∑
i=1

d

((
xi

yi

)
,

(
x̄
ȳ

))2

(8.2)

where n is the number of fixations on a validation target, d
((

xi
yi

)
,
(

x̄
ȳ

))
is the

distance between a single fixation and the mean location of fixations on the validation

target (Ehinger et al., 2019). Finally, data were analysed in Matlab to produce figures

and overviews of data across participants.

Figure 8.6: Flowchart detailing the analysis of the data that is exported from Pupil
Player and analysed in Python and Matlab.

8.2.7 Participants

Twenty-six participants (median age 19, age range 18-23, 23 female) were recruited,

and informed consent was obtained. Twenty-five of the participants were undergradu-

ate psychology students and received course credit for taking part, and the other partic-

ipant was a member of university staff who received no compensation for participation.

The study was approved by the University of Manchester Research Ethics Committee

(2018-4586-6410).
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8.3 Results

The data presented comes from 26 participants, with a combined number of 67 ‘runs’,

i.e., sets of 40 images completed (20 target present and 20 target absent). The miss-

ing data (six runs from set 1, three from set 2, and two from set 3) were caused by

experimental issues, such as improper positioning of the scene camera. These miss-

ing data were from individual runs across 8 participants, and all runs for 1 participant

whose behavioural data (clicks) was still used in the analysis. We will be referring

to the spatial accuracy of the glasses as measured by repeated validation sequences as

the ‘validation accuracy’. The spatial precision calculated as the standard deviation of

fixation positions (Equation 8.2) will be referred to as the ‘validation precision’. We

also looked at the reduction in measured accuracy over time and will refer to that as the

‘calibration decay’ to be consistent with literature on this topic (Ehinger et al., 2019).

8.3.1 Target detectability

One of the aims of this study was to test the detectability of our mass signals in the

simulated images. The masses used were categorised based on their shape (circular or

elliptical), brightness, either high contrast (HC) or low contrast (LC), and size (small,

medium, or large), as shown in Table 8.3. The mean detection rate, i.e., the percentage

of participants that successfully located the mass, is given for these 8 categories in

Figure 8.7. All but one of the differences in detection rate between the categories were

purely numerical, with the exception of the significantly higher detection rate of small

circular HC masses compared to large circular HC masses (t(14)=2.73, p=0.02).

The detection rates of individual masses are plotted against their size (diameter of

circular masses and size of major axis for ellipses) in Figure 8.8. We tested the negative

correlation between size and detection rate. When correcting for multiple comparisons
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Figure 8.7: Detection rate for different mass categories. There were 8 targets of the
first 6 categories (circular masses) and 6 each for the last two categories (elliptical
masses).

using a Bonferroni correction (corrected p-value of 0.017), this was not significant for

HC masses (r(22)= −0.41, p=0.04), LC circular masses (r(22)= −0.28, p=0.19), or

elliptical masses (r(10)= −0.27, p=0.41). Finally, we also measured the overall false

positives per image rate, which was 0.7. This suggested that there were features within

the image that raised suspicion in addition to masses.
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Figure 8.8: Detection rate for individual masses versus their size in pixels. The data
is further distinguished by whether they were circular HC, circular LC or elliptical.
The size refers to the diameter of the circular masses and the size of the major axis for
elliptical masses.

8.3.2 Calibration decay

The calibration decay in the experiment is shown in Figure 8.9. Validation numbers 13

to 15 were excluded from analysis since we only had one participant who completed

these. Validation number 1 was done immediately after the initial calibration and each

validation thereafter started exactly 1 minute after the previous had ended. Each vali-

dation took approximately 33 seconds to complete (including a 3-second countdown),

with the corresponding start times shown on the top axis. The median validation ac-

curacy started at 0.67◦ and plateaued between validation number 4 and 8, where it

remained between 1.22◦−1.36◦, before it steadily increased from validation number 9

onwards.
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The initial median validation precision, shown in Figure 8.10, was 0.37◦ and remained

between 0.33◦−0.38◦ until validation 7 where it increased to 0.46◦. The precision did

not go above 0.5◦ for all validations.

Figure 8.9: Calibration Decay: the validation accuracy across participants as a function
of the validation number. The +’s indicate the mean for that validation number. The
values in each box are the number of data points (runs) for that validation and above
each bar is the number of participants those runs come from.
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Figure 8.10: The validation precision across participants as a function of the validation
number. The +’s indicate the mean for that validation number. The values in each
box are the number of data points (runs) for that validation and above each bar is the
number of participants those runs come from.

To determine an appropriate point to recalibrate the glasses, we first compared the

validation accuracy distributions shown in Figure 8.9 to various reference accuracies

(in steps of 0.05◦), shown in Table 8.4. For each reference accuracy we found the

earliest validation with an accuracy significantly worse than that reference. None of

the validations were significantly worse than reference accuracies greater than 1.4◦,

so we did not include them in the table. Table 8.4 suggests that recalibration should

be done around the time validation 4 occurred (4:39 mins to 5:22 mins) to maintain

accuracy below 1.25◦. This is the point around which the median accuracy remains

before a sharp decay at validation number 6 in Figure 8.9. At 6:12 mins (validation 5)

the accuracy was significantly worse than 1.25◦.
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Table 8.4: Comparisons of accuracy distributions to reference accuracies. For each
reference accuracy, the lowest validation number with a mean accuracy significantly
worse than the reference is stated. The statistics are derived from a bootstrap approach
across runs.

Reference accuracy
(degrees)

Validation with
worse accuracy

(start time in mins)

Mean difference
[95% CIs] t statistic p value Degrees of

freedom

1.00 3 (3:06) 0.33 [0.19−0.48] 3.746 <0.001 66
1.05 3 (3:06) 0.27 [0.13−0.43] 3.110 0.003 66
1.10 3 (3:06) 0.23 [0.09−0.38] 2.557 0.013 66
1.15 4 (4:39) 0.23 [0.10−0.36] 2.902 0.005 65
1.20 4 (4:39) 0.18 [0.05−0.32] 2.272 0.026 65
1.25 5 (6:12) 0.20 [0.05−0.36] 2.133 0.037 62
1.30 6 (7:45) 0.28 [0.10−0.47] 2.541 0.014 50
1.35 6 (7:45) 0.23 [0.05−0.42] 2.083 0.042 50
1.40 10 (13:57) 0.54 [0.17−0.92] 2.378 0.045 8

We also looked at decay of calibration using a bootstrap approach where participant

runs were treated as a random effect. For each statistical test, the runs were chosen such

that we could make pair-wise comparisons between the validations within runs. Figure

8.11a shows that there was an immediate significant calibration decay from validation

1 to 2 by 0.41◦ (95% CI, 0.24◦−0.60◦; t(24)=3.684, p=0.001), but there were no

further significant drops in accuracy for consecutive validations. Figure 8.11b shows

the calibration decay relative to validation 1 for all further validations. The decay is

significant across validations 2 to 12, except for validation 11 (a consequence of only

having 4 runs at that point).

Although there is an initial significant calibration decay (between validations 1

and 2), it would not be practical to recalibrate after just 1.5 minutes, especially for

experiments lasting around 1 hour in total. Therefore, there is a trade-off between

the frequency of recalibrations and the spatial accuracy of the glasses. Recalibrating

every 5 minutes during an experiment (the point during which validation 4 took place)
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maintains the mean accuracy below 1.25◦ and does not severely interrupt the flow of

the experiment. The variance of accuracies was greatest at validation 5, so it is also

desirable to recalibrate before that point.

The calibration decay varied depending on the position of the validation target.

Generally, the validation accuracy was worse for the targets at the edge of the displays,

with a median calibration decay across the first 5 validations of 1.06◦ for the 4 outer

corners versus a median of 0.77◦ for the other positions. The trend in the validation

accuracy was similar across all target positions, explored in Figure 8.12 and Figure

8.13, where the mean validation accuracy and precision are plotted for all validation

targets, all except the corner targets, and corner targets only. The mean validation

accuracy was consistently worse for the corners for the first 10 validations, compared

to the other targets. The time which we determined to be the appropriate recalibration

point is indicated by the red dashed line. Precision was also worse at the corners of the

display but remains around 0.5◦ before the recalibration point. The median precision

across the first four validations for all target positions was 0.37◦.
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Figure 8.11: (a) Comparisons between adjacent validations. For each comparison,
only the 25 runs from 13 participants that had data available for validation 8 were used.
(b) Comparisons between validation 1 and validations 2 to 12. For each comparison,
only runs from participants that also had data for the later validation were used (i.e.
from 25 participants (67 runs) for 1v2 to 3 participants (3 runs) for 1v12). In (a) and
(b) displayed above each bar is the p value for each comparison, calculated from a
bootstrap approach.
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Figure 8.12: Mean validation accuracy across participants’ as a function of validation
number for all validation targets, corner targets only, and all except the corner targets.
The error bars are the standard errors across targets and participants.
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Figure 8.13: Mean validation precision across participants’ as a function of validation
number for all validation targets, corner targets only, and all except the corner targets.
The error bars are the standard errors across targets and participants.

8.4 Discussion

Our investigation of using Pupil Core for gaze-tracking across a clinical radiology

workstation has demonstrated the feasibility of this approach. The glasses were able to

operate in typical clinical lighting conditions and cope with the high contrast monitors.

Validation accuracy remained below 1.4◦ visual angle for the first 11 minutes of the

experiment, after which the accuracy steadily decreased. The calibration decay was

significant between the first and second validations, but did not increase significantly

for further consecutive validations. Precision remained consistent across validations,

starting at 0.37◦ with no major worsening throughout. Both the accuracy and precision

were worse at the outer corners of the displays when compared to the central points,
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although these points would generally not contain any of the mammograms and are

therefore less important for our purposes.

The calibration decay measured in our experiment was consistent with another

study using Pupil Core (Ehinger et al., 2019), where there also was a significant early

decay before stabilising. We had a higher temporal resolution and also measured the

decay over a longer period; we showed there was a point where the calibration accu-

racy decreases rapidly - after around 12:24 minutes. We also observed a higher initial

decay of 72.4% after 4:39 minutes compared to the reported 29.4% in Ehinger et al.

(2019) after a similar time period (4:42 minutes). In terms of precision, this was similar

in both studies, with 0.37◦ reported in this study versus 0.31◦ in Ehinger et al. (2019).

Unsurprisingly, the accuracy was worse at the outer corners of the display, which is

commonplace even for higher-accuracy desktop eye trackers, where some even weight

the overall accuracy towards central points. We did not weight the accuracy and took

the median across all targets. This result was due to the fact that during calibration and

validation procedures, the participants were instructed to look directly forward and

only move their eyes towards the target. Therefore, we were measuring the accuracy

as the gaze moved away from the line-of-sight of the environment camera. In normal

use, outside of calibration, participants move their heads to look at the outer edges of

the display, and so the accuracy would resemble those at the centre of the screen.

There are a number of key advantages to using Pupil Core for our setup. They are

lightweight and were comfortable for experiments which lasted as much as 1 hour of

wearing. Compared to similar eye tracking devices, Pupil Core is relatively inexpen-

sive in terms of hardware and offers free open-source software for capture and analysis

of data. The software offers a variety of useful plugins, such as surface and head-pose
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tracking that works out of the box when used with the provided digital markers to dis-

play on or around regions of interest. The open-source nature also means there are a

range of third-party modules developed by the community of users to expand the eye

tracking capabilities. Another useful feature is the range of options for calibrating the

headset. This can be done using on-screen or printed markers, either before recording

or post-hoc by including a calibration procedure within the experimental recording.

Through experimentation, we found the offline calibration most suitable for our setup

as it produced the most reliable calibrations. There is also an option to adjust eye cam-

era settings post-hoc, including the ROIs around the eyes and the algorithm settings.

The ease of use and freedom of movement do come at a cost, though. The accuracy

of the headset, even well within the limits of display size for desktop trackers, is lower

than other trackers at ≈1.0◦ vs ≈0.5◦. Although this is a result of the trade-off between

accuracy and display size, it is worth considering when designing experiments. Fur-

thermore, the world camera, which captures the environment, uses a fish-eye lens. This

complicates the surface tracking somewhat, by making the edges of the display appear

curved, which can cause parts of the displays to be cut off when defining the straight

edges of the surfaces across the displays. We were able to mitigate this by having a

border of surface markers around the edge of the displays, and so all of the areas we

were interested in were well within the borders of the surfaces they defined. Further-

more, we used four sub-surfaces to define the displays, instead of a single surface, to

prevent the surface edges being warped.

Finally, the analysis in Pupil Labs software involves a lot of manual work in setting

calibration and gaze mapping time points, alterations to surface definitions, and the

addition of annotations. However, the open-source software means that some of these

processes can be automated. Furthermore, the analysis method is simpler compared

to similar eye tracking headsets, such as Tobii Pro (n.d.) and SMI (SMI, 2017a), in
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terms of mapping gaze coordinates onto the display. Both of the alternative methods

involve frame-by-frame alterations to the ROI, compared to automated mapping and

tracking of the ROI with Pupil Labs that may only require one or two alterations for

each subject.

From our results, we would advise that recalibrations should be done every 5 min-

utes. This should maintain the median accuracy below 1.25◦ and precision below 0.4◦,

while not interrupting the flow of the experiment drastically with frequent recalibra-

tions. For future experiments with this setup, the recalibration point should be chosen

for the specific needs of that experiment. It may even be suitable to wait until 10 min-

utes have elapsed to recalibrate, since for the first 10 minutes of our experiment the

mean accuracy was not significantly worse than 1.4◦. However, the longer the time

between calibrations, the greater the risk of a high rate of calibration decay. Also,

we observed an increase in variance after 6 minutes, with decay sharply increased for

some participants. We have not attached great weight to the results beyond validation

number 9, which were indeed likely to be worse. However, we cannot be sure how

much this is affected by our participants tiring, rather than poor performance of the

glasses. Furthermore, there were fewer than 10 participants who recorded validations

beyond that point.

Overall, the results from this study show that, in its current form, this setup does not

have the required spatial accuracy for mammography experiments on dual screen se-

tups. The need to recalibrate during the experiment every 5 minutes may disrupt read-

ers and negatively impact their performance. For experiments using mammograms,

typically accuracies of around 0.5◦ are required, since targets can often be small. The

initial significant decay of the glasses is one of the key issues. Reducing or eliminat-

ing this will vastly improve the feasibility of using them. The manual analysis is also
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cumbersome, where the calibration time window has to be selected and surface defini-

tions have to be checked. Although, the use of surface tracking reduced much of the

manual effort required for systems such as Tobii and SMI, and makes it easy to map

coordinates onto the screens. The head pose tracking plugin with Pupil Player also

makes it simple to calculate parameters that depend on distance-from-screen, such as

the useful FOV. Another key benefit is the affordability compared to other commercial

systems, at around £2,000 compared to £10,000+. Pupil Core is lightweight and was

comfortable for participants to wear for the experiment, which could last as long as 1

hour. They also allow for free movement of the head and were therefore less restrictive

than using a chin rest with a remote tracker as described in Chapters 6 and 7.

Our secondary aim was to measure the detection rate of a set of mass targets. By us-

ing various sizes and contrast levels, we had a range of detection rates that we are able

to choose from for future experiments. The median detection rate was 62.5% (range

30.0%–95.0%), which is similar to the rates obtained in experiments with microcalcifi-

cation clusters (Chapter 6 and 7). Smaller masses tended to have a numerically higher

detection rate, which was significant between small and large high contrast masses.

This appears at first to be counter-intuitive, however, larger masses tended to blend in

more with the background regions, while smaller masses were more salient since they

were in contrast with the random large structures in the background.

8.5 Summary

Dual-screen eye tracking poses a difficult problem and does not have a simple high-

accuracy solution. Methods typically involve using multiple remote desktop trackers

or a head-mounted tracker. Head-mounted trackers are light weight, making them

suitable for long experiments, and do not restrict head movements, which is essential

for use with large displays so that subjects can move naturally to adjust their gaze
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position. The key aim of this work was to test the suitability of Pupil Core for use with

a clinical radiology setup.

In order to track gaze across the dual-screen setup, we used the Pupil Labs surface

tracking feature, which involved displaying markers around the edge of the displays.

These were automatically detected by the software and used to define surfaces over

the screens, which gaze positions and fixations were mapped onto. Another software

feature used was head-pose tracking, which monitored the distance of the participant

from the screen and allowed for the calculation of the useful field-of-view.

To test the capability of Pupil Core, we conducted a visual search study with 26

non-expert participants. They searched a total of sixty simulated backgrounds for

mass-like signals, split into three sets. The mass signals varied in size, contrast, and

shape. No CAD prompts were present in the experiment. During the experiment,

starting at one minute after the initial calibration, a validation sequence was completed

each minute after the previous one had ended. This allowed us to measure the accuracy

across the display over the course of the experiment.

The accuracy of the glasses significantly decayed after the first 1.5 minutes, but it

was not significantly larger than 1.4◦ for the first 11 minutes after initial calibration.

The variability in the accuracy of the glasses increased at around 6.5 minutes. The

precision showed little change during the experiment and remained below 0.4◦ for the

first 9 minutes. Based on the accuracy measurements, by recalibrating the glasses

every 5 minutes, gaze can be tracked with less than ≈1.25◦ error for long experimental

times of up to an hour in our case. However, it is important to note the need for time-

consuming manual analysis with this approach and overall lower accuracy compared

to desktop eye trackers (≈1◦ versus ≈0.5◦).

The set of mass targets used in the experiment gave an estimate for their detectabil-

ity. These were used in Chapter 9, in addition to microcalcification clusters, to measure

the interaction between prompts of different target types.
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We have investigated the feasibility of using Pupil Core for eye tracking across a

clinical radiology setup. Further work is needed to improve the spatial accuracy of this

setup, particularly the significant initial decay. This setup was planned to be used for

an experiment with expert readers in a clinical setting, discussed in Chapter 10.



Chapter 9

Interactions in CAD

9.1 Introduction

The safety-net experiment discussed in Chapter 6 and the interactive CAD study in

Chapter 7 used single CAD operating points. However, commercial CAD systems

typically use multiple algorithms with different operating points for the detection of

masses, architectural distortions and microcalcification clusters, etc. As such, there

may be multiple different prompts marking different abnormalities on the same image.

It is not yet clear what the effects of these are on the reader and whether there is any

interaction between these prompts.

To investigate this, we designed an online experiment for non-expert observers.

This was setup so it could be run from participants own homes on their web browsers.

The experiment consisted of 50 images in a single CAD condition, with two target

types with their own prompts and operating points. We were primarily interested in

how prompts of one target type affect how observers behave with prompts of the other

target type, both when prompts mark a target and when they mark the background.

245
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9.2 Experiment design

This was an online visual search task investigating how observers respond to single

prompts compared to multiple prompts, both of the same and different target types.

We used synthetic images and non-expert participants with CAD as a second reader

in a single condition. The experiment was built in PsychoPy3 (Peirce et al., 2019)

using the Builder interface and hosted on Pavlovia.org. Participants were sent a link to

complete the experiment on their web browser.

A total of 87 participants (median age 20) took part in the study. Our participants

were undergraduate psychology students and received course credit for taking part.

The study was approved by the University of Manchester Research Ethics Committee

(2020-10677-17195). Participants gave informed consent through the online experi-

ment interface.

9.2.1 Stimuli

The images used in this experiment are a subset of those used in the experiments de-

scribed in Chapters 6, 7, and 8. They were synthetic images created in MATLAB using

open-source code (Methven and Qi, 2018). Two target types were used in this exper-

iment. The first target type were malignant microcalcification clusters, which were

extracted from magnified images of slices of mastectomies (Warren et al., 2012). The

second target type were masses, which are simulated by Gaussian blobs. Both of these

target types were inserted into the synthetic backgrounds by multiplying the target pix-

els with the background pixels. The images were initially set at 800×800 pixels, but

were scaled onto the participants screen depending on their monitor size.

In this experiment, we refer to the microcalcification clusters as ‘calcs’, which

was explained to the participants at the start of the training and used throughout the

experiment. We will continue to use this nomenclature throughout this chapter. We
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required 10 mass images and 10 calc images. To choose the images for this experiment,

we chose 10 images of each target type at random from our pool of target images that

had been used previously in lab experiments. For each of these target images, we

had an associated target sensitivity, which corresponds to their ‘detectability’ – the

number of participants in previous experiments that had found them in the no-CAD

condition. The target sensitivities of the randomly chosen targets were compared using

a Kolmogorov–Smirnov test, and if the p value was >0.95 and the mean and median

values were within 0.5% of each other then the condition was satisfied for these images

to be used for the experiment. The distributions of target sensitivities of the chosen

targets are shown in Figure 9.1. The 30 background images had also been used in

previous experiments.

Figure 9.1: Target sensitivities from previous experiments based in the lab. The black
crosses are the individual data points for each target type. The red circle is the mean
and the red line is the median.
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The radius of masses ranged from 82 to 393 pixels (median of 101.25 pixels), with

one elliptical mass with an eccentricity of 2. The calcification clusters had an area of

between 700 and 3657 pixels2 (median 1474 pixels2), with between 4 and 12 particles

per cluster (median of 8 particles).

9.2.2 Training

Before the participants started with the experiment, they went through a training proce-

dure. First, they were presented with each of the target types. The targets were shown

as isolated examples and inserted into the synthetic backgrounds, as shown in Figure

9.2 for masses and Figure 9.3 for calcs.

Figure 9.2: Training screen shown to participants to introduce them to the mass targets.
On the left are isolated examples of masses and on the right is an example mass inserted
into a background with a magnified view of the target. The instruction to press space
to move on appeared after 8 seconds, so participants were not able to continue to the
next screen before this time period.
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Figure 9.3: Training screen shown to participants to introduce them to the calc targets.
On the left are isolated examples of calcs and on the right is an example calc inserted
into a background with a magnified view of the target. The instruction to press space
to move on appeared after 8 seconds, so participant were not able to continue to the
next screen before this time period.

After the participants had seen both screens introducing the target types, there was

a screen that explained what CAD is and how it would work in this experiment (Figure

9.4). In this experiment, there was only a CAD condition, and it was operated in

second reader mode. Thus, participants initially viewed the image without CAD and

then pressed C to turn on the CAD prompts and search the image again with the aid

of the prompts. This mode of operation was explained to participants throughout the

interactive training section.

Next, they were shown 9 interactive training images. An example of one of these

training images is shown in Figure 9.5. On the first training trial, they were told that

they should first search the image initially unaided and then when they were finished,
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Figure 9.4: Screen shown to participants to explain how the CAD prompts will work
in the experiment. In this example there is a true mass prompt and a false calc prompt.
The instruction to press space to move on appeared after 8 seconds, so participants
were not able to continue to the next screen before this time period.

press C to display the prompts and search again with the aid of the prompts. When

they successfully mark a target, they get a message on the right-hand side of the screen

to notify them that they have correctly identified the target. After 30 seconds, a text

notice appeared on the left-hand side to ask if they would like to press V to reveal the

target location if they were stuck. There was a two minute time limit imposed on the

training trials. Across the 9 trial images, there were a variety of prompt combinations,

including one image without any prompts with a message to inform participants that

there would be a number of images without prompts in the experiment trials. There was

also a target absent image with an accompanying message to inform the participants

that below half the experiment trials would not contain a single target.
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Figure 9.5: An example of one of the interactive training images. Participants were
given instruction throughout the training. When they activated CAD by pressing C, the
message below the image was displayed. On this example, there are two mass prompts,
the lower one is a true prompt and the higher one is a false prompt. The participant has
incorrectly marked the true prompt with the blue cross (denoting a calc) and so they
received the feedback on the right-hand side.
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9.2.3 Experimental procedure

Before participants went through the 50 experiment images, they were shown 3 final

instruction screens. These reminded them firstly of the experimental procedure: total

number of images, ability to pause the experiment, time limit, and ability to place

multiple markers. Secondly, the experiment parameters: fewer than half the images

contain a target, you do not have to place a marker, how to remove a marker after

placing one, you will not get feedback on your clicks in the experiment. Finally, there

was a screen to remind them on how to use CAD: search the images first without

prompts, then press C to display prompts, then search the image again with prompts.

Figure 9.6 shows an example of an experiment trial. There were 50 images in total,

20 target present (10 mass targets and 10 calc targets) and 30 target absent. There was

a 30-second time limit imposed on each image. Participants could press P to pause the

experiment, which would bring up a pause screen after they had finished with the image

they were currently on. There was also an opportunity for a break half way through

the experiment. No feedback was given on participant clicks in the experiment trials,

for example, if they were successful in finding targets. If participants changed their

mind after placing a marker, they could click on that same marker to remove it. All

participants saw the same 50 images, but the order of presentation was randomised

between participants.
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Figure 9.6: An example of one the experiment trials. This trial contains a single true
mass prompt, marked by the participant. In the bottom right there is a counter to tell
them how far into the experiment they are. There is an instruction in the top right
to tell them how to pause the experiment. The notice above the image remains there
throughout the whole experiment. Before the CAD prompts are displayed, the text
below the image reads “Press C to display CAD prompts”.
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9.2.4 CAD Prompts

In this study, 80% of the masses and 90% of the calcs were marked by a prompt. The

false positive prompt rates were 0.50 and 0.25 per image for masses and calcs, re-

spectively. This corresponded to a total of 8 and 9 true positive mass and calc prompts,

respectively, and a total of 25 and 13 false positive mass and calc prompts, respectively.

This false positive rate is consistent with traditional CAD algorithms, which typically

have around 2.4 false positive marks per case (0.6 per image) (The et al., 2009; Cole

et al., 2012). The number of prompts in each image type (mass, calc or normal) is

listed in Table 9.1.

Table 9.1: Distribution of prompts across images. False prompts were distributed
evenly across the image types according to both the CAD operating points and the
number of images available in that category. True prompts were assigned according to
the CAD operating points.

Image type Images TP calcs TP mass FP calc FP mass

Mass 10 0 8 3 5
Calc 10 9 0 2 5
Normal 30 0 0 8 15
Total 50 9 8 13 25

Across the images, the prompts were distributed such that they were evenly spread

between the categories in Table 9.2. This shows the different image categories depend-

ing on the prompts they contain. There are 50 images, 33 of which contain prompts.

They are defined by the prompts they contain: category A – a single prompt, either a

mass or a calc prompt (true or false); category B – 2 prompts of the same target type,

e.g. a true mass prompt and a false mass prompt; or category C – 2 prompts of different

target types, e.g. a false mass prompt and a false calc prompt; finally, category D – no

prompts at all.
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Table 9.2: Image categories depending on what prompts they contain and the number
of images in each category. There were 11 images in each of the categories that con-
tained prompts and 17 images that did not contain prompts.

Category Definition
Total images in

this category

A Image contains a single prompt, either true or false 11

B Image contains multiple prompts of the same target type (mass or calc) 11

C Image contains multiple prompts of different target types 11

D Image contains no prompts 17

9.2.5 Analysis

Since the experiment was not based in the lab, we do not have access to eye tracking.

Therefore, we were only able to collect behavioural data. The overall sensitivity of the

mass and calc targets was of interest, also relative to previous lab-based experiments.

The number of false positives per image was also measured. A key parameter was

the number of prompts acted on, i.e., the proportion of available prompts in any given

image that a participant clicks on. This was used to compare how participants change

their behaviour when presented with images from categories A, B, and C. A paired

t-test was used to compare within-participant differences between the sensitivity and

false response rate for different image categories.

9.3 Results

In this section, results are presented for various parameters for the single CAD condi-

tion. However, in some instances it is interesting to look at how participants behave
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before and after they have activated the CAD prompts. This will be referred to as

pre-CAD and post-CAD. There was not a no-CAD condition in this experiment.

9.3.1 Trial times

The median total trial time was 11.06s, as shown in Table 9.3. The majority of time

spent viewing the images was spent before the prompts were activated, with a median

pre-CAD trial time of 7.29s. The difference of 3.37s is how long participants spent on

reviewing the images after they had activated the CAD prompts.

When looking at how the participants behaved post-CAD, in terms of time spent

viewing the images, it is important to look at the data in the context of images where

prompts were present and were absent. When no prompts were present, the participants

had pressed C to activate CAD and received a message informing them there were no

prompts available for that image. The bottom two rows of Table 9.3 highlight the

difference in the behaviour for the 17 images where prompts were absent and the 33

images where prompts were present. When there were no prompts present, the vast

majority of participants were quick to move on to the next image after activating CAD,

with a median trial time of 1.96s. When prompts were present, the median trial time

was 4.02s.

Table 9.3: Summary of the time spent on each image in total, pre-CAD, and post-
CAD. For the post-CAD trial times, we distinguished between trials where prompts
were present and absent. 25th and 75th percentiles are given with the medians.

Trial time (s) Number of images Median (25% – 75%)

Total 50 11.06 (8.47 – 13.33)
Pre-CAD 50 7.29 (5.43 – 9.15)
Post-CAD, Prompts Present 33 4.02 (2.89 – 5.29)
Post-CAD, Prompts Absent 17 1.96 (1.04 – 2.95)
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As shown in Figure 9.7, mean trial time decreased steadily over the course of the

experiment. There was a sharp initial decrease in the mean trial time; by the 13th

image, just over one quarter of the way into the experiment, there was a 24% (4.19s)

decrease in trial time. From the 14th image to the 50th image, there was a steady

decrease of 22% (2.69s).

Figure 9.7: Time spent on each image over the course of the experiment, from image
number 1 to 50. Error bars are the standard errors across participants.

9.3.2 Observer performance

Observer performance was measured in terms of sensitivity and the number of false

positive clicks per image. Participants could either left-click to signify a mass or right-

click for a calc. Individual target sensitivities were measured as the percentage of

targets that a participant detected (out of a possible 10). Observer sensitivities are

shown in Figure 9.8. The total target sensitivity was calculated as the mean of those two

sensitivities (labelled as ‘Masses & Calcs’ in Figure 9.8). The mean mass sensitivity
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was (81.7 ± 13.1)% and was numerically higher than the mean calc sensitivity of (70.5

± 23.6)%.

Figure 9.8: Observer sensitivities given for combined masses and calcs and individu-
ally. ‘Masses & Calcs’ is the mean of the Masses and Calcs data.

False positives were defined as any click not on a target region. The observer false

positives per image rates are shown in Figure 9.9. The mean number of false positive

mass clicks per image was 0.64 ± 0.34 versus 0.31 ± 0.26 for calcs. This difference

was significant (t(86)=7.30, p<0.001). Total mean false positives per image was 0.95

± 0.51.
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Figure 9.9: False positives per image from participant clicks for masses and calcs and
individually. ‘Masses & Calcs’ is the sum of the Masses and Calcs data.

9.3.3 Effect of prompting

To investigate the effect of CAD prompts on observer behaviour, we first looked at the

number of true and false positive markers that were placed and removed once CAD had

been activated. This is shown in Figure 9.10. As expected, all true positive responses

placed were on prompts. There was a median net sensitivity increase of 35% when

CAD was activated, and net false positive responses increased by a median of 0.36 per

image. The median net false positive increase of markers placed on prompts was 15.

Therefore, with reference to Table 9.1, given that there was a total of 17 true prompts

and 38 false prompts, participants marked, on average, 41% of true prompts and 39%

of false prompts. This is just what participants marked once CAD was activated, and so
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we also measured the number of true prompt regions that participants marked before

CAD was turned on. On average, 39% of true prompt regions were marked in the

pre-CAD condition. In these cases, there was no need for the participant to act on the

region post-CAD when the prompt appeared on their marker.

Figure 9.10: Median number of markers placed and removed by participants post-
CAD both on prompts (yellow) and off prompts (blue). TP = true positive, FP = false
positive.

The interaction of the mass and calc prompts is illustrated in Figure 9.11. We mea-

sured the observer sensitivity of prompted targets in the context of the three image

categories containing prompts. There were 5 images containing a single true mass or

calc prompt (category A), 6 images containing a true prompt and a false prompt of

the same target type (category B), and 6 images containing a true prompt and a false

prompt of different target types (category C). We indicate whether participants marked

the targets before or after CAD had been activated and therefore had a prompt on the

target (all categories), and whether there was a false prompt in the image (categories
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B and C). The comparisons between categories A (single true prompt) and B/C (true

prompt plus false prompt) reveal whether false prompts impact the detection rate of

targets, and any difference between B and C indicates whether it matters if the false

prompt and true prompt are the same target type. Sensitivity for prompted targets in im-

age category A was 70.8%, which was not significantly different compared to images

in category B at 88.1% (mean difference 17.3%, 95% CI, −7.1%−58.4%; t(86)=1.05,

p=0.30) and compared to images in category C at 84.9% (mean difference 14.1%, 95%

CI, −8.0%−33.8%; t(86)=0.85, p=0.40). There was also no difference in sensitivity

between prompted targets in image categories B and C (mean difference 3.3%, 95%

CI; −18.0%−7.6%, t(86)=0.70, p=0.48).

Figure 9.11: Observer sensitivity for images with prompted targets for each image
category. Bars are split between the proportions of the targets that were marked before
and after CAD prompts were activated (pre-CAD and post-CAD). The error bars are
the standard errors on the means.
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The variation in false positive response rate per image for each image category is

shown in Figure 9.12, where analysis has been separated for images with and without

true prompts. Figure 9.12a shows the the false positive response rate in images where

true prompts were present, which are the same images as in Figure 9.11. Since there

were no false prompts present in image category A, we did not make any comparisons

between category A and categories B and C. The comparison between B and C inves-

tigated whether the false response rate was different in images where the true and false

prompt were the same target type (category B) and different target types (category C).

The total false positive response rate in category B was 1.11 (0.49 on prompts) and

1.08 (0.38 on prompts) in category C, a non-significant difference of 0.03 (95% CI;

−0.26%−0.31%, t(86)=0.16, p=0.88).

The false response rates for images where there were no true prompts are shown

in Figure 9.12b. There were 6 images containing a single mass or calc false prompt

(category A), 5 images containing two false prompts of the same target type (cate-

gory B), and 5 images containing one false prompt of one target type and one of the

alternate target type (category C). This analysis was designed to measure the differ-

ence in false positive response rate for single versus multiple false prompts, and where

there were multiple false prompts whether it mattered whether they were the same or

a different target type. The total false positive response rate on category A was 0.93

(0.48 on prompts), significantly lower than the false positive response rate of 1.66 (0.90

on prompts) for category B (mean difference 0.73, 95% CI, 0.62−1.13; t(86)=6.58,

p<0.001) and 1.58 (0.90 on prompts) for category C (mean difference 0.65, 95% CI,

0.53−1.04; t(86)=5.91, p<0.001). The mean difference of 0.08 between categories B

and C was not significant (95% CI; −0.29−0.13, t(86)=0.73, p=0.47).
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(a) (b)

Figure 9.12: The observer false positive response rate per image on and off prompts
for each image category in (a) images with true prompts and (b) images without true
prompts. The error bars are the standard errors on the means.

9.3.4 Lab versus online

To compare how participants performed in this study versus previous studies in the

lab, we used participant data from the no-CAD conditions of the studies from Chap-

ters 6 & 7 for calcs and Chapter 8 for masses as the lab target sensitivities. This was

plotted against the online target sensitivities, as shown in Figure 9.13. There was no

difference in the median lab and online target sensitivities for masses (72.8% versus

90.8%, z=1.85, p=0.064) or calcs (72.8% versus 78.2%, z=0.04, p=0.97), as deter-

mined by Wilcoxon rank-sum tests. Two of the unprompted targets in the online study

had a greatly decreased sensitivity compared to the lab. There was also a particular

target that participants in the online study only detected <20% of the time, despite

participants in the lab finding it 60% of the time.
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Figure 9.13: Target detectability in lab versus online experiments. The three targets
that were not prompted by CAD in the online experiment are highlighted by squares.
A line of equality is also plotted.

Comparing the participants in the online study to participants in the CAD condi-

tions from the studies described in Chapters 6 and 7, the online study participants had

the lowest average trial time of 11.48s vs 12.95s and 13.43s for the safety-net and in-

teractive CAD studies, respectively. The online study had a higher false positive CAD

rate of 0.75 false prompts per image (mass prompts + calc prompts) compared to the

safety-net study (0.5 false prompts per image). The false positive response rate of par-

ticipants in the online study was more than double that of the safety-net experiment

(0.95 vs 0.35). These were both higher than the interactive CAD experiment of 0.22

false clicks per image.
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9.4 Discussion

This study investigated the interaction of multiple CAD prompts on single images, and

how participant performance was affected by their presence. Prompted target sensi-

tivity was unaffected by the presence of a false prompt. There was no difference in

how participants acted on prompted targets in images with a false prompt of the same

or different target type present. Participants in the online study performed better for

masses in terms of their sensitivity and the same for calcs compared to the participants

evaluating the same target images in lab experiments, but the majority of the targets in

the online study were prompted.

False prompts did not distract participants when targets were prompted by CAD.

This was the case when the false prompt was of the same target type or of the alternate

target type. These results are consistent with a similar study that looked at distraction

caused by false positive prompts (Ionescu et al., 2018). They found that for prompted

targets, the presence of false prompts did not affect observer sensitivity. Although,

they only reported on one target and prompt type, so it is a new result that sensitivity

remains unchanged when an additional target and prompt type is introduced in our

study.

In the study by Ionescu et al. (2018), it was only when CAD failed to mark a target

that sensitivity was significantly reduced, which has also been reported in other stud-

ies, for non-experts (Drew et al., 2012; Kunar et al., 2017) and experts (Alberdi et al.,

2004; Zheng et al., 2004). Since in our study only 3 of our 20 targets were unprompted,

we cannot comment on the sensitivity of those cases.

The CAD signal in this study, the ratio of true to false prompts presented to the

participants, was 1:3.13 and 1:1.44 for mass and calc prompts, respectively. The mean
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ratio of 1:2.24 was higher than the ratio of 1:1.56 in the previous study with traditional

CAD in the lab (Chapter 6). Participants saw more false positive prompts for every

true prompt in the online study compared with the lab study, but they were more likely

to act on true prompts when they did appear, at 43% versus 34%. In the lab study, par-

ticipants marked 55% of true prompt regions in the pre-CAD condition compared to

39% in the online study. Despite the CAD signal in the online study being weaker than

the lab study due to the higher ratio of false to true positive prompts, participants were

still marking more true prompts post-CAD than in the lab study. Online participants

marked true and false prompts at a similar rate, suggesting they had become overreliant

on CAD to make decisions, and were not capable of distinguishing between true and

false prompts.

For trials where true prompts were absent, false positive responses were signifi-

cantly higher by a factor of two in images with twice the number of false prompts.

However, in the study by Ionescu et al. (2018), false positive responses were not corre-

lated with the number of false prompts, suggesting participants in our study were much

more reliant on CAD. Kunar et al. (2017) argue that search tasks with multiple target

types can cause an overreliance on CAD due to target representations being weakened

in participants’ visual working memory (see Section 4.3). Our results were consistent

with Kunar et al. (2017), with correct responses when CAD marked targets and false

positive errors when CAD marked non-target regions. The false prompt rate for masses

was significantly higher than for calcs. This can be explained by the fact that in Chap-

ter 8, the FP/image rate for masses (no CAD prompts were used) was 0.70, compared

to the rate of 0.28 per image for calcs in Chapter 6. This suggests that there were

more mass-like features in the image than calc-like and therefore were more likely to

be acted upon, especially if they were prompted.
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The performance of the participants in terms of their sensitivity demonstrated the

viability of running this sort of experiment online. Participants achieved similar or

higher sensitivity compared to participants in the lab. The observer sensitivity in the

online experiment was boosted by the aid of CAD prompts. Since the task was unsu-

pervised and with only on-screen instructions, we ensured the task was short enough to

maintain their concentration levels, and as simple as possible since they were not able

to ask a researcher questions during the experiment like they usually would. However,

without a no-CAD condition, we do not have a true measure of their performance level

to compare to the lab study.

In addition to these experiment design considerations, there are further limitations

with running an online study. Firstly, we were limited by how long the experiment

could last so that participants were more likely to engage with the task for the whole

duration. The short experiment time meant that for each participant we did not collect

a lot of data points per condition and limited what we were able to conclude from

the study. We were also restricted to a single CAD condition, and while this did not

affect the analysis of behaviour with different combinations of prompts, it would have

allowed us to benchmark reader performance against the CAD condition.

Furthermore, we used height units for the images, which meant that they were

scaled to participant displays, and therefore were not necessarily the same size for

each participant. Participants may also be interrupted, or may themselves choose to

stop the experiment at any point. We added a pause feature to the study to control

for this, allowing participants to stop and resume the study at any time. We were

also limited to behavioural data only and unable to track eye movements. Parameters

such as proportions of targets and prompts fixated and their associated dwell time,

total image coverage, and time taken to fixate the target can add crucial insight into

participant behaviour. We were also not in control of the light conditions, where in

all previous experiments we have operated them in with the lights off for the benefit
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of the eye tracking, it may also enhance the clarity of the displays. There will have

been a large variation in the setting that each participant completed the experiment in,

including the size of their computer monitor, which we were not able to account for.

9.5 Summary

We have described an online experiment for investigating the effect of multiple CAD

prompts on observer behaviour in terms of their sensitivity and specificity. Participants

completed 50 images with the aid of CAD, and were tasked with finding both masses

and calcs. CAD marked 80% of the masses with 0.5 false prompts per image and 90%

of calcs with 0.25 false prompts per image.

Analyses of the images containing prompts were categorised by the prompts they

contained. The three categories were: a single prompt, two prompts of the same target

type, and two prompts of different target types. The prompted target sensitivity did not

vary across image categories, suggesting that participants were not distracted by false

positive prompts, regardless of the target type of the false prompt.

Participants became overreliant on CAD, which in images without true prompts

present was detrimental; false positive responses were proportional to the number of

false prompts present on the image. Again, this was unaffected by whether there were

two false prompts of the same or alternate target types.

The performance of participants was encouraging for running observer studies on-

line to test the effect of CAD with non-experts, achieving similar sensitivities as previ-

ous lab studies. However, methodologies must be adapted to suit the nature of online

tasks. We shortened the length of the experiment compared to usual lab tasks and

removed the no-CAD condition to focus entirely on the effect of prompts, and were

specific in our instructions to make sure participants understood the task at hand with-

out the need to ask a researcher any questions before participating.



Chapter 10

From lab to clinic

10.1 Introduction

The experiments outlined in Chapters 6, 7 & 9 have highlighted various advantages

and disadvantages of using CAD. However, they were all performed with non-expert

readers. Therefore, it was planned that an eye tracking experiment would be performed

with expert readers, using the setup outlined in Chapter 8, to investigate how prompts

affect their visual search behaviour and performance. Unfortunately, data collection

could not be completed due to government restrictions in the COVID-19 pandemic.

However, we include in this chapter a detailed description of the planned experiment

and the work that went into its setup.

The effect of false prompts on observer sensitivity was investigated by Ionescu

et al. (2018) with non-expert readers. A single prompt type was used and sensitivity

of prompted targets was unaffected in the presence of a false prompt. For unprompted

targets, sensitivity was significantly reduced, similar to other studies with non-experts

(Drew et al., 2012; Kunar et al., 2017) and experts (Alberdi et al., 2004; Zheng et al.,

2004). In an eye tracking study with non-expert participants, CAD prompts led to a

269
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significant reduction in image coverage, with attention focused on the prompted re-

gions (Drew et al., 2012). The operating point is an important factor and a higher rate

of false prompts has been shown to reduce performance (Zheng et al., 2004). Without

eye tracking, it is difficult to conclude whether this reduction in performance is a result

of prompts distracting readers attention away from abnormalities, or whether trust in

the prompts was reduced with a higher false prompt rate resulting in more true prompts

being ignored. Most likely it is a combination of the two. A study tracking eye move-

ments of expert readers with a clinical setup has yet to be published to investigate the

effect of CAD prompts. It is also important to operate CAD as a second reader since

this is how it was designed to be used, but in many observer studies, such as those

mentioned above, prompts were displayed from image onset.

In Chapter 6, CAD improved observer sensitivity at the cost of an increase in the

false positive response rate, a finding that is common in literature (see Section 3.5).

This was using a single target and prompt type. The use of multiple targets, each with

a specific prompt type, was investigated in Chapter 9. Observer sensitivity for targets

that were prompted did not change in the presence of a false prompt. Participants

demonstrated an overreliance on CAD, resulting in a high number of false prompts be-

ing accepted as true. Participants across all previous experiments showed a high level

of trust in prompts, and in Chapter 7 this trust scaled with prompt confidence values.

Expert readers are not likely to be as trusting. In fact, previous studies have shown

that they are often dismissive of prompts even when they are correct (Nishikawa et al.,

2012). Therefore, it would be interesting to observe how these results translate to a

study with expert readers.

This experiment was designed to test how CAD prompts affects reader behaviour

with a realistic clinical setup. In particular, whether false prompts distract readers
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from targets and whether there is an interaction between multiple prompts on the same

case. We are interested in how false prompts impact the way readers react to prompted

abnormalities. Since prompts are displayed across different image views and breasts in

mammography screening, it would be interesting to see how this results in differences

from the previous experiments. Readers are also more experienced with the images

than non-experts, although mammograms are also more complex than the images used

with non-experts. Since the safety-net effect was previously observed (Chapter 6), this

study will continue to use a no-CAD and a CAD condition, rather than using the pre-

CAD search as the no-CAD condition as in many cross-sectional CAD studies. This

will create a more valid comparison between no-CAD and CAD observer behaviour.

10.2 Methods

10.2.1 Stimuli

The images in this study are digital mammograms from the OPTIMAM Mammog-

raphy Image Database (OMI-DB). The database is sourced from multiple screening

centres across the UK and was designed with the purpose of sharing with external

research groups (Halling-Brown et al., 2020). OMI-DB contains over 2.5 million im-

ages, collected from 173,319 women attending the NHSBSP. The database comprises

of unprocessed and processed images, and unannotated and annotated images, with

medical expert readers providing annotations and ground truth labels.

We were provided with a subset of 6500 images, the details of which are outlined in

Table 10.1. Malignant and benign images were classified by screening, surgery, biopsy,

or have been previously assessed as malignant or benign. Normal images are those that

were not classified as either malignant or benign with no history of malignancy. From

the available cases, we aimed to select 92 cases, with 56 normal, 18 with a malignant



CHAPTER 10. FROM LAB TO CLINIC 272

mass, and 18 with a malignant microcalcification cluster. This gave a target prevalence

of 20% for each abnormality type.

Table 10.1: Characteristics of OPTIMAM images we had access to.

Image type Number of images

Annotated malignant 2594

Annotated benign 1387

Unannotated malignant 719

Unannotated benign 800

Normal 1000

Total 6500

To select the abnormal cases for the experiment, we first selected only those cases

which had a lesion conspicuity rated as ‘very subtle’ to provide a difficult case set.

Abnormal cases were further stratified by those that did not have an associated age,

since this was to be used for density matching between normal and abnormal cases

(discussed below). We excluded any case that contained additional abnormalities to

the targeted one. We ensured that all cases were obtained from systems of the same

manufacturer, this was chosen as the manufacturer with the most potential cases (Ho-

logic, Inc.). Once a final subselection of potential images was obtained, these were

visually inspected to check for any unwanted features (such as surgical staples) and re-

moved if necessary. From the remaining selection of cases, 18 images were randomly

chosen for each abnormality type.

Once the 36 abnormal images were chosen, we started to select potential normal

cases. To keep the overall image features as similar as possible between normal and
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abnormal cases, we matched the distribution of breast densities between the image sets.

Density was not provided in the associated information for each case, and therefore we

used an algorithm that predicts percentage density (Ionescu et al., 2019), trained on the

predictions of expert readers using a visual analogue scale (VAS).

For each abnormal case, five unique normal cases with an age within five years of

the abnormal cases were chosen as a potential case to use (total of 180 potential nor-

mal cases). Matching within an age range would be more likely to be closer in density,

giving a better chance that similar cases could then be selected to match the abnormal

densities. The breast density of all abnormal cases and potential normal cases were

predicted with the algorithm described in Ionescu et al. (2019). The mean value was

taken across the four image views to give a single average density for each case. To

match densities between density distributions, the 36 abnormal cases were compared

against 80 randomly selected normal cases from the potential normal cases. Distribu-

tions were compared using a Kolmogorov-Smirnov test, where the normal cases were

selected for use if p>0.99. We selected 80 cases, more than the required 56, so that

cases could be removed if they contained unwanted features on any image view. Once

images were removed, the final 56 images were randomly chosen. Comparing the

distributions of the 56 normal images with the 36 abnormal cases gave a p-value of

0.96 using a Kolmogorov-Smirnov test. As in Chapter 9, we will refer to malignant

microcalcification clusters as calcs throughout this chapter.

10.2.2 CAD prompts

The chosen CAD operating points for each prompt type were selected to reflect com-

mercial CAD algorithms. CAD prompts marked 80% of masses and 90% of calcs. The

false positive prompt rates were 1.6 FP/case (0.4 FP/image) for masses and 0.8 FP/case

(0.2 FP/image) for calcs. The mean number of false prompts per case was therefore
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2.4, in line with values reported in literature of 2.3 per case (The et al., 2009) and 2.56

per case (Cole et al., 2012).

The abnormal cases that will not be marked by a true prompt were selected ran-

domly, with the true prompts placed on the remaining cases the abnormal regions out-

lined by OMI-DB. For false prompts, potentially suspicious regions had to be selected

across normal and abnormal cases. To do so, we presented the 92 cases (plus 4 train-

ing cases) to two consultant breast radiographers. The radiographers were instructed

to place prompts on any potentially abnormal or suspicious regions and those which

could be recalled. They were able to drag and drop prompts onto the selected regions,

with a different prompt shape denoting the abnormality type (mass or calc). They were

not told the desired number of prompts and were free to not place any on cases where

they did not see any potential regions. They reviewed the cases independently of each

other.

In total, 222 unique mass prompts and 17 unique calc prompts were placed by the

radiographers. For mass prompts, 148 had to be selected out of the 222 to meet the tar-

get operating points. Any prompt that the radiographers agreed upon was accepted, and

the remaining prompts were randomly chosen (see Table 10.2). The 17 calc prompts

selected by the radiographers was much lower than the required 74 to meet the target

operating point.

Table 10.2: False prompt distribution across different images types.

Image type Mass prompts Calc prompts

Mass 24 24
Calc 19 18
Normal 105 32

Total 148 74



CHAPTER 10. FROM LAB TO CLINIC 275

To make up for the deficit in calc prompts, we added further prompts by iden-

tifying potential image regions based on the areas that prompts were placed by the

radiographers. First, filtering was repeatedly applied to the images that contained the

17 radiographer-placed prompts, with structuring elements of the filter process shown

in Figure 10.1 and outlined in Zhang et al. (2013). The filters were applied serially

to these images to validate whether this method was capable of highlighting potential

calc regions. This top-hat filtering process was completed in Matlab using the imtophat

function, repeated for each structuring element shown in Figure 10.1.

Once the images were filtered, we highlighted the potential calc regions by thresh-

olding and converting the image from greyscale to binary by setting all values below

the threshold to 0 and all above the threshold to 1. It was possible to highlight 14 out

of 17 of the regions where the radiographers placed prompts, such as in Figure 10.2.

Since this method produced acceptable results, it was applied to all images to highlight

potential regions and calc prompts were added to a portion of those regions such that

prompts were distributed evenly across image types (see Table 10.2).
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Figure 10.1: Visualisation of the structuring elements used with top-hat filtering ap-
plied to images for highlighting calc regions. Filled squares represent 1s and unfilled
squares represent 0s. Elements were applied serially from 1 to 8. Images from Zhang
et al. (2013).

Figure 10.2: (a) Unfiltered mammogram with prompt placed by radiographer (red cir-
cle) and (b) Mammogram with filters applied to highlight calc regions (yellow circle).
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10.2.3 Experimental setup

The experimental setup is the same as that used in Chapter 8, except that it was to be set

in a reporting room at a hospital to better replicate clinical conditions and convenience

for readers. The experiment was operated with a mouse and keyboard and did not

make use of a side monitor as cases were automatically loaded one after another.

The experiment framework, created in PyGaze v0.6.0 (Dalmaijer et al., 2014), was

designed to be simple for the reader to operate while allowing for features they are

used to. As shown in Figure 10.3, readers were able to change the image view using

the option box in the top left of the screen, between MLO (default view), CC, and both

CC&MLO at the same time.

Figure 10.3: Photograph of experiment running on dual screen display. The option box
for selecting the image view is in the top left of the displays. On the right screen is the
pop-up option box for choosing the abnormality type and confidence value following
a left-click to place a marker.
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Furthermore, readers could zoom the image by a fixed factor of 4 by pressing the

Z key. The image zooms around the cursor position, shown in Figure 10.4. Readers

are not be able to pan across images. Readers left click to place a marker where they

believed an abnormality to be. This brings up an option box where the reader first

chooses the abnormality type (mass or calc) and then their confidence in that decision,

rated on a scale from 1 (least) to 5 (most) confident that the marked region is abnormal.

(a) Unzoomed view (b) Zoomed view

Figure 10.4: Screenshots of experiment screen demonstrating the zooming feature. (a)
Unzoomed image view and (b) zoomed image view with a magnification factor of 4.
The image zooms around the position of the cursor, which is denoted by the orange
plus here. The black box outlines the position of a malignant mass, for illustrative
purposes only.

10.2.4 Training

At the start of the experiment, readers will have a training set of cases to become famil-

iar with the controls and experimental setup. They will receive on-screen instructions

and feedback on their clicks throughout the training. The training set was designed
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to wait for the specific instructions to be completed before the participant is able to

move onto the next case, to make sure they have correctly interacted with it. A total of

11 cases were used for training, with 7 used to explain how to operate the experiment

software and the other 4 to practice with (2 CAD and 2 no-CAD).

The explanation of the software first involved how to change views and how to

zoom in and out of images. A single view could be zoomed or multiple zoomed views

could be displayed at once, and images were reset when the view was changed. Next

there was a walkthrough on placing markers on regions where readers were suspicious

of, shown in Figure 10.5, where the scale for rating confidence was explained. Choices

made for a marker were displayed next to a marker once it has been placed. It was also

explained how to remove a marker should a reader change their mind. Markers were

mapped to the correct positions when image views were changed between single and

multiple view states and when zooming, which was demonstrated in the training.

Figure 10.5: Screenshot of experiment training. On this case, the participant was
instructed to place a marker by left clicking, with the text on the left hand side updating
as they made their choices. Once Done is pressed, the choices appear next to the
marker, in this case ‘M4’ for a mass with confidence 4.
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It was explained how to operate the CAD prompts - pressing C activated the prompts

and C again to toggle them off. Square prompts represented a potential mass and cir-

cular prompts represented a potential calc. Readers will be told that they should review

the image first without prompts and when they have finished the initial view, review

the image again with the aid of prompts. Finally, readers will be provided with four

practice cases, with and without CAD, without any feedback to practice before the

experiment. Readers will be free to ask any questions during the training.

10.2.5 Experimental procedure

The experiment was planned to occur over 2 sessions for each reader, each 1 hour

in length. The sessions were due to take place at the Nightingale Centre at Wythen-

shawe Hospital. At the start of the first session, the readers will be briefly interviewed

about their experience with breast screening and CAD. This would allow us to take

any effect of experience with mammography reading or with CAD into consideration

in the discussion. A total of 10 readers had agreed to participate in the experiment.

These readers were either breast radiologists or radiographers, or advanced imaging

practitioners. This sample size was determined by convenience sampling, based on the

number of available expert readers at the Nightingale Centre.

A total of 92 images will be used in this experiment. All cases are interpreted with

and without CAD over the two sessions. In each session, 46 images will be completed

with CAD and 46 without, with the other half of the images for each condition read

in the next session. Of the 92 mammograms to be used in the experiment, 20% (18

images) of the images contain a malignant mass and 20% (18 images) contain a malig-

nant microcalcification cluster. Readers will not be told the exact number of abnormal

cases but instead that it is an enriched dataset.
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Readers complete the training set at the start of the first session. They will then be

given the opportunity to ask any questions they may have about the experiment. When

the participant is satisfied that they fully understand the task, the eye tracking glasses

will be setup and calibrated. This process is the same as that explained in Chapter 8,

with 15 calibration targets displayed for 3 seconds each. A practice calibration will

be completed before the real one to familiarise readers with the process in case they

have no prior eye tracking experience. Then we will validate this process to check the

calibration accuracy, a similar process, but the targets appear for a shorter amount of

time, lasting only 30 seconds in total.

Each session consists of 2 conditions: no-CAD and CAD. The order of the condi-

tions will be evenly varied across readers, and counterbalanced for the same participant

between sessions. During the experiment, there will be a calibration sequence every

5 minutes to maintain the accuracy of the eye tracking glasses, based on a previous

experiment with this setup that determined this to be the optimum recalibration time

(see Section 8.3.2). Readers click where they believe a target to be, specifying what

target type they think it is and assign a confidence rating to that decision on a scale

from 1 to 5.

In the CAD condition, the readers first search the image unaided and then press

a button to review the image again with the aid of the CAD prompts. In the CAD

condition, 80% of the masses and 90% of the microcalcification clusters are marked

by a prompt. The false positive prompt rates are 0.4 and 0.2 per image for masses and

microcalcification clusters, respectively. This produced a mean prompting sensitivity

of 85% with 2.41 false prompts per case. Readers will be informed the approximate

operating point of the CAD system of between 80% to 90% sensitivity and to expect

2 to 3 false positives per case. This allows readers to set suitable expectations of the

prompting system, rather than making their own assumptions on the prompt accuracy

from the initial cases and changing their behaviour according to that.
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10.2.6 Analysis

The sensitivity, defined as the proportion of abnormalities correctly located, in addition

to the number of false positives per image, will be reported. To compare the overall

performance of readers between conditions, we will use JAFROC analysis. To dif-

ferentiate lesion localisations from non-lesion localisations on abnormal images, we

will compare the locations of responses to the image annotations provided by expert

readers as part of the OMI-DB, with a tolerance of 50 pixels around the annotation

boundary. We will implement the variation of JAFROC where false positive responses

on abnormal cases are taken into account (Chakraborty and Yoon, 2009). The dif-

ference in performance between the no-CAD and CAD conditions will be compared

using the calculated JAFROC scores. To determine whether statistical differences were

observed between conditions, a Mann–Whitney U-test will be used.

We will measure the percentage of prompts correctly acted on (true prompts marked

and false prompts ignored), and compare between cases where there is a single prompt

with those where there are multiple prompts present. The comparison will be boot-

strapped following the approach outlined in Section 6.2. This gives an insight into

how multiple prompts affect the behaviour of readers compared to a single prompt. In

addition, we will measure the percentage of true prompts fixated and the associated

dwelltimes with and without false prompts present. The overall trial time and image

coverage will be compared between the CAD and no-CAD conditions using a boot-

strap approach to quantify how CAD impacts the thoroughness of reader search.

The confidence ratings of responses will be compared between the CAD and no-

CAD conditions for normal cases, and between all cases with and without false prompts

present. The significance of these differences will be measured with a Wilcoxon
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signed-rank test. The purpose of these comparisons is to test whether the presence

of true prompts improves reader confidence in their responses and if false prompts on

cases reduces confidence.

10.3 Discussion

Overall, we would expect that CAD will improve sensitivity at the cost of an increase

in the false alarm rate. However, it is expected that expert readers will be less trusting

of CAD than non-experts. Even across readers trained to interpret mammograms, less

experienced readers tend to rely more on CAD (Nishikawa et al., 2012; Hupse et al.,

2013). The CAD operating point is important to gaining a benefit, as it has been shown

that a CAD sensitivity of 80% with 0.5 false prompts per image can improve reader

performance, but 1.2 false prompts per image have no effect or may even be detrimen-

tal (Zheng et al., 2004).

Across cross-sectional studies that examined the effectiveness of CAD, for those

that reported CAD sensitivity and false prompt rate, on average CAD marked 70% ab-

normalities with 2.9 false prompts per case (Freer and Ulissey, 2001; Birdwell et al.,

2005; Dean and Ilvento, 2006; Ko et al., 2006; Morton et al., 2006). In these studies,

CAD improved reader sensitivity by 10.4% with a 16.3% increase in recalls. This can

be contrasted with the results from Chapter 6, where operating CAD at 80% sensitivity

and 0.5 false prompts per image resulted in a 15.8% increase in observer sensitivity

with the number of false alarms per image increasing by 37.4% for target absent im-

ages (most comparable to recall rate in this case). Non-expert readers in our study had

over double the false response rate compared with experts, so while an abundance of

false CAD prompts are expected to remain an issue for expert readers, that impact is

not likely to be as extreme.
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A difference between experts and non-experts would be in part due to expert read-

ers having a much deeper understanding of the search task and of CAD. Generally,

familiarity with the images will likely make experts better at identifying true prompts

and dismissing false prompts. However, prior knowledge of the high false positive

rate of CAD could negatively prejudice readers to be inherently distrusting of prompts,

compared to non-experts who tend to rely on CAD to make decisions.

We studied the impact of false prompts on the proportion of true prompts acted

on in Chapter 9. Non-expert readers were trusting of both true and false prompts and

no difference in terms of prompted target sensitivity was observed between images

with and without false prompts. The presence of false prompts significantly increased

false positive responses, increasing linearly with the number of false prompts. Expert

readers are likely to more carefully consider their actions on prompts and therefore not

have as dramatic of an increase in false responses. However, since expert readers are

known to increase their recall rates with CAD, it is clear that false prompts have an

impact.

As has been previously reported, CAD can significantly alter visual search, result-

ing in more attention being focused around prompts than the rest of the image (Hatton

et al., 2004; Drew et al., 2012; Helbren et al., 2015; Drew et al., 2020). These studies

operated CAD with prompts displayed from image onset (or they appeared throughout

the CT colonography video in Helbren et al. (2015)). In Chapter 6, we demonstrated

that when CAD was operated as a second reader, the overall image coverage was the

same in the no-CAD and CAD conditions. The initial search before CAD prompts are

activated allows readers to interpret the image without being biased by prompts. We

expect that this pre-CAD search will be truncated compared to no-CAD search due to
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the safety-net effect we observed in Chapter 6, but it is not clear whether this will lead

to a reduction in the number of targets fixated or detected prior to prompt activation.

Confidence in decisions on mammograms has been reported to be affected by

prevalence (Gur et al., 2007) and expectation of prevalence (Reed et al., 2014). One

study by Tchou et al. (2010) demonstrated that CAD can impact reader image con-

fidence ratings on mammograms, with a change in confidence in 22% of cases (14%

increased confidence and 8% decreased). The confidence ratings in Tchou et al. (2010)

were for the overall image, measuring the effect of CAD on diagnostic confidence

rather than detection. Confidence ratings will likely be increased on regions where

CAD is in agreement with reader judgement, even if this is a false reassurance for re-

gions that are actually normal. How much of an impact the presence of a false prompt

will have on confidence in a decision on another region is not clear, but will likely

depend on whether the region marked by the reader is also prompted.

Ten readers had agreed to participate in this study. This was a relatively small

number of readers compared to the studies completed with non-expert readers, but

is similar to other expert reader studies; the number of readers ranged from six to

seventeen (median 8.5) across CAD observer studies (Nishikawa et al., 2012; Evans

et al., 2013; Hupse et al., 2013; Rodrı́guez-Ruiz et al., 2019a; Watanabe et al., 2019;

Wolfe et al., 2021b). The sample size is based upon those who were based at the breast

centre and were willing to give up their time. The time constraint also limited the

number of cases we were able to use, with each session planned for an hour with time

for training and any necessary discussions about the study.

We did not have access to a commercial CAD algorithm for this study. The CAD

prompts used in this study were either placed by consultant breast radiographers or for
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the majority of calc prompts were modelled on their placements. This gave us the free-

dom to decide on the exact number of prompts for each image type. Since we had the

ground truth for abnormal prompts, we were able to select the exact prompt sensitivity

for each abnormality. However, it is not clear whether the false prompts placed by the

radiographers would also have been placed by commercial CAD algorithm.

10.4 Summary

The purpose of this study was to investigate the impact of prompts on both visual

search and behaviour on a clinical radiology setup, with eye movements tracked using

the methodology outlined in Chapter 8. The main focus was on false prompt distrac-

tion, in terms of the proportion of prompts fixated and acted on, and how multiple

prompts for the same case interact to influence reader behaviour. However, the data

collection was unable to be completed due to government restrictions.

We used 92 cases selected from the OPTIMAM Mammography Image Database

from a total of 6,500 cases. Of the 92 cases selected, 36 were abnormal and 56 were

normal. The abnormal cases were deemed to be ‘very subtle’ and contained either a

single mass or microcalcification cluster with no other abnormalities or benign fea-

tures. The density distributions were matched between the abnormal and normal cases

using an AI model that predicted reader assessed density.

The CAD operating points were chosen as 80% sensitivity with 1.6 false prompts

per case and 90% sensitivity with 0.8 false prompts per case for masses and microcalci-

fication clusters, respectively. False prompts were added to the cases by two consultant

breast radiographers. Due to an insufficient number of false calcification prompts to

meet the operating point requirement, further prompts were added to cases using a se-

rial top-hat filtering technique to identify potential regions for calcification prompts.
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The experiment was due to take place in a clinical reporting room on a dual screen

radiology workstation. The experiment software allows readers to zoom on images

and change between CC and MLO views. Readers mark regions that they believe to be

abnormal and provide a confidence rating between 1 and 5 for each mark placed, along

with the abnormality type. The cases would be interpreted twice over two sessions,

with and without CAD.

The overall performance would be assessed in terms of their JAFROC score, where

it is expected that CAD will improve sensitivity and increase the number of false posi-

tives. Expert readers are not expected to rely as heavily on prompts as the non-experts

in our previous experiments, but it is clear from literature that search and confidence

can be affected by the presence of prompts. The extent to which false prompts distract

readers from targets in terms of both their visual search and their sensitivity is not yet

clear. In view of the COVID-19 pandemic, we have not been permitted to run the study.



Chapter 11

Conclusions and Future Work

11.1 Summary

This thesis explored the use of CAD in mammography and human-CAD interaction.

We outlined the necessity for a solution such as CAD to improve cancer detection at

screening and to reduce clinical workload. The relationship between the reader and

CAD is complex and has not yet been optimised. The work described in this thesis

aimed to gain a deeper understanding of this interplay by replicating mammographic

CAD in the lab in visual search studies. The results of these experiments highlighted

both how CAD can be useful and where improvements need to be made, as well as

providing insight into how reader behaviour is affected by prompts.

Breast screening in the UK has been reported to reduce mortality rates. As part

of the screening programme, each mammogram is read by two expert readers. De-

spite this, some cancers are missed at screening due to the difficulty of detecting subtle

and infrequent abnormalities. There also exists a critical shortage of expert readers in

the UK, which has been under more pressure with the age expansion trial in recent

years increasing the screening age range from 50–70 to 47–73. CAD systems have

288



CHAPTER 11. CONCLUSIONS AND FUTURE WORK 289

been investigated as a potential solution, but are yet to be adopted in the UK. If it can

be demonstrated that single reading with CAD can achieve similar or better detection

rates and does not increase recall rates compared to double reading, it could be used

instead of double reading, reducing clinical workload. There is also an argument that

single reading with CAD would be accepted with a slight drop in the detection rate if

recall rates were also to reduce.

Previous studies evaluating the efficacy of CAD have yet to demonstrate that sin-

gle reading with CAD is superior to double reading and the use of CAD often leads

to a significant increase in the recall rate. The lack of improvement with CAD is in

part due to the imperfections in current CAD software, where normal regions are often

prompted and cancers are missed. However, even if the standalone performance of

CAD was improved, the combination with a human reader needs to be optimised to

gain the full benefit. Readers will often dismiss correct CAD prompts (under-trust), or

experience a reduction in sensitivity when CAD fails to mark a cancer and an increase

in the recall rate by marking false prompts (over-trust). CAD methodologies such as

interactive CAD offer an alternative approach to traditional CAD and typically also

provide prompt-level and case-level confidence values. This extra information may

improve trust in the CAD system, which will also be improved by not being subjected

to an excess of false prompts.

Visual search experiments provide a deeper understanding of how readers interpret

images and their relationship with CAD, and often use eye tracking to further anal-

yse search behaviour. While CAD has been shown to improve sensitivity for targets

it marks, it often reduces sensitivity for targets that it fails to mark. This is a result of

overreliance of readers on CAD prompts, where the lack of a prompt leads observers to

believe the suspicious area is less likely to be a target or in some cases more likely to be
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benign. CAD prompts displayed from image onset were found to significantly reduce

the proportion of the image that is viewed, with attention focused around prompts. At

low prevalence, the miss errors for cancers in mammography and for targets missed

by CAD have been shown to increase. There is some evidence that for non-expert

readers that this prevalence effect for unprompted targets is eliminated with the use

of interactive CAD. The research presented in this thesis aimed to build on the results

of these studies and answer the remaining questions surrounding the use of CAD in

mammography.

For all experiments conducted in this thesis, we used non-expert readers and syn-

thetic images. The targets used were either malignant microcalcification clusters or

Gaussian blobs simulating masses. Previous studies investigated how displaying prompts

from image onset affects search behaviour. When CAD is operated as a second reader,

there is an initial unaided view of the image where readers are not directly influenced

by prompts. However, the fact that this view is preliminary to a further search with

CAD leads to the possibility of a safety-net effect where the initial search is truncated

compared to search without CAD. We conducted an eye tracking study to investigate

the existence of this effect and how readers are influenced by prompts.

The results of our study (Chapter 6) showed that the initial unaided search was re-

duced in thoroughness in terms of coverage, trial time, and proportion of targets fixated

– evidence of a safety-net effect. Cross-sectional CAD efficacy studies use this initial

unaided search as the no-CAD condition and compare it to the search with CAD. The

fact that this initial search appears to be indirectly influenced by the anticipation of

CAD prompts suggests that studies should use separate no-CAD and CAD conditions.

However, readers would be required to complete both conditions, resulting in addi-

tional work. If each reader only completed one condition, there would be issues with

power and reader variability. The overall search with CAD was found to be equal to
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unaided reading in terms of image coverage, despite lasting longer on average. This

shows that when CAD is operated as a second reader, the overall search thorough-

ness is unaffected, compared to displaying prompts from image onset. We did not

observe a sensitivity cost for unprompted targets in our second reader CAD study, but

this should be verified with a greater number of images containing unprompted targets.

Interactive CAD systems have been shown to be capable of improving sensitivity

of expert readers without increasing the false positive rate. The use of prompt and

image scores provides more detailed information to the reader, and influences how

they interpret images. Withholding prompts until they are queried results is a different

mode of image interpretation than traditional CAD that is more likely to resemble

unaided viewing. Through two eye tracking studies, we aimed to explore how search

with interactive CAD compared to unaided viewing, and how prompt and image scores

influenced behaviour.

In Chapter 7, we demonstrated that interactive CAD did not impact the overall

image coverage, suggesting that readers search in a similar way as in unaided viewing.

The likelihood of readers accepting prompts as a target scaled with prompt confidence,

and both the time spent on images and the false response rate scaled with the overall

image score. When both a prompt confidence value and an image score were present,

it was the confidence value that determined whether a reader would act on the prompt.

With an interactive CAD system, to make the most of the prompts, readers must

have a knowledge of where abnormalities might appear and query appropriate regions.

With non-experts searching simulated images lacking anatomical structure, we did not

see an improvement in observer sensitivity with CAD, even when an image score was

provided. Some level of recognition as a potential target is required to query a region.

For targets that were not marked by participants, we showed that even when they were
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fixated, only a small fraction were then queried, meaning they would not gain the ben-

efit of a true prompt on those targets.

In our final CAD observer study (Chapter 9), we focused on how readers behaved

when there were multiple CAD prompts present. CAD algorithms in mammography

use different prompt types to indicate which potential abnormality they mark. Most vi-

sual search studies with CAD use a single prompt type and operating point. Therefore,

it is not well understood how the presence of different types of prompts on the same

image can influence how observers interpret prompts. We conducted an online exper-

iment to investigate this, using a single CAD condition and two target types (masses

and microcalcification clusters).

In our study, we found that participants became overreliant on the prompts, where

the false response rate was significantly increased with the number of prompts. How-

ever, this result was consistent across images with false prompts that indicated the

same and different target type. Therefore, the increase in false positive rates were due

to the fact there were multiple prompts rather than different prompt types. Prompted

target sensitivity was unaffected by the presence of false prompts, whether or not the

false prompt was the same type as the true prompt. This experiment also demonstrated

the viability of running studies online to investigate CAD with non-experts. The sen-

sitivity rate was similar in this study compared with the other studies, suggesting that

they were appropriately engaged with the task as they would be in a lab setting.

To accommodate the limitations of eye tracking systems, visual search studies with

expert medical readers often simplify the experimental setup, such as using only a sin-

gle monitor. It is desirable to replicate normal clinical conditions as far as possible,

and thus we explored the feasibility of using eye tracking glasses with a dual-screen
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mammography setup. In Chapter 8, we carried out an experiment in which partici-

pants searched for mass-like targets in synthetic images. A validation procedure was

repeated after each minute of search to assess the accuracy and precision of the eye

tracking glasses.

The eye tracking glasses used were lightweight, and relatively inexpensive com-

pared with similar devices. To track the position of the displays and the participant-

screen distance, we used the built-in surface and head-pose tracking software. Gaze

coordinates were mapped onto the surfaces defined on the displays. The accuracy sig-

nificantly decayed at the start of the experiment, but remained relatively stable follow-

ing this for the next 10 minutes. We determined that recalibrations should be performed

every 5 minutes during an experiment to maintain a reasonable accuracy (<1.25◦) and

precision (<0.4◦).

An experiment with expert readers was planned to be conducted to investigate how

they interacted with multiple CAD prompts, using the dual-screen eye tracking setup

(Chapter 10). However, the data collection could not be completed due to COVID-19

restrictions. We designed the experiment software to allow for observers to zoom on

mammograms and change between image views as they would in the clinic. Readers

would also provide confidence ratings on every response, which would allow us to

monitor how prompts affected the confidence in their decisions. The main aim of this

experiment was to determine the effect of false prompt distraction and how multiple

prompts on the same case affect behaviour, which could be compared to experiments

with non-expert readers.
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11.2 Contributions to Knowledge

The identification of a safety-net effect when operating CAD as a second reader has im-

plications for CAD observer studies and has the potential for reducing the performance

of radiologists. This is the first eye tracking study to investigate the search behaviour

of observers with and without prompts, with CAD operated in second reader mode

as with most CAD systems in mammography (Du-Crow et al., 2019). Previous work

demonstrated that the overall image coverage is reduced with prompts (displayed from

image onset). This was not found to be the case in our study. This argues for the im-

portance of an initial unaided view. For evaluating the efficacy of CAD, we argue that

it would be more appropriate to use a study design with separate CAD and no-CAD

conditions to avoid the consequences of the safety-net effect.

Interactive CAD systems reduce the number of false prompts encountered by the

reader compared to traditional CAD, and have been shown to improve expert reader

sensitivity without increasing the recall rate. Non-expert readers were unable to gain

improvements in sensitivity in part due to the nature of the images, which lacked clear

anatomical structures (Du-Crow et al., 2020). The absence of improvement in perfor-

mance highlights a potential limitation of interactive prompts, since targets that are

unnoticed or are not recognised as a potential target will not be queried and therefore

the reader will not benefit from a prompt. The study also demonstrated that the impact

of image scores is the same for non-expert readers as it is for expert readers, with view-

ing time and false positive responses increasing for high scores. We expanded upon

this and showed that the prompt confidence, not the image score, would determine the

likelihood of a participant marking a prompt as a target.
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CAD systems in mammography often display different types (shapes, symbols,

etc.) to denote the different abnormalities present in mammograms. The interaction

of different prompt types on reader behaviour has not been well studied. We showed

that when targets were prompted, the presence of a false prompt did not affect observer

sensitivity, whether the false prompt was the same type as the target or the alternate

type. This is further evidence that second reader CAD does not lead to false prompt

distraction for prompted targets. However, false prompts significantly increased the

false positive response rate. This effect was also unaffected by the type of prompts

present.

For observer experiments using eye tracking in realistic clinical settings, eye move-

ments must be tracked across large or multiple displays. We outlined a methodology

for tracking reader eye movements across a dual-screen mammography setup. This

was achieved using eye tracking glasses with a built in surface tracking module. How-

ever, the spatial accuracy of the glasses was too low (approximately 1.25 degrees visual

angle) for use in experiments in mammography, and therefore requires further work to

improve the accuracy to around 0.5 degrees.

11.3 Future Work

11.3.1 Unprompted targets

The results from Chapter 6 suggest that by operating CAD as a second reader, the miss

cost of unprompted targets may be reduced or even eliminated. The increased error

rate for unprompted targets was reported in studies operating CAD from image onset

(Alberdi et al., 2004; Drew et al., 2012; Russell and Kunar, 2012; Kunar et al., 2017;

Ionescu et al., 2018). In second reader mode, the extent to which the initial unaided
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viewing of the images can nullify this effect remains to be established by testing this

with a greater number of images containing unprompted targets than were included

in our study. It is important for any study investigating this to maintain a reasonable

operating point for CAD. That is to say, not reduce the CAD sensitivity as a means to

increase the number of unprompted targets, since the trust level may be reduced as a

consequence. Instead, it is necessary to run a study with a greater number of images.

It would also be of interest to determine whether the presence of false prompts in

images with unmarked targets further reduces observer sensitivity for second reader

CAD. A study by Russell and Kunar (2012) found no difference in error rates be-

tween unprompted target trials with and without false prompts. However, Ionescu et al.

(2018) reported that there was a significant reduction in sensitivity for unprompted tar-

gets when false prompts were present compared to when they were absent. Since

both of these studies displayed prompts from image onset, a study could investigate

how second reader CAD would compare. Furthermore, it could also be investigated

whether the unprompted target sensitivity is affected when there are multiple prompt

types present, which follows on from the study in Chapter 9. We had insufficient un-

prompted targets to measure this in our study, but it would have been of interest to

know whether the type of the false prompt (same type as target or different) would

have had an impact. It was clear that sensitivity was unaffected for prompted targets

but unprompted targets are where false positive distraction has been reported previ-

ously (Russell and Kunar, 2012; Ionescu et al., 2018).

With interactive CAD, the significant increase in miss cost at low prevalence for

unprompted targets can be eliminated (Drew et al., 2020). In our study, when prompts

were available, participants acted in line with the confidence score as opposed to the

image score. However, what was not clear was whether the image score would increase

in importance for images where CAD failed to mark a target. In our study (Chapter 7),
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the image score impacted the number of false positive responses, many of which were

not prompted. Since about 90% of cancer cases have an image score of 9 or 10 with

one clinical interactive CAD system (FDA, 2018), it may be that the image score can

further improve the detection of unprompted targets, but this should be tested directly.

11.3.2 Multiple targets

In Chapter 9, our study used images with a single target present. We were constrained

by the fact that we had to reuse images from previous studies in order to estimate target

detection rates. However, it is also of interest to test how multiple prompts affect reader

behaviour in images with multiple abnormalities present. In mammography, microcal-

cification clusters may be present in cases with a mass. A previous study has suggested

that in cases with multiple abnormalities, there is a satisfaction of search effect caused

by a suppression of recognition for additional abnormalities that differ from the first

one that was detected (Mello-Thoms et al., 2014). The use of a non-interactive CAD

system may overcome satisfaction of search if prompts are able to make readers re-

examine abnormalities that they have fixated but dismissed. A study could compare

the detection rate of multiple abnormalities in aided and unaided viewing. Readers

might be more reluctant to accept further prompts if they have already reported on one

target.

11.3.3 Reducing the impact of false prompts

The increase in false positive responses due to false positive prompts has been dis-

cussed throughout this thesis. CAD systems are constantly updated to improve their

sensitivity and crucially their specificity. There are also algorithms that reduce the
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number of false prompts per image by analysing and removing the prompts of com-

mercial CAD systems (Mayo et al., 2019). However, because false prompts are un-

avoidable, methods should be investigated to improve how readers deal with them.

This will also be influenced by how much readers trust CAD. By indicating the con-

fidence of CAD prompts, readers may keep their trust when they are confronted with

a false prompt they would have dismissed anyway if the prompt is accompanied by a

low confidence rating. However, if false prompts have high confidence ratings, they

are more likely to be recalled. Varying the prompt size to indicate confidence has been

shown to increase the recall rate for normal and cancer cases (Gilbert et al., 2008a).

Therefore, the improvement in detection rate can come at the cost of an increase in

false positives if readers are equally influenced by the confidence of true and false

prompts.

As suggested by Jorritsma et al. (2015), other methods that could improve perfor-

mance with CAD are providing global and local rationales. A global rationale would

explain to readers how the CAD system works and what features are likely to cause

false positive errors, which might make readers more confident in dismissing false

prompts if they can identify it as a common error. The local rationale provides an ex-

planation of why a specific region was marked. This may be difficult for many CAD

systems in mammography due to the complex processes that lead to the placement of

a prompt. However, if specific details can be presented, or perhaps similar regions

from other cases can be displayed, readers may have a greater trust in the system and

be able to identify false prompts more easily. These methods have not been studied

well in the context of mammography but have the potential to improve performance

with CAD. Studies could compare various methods of enhancing prompts with this

information to measure their impact on performance. It is always important that these

methods are implemented in such a way that does not make their use cumbersome and

are developed with the end user in mind (Filice and Ratwani, 2020).
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11.3.4 Reader experience

The participants in all experiments in this thesis were non-experts, with expert readers

planned to take part in the study described in Chapter 10. The results of this thesis

should be verified with expert readers. There have been many studies that have inves-

tigated differences between readers of varying experience levels. Even among medical

readers, less experienced readers have been shown to differ from more experienced

readers in terms of their search technique (Kundel et al., 2007). Furthermore, CAD

may be more beneficial in terms of sensitivity for less experienced readers since more

experienced readers may already be close to their performance ceiling and will not see

as large of a sensitivity increase (Balleyguier et al., 2005). However, there are similari-

ties between non-experts and expert readers in terms of errors and overall performance

with CAD. The increase in false positive responses with CAD has been observed in

studies with experts and non-experts (including those in this thesis). Furthermore, the

increased target miss rate when CAD fails to mark a target has also been observed

across experience levels, as has the effect of inattentional blindness. While there are

indeed commonalities across reader experience, to be able to test CAD as it is used

in mammography, the most effective way to do so is through experiments with expert

readers and clinical setups.

11.3.5 Alternative modalities

CAD has been extended to other breast imaging modalities. Digital breast tomosyn-

thesis (DBT) has demonstrated that it can achieve similar sensitivity and improved

specificity compared to mammography (Gilbert et al., 2015). CAD has been reported

to improve performance with DBT in a number of small-scale studies and, as with

CAD in mammography, may increase recall rate due to false prompts (Harkness et al.,

2015; Morra et al., 2015; Benedikt et al., 2018). Another modality is automated breast
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ultrasound (ABUS), which has demonstrated improved sensitivity when used as an ad-

junct to mammography (Kelly et al., 2010; Brem et al., 2015; Wilczek et al., 2016).

One of the main aims with CAD in ABUS is to increase search efficiency (time taken

to read cases). CAD was shown to improve efficiency with ABUS without affecting

the performance of readers (van Zelst et al., 2018). Similar results have been reported

for DBT (Benedikt et al., 2018). This is of course desirable for 3D modalities where

reading time is typically longer than for mammography.

Future studies could be conducted investigating how CAD prompts used in these

modalities affect visual search, using the eye tracking methodologies outlined by Aizen-

man et al. (2017) and Dong et al. (2018). One study with CAD in CT colonography

videos demonstrated that gaze was attracted to prompts and readers spent less time

viewing unprompted areas (Helbren et al., 2015). With these methodologies, since

reading time is already longer than mammography, prompts are often shown from im-

age onset. Therefore, it may be that similar results are seen with CAD for DBT and

ABUS, where false prompts may distract from unprompted abnormalities.

The overall goal of these proposed studies, and those described in this thesis, is

to develop a deeper understanding of human-CAD interaction which can in turn be

used to improve CAD algorithms and their effectiveness when combined with expert

readers.
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P., Wallin, H., Starck, L., Björkgren, A., Carlson, S., Fredriksson, I., Ahlgren, J.,
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