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Abstract

In this thesis we study aspects of jet substructure through first principles calcula-
tions in Quantum Chromo Dynamics (QCD). To begin with, a short introduction to 
QCD, paying particular attention to the soft and collinear limits, is presented, fol-
lowed by a brief review of jet substructure.
Following this review material, the next-to-next-to-leading logarithmic (NNLL) struc-
ture of the groomed jet mass is investigated at O(α2

s). This is done by carrying out a 
next-to-leading-order calculation in the collinear limit of the heavy-hemisphere mass 
distribution, where each hemisphere has been groomed with the modified mass drop 
tagger (mMDT), starting from the the triple collinear splitting functions. This cal-
culation sheds light to the relationship between the triple collinear splitting function 
and NNLL structure of collinear logarithms, which is important for efforts to include 
triple collinear splitting functions in parton showers [1]–[3]. It also provides the in-
sight needed to carry out the NNLL resummation for distributions of groomed ob-
servables, which is the subject of chapter 5. This has potential applications in preci-
sion studies of groomed observables at the LHC, or other collider.
In chapter 6, we investigate a method for tagging boosted top quarks, using a com-
bination of grooming, prong finding, and cutting on a jet shape, by carrying out re-
summed calculations for the tagged fraction of both signal and background jets. This 
allows us to understand, from first principles, the the interplay between the different 
steps involved in the tagging procedure.
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Chapter 1

Introduction

The Standard Model (SM) is a theory describing all known elementary particles and 
three of the four fundamental forces: the electro-magnetic, weak, and strong forces 
[6]. The discovery of the Higgs boson by the ATLAS [7] and CMS [8] experiments at 
the Large Hadron Collider (LHC), in 2012, constituted the observation of the only 
fundamental particle predicted by the standard model which had not previously been 
observed. Despite this, and numerous other predictions which have been shown to 
agree with experiments, the standard model cannot be complete as there are a num-
ber of phenomena it fails to explain. Commonly cited examples are: the lack of a 
dark matter candidate within the SM, which is needed to explain the rotation curves 
of galaxies, and the SM’s inability to explain the observed matter–anti-matter asym-
metry of the universe.
The LHC offers new opportunities to precisely test the SM and search for physics 
beyond the standard model by colliding protons with a center of mass energy of 13
TeV, the highest energy of any collider experiment to date. Collimated jets of hadrons, 
or simply jets, are ubiquitous in LHC analyses. They are associated with the pro-
duction of quarks and gluons, collectively known as partons, which interact via the 
strong force. The evolution of these partons into jets is governed by Quantum Chromo 
Dynamics (QCD), the part of the standard model which describes the strong force. 
Because of the high center of mass energy at the LHC, electroweak scale particles, 
such as W, Z and Higgs bosons can be produced with transverse momentum much 
larger than their mass, leading to their decay products being highly collimated. In 
the case that these decay products are quarks, the resulting jets of hadrons can be 
close enough in angle that they are reconstructed as a single jet. Discriminating such 
jets from those initiated by a single parton can be accomplished by examining their 
substructure. Initially driven by the need to tag these jets, the study of jet substruc-
ture is now firmly established as a key area of LHC phenomenology, with a large num-
ber of jet substructure techniques being proposed and used [9]–[20]. An improved un-
derstanding of jet substructure techniques, gained from first principles calculations 
in QCD, has improved confidence in their robustness, facilitated the improvement of 
existing techniques, and resulted in the development of new, better, techniques [21]–
[31]. Another facet of jet substructure is the use of machine learning techniques for 
jet tagging. Such techniques can yield impressive performance [32]–[38], though of-
ten at the expense of understanding what information is being learnt. Jet substruc-
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ture is also increasingly being used to study of QCD with precise measurements and 
theory predictions having been produced and compared for a number of observables 
[39]–[49]. A brief review of some aspects of jet substructure is presented in chapter 3, 
where both jet tagging and the study of QCD through jet substructure is discussed.
Before this, a short introduction to QCD is presented in chapter 2. The latter half 
of this chapter focuses on the emission of gluons at energies much lower than the 
emitting partons (the soft region of phase space), and the branching of partons in 
collinear limit. It is then demonstrated how the logarithms that arise from these soft 
and collinear regions of phase space can be resummed to all orders, and why this is 
necessary.
The work presented in chapters 4 and 5 is concerned with distributions of observ-
ables, computed on jets which have been groomed with the modified mass drop tag-
ger (mMDT) [21], at the level of next-to-next-to-leading logarithmic (NNLL) accu-
racy. In chapter 4, the NNLL structure of the groomed jet mass is studied at second 
order in the strong coupling. This is done by calculating this distribution directly 
from the triple collinear splitting functions [50]–[52]. As well as allowing for a better 
understanding of the link between the triple collinear splitting functions and NNLL 
structures, this work provided the insight needed to carry out the resummation of 
any groomed, additive, rIRC safe observable, to NNLL accuracy, for quark initiated 
jets. This resummation is carried out in chapter 5 in the small zcut limit before be-
ing modified to include finite zcut effects at NLL accuracy. This has potential appli-
cations in precision phenomenological studies at the LHC or other collider and pro-
vides a powerful cross check of previous NNLL resummations carried out within soft 
collinear effective theory [47].

In chapter 6 a method for tagging top quarks using a combination of the Ym-Splitter 
[25] algorithm and N-subjettiness ratio τ32 [14] is studied. The effect of pre-grooming 
the jets with mMDT or soft drop [23] is also considered. These studies are initially 
carried out using Pythia [53] to asses the performance and impact of non-perturbative 
effects. Resummed results for the tagged fraction of signal and background jets are 
then derived, formally at leading logarithmic (LL) accuracy, but including some terms 
at higher logarithmic accuracy. These resummed results give some insights into the 
interplay between the various steps involved in the tagging procedure and how this 
interplay can be used to maximise the effectiveness of the tagger.
Finally the work presented in this thesis is summarised and the outlook for future 
extensions and applications of it are discussed in chapter 7.
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Chapter 2

Quantum Chromo Dynamics

Quantum chromo dynamics, or QCD, is the part of the standard model which de-
scribes the strong interaction between quarks (fermions) and gluons (gauge bosons). 
In this section I describe the construction of the theory and some of its properties. 
In particular we will focus on perturbative QCD in the soft and collinear limits. We 
begin by looking at the the Lagrangian and how Feynman rules are calculated from 
it before moving on to loop diagrams and renormalisation. We then look at QCD 
in the soft and collinear limits before discussing the logarithms that can arise from 
these regions of phase space and how they can be resummed.

2.1 The QCD Lagrangian

QCD is a non abelian gauge theory with gauge group SU(3). Particles charged un-
der this gauge group are said to have a colour charge. There are three charges, which 
are typically called red, green, and blue, and three corresponding anti-charges. The 
Lagrangian density of QCD can be succinctly written as [54], [55] 

 \label {basicLagrangian} \mathcal {L}=i\bar {\Psi }_i\gamma ^\mu D^{ij}_\mu \Psi _j-m\bar {\Psi }_i\Psi _i-\frac {1}{4}F_{\mu \nu }^aF^{a,\mu \nu }\ . 


  






  (2.1)

Here Ψi are the quark fields, with the index i running over the three colours, F a,µν =

∂µA
a
ν − ∂νA

a
µ − gsf

abcAb
µA

c
ν , is the field strength tensor, with Aa

µ the gluon field, and 
Dij

µ = δij∂µ − gsA
a
µt

a
ij is the covariant derivative, with taij the generators of SU(3)

in the fundamental representation. The generators can be represented by the Gell-
Mann matrices, which are given in ref. [54], and are typically normalised so that 

 \label {eq:GeneratorNormalisation} t^a_{ij}t^b_{ji}=T_R\delta ^{ab}, \qquad \text {with,} \qquad T_R=\frac {1}{2}\ , 

 

  



 (2.2)

where the upper index (a, b) runs from 1 to 8. The quark fields transform under the 
fundamental representation of SU(3), so are a three dimensional vector in colour space, 
whilst the gluon fields, Aa

µ transform under the adjoint representation of SU(3) [54], 
[56]. A convenient way of writing the generators in the adjoint representation are the 
structure constants, fabc, which satisfy taijtbjk − tbijt

a
jk = ifabctcik. The Casimir operator 

is the square of the generators and commutes with all of the generators [55]. With 
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the normalisation given in eq. (2.2) the Casimir operator in the fundamental repre-
sentation is 

  t^a_{ij}t^a_{jk}=C_F\, \delta _{ik}, \qquad \text {where,} \qquad C_F=\frac {4}{3}\ , 

     




 (2.3)

and in the adjoint representation 

  f^{abc}f^{abd}=C_A\delta ^{cd}, \qquad \text {with,} \qquad C_A=3\ .  
      (2.4)

These operators are extremely common in QCD calculations and are particularly im-
portant in the collinear limit as we shall see in section 2.4.3.

2.2 Quantisation and Feynman rules

The aim of this section is to illustrate how the path integral can be used to derive 
Feynman rules, by deriving the gluon propagator as an example. The need to intro-
duce the ghost fields will be illustrated along the way before finally listing a selection 
of the other Feynman rules most relevant for this thesis.

We start by examining the path integral for the gauge field kinetic terms in the La-
grangian given in eq. (2.1),  \label {eq:unFixedPathInt} \int \mathcal {D}\tilde {A}^a_\mu (k)\exp \left [-i\int \frac {\sd ^4k}{(2\pi )^4} \frac {1}{2}\tilde {A}^a_\mu (k)(k^2g^{\mu \nu }-k^\mu k^\nu )\tilde {A}^b_\nu (-k)\right ] \ , 

















  



 (2.5)

where Ãa
µ(k) is the Fourier transform of Aa

µ(x). We see that we will run into a prob-
lem trying to find the momentum space propagator; the operator we need to invert 
to find the propagator, k2gµν − kµkν , is singular. Another manifestation of this prob-
lem is that carrying out the path integral involves integrating over an infinite num-
ber of modes where the gauge field is of the form Ãµ(k) = α̃(k)kµ, with α̃(k) being 
any scalar function of k, which causes the path integral to diverge due to the expo-
nent going to zero. These modes are all physically equivalent as they are related by a 
gauge transformation, A′a

µ t
a
ij = eiα

b(x)tb [Aa
µt

a + i
g
∂µ]e

−iαc(x)tc , to Aa
µ(x) = 0. The solu-

tion is to introduce a gauge fixing term. This is very similar to what is done in QED 
when quantising the electromagnetic field, but comes with an additional subtlety due 
to the non abelian nature of QCD.
We proceed, using the method of Faddeev and Popov [55], [57], by inserting, 

 \label {eq.fadeevPopovIdentity} 1=\int \mathcal {D}\alpha ^b(x)\delta (G(A^a_\mu ))\det \left |\frac {\delta G(A^a_\mu )}{\delta \alpha ^b} \right | \ , 











  (2.6)

into eq. (2.5), where Aa
µ transforms with αb(x), G(Aa

µ(x)) = ∂µAa
µ(x) − ωa(x), and 

ωa(x) can be any scalar function. This effectively factors the functional integral over 
physically equivalent gauge configurations out of the integral over Aa

µ, allowing them 
to be absorbed into the normalisation, which cancels in physical quantities. Using an 
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expression for the gluon field after an infinitesimal gauge transformation, 

  A'^a_\mu =A^a_\mu +\frac {1}{g_s}\partial _\mu \alpha ^a(x)+f^{abc}A^b_\mu \alpha ^c(x)=A^a_\mu +D_\mu \alpha ^a(x) \ , 
 







 


 


  (2.7)

the functional determinant in eq. (2.6) becomes det | 1
gs
∂µDµ|. Leaving aside some 

normalisation constant, which will cancel in all physical quantities, we can insert the 
functional integral 

∫
Dωa(x) exp

[
−i
∫

d4xωa(x)2

2ξ

]
into the path integral. The integral 

over ωa(x) can be carried out using the delta function in eq. (2.6), so that the path 
integral becomes 

{eq:PathIntWithGaugeFixing} \int \mathcal {D}A^a_\mu \mathcal {D}\alpha ^c\det \left |\frac {1}{g_s}\partial ^\mu D_\mu \right | \\ \exp \left [-i\int \frac {\sd ^4x}{(2\pi )^4}\left ( \frac {1}{2}A^a_\mu (g^{\mu \nu }\partial ^2-\partial ^\mu \partial ^\nu )A^b_\nu +\frac {(\partial ^\mu A^a_\mu )^2}{2\xi }\right )\right ] \ .






{eq:PathIntWithGaugeFixing} \int \mathcal {D}A^a_\mu \mathcal {D}\alpha ^c\det \left |\frac {1}{g_s}\partial ^\mu D_\mu \right | \\ \exp \left [-i\int \frac {\sd ^4x}{(2\pi )^4}\left ( \frac {1}{2}A^a_\mu (g^{\mu \nu }\partial ^2-\partial ^\mu \partial ^\nu )A^b_\nu +\frac {(\partial ^\mu A^a_\mu )^2}{2\xi }\right )\right ] \ .
















 












The term, (∂
µAa

µ)
2

2ξ
, can be included from the beginning by adding a gauge fixing term, 

 \label {eq:Lgf} \mathcal {L}_{\mathrm {g.f}}=-\frac {(\partial ^\mu A^a_\mu )^2}{2\xi }\ ,  






 (2.9)

to the Lagrangian. The determinant in equation (2.8) is not independent of Aa
µ and 

so cannot be absorbed into the normalisation. It can be evaluated as a functional in-
tegral over scalar, Grassmann valued, fields [55]: 

 \label {eq:Ghosts} \det \left |\frac {1}{g_s}\partial ^\mu D_\mu \right |=\int \mathcal {D}\bar {c}^a\mathcal {D}c^b\exp \left [i\int \sd ^4x\bar {c}^a(-\partial ^\mu D^{ab}_\mu )c^b\right ], 


   








 (2.10)

where ca are the Grassmann fields. The term on the right of eq. (2.10) can be in-
cluded in the path integral by modifying the Lagrangian to include a term: 

 \label {eq:Lghost} \mathcal {L}_{\mathrm {Ghost}}=\bar {c}^a\partial ^\mu D^{ab}_\mu c^b\ .  


  (2.11)

The Grassmann fields describe ghost particles, which couple to gluons and have their 
own Feynman rules. They are not physical final state particles, but nevertheless need 
to be included as internal lines, as they cancel un-physical gluon polarisations. One 
way to see that ghosts are not physical particles is by observing that they are absent 
for certain choices of gauge, for example, axial gauges [55], [56].
Returning now to finding the gluon propagator, we can write the generating func-
tional: 

Z[J]= \\ \int \mathcal {D}A^a_\mu \mathcal {D}\bar {c}^b\mathcal {D}c^c\exp \left [i\int \sd ^4x\left (\mathcal {L}_{\mathrm {kinetic}}+\mathcal {L}_{\mathrm {g.f}}+\mathcal {L}_{\mathrm {Ghost}}+J^\mu _a(x)A^a_\mu (x) \right )\right ] ,   Z[J]= \\ \int \mathcal {D}A^a_\mu \mathcal {D}\bar {c}^b\mathcal {D}c^c\exp \left [i\int \sd ^4x\left (\mathcal {L}_{\mathrm {kinetic}}+\mathcal {L}_{\mathrm {g.f}}+\mathcal {L}_{\mathrm {Ghost}}+J^\mu _a(x)A^a_\mu (x) \right )\right ] ,










     








where 
  \mathcal {L}_{\mathrm {kinetic}}=-\frac {1}{4}\left (\partial _\mu A^a_\nu -\partial _\nu A^a_\mu \right )\left (\partial ^\mu A_a^\nu -\partial ^\nu A_a^\mu \right ) \ ,  







 







 
  (2.13)
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Lg.f was defined in eq. (2.9), LGhost in eq. (2.11), and where J(x)Aa
µ(x) is a source 

term. By re-writing the generating functional in terms of a shifted field, Aa
µ = A

′a
µ +

i
∫

d4yDab
µν(x− y)Jν

b (y), it can expressed as 

  Z[J]=Z_0\exp \left [-\frac {1}{2}\int \sd ^4x \, \sd ^4y J^a_\mu (x)D^{ab}_{\mu \nu }(x-y)J^\nu _b(y)\right ] \ ,    















 (2.14)

where Dab
µν(x− y) is the Greens function of the operator (gµν∂2 − (1− ξ)∂µ∂ν) and 

  Z_0=\int \mathcal {D}A^a_\mu \mathcal {D}\bar {c}^b\mathcal {D}c^c\exp \left [i\int \sd ^4x(\mathcal {L}_{\mathrm {kinetic}}+\mathcal {L}_{\mathrm {g.f}}+\mathcal {L}_{\mathrm {Ghost}})\right ] \ . 









   


 (2.15)

The generating functional can be used to find the gluon two point function [55]: 

  \frac {1}{Z_0}\frac {\delta }{\delta J_a^\mu (x_1)}\frac {\delta }{\delta J_b^\nu (x_2)}Z[J]\bigg |_{J^\mu _a(x_1)=J^\nu _b(x_2)=0}=\langle 0|A^a_\mu (x_1)A^b_\nu (x_2)|0\rangle =D^{ab}_{\mu \nu }(x_1-x_2) \ . 

























 

    (2.16)

In momentum space, the two point function, or Feynman propagator, reads 

  D^{a,b}_{\mu \nu }(k)=\frac {-i}{k^2+i\epsilon }\left (g_{\mu \nu }-(1-\xi )\frac {k_\mu k_\nu }{k^2}\right ) \delta ^{ab} \ . 
 


 


  





  (2.17)

The factor of iε in the denominator of the propagator arises because, in relating the 
path integral to asymptotic states, it proves necessary to perform the integral over x0

from −∞(1 − iε) to ∞(1 − iε), which in momentum space leads to k0 → k0(1 + iε). 
This gives us the Feynman rule for an internal gluon line with momentum kµ : 

  \includegraphics [valign=c,width=0.35\textwidth ,trim=0 0 0 0, clip]{Figs/GluonPropagator}= \frac {-i}{k^2+i\epsilon }\left (g_{\mu \nu }-(1-\xi )\frac {k_\mu k_\nu }{k^2} \right )\delta ^{ab}\ . 






 


  





  (2.18)

In practice the Feynman rules can be read off from the Lagrangian. For example, 
the Feynman rule for the quark gluon vertex diagram can be found by stripping the 
fields off the term in the Lagrangian involving the gluon and quark fields to give: 

  \includegraphics [valign=c,width=0.4\textwidth ,trim=0 0 0 0, clip]{Figs/qgVertex}=ig_s\gamma _\mu t_{ij}^a\ . 













  (2.19)
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The Feynman rules for the quark propagator and triple gluon vertex are 

  \begin {split} \includegraphics [valign=B,width=0.35\textwidth ,trim=0 0 0 10, clip]{Figs/quarkPropagator}=&\frac {i(\slashed {p}+m)}{p^2-m^2+i\epsilon } \\ \includegraphics [valign=c,width=0.3\textwidth ,trim=0 0 0 0, clip]{Figs/tripleGluonVertex}=&g_s f^{abc}\left [g^{\mu \nu }(p_1^\rho -p_2^\rho )+g^{\nu \rho }(p_1^\mu -p_2^\mu )+g^{\rho \mu }(p_1^\nu -p_2^\nu )\right ]\ , \end {split} 




  

  \begin {split} \includegraphics [valign=B,width=0.35\textwidth ,trim=0 0 0 10, clip]{Figs/quarkPropagator}=&\frac {i(\slashed {p}+m)}{p^2-m^2+i\epsilon } \\ \includegraphics [valign=c,width=0.3\textwidth ,trim=0 0 0 0, clip]{Figs/tripleGluonVertex}=&g_s f^{abc}\left [g^{\mu \nu }(p_1^\rho -p_2^\rho )+g^{\nu \rho }(p_1^\mu -p_2^\mu )+g^{\rho \mu }(p_1^\nu -p_2^\nu )\right ]\ , \end {split} 












           

  \begin {split} \includegraphics [valign=B,width=0.35\textwidth ,trim=0 0 0 10, clip]{Figs/quarkPropagator}=&\frac {i(\slashed {p}+m)}{p^2-m^2+i\epsilon } \\ \includegraphics [valign=c,width=0.3\textwidth ,trim=0 0 0 0, clip]{Figs/tripleGluonVertex}=&g_s f^{abc}\left [g^{\mu \nu }(p_1^\rho -p_2^\rho )+g^{\nu \rho }(p_1^\mu -p_2^\mu )+g^{\rho \mu }(p_1^\nu -p_2^\nu )\right ]\ , \end {split} 

where /p = γµp
µ. For the complete set of QCD Feynman rules see for example [54].

2.3 Renormalisation and the running coupling

One typically encounters two types of divergence when studying QCD: infra-red di-
vergences which cancel in physical quantities and will be discussed in section 2.4; and 
ultra violet (UV) divergences. UV divergences arise due to the unrestricted momen-
tum flow around a loop and need to be removed by renormalisation in order to calcu-
late physical quantities. The process of renormalisation involves re-defining the bare 
parameters that appear in the Lagrangian in terms of physical, or renormalised, pa-
rameters. For example, the bare coupling gs0 is related to the renormalised coupling 
by 

 \label {eq:deltag_def} g_{s0}=g_{sR}\sqrt {Z_g}, \qquad \mathrm {where} \qquad Z_g=1+\delta _g,  

       (2.21)

with the δg term containing the divergences. The renormalised parameters are finite 
and measurable, the divergences having been absorbed into the definition of the bare 
parameters.
The consequence of renormalising the parameters of the theory is that they become 
scale dependent. The rest of this section is devoted to illustrating the renormalisa-
tion procedure and deriving the lowest order expression for the running coupling.
We will begin by calculating the divergent piece of the one loop correction to the 
quark propagator in the Feynman gauge (ξ = 1): 

{eq:QPropagatorDiagram} \includegraphics [valign=b,width=0.35\textwidth ,trim=0 0 0 0, clip]{Figs/quarkPropLoop}\\=\int \frac {\mathrm {d}^4k}{(2\pi )^4}(-ig_s)\gamma _\mu t^a_{ij} i\delta ^{ab} \frac {-\eta ^{\mu \nu }}{k^2}\frac {-i\delta _{jk}}{\slashed {p}+\slashed {k}}(-ig_s)\gamma _\nu t^b_{kl}\ ,





  

{eq:QPropagatorDiagram} \includegraphics [valign=b,width=0.35\textwidth ,trim=0 0 0 0, clip]{Figs/quarkPropLoop}\\=\int \frac {\mathrm {d}^4k}{(2\pi )^4}(-ig_s)\gamma _\mu t^a_{ij} i\delta ^{ab} \frac {-\eta ^{\mu \nu }}{k^2}\frac {-i\delta _{jk}}{\slashed {p}+\slashed {k}}(-ig_s)\gamma _\nu t^b_{kl}\ ,













 

where the quark mass has been set to zero as it does not play an important role here. 
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The colour algebra can be factored out of the above diagram and evaluated as 

  t^a_{ij}\delta ^{ab}\delta _{jk}\delta _{jk}t^b_{kl}=C_F \, \delta _{il}\ , 



     (2.23)

where the remaining delta function enforces that colour is conserved in the above di-
agram. This delta function can be dropped as it is just a unit matrix in colour space. 
By multiplying both the numerator and denominator by /p + /k and using the identity 
/q/q = q2 we find that eq. (2.22) becomes 

 \label {eq:divergent4D} =-C_Fg_s^2\int \frac {\sd ^{4}k}{(2\pi )^{4}}\frac {\gamma ^\nu (\slashed {p}+\slashed {k})\gamma _\nu }{(p+k)^2k^2} \ , 










 (2.24)

where the µ indices in the numerator have also been contracted. The term odd in k
can be ignored as it goes to zero when integrated over [−∞,+∞]. Simply by power 
counting we can see that the remaining /p term is logarithmically divergent as k →
∞. The integral must therefore be regulated in some way to enable it to be evalu-
ated and the divergence subtracted. This can be done in a number of ways, the most 
obvious being to introduce a cut-off. Although this provides an intuitive link to the 
Wilsonian picture of renormalisation [58], it turns out to be quite cumbersome to 
work with, particularly in QCD where one often needs to simultaneously regulate IR 
divergences which, will not regulated by a UV cut-off. We therefore use dimensional 
regularisation, where the integral is evaluate in 4 − 2ε dimensions. Here ε is taken to 
be a small complex number which can be taken to zero once all of the divergences, 
which are manifested as poles in negative powers of ε, are cancelled. In 4− 2ε dimen-
sions the integral in eq. (2.24) becomes [55] 

 \label {eq:regulatedLoop} C_F g_s^2\mu ^{2\epsilon }\slashed {p}(2-2\epsilon )\int \frac {\sd ^{4-2\epsilon }k}{(2\pi )^{4-2\epsilon }}\frac {1}{(p+k)^2k^2} \ , 














 (2.25)

where µ, the dimensional regularisation mass, is introduced so that the coupling con-
stant stays dimensionless. The integration measure d4−2εk = k3−2εdkdΩ3−2ε, where 
dΩn is the surface element of a unit sphere in n + 1 dimensions. Carrying out the 
integrals in eq (2.25) gives [55] 

=C_F\frac {ig_s^2}{(4\pi )^{2-2\epsilon }}\left (\frac {\mu }{-p}\right )^{2\epsilon }\slashed {p}(2-2\epsilon )\frac {\Gamma [1-\epsilon ]\Gamma [2-\epsilon ]}{\Gamma [3-2\epsilon ]}\Gamma [\epsilon ]\\ \simeq C_F\frac {ig_s^2}{(4\pi )^{2}}\left (\frac {\mu ^2 (4\pi )^2e^{-\gamma _E}}{-p^2}\right )^{\epsilon }\slashed {p}\left (\frac {1}{\epsilon }+1+\mathcal {O}(\epsilon )\right )\ .












 




=C_F\frac {ig_s^2}{(4\pi )^{2-2\epsilon }}\left (\frac {\mu }{-p}\right )^{2\epsilon }\slashed {p}(2-2\epsilon )\frac {\Gamma [1-\epsilon ]\Gamma [2-\epsilon ]}{\Gamma [3-2\epsilon ]}\Gamma [\epsilon ]\\ \simeq C_F\frac {ig_s^2}{(4\pi )^{2}}\left (\frac {\mu ^2 (4\pi )^2e^{-\gamma _E}}{-p^2}\right )^{\epsilon }\slashed {p}\left (\frac {1}{\epsilon }+1+\mathcal {O}(\epsilon )\right )\ .

















 




The 1
ε

term needs to be removed by re-normalisation, however we are also free to ab-
sorb as much of the finite part of the amplitude into our renormalised quantities as 
we choose. Different choices of what to absorb corresponding to different renormal-
isation schemes. The definition of renormalised quantities will obviously differ be-
tween schemes, resulting in different values for physical quantities in different schemes, 
however it is possible to translate from one scheme to another. For example, the min-
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imal subtraction (MS) scheme absorbs only the poles into the renormalisation co-
efficients, whereas the MS scheme also absorbs the ubiquitous factors of (4π)2ε and 
exp[−εγE]. Now that we know the divergence associated with the diagram in eq. (2.22)
we introduce a subtraction term to cancel it. In the MS scheme, the subtraction term 
is 

  -\frac {1}{\epsilon }C_F\frac {ig_s^2}{(4\pi )^{2}} \left ((4\pi )^2e^{-\gamma _E}\right )^{\epsilon }\slashed {p}=i\slashed {p}\delta _2 \ , 











    (2.27)

which can be expressed as a Feynman rule 

 \label {eq:QuarkCounterTermRule} \includegraphics [valign=c,width=0.42\textwidth ,trim=10 680 420 70, clip]{Feynman_Diagrams/QCounterTerm}=i\slashed {p}\delta _2\ , 



   (2.28)

where δ2 = −1
ε

g2s
(4π)2

((4π)2e−γE)εCF . This particular counter term is absorbed into 
the quark field normalization. The relation between the bare and renormalised field 
is ψ(0) =

√
Z2ψ

(R) with Z2 = 1 + δ2. This modifies the kinetic term in the Lagrangian 
such that it generates the Feynman rule in equation (2.28). One can go through a 
similar process for the gluon propagator and vertex corrections, although it turns out 
that one only needs to find the counter term for one of the vertices in order to fully 
specify how the QCD Lagrangian is renormalised. The counter terms for the gluon 
propagator and quark gluon vertex in the Feynman gauge are [56], [59]: 

\includegraphics [valign=c, width=0.3\textwidth ,trim=55 645 435 65, clip]{Feynman_Diagrams/qqgVertexCounterTerm}\label {eq:VertexCounterTerm} &=ig_s\gamma _\mu t^a_{ij}\delta _1\\ \includegraphics [valign=c, width=0.4\textwidth ,trim=30 672 420 60, clip]{Feynman_Diagrams/gCounterTerm}\label {eq:gCounterTerm} &=-i(k^2g^{\mu \nu }-k^\mu k^\nu )\delta ^{ab}\delta _3











 \includegraphics [valign=c, width=0.3\textwidth ,trim=55 645 435 65, clip]{Feynman_Diagrams/qqgVertexCounterTerm}\label {eq:VertexCounterTerm} &=ig_s\gamma _\mu t^a_{ij}\delta _1\\ \includegraphics [valign=c, width=0.4\textwidth ,trim=30 672 420 60, clip]{Feynman_Diagrams/gCounterTerm}\label {eq:gCounterTerm} &=-i(k^2g^{\mu \nu }-k^\mu k^\nu )\delta ^{ab}\delta _3

\includegraphics [valign=c, width=0.3\textwidth ,trim=55 645 435 65, clip]{Feynman_Diagrams/qqgVertexCounterTerm}\label {eq:VertexCounterTerm} &=ig_s\gamma _\mu t^a_{ij}\delta _1\\ \includegraphics [valign=c, width=0.4\textwidth ,trim=30 672 420 60, clip]{Feynman_Diagrams/gCounterTerm}\label {eq:gCounterTerm} &=-i(k^2g^{\mu \nu }-k^\mu k^\nu )\delta ^{ab}\delta _3




    \includegraphics [valign=c, width=0.3\textwidth ,trim=55 645 435 65, clip]{Feynman_Diagrams/qqgVertexCounterTerm}\label {eq:VertexCounterTerm} &=ig_s\gamma _\mu t^a_{ij}\delta _1\\ \includegraphics [valign=c, width=0.4\textwidth ,trim=30 672 420 60, clip]{Feynman_Diagrams/gCounterTerm}\label {eq:gCounterTerm} &=-i(k^2g^{\mu \nu }-k^\mu k^\nu )\delta ^{ab}\delta _3

where 

\delta _1=&\frac {1}{\epsilon }\frac {g^2}{(4\pi )^2}\left ((4\pi )^2e^{-\gamma _E}\right )^{\epsilon }(-C_F-C_A)\\ \delta _3=&\frac {1}{\epsilon }\frac {g^2}{(4\pi )^2}\left ((4\pi )^2e^{-\gamma _E}\right )^{\epsilon }\left (\frac {5}{3}C_A-\frac {4}{3}T_Rn_f\right ) \ ,











   \delta _1=&\frac {1}{\epsilon }\frac {g^2}{(4\pi )^2}\left ((4\pi )^2e^{-\gamma _E}\right )^{\epsilon }(-C_F-C_A)\\ \delta _3=&\frac {1}{\epsilon }\frac {g^2}{(4\pi )^2}\left ((4\pi )^2e^{-\gamma _E}\right )^{\epsilon }\left (\frac {5}{3}C_A-\frac {4}{3}T_Rn_f\right ) \ ,

\delta _1=&\frac {1}{\epsilon }\frac {g^2}{(4\pi )^2}\left ((4\pi )^2e^{-\gamma _E}\right )^{\epsilon }(-C_F-C_A)\\ \delta _3=&\frac {1}{\epsilon }\frac {g^2}{(4\pi )^2}\left ((4\pi )^2e^{-\gamma _E}\right )^{\epsilon }\left (\frac {5}{3}C_A-\frac {4}{3}T_Rn_f\right ) \ ,













 





 \delta _1=&\frac {1}{\epsilon }\frac {g^2}{(4\pi )^2}\left ((4\pi )^2e^{-\gamma _E}\right )^{\epsilon }(-C_F-C_A)\\ \delta _3=&\frac {1}{\epsilon }\frac {g^2}{(4\pi )^2}\left ((4\pi )^2e^{-\gamma _E}\right )^{\epsilon }\left (\frac {5}{3}C_A-\frac {4}{3}T_Rn_f\right ) \ ,

where nf is the number of fermions (quarks).
The counter terms written in this diagrammatic form are convenient for calculating 
S-matrix elements from Feynman diagrams, however they are not in one to one cor-
respondence with the renormalisation factors multiplying specific parameters in the 
Lagrangian. In order to find the first order expression for the running coupling we 
must first find the relationship between the bare and renormalised charge. Equations
(2.28) and (2.30) give us the renormalisation factor for the quark and gluon fields re-
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spectively, while eq. (2.29) gives the renormalisation factor for the quark gluon ver-
tex term in the Lagrangian, which reads 

  i g_s^R\bar {\Psi }_i^R\gamma _\mu A_\mu ^{a(R)} t_{ij}^a\Psi _j^R =i g_s^R\frac {\bar {\Psi }_i^0}{\sqrt {Z_2}}\gamma _\mu \frac {A_\mu ^{a(0)}}{\sqrt {Z_3}} t_{ij}^a\frac {\Psi ^0_j}{\sqrt {Z_2}} Z_1 \ , 







 


















  (2.33)

where the superscript R denotes renormalised quantities, and the superscript 0 the 
bare quantities. Using the definition g0s = Zgg

R
s we can read off Zg =

Z1

Z2
√
Z3

.
We can now find an expression for the running coupling. To do this we use a renor-
malisation group equation which arises because the bare coupling must be indepen-
dent of µ, the dimensional regularisation scale:

  0=\mu \frac {\sd g_s^0}{\sd \mu }=\lim _{\epsilon \to 0}\mu \frac {\sd }{\sd \mu }\left (Z_g\left (g_s^R\right ) \mu ^\epsilon g_s^R\right ) 


















(2.34)

where the factor of µε is, again, needed to keep gRs dimensionless. Neglecting, for 
now, the limit of ε→ 0 we can write 

  \mu ^{1+\epsilon }\frac {\sd g_s^R}{\sd \mu }= -\epsilon \mu ^\epsilon g_s^R-\frac {\mu ^{1+\epsilon }}{Z_g}\frac {\sd Z_g}{\sd \mu }\ , 


  






 (2.35)

where, because Zg = 1 +O(g2s) we can, at leading order, ignore the factor of 1
Zg

, as it 
will only give higher order corrections. As Zg only depends on µ through gRs we can 
write 1

Zg

dZg

dµ = dgRs
dµ

dδg
dgRs

[56], where δg is defined in eq. (2.21). Making the replacement 
(gRs )2

4π
= αs(µ) and taking the limit of ε → 0, the renormalisation group equation 

becomes 
 \label {eq:alphaRGE} \mu ^2\frac { \sd \alpha _s(\mu )}{\sd \mu ^2}=-\left (\frac {11C_A-4 T_Rn_f}{12\pi }\right )\alpha _s^2(\mu ) 





 





 (2.36)

where we have also used µ1+ε dgRs
dµ = −εµεgRs . We can make the identification 11CA−4TRnf

12π
=

β0, the first coefficient of the QCD β function.
Integrating equation (2.36) between µ0 and µ gives: 

 \label {eq:alpha1} \alpha _s(\mu )=\frac {\alpha _s(\mu _0)}{1+\beta _0\alpha _s(\mu _0)\ln \left (\frac {\mu ^2}{\mu _0^2} \right )}. 


  







  (2.37)

Examining equation (2.37) we see that, provided β0 is positive, as is the case for QCD, 
the coupling goes to zero as µ goes to infinity. This property is known as asymptotic 
freedom [56] and is a property of non-abelian gauge theories [55], [60]. We also see 
that for some value of µ, less than µ0 the coupling appears to diverge. This can be 
made more explicit if we integrate eq. (2.36) from the scale at which αs diverges, 
ΛQCD, to some higher scale µ to find 

  \alpha _s(\mu )=\frac {1}{\beta _0\ln \left (\frac {\mu ^2}{\Lambda _{\mathrm {QCD}}^2}\right )}. 










  (2.38)

The scale that the coupling diverges at is called the Landau pole, in QCD using the 
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MS scheme ΛQCD ' 340MeV [61]. In fact, the divergence of the coupling is not 
physical, it signals the breakdown of perturbation theory. As the coupling flows into 
the infra-red it becomes large and perturbation theory, which we used to derive the 
running of the coupling, ceases to be valid. Working in the MS scheme the coupling 
becomes larger than one around 1GeV. The growth of the coupling at low energies 
is connected to the phenomenon of colour confinement. That is, particles carrying 
a colour charge are not observed in isolation at energies lower than a few hundred 
MeV, instead, quarks and gluons are bound inside hadrons [54]. Although qualita-
tively understood, a rigorous understanding of confinement and how it arises is still 
an open question. The difficulty in understanding confinement is related to the dif-
ficultly with working with strongly interacting quantum field theories where pertur-
bation theory can not be applied. One method for extracting numerical predictions 
from a non-perturbative quantum field theory (QFT) is lattice QFT [54]. This has 
many practical difficulties associated with it, and as such cannot typically be used to 
generate predictions at high energies, such as might be useful for many non-perturbative 
aspects of collider physics.
The scale µ was introduced as a way to keep the coupling dimensionless and it is 
not immediately obvious how the dependence of the coupling on it should be inter-
preted and what effect the choice of µ will have on a calculation. As we should ex-
pect, physical quantities are independent of the choice of µ, although this does not 
mean that the choice of µ is unimportant, as all perturbative calculations will have 
some residual dependence on µ due to neglected higher order terms. Put another 
way, any expression for a physical quantity should be independent of the choice of 
µ up the order in αs it is calculated to, but the choice of µ will change the calcu-
lated value by an amount consistent with neglected higher order terms. It is obvi-
ously desirable to reduce the size of these neglected terms, which can often be ac-
complished by choosing µ approximately equal to some physical scale in the problem, 
which we shall call Q. This is because, beyond leading order, QCD calculations will 
typically contain terms proportional to ln (µ/Q), which would become large if µ were 
taken much different from Q. The coupling can be evaluated at the chosen scale us-
ing eq. (2.37) and a measurement of αs at another scale, µ0. It is not important that 
µ0 be particularly close to µ as the logarithms αn

s lnn−1
(

µ2

µ2
0

)
are resummed to all or-

ders by eq. (2.37).
The expression for the running coupling (eq. (2.37)) is systematically improvable 
by including higher order subtraction terms in the definition of Zg so that the RGE 
reads [56] 

  \mu ^2\frac { \sd \alpha _s(\mu )}{\sd \mu ^2}=-\alpha _s(\mu )(\beta _0\alpha _s(\mu )+\beta _1\alpha _s^2(\mu ) +...)\ , 


  


    (2.39)

which allows for the coupling to be evaluated at different scales with high precision. 
Higher order coefficients of the beta function can be found, for example, in ref. [56].
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2.4 The soft and collinear limits of QCD

In this section we examine some properties of radiative corrections in QCD, focusing 
on the limit that the gluon is radiated soft and/or collinear with respect to its emit-
ter. The soft and collinear limits are especially important for the study of jet sub-
structure and will play a central role throughout this thesis.

2.4.1 Infra-red divergences

We begin by calculating the total cross-section for a virtual photon decaying to hadrons 
up to first order in the strong coupling. The relevant Feynman diagrams are shown 
in figure 2.1

A =

pq

pq

AR =

pq

pq

k
BR =

pq

pq

k

AV =

pq

pq

k
BV =

pq

pq

k

CV =

pq

pq

k

1

Figure 2.1. The Feynman diagrams needed to compute the total cross-section for a virtual photon 
decaying to hadrons at O(αs).

The Born cross-section is given by [62] 

  \sigma _0=\frac {1}{2Q}\int |A|^2\sd \Phi ^{(2)}=3Q\alpha _{\mathrm {E.M}}\sum _ie_{qi}^2\ , 





 




  (2.40)

where A is the amplitude shown in figure 2.1, dΦ(2) is the two particle phase space, 
Q is the virtuality of the photon, and eqi are the electric charge of the quarks in units 
of the electron charge. At O(αs) the squared matrix element for γ∗ → qqg is given by 
[63] 

 \label {eq:realM} |M_{R}|^{2}=|A_{R}|^{2}+|B_{R}|^{2}+2A_{R}B_{R}^{*}=24 C_F e^{2}e_{q}^{2}g_{s}^{2}\left (\frac {p_{q}\cdot k}{p_{\overline {q}}\cdot k}+\frac {p_{\overline {q}}\cdot k}{p_{q}\cdot k}+\frac {Q^{2} \ p_{q}\cdot p_{\overline {q}}}{p_{\overline {q}}\cdot k \ p_{q}\cdot k} \right ),  

  






 
 


 
 


  
    


 (2.41)

with AR and BR denoting the Feynman diagrams in figure 2.1. The real gluon emis-
sion contribution to the cross-section is found by integrating |MR|2 over the three 
particle phase space. However, this is divergent in four dimensions as the squared 
matrix element diverges as the gluon momentum goes to zero or becomes collinear 
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with one of the quark momenta. These are known as infra-red and collinear diver-
gences. The result is therefore calculated in 4−2ε dimensions, so that the divergences 
appear as negative powers of ε: 

 \label {eq:gammaToHadReals} \sigma _{\mathrm {real}}=\sigma _0\frac { C_F \, \alpha _{s}^{\overline {\text {MS}}}}{2\pi } \frac {e^{-\epsilon \gamma _{E}}}{\Gamma (1-\epsilon )}\left (\frac {\mu ^{2}}{Q^{2}} \right )^{\epsilon }\left (\frac {2}{\epsilon ^{2}}+\frac {3}{\epsilon }-\pi ^{2}+\frac {19}{2}+\mathcal {O}(\epsilon ) \right ).  

























 







 (2.42)

The matrix element squared for the order αs virtual corrections can be written as: 

  |M_{V}|^{2}=(A_{V}+B_{V}+C_{V})A^{*}       
 (2.43)

with AV , BV , CV and A defined in figure 2.1. The renormalised virtual contribution 
to the cross-section then reads 

 \label {eq:gammaToHadVirtuals} \sigma _{\mathrm {virtual}}=\sigma _0\frac { C_F\, \alpha _{s}^{\overline {\text {MS}}}}{2\pi }\frac {e^{-\epsilon \gamma _E}}{\Gamma (1-\epsilon )}\left (\frac {\mu ^{2}}{Q^{2}} \right )^{\epsilon }\left (\frac {-2}{\epsilon ^{2}}-\frac {3}{\epsilon }+\pi ^{2}-8+\mathcal {O}(\epsilon ) \right ).  






















   


 (2.44)

As the above expression is renormalised, all of the divergences are infra-red in na-
ture. Adding the real and virtual contributions to the Born cross-section, one finds 
that all of the poles cancel and ε can be taken safely to zero so that the total cross-
section reads 

  \sigma ^{\mathrm {tot}}=\sigma _0\left (1+\frac {3\alpha _sC_F}{4\pi }\right ) \ ,  









 (2.45)

which is free of divergences as a physical quantity should be. The order-by-order can-
cellation of infra-red divergences in physical quantities is guaranteed by the KLN 
theorem [64], [65]. This relies on all physical observables being inclusive of final states 
with different numbers of particles, which may at first seem strange. More specifi-
cally, physical observables cannot be sensitive to the addition of very soft or collinear 
gluons in the final state.
For example, one could imagine trying to measure the cross-section for a virtual pho-
ton decaying to three partons. Ignoring the effects of hadronisation for the moment, 
we can see from eq. (2.42) that this cross-section is divergent even at leading order. 
What is missing here is that any detector will have some minimum resolution, so 
what would really be measured is the cross-section for producing three partons each 
with energy greater than Emin and which are separated by some minimum angle δ. 
This finite resolution cuts out the divergent regions of phase space and regularises 
the leading order cross-section. Higher order corrections will also be finite as the ob-
servable will be inclusive of configurations with extra partons that are softer than 
Emin and emitted at angular scales smaller than δ, the divergences from which will 
cancel against the loop corrections. Provided one takes into account the finite reso-
lution of the detector, or defines the cross-section with some self imposed minimum 
resolution, this observable is then perturbatively calculable. Observables which are 
insensitive to the addition of extra soft and collinear partons in the final state are 
known as infra-red and collinear safe (IRC safe). More formally we can take the defi-
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nition of IRC safety for and observable V ({k})from [66]: 

 \label {eq:IRCsafe} \begin {split} V(...,k_i,k_j,...)&\to V(...,k_i+k_j,...)\ \ \text {if} \ \ k_i || k_j \\ V(...,k_{i-1},k_i,k_{i+1})&\to V(...,k_{i-1},k_{i+1},...)\ \ \text {if}\ \ k_i \to 0 \end {split}            
 \label {eq:IRCsafe} \begin {split} V(...,k_i,k_j,...)&\to V(...,k_i+k_j,...)\ \ \text {if} \ \ k_i || k_j \\ V(...,k_{i-1},k_i,k_{i+1})&\to V(...,k_{i-1},k_{i+1},...)\ \ \text {if}\ \ k_i \to 0 \end {split}             

 \label {eq:IRCsafe} \begin {split} V(...,k_i,k_j,...)&\to V(...,k_i+k_j,...)\ \ \text {if} \ \ k_i || k_j \\ V(...,k_{i-1},k_i,k_{i+1})&\to V(...,k_{i-1},k_{i+1},...)\ \ \text {if}\ \ k_i \to 0 \end {split} 

where the first line guarantees collinear safety and the second guarantees infra-red 
safety.

2.4.2 The soft limit

In this section we will look at the soft limit of the real emission matrix element given 
in the previous section. Keeping only the leading term as |k| → 0 in eq. (2.41) gives 

 \label {eq:Msoft} |M^{\mathrm {soft}}|^2=|A|^2 2 C_Fg_s^2\left (\frac { \ p_{q}\cdot p_{\overline {q}}}{p_{\overline {q}}\cdot k \ p_{q}\cdot k} \right ) \ ,   




 

    


 (2.47)

where A is the matrix element for the Born process. This is known as the eikonal ap-
proximation. A notable feature of equation (2.47) is that the emission of a soft gluon 
is factorised from the Born process. Remarkably, this property does not depend on 
the details of the process and holds generally such that [63] 

  |M_{n+1}|^2=-g_s^2\sum _{i,j}\frac { \ p_{i}\cdot p_{j}}{p_{i}\cdot k \ p_{j}\cdot k}\langle M_n|\textbf {T}_i\cdot \textbf {T}_j|M_n\rangle \ ,  



 
    

    (2.48)

where Ti are colour operators acting on the states |Mn〉, which are vectors in colour 
space. These colour operators generally make evaluating matrix elements with large 
numbers of soft gluons extremely difficult, although this is often simplified by taking 
the large Nc limit, where the colour matrices become diagonal. Additionally, as the 
IR divergences must cancel between the real and virtual corrections, the virtual cor-
rections must have the same factorised form in the limit that the loop momentum is 
soft so that the soft singularities will cancel to all orders.
Another important feature of the soft approximation is coherence. That is to say, the 
soft gluon emission pattern from a dipole is restricted to the opening angle of that 
dipole. We can demonstrate this using the example of a soft gluon emitted from a qq̄
dipole which originated from the decay of a colour singlet, such as was discussed in 
2.4.1.

The angular dependence of the matrix element in eq. (2.47) can be written as 

  \label {eq:SplitSoft} |M^{\mathrm {soft}}|^{2}\propto \left ( \frac {1}{1-\cos (\theta _{gq})}+\frac {\cos (\theta _{gq})-\cos (\theta _{q \overline {q}})}{(1-\cos (\theta _{gq}))(1-\cos (\theta _{g\overline {q}}))}\right )+(q \leftrightarrow \overline {q}),  








 


    (2.49)

where k0 is the gluon’s energy and θij is the angle between the particles i and j.
Eq.(2.49) can be integrated over the azimuthal component of the phase space with 
the z axis taken along the direction of pq for the term given above, and along pq for 

{eq:azimuthalIntegral} \int _{0}^{2\pi } |M^{\mathrm {soft}}|^{2} \ \frac {d\phi }{2\pi }\propto \int _{0}^{2\pi } \bigg (\frac {1}{1-\cos (\theta _{g \overline {q}})} \\+ \frac {\cos (\theta _{g\overline {q}})-\cos (\theta _{q\overline {q}})}{1-\sin (\theta _{g\overline {q}})\sin (\theta _{q\overline {q}})\cos (\phi )-\cos (\theta _{g\overline {q}})\cos (\theta _{q\overline {q}})} \bigg )\frac {d\phi }{2\pi } +(q \leftrightarrow \overline {q}).



the other term: {eq:azimuthalIntegral} \int _{0}^{2\pi } |M^{\mathrm {soft}}|^{2} \ \frac {d\phi }{2\pi }\propto \int _{0}^{2\pi } \bigg (\frac {1}{1-\cos (\theta _{g \overline {q}})} \\+ \frac {\cos (\theta _{g\overline {q}})-\cos (\theta _{q\overline {q}})}{1-\sin (\theta _{g\overline {q}})\sin (\theta _{q\overline {q}})\cos (\phi )-\cos (\theta _{g\overline {q}})\cos (\theta _{q\overline {q}})} \bigg )\frac {d\phi }{2\pi } +(q \leftrightarrow \overline {q}).



 












{eq:azimuthalIntegral} \int _{0}^{2\pi } |M^{\mathrm {soft}}|^{2} \ \frac {d\phi }{2\pi }\propto \int _{0}^{2\pi } \bigg (\frac {1}{1-\cos (\theta _{g \overline {q}})} \\+ \frac {\cos (\theta _{g\overline {q}})-\cos (\theta _{q\overline {q}})}{1-\sin (\theta _{g\overline {q}})\sin (\theta _{q\overline {q}})\cos (\phi )-\cos (\theta _{g\overline {q}})\cos (\theta _{q\overline {q}})} \bigg )\frac {d\phi }{2\pi } +(q \leftrightarrow \overline {q}).


    





   

When integrated, this gives 

 \label {eq:coherence} =\left (\frac {\Theta (\cos (\theta _{g q})-\cos (\theta _{q \overline {q}}))}{\left (1-\cos (\theta _{g q})\right )}+(q \leftrightarrow \overline {q}).\right ), 





  


 (2.51)

where the step function is zero for θgq > θqq̄, signifying that gluon emission is re-
stricted to the opening angle of the dipole. The reason for this, from a physical per-
spective, is that at wide angles the large wavelength of soft gluons cannot resolve the 
individual quarks, but instead is sensitive only to the system as a whole, which in 
this case is a colour singlet, and thus, emits no radiation. More generally, at angular 
scales larger than the opening angle of a dipole, soft radiation is emitted coherently, 
according to the overall colour charge of the dipole. Another simple example would 
be that a soft gluon emitted collinear to a quark is not sensitive to the presence a 
much more collinear gluon, also emitted from the quark, as it only sees the overall 
colour charge, which is that of a quark.

2.4.3 The collinear limit

We now turn to the limit where the gluon is emitted collinear to one of the quarks. 
The cross-section for γ∗ → qq̄g, differential in the energy of both quarks, can be writ-
ten as [54] 

  \frac {\sd ^2\sigma }{\sd x_1\sd x_2}=\sigma _0\frac {C_F\, \alpha _s}{2\pi }\frac {x_1^2+x_2^2}{(1-x_1)(1-x_2)} \ , 








 
 

 (2.52)

where xi = 2Ei

Q
. This can be expressed in terms of z = Eq

Eq+Eg
= x1

2−x2
and kt, the 

transverse momentum of the gluon relative to one of the quarks. In the limit that 
kt � Q we can write [56] 

  \frac {\sd ^2\sigma }{\sd z\sd k_t^2}=\sigma _0\frac {C_F \, \alpha _s}{2\pi }\frac {1}{k_t^2}\frac {1+z^2}{1-z}+\mathcal {O}(\frac {k_t^2}{Q^2})\ , 












 







  (2.53)

which captures the leading terms in the collinear limit. The factor of CF
1+z2

1−z
is the 

collinear splitting function 〈Pqq(z)〉. Like the soft limit, we see that the probability 
of a collinear splitting is factorised from the Born cross-section. If one considers a 
sequence of splittings where each subsequent splitting is more collinear than the last, 
then the cross-section for this process can be factorised into a product of collinear 
splitting functions. This approximation will be useful in section 2.5, when calculating 
observables to all orders.
A similar picture emerges for the splitting of a gluon to either a qq̄ pair or a pair of 
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gluons, so that the probability of a parton of type a branching to a parton of type b, 
carrying momentum fraction z, can be factorised from the rest of the cross-section 
and written as 

 \label {eq:emissionProb} \frac {\sd \mathcal {P}}{\sd k_t^2\sd z}=\frac {\alpha _s}{2\pi }\langle P_{b,a}(z)\rangle \frac {1}{k_t^2} \ . 











 (2.54)

Although not necessary for 〈Pgq(z)〉, the splitting functions are averaged over the az-
imuthal integration as the gluon splitting probability depend on the azimuth. The 
other splitting functions are [67]: 

 \label {eq:splittingFunctions} \begin {split} \langle P_{gq}(z)\rangle &=C_F \frac {1+(1-z)^2}{z}\\ \langle P_{qg}(z)\rangle &=T_R(z^2+(1-z)^2)\\ \langle P_{gg}(z)\rangle &=C_A\left (\frac {z}{1-z}+\frac {1-z}{z}+z(1-z)\right ) \end {split}  
  



 \label {eq:splittingFunctions} \begin {split} \langle P_{gq}(z)\rangle &=C_F \frac {1+(1-z)^2}{z}\\ \langle P_{qg}(z)\rangle &=T_R(z^2+(1-z)^2)\\ \langle P_{gg}(z)\rangle &=C_A\left (\frac {z}{1-z}+\frac {1-z}{z}+z(1-z)\right ) \end {split}  
  

 \label {eq:splittingFunctions} \begin {split} \langle P_{gq}(z)\rangle &=C_F \frac {1+(1-z)^2}{z}\\ \langle P_{qg}(z)\rangle &=T_R(z^2+(1-z)^2)\\ \langle P_{gg}(z)\rangle &=C_A\left (\frac {z}{1-z}+\frac {1-z}{z}+z(1-z)\right ) \end {split}  










 

  \label {eq:splittingFunctions} \begin {split} \langle P_{gq}(z)\rangle &=C_F \frac {1+(1-z)^2}{z}\\ \langle P_{qg}(z)\rangle &=T_R(z^2+(1-z)^2)\\ \langle P_{gg}(z)\rangle &=C_A\left (\frac {z}{1-z}+\frac {1-z}{z}+z(1-z)\right ) \end {split} 

where 〈Pgq(z)〉 is related to 〈Pqq(z)〉 by z → 1− z. The colour factors associated with 
collinear splittings are much simpler than for soft emissions. This can be traced back 
to the fact that the colour factors associated with soft emissions depend on all colour 
charges in the amplitude, whereas collinear splittings can be thought of as a splitting 
of a specific parton so that the colour factors are as given by the Casimir of the rele-
vant representation as per eq. (2.55). In equation (2.54), kt can generally be replaced 
with any variable which goes to zero as the decay products become collinear, such as 
θ, the angle between the collinear decay products, or the invariant mass.
The gluon emission probability is particularly simple in the soft and collinear limit. 
Taking z = Eg

Ep
with Ep the energy of the parent parton the emission probability can 

be written as 
  \frac {\sd ^2\sigma }{\sd z\sd k_t^2}=\frac {C_R\alpha _s}{\pi }\frac {1}{z}\frac {1}{k_t^2}, 














 (2.56)

which captures just the leading soft and collinear singularity. In the above equation 
CR is equal to either CF or CA depending on if the parent parton is a quark or gluon 
respectively.

2.4.4 Large logarithms

Earlier we discussed IRC safety, using the cross-section for a virtual photon decay-
ing to three partons as an example. This was found to be perturbatively calculable 
as long as the observable was defined such that each parton would have a minimum 
energy Emin and be separated by some minimum angle δ. We now study the cross-
section for the production of two jets defined in this way, the Sterman-Weinberg jet 
cross-section [66]. The Born cross-section for producing a quark–anti-quark pair will 
be denoted σ0. For our purposes it is sufficient to calculate the O(αs) correction to 
this in the soft and collinear limit. Considering the gluon to be emitted collinear the 
quark and including a factor of two to account for the case that it is collinear to the 
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anti-quark, the real contribution reads 

 \label {eq:SWJetReals} \sigma ^{\mathrm {real}}=2\sigma _0 \frac {C_F\alpha _s}{\pi }\int _0^{\frac {Q}{2}}\frac {\sd E_g}{E_g}\int _0^\delta \frac {\sd \theta ^2}{\theta ^2}+2\sigma _0\frac {C_F\alpha _s}{\pi }\int _0^{E_{\mathrm {min}}}\frac {\sd E_g}{E_g}\int _\delta ^1\frac {\sd \theta ^2}{\theta ^2}\ ,  









































 (2.57)

where the upper limit on the angular integration is an approximation and has been 
set to 1 so as to avoid additional terms that are not needed for the purpose of this 
section and would not be correct anyway, as we would need to use the soft wide an-
gle form of the matrix element. The first term in eq. (2.57) represents a gluon be-
ing emitted at an angle less than δ to either the quark or anti-quark. In this case 
the gluon can have any energy and the event will still satisfy the two jet deffinition. 
The second term represents the gluon being emitted at angles wider than δ, so for 
the event to be two-jet-like, the gluon must have energy less than Emin. The virtual 
contribution can then be expressed as 

  \sigma ^{\mathrm {virtual}}=-2\sigma _0\frac {C_F\alpha _s}{\pi }\int _0^{\frac {Q}{2}}\frac {\sd E_g}{E_g}\int _0^1\frac {\sd \theta ^2}{\theta ^2}\ ,  




















 (2.58)

which is because, as previously mentioned, the virtual corrections must have the same 
singularity structure as the reals. Combining the real and virtual correction we find 
that the Sterman-Weinberg jet cross-section, at double logarithmic accuracy, is given, 
to O(αs), by 

  \sigma =\sigma _0\left (1-2\frac {C_F\alpha _s}{\pi }\ln (\delta )\ln \left (\frac {2E_{\mathrm {min}}}{Q} \right )\right )\ . 















 (2.59)

This result is somewhat problematic as, for small values of δ and Emin, the first or-
der correction can become larger than the Born cross-section and can even cause the 
cross-section to become negative, which is clearly not physical. The problem is not 
solved by going to higher orders as each power of αs is accompanied by two large log-
arithms, which spoils the convergence of the perturbative series. These logarithms 
arise because of restrictions placed on the phase space in which real emissions are al-
lowed, a common feature of jet substructure observables. The solution to this prob-
lem is to resum these large logarithms to all orders. A method for resumming these 
large logarithms up to next-to-leading logarithmic accuracy is illustrated in the next 
section.

2.5 Resummation

In the previous section the need to resum large logarithms which originate from infra-
red singular regions was illustrated. In this section we will focus on how these infra-
red and collinear logarithms can be resummed, using the heavy hemisphere mass, 
MH, as an example. The heavy hemisphere mass is defined by partitioning the phase 
space into two hemispheres and measuring the invariant mass of the particles in each 
hemisphere. The larger of the two masses is the heavy hemisphere mass. The par-
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titioning of the event into two hemispheres is traditionally done by a plane perpen-
dicular to the thrust axis1 [68], although in the soft and collinear limits relevant for 
resummation we take this plane to be perpendicular to the axis defined by the ini-
tial qq̄ pair. For convenience we define the quantity ρ =

M2
H

Q2 where Q is the cen-
ter of mass energy. We will first discus some features of this observable that make 
it amenable to resummation before discussing, in section 2.5.1, the treatment of cor-
related emissions in resummation. The cumulative heavy jet mass distribution, 

 \label {eq:HeavyHemMassDef} \Sigma (\rho )=\frac {1}{\sigma _0}\int _0^\rho \frac {\sd \sigma }{\sd \rho '}\sd \rho '\ , 











  (2.60)

is then resummed to next-to-leading logarithmic (NLL) accuracy in section 2.5.2.
The resummation will be carried out in the context of electron positron collisions 
as this allows us to focus on final state resummation, the physics of which remains 
unchanged at hadron colliders due to the factorisation properties of QCD, without 
many of the additional complications that arise with hadron collider observables. 
These complicating factors, and how some of them can be mitigated, as well as the 
need for resummation in jet substructure studies will be discussed in chapter 3. We 
shall carry out the resummation to next to leading logarithmic (NLL) accuracy, mean-
ing that we capture all terms of the form αn

s ln2n−m(ρ) with m = 0, 1.
The heavy hemisphere mass has several properties which are helpful in carrying out 
the resummation:

1. It is IRC safe.

2. It is sufficiently insensitive to collinear branching of an emission that we can, 
within NLL accuracy, make the replacement ρ(~k1, ~k2) → ρ(~k1 + ~k2), when ~k1 and 
~k2 are the momenta of two emissions resulting from the branching of a gluon 
emitted from the initial qq̄ pair.

3. It is additive in the soft and collinear limit, meaning that ρ(k1, k2) ' ρ(k1) +

ρ(k2).

4. It is a global observable, meaning that it is sensitive to emissions anywhere in 
the phase space.

We shall now discuss why these properties are helpful and make these statements 
more precise as well as discussing a wider class of observables that can be resummed 
in a similar fashion.
Point 1 may seem a somewhat obvious requirement as it guarantees that the observ-
able can be computed perturbatively. However, resummations of observables which 
are not IRC safe but Sudakov safe 2, such as N-subjettiness ratios [14], can be com-
puted using broadly similar techniques [26], [28] albeit without fully achieving NLL 
accuracy.

1The thrust axis is defined by the unit vector ~n which maximises T =
∑

i |~pi·~n|∑
i |~pi|

.
2Sudakov safe observables are discussed further in section 3.4.2.
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Point 2 allows us to absorb branchings off a primary emission, i.e. one off the initial 
qq̄ pair, into the strong coupling as is discussed further in section 2.5.1. This allows 
us to carry out the resummation considering only a sequence of primary emissions, 
ordered in transverse momentum as is carried out in section 2.5.2. A set of proper-
ties which guarantee that an observable can be resummed in this manner were for-
malised in ref [69] as part of the rIRC safety conditions.
As we shall see in section 2.5.2, point 3 makes it relatively easy to write the observ-
able dependence of the cumulant in a factorised form, which is necessary for carry-
ing out the resummation using the techniques presented here. Perhaps more impor-
tantly, because one emission does not influence the way in which another emission 
contributes to ρ we do not have to consider the details of what happens when two in-
dependent emissions have comparable transverse momenta. This allows us to approx-
imate the matrix element for any number of emissions as a product of independent 
emissions strongly ordered in transverse momentum, or some other variable.

Point 4 guarantees the absence of non-global logarithms (NGLs) [70], [71], which 
cannot be simply resummed in the manner which is demonstrated here. NGLs are a 
class of logarithm which is particularly difficult to resum. The resummation of NGLs 
has up until recently been limited to the leading non-global logs in the leading colour 
approximation, with NLL at leading colour now being possible [72]. These logarithms 
arise as a result of configurations where partons are radiated from a region of phase 
space which the observable is insensitive to into a region that it is sensitive to, as 
is depicted in figure 2.2 for an observable measured only on the left hemisphere. As 
an example, consider the left hemisphere mass. The contribution of k2 (shown in fig-
ure 2.2a) to the left hemisphere mass cannot be accounted for by treating primary 
gluon emissions inclusively of their decay products. Instead M2

L = k2 · p1, with p1
the momentum of the quark in the left hemisphere. There will be a soft divergence 
as k2 → 0 which will cancel against the corresponding virtual correction in the right 
hemisphere as shown in figure 2.2b. It is this cancellation between real and virtual 
corrections in different hemispheres that gives rise to non-global logarithms.

Left Hemisphere Right Hemisphere

~p2~p1

~k2

~k1

(a) A secondary gluon is radiated from the right 
hemisphere into the left.

Left Hemisphere Right Hemisphere

~p2~p1

~k

(b) A gluon emitted in the right hemisphere 
with a loop correction.

Figure 2.2. Configurations which together give rise to non-global logarithms for observables 
computed on the left hemisphere only.
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2.5.1 Accounting for correlated emissions

As discussed above, the branching of primary emissions can be accounted for within 
NLL accuracy by an appropriate treatment of the coupling, provided the observable 
is not overly sensitive to collinear branchings of a primary emission. This treatment 
involves using the CMW [73] scheme for the coupling and setting the argument of 
the coupling to the transverse momentum of the emission it is associated with, so 
that, in the collinear limit, the probability of emitting a gluon, inclusive of it branch-
ing, after averaging over the azimuthal angle can be written as 

  \frac {\sd ^2\sigma }{\sd k_t^2\sd z}=\frac {1}{\pi }\alpha _s^{\mathrm {CMW}}(k_{t}^2)P_{g,p}(z)\frac {1}{k_{t}^2} \ , 








 




 (2.61)

where p can either denote a quark or gluon. We note that the CMW scheme should 
only really multiply the soft part of the splitting function, but that the error intro-
duced by letting it multiply the full splitting function is beyond NLL accuracy for 
rIRC safe double logarithmic observables.

We first show how using the one loop coupling with the argument set to to kt in-
cludes hard collinear branchings and associated virtual corrections before discussing 
the two loop coupling and CMW scheme.

(a) (b) (c)

Figure 2.3. Examples of diagrams that are included by setting the argument of the coupling to the 
transverse momentum of the primary gluon emission. Although only one and two loop 

configurations are shown, diagrams with any number of loops inserted into the primary gluon line 
are resummed by choosing the argument of the coupling to be kt.

To show this one must consider the gluon emission diagrams with any number of 
loops inserted into the gluon line, an example of which is shown in figure 2.3a, along 
with the diagrams where a gluon is emitted and then branches, with any number of 
loops inserted into the primary gluon line, some examples of which are also shown in 
figures 2.3b and 2.3c. Summing over quark and gluon loops, each loop insertion into 
these diagrams contributes a factor of αs(µ

2)β0 ln
(

µ2

m2

)
to the cross-section, where 

m2 is the virtuality of the gluon line off the quark, which is zero when the gluon does 
not branch. The existence of these terms is demonstrated explicitly in chapter 4 through 
an O(α2

s) calculation. These loops can be resummed using 

  \alpha _{s}(\mu ^2) \sum _{n=0}^{\infty }\left (\alpha _{s}(\mu ^2)\beta _{0}\ln \left (\frac {\mu ^{2}}{m^{2}}\right )\right )^{n}=\frac {\alpha _{s}(\mu ^2)}{1-\beta _0\alpha _{s}(\mu ^2)\ln \left (\frac {\mu ^2}{m^2} \right )}=\alpha (m^2). 





















 






   (2.62)
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The loop corrections re-summed in the expression above are just a product of one 
loop corrections. Incorporating loop topologies which enter at two loops will give the 
geometric series for the two loop running of the coupling, which will capture a tower 
of next to leading logarithms.
The probability of emitting a gluon from a quark, inclusive of that gluon branching 
and including all possible loops inserted into the gluon line, can then be written as 
[74] 

 \label {eq:inclusiveCrossSection1} \frac {\sd ^2\sigma ^{\text {inclusive}}}{\sd k_t^2\sd z} =\frac {1}{\pi } P_{gq}(z)\frac {1}{k_{t}^{2}}\left (\alpha _{s}(0)-\beta _{0}\int _{0}^{\infty }\frac {k_{t}^{2}\alpha ^{2}_{s}(m^{2}) dm^{2}}{m^{2}(k_{t}^{2}+m^{2})} \right ). 





























 (2.63)

The αs(0) term is due to the type of diagram shown in figure 2.3a, representing the 
emission of an on shell gluon. The second term, proportional to β0, is due to inte-
grating the diagrams where the gluon branches over the virtuality of the interme-
diate gluon, the soft divergent piece from the gluon splitting having been cancelled 
against the corresponding virtual corrections [74]. The integral over the virtuality in 
Eq. (2.63) can be rewritten as   \int _{0}^{\infty }\frac {k_{t}^{2}}{(m^{2}+k_{t}^{2})}\frac {\sd }{\sd m^{2}}\left ( \alpha _{s}(m^{2})\right ) \sd m^{2}=-\alpha _{s}(0)+\int _{0}^{\infty }\frac {k_t^2\alpha _{s}(m^{2})}{(m^{2}+k_{t}^{2})^{2}}\sd m^{2}, 




  









  








  

 (2.64)

where we have used ∂
∂ lnm2αs(m

2) = −β0α2
s(m

2). The resulting αs(0) cancels the 
αs(0) term in Eq. (2.63). The remaining integral over the virtuality can be evaluated 
by making the substitution, m2

k2t
= u, and writing αs(u k

2
t ) = exp

[
ln(u) d

d ln(k2t )

]
αs(k

2
t ), 

to give [75] 

\frac {\sd ^2\sigma ^{\text {inclusive}}}{\sd k_t^2\sd z} = \frac {1}{\pi } P_{gq}(z)\frac {1}{k_{t}^{2}}\left ( \int _{0}^{\infty }\frac {\exp \left [\ln (u)\frac {\sd }{\sd \ln (k_{t}^{2})}\right ]\alpha _{s}(k_{t}^{2})}{(1+u)^{2}} \sd u \right )=\\ \frac {1}{\pi } P_{gq}(z) z \frac {1}{k_{t}^{2}}\frac {\pi \frac { \sd }{\sd \ln (k_{t}^{2})}}{\sin \left (\pi \frac {\sd }{\sd k_{t}^{2}} \right )}\alpha _{s}(k_{t}^{2}).





















 







 




\frac {\sd ^2\sigma ^{\text {inclusive}}}{\sd k_t^2\sd z} = \frac {1}{\pi } P_{gq}(z)\frac {1}{k_{t}^{2}}\left ( \int _{0}^{\infty }\frac {\exp \left [\ln (u)\frac {\sd }{\sd \ln (k_{t}^{2})}\right ]\alpha _{s}(k_{t}^{2})}{(1+u)^{2}} \sd u \right )=\\ \frac {1}{\pi } P_{gq}(z) z \frac {1}{k_{t}^{2}}\frac {\pi \frac { \sd }{\sd \ln (k_{t}^{2})}}{\sin \left (\pi \frac {\sd }{\sd k_{t}^{2}} \right )}\alpha _{s}(k_{t}^{2}).









 









 

The operator 
π d

d ln(k2t )

sin
(
π d

dk2t

) can be written as a series and acted on αs(k
2
t ) to give 

  \frac {\sd ^2\sigma ^{\text {inclusive}}}{\sd k_t^2\sd z} =\frac {1}{\pi } P_{gq}(z) \frac {1}{k_{t}^{2}}\alpha _{s}(k_{t}^{2})+\mathcal {O}\left (\alpha _s^3(k_t^2)\right ), 















 








 (2.66)

where in the perturbative domain, where αs is small, the higher order terms can be 
dropped so that we are simply left with the single gluon emission probability with 
the argument of the coupling set to the transverse momentum of the gluon emission.
Using the one-loop expression for the running coupling with the argument set to kt
generates a spectrum of logarithms starting at αn

sL
2n−1, where L is a large logarithm 

of some observable. To capture all next to leading logarithms one must run the cou-
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pling using the expression generated from the two-loop beta function, 

 \label {eq:twoLoopBeta} \alpha _{S}(Q^2)=\frac {1}{\beta _{0}\ln \left (\frac {Q^{2}}{\Lambda _{\mathrm {QCD}}^{2}}\right )}-\frac {\beta _{1}\ln \left (\ln \left (\frac {Q^{2}}{\Lambda _{\mathrm {QCD}}^{2}}\right )\right )}{\left (\beta _{0}\ln \left (\frac {Q^{2}}{\Lambda _{\mathrm {QCD}}^{2}}\right )\right )^{2}}, 


































  (2.67)

with ΛQCD the position of the Landau pole in QCD, and β0 and β1 are the first two 
coefficients of the beta function [54].
To capture all next to leading logarithms, one must also use the coupling in the CMW 
scheme, which is related to the MS scheme by 

  \alpha _{s}^{\text {CMW}}=\alpha _{s,\overline {\text {MS}}}+K\frac {\alpha _{s,\overline {\text {MS}}}^{2}}{2\pi }\ , 
  





 (2.68)

with KCMW =
(

67
18

− π2

6

)
CA − 5

9
nf . This is due to a finite term in the non abelian 

part of the one to three emission probability, which multiplies the soft part of the 
single emission probability, giving a tower of logarithms starting at α2

sL
2 [76], [77]. 

This can be derived using the two loop splitting functions of [78], as shown in [76]. 
The origin of the KCMW term is also illustrated through an O(α2

s) calculation which 
is carried out in the collinear limit in chapter 4 for the groomed jet mass distribu-
tion.
The inclusion of the possible splitting of a primary gluon through the running cou-
pling relies on the observable, v(k1, .., kn), having limited sensitivity to the splitting 
of a primary gluon. If in the soft and collinear limit, the difference |v(k1, k2)− v(k1 +

k2)|, grows as some power of v(k1 + k2), where k1 and k2 have relative transverse mo-
mentum of the same order as their total transverse momentum relative to one of the 
born partons, then the gluon splitting and virtual corrections can not be simply ab-
sorbed into the running of the coupling [69].

2.5.2 Resumming multiple emissions

We now turn to calculating the heavy hemisphere mass distribution, defined in eq.
(2.60). As mentioned in section 2.4.3, the cross-section for n collinear emissions can 
be written as a product of splitting functions in the limit that emissions are strongly 
ordered in kt, or some other variable which goes to zero in the collinear limit. As 
terms proportional to powers of ρ are neglected in this derivation, we can replace the 
splitting function with 2

z
+Bqδ(1−z) where Bq =

∫ 1

0
(z−2)dz = −3

2
is the integral over 

[0, 1] of the hard part of the splitting function, i.e. Pgq(z)− 2
z
. For any number of soft 

and collinear emissions we can write ρ =
∑

i
k2ti
Q2zi

, which is sufficiently accurate for a 
NLL resummation [69]. The all orders cross-section can then be written, within NLL 

\Sigma (\rho )=\\ \sigma _0\exp \left [-\left (\frac {C_F}{\pi }\int _0^{z^2Q^2}\alpha _s^{\mathrm {CMW}}(k_{t}^2)\left (\int _0^1\frac {2}{z}+B_q \delta (1-z)\right )\sd z\frac {\sd k_{t}^2}{k_{t}^2} \right )\right ] \sum _{n=0}^\infty \frac {1}{n!}\prod _{i=0}^n\\\left (\frac {C_F}{\pi }\int _0^{z_i^2Q^2}\alpha _s^{\mathrm {CMW}}(k^2_{ti})\left (\int _0^1\frac {2}{z_i}+B_q\delta (1-z_i) \right )\sd z_i\frac {\sd k_{ti}^2}{k_{ti}^2} \right )\Theta \left (\rho -\sum _i\frac {k_{ti}^2}{Q^2z_i}\right )



accuracy, as a product of independent emission probabilities as 

\Sigma (\rho )=\\ \sigma _0\exp \left [-\left (\frac {C_F}{\pi }\int _0^{z^2Q^2}\alpha _s^{\mathrm {CMW}}(k_{t}^2)\left (\int _0^1\frac {2}{z}+B_q \delta (1-z)\right )\sd z\frac {\sd k_{t}^2}{k_{t}^2} \right )\right ] \sum _{n=0}^\infty \frac {1}{n!}\prod _{i=0}^n\\\left (\frac {C_F}{\pi }\int _0^{z_i^2Q^2}\alpha _s^{\mathrm {CMW}}(k^2_{ti})\left (\int _0^1\frac {2}{z_i}+B_q\delta (1-z_i) \right )\sd z_i\frac {\sd k_{ti}^2}{k_{ti}^2} \right )\Theta \left (\rho -\sum _i\frac {k_{ti}^2}{Q^2z_i}\right )

\Sigma (\rho )=\\ \sigma _0\exp \left [-\left (\frac {C_F}{\pi }\int _0^{z^2Q^2}\alpha _s^{\mathrm {CMW}}(k_{t}^2)\left (\int _0^1\frac {2}{z}+B_q \delta (1-z)\right )\sd z\frac {\sd k_{t}^2}{k_{t}^2} \right )\right ] \sum _{n=0}^\infty \frac {1}{n!}\prod _{i=0}^n\\\left (\frac {C_F}{\pi }\int _0^{z_i^2Q^2}\alpha _s^{\mathrm {CMW}}(k^2_{ti})\left (\int _0^1\frac {2}{z_i}+B_q\delta (1-z_i) \right )\sd z_i\frac {\sd k_{ti}^2}{k_{ti}^2} \right )\Theta \left (\rho -\sum _i\frac {k_{ti}^2}{Q^2z_i}\right )














 
























\Sigma (\rho )=\\ \sigma _0\exp \left [-\left (\frac {C_F}{\pi }\int _0^{z^2Q^2}\alpha _s^{\mathrm {CMW}}(k_{t}^2)\left (\int _0^1\frac {2}{z}+B_q \delta (1-z)\right )\sd z\frac {\sd k_{t}^2}{k_{t}^2} \right )\right ] \sum _{n=0}^\infty \frac {1}{n!}\prod _{i=0}^n\\\left (\frac {C_F}{\pi }\int _0^{z_i^2Q^2}\alpha _s^{\mathrm {CMW}}(k^2_{ti})\left (\int _0^1\frac {2}{z_i}+B_q\delta (1-z_i) \right )\sd z_i\frac {\sd k_{ti}^2}{k_{ti}^2} \right )\Theta \left (\rho -\sum _i\frac {k_{ti}^2}{Q^2z_i}\right )





 





































where the exponential factor captures the virtual corrections up to NLL accuracy, 
and the upper limit on the integrals over k2ti are a result of dividing the phase space 
into two hemispheres at the point where the rapidity is equal to zero. The step func-
tion in the above equation constrains the squared hemisphere mass, normalised to 
Q2, to be less than ρ. The form of the hemisphere mass used in the step function as-
sumes that all emissions are soft and collinear, which is sufficient for NLL accuracy. 
The single emission probability can be re-written as 

∫ 1

0
R′(ρ′)dρ′

ρ′
, where 

  R'(\rho ')= \frac {C_F}{\pi }\int _0^{z^2Q^2}\alpha _s^{\mathrm {CMW}}(k^2_{t})\left (\int _0^1\frac {2}{z}+B_q\delta (1-z) \right )\sd z\frac {\sd k_{t}^2}{k_{t}^2} \rho \delta \left (\rho '-\frac {k_t^2}{Q^2z}\right ) \ . 









 

















 




 (2.70)

Each real emission can be integrated up to ρ while the virtual corrections cover the 
whole phase space with 0 < ρ′ < 1 so that the resummed cross-section is 

\Sigma (\rho )=\\ \sigma _0\exp \left [-\int _0^1 R'(\rho ')\frac {\sd \rho '}{\rho '}\right ] \sum _{n=0}^\infty \frac {1}{n!}\prod _{i=0}^n \left (\int _0^\rho R'(\rho _i')\frac {\sd \rho _i'}{\rho _i'}\right ) \Theta \left (\rho -\sum _i\rho _i\right )\ .

\Sigma (\rho )=\\ \sigma _0\exp \left [-\int _0^1 R'(\rho ')\frac {\sd \rho '}{\rho '}\right ] \sum _{n=0}^\infty \frac {1}{n!}\prod _{i=0}^n \left (\int _0^\rho R'(\rho _i')\frac {\sd \rho _i'}{\rho _i'}\right ) \Theta \left (\rho -\sum _i\rho _i\right )\ .











































The step function now needs to be written in a factorised form which can be accom-
plished by writing it as an inverse Melin transform
Θ(ρ−

∑
i ρi) =

∫ dν
2πiν

exp[−ρν]
∏

i exp[νρi]. The real emissions can now be exponen-
tiated to give 

  \Sigma (\rho )=\sigma _0\int \frac {\sd \nu }{2\pi i \nu } \exp \left [-\int _\rho ^1 R'(\rho ')\frac {\sd \rho '}{\rho '}-R'(\rho )\int _0^\rho (1-e^{\rho '\nu })\frac {\sd \rho '}{\rho '}\right ]e^{-\nu \rho } \ ,  






























  (2.72)

where, in the integral of ρ′ over [0, ρ], the factor of R′(ρ′) has been approximated as 
R′(ρ) as the integral is dominated by values of ρ′ ' ρ. This reflects the fact that a 
single emission dominates the value of the observable as is the case when emissions 
are strongly ordered.
The integrals over ρ′ can be evaluated and the Bromwich integral carried out to give 

  \Sigma (\rho )=\sigma _0\frac {\exp [-R(\rho )-\gamma _ER'(\rho )]}{\Gamma [1+R'(\rho )]}\ ,  





 (2.73)

where R(ρ) =
∫ ρ

0
R′(ρ′)dρ′

ρ′
. The function exp[−γER′(ρ)]

Γ[1+R′(ρ)]
is a purely NLL piece, i.e. it 

contains no leading log pieces, and accounts for the fact that multiple real emissions 
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m2

ln(kt)

η

z = 1

1

Figure 2.4. A Lund diagram showing the region of phase space in which real emissions are vetoed 
when a cut m

2

Q2 < ρ is imposed, where m is the heavy hemisphere mass.

can contribute to the hemisphere mass, whilst the factor of exp[−R(ρ)] contains all 
of the leading logs and can be found by requiring that no single emission sets a nor-
malised hemisphere mass larger than ρ. At the level of leading log accuracy, the radi-
ating function R can be found simply by integrating the single gluon emission prob-
ability over the phase space in which a single real emissions is vetoed by the observ-
able, reflecting the fact that these logarithms can be thought of as coming from un-
cancelled virtual corrections. A convenient way of representing this is on a Lund dia-
gram, as shown in figure 2.4, where the shaded region shows the vetoed phase space. 
At double logarithmic accuracy, this representation has the nice property that the 
emission probability from a colour dipole is uniform over the Lund plane. How the 
emission probability density is modified beyond the double logarithmic approxima-
tion is discussed further in section 3.5.

35



Chapter 3

Jets and jet substructure

The aim of this chapter is to provide an idea of the huge range of applications that 
jet substructure has at colliders, focusing mainly on techniques related to the follow-
ing chapters of this thesis. Particular emphasis is placed on the role that first prin-
ciples calculations have played, and continue to play, in the development of jet sub-
structure techniques. We begin by looking at how events are modelled at hadron col-
liders to build up a picture of what an event looks like and assist us in understand-
ing the logic behind the various techniques discussed in the following sections. We 
then discuss jet grooming and tagging in sections 3.3 and 3.4, before briefly review-
ing some precision measurements and calculations of jet substructure observables in 
section 3.5, an area which has been developing rapidly in recent years.

3.1 Modelling hadron collider events

To understand the motivation behind the techniques applied to jets at the LHC, we 
should first examine what an event at the LHC, or other hadron collider, looks like, 
or at least how they are modelled. A particularly important concept in this discus-
sion is factorisation, which allows one to break the physics of a proton proton colli-
sion into a convolution of sub-processes rather than one complex process that evolves 
the initial state protons to the final state particles. This is essential for making quan-
titative predictions as it would be impossible to consider the collision and subsequent 
evolution to the final state observed in the detector as a whole with current QFT 
techniques, owing to the huge range of energy scales and large numbers of particles 
involved. To this end we will walk through how a typical LHC collision is modelled, 
discussing the physics at each stage. We then briefly discus the implementation of 
this physics in event generators, which are key tools for phenomenologists and exper-
imentalists, with particular emphasis on the most crucial aspect for jet substructure; 
the parton shower.

In a proton proton collision, one can make the approximation that one parton from 
each proton will scatter off each other at an energy scale much higher than that of 
the interactions between partons within the proton. This separation of scales gives 
rise to a picture of interactions between the partons in each proton happening over 
time scales much longer than those of the hard scattering. Because of this, the hard 
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scattering cross-section can be factorised from the interactions between the partons 
in each proton and computed, using fixed order perturbation theory, without refer-
ence to the other partons in each proton [79]. The momenta of the partons entering 
the hard scattering process are typically given as a fraction, x, of each proton’s mo-
mentum. The distribution of the momenta of different species of parton, i, are given 
by experimentally determined parton distribution functions (PDFs), fi(x, µ2), which 
are convoluted with hard scattering cross-section [55], [80]. The quantity fi(x, µ2)dx
can be interpreted as giving the probability of finding a given species of parton car-
rying a momentum fraction between x and x + dx of the protons momentum when 
the proton is probed at a scale µ. The evolution of the PDFs with µ is given by the 
DGLAP equation [54], [67], [81]–[83], 

  \mu ^2\frac {\sd }{\sd \mu ^2}f_i(x,\mu ^2)=\frac {\alpha _s(\mu ^2)}{2\pi }\sum _j\int _x^1\frac {\sd z}{z}P_{ij}\left (\frac {x}{z}\right )f_j(z,\mu ^2)\ , 



























  (3.1)

named after Dokshitzer, Gribov, Lipatov, Altarelli and Parisi. This allows PDFs that 
are measured in deep inelastic scattering experiments at one scale, to be used as in-
put in hadron collider experiments at higher energies.
The final state of the hard scattering must then be related to observable objects in 
the detector. For hard scatterings with stable or long lived particles in the final state 
this is fairly simple, for example, electrons, muons and photons can all be observed 
in the detector. Processes involving coloured particles in the final state are more com-
plicated, for example, suppose that the hard scattering produces a qq̄ pair. What 
will then be observed in the detector is two jets of hadrons, one associated with each 
quark. Along with the decay products of particles emerging from the hard scattering, 
hadrons associated with other coloured particles in the event are also observed in the 
detector. These other sources are: QCD radiation from the hard partons in the ini-
tial state, known as initial state radiation (ISR); scatterings between other partons 
within the protons, known as multi parton interactions (MPI); and the remnants 
of the protons (beam remnants). Beam remnants and MPI are collectively known 
as underlying event (UE). The work in this thesis is primarily concerned with jets 
associated to the hard process. The evolution from a small number of high energy 
partons to jets of hadrons is again factorised from the hard process. Actually, this 
evolution is typically factorised into two steps, a perturbative parton branching pro-
cess where the hard parton branches into many coloured partons, and a hadronisa-
tion process where the resulting large number of coloured partons are bound into 
hadrons, which can themselves decay to other hadrons. Properties of the jet due to 
the parton branching process can be calculated perturbatively using resummation 
techniques, the subject of much of this thesis, or a parton shower, a type of Monte 
Carlo simulation that describes this parton branching process and can be used to 
approximate a resummed calculation. Parton showers will be discussed further in 
section 3.1.1. The effect of hadronisation on an observable is not generally calcula-
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ble from QCD, as hadronisation is a non-perturbative effect. 1 Hadronisation models 
are incorporated into event generators [54], [86]–[90] which can then simulate a com-
plete final state, although such models are not derivable from first principles QCD. 
The hadronisation process, being at a lower scale than parton branching, is gener-
ally taken to be local and not to significantly modify the substructure of a jet [54]. 
Throughout this thesis we will therefore talk about the substructure of jets mostly 
in perturbative terms, with the understanding that hadronisation provides a small 
correction to this. Of course this is only really a suitable picture for IRC safe observ-
ables.

3.1.1 Event generators and parton showers

Event generators such as Herwig [86], Pythia [53], and Sherpa [91] model every stage 
of a proton proton collision as described above, generating (approximately) realis-
tic final states which can be analysed or passed to a simulation of a detector to pro-
vide comparisons between theoretical predictions and measurements. Some stages of 
the evolution are under better theoretical control than others. For example it is now 
relatively standard for event generators to make use of next to leading order (NLO) 
matrix elements in the hard scattering process through methods such as POWHEG 
[92], with next-to-next-to leading order (NNLO) being achievable for certain pro-
cesses [93]. This represents one of the better theoretically controlled stages of event 
generators. An example of a process which is less well theoretically controlled is hadro-
nisation, its implementation in event generators relying on models which are tuned 
to data to provide a realistic description of hadronic final states [88]–[90].
One of the key parts of an event generator for modelling jet substructure is the par-
ton shower. Parton showers approximate high order perturbative QCD calculations 
involving large numbers of partons, which are not computable exactly with current 
techniques, by repeatedly mapping an n parton state to an n + 1 parton state. They 
aim to correctly reproduce the logarithmically enhanced soft and collinear regions 
of phase space so that computing observables on the final states produced will ap-
proximate a resummed calculation. The final state produced by the parton shower 
can then be passed to a hadronisation model to produce a realistic final state. The 
reader is referred to ref [94] for an introduction to the workings of parton showers. 
Because of the generality of what can be measured on the final states produced by 
parton showers, ascertaining the level of accuracy achieved by a given parton shower 
is challenging, even for specific observables [95]–[98]. Parton showers currently avail-
able in general purpose event generators typically achieve leading logarithmic accu-
racy, for double logarithmic observables, at leading colour [96], [99]. By using the 
CMW scheme for the coupling [73], with an appropriate argument, many showers 
can also achieve NLL accuracy for certain observables [99]. Recently ref. [95] set out 

1For a few suitably defined observables, non perturbative corrections can be calculated approximately in terms 
of a universal non-perturbative parameter, which is extracted from experiment [84], [85]. These corrections typically 
scale as powers of µNP

Q
, where µNP is the scale of non-perturbative effects and Q the hard scattering scale.
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criteria for a parton shower to be NLL accurate and showed that a number of pre ex-
isting approaches do not meet these criteria for NLL accuracy.
There is a large amount of activity currently ongoing to understand and improve the 
accuracy of parton showers including: assessing logarithmic accuracy of showers [95], 
[96], [100], improving existing showers [100]–[102], developing new algorithms [1]–
[3], [95], [101], [103], [104] and capturing subleading colour effects in parton showers 
[102], [104]–[106]. Following ref. [103] the Pan Scales family of parton showers, which 
are not yet available as part of a general purpose event generator, meet the criteria 
set out in [95] to achieve NLL accuracy.

3.2 What is a jet?

In the previous section it was mentioned that jets of hadrons are often used as a proxy 
for coloured particles produced in some high energy process at a collider. This jet 
of hadrons forms as a result of the hard parton, which initiates the jet, undergoing 
collinear branchings and emitting soft gluons, which are boosted along the direction 
of the initial hard parton. This leads to a perturbative picture of a jet initiated by, 
for instance, a light quark, as a single hard parton surrounded by soft and collinear 
radiation. At some stage, before they can be observed in the detector, these par-
tons will bind together into hadrons because of colour confinement. In order to make 
measurements and perform calculations involving jets, a systematic procedure for 
grouping particles into jets is needed. There are two main types of jet algorithm: se-
quential recombination, and cone algorithms.
Broadly speaking, cone algorithms, of which the Sterman Weinberg jet cross-section 
discussed in section 2.4.4 is an example, consist of a prescription to define a num-
ber of cones of a fixed size in an event, with all particles that fall into a cone being 
deemed to be part of the jet. Some algorithms can generate overlapping cones, in 
which case some prescription to decide on the jet boundary is needed [107]. Many 
cone algorithms suffer from either an infra-red or collinear un-safety problem for con-
figurations involving more than two jets. In terms of perturbative calculations, this 
means that the real emission Feynman diagrams can lead to a different set of jets 
to the loop corrections, meaning that the infra-red and collinear singularities do not 
cancel [107]. The issue of IRC un-safety has been solved by the use of seedless cone 
algorithms, such as the SISCone algorithm [108]. Cone algorithms are also less well 
suited to jet substructure studies so will not be discussed further in this thesis.
Sequential recombination algorithms are defined by a metric, dij, between two sub-
jets, a recombination scheme, and a parameter, R, the jet radius. They take a set of 
particles/ sub-jets as input and proceed as follows:

1. Calculate the pairwise distance between each pair of particles/ sub-jets accord-
ing to the chosen metric, dij.

2. If the smallest dij < R, cluster this pair into a sub-jet and return to step 1).
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3. If all dij > R, the algorithm stops and the remaining sub-jets are the final jets.

The recombination scheme enters in step 2), and defines the way in which the 4-momenta 
of the sub-jets is combined to give the new sub-jet momentum. The simplest choice, 
which will be the default in this thesis, is to simply add the 4-momenta together, al-
though other schemes exist [109].
It is typical to choose different coordinate systems at lepton and hadron colliders: 
spherically symmetric coordinate systems for lepton colliders as the detector is in the 
center of mass frame of the collision; and coordinates which are cylindrically sym-
metric about the beam axis for hadron colliders, as the center of mass frame for a 
collision between one parton from each proton is boosted along the beam axis rela-
tive to the detector. At lepton colliders, momenta are usually specified by the mag-
nitude and two angles, whilst at hadron colliders the momentum transverse to the 
beam (Pt), the rapidity (y = 1

2
ln
(

E+pL
E−pL

)
), and azimuthal angle are typically used. 

It is common to use pseudo-rapidity (η = 1
2
ln
(

|p|+pL
|p|−pL

)
= − ln

(
tan
(
θ
2

))
, with p the 

three momentum, and pL the component of the momentum along the beam direc-
tion) instead of rapidity, the two quantities being equal for a massless four-vector. 
Most jet substructure tools, including jet algorithms, can be formulated for either 
lepton or hadron colliders.
The gen-kt algorithm [109] is a sequential recombination algorithm which, for hadron 
colliders, has the distance metric 

 \label {eq:distanceMetric} d_{ij}=\min (p_{ti}^{2p},p_{t,j}^{2p})\frac {\Delta R_{ij}^2}{R^2},    







 (3.2)

where p is a parameter, pt is the transverse momentum with respect to the beam 
axis, ∆Rij =

√
y2ij + φ2

ij with yij and φij are the separation in rapidity and azimuthal 
angle respectively. For an e+e− collider the deffinition 

  d_{ij}=\min (E_i^{2p},E_j^{2p})\frac {1-\cos (\theta _{ij})}{1-\cos (R)}  
 







(3.3)

would be used. For specific values of p, the gen-kt algorithm reduces to other jet al-
gorithms: p = −1 gives the anti-kt algorithm [110], p = 0 gives the Cambridge 
Aachen (C/A) algorithm [111], [112] and p = 1 gives the kt algorithm [113], [114].
The distance metric of the kt algorithm is, in the collinear limit, just the squared 
transverse momentum of the softer particle relative to the harder one. This ensures 
that as two momenta become collinear they are clustered together, resulting in an 
IRC safe jet algorithm 2. This choice of distance metric also gives rise to a clustering 
sequence ordered in the transverse momentum of emissions, mirroring the structure 
of a collinear parton branching process, the dominant contribution to which can be 
captured by considering a sequence of emissions ordered in kt, as discussed in sec-
tion 2.4.3. Different choices of distance metric give jets ordered in different variables 

2More generally, any value of p in the gen-kt algorithm will give an IRC safe jet algorithm.
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which are useful in different scenarios. The C/A algorithm, for example, gives jets 
which are ordered in angle, mirroring the angular ordered description of parton branch-
ing which can be used to capture the effects of coherence [54], [98]. This property of 
producing jets with a branching sequence ordered in some kinematic variable, which 
can be related to the theoretical description of parton branching in the soft and collinear 
limits, is one of the major benefits of sequential recombination algorithms. It can 
be useful in constructing observables which which mirror our understanding of the 
physics they are are designed to measure, which in turn can facilitate resummations 
of these observables (eg. [29], [115]). For example, if one uses the the gen-kt algo-
rithm with p = 1

2
, then, in the approximation that all emissions from the parton 

which initiated the jet are soft and collinear to that parton, the clustering sequence 
is ordered in the pairwise mass of the splitting, enabling one to easily study or en-
force some cut on the mass of the n highest mass splittings within a jet [25], [29].
Although not used much for jet substructure, the anti kt algorithm [110], correspond-
ing to p = −1 in eq. (3.2), is one of the most widely used jet algorithms at the LHC. 
its popularity is due to the fact that it produces jets with very regular boundaries 
compared to other sequential recombination algorithms [116]. Having jets with a more 
uniform boundary and size is beneficial from an experimental point of view as it as-
sists with the calibration of detector effects and the effect of UE on a jet [107].

3.3 Jet grooming

What one typically wants to capture in a jet are the decay products of a particle 
produced in a hard process whilst leaving out ISR, MPI, beam remnants, and par-
ticles from additional simultaneous pp collisions, known as pileup (PU) [117]. 3. Un-
fortunately it is not possible to construct a jet algorithm that will do this perfectly. 
It is worth noting that ISR is perturbatively calculable while MPI and beam rem-
nants are controlled by non perturbative physics. The additional particles generated 
by the UE and PU are clustered by jet finding algorithms, and degrade the jets prop-
erties, spoiling the association of the jet’s properties with those of a particular par-
ticle [118]–[120]. This can be illustrated by using an event generator such as Pythia 
to produce two samples of events, one with MPI and ISR deactivated and one with 
them activated. By computing the same observable on both samples and comparing 
the distributions, an idea of the size of the effect that UE can have is gained. An ex-
ample of this is shown in figure 3.1 for the fraction of jets, ε, which satisfy τ32 < τ , 
where τ32 is a ratio of N-subjettiness variables [14], which is investigated in the con-
text of top-tagging in chapter 6. The definition of this observable is not important 
here, rather, the point is that UE, which has nothing to do with the dynamics we 
are interested in, has a large impact on the distribution. There are three curves cor-
responding to parton level events with no UE, hadron level events with no UE, and 

3MPI, ISR and beam remnants are absent at electron-positron colliders, although pileup can still be a problem 
there.
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Figure 3.1. Plot showing the fraction of jets simulated with Pythia with Pt > 2TeV remaining after 
a cut τ32 < τ is applied at parton and hadron level with MPI and ISR deactivated and at hadron 

level with ISR and MPI activated.

hadron level events with UE. 

It is therefore desirable to remove ISR, UE and PU from jets. This is known as groom-
ing. As there is no way to unambiguously distinguish between soft particles emit-
ted from within the jet and those from ISR, UE and PU, grooming will also remove 
some soft radiation which was emitted within the jet. This is not necessarily a bad 
thing and can even be part of the intended behaviour of the groomer, as it can aid 
the identification of any hard substructure within the jet and reduce the impact of 
non-perturbative effects. In some cases though, this is undesirable as, for example, 
removal of this radiation can harm the performance of subsequent tagging procedures 
[29], as will be discussed further in section 3.4.1.
Underlying event can be approximated as soft radiation emerging uniformly from a 
collision, whereas soft radiation from within a jet, as well as being soft enhanced, is 
enhanced collinear to the hard parton(s) which initiates the jet. The amount of UE 
removed can therefore be maximised, whilst minimising the removal of soft radiation 
originating from within the jet, by removing soft radiation at wide angles to the hard 
parton(s) in the jet. Many grooming procedures, such as trimming [11] and pruning 
[12], [13], are designed based on this idea.
Trimming works by re-clustering the jet into multiple smaller sub-jets using the kt
algorithm with radius parameter Rsub, which is smaller than the original jet radius, 
and determines how much collinear radiation will be groomed away. Any sub jets 
which carry momentum fraction less than zcut are removed, and the remaining sub-
jets are deemed to be the trimmed jet.
The pruning algorithm works its way through the clustering sequence of a jet, start-
ing at the final clustering. At each clustering the algorithm discards the softer branch 
if min(pt1,pt2)

pt1+pt2
< zcut and ∆R1,2 > RPrune. The pruning radius is determined by the 

mass of the jet as RPrune = Rfact
2mjet
Pt

, where Rfact is a parameter of the algorithm, 
which, similar to Rsub for the trimming procedure, can be used to tune how much 

42



collinear radiation will be removed.
One of the early use of grooming at the LHC, which drove much of the development 
of grooming and tagging algorithms, was the identification, or tagging, of jets initi-
ated by a boosted electroweak bosons, which is discussed in more detail in section 
3.4. This necessitated algorithms which would aid the identification of hard substruc-
ture within jets whilst enhancing the characteristic mass peak of jets initiated by 
boosted electroweak bosons, which is smeared by QCD radiation. Many earlier al-
gorithms had a dual grooming and tagging function, whereas it is now more common 
to consider these steps separately. Having said this, all of the algorithms discussed in 
this section can be used in a purely grooming mode or a tagging mode where jets are 
rejected if all but one branch/sub-jet is removed.
To begin with, much of the testing and development of these grooming and tagging 
algorithms was carried out using event generators [10], [11]. Whilst this type of study 
allows the performance to be tested and tuned, it was realised [21] that event gener-
ator studies alone can not allow us to understand the gain in performance observed 
when these techniques are applied, and whether it is a general feature of the algo-
rithm, or a result of the specific choice of parameters. There is also the issue that 
different event generators (eg. see results presented in section 6.3.3), and even dif-
ferent tunes of the same generator can produce quite different results [116], [121]–
[123]. Ref [21] set out to study the effect of three different grooming/ tagging pro-
cedures on light QCD jets through analytical leading log resummations. The three 
algorithms studied were trimming [11], pruning [12], [13], and the mass drop tagger 
[10].
Trimming and pruning both remove soft branches, where the angular distance from 
the branch it is clustered to is above some pre-determined threshold, from through-
out the whole jet. The mass drop tagger is slightly different in the sense that when it 
finds a clustering where neither branch is groomed away it stops, leaving splittings at 
smaller angular scales un-groomed. The mass drop tagger can be stated by the fol-
lowing steps:

1. Take a jet and re-cluster it using the C/A algorithm.

2. Undo the last clustering of the C/A jet to give two sub-jets, with the heavier 
labelled a, and the lighter b.

3. If y = min(p2ta, p2tb)
∆R2

ab

m2
jet

< ycut or ma > µmjet remove branch b from the jet and 
return to step 2. ycut and µ are both parameters of the tagger. Otherwise the 
final jet contains a and b and the grooming process stops and the jet is deemed 
to be tagged. If only a single branch is left in the jet, then it is rejected.

The ycut condition essentially results in the removal of branches which carry a small 
fraction of the jet’s momentum that are at wider angles than any hard substructure 
within the jet. The condition on the mass results in the removal of branches which 
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do not contribute significantly to the jets mass, hence the name “mass drop tagger”4. 
The MDT can be used purely as a groomer by not rejecting jets where all branches 
are groomed away. Ref. [21] found, for light QCD jets, that the removal of the branch 
with lower invariant mass when one of the conditions in step 3 is met can result in 
the groomer removing the branch containing the parton which initiates the jet, which 
was not the intended behaviour. This feature was found to complicate the all orders 
behaviour of the groomer [21], making it more difficult to calculate resummed re-
sults. A modified mass drop tagger (mMDT) was proposed [21], in which the groomer 
follows the branch with higher transverse mass (m2+P 2

t ) which rectifies this issue. A 
further modification which somewhat simplifies the statement of the groomer is to re-
place the condition y < ycut with a cut on the transverse momentum fraction carried 
by the sub-jet, min(za, zb) < zcut where zi = pti

pt,jet
.

Several notable features of the jet mass distribution (and other observables ) mea-
sured on jets groomed with mMDT were identified from their analytical calculations: 
in the region where ρ =

m2
jet

R2P 2
t
< zcut the leading logarithm is a single collinear log-

arithm of ρ; non-global logarithms of ρ are completely eliminated, which is due to 
there being no soft logarithms, only collinear ones; the mass drop condition of step 
3 does not play a role at leading logarithmic accuracy. Because of the lack of strong 
dependence on the mass drop condition, mMDT is most commonly used now with-
out this condition. It is also frequently used purely as a groomer, where jets are not 
rejected if all of the branches are groomed away.
Ref. [21] also showed that grooming jets with mMDT resulted in a reduction in the 
size of hadronisation corrections both compared to un-groomed jets and also com-
pared to the other procedures tested. This was initially done using Pythia to investi-
gate the difference in the jet mas distribution computed on parton and hadron level 
events, before going on to analytically investigate the scaling of hadronisation correc-
tions with the jet mass.
The lack of NGLs and reduced hadronisation effects are particularly important prop-
erties of observables groomed with mMDT. The lack of NGLs greatly facilitates the 
calculation of resummed distributions of jet substructure observables, due to the dif-
ficulty in resumming NGLs being removed. This in turn allows such calculations to 
be pushed to higher accuracy. The reduction of hadronisation effects also makes ob-
servables groomed with mMDT excellent candidates for direct comparison between 
perturbative calculations and measurements from collider experiments, as shall be 
discussed further in section 3.5.
The mMDT is an excellent example of why it is important to understand jet sub-
structure tools analytically, from first principles. Dissecting the behaviour of the orig-
inal mass drop tagger allowed the authors of [21] to identify and fix the unintended 
behaviour of the MDT as discussed above. Carrying out the resummation for the 
mMDT groomed jet mass distribution allowed them to understand that the mod-

4This condition reflects the fact that this algorithm was initially proposed as a method for tagging jets initiated 
by Higgs bosons, where the Higgs decays to two b quarks, resulting in two sub-jets associated to the b quarks, the 
pairwise invariant mass of which dominates the mass of the jet.
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ified groomer had desirable properties, which aside from being helpful for tagging 
electroweak bosons, made it well suited to precision QCD calculations.
The mMDT has subsequently been generalised to soft drop [23], which is stated, us-
ing hadron collider variables, as follows:

1. Take a jet and re-cluster it using the C/A algorithm.

2. Undo the last clustering of the C/A jet to give two branches labelled a and b
with transverse momentum fractions za > zb, where zi = pti

pt,a+pt,b
.

3. If zb < zcutθ
β
ab remove branch b from the jet and return to step 2. Otherwise the 

final jet contains a and b and the grooming process stops.

Setting β = 0 recovers the mMDT grooming procedure. Taking β > 0 makes the 
grooming action of soft drop less aggressive as grooming is effectively switched off 
gradually as the groomer recurses further into the collinear region of the jet. This 
results in less soft and collinear emissions from within the jet being removed, at the 
expense of removing less underlying event. Away from β = 0, soft drop groomed ob-
servables will generally contain soft logarithms of the observable, making them dou-
ble logarithmic. Despite the presence of soft logarithms, soft drop groomed observ-
ables are also free of NGLs 5.

3.4 Jet tagging

The identification or tagging of jets initiated by boosted bosons was one of early driv-
ing forces behind LHC jet substructure studies. Although substructure techniques 
for tagging W bosons had been developed in earlier work [9], the usefulness of jet 
substructure was truly appreciated as a tool for searching for hadronically decaying 
Higgs (and other) bosons following ref. [10].
At the LHC, electroweak bosons and top quarks can be produced with sufficiently 
high transverse momentum that their decay products are reconstructed as a single 
jet. It is then a significant challenge to differentiate between jets initiated by differ-
ent species of particle. In this section we will discuss the case where these particles 
decay fully hadronically, as other decay modes can be identified by other means.
As discussed in section 3.1, a jet initiated by a light quark or gluon will typically 
consist of a single hard parton surrounded by soft and collinear radiation from that 
parton. This is, of course, a perturbative picture, but the resulting substructure of 
a single hard core surrounded by soft and collinear particles persists at hadron level. 
Now consider an electroweak boson which decays to a qq̄ pair, both of which are re-
constructed inside the same jet. The decay of electroweak bosons does not favour un-
equal sharing of the momentum between the decay products, and so these jets will 
typically have two hard cores, each surrounded by soft and collinear radiation. This 

5Soft drop groomed observables actually contain NGLs suppressed by powers of the observable [23], but these are 
typically ignored in resummed calculations, as are other power suppressed terms.
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two-pronged structure is one of the features used to differentiate between QCD jets 
(light quark and gluon jets) and W,Z and H jets. Top quarks can decay via a W bo-
son to a system of three quarks, all of which will typically carry a significant fraction 
of the jet’s energy, leading to a three pronged structure.
There has been a huge range of techniques developed for tagging jets initiated by 
boosted heavy particles. As well as the prong finding algorithms, jet shapes, and 
machine learning methods discussed in sections 3.4.1, 3.4.2 and 3.4.3 respectively, 
methods based on possible parton shower histories [124] and approximations to the 
likelihood ratio constructed using the Lund plane [125] have also been investigated. 
Many studies proposing and evaluating jet tagging techniques were initially carried 
out using Monte Carlo simulations to assess their performance. Good performance 
in this instance corresponds to a high signal to background 

(
εs
εb

)
or high signal sig-

nificance 
(

εs√
εb

)
. Whilst using Monte Carlo algorithms in this way allows one to test 

the performance of an algorithm for a specific use case, it does not give generic infor-
mation as to how the tagger might perform at different energy scales or with differ-
ent choices of parameters. Another concern, partly motivated by differences observed 
between different event generators [21] , was that Monte Carlo generators may not 
provide a sufficiently accurate description of the substructure of jets to build up an 
accurate picture of how these methods could be expected to perform when applied to 
data. Of particular concern were the extent to which jet substructure methods may 
be sensitive to model dependent non-perturbative effects. There is now a large body 
of work, which is added to in chapter 6, dedicated to understanding the function and 
performance of jet substructure methods through analytical calculations. This work 
has shown that these techniques and the features observed in MC simulations can be 
understood and reproduced from perturbative calculations, increasing confidence in 
their robustness [21]–[31], [126], [127]. In some cases, such as the mMDT discussed in 
the previous section, these studies have been identified problems and been able to de-
sign improved tools based on the understanding gained from their calculations [21]–
[25]. With the recent revolution in machine learning techniques in particle physics, 
similar questions are now being asked about the robustness of machine learning algo-
rithms [128], as will be discussed further in section 3.4.3.

As well as discriminating between boosted bosons, top quarks, and QCD jets, it is 
also desirable to be able to discriminate between light quark and gluon initiated jets.6

At double logarithmic accuracy the only difference between quark and gluon jets is 
the difference in the probability of emitting soft and collinear gluons due to the dif-
ference in colour factor. Beyond leading logarithmic accuracy the possibility of g →
qq̄ splittings, which are not soft enhanced, and hadronisation effects are also impor-
tant [129]. Discriminating between quark and gluon jets can be achieved using jet 

6The concept of quark and gluon initiated jets in somewhat ambiguous and ill defined [129]. One can adopt a 
semi-classical picture similar to what happens in an event generator, where a parton from a hard process initiates a 
shower, the radiation from which is clustered as a jet. The flavour of the parton which initiated the shower can then 
be thought of as the jet flavour. In reality, the only thing one can do is specify some definition of a quark or gluon jet 
which can be applied to hadronic final states based on ideas from the aforementioned picture [129].
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(a) A typical perturbative picture of a quark 
jet, consisting of a single hard quark which 
initiates the jet and emits a number of soft 
and or collinear gluons, which can undergo 

further branchings.
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(b) Decay of a W boson to a qq̄ pair. The 
quarks can radiate gluons, which will 

typically be soft, but this will be confined
to the opening angle of the quarks by QCD 

coherence.
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(c) Decay of a top quark to a b quark and a 
qq̄ pair. All of the quarks in this picture can 

radiate gluons, resulting in a complicated 
radiation pattern within hadronic top jets.

Figure 3.2

shape observables [130], [131] and machine learning algorithms [34].
The next sub-sections will discuss three of the main classes of jet tagging procedure 
in more detail: prong finding, jet shapes, and machine learning.

3.4.1 Prong finding

Prong finding algorithms are used to tag heavy boosted particles such as top quarks, 
Higgs, W, and Z bosons. The idea of a prong finding algorithm is to identify a num-
ber of hard sub-jets/prongs within a jet and apply a set of kinematic cuts which dis-
criminate between light QCD jets and signal jets.
As the hard prongs will typically correspond to the leading order decay of the boosted 
particle, one generally expects them to carry a similar fraction of the jet’s energy. 
This is in contrast to a QCD background jet which will typically consist of a single 
hard prong along with a number of soft gluons, as shown in figure 3.2a. Therefore, 
once they have identified a number of candidate sub-jets, prong finding algorithms 
will typically require the sub-jets to carry a certain fraction of the jet’s energy or 
pass some similar cut so as to select jets containing reasonably symmetric splittings, 
which are more likely to be signal jets.
Signal jets will typically have an invariant mass associated with the leading order de-
cay of the boosted heavy particle. As an example, consider a W boson decaying to a 
qq̄ pair, as shown in figure 3.2b. The invariant mass of the qq̄ pair will be MW . This 
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can also be used to discriminate between signal and background, as soft and collinear 
splittings in light QCD jets will typically have a small invariant mass. Prong finding 
algorithms can exploit this by introducing a requirement that invariant mass of the 
candidate prongs is above some threshold. The situation is more complicated for top 
jets, which decay via a W boson to a b quark and light qq̄ pair, as shown in figure 
3.2c, as there is no characteristic pairwise invariant mass between the b quark and ei-
ther of the light quarks. Nevertheless, a minimum pairwise invariant mass cut is still 
beneficial, as the three prongs must, between them, generate the top mass, leading 
to relatively large pairwise invariant masses. Additionally the qq̄ pair will have an in-
variant mass of approximately the W boson mass.
One early algorithm with the sole function of prong finding is the Y-splitter algo-
rithm proposed in [9] for tagging boosted W bosons, although it can be equally used 
for tagging other electroweak bosons. It takes a jet clustered with the kt algorithm 
and undoes the last clustering to find two sub-jets, a and b. The distance metric for 
this clustering algorithm is 

  d_{ij}=\min (p^2_{ti},p^2_{tj})\Delta R_{ij}^2\ .   
  (3.4)

Y-splitter then introduces a cut on the ratio of dab to the square jet mass dab
m2

Jet
> ycut, 

where ycut is a parameter of the tagger. In the collinear limit we can write dab '
P 2
t,Jet min(z, 1 − z)2θ2 and mJet ' z(1 − z)θ2, where z is the energy fraction carried 

by branch a. For z < 1
2
, the effect of the cut on y is then z

1−z
< ycut. This has the 

effect of rejecting very asymmetric splittings which are likely to be a QCD splitting 
as opposed to the electroweak decay of a boosted boson.
The action of the Y-splitter algorithm on QCD jets and jets initiated by a boosted 
Higgs was studied analytically in refs. [29] and [30] along with several other tagging 
procedures. Along with the prong finding procedure the jets were required to be within 
a mass window MHiggs − δM < MJet < MHiggs + δM about the Higgs mass.
It was shown, that if one neglects ISR and UE, that the signal efficiency is given by 

  \epsilon _s\simeq 1-2y_{\text {cut}}\ .      (3.5)

However, ISR and UE were seen to modify this result quite substantially and de-
grade the signal efficiency so that Y-splitter by itself has quite poor performance. 
It was argued in [30] that this was due to ISR and UE degrading the jet mass and 
pushing signal jets outside the mass window. Adding a grooming step after the ap-
plication of Y-splitter but before the mass cut resulted in an increased signal effi-
ciency due to removal of ISR and UE and subsequently improved performance.
The background distribution after application of Y-splitter was calculated to all or-
ders in [29], which if one keeps only the leading logs in ρ is given at fixed coupling by 

  \frac {\rho }{\sigma }\frac {\sd \sigma }{\sd \rho }= \frac {C_F\alpha _s}{\pi }\ln \frac {1}{y_{\text {cut}}}\times \exp \left [-\frac {C_F\alpha _s}{2\pi }\ln ^2\frac {1}{\rho } \right ]\ . 
























 (3.6)
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The double logarithmic Sudakov suppression explains the excellent background sup-
pression observed for Y-splitter. After accounting for running coupling effects and 
hard collinear splittings, good agreement was found with parton level Pythia sim-
ulations, indicating that this calculation at modified leading log accuracy can ex-
plain the overall performance of the tagger. It was noted that resummation of sub-
leading terms can be simplified whilst leaving the dominant double logarithms of ρ, 
given above, unchanged by two small modifications: firstly the clustering sequence is 
changed to gen-kt with p = 1

2
, giving a jet which in the soft and collinear limit has a 

clustering sequence ordered in mass; Further simplifications come from replacing the 
ycut condition with min(pta,ptb)

pta+ptb
> zcut. This modified algorithm is called Ym-Splitter 

, which as well as being theoretically simpler, was seen to have a slightly improved 
performance.
Adding grooming does not modify the above result at LL accuracy. This explains the 
observation that grooming after Y-splitter improves performance as the double log-
arithmic Sudakov suppression of the background is kept, giving good background 
rejection, whilst the effect of ISR and UE on the jet mass is reduced, resulting in 
higher signal efficiency. The effect of grooming jets with soft drop before applying 
Ym-Splitter was also investigated. In this case the Sudakov factor inherits its struc-
ture from the groomed jet mass, 

\frac {\rho }{\sigma }\frac {\sd \sigma }{\sd \rho }\stackrel {\rho <\zc }{=}\frac {C_F\alpha _s}{\pi }\ln \frac {1}{y_{\text {cut}}}\times \\ \exp \left [-\frac {C_F\alpha _s}{\pi }\left (\frac {\beta }{2(2+\beta )}\ln ^2\frac {1}{\rho }+\frac {2}{2+\beta }\ln \frac {1}{\zc }\ln \frac {1}{\rho }-\frac {2}{2+\beta }\ln ^2\frac {1}{\zc }-\frac {3}{4}\ln \frac {1}{\rho } \right ) \right ]\ ,

















\frac {\rho }{\sigma }\frac {\sd \sigma }{\sd \rho }\stackrel {\rho <\zc }{=}\frac {C_F\alpha _s}{\pi }\ln \frac {1}{y_{\text {cut}}}\times \\ \exp \left [-\frac {C_F\alpha _s}{\pi }\left (\frac {\beta }{2(2+\beta )}\ln ^2\frac {1}{\rho }+\frac {2}{2+\beta }\ln \frac {1}{\zc }\ln \frac {1}{\rho }-\frac {2}{2+\beta }\ln ^2\frac {1}{\zc }-\frac {3}{4}\ln \frac {1}{\rho } \right ) \right ]\ ,








 







 








 













with correspondingly smaller background suppression and thus generally worse per-
formance. One benefit of pre-grooming the jets is the reduced sensitivity to
non-perturbative effects as the tagger is no longer vetoing on the region of phase space 
most sensitive to them. There is, therefore, a trade-off between robustness against 
non-perturbative effects and performance depending on whether the jet’s are groomed 
before or after applying Y-splitter.
Prong finding algorithms have also been used to identify high Pt hadronically decay-
ing top quarks which are reconstructed as a single jet by ATLAS [132] and CMS [16], 
[133]. The CMS top tagger [16], [133] was studied analytically in [25], along with 
several other prong finding algorithms, where it was found that the CMS top-tagger 
is not collinear safe and fully IRC safe adaptions of the algorithm were proposed.
Another of the algorithms studied was a variant of the Ym-Splitter adapted for the 
identification of top jets. The top Ym-Splitter takes a jet clustered with the gen-kt(p =
1
2
) algorithm and performs the following steps:

1. Undo the last clustering, to give two sub-jets, both of which are examined for 
the condition pt,i > ζpt,jet. If either sub-jet fails the ζ condition, the jet is re-
jected.
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Figure 3.3. ROC curves showing the signal and background tag rates for several combinations of 
prong-finding and grooming studied in [25], where the plots are taken from. The curves on the left 

are derived from events generated using Pythia, whist the curves in the right hand plots are 
calculated analytically.

2. Check which sub-jet produces the larger gen-kt distance when de-clustered, and 
undo the last clustering of this sub-jet. Check whether the resulting sub-jets 
from this de-clustering pass the ζ condition. If either the de-clustering or the 
ζ condition fail, the jet is rejected.

3. Find the pairwise masses of the three final sub-jets, and require that
min(m12,m13,m23) > mmin. If this condition is not met, the jet is rejected.

Unlike when tagging boosted electroweak bosons, the signal (top quarks), carries a 
colour charge and therefore acquires a Sudakov factor similar to the background. As 
a result, tagging procedures which generate smaller Sudakov factors were found to 
give better performance. This can be seen in figure 3.3 from the ordering of the Ym-
Splitter taggers with different levels of grooming: no grooming having the largest Su-
dakov suppression and correspondingly the worst performance, whilst the most ag-
gressive grooming with mMDT has the smallest Sudakov suppression and the best 
performance. That the analytic calculations shown in figure 3.3 capture the overall 
shape of the ROC curves extracted from parton level Pythia simulations and order-
ing of the taggers can be taken as a sign that the important features of the tagging 
algorithms have been properly understood, and that a modified leading-logarithmic 
calculation is sufficient to capture them.

3.4.2 Jet shapes

Jet shapes are a type of observable which are designed to be measured on a jet and 
are a function of the momenta of all particles within that jet. The invariant mass 
of a jet is a simple example. Jet shapes can often be used to quantify some quali-
tative feature of a jet, such as how n-prong like a jet is. Because of this they have 
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been extensively used in boosted object tagging. For run two of the LHC both AT-
LAS and CMS developed procedures to tag jets initiated by vector bosons involving 
cutting on the mass of candidate jets and another jet shape variable [116]. ATLAS 
opted for cutting on the variable Dβ=1

2 = e
(β)
3 /(e

(β)
2 )3 [24], [134], where e(β)n are n 

point energy correlation functions [127], whilst CMS opted for cutting on the ratio 
of N-subjettiness variables τ21 = τ2

τ1
[14]. Ratios of jet shapes such as τ21 and D(β)

2 are 
generally not fully IRC safe but Sudakov safe.
Sudakov safe observables [135] are ones that are not IRC safe and so cannot be cal-
culated at fixed order in perturbation theory, but are calculable once all orders ef-
fects are taken into account. To make this more precise, consider the distribution of 
an observable u, 

  p(u)=\frac {1}{\sigma }\frac {\sd \sigma }{\sd u}, 






 (3.8)

which is not IRC safe, but which is safe when measured simultaneously with an IRC 
safe observable, v, so that the probability distribution of u given v, p(u|v)p(v), is fi-
nite. We can then integrate out v to get back p(u): 

  p(u)=\int p(u|v)p(v) \sd v\ . 


  (3.9)

If, having calculated p(u|v)p(v) to all orders, the above integral is finite, u is a Su-
dakov safe observable, named as such as suppression from the Sudakov factor regu-
lates the divergences of the IRC unsafe observable causing the integral to converge.
Although perturbatively calculable, there remain questions about the sensitivity of 
Sudakov safe observables to non perturbative effects. For IRC safe observables non-
perturbative corrections scale as a positive power of Λ

Q
, where Λ is a small non-

perturbative scale of order ΛQCD, and Q is the hard scale of the process, which is 
typically much larger than Λ [136]. For Sudakov safe observables, there is no guar-
antee that non-perturbative effects scale in this way, and so non-perturbative correc-
tions may be more significant.
It is important to note that a measurement of τ21 can be made fully IRC safe either 
by fixing or putting a lower limit on the jet mass, as this prevents τ1 from going to 
zero.
We will now discuss what drives the discriminating power of N-subjettiness ratios, 
using τβ=2

21 as applied to tagging two prong jets as an example. We will first discuss 
this qualitatively before examining the results of a calculation of the signal and back-
ground distributions after applying a cut on τ21 [28] to see the insight that can be 
gained from such calculations.
The N-subjettiness variables are defined as 

 \label {eq:Nsubjetiness} \tau _{N}^{\beta }=\frac {1}{p_{t,\text {jet}}R^{\beta }}\sum _{i \in \text {jet}}p_{t,i}\min \left ((\Delta R_{1,i})^{\beta },(\Delta R_{2,i})^{\beta },...,(\Delta R_{N,i})^{\beta }\right ), 












 



 (3.10)

with the sum over i running over the jet constituents. The N partition axes, labelled 
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1 · · ·N , can be defined by various methods. One method is to find the axes which 
minimise τN , which is known as finding the the optimal axes. Another method is to 
re-cluster the jet using the gen-kt algorithm with p = 1

β
and undo the last N − 1 clus-

terings of the jet to find N sub-jets. The partition axes are then taken to lie along 
these sub-jet axes. This set of axes is referred to as the gen-kt axes. The idea is to 
choose axes so that if τβN is measured on an N-pronged signal jet, the axes will lie 
along the direction of the hard prongs corresponding to the LO decay of the boosted 
particle. For light QCD jets one expects the axes to approximately coincide with the 
partons which contribute most to τβN .
The ratio τβN

τβN−1

can be used to discriminate N sub-jet like (or N prong like) jets from 

QCD background jets, with smaller values of τβN
τβN−1

corresponding to more N prong 
like jets. Intuitively, this is because the contribution from a single soft gluon to τN is 
expected to be small, so that, for light QCD jets, the difference between τβN and τβN−1

is expected to be small, and the ratio τβN
τβN−1

of order one. On the other hand, jets with 

N hard prongs should have τβN � τβN−1 because a hard prong is expected to set a 
large value of τβN−1 so that τβN

τβN−1

� 1. This configuration is illustrated in figure 3.4b.

The N-subjettiness ratio τβ=2
21 , along with other jet shape variables, was studied through 

resummed calculations of the tagged fraction of signal (boosted W,H,Z bosons) and 
background (light QCD jets) events in [28]. They calculated the jet mass distribu-
tion with the additional restriction that jets should satisfy τβ=2

21 < τ in the limit that 
τ � 1. For background jets they considered a sequence of emissions from a hard par-
ton, which are strongly ordered in mass, ρi � ρi+1, where, in the soft and collinear 
limit, ρi = ziθ

2
i is the pairwise invariant mass of an emission with the parton that 

initiates the jet. This is sufficient to calculate the resummed distribution to lead-
ing logarithmic accuracy. For such configurations the first emission dominates both 
the jet mass and τβ=2

1 , which in the soft and collinear limit are equivalent as the first 
N-subjettiness axis will lie along the parton that initiates the jet, as shown in figure 
3.4a. The second N-subjettiness axis will be along this first emission so that radia-
tion around this gluon, as well as that around the parton which initiated the jet, is 
restricted by the cut on τβ=2

21 . This configuration of emissions along with the rela-
tionship of the N-subjettiness axes to them is illustrated in figure 3.4a. 

For background jets, normalising θ to R, the jet radius, ref. [28] found that 

\frac {\sd \sigma }{\sd \rho }=\\ \int _{\rho }^1\frac {\alpha _s(z_1\theta _1RP_t)}{2\pi }\frac {\sd \theta _1^2}{\theta _1^2}\int _\rho ^1P(z_1)\sd z_1\delta (\rho -z_1\theta _1^2) \exp [-R(\rho \tau )-R^{\text {secondary}}(\tau ,\theta _1^2,z_1)]


\frac {\sd \sigma }{\sd \rho }=\\ \int _{\rho }^1\frac {\alpha _s(z_1\theta _1RP_t)}{2\pi }\frac {\sd \theta _1^2}{\theta _1^2}\int _\rho ^1P(z_1)\sd z_1\delta (\rho -z_1\theta _1^2) \exp [-R(\rho \tau )-R^{\text {secondary}}(\tau ,\theta _1^2,z_1)]














 

   

R(\rho \tau )=&\int _0^1\frac {\alpha _s(z\theta R P_t)}{2\pi }\frac {\sd \theta ^2}{\theta ^2}\int _0^1P(z)\sd z \Theta (\rho \tau -z\theta ^2) \\ R^{\text {secondary}}(\tau ,\theta _1,z_1)=&\int _0^{\theta _1^2}\frac {\alpha _s(z_1z\theta R P_t)}{2\pi }\frac {\sd \theta ^2}{\theta ^2}\int _0^1P(z)\sd z \Theta \left (\tau -z\frac {\theta ^2}{\theta _1^2}\right )& \ .



Secondary emission

First N− subjettiness axis

Second N− subjettiness axis

1

2

(a) A diagram illustrating a strongly ordered configuration of emissions where ρ1 � ρ2. 
The direction of two N-subjettiness axes are shown as coinciding with the quark that 

initiates the jet and emission 1. A secondary emission, which will be constrained by a τ21
cut is also shown.

W

q

q̄

First N− subjettiness axis

Second N− subjettiness axis

g

(b) A diagram illustrating the relationship of two N-subjettiness axes to the partons 
within a jet initiated by a W boson. For τ1 only one of the axes as would be present, and 
so one of the hard prongs would contribute to τ1, as opposed to just the gluon as is the 

case for τ2.

Figure 3.4

where 

R(\rho \tau )=&\int _0^1\frac {\alpha _s(z\theta R P_t)}{2\pi }\frac {\sd \theta ^2}{\theta ^2}\int _0^1P(z)\sd z \Theta (\rho \tau -z\theta ^2) \\ R^{\text {secondary}}(\tau ,\theta _1,z_1)=&\int _0^{\theta _1^2}\frac {\alpha _s(z_1z\theta R P_t)}{2\pi }\frac {\sd \theta ^2}{\theta ^2}\int _0^1P(z)\sd z \Theta \left (\tau -z\frac {\theta ^2}{\theta _1^2}\right )& \ .
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R(\rho \tau )=&\int _0^1\frac {\alpha _s(z\theta R P_t)}{2\pi }\frac {\sd \theta ^2}{\theta ^2}\int _0^1P(z)\sd z \Theta (\rho \tau -z\theta ^2) \\ R^{\text {secondary}}(\tau ,\theta _1,z_1)=&\int _0^{\theta _1^2}\frac {\alpha _s(z_1z\theta R P_t)}{2\pi }\frac {\sd \theta ^2}{\theta ^2}\int _0^1P(z)\sd z \Theta \left (\tau -z\frac {\theta ^2}{\theta _1^2}\right )& \ . R(\rho \tau )=&\int _0^1\frac {\alpha _s(z\theta R P_t)}{2\pi }\frac {\sd \theta ^2}{\theta ^2}\int _0^1P(z)\sd z \Theta (\rho \tau -z\theta ^2) \\ R^{\text {secondary}}(\tau ,\theta _1,z_1)=&\int _0^{\theta _1^2}\frac {\alpha _s(z_1z\theta R P_t)}{2\pi }\frac {\sd \theta ^2}{\theta ^2}\int _0^1P(z)\sd z \Theta \left (\tau -z\frac {\theta ^2}{\theta _1^2}\right )& \ .

The term e−Rsecondary(τ,θ1,z1) is responsible for vetoing secondary emissions from the 
gluon lying along the second N-subjettiness axes of τ2. Note that due to coherence 
the secondary Sudakov factor only vetoes emissions up to θ1, the angle that the gluon 
which dominates the jet mass is emitted at.

For signal jets, the boson that initiates the jet decays into a qq̄ pair which carry frac-
tions of the jet’s momentum z1 and 1 − z1 respectively. The N-subjettiness axes will 
lie along the directions of the qq̄ pair, resulting in radiation being constrained around 
these prongs. For signal jets ref.[28] found that 

  \frac {\sd \sigma }{\sd \rho }\propto \exp [-R(\tau ,z_1,\theta _1^2)-R(\tau ,1-z_1,\theta _1^2)] 


     

 (3.14)

where 

  R(\tau ,z_1,\theta _1^2)= \int _0^{\theta _1^2}\frac {\alpha _s(z_1z\theta R P_t)}{2\pi }\frac {\sd \theta ^2}{\theta ^2}\int _0^1P_{gq}(z)\sd z \Theta (z_1\theta _1^2\tau -z\theta ^2) \ ,  





















    (3.15)

and θ21 = ρ
z1(1−z1)

, the opening angle of the qq̄ pair. The above Sudakov factors are 
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Figure 3.5. ROC curves taken from ref. [28] showing the signal vs background tag rates as the cut 
on τ21 is varied. On the left the jets are simply tagged with a cut on τ21 whereas on the right they 

are first groomed using soft drop with β = 2.

a result of vetoing emissions from the qq̄ pair coming from the decaying boson. The 
key point to notice here is that emissions from the qq̄ pair are only vetoed up to θ1
due to QCD coherence. The effect of this is that there is much less Sudakov suppres-
sion on signal jets than QCD jets which explains the effectiveness of τ21 at discrimi-
nating between QCD jets and jets initiated by colour singlet bosons. This is a much 
more precise understanding of the origin of the discriminating power of τ21 than the 
intuitive description presented earlier.
The above calculations are carried out ignoring the effects of ISR, MPI and other 
non-perturbative effects. The impact of these effects were investigated in ref. [28] us-
ing Pythia to generate events, initially with ISR, MPI and hadronisation switched 
off, before switching these effects on one at a time. The signal and background tag-
ging efficiencies were then extracted as a function of the cut on τ21 with 5 < ln(1/ρ) <
5.5 and ROC curves constructed, which are shown in figure 3.5. These show that UE 
and hadronisation negatively impact the performance of the tagger. As well as hav-
ing a negative effect on the performance of the tagger, both MPI and hadronisation 
effects are not derivable from first principles QCD and our understanding of them 
in this context relies on the models implemented in event generators. For both of 
these reasons it is therefore desirable to reduce the effect of UE and hadronisation on 
tagged distributions. This can be accomplished by pre-grooming the jets using soft 
drop. ROC curves computed on jets pre-groomed with soft drop with β = 2 are also 
shown in figure 3.5 alongside those for un-groomed jets where the increased resilience 
to UE can clearly be seen.

For top tagging, the N-subjettiness variable expected to be most useful is τ32 [137]. 
In practice this has often been used by experiments in conjunction with a prong find-
ing algorithm [15], [18], [138]. Investigating this combination of techniques analyti-
cally is the subject of chapter 6.
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Figure 3.6. ROC curves comparing the tagging performance of a number of ML based top taggers 
and a benchmark cut based tagger. Plot taken from [32]

3.4.3 Machine learning taggers

In recent years machine learning (ML) has emerged as a powerful tool for discrim-
inating between jets originating from different species of particle. There are a huge 
number of machine learning tools available for boosted particle classification. These 
range from boosted decision trees and deep neural networks which take information 
from a small number of physically motivated observables and combine them to pro-
duce a single discriminant [19], [20] , to neural networks which essentially take raw 
information about the jet, such as the momentum four-vectors of the jet’s constituents, 
from which an approximation to the optimal discriminant is learnt [33], [139]–[141], 
as well as approaches that fall somewhere in between [35]. Machine learning for boosted 
particle tagging has been extensively used by ATLAS and CMS as it can often achieve 
higher signal to background ratios than the more traditional cut based taggers [19], 
[20], [142]. This high level of performance is illustrated in figure 3.6 by the ROC curves 
for a number of ML algorithms trained to tag top jets along with a benchmark cut 
based tagger utilising τ32 and the jet mass. Although the performance of this bench-
mark tagger could probably be improved upon, the point still stands that machine 
learning typically outperforms cut based taggers in terms of raw performance. The 
downsides of ML based taggers are the difficulty in estimating uncertainties and lack 
of control over what information is being learnt. 

Due to the difficulty in isolating pure enough samples of actual data, ML algorithms 
are usually trained on samples simulated with event generators and so can learn fea-
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tures which are artefacts of the simulation and not present in data. Strong depen-
dence on hadronisation models and other non-perturbative effects are the biggest 
problem as these are not derivable from QCD and exhibit differences between mod-
els. However, differences between parton showers can also be significant due to the 
different approximations used in different showers [95]. The variation in background 
rejection of a deep neural network on data simulated with different event generators 
was studied in [143], which found differences of up to 50% between different event 
generators. Improvements in the accuracy of parton shower algorithms [3], [95], [144]–
[148] may help to reduce some of the uncertainty associated with ML algorithms by 
improving the accuracy of samples they are trained on, although robustness to hadro-
nisation and other NP effects, which are necessarily model dependent, will still be 
important. Recently there has been a substantial amount of work aiming to under-
stand what information ML algorithms are learning [34], [37], [128], [149], [150] and 
to to put ML on a more solid theoretical footing [143], [151], [152]. A small selection 
of this work is briefly discussed below.
Ref. [152] studied the IRC safety of a convolutional neural network trained on hadron 
level samples, simulated with Pythia, to tag high Pt top quarks. Information is passed 
to the network as the momenta of all of the final state particles in the event. To check 
IRC safety, they simulated a sample of hadronically decaying top quarks with an ex-
tra gluon in the final state, which they term the un-merged sample. They then de-
fined the merged sample from the same events where the momentum of the gluon 
was added to the quark closest in angle, to give an effective 3 parton final state. The 
change in response of the network between the two samples was found to decrease 
to zero as the transverse momentum of the gluon relative to the closest quark went 
to zero. Numerically then, the network satisfies IRC safety by the definition given 
in eq. (2.46) for the final state tested. The authors of this work point out that this 
is not a full test of IRC safety for this network, both for the reason that only O(αs)

configurations were studied, and that their analysis cannot distinguish between IRC 
and Sudakov safety. As such there is no guarantee as to the scaling or size of non-
perturbative effects.
The LundNet family of ML algorithms based around Lund diagram representations 
of jets were introduced [34]. Aside from being extremely high performance meth-
ods for tagging boosted tops, electroweak bosons, and for quark gluon discrimina-
tion, LundNet also allows one to restrict the amount of non-perturbative information 
available to the ML algorithm simply by placing a kt cut in the Lund plane, below 
which particles are removed. This enabled the authors of [34] to investigate how the 
resilience to NP effects and performance changed as this cut is varied. The resilience 
to non-perturbative effects is defined as 

  \zeta _{\text {NP}}=\left (\frac {\Delta \epsilon _s^2}{\la \epsilon _s\ra ^2}+\frac {\Delta \epsilon _b^2}{\la \epsilon _b\ra ^2} \right )\ , 










 (3.16)

where ∆εs(∆εb) is the difference between the parton and hadron level signal (back-
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tagging for the LundNet family of taggers, the Lund+LSTM tagger of [125] and two other ML 
taggers [33], [153]. Plot taken from [34].)

ground) tagging efficiency, as computed on samples simulated with Pythia, and the 
angled brackets denote the average of the parton and hadron level efficiency. A plot 
of ζNp against performance is shown in figure 3.7. The ParticleNet [33] and RECNN 
[153] W tagging algorithms are also shown as benchmarks. Although Lund net achieves 
similar or better performance for the same resilience as the other algorithms tested, 
the reduction in performance as resilience increases does show that the algorithm 
is learning and making use of potentially unreliable non-perturbative information 
when it is given access to it. The ParticleNet and RecNN algorithms tested both 
achieved relatively low resilience scores, indicating that they make significant use of 
non-perturbative information.
Attempting to analytically understand the performance of a particular type of ML 
based tagger could be considered as the logical extension to the large body of work 
discussed in the previous sections aiming to understand more traditional cut based 
tagging algorithms. Work in this direction was published in [128], where the authors 
analytically studied a simple neural network at leading logarithmic accuracy and 
were able to determine under what circumstances it achieved optimal performance 
for quark vs gluon discrimination. It was found that when information was passed to 
the network as a vector of N-subjettiness variables, optimal performance would not 
be obtained, whereas passing the information as a vector of the logarithm or loga-
rithm squared of N-subjettiness variables, optimal performance would be obtained. 
This was hypothesised to be due to the N-subjettiness variables being intrinsically 
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logarithmic, which the simple network struggles to learn when presented with the 
raw N-subjettiness variables. They showed that performance and training times of 
the simple network were improved by using logarithmic inputs to the network as op-
posed to linear ones, with this improvement being understood from their analytic 
calculations. They compared their results to a more complex network of the type 
more likely to be used in experimental analyses and found that many of their con-
clusions were also applicable to the more complicated network.

3.5 Jet substructure for the study of QCD

As well as being a powerful tool for discriminating between jets initiated by one species 
of particle and another, the substructure of jets is interesting in its own right as a 
means to study QCD. This section will discuss a number of examples of precise jet 
substructure measurements, their comparison with perturbative calculations and the 
application of these comparisons to extracting parameters of the standard model and 
improving our understanding of QCD and its modelling in event generators.
One of the major barriers of making precise comparisons between perturbative pre-
dictions for jet substructure observables and data is the extent to which non-
perturbative effects, such as hadronisation and underlying event, modify perturba-
tive predictions. As observables computed on groomed jets are much less sensitive 
to these effects, they are the obvious candidates for comparing theory predictions di-
rectly to data and making measurements of perturbatively defined quantities. Com-
puting observables on jets groomed with mMDT also removes some of the difficulties 
in producing precise QCD resummations for these observables through the removal 
of non-global logarithms and lack of sensitivity to ISR. A number of jet substructure 
observables have now been measured on groomed jets and compared to resummed 
calculations [43], [123], [154], [155]. The observable which has seen the most atten-
tion is the groomed jet mass distribution, with a number of calculations having been 
produced with different methods and including different effects [44], [45], [47], [48], 
[156]. A measurement of the groomed jet mass distribution by the CMS collabora-
tion [123] is shown in figure 3.8 alongside predictions generated using Herwig [86], 
Pythia [53], and POWHEG+Pythia [157] and two resummed calculations [44], [47]. 
The calculation of Frye et. al. was carried out using soft collinear effective theory at 
NNLL accuracy [47] in the small zcut limit and is matched to fixed order calculations 
at LO, whilst the calculation of Marzani et. al. was carried out at NLL accuracy, 
directly using perturbative QCD, retains finite zcut effects, and is matched to fixed-
order calculations at NLO. The ATLAS collaboration has also made measurements 
of the jet mass after grooming using soft drop with three values of β = 0, 1, 2, which 
were also compared to resummed calculations [39].
Other jet-shape observables which have received attention recently are the gener-
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Figure 3.8. CMS measurement of the mMDT groomed jet mass compared to two different 
resummed calculations and three different event generator predictions. Plot taken from [123]

alised angularities. These are defined as 

  \lambda ^\kappa _\beta =\frac {1}{\sum _{i\in \text {jet}}p_{ti}}\sum _{i\in \text {jet}} p_{ti}^\kappa \left (\frac {\Delta R_{ia}}{R_0} \right )^\beta 
















(3.17)

where ∆Ria =
√
δη2ia + δφ2

ia, R0 is the jet radius, and a labels some axis which the 
observable is defined relative to. One popular choice is the winner takes all (WTA) 
axis [27] which is found by de-clustering a jet, following the hardest branch at each 
de-clustering. The harder of the two branches at the final de-clustering defines the 
WTA axis. These have been measured, by the CMS collaboration [43], on groomed 
and un-groomed jets and compared with both Monte Carlo generator predictions and 
re-summed calculations, produced using the CAESAR [69] NLL resummation plug-in 
for Sherpa [158]. This work motivated the choice of observables in chapter 5 where 
the NNLL resummed distribution of three angularities computed on e+e− events is 
calculated and matched to NLO.
Precise calculations and measurements of jet substructure observables opens up the 
possibility of measuring standard model parameters such as the strong coupling us-
ing jet substructure, similar to what has been done at electron-positron colliders us-
ing event shape variables. The strong coupling has been measured by fitting event 
shape variables to e+e− data [159]–[164]. Event shape distributions are sensitive to 
non-perturbative effects, which can be approximated using a shape function [161], 
[163], [165]–[168]. Shape functions can be expanded in moments which are univer-
sal to many event shapes, enabling a simultaneous fit of the strong coupling and first 
moment(s) of the shape function to event shapes. Extractions of αs from event shapes 
are in tension with the world average [169], providing motivation for an extraction 
of the strong coupling from jet substructure, as this is sensitive to much of the same 
physics as event shape distributions. Their lack of sensitivity to non-perturbative ef-
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fects makes groomed observables a good candidate for jet substructure extractions of 
αs [170]. This has been exploited by CMS to measure the strong coupling by com-
paring the measured zg and Rg distributions to Monte Carlo predictions generated 
using POWHEG+Pythia [53], [157], [171] where zg is the momentum fraction of the 
sub-jet that stops the groomer and Rg the jet radius after grooming.
The top quark mass can also be measured using jet substructure. The current world 
average for direct measurements of the top quark mass give mdirect

top = 172.9 ± 0.4GeV
[172]. This is measured by comparing kinematic distributions of the decay products 
of top quarks to Monte Carlo predictions [173]. There has been a significant amount 
of discussion as to the exact interpretation of this mass, particularly whether or not, 
at the high level of precision now achieved, it can be identified with the pole mass 
of the top quark or some other theoretically precise mass scheme [174]–[182]. Suffice 
to say the PDG [172] lists three separate values for the top mass including the di-
rect measurement mass discussed above and a separate pole mass with slightly larger 
uncertainty, mpole

top = 173.1 ± 0.9GeV, reflecting the fact various theoretical uncer-
tainties in event generators are not under enough control to confidently identify the 
top mass parameter in event generators with a particular top mass scheme in pertur-
bation theory. These issues are discussed in more depth in ref. [173]. The purpose 
of this discussion is to put in context a recent proposal to precisely measure the top 
mass using jet substructure [183]. This is part of a larger body of recent work inves-
tigating correlation functions measured on jets as a new type of jet substructure ob-
servable [184]. Their proposal shows that there is the potential, using their method, 
to make a very precise measurement of the top mass in a way where one has theoret-
ical control over the mass scheme.
Another interesting observable recently measured by the ATLAS collaboration [40] 
is the primary Lund Jet plane density [125]. The primary Lund jet plane density is 
constructed from a sample of jets clustered with the C/A algorithm as follows. For 
each jet, undo the last clustering and plot ∆R and transverse momentum (kt) of the 
softer branch with respect to the harder branch on the Lund plane. Following the 
harder branch, this is repeated until there are no more branchings. The Lund planes 
for each jet are then averaged to find the density of branchings in the primary Lund 
plane7, 

  \rho (\Delta R,k_t)=\frac {1}{N_{\text {jet}}}\frac {\sd n_{\text {emission}}}{\sd \ln k_t \sd \ln \Delta R}\ .  






  
 (3.18)

This is closely related to the perturbative picture of gluons being emitted off the hard 
parton which initiated the jet, so that in the soft and collinear limit one expects 

 \label {eq:SoftLundProb} \rho (\Delta R,k_t)\simeq \frac {2C_F\alpha _s(k_t)}{\pi }\ ,  



 (3.19)

where the emission probability is uniform, other than the scaling with αs(kt). This 
nicely shows the onset of non-perturbative effects as the coupling grows at small kt, 

7The primary Lund plane is the plane constructed by following the harder branch at each declustering. Secondary 
Lund planes can be constructed for each softer branch as well as tertiary Lund planes and so on.
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as can be seen in figure 3.9a, where a Lund jet plane constructed from parton level 
Pythia simulations with no ISR or UE is shown. This was produced using FastJet 
[109] and the Lund plane FastJet contrib [125]. Figure 3.9a shows the density vary-
ing with ∆R as well as kt, reflecting the fact that away from the soft limit one ex-
pects [125] 

  \rho (z,k_t)\simeq \frac {\alpha _s(k_t)}{\pi }\bar {z}\left ( P_{gq}(\bar {z})+P_{gq}(1-\bar {z}) \right )  



     (3.20)

where z̄ = kt
pt,jet∆η

. 

It was pointed out in ref. [40] that measurements of the Lund jet plane density could 
be particularly useful in improving the modelling of QCD in event generators, as dif-
ferent regions of the Lund plane are sensitive to different effects, as shown in figure 
3.9b. This allows one to separately tune different effects in event generators to dif-
ferent regions of the Lund plane rather than (or more likely as well as) tuning to ob-
servables which may mix these effects together. Since the ATLAS measurement of 
the Lund plane density, an all orders, single logarithmic calculation of the primary 
Lund plane density has been presented [155] and compared to the ATLAS measure-
ment [40].

3.6 Summary

Hopefully this section has given an idea of the range of applications that jet sub-
structure has, from jet tagging to precision measurements, and demonstrated that 
understanding jet substructure techniques from first principles QCD calculations can 
lead to increased confidence and improvements in existing techniques, as well as the 
development of new, better, techniques. Intertwined with jet substructure is the on-
going development of event generators, in particular parton showers [2], [3], [95], [100], 
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[101], [103] and hadronisation models [88], [185]. Improvements in event generators 
can undoubtedly lead to a reduction in uncertainty in analyses using jet substruc-
ture, either through more reliable training of machine learning algorithms or lower 
uncertainties in observables computed on Monte Carlo samples. Meanwhile, improve-
ments in the understanding of jet substructure observables and resummation can 
feed back into the development of parton showers, and measurements of jet substruc-
ture observables can be used to improve the tuning of event generators [40], [43].
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Chapter 4

The NNLL structure of the 

groomed jet mass at NLO

This chapter and the next present work by myself and my collaborators on the next 
to leading log structure of additive jet shape observables. The work presented in this 
chapter was published in [4], from which much of the text is derived.

4.1 Introduction

Jet substructure measurements have proven to be a fruitful way to perform preci-
sion tests of QCD at colliders through comparisons between precision calculations 
and data [39], [41], [42], [44], [45], [47]–[49], [186]–[191]. One of the challenges associ-
ated with precision tests of QCD at colliders is finding observables which suffer only 
modest non-perturbative corrections whilst being perturbatively calculable to a high 
enough level of precision. At hadron colliders, insensitivity to underlying event and 
pileup are also important characteristics for observables. As discussed in chapter 3, 
observables computed on jets groomed with mMDT [21], [22] or its subsequent gen-
eralisation, soft drop [23], are less sensitive to UE and hadronisation as well as being 
more amenable to precise perturbative calculations due to the absence of non-global 
logarithms (NGL’s) which typically appear for observables computed on un-groomed 
jets. It should be noted that the NGL’s are not completely removed, rather the ar-
gument of these logarithms is changed from, ρ =

m2
Jet

R2P 2
t

in the case of the jet mass, 
to zcut. With zcut ' 0.1 being a typical choice, it is not strictly necessary to re-sum 
these logarithms. As a result of these properties there have been a number of the-
oretical predictions for distributions of groomed observables, which have been pro-
duced using a variety of tools and incorporating different effects. These include: re-
summations in QCD at NLL accuracy 1 where, terms suppressed by powers of zcut

are retained and resummed, matching to full NLO calculations is carried out, and 
hadronisation corrections derived from Monte Carlo event generators are included 
[44], [45]; SCET calculations up to N3LL accuracy in the small zcut limit [47], [48], 
[190]; and calculations treating non-perturbative corrections within the framework of 

1Over the next two chapters a logarithmic counting scheme where the leading logarithms are double logs is used 
despite double logarithms being absent for observables groomed with mMDT. This differs from the counting scheme 
adopted in the published version [4] of the work presented in this chapter.
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SCET [191]. This has enabled accurate comparisons to be made between calculations 
for groomed observables and LHC data [39], [41], [42], where generally good agree-
ment between theory and experiment has been found.
As well as being of direct interest for collider phenomenology, observables computed 
on jets groomed with mMDT, or β = 0 soft drop, provide a way to study the struc-
ture of collinear logarithms without the complications arising from logarithms origi-
nating in the soft wide angle region of phase space.
In this chapter the NNLL structure of the jet mass after grooming with mMDT is 
studied at order α2

s. Although NNLL, and recently even N3LL, resummed calcula-
tions are available through the SCET formalism [47], [48], [190], albeit in the small 
zcut limit, it is still of interest to understand the structure of the collinear logarithms 
directly from the QCD matrix element. While an NLL resummed result can be de-
rived in a strongly ordered picture with collinear emissions widely separated in angle, 
the NNLL structure with terms αn

s lnn−1(ρ) stems from lifting the strong ordering 
on a pair of emissions. At order α2

s this leads us to consider two emissions (i.e. three 
partons) within a jet, which are at small angles, θ2 < ρ

zcut
but with no relative strong 

ordering between them. In this limit the matrix element can be approximated by the 
triple collinear splitting functions [50]–[52]. In the strongly ordered limit the triple 
collinear splitting functions reduce to a product of leading order splitting functions, 
thus recovering the NLL picture.
This motivates us to compute the α2 ln(ρ) NNLL term for quark initiated jets in the 
small zcut limit, starting from the triple collinear splitting functions. Our calculation 
does not make use of any resummation results or ingredients, rather, terms which 
one would expect from resummation results, such as the CMW scheme for the cou-
pling, emerge from the calculation. Having identified terms which although NNLL 
have their origin in NLL dynamics, we identify the NLL hard collinear term, often 
referred to as B2 [192]–[195], which originates in the triple collinear limit. We find 
full agreement with the expansion of the SCET resummations. This constitutes a 
strong check on the SCET results as, unlike the SCET calculations, we do not rely 
on any resummation ingredients. Aside from being a strong cross check of existing 
results, this work is also of interest as it links the structure of collinear logarithms 
to the triple collinear splitting functions, which is relevant for efforts to include the 
triple collinear splitting function in parton showers [1]–[3]. This work also informs 
the NNLL resummation of groomed observables in QCD as is done in chapter 5.
We start, in section 4.2, by defining the groomed heavy hemisphere mass, and writ-
ing down the NLL resummed distribution for this observable, including the CMW 
coupling with the argument set to kt. In section 4.3.1 we then carry out a leading 
order calculation and identify the process dependent term, referred to as C1, which 
multiplies the Sudakov factor. The NLL resummed result is then expanded to α2

s in 
section 4.3.2, where we identify terms which are NNLL, but which can be accommo-
dated within the NLL resummation, signifying their relation to strongly ordered dy-
namics. Then, in section 4.4, we compute the groomed heavy hemisphere mass distri-
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bution at O(α2
s), starting from the triple collinear splitting functions. In section 4.5, 

we then study the NNLL terms found from this calculation by removing the NNLL 
terms that we previously identified as being related to strongly ordered dynamics. 
Finally in section 4.6 we comment on our results in the context of QCD resummation 
and prospects for future work.

4.2 Observable definition and leading-log resummation

We are interested in the jet mass distribution of a QCD jet after the application of 
grooming via the modified mass-drop tagger (mMDT) or equivalently SoftDrop (β =

0). For reasons of convenience, we shall work in the context of e+e− collisions, though 
the NNLL pure collinear terms we will eventually extract are process independent 
and hence apply also to jets at hadron colliders.

We will compute the standard heavy hemisphere jet mass observable extensively stud-
ied in e+e− collisions but with the modification that we compute the heavy jet mass 
after running the mMDT procedure, defined in section 3.3, on the particles in each 
hemisphere. This was also the observable studied in the first mMDT NNLL resummed 
calculation performed in ref. [47]. In general one may separate the event into two 
hemispheres in different ways e.g. by clustering to two jets as in ref. [47] or as is tra-
ditional by using the thrust axis. At the level of our calculations and for extracting 
the terms we seek, we are insensitive to the precise details since, in the soft and/or 
collinear limit, we can take the hemispheres to be defined by the directions of the 
initial quark–anti-quark pair. After separating the event into two hemispheres, we 
groom the hemispheres with mMDT (defined in section 3.3) and measure 

  \rho = \frac {\mathrm {max}(M_R^2,M_L^2)}{Q^2/4}, 







 (4.1)

where we select the larger of the left or right hemisphere squared invariant masses 
(M2

L and M2
R respectively) and normalise to (Q/2)2 which corresponds to the squared 

energy of a hemisphere in the Born limit.

We shall work in the formal limit ρ � zcut � 1, which means that we will ex-
amine the structure of ln ρ enhanced terms, but shall neglect power corrections in 
zcut. An NLL resummation formula for the mMDT jet mass distribution, based on 
an independent emission picture with emissions strongly ordered in angles, was first 
provided in ref. [21] (see Eq. (7.2) of ref. [21] for the result). While that result ap-
plies directly to a jet produced in hadron collisions, it can be easily modified to the 
case of the heavy groomed hemisphere mass in e+e− annihilation. We express our 
next-to-leading-logarithmic resummed result in terms of the integrated distribution, 

\Sigma ^{\mathrm {NLL}}(\rho ) = \left (1+\frac {C_F \alpha _s}{2\pi } C_1 \right )\times \\ \exp \left [-\int _{\rho }^{1} \frac {\sd \rho '}{\rho '} \int _0^{1-\mathrm {max} \left (z_{\mathrm {cut}}, \rho ' \right )} \sd z \, p_{qq} (z) \frac { C_F}{\pi } \alpha _s^{\CMW } \left (\left (1-z \right ) \rho ' Q^2/4 \right ) \right ], \label {eq:llresult}



Σ(ρ) =
∫ ρ

0
1
σ0

dσ
dρ′dρ

′ as 

\Sigma ^{\mathrm {NLL}}(\rho ) = \left (1+\frac {C_F \alpha _s}{2\pi } C_1 \right )\times \\ \exp \left [-\int _{\rho }^{1} \frac {\sd \rho '}{\rho '} \int _0^{1-\mathrm {max} \left (z_{\mathrm {cut}}, \rho ' \right )} \sd z \, p_{qq} (z) \frac { C_F}{\pi } \alpha _s^{\CMW } \left (\left (1-z \right ) \rho ' Q^2/4 \right ) \right ], \label {eq:llresult}












\Sigma ^{\mathrm {NLL}}(\rho ) = \left (1+\frac {C_F \alpha _s}{2\pi } C_1 \right )\times \\ \exp \left [-\int _{\rho }^{1} \frac {\sd \rho '}{\rho '} \int _0^{1-\mathrm {max} \left (z_{\mathrm {cut}}, \rho ' \right )} \sd z \, p_{qq} (z) \frac { C_F}{\pi } \alpha _s^{\CMW } \left (\left (1-z \right ) \rho ' Q^2/4 \right ) \right ], \label {eq:llresult}























 




where we defined the splitting function pqq(z) = (1 + z2)/(1 − z) and σ0 is the Born 
cross-section.

The above result modifies the result of ref. [21] by replacing p2T by Q2/4 and is writ-
ten in terms of the splitting function pqq(z) rather than pgq(z) so that the variable 
1 − z in the above result corresponds to the variable z in Eq. (7.2) of ref. [21]. We 
have also inserted an additional factor of two in the Sudakov exponent which takes 
into account the fact that we are considering the result due to two hard partons in 
the left and right hemispheres respectively, rather than just a single parton initiat-
ing a jet. This is accounted for by our definition of the splitting function which has 
a factor of two relative to that defined in ref. [21]. The above result is labelled NLL 
since it correctly resums terms αn

sL
n, with L = ln ρ. Additionally a fixed-coupling 

calculation of the exponent in Eq. (4.2) reveals a term of the form αs ln2 zcut, which 
although subleading in ρ, correctly resums terms 

(
αs ln2 zcut

)n[21].

In Eq. (4.2) we have defined the coupling in the CMW or “physical” scheme [73], 
[196], [197] and have set the argument of the running coupling to be the transverse 
momentum squared of a soft and collinear emission relative to the direction of its 
hard parent parton, expressed in terms of the invariant mass ρ′ and the energy frac-
tion of the emitted gluon Q

2
(1 − z), since we have k2t = (1 − z)ρ′Q2/4. 2 Both the 

specification of the CMW scheme and the precise details of the argument of the run-
ning coupling (beyond the fact that it scales with ρ) in fact produce terms that are 
formally NNLL in ρ but with logarithmic enhancements in zcut. These terms are an 
intrinsic part of the next-to-leading-logarithmic resummation framework and hence 
naturally belong in our NLL formula. In a similar spirit we have also included in 
Eq. (4.2), a ρ independent, constant, order αs coefficient, C1, which is process depen-
dent and on physical grounds factorises from the leading-logarithmic Sudakov resum-
mation. On expanding the exponent, multiplication by the C1 term results in an α2

sL

term. While this term should be reproduced by our order α2
s calculations, it is pro-

cess dependent and unrelated to the collinear NNLL structure we ultimately seek to 
extract. Hence the explicit identification of C1 is needed, to account for the role of 
this piece in our final result.

We then expect that our eventual order α2
s result should contain all terms generated 

by the expansion of (4.2) and additionally all terms of genuine NNLL origin (i.e. un-
related to the strongly-ordered in angle NLL dynamics). These terms should arise 

2Recall that in the soft-collinear limit ρ′ = m2/(Q2/4) ≈ (1− z)θ2 while kt = Q
2
(1− z)θ.
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from collinear physics, and be independent of zcut and the specific hard process.

4.3 Leading order calculation and expansion of NLL result 

Throughout this article we shall work in the resummation region where ρ � zcut

and hence ignore the presence of a transition point at ρ ≈ zcut, beyond which the 
groomed jet mass result becomes coincident with the plain un-groomed mass. We 
shall consider for simplicity that zcut � 1, so that we can neglect powers of zcut, al-
though this is not a requirement on the validity of our triple-collinear calculations.

Our first step will be to determine the ρ independent coefficient, C1, that appears in 
Eq. (4.2). We do this in the following subsection by performing a leading-order cal-
culation in the soft and collinear limit.

4.3.1 Leading-order calculation 

Here we derive, in the small ρ and zcut limit as defined before, the order αs contri-
bution to Σ(ρ). At this order we have to consider a single real emission and the one-
loop virtual correction to qq̄ production. To handle divergences in the real emission 
calculation, we perform the calculation in conventional dimensional regularisation 
(CDR) in d = 4 − 2ε dimensions, and combine with the virtual correction before 
taking ε→ 0.

Since we are interested in the region of small jet mass and small zcut, we can work in 
the soft and/or collinear limit, perform the calculation for a single hemisphere and 
then double the result. Considering the gluon to be in the same hemisphere as the 
quark (for example) and applying the mMDT, we have a situation where the zcut

condition passes or fails. If it passes then one obtains a non-zero hemisphere mass, 
while if it fails the hemisphere mass vanishes.

When the zcut condition passes, we are considering a pair of relatively energetic par-
tons which produce a small jet mass, implying that the angle between partons is small, 
θ2 ∼ ρ

zcut
� 1, which allows the use of the collinear approximation. In this region 

the emission probability is just the q → qg splitting function in 4 − 2ε dimensions, 
pqq(z, ε) = pqq(z) − ε(1 − z), and the result follows by applying the standard d-
dimensional collinear phase space [198]:

{eq:locoll} \Sigma _{1,\mathrm {r_1}}(\rho ) = 2\times \frac { C_F \alpha _s}{2\pi } \frac {(4\pi \mu ^2)^\epsilon }{\Gamma (1-\epsilon )} \left (\frac {Q}{2}\right )^{-2 \epsilon } \times \\ \int \frac {\sd \theta ^2}{\theta ^{2(1+\epsilon )}} \int _{\zc }^{1-\zc }\left (z(1-z) \right )^{-2\epsilon } p_{qq}(z,\epsilon ) \Theta (z(1-z)\theta ^{2}<\rho ) \sd z,  














{eq:locoll} \Sigma _{1,\mathrm {r_1}}(\rho ) = 2\times \frac { C_F \alpha _s}{2\pi } \frac {(4\pi \mu ^2)^\epsilon }{\Gamma (1-\epsilon )} \left (\frac {Q}{2}\right )^{-2 \epsilon } \times \\ \int \frac {\sd \theta ^2}{\theta ^{2(1+\epsilon )}} \int _{\zc }^{1-\zc }\left (z(1-z) \right )^{-2\epsilon } p_{qq}(z,\epsilon ) \Theta (z(1-z)\theta ^{2}<\rho ) \sd z,
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where the label r1 indicates the first of three distinct real-emission terms that we en-
counter, and we have provided an explicit factor of 2 to take account of both hemi-
spheres, which shall apply to all the real-emission terms we compute in this section. 
The constraint arising from restricting the jet mass is written in terms of a step func-
tion involving ρ, while the zcut condition removes any soft singularity in the integral 
and we obtain just a collinear pole alongside finite corrections. We have not explic-
itly written, for brevity, the dependence on zcut in the argument of Σ1,r1 which is left 
implicit here and throughout this chapter.

Next we turn to the region where the zcut condition fails, the softer particle is groomed 
away, and we obtain a massless hemisphere. This can happen when the quark goes 
soft (z < zcut), or when the gluon goes soft (z > 1 − zcut), and in either case the jet 
mass vanishes, so we can replace the step function in Eq. (4.3) by unity. The region 
corresponding to a soft quark also contributes only a collinear divergence and finite 
terms which are suppressed by powers of zcut which we neglect. Hence retaining just 
the collinear divergence, corresponding to a pole in ε produced by the θ2 integral, we 
can write this contribution as 

  \label {eq:coll-2} \Sigma _{1,\mathrm {r_2}} (\rho ) = -2 \frac { C_F \alpha _s}{2\pi } \left (\frac {2\mu }{Q}\right )^{2\epsilon }\frac {1}{\epsilon } \int _0^{z_{\text {cut}}} \left (\frac {1+z^2}{1-z} \right ) \, \sd z \ \ ,  



















 




  (4.4)

where we performed the θ2 integral and discarded all finite terms owing to their sup-
pression with zcut. Accordingly we have dropped the ε dependence of the constant 
prefactor multiplying the integral, since this only leads to finite power suppressed in 
zcut corrections.

Lastly there is the region z > 1−zcut corresponding to a soft gluon emission, which is 
removed by grooming. As there is no longer a constraint on the angle, one has to re-
place the soft-enhanced part of the splitting function with the full eikonal function to 
account for the wide-angle region. For soft-regular pieces, however, one merely needs 
the collinear pole as any finite contributions are power suppressed in zcut. Hence, us-
ing pqq(z, ε) = 2/(1− z)− (1+ z)− ε(1− z), to separate the soft enhanced and regular 
terms of the splitting function, we write 

\Sigma _{1,r_3} = \Sigma _{1,r_3 \, \mathrm {soft}} + \Sigma _{1,r_3 \, \mathrm {coll.}} \ \ ,        \Sigma _{1,r_3} = \Sigma _{1,r_3 \, \mathrm {soft}} + \Sigma _{1,r_3 \, \mathrm {coll.}} \ \ ,

where explicitly 

\label {eq:soft-coll} \Sigma _{1,r_3 \, \mathrm {soft}} = 2\frac { C_F \alpha _s}{2\pi } \frac {(4\pi \mu ^2)^\epsilon }{\Gamma (1-\epsilon )} \left (\frac {Q}{2}\right )^{-2 \epsilon } \times \\ \int _{1-z_{\mathrm {cut}}}^{1} \frac {2\, \sd z }{(1-z)^{1+2\epsilon }} \, \int _0^1 \frac {2 \ \sd \left (\cos \theta \right )}{\left (1-\cos \theta \right )^{1+\epsilon } \left (1+\cos \theta \right )^{1+\epsilon }}\ \ ,  















\label {eq:soft-coll} \Sigma _{1,r_3 \, \mathrm {soft}} = 2\frac { C_F \alpha _s}{2\pi } \frac {(4\pi \mu ^2)^\epsilon }{\Gamma (1-\epsilon )} \left (\frac {Q}{2}\right )^{-2 \epsilon } \times \\ \int _{1-z_{\mathrm {cut}}}^{1} \frac {2\, \sd z }{(1-z)^{1+2\epsilon }} \, \int _0^1 \frac {2 \ \sd \left (\cos \theta \right )}{\left (1-\cos \theta \right )^{1+\epsilon } \left (1+\cos \theta \right )^{1+\epsilon }}\ \ ,










  
       

and 
  \Sigma _{1,r_3 \, \mathrm {coll.}} = 2\times \frac { C_F \alpha _s}{2\pi } \frac {1}{\epsilon }\int _{1-z_{\mathrm {cut}}}^{1} \sd z (1+z)\ .    











    (4.7)
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In the expression for Σ1,r3 soft the upper limit of the cos θ integral corresponds to θ =

π/2 for the boundary of the hemisphere under consideration, while in the expression 
for Σ1,r3 coll. we have retained only the singular contribution as finite corrections van-
ish with zcut.

Our final ingredient is the well-known virtual correction to qq̄ production (see e.g. 
[198]): 

  \label {eq:virtborn} \mathcal {V}(\epsilon ) = \frac {C_F \alpha _s}{2\pi } \frac {\Gamma (1+\epsilon ) \Gamma ^2 (1-\epsilon )}{\Gamma (1-2\epsilon )}\left ( -\frac {2}{\epsilon ^2} \left (\frac {4 \pi \mu ^2}{Q^2} \right )^\epsilon +\pi ^2-8 -\frac {3}{\epsilon } \left ( \frac {4 \pi \mu ^2}{Q^2} \right )^\epsilon \right ).  



  















   









 (4.8)

We express our results in terms of the renormalised coupling in the MS scheme, αs(µ
2
R), 

using the relation 
  \label {eq:renorm} \mu ^{2\epsilon } \alpha _s = S^{-1}_\epsilon \mu _R^{2\epsilon } \alpha _s(\mu _R^2) +\mathcal {O}(\alpha _s^2),  







 (4.9)

where we have the standard MS factor 

  \label {eq:msbar} S_\epsilon = (4\pi )^\epsilon e^{-\epsilon \gamma _E},     (4.10)

and we choose µR = Q/2. 3 Carrying out the necessary integrals we obtain the result 
for the real emission term Σ1,r = Σ1,r1 + Σ1,r2 + Σ1,r3 soft + Σ1,r3 coll., 

{eq:realres} \Sigma _{1,r} = \frac {C_F \alpha _s \left (Q^2/4 \right )}{2\pi } \bigg ( \frac {2}{\epsilon ^2} + \frac {3-4 \ln 2}{\epsilon } \\ -\ln \rho \left (4\ln \zc +3 \right ) +2 \ln ^2 \zc + 8 \ln 2 \ln \zc +4\ln ^2 2 -\frac {7 \pi ^2}{6}+7 \bigg ).












  



{eq:realres} \Sigma _{1,r} = \frac {C_F \alpha _s \left (Q^2/4 \right )}{2\pi } \bigg ( \frac {2}{\epsilon ^2} + \frac {3-4 \ln 2}{\epsilon } \\ -\ln \rho \left (4\ln \zc +3 \right ) +2 \ln ^2 \zc + 8 \ln 2 \ln \zc +4\ln ^2 2 -\frac {7 \pi ^2}{6}+7 \bigg ).                     







Combining with the virtual correction we obtain the leading-order result, Σ1(ρ) =

Σ1,r + V(ε): 

{eq:LO} \Sigma _1 (\rho )= \frac {C_F \alpha _s \left (Q^2/4\right )}{2\pi } \times \\ \bigg [ -\ln \frac {1}{\rho } \left (4 \ln \frac {1}{\zc }-3\right )+2\ln ^2\zc - 2 \ln 2\left ( 4 \ln \frac {1}{\zc }-3\right ) -1\bigg ],





{eq:LO} \Sigma _1 (\rho )= \frac {C_F \alpha _s \left (Q^2/4\right )}{2\pi } \times \\ \bigg [ -\ln \frac {1}{\rho } \left (4 \ln \frac {1}{\zc }-3\right )+2\ln ^2\zc - 2 \ln 2\left ( 4 \ln \frac {1}{\zc }-3\right ) -1\bigg ],

 




 





      


 










where the argument of the running coupling reflects our choice of µR. We have writ-
ten the above result separating the contributions that arise from expanding the NLL 
formula (i.e the ln 1/ρ and ln2 zcut contributions that are associated to the fixed-coupling 
Sudakov exponent) from the contributions we shall associate to C1. This allows us to 
identify 

  \label {eq:constant} C_1 = -2 \ln 2 \left ( 4 \ln \frac {1}{\zc }-3\right ) -1.    


 





  (4.13)

We note that defining the observable as v = ρ/4, corresponding to a normalisation 
to Q2, would result in the elimination of the term proportional to ln 2 and hence the 
ln zcut dependence from C1, but the resummation of ln zcut terms is beyond the scope 

3Beyond order αs, the RHS of Eq. (4.9) contains UV poles in ε related to the renormalisation of the strong cou-
pling.
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of our results.

4.3.2 NLL result at second order

On performing the full order α2
s calculation, to our NNLL in ρ accuracy, we should 

recover all terms produced by the expansion of Eq. (4.2) in addition to terms that 
are unrelated to the NLL structure, which will then act as one of the checks on our 
results. To this end we report below the expansion of Eq. (4.2) for the differential 
distribution ρdΣ

dρ (to correspond to the calculations of the following sections). The 
leading-order result is given by (for our choice of µR = Q/2), 

  \rho \frac {\sd \Sigma ^{\mathrm {NLL}}_1}{\sd \rho } = \frac {C_F \alpha _s\left ( Q^2/4 \right )}{2\pi } \left ( -3-4 \ln \zc \right ). 











     (4.14)

To obtain the order α2
s result one needs to compute the Sudakov exponent with run-

ning coupling and switch from the CMW scheme to the MS scheme, which gives 

{eq:llexpansion} \rho \frac {\sd \Sigma ^{\mathrm {NLL}}_2}{\sd \rho } = \left (\frac {\alpha _s}{2\pi }\right )^2 \times \\ \bigg [ C_F^2\bigg ((3+4\ln \zc )^2\ln \rho -8 \ln ^3\zc - 2 (3+16 \ln 2) \ln ^2\zc + (4-48 \ln 2) \ln \zc -18 \ln 2+3 \bigg ) \\ + C_F C_A \left ( \frac {11}{6} \left ( 3+4\ln \zc \right )\ln \rho +\frac {11}{3} \ln ^2 \zc +\left (\frac {2\pi ^2}{3}-\frac {134}{9} \right ) \ln \zc \right ) \\ + C_F T_R n_f \left ( -\frac {2}{3}(3+4\ln \zc )\ln \rho -\frac {4}{3}\ln ^2\zc + \frac {40}{9} \ln \zc \right ) \bigg ].











{eq:llexpansion} \rho \frac {\sd \Sigma ^{\mathrm {NLL}}_2}{\sd \rho } = \left (\frac {\alpha _s}{2\pi }\right )^2 \times \\ \bigg [ C_F^2\bigg ((3+4\ln \zc )^2\ln \rho -8 \ln ^3\zc - 2 (3+16 \ln 2) \ln ^2\zc + (4-48 \ln 2) \ln \zc -18 \ln 2+3 \bigg ) \\ + C_F C_A \left ( \frac {11}{6} \left ( 3+4\ln \zc \right )\ln \rho +\frac {11}{3} \ln ^2 \zc +\left (\frac {2\pi ^2}{3}-\frac {134}{9} \right ) \ln \zc \right ) \\ + C_F T_R n_f \left ( -\frac {2}{3}(3+4\ln \zc )\ln \rho -\frac {4}{3}\ln ^2\zc + \frac {40}{9} \ln \zc \right ) \bigg ].





 

             


{eq:llexpansion} \rho \frac {\sd \Sigma ^{\mathrm {NLL}}_2}{\sd \rho } = \left (\frac {\alpha _s}{2\pi }\right )^2 \times \\ \bigg [ C_F^2\bigg ((3+4\ln \zc )^2\ln \rho -8 \ln ^3\zc - 2 (3+16 \ln 2) \ln ^2\zc + (4-48 \ln 2) \ln \zc -18 \ln 2+3 \bigg ) \\ + C_F C_A \left ( \frac {11}{6} \left ( 3+4\ln \zc \right )\ln \rho +\frac {11}{3} \ln ^2 \zc +\left (\frac {2\pi ^2}{3}-\frac {134}{9} \right ) \ln \zc \right ) \\ + C_F T_R n_f \left ( -\frac {2}{3}(3+4\ln \zc )\ln \rho -\frac {4}{3}\ln ^2\zc + \frac {40}{9} \ln \zc \right ) \bigg ].





      


 













{eq:llexpansion} \rho \frac {\sd \Sigma ^{\mathrm {NLL}}_2}{\sd \rho } = \left (\frac {\alpha _s}{2\pi }\right )^2 \times \\ \bigg [ C_F^2\bigg ((3+4\ln \zc )^2\ln \rho -8 \ln ^3\zc - 2 (3+16 \ln 2) \ln ^2\zc + (4-48 \ln 2) \ln \zc -18 \ln 2+3 \bigg ) \\ + C_F C_A \left ( \frac {11}{6} \left ( 3+4\ln \zc \right )\ln \rho +\frac {11}{3} \ln ^2 \zc +\left (\frac {2\pi ^2}{3}-\frac {134}{9} \right ) \ln \zc \right ) \\ + C_F T_R n_f \left ( -\frac {2}{3}(3+4\ln \zc )\ln \rho -\frac {4}{3}\ln ^2\zc + \frac {40}{9} \ln \zc \right ) \bigg ].





      


 









The above result contains a term which is NLL in ρ originating from the exponen-
tiation of the leading-order result. It also contains NNLL in ρ terms, corresponding 
to ρ independent terms in ρ dΣ2/dρ generated by an interplay of the NLL exponent 
with C1 and by fixing the scale and scheme of the running coupling. In particular the 
ln2 zcut terms in the CFCA and CFTRnf channels derive from the 1 − z factor in the 
argument of the running coupling, while the ln zcut term in the same channels is gen-
erated by changing from the CMW scheme to the MS scheme as can be seen through 
their coefficient, proportional to K =

(
67
18

− π2

6

)
CA − 10

9
TRnf . In addition to these 

terms, the 1 − z factor in the argument of the running coupling and the CMW co-
efficient, K, applied to the full splitting function rather than just its soft enhanced 
piece, are also responsible for producing zcut independent NNLL terms, which go be-
yond the strict jurisdiction of the NLL formula. The full set of such terms will be 
identified through the calculation we perform here and can be properly accommo-
dated within a consistent NNLL resummation formula.

In the next sections we shall derive the full result at order α2
s through to NNLL ac-

curacy, compare it to the expectations from Eq. (4.15) and derive the zcut indepen-
dent NNLL corrections.
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4.4 NNLL at second order: the triple-collinear limit

At NLL accuracy, for the mMDT jet mass, we have a picture of successive collinear 
parton branchings which are strongly ordered in angle with each branching being de-
scribed by a leading-order (LO) 1 → 2 splitting function. Thus at order α2

s, the real 
emission matrix-element simply involves a product of two LO splitting functions. To 
obtain NNLL accuracy, at order α2

s, one has to consider three partons that are com-
parably collinear i.e. the opening angle between any two partons is small θ2ij � 1 but 
there is no strong ordering so that θ212 ∼ θ213 ∼ θ223. Such configurations are described 
by the 1 → 3 collinear splitting of an initial parton, and the matrix-element involves 
triple-collinear splitting functions. In the strongly-ordered limit, the triple-collinear 
splitting functions reduce to a product of LO splitting functions (in general after az-
imuthal averaging) thus restoring the NLL picture.

For our current calculations, the relevant functions are the unpolarised triple-collinear 
splitting functions for a quark (or anti-quark) initiated 1 → 3 splitting, denoted 
〈Pabq〉 for a splitting q → qab with a and b representing parton flavours, which were 
first computed in Refs. [50]–[52], and are listed in the appendix. For the q → ggq

splittings there is both a gluon emission contribution with a C2
F colour factor, and a 

gluon decay contribution with a CFCA colour factor. The q → qq̄q splitting arises 
from gluon decay and has a CFTRnf colour factor as well as a contribution from an 
identical particle interference contribution, involving quarks of the same flavour in 
the final state, which has a colour factor CF (CF − CA/2), and vanishes in the lead-
ing Nc limit. Identical considerations apply for the decay of an initial anti-quark. In 
the following subsections, we consider the gluon emission and decay contributions in 
turn.

4.4.1 Gluon emission contribution

Here we study the emission of two gluons from the initial qq̄ system, associated with 
a C2

F colour factor. The emitted gluons can either be in the same or in opposite hemi-
spheres, with the latter case being simply related to the leading-order calculations we 
have already performed. We deal with each contribution in turn below.

Emissions in opposite hemispheres

Consider a gluon emitted in each of the “right” and “left” hemispheres containing 
the quark and anti-quark respectively. Let us assume that the right hemisphere is 
heavier after grooming and that its groomed jet mass is ρ. This implies that the branch-
ing in the right hemisphere must pass the zcut requirement corresponding to 1−zcut >

z > zcut and that it must set a mass ρ, while in the left hemisphere the mass must be 
below ρ for it to be lighter, and hence the grooming can either retain both or remove 

71



one of the two particles. The fact that in the right hemisphere the grooming passes, 
coupled with the limit we are working in, with ρ� zcut, allows us to use the collinear 
approximation, so that the branching in the right hemisphere factorises from the dy-
namics of the left hemisphere. Here we do not require the triple-collinear splitting 
functions, as the emissions in opposite hemispheres are well separated.

For the left hemisphere, the constraint on the mass to be below ρ simply gives us 
Σ1,r/2, with Σ1,r, the real emission result, already computed in the previous section 
(see Eq. (4.11). For the right hemisphere the distribution can be simply calculated 
in the collinear limit using the LO splitting function and the collinear 1 → 2 phase 
space. Finally a factor of two accounts for the case when the left hemisphere is heav-
ier after grooming.

For compactness, here and in the sections below, we define the quantity F(ρ), 

  \mathcal {F}(\rho ) = \rho \frac {d\Sigma _2}{d\rho },  



 (4.16)

where Σ2 is the order α2
s contribution to Σ(ρ). The result for the emissions in oppo-

site hemispheres can then be written as a product of two leading-order factors4: 

  \mathcal {F}^{\mathrm {opp.}}(\rho ,\epsilon ) = \Sigma _{1,r} \times \frac {C_F \alpha _s}{2\pi } \frac {e^{\epsilon \gamma _E}}{\Gamma (1-\epsilon )}\int _{\zc }^{1-\zc } \left (\rho z (1-z) \right )^{-\epsilon } p_{qq} \left (z,\epsilon \right ) \sd z.    












      (4.17)

Note that although the LO jet mass distribution for the right hemisphere is a finite 
quantity, we have retained its ε dependence in the result above, since Σ1,r contains 
double and single poles in ε which interact with ε dependence of the right hemisphere 
mass distribution to generate terms which are finite in the limit ε→ 0.

Emissions in the same hemisphere

z1 = (1− z) z2 = z(1− zp)

z3 = zzp

Figure 4.1. An illustration of the parametrisation used for kinematic variables in the gluon emission 
process, relevant to the triple-collinear limit calculation discussed in the main text.

When two emissions, i.e. three partons, are in the same hemisphere one has to con-
sider the action of the mMDT taking into proper account the Cambridge/Aachen 
clustering sequence. This involves considering different angular regions where the 
two emissions can be clustered separately to the quark (or anti-quark according to 
the hemisphere in question) or are first clustered together and then clustered to the 
quark. It proves convenient to divide the calculation into two pieces: a first piece 

4Having specified our choice of µR = Q/2 we shall not explicitly indicate the argument of αs in the order α2
s

pieces.
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where in all angular regions we apply the mMDT as if the gluons are clustered sepa-
rately to the quark, and a second piece which restores the correct action of the mMDT 
in the angular region where the two gluons are clustered. We are then led to consider 
the following distinct cases:

• Larger-angle gluon passes zcut: Neglecting the clustering of the two gluons, the 
mMDT declustering produces two branches, consisting of the larger-angle gluon 
and a massive branch with the quark and the smaller-angle gluon. When the 
first declustering passes the zcut condition all three partons are retained. The 
angle between the branches is small, being set by θ2 ∼ ρ/zcut and hence the 
three partons are constrained to be within a small angular region and the triple-
collinear limit generates the full result. The result for the real emission calcu-
lation will be divergent due to the smaller-angle emission becoming soft and/or 
collinear and will contain double and single ε poles.

• Larger-angle gluon fails zcut : Another relevant situation is that the larger-angle 
gluon is soft and hence the first declustering fails the zcut condition.5 In this 
case the soft gluon is groomed away while the tagger then declusters the second 
gluon and we require the second declustering to pass the zcut condition to obtain 
a massive hemisphere. In this case only the smaller-angle gluon is constrained 
by the jet mass to be collinear to the quark, while the first emission can be at a 
large angle. Hence we need to modify the triple-collinear splitting functions to 
match the correct soft large-angle emission pattern for the first gluon, precisely 
as we did in section 4.3.1. The result is divergent due to the soft divergence pro-
duced by the larger-angle gluon, though it contains only a single pole in ε.

• Correction for gluon clustering: In the region where the angle between the two 
gluons, θ12, is the smallest angle the gluons are clustered first by the C/A algo-
rithm. Hence the first declustering produces a massive branch with the two glu-
ons and a massless branch i.e. the quark. If the quark is soft the zcut condition 
can fail and the tagger recurses down the massive two-gluon branch. However 
such configurations with a soft quark are suppressed by powers of zcut and can 
be ignored consistent with our intended accuracy. The two-gluon branch must 
also pass the zcut condition, as grooming it away would lead to a massless jet. 
Hence we can always take the first declustering to pass the zcut condition so that 
all three partons are retained, implying that the triple-collinear limit is once 
again the relevant one. In the angular region where the gluons are clustered, we 
shall subtract the contributions already included in the first two scenarios de-
scribed above, and shall add the correct constraints just discussed. The differ-
ence between the correct and subtraction terms is finite and can be calculated in 
four dimensions.

5The first declustering can also fail the zcut condition due to the massive quark-gluon branch going soft, but re-
jection of this branch leads to a massless hemisphere and hence this contribution can be ignored for ρ 6= 0.

\label {eq:tcphasesp} \text {d} \Phi _3 = \frac {1}{\pi }\left (\frac {Q}{2}\right )^{4-4\epsilon } \times \\ \frac {1}{\left (4\pi \right )^{4-2\epsilon } \Gamma \left (1-2\epsilon \right )} \text {d}z_2 \text {d}z_3 \text {d} \theta _{13}^2 \text {d} \theta _{23}^2 \text {d} \theta _{12}^2\, (z_1 z_2 z_3)^{1-2\epsilon }\, \Delta ^{-1/2-\epsilon } \, \Theta (\Delta ),



For calculations in the triple-collinear limit, we work in terms of the energy fractions 
zi, defined with respect to the initiating parton’s energy, and which satisfy 

∑
i zi = 1, 

and the angles θij between any two partons i and j, such that θij � 1. The triple-
collinear phase space in 4− 2ε dimensions may be written as 6 [199] 

\label {eq:tcphasesp} \text {d} \Phi _3 = \frac {1}{\pi }\left (\frac {Q}{2}\right )^{4-4\epsilon } \times \\ \frac {1}{\left (4\pi \right )^{4-2\epsilon } \Gamma \left (1-2\epsilon \right )} \text {d}z_2 \text {d}z_3 \text {d} \theta _{13}^2 \text {d} \theta _{23}^2 \text {d} \theta _{12}^2\, (z_1 z_2 z_3)^{1-2\epsilon }\, \Delta ^{-1/2-\epsilon } \, \Theta (\Delta ),













\label {eq:tcphasesp} \text {d} \Phi _3 = \frac {1}{\pi }\left (\frac {Q}{2}\right )^{4-4\epsilon } \times \\ \frac {1}{\left (4\pi \right )^{4-2\epsilon } \Gamma \left (1-2\epsilon \right )} \text {d}z_2 \text {d}z_3 \text {d} \theta _{13}^2 \text {d} \theta _{23}^2 \text {d} \theta _{12}^2\, (z_1 z_2 z_3)^{1-2\epsilon }\, \Delta ^{-1/2-\epsilon } \, \Theta (\Delta ),

  
   

where the Gram determinant ∆ is defined as 

  \Delta = 4 \theta _{13}^2 \theta _{23}^2 - \left (\theta _{12}^2-\theta _{23}^2-\theta _{13}^2\right )^2. 




   


 (4.19)

To make contact with the LO splitting functions in the strongly-ordered limit, it is 
useful to parametrise the variables zi in terms of variables z and zp as depicted in 
Fig. 4.1. Our general method for integrating the triple-collinear functions and ex-
tracting its divergences is briefly described in A.2. It involves systematic subtraction 
of soft and collinear divergences, via a series expansion around divergent limits, to 
obtain the pole structure and a pure finite contribution which we integrate numeri-
cally in four dimensions. Our results shall thus be partly analytical (stemming from 
performing an ε expansion of the coefficients of the pole terms) and partly numerical 
in nature.

We first provide the details for results neglecting the clustering of gluons starting 
from the contribution where the larger-angle emission passes the zcut, which we la-
bel Fpass(ρ, ε). We take θ13 to be the larger angle and hence for the first declustering 
to pass the zcut condition we have that 1− zcut > z > zcut. The smaller angle gluon is 
not examined for the zcut condition and can be arbitrarily soft and/or collinear, lead-
ing to divergences in both limits i.e. from zp → 1 and θ23 → 0. The relevant splitting 
function and prefactor is specified by Eqs. (A.1), (A.3) and we obtain 

\label {eq:zpass} \mathcal {F}^{\text {pass}}(\rho ,\epsilon )= 2 S_\epsilon ^{-2} \left ( \frac {Q}{2} \right )^{4\epsilon }\times \\ \int \sd \Phi _3 \frac {\left (8 \pi \alpha _s \right )^2}{s_{123}^2} C_F^2 \la P_{q\rightarrow g_1 g_2 q_3 }^{(ab)}\ra \delta _\rho (1,2,3)\Theta _{\zc }(1|23) \Theta (\theta _{23}<\theta _{13}),  









\label {eq:zpass} \mathcal {F}^{\text {pass}}(\rho ,\epsilon )= 2 S_\epsilon ^{-2} \left ( \frac {Q}{2} \right )^{4\epsilon }\times \\ \int \sd \Phi _3 \frac {\left (8 \pi \alpha _s \right )^2}{s_{123}^2} C_F^2 \la P_{q\rightarrow g_1 g_2 q_3 }^{(ab)}\ra \delta _\rho (1,2,3)\Theta _{\zc }(1|23) \Theta (\theta _{23}<\theta _{13}),















    

where s2123 = Q2

4

∑3
j>i

∑2
i=1 zizjθ

2
ij is the squared invariant mass of the three parton 

system, the superscript (ab) on the splitting function denotes that it is the abelian 
contribution, and δρ(1, 2, 3) is an abbreviated notation for the condition that the nor-
malised hemisphere jet mass ρ involves all three partons i.e. the condition 

  \delta _\rho (1,2,3) =\rho \,\delta \left (\rho - \frac {4 s_{123}^2}{Q^2} \right ),     







 (4.21)

6Additionally a 1/2! symmetry factor applies for identical particles in final state.
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where the factor of ρ in front of the delta function takes care of the fact that we are 
studying the logarithmic derivative ρdΣ/dρ. We shall also use the notation Θzcut(a|b)
to denote the condition that two branches a and b, made up of one or two partons, 
pass the zcut condition. Partons not included in a and b fail the zcut condition and 
are removed by grooming. Thus Θzcut(1|23) in Eq. (4.20) indicates that both branches 
i.e. gluon 1 and the massive branch with gluon 2 and the quark (with index 3) pass 
the zcut condition. More explicitly we have Θzcut(1|23) = Θ (z < 1− zcut)Θ (z > zcut), 
amounting to simply a cut on z.

In Eq. (4.20) we have also introduced the renormalised MS coupling αs(µ
2
R) via the 

use of Eq. (4.10) leading to the appearance of the S−2
ε factor and chosen µR = Q/2, 

though for brevity we have not explicitly written the argument of the running cou-
pling above. We have introduced a factor of two to account for the other hemisphere 
containing the branching of the anti-quark.

Carrying out the integrals with the method discussed in appendix A.2, the result can 
be expressed in the following form: 

\mathcal {F}^{\text {pass}}(\rho ,\epsilon ) = \left (\frac {C_F \alpha _s}{2\pi }\right )^2 \times \\ \int _{z_{\mathrm {cut}}}^{1-z_{\mathrm {cut}}} 2 \bigg ( \frac {H^{\text {soft-coll.}}(z,\rho ,\epsilon )}{ \epsilon ^2} + \frac {H^{\mathrm {coll.}}(z,\rho ,\epsilon )}{\epsilon } +\frac {H^{\mathrm {soft}}(z,\rho ,\epsilon )}{\epsilon } + H^{\text {fin.}}(z) \bigg ) \sd z, 








\mathcal {F}^{\text {pass}}(\rho ,\epsilon ) = \left (\frac {C_F \alpha _s}{2\pi }\right )^2 \times \\ \int _{z_{\mathrm {cut}}}^{1-z_{\mathrm {cut}}} 2 \bigg ( \frac {H^{\text {soft-coll.}}(z,\rho ,\epsilon )}{ \epsilon ^2} + \frac {H^{\mathrm {coll.}}(z,\rho ,\epsilon )}{\epsilon } +\frac {H^{\mathrm {soft}}(z,\rho ,\epsilon )}{\epsilon } + H^{\text {fin.}}(z) \bigg ) \sd z,






 



 



 







where one notes the presence of a double pole coming from the soft zp → 1 and 
collinear θ223 → 0 limit. Single-pole contributions are separated into the contribu-
tions from soft (zp → 1) and collinear (θ223 → 0) divergences alone, given respectively 
by the Hsoft and Hcoll. functions. We have 

  \begin {split} H^{\text {soft-coll.}}(z,\rho ,\epsilon ) &= p_{qq}(z,\epsilon ) z^{-2 \epsilon }\rho ^{-2\epsilon } \left (1-\frac {\pi ^2}{6}\epsilon ^2+\mathcal {O}(\epsilon ^3)\right ),\\ H^{\text {coll.}}(z,\rho ,\epsilon ) &= p_{qq}(z,\epsilon ) z^{-2 \epsilon }\rho ^{-2\epsilon }\left (\frac {3}{2}+\frac {13}{2}\epsilon -\frac {2\pi ^2}{3}\epsilon +\mathcal {O}(\epsilon ^2)\right ),\\ H^{\text {soft}}(z,\rho ,\epsilon ) &= 0. \end {split}     











  \begin {split} H^{\text {soft-coll.}}(z,\rho ,\epsilon ) &= p_{qq}(z,\epsilon ) z^{-2 \epsilon }\rho ^{-2\epsilon } \left (1-\frac {\pi ^2}{6}\epsilon ^2+\mathcal {O}(\epsilon ^3)\right ),\\ H^{\text {coll.}}(z,\rho ,\epsilon ) &= p_{qq}(z,\epsilon ) z^{-2 \epsilon }\rho ^{-2\epsilon }\left (\frac {3}{2}+\frac {13}{2}\epsilon -\frac {2\pi ^2}{3}\epsilon +\mathcal {O}(\epsilon ^2)\right ),\\ H^{\text {soft}}(z,\rho ,\epsilon ) &= 0. \end {split}     



















  \begin {split} H^{\text {soft-coll.}}(z,\rho ,\epsilon ) &= p_{qq}(z,\epsilon ) z^{-2 \epsilon }\rho ^{-2\epsilon } \left (1-\frac {\pi ^2}{6}\epsilon ^2+\mathcal {O}(\epsilon ^3)\right ),\\ H^{\text {coll.}}(z,\rho ,\epsilon ) &= p_{qq}(z,\epsilon ) z^{-2 \epsilon }\rho ^{-2\epsilon }\left (\frac {3}{2}+\frac {13}{2}\epsilon -\frac {2\pi ^2}{3}\epsilon +\mathcal {O}(\epsilon ^2)\right ),\\ H^{\text {soft}}(z,\rho ,\epsilon ) &= 0. \end {split}    

  \begin {split} H^{\text {soft-coll.}}(z,\rho ,\epsilon ) &= p_{qq}(z,\epsilon ) z^{-2 \epsilon }\rho ^{-2\epsilon } \left (1-\frac {\pi ^2}{6}\epsilon ^2+\mathcal {O}(\epsilon ^3)\right ),\\ H^{\text {coll.}}(z,\rho ,\epsilon ) &= p_{qq}(z,\epsilon ) z^{-2 \epsilon }\rho ^{-2\epsilon }\left (\frac {3}{2}+\frac {13}{2}\epsilon -\frac {2\pi ^2}{3}\epsilon +\mathcal {O}(\epsilon ^2)\right ),\\ H^{\text {soft}}(z,\rho ,\epsilon ) &= 0. \end {split} 

The function Hfin.(z) represents a finite contribution whose precise analytic form we 
have not extracted. Instead we study this finite contribution by direct numerical in-
tegration over the triple-collinear phase-space in 4 dimensions. The result for the in-
tegration of Hfin.(z) gives a constant as zcut → 0. The result that we obtain using 
integration with Suave [200], setting zcut = 0 is, 

 \label {eq:finitezpass} 2\int _{0}^{1} H^{\text {fin.}}(z) \sd z = 1.866 \pm 0.002. 





    (4.24)

Next, we study the situation where the larger-angle gluon, i.e. emission 1, fails the 
zcut condition and is groomed away, corresponding to 1 > z > 1 − zcut. This leaves 
the mass to be set by the smaller-angle emission 2, ρ = z2z3θ

2
23 = z2zp(1 − zp)θ

2
23. 

75



This emission must survive grooming i.e. 1 − zcut > zp > zcut and hence θ223 � 1

for ρ � zcut. The softness of emission 1, with energy proportional to 1 − z, implies 
that any terms regular in the limit z → 1 produce power suppressed corrections in 
zcut, which we can neglect. Hence the only contribution comes from the singularity as 
z → 1, which produces an ε pole and associated finite corrections.

We start by considering the triple-collinear splitting function P (ab)
q→g1g2q3 and its inte-

gral over the phase-space, as for the previous case where emission 1 passes the zcut

condition. However since now emission 1 fails the zcut condition and is groomed away, 
it is not constrained to be collinear and has a range of angular integration going from 
θ13 ∼ θ23 � 1 up to the boundary of the hemisphere at θ13 = π/2. Near the lower 
limit of integration the triple-collinear approximation is valid, but to account cor-
rectly for soft emission at large angles we have to modify the angular dependence 
of the integral. This is precisely the same modification we made to account for soft 
large-angle emission for the calculation of C1 (c.f. Eq. (4.6)). After neglecting pieces 
which contribute only an O(zcut) term on integration, we find the result 

 \label {eq:ffail} \begin {split} \mathcal {F}^{\text {fail}}(\rho ,\epsilon ) &= \left (\frac {C_F \alpha _s}{2\pi } \right )^2\frac {2e^{2\epsilon \gamma _E}}{\Gamma (1-2\epsilon )} \times \\ &\int _{\zc }^{1-\zc } \left ((1-z_p) z_p\right )^{-2\epsilon } p_{qq}(z_p,\epsilon ) \sd z_p \int _{1-\zc }^1\left (1-z \right )^{-2\epsilon }\frac {2\ \sd z}{1-z} \\ &\int _0^{1-\frac {\rho }{2 z_p(1-z_p)}} \frac {2 \ \sd \left (\cos \theta _{13} \right )}{\left (1-\cos \theta _{13} \right )^{1+\epsilon } \left (1+\cos \theta _{13} \right )^{1+\epsilon }}\
\int \frac {\sd \theta _{23}^2}{\theta _{23}^{2(1+\epsilon )}} \delta _\rho (2,3) \ , \end {split}  










 \label {eq:ffail} \begin {split} \mathcal {F}^{\text {fail}}(\rho ,\epsilon ) &= \left (\frac {C_F \alpha _s}{2\pi } \right )^2\frac {2e^{2\epsilon \gamma _E}}{\Gamma (1-2\epsilon )} \times \\ &\int _{\zc }^{1-\zc } \left ((1-z_p) z_p\right )^{-2\epsilon } p_{qq}(z_p,\epsilon ) \sd z_p \int _{1-\zc }^1\left (1-z \right )^{-2\epsilon }\frac {2\ \sd z}{1-z} \\ &\int _0^{1-\frac {\rho }{2 z_p(1-z_p)}} \frac {2 \ \sd \left (\cos \theta _{13} \right )}{\left (1-\cos \theta _{13} \right )^{1+\epsilon } \left (1+\cos \theta _{13} \right )^{1+\epsilon }}\
\int \frac {\sd \theta _{23}^2}{\theta _{23}^{2(1+\epsilon )}} \delta _\rho (2,3) \ , \end {split} 
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 \label {eq:ffail} \begin {split} \mathcal {F}^{\text {fail}}(\rho ,\epsilon ) &= \left (\frac {C_F \alpha _s}{2\pi } \right )^2\frac {2e^{2\epsilon \gamma _E}}{\Gamma (1-2\epsilon )} \times \\ &\int _{\zc }^{1-\zc } \left ((1-z_p) z_p\right )^{-2\epsilon } p_{qq}(z_p,\epsilon ) \sd z_p \int _{1-\zc }^1\left (1-z \right )^{-2\epsilon }\frac {2\ \sd z}{1-z} \\ &\int _0^{1-\frac {\rho }{2 z_p(1-z_p)}} \frac {2 \ \sd \left (\cos \theta _{13} \right )}{\left (1-\cos \theta _{13} \right )^{1+\epsilon } \left (1+\cos \theta _{13} \right )^{1+\epsilon }}\
\int \frac {\sd \theta _{23}^2}{\theta _{23}^{2(1+\epsilon )}} \delta _\rho (2,3) \ , \end {split} 

where δρ(2, 3) is the condition that emission 2 and the quark labelled 3 contribute to 
the hemisphere invariant mass ρ. In fact, one can directly reach the same equation 
by realizing that the emission probability of a hard-collinear gluon completely fac-
torizes from that of a soft gluon, i.e. the gluons are emitted independently in this 
region of phase space. Therefore, the total emission probability is a product of an 
eikonal function and a LO splitting function. This factorized structure is manifest in 
Eq. (4.25). The integral over θ223 is trivially performed using the delta function con-
straint which sets ρ = z2zp(1 − zp)θ

2
23 ≈ zp(1 − zp)θ

2
23, where we have used the 

fact that z ∼ 1 corresponding to the softness of emission 1.7 We have modified the 
angular dependence so that at small θ13 we obtain the result arising from the triple-
collinear splitting functions but for θ13 ∼ 1 we have the correct angular dependence 
for a soft emission emitted off the qq̄ dipole. This corresponds to the replacement of 
dθ213/θ2(1+ε)

13 → 2d cos θ13/(1− cos θ13)(1+ε)(1 + cos θ13)(1+ε). We have also introduced the renor-
malised MS coupling and choose µR = Q/2 as before. Evaluating the integrals we 
obtain:

7Retaining the z dependence in the mass constraint produces terms that vanish with zcut and are beyond our 
accuracy.

\mathcal {F}^{\text {fail}}(\rho ,\epsilon )=\left (\frac {C_F \alpha _s}{2\pi } \right )^2 \int _{\zc }^{1-\zc } \sd z_p \, p_{qq}(z_p,\epsilon ) \bigg [-\frac {2}{\epsilon } \ln \frac {4 z_p(1-z_p)}{\rho } \\ -\frac {\pi ^2}{3}+4\ln ^2 2 -\ln ^2 \frac {z_p(1-z_p)}{\rho } +2\ln \frac {4 z_p(1-z_p)}{\rho }\ln (\zc ^2(1-z_p)z_p\rho ) \bigg ] \ \ .



\mathcal {F}^{\text {fail}}(\rho ,\epsilon )=\left (\frac {C_F \alpha _s}{2\pi } \right )^2 \int _{\zc }^{1-\zc } \sd z_p \, p_{qq}(z_p,\epsilon ) \bigg [-\frac {2}{\epsilon } \ln \frac {4 z_p(1-z_p)}{\rho } \\ -\frac {\pi ^2}{3}+4\ln ^2 2 -\ln ^2 \frac {z_p(1-z_p)}{\rho } +2\ln \frac {4 z_p(1-z_p)}{\rho }\ln (\zc ^2(1-z_p)z_p\rho ) \bigg ] \ \ .  






 



 




 



\mathcal {F}^{\text {fail}}(\rho ,\epsilon )=\left (\frac {C_F \alpha _s}{2\pi } \right )^2 \int _{\zc }^{1-\zc } \sd z_p \, p_{qq}(z_p,\epsilon ) \bigg [-\frac {2}{\epsilon } \ln \frac {4 z_p(1-z_p)}{\rho } \\ -\frac {\pi ^2}{3}+4\ln ^2 2 -\ln ^2 \frac {z_p(1-z_p)}{\rho } +2\ln \frac {4 z_p(1-z_p)}{\rho }\ln (\zc ^2(1-z_p)z_p\rho ) \bigg ] \ \ .


     


   







Finally we account for the correct action of the tagger when emissions 1 and 2, the 
two gluons, are clustered first by the C/A algorithm and then the gluon pair is clus-
tered to the quark. On applying the tagger one first encounters two branches, con-
sisting of the quark and the massive gluon pair respectively. If the quark fails the 
zcut condition, one would then follow the branch consisting of the gluon pair. How-
ever, such configurations with a soft quark are suppressed by powers of zcut and hence 
ignored. On the other hand configurations where the massive gluon branch fails the 
zcut condition would lead to a massless hemisphere. Hence we only need to study the 
situation where both branches pass the zcut condition and all three partons are re-
tained. The opening angle between the branches is small, being set by ρ/zcut, which 
implies that all three partons are collinear and we can use purely triple-collinear kine-
matics. To correct our earlier results, we simply need to calculate the difference be-
tween the correct configuration described here and our simplified treatment included 
as part of F fail(ρ, ε) and Fpass(ρ, ε). The relevant angular region for the calculation 
is θ212 < θ223, which corresponds to the C/A clustering of the two gluons, since we al-
ready have the ordering θ213 > θ223. Our clustering correction takes the form 

{eq:clustcf2} \mathcal {F}^{\text {clust.}}_{C_F^2} = \lim _{\zc \to 0} 2 \int \frac {\left (8\pi \alpha _s\right )^2}{s_{123}^2} \,C_F^2 \, \la P_{q\rightarrow g_1 g_2 q_3 }^{(ab)}\ra \Theta (\theta _{23}<\theta _{13}) \Theta (\theta _{12}<\theta _{23})\\ \bigg ( \delta _\rho (1,2,3) \Theta _{\zc }(3|12) - \delta _\rho (1,2,3) \Theta _{\zc }(1|23) - \delta _\rho (2,3) \Theta _{\zc }(2|3) \bigg )\sd \Phi _3 \ ,























    {eq:clustcf2} \mathcal {F}^{\text {clust.}}_{C_F^2} = \lim _{\zc \to 0} 2 \int \frac {\left (8\pi \alpha _s\right )^2}{s_{123}^2} \,C_F^2 \, \la P_{q\rightarrow g_1 g_2 q_3 }^{(ab)}\ra \Theta (\theta _{23}<\theta _{13}) \Theta (\theta _{12}<\theta _{23})\\ \bigg ( \delta _\rho (1,2,3) \Theta _{\zc }(3|12) - \delta _\rho (1,2,3) \Theta _{\zc }(1|23) - \delta _\rho (2,3) \Theta _{\zc }(2|3) \bigg )\sd \Phi _3 \ ,

      


 

where in the second line the first term in parentheses represents the correct treat-
ment of the tagger, while the second and third terms correspond to the removal of 
the gluon clustering region from Fpass(ρ, ε) and F fail(ρ, ε) respectively.

In the angular region relevant to their clustering, the smallest angle is that between 
the two gluons, so there is no collinear divergence in the gluon emission channel. We 
have potential soft divergences as each of z and zp tend to 1 (i.e. z1 or z2 vanish), 
but in both those limits the correct calculation cancels with the subtraction terms in 
the second line of Eq. (4.27), so that the result is purely finite and we can set ε = 0

in the integrals that follow.

In the correct treatment, i.e. the first step function on the second line of Eq. (4.27), 
the condition that the first declustering passes the zcut corresponds to 1− zcut > z3 >

zcut, where z3 = zzp. There are then two regions for the integration over energy frac-
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tions, according to the range of z: 

 \label {eq:zlimits} \begin {split} &\zc <z<1-\zc , \quad \frac {\zc }{z}<z_p<1, \quad \text {and} \\ &\quad 1-\zc <z<1, \quad \frac {\zc }{z}<z_p<\frac {1-\zc }{z} \ \ . \end {split}     



   

 \label {eq:zlimits} \begin {split} &\zc <z<1-\zc , \quad \frac {\zc }{z}<z_p<1, \quad \text {and} \\ &\quad 1-\zc <z<1, \quad \frac {\zc }{z}<z_p<\frac {1-\zc }{z} \ \ . \end {split}     



 






 \label {eq:zlimits} \begin {split} &\zc <z<1-\zc , \quad \frac {\zc }{z}<z_p<1, \quad \text {and} \\ &\quad 1-\zc <z<1, \quad \frac {\zc }{z}<z_p<\frac {1-\zc }{z} \ \ . \end {split} 

For the region zcut < z < 1 − zcut, this corresponds to the region in z where gluon 1 
passes the zcut in our simplified calculations, so we need to correct the calculation of 
Fpass(ρ, ε) and the third term in the second line of Eq. (4.27) vanishes. In the region 
1 > z > 1 − zcut corresponding to the grooming away of gluon 1 in the simplified 
calculation, we need to correct the treatment of F fail(ρ, ε) and here the second term 
in Eq. (4.27) vanishes.

In the former case one has a particularly simple situation since both in the simplified 
calculation and the correct treatment all three partons are retained and contribute to 
the jet mass via the δρ(1, 2, 3) condition. This results in an identical angular integra-
tion in both cases and the difference between the correct and simplified treatment is 
purely due to the different limits on zp. Denoting the result of the angular integrals 
by I(z, zp), we can write the clustering correction as: 

{eq:CfClustVanish} \int _{\zc }^{1-\zc }\left (\int _{\frac {\zc }{z}}^{1}\text {I}(z,z_p) \sd z_p-\int _{0}^{1}\text {I}(z,z_p) \sd z_p\right ) \sd z \\ = -\int _{\zc }^{1-\zc } \sd z\int _{0}^{\frac {\zc }{z}}\text {I}(z,z_p) \sd z_p \ ,








 









{eq:CfClustVanish} \int _{\zc }^{1-\zc }\left (\int _{\frac {\zc }{z}}^{1}\text {I}(z,z_p) \sd z_p-\int _{0}^{1}\text {I}(z,z_p) \sd z_p\right ) \sd z \\ = -\int _{\zc }^{1-\zc } \sd z\int _{0}^{\frac {\zc }{z}}\text {I}(z,z_p) \sd z_p \ ,











  

where the subtracted term above represents the removal of the simplified calculation 
in the gluon clustering region and where 

\text {I}(z,z_p)= 2 \int \frac {\left (8\pi \alpha _s\right )^2}{s_{123}^2} \,C_F^2 \, \la P_{q\rightarrow g_1 g_2 q_3 }^{(ab)}\ra \delta _\rho (1,2,3) \times \\ \Theta (\theta _{23}<\theta _{13}) \Theta (\theta _{12}<\theta _{23}) \delta (z(1-z_p)-z_2) \delta (z z_p-z_3) \sd \Phi _3.  
















 

\text {I}(z,z_p)= 2 \int \frac {\left (8\pi \alpha _s\right )^2}{s_{123}^2} \,C_F^2 \, \la P_{q\rightarrow g_1 g_2 q_3 }^{(ab)}\ra \delta _\rho (1,2,3) \times \\ \Theta (\theta _{23}<\theta _{13}) \Theta (\theta _{12}<\theta _{23}) \delta (z(1-z_p)-z_2) \delta (z z_p-z_3) \sd \Phi _3.        

I(z, zp) has been written with a factor of two to account for both hemispheres and 
the angular integration extends only over the region relevant to the clustering of emis-
sions 1 and 2. The simplified and correct calculations differ only in how soft the quark 
is allowed to be, and, in the limit zcut → 0, the result after integration over z and zp
vanishes with zcut. This has been verified directly by numerical integration. Hence 
the correction term, given by Eq. (4.29), can be neglected in our approximation.

The situation in the region 1−zcut < z < 1, where we derive a correction to F fail(ρ, ε), 
is somewhat more subtle. In the simplified version of the calculation, emission 1 is 
groomed away and the mass is set by emissions 2 and 3 which leads to a different 
constraint given by δρ(2, 3) on the angular integration compared to the correct ver-
sion where all three partons are retained with δρ(1, 2, 3), so one obtains a different 
result ̃I(z, zp) given by:

\tilde {\text {I}}(z,z_p)= 2\int \frac {(8\pi \alpha _s)^2}{s_{123}^2} C_F^2 \la P_{q\rightarrow g_1 g_2 q_3 }^{(ab)}\ra \delta _\rho (2,3) \times \\ \Theta (\theta _{23}<\theta _{13}) \Theta (\theta _{12}<\theta _{23}) \delta (z(1-z_p)-z_2) \delta (z z_p-z_3) \sd \Phi _3 \ .



\tilde {\text {I}}(z,z_p)= 2\int \frac {(8\pi \alpha _s)^2}{s_{123}^2} C_F^2 \la P_{q\rightarrow g_1 g_2 q_3 }^{(ab)}\ra \delta _\rho (2,3) \times \\ \Theta (\theta _{23}<\theta _{13}) \Theta (\theta _{12}<\theta _{23}) \delta (z(1-z_p)-z_2) \delta (z z_p-z_3) \sd \Phi _3 \ .  


















\tilde {\text {I}}(z,z_p)= 2\int \frac {(8\pi \alpha _s)^2}{s_{123}^2} C_F^2 \la P_{q\rightarrow g_1 g_2 q_3 }^{(ab)}\ra \delta _\rho (2,3) \times \\ \Theta (\theta _{23}<\theta _{13}) \Theta (\theta _{12}<\theta _{23}) \delta (z(1-z_p)-z_2) \delta (z z_p-z_3) \sd \Phi _3 \ .         

Due to the fact that we are restricted to the angular region where the two gluons 
would be clustered, all angles are constrained to be small and we can use the triple-
collinear limit for obtaining ̃I(z, zp), ignoring the wide-angle modification required for 
the full calculation of F fail(ρ, ε).

One key point here is that in the limit z → 1, or equivalently z1 → 0, where there 
is a potential soft divergence, the condition δρ(1, 2, 3) reduces to δρ(2, 3) so that the 
difference between ̃I(z, zp) and I(z, zp) vanishes, leading to a finite result as already 
observed above. Moreover in the zcut → 0 limit we have that z → 1 over the full inte-
gration range so that one may simply replace ̃I(z, zp) with I(z, zp) up to finite correc-
tions suppressed by zcut. Doing so leads to 

{eq:CfClust1} \mathcal {F}^{\text {clust.}}_{C_F^2} = \lim _{\zc \to 0}\int _{1-\zc }^1 \left (\int _{\frac {\zc }{z}}^{\frac {1-\zc }{z}}\text {I}(z,z_p) \sd z_p - \int _{\zc }^{1-\zc }\tilde {\text {I}}(z,z_p) \sd z_p \right ) \sd z \\ =\lim _{\zc \to 0}\int _{1-\zc }^1\sd z \int _{1-\zc }^{\frac {1-\zc }{z}}\text {I}(z,z_p)\sd z_p,
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where in writing the third line we have replaced ̃I(z, zp) with I(z, zp) and have ex-
ploited the fact that the difference between the lower limits of zp integration in the 
correct and subtracted term, corresponding to the region of a soft quark, leads only 
to terms power suppressed in zcut. We can numerically evaluate the integrals for a 
given zcut value and on decreasing zcut, to reduce the impact of power suppressed 
terms, we find the result converges to a constant. For our smallest value zcut = 10−5, 
using the numerical method suave [200], we obtain 

  \mathcal {F}^{\text {clust.}}_{C_F^2} = \left (\frac {C_F \alpha _s}{2\pi }\right )^2 \left (4.246 \pm 0.002 \right ). 












   (4.33)

The smallest value of zcut was chosen so that the error on the numerical integration 
was larger than the difference between the central values for the lowest and second 
lowest zcut values.

The fact that the result for F clust.
C2

F
tends to a constant as zcut → 0 is related to the 

behaviour of the integrand in the soft limit for both emissions zp → 1 and z → 1, 
which allows us to also extract the result analytically. A series expansion of I(z, zp)
around z = 1 reveals a leading behaviour ∝ 1

(1−z)(1−zp)
, which derives from the soft 

limit of the matrix-element, and generates the full result in the limit zcut → 0. It is 
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straightforward to perform the integrals analytically to obtain: 

  \label {eq:cluster} \mathcal {F}^{\text {clust.}}_{C_F^2} =\left (\frac {C_F \alpha _s}{2\pi } \right )^2 \frac {\pi }{12 \sqrt {3}}\left (3\psi ^{(1)} \left ( \frac {1}{3} \right )- \psi ^{(1)} \left (\frac {5}{6} \right ) \right ), 


































 (4.34)

where we have expressed the result in terms of the Polygamma function ψ(1)(x). Note 
that one can further write 

  \frac {\pi }{12 \sqrt {3}}\left (3\psi ^{(1)} \left ( \frac {1}{3} \right )- \psi ^{(1)} \left (\frac {5}{6} \right ) \right ) = \frac {4\pi }{3}\text {Cl}_2\left (\frac {\pi }{3}\right ) = 4.25138 \cdots 
































     (4.35)

to obtain a compact result in terms of the Clausen function Cl2(x) [201]. This ana-
lytic result is consistent with the value obtained numerically for zcut → 10−5, keep-
ing in mind that the latter includes terms suppressed by powers of zcut, varying as 
zcut ln2 zcut. We also note that ignoring a region of phase space which only contributes 
a power of zcut to F clust, the limits on the energy fraction integrals of Eq. (4.32) can 
be re-written in terms of z1 and z2: 

  z_1<\zc , \qquad z_2<\zc , \qquad z_1+z_2>\zc .            (4.36)

It is now apparent that clustering the two emissions together only leads to differences 
from our simplified treatment of the tagger where both emissions would separately 
have failed the zcut condition, but together lead to a cluster which passes the zcut

condition.

Our result for the F clust.
C2

F
turns out to be precisely the same as the result calculated 

previously, for the corresponding contribution to the non-cusp global soft anomalous 
dimension for the mMDT jet mass, in SCET [47], [187]. While our starting point us-
ing the triple-collinear splitting functions goes beyond just the soft limit, the obser-
vation made above that the relevant limit for F clust.

C2
F

is the limit when emissions 2
and 3 are additionally soft, explains the agreement with the soft limit calculations 
of Refs. [47], [187]. However it is worth stressing that our approach based on triple-
collinear splitting functions remains valid beyond the soft limit, and hence can also 
be used to compute the finite zcut corrections that we have neglected in this work.

Virtual corrections and combined result

Here we combine the results for double-real emission with the one-real one-virtual 
corrections to generate a finite result. The one-real–one-virtual terms are provided in 
appendix A.3. We define the integral of the one-real–one-virtual term over z as V C2

F , 
given by 

  V^{C_F^2}(\rho ,\epsilon ) = \int _{\zc }^{1-\zc } \sd {z} \, \mathcal {V}^{C_F^2}_{1,1}(\rho ,z,\epsilon ), 
  








    (4.37)
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with VC2
F

1,1 (ρ, z, ε) given in Eq. (A.14). Combining terms, we can write the gluon emis-
sion contribution as   \left (\rho \frac {d\Sigma _2}{d\rho }\right )^\text {gluon-emission} = \mathcal {F}^{\mathrm {opp.}}(\rho ,\epsilon )+\mathcal {F}^{\mathrm {pass}}(\rho ,\epsilon )+\mathcal {F}^{\mathrm {fail}}(\rho ,\epsilon )+\mathcal {F}^{\mathrm {clust.}}_{C_F^2}+ V^{C_F^2}(\rho ,\epsilon ). 







     





   (4.38)

We find that after cancellation of all the singular contributions we are left with 

{eq:emission} \left (\rho \frac {d\Sigma _2}{d\rho }\right )^\text {gluon-emission} =\left (\frac {C_F \alpha _s}{2\pi } \right )^2\times \\ \bigg ((3+4\ln \zc )^2\ln \rho -8 \ln ^3\zc -2 (3+16 \ln 2) \ln ^2\zc +(4-48 \ln 2) \ln \zc \\ -24 \zeta (3)+2 \pi ^2+\frac {7}{2}-18 \ln 2 +\frac {4\pi }{3}\text {Cl}_2\left (\frac {\pi }{3}\right )+1.866 \pm 0.002\bigg ) \ ,
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where the numerically quoted value 1.866±0.002 represents the contribution to Fpass(ρ, ε)

arising from Hfin.(z) (see Eqs. (4.20), (4.24)). It is then evident that the terms in 
Eq. (4.39) that depend on ln ρ and ln zcut are in precise agreement with those ex-
pected from the C2

F term in the expansion of the NLL resummed result, i.e. Eq. (4.15). 
In addition there is a constant contribution corresponding to an α2

s ln ρ NNLL term 
in Σ2(ρ). We shall analyse the constant contribution in more detail, after includ-
ing another C2

F term coming from the gluon decay terms computed in the next sub-
section.

4.4.2 Gluon decay contributions

Here we consider the contributions that are associated to the decay of a collinear 
gluon, emitted off the initiating quark, into a qq̄ pair and a gluon pair associated 
with CFTRnf and CFCA factors respectively. For the case of the gluon decay to qq̄
with a quark initiated jet i.e. a q → qq̄q process, there is also an interference contri-
bution from identical fermions in the final state with a colour factor CF (CF − CA)/2, 
which contributes to the overall results for the C2

F and CFCA channels. We shall first 
discuss this piece and then turn to the CFTRnf and CFCA terms.

CF

(
CF − CA

2

)
contribution

The identical fermion contribution is simple to compute since it is finite, both for 
the angular and energy integrals. The calculation can therefore be easily carried out 
numerically in four dimensions. The relevant splitting function is given in Eq. (A.8)
and we set ε → 0. Moreover, due to the fact that the splitting function is regular in 
the energy fractions, the contribution from the region of integration where any par-
ton has energy fraction z < zcut is suppressed with zcut. For this reason the clus-
tering and grooming sequence does not matter, as the result in the small zcut limit 
comes from a configuration when all three partons contribute to the jet mass, ρ, and 

{eq:identical} \mathcal {F}^{\text {id}}=\\ \int \sd \Phi _3 \frac {\left (8 \pi \alpha _s \right )^2}{s_{123}^2} P^{(\text {id})}_{q\rightarrow q\bar {q}q} \delta _\rho (1,2,3) = C_F\left (C_F-\frac {C_A}{2} \right ) \left ( \frac {\alpha _s}{2\pi }\right )^2 \left (1.4386 \pm 0.0001 \right ) \ ,



have energy fraction z > zcut i.e. the un-groomed limit. To obtain the leading term, 
which is a constant in the small zcut limit, we set zcut = 0 and numerically perform 
the integral using our general rescaling method discussed in appendix A.2. We then 
have 

{eq:identical} \mathcal {F}^{\text {id}}=\\ \int \sd \Phi _3 \frac {\left (8 \pi \alpha _s \right )^2}{s_{123}^2} P^{(\text {id})}_{q\rightarrow q\bar {q}q} \delta _\rho (1,2,3) = C_F\left (C_F-\frac {C_A}{2} \right ) \left ( \frac {\alpha _s}{2\pi }\right )^2 \left (1.4386 \pm 0.0001 \right ) \ ,  {eq:identical} \mathcal {F}^{\text {id}}=\\ \int \sd \Phi _3 \frac {\left (8 \pi \alpha _s \right )^2}{s_{123}^2} P^{(\text {id})}_{q\rightarrow q\bar {q}q} \delta _\rho (1,2,3) = C_F\left (C_F-\frac {C_A}{2} \right ) \left ( \frac {\alpha _s}{2\pi }\right )^2 \left (1.4386 \pm 0.0001 \right ) \ ,









   


 








  

where we performed the integral numerically with Suave and the result includes a 
factor of 2 to take account of both hemispheres as well an identical particle 1/2! phase-
space symmetry factor. We believe that our result here coincides with an older cal-
culation for the identical fermion contribution that enters initial state splittings, by 
Grazzini and de Florian, who obtained an analytical result 

  \label {eq:idanalyt} \frac {13}{2}-\pi ^2+4 \zeta (3)=1.43862 \cdots 


         (4.41)

which they subtract to construct the relevant non-singlet contribution (see Eq. (71) 
of ref. [202]). We shall return to this result, its analytical form and its combination 
with the C2

F and CFCA results, when summarising our results.

CFTRnf contribution

θ12

z3 = z

z2 = (1− z)(1− zp)

z1 = (1− z)zp

Figure 4.2. An illustration of the kinematic parametrisation in the CFTRnf gluon decay channel.

Next we discuss the CFTRnf term again related to gluon decay to a qq̄ pair. The rel-
evant diagram with our parametrisation of the kinematics is shown in Figure 4.2. 
Since the g → qq̄ splitting is regular in the infra-red, one encounters only a collinear 
singularity in the squared matrix element as θ12 → 0, which leads to a 1/ε pole in the 
jet mass distribution. We also expect that an analysis of the gluon decay contribu-
tions should lead to the emergence of the correct argument of the running coupling 
i.e. kt in the soft limit, and the factor associated to the physical CMW scheme.

As we did for the C2
F piece, it proves convenient to break the calculation into two 

pieces: a first piece that simplifies the action of the tagger and contains the divergent 
pole structure and a correction term which only has support in non-singular regions, 
leading to a finite result which can be computed numerically in four dimensions. We 
will also account for virtual corrections which cancel the pole in the real emission 
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piece, leaving a finite result. The divergence occurs as θ12 → 0 which is the region 
where the q and q̄ are clustered first in the C/A algorithm, and then the qq̄ pair is 
clustered to the parton 3. We shall therefore first carry out the calculation always 
taking the q and q̄ to be clustered together which mistreats regions where emissions 
1 or 2 could be first clustered with 3. These regions will be subject to our finite clus-
tering corrections.

For the contribution where the q and q̄ from the gluon decay are first clustered to-
gether, we produce, on declustering, two branches consisting of the quark (or anti-
quark) labelled 3 and the clustered fermion pair, or equivalently, the massive par-
ent gluon. If the quark labelled 3 is soft and fails the zcut then we obtain only terms 
power suppressed in zcut. If the massive gluon branch fails the clustering we obtain 
a massless hemisphere. Thus we have a situation where in order to obtain a finite 
result in the zcut → 0 limit, both branches pass the zcut condition so that all three 
partons are retained and contribute to the jet mass. The condition ρ � zcut once 
again implies that all three partons are collinear and we can apply the triple-collinear 
splitting function and phase-space. In order to use our integration strategy based on 
rescaled angular variables, we consider two regions θ212 < θ213 and θ212 > θ213, with the 
first mentioned region contributing the divergence. We denote the respective contri-
butions to ρdΣ2

dρ
by F θ12<θ13(ρ) and F θ12>θ13(ρ) where explicitly we have for the for-

mer, 

\mathcal {F}^{\theta _{12}<\theta _{13}}(\rho ,\epsilon ) = \\ 2 S_\epsilon ^{-2} \left (\frac {Q}{2}\right )^{4\epsilon } \int \sd \Phi _3 \frac {\left (8 \pi \alpha _s \right )^2}{s_{123}^2} \la P_{\bar q_1^\prime q^\prime _2 q_3 }\ra \delta _\rho (1,2,3) \Theta _{\zc }(12|3) \Theta (\theta _{12}<\theta _{13}),  

\mathcal {F}^{\theta _{12}<\theta _{13}}(\rho ,\epsilon ) = \\ 2 S_\epsilon ^{-2} \left (\frac {Q}{2}\right )^{4\epsilon } \int \sd \Phi _3 \frac {\left (8 \pi \alpha _s \right )^2}{s_{123}^2} \la P_{\bar q_1^\prime q^\prime _2 q_3 }\ra \delta _\rho (1,2,3) \Theta _{\zc }(12|3) \Theta (\theta _{12}<\theta _{13}),






















    

where a sum over flavours, leading to a factor nf , is left implicit on the RHS of the 
above equation. The notation Θzcut(12|3) denotes that each of the two branches passes 
the zcut condition equivalent to the constraint on the parent gluon energy 1 − zcut >

z > zcut. The result is written in terms of the renormalised MS coupling and a factor 
of two accounts for both hemispheres.

In terms of the rescaled angular variable y = θ212/θ
2
13 and the parent energy fraction 

z, we obtain a result of the form (where G(y, z, ε) is regular as y → 0) 

{eq:nfpole} \mathcal {F}^{\theta _{12}<\theta _{13}}(\rho ,\epsilon )=\rho ^{-2\epsilon }\int _{\zc }^{1-\zc }\sd z\int _0^1\frac {\sd y}{y^{1+\epsilon }}G(y,z,\epsilon )\\ -\frac {\rho ^{-2\epsilon }}{\epsilon }\int _{\zc }^{1-\zc }\sd z\ G(0,z,\epsilon )+\int _{\zc }^{1-\zc }\sd z\int _0^1 \frac {dy}{y}\left (G(y,z,0)-G(0,z,0) \right ).   













 

{eq:nfpole} \mathcal {F}^{\theta _{12}<\theta _{13}}(\rho ,\epsilon )=\rho ^{-2\epsilon }\int _{\zc }^{1-\zc }\sd z\int _0^1\frac {\sd y}{y^{1+\epsilon }}G(y,z,\epsilon )\\ -\frac {\rho ^{-2\epsilon }}{\epsilon }\int _{\zc }^{1-\zc }\sd z\ G(0,z,\epsilon )+\int _{\zc }^{1-\zc }\sd z\int _0^1 \frac {dy}{y}\left (G(y,z,0)-G(0,z,0) \right ).







   












     

In writing the above we first isolated the singular contribution by taking only the 
leading term in the expansion of G(y, z, ε) around y = 0, and integrated over y to 
obtain the pole in ε in the first term above, while the second term is finite by con-
struction since (G(y, z, 0)−G(0, z, 0)) vanishes as y → 0. The finite term can be 
computed in four dimensions, so we set ε = 0. However while the term involving 
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(G(y, z, 0)−G(0, z, 0)) is finite, it has a leading behaviour in the z → 1 limit propor-
tional to 1

1−z
, which can be extracted through a series expansion about z = 1. The 

limit z → 1 corresponds to a soft parent gluon and gives rise to ln zcut terms in the 
result, which build up the constant K and relate the coupling in the MS scheme to 
that in the CMW scheme. After separating the 1/(1 − z) term which can be handled 
analytically, we integrate the remainder of the finite contribution numerically.

We then have 

\mathcal {F}^{\theta _{12}<\theta _{13}}(\rho ,\epsilon )= \\ C_F T_R n_f \left ( \frac {\alpha _s}{2\pi } \right )^2 \int _{\zc }^{1-\zc } \left (\frac {H_1^{\text {coll.}}(z,\rho ,\epsilon )}{\epsilon }+H_1^{\text {fin.-soft}}(z)+H_1^{\text {fin.}}(z) \right )\ \sd z \ ,  

\mathcal {F}^{\theta _{12}<\theta _{13}}(\rho ,\epsilon )= \\ C_F T_R n_f \left ( \frac {\alpha _s}{2\pi } \right )^2 \int _{\zc }^{1-\zc } \left (\frac {H_1^{\text {coll.}}(z,\rho ,\epsilon )}{\epsilon }+H_1^{\text {fin.-soft}}(z)+H_1^{\text {fin.}}(z) \right )\ \sd z \ ,





 






  




 



 

where 

  \begin {split} H_1^{\text {coll.}}(z,\rho ,\epsilon )&= \rho ^{-2\epsilon }(1-z)^{-2\epsilon } p_{qq}(z,\epsilon ) \left (-\frac {4}{3}-\frac {46}{9}\epsilon +\mathcal {O}(\epsilon ^2)\right ),\\ H_1^{\text {fin.-soft}}(z)&=\frac {4}{9}\frac {1}{1-z}. \end {split} 
      













  \begin {split} H_1^{\text {coll.}}(z,\rho ,\epsilon )&= \rho ^{-2\epsilon }(1-z)^{-2\epsilon } p_{qq}(z,\epsilon ) \left (-\frac {4}{3}-\frac {46}{9}\epsilon +\mathcal {O}(\epsilon ^2)\right ),\\ H_1^{\text {fin.-soft}}(z)&=\frac {4}{9}\frac {1}{1-z}. \end {split} 
 










  \begin {split} H_1^{\text {coll.}}(z,\rho ,\epsilon )&= \rho ^{-2\epsilon }(1-z)^{-2\epsilon } p_{qq}(z,\epsilon ) \left (-\frac {4}{3}-\frac {46}{9}\epsilon +\mathcal {O}(\epsilon ^2)\right ),\\ H_1^{\text {fin.-soft}}(z)&=\frac {4}{9}\frac {1}{1-z}. \end {split} 

Hfin.-soft
1 (z) is the soft parent finite contribution and the finite remainder Hfin.(z) tends 

to a constant as zcut → 0. Using Mathematica’s NIntegrate [203] with zcut = 0 we ob-
tain   \int _0^1H_1^{\text {fin.}}(z) \sd z=-1.479\pm 0.001 \ . 




      (4.46)

Next we need the contribution from the angular region θ13 < θ12 which does not con-
tain any poles. However, as discussed above for θ12 < θ13, there is again a soft en-
hancement as z → 1 giving rise to a ln zcut term related to the CMW constant K. 
Explicitly we have: 

\mathcal {F}^{\theta _{13}<\theta _{12}}(\rho )= 2 \int \sd \Phi _3 \frac {\left (8\pi \alpha _s\right )^2}{s_{123}^2} \la P_{\bar q_1^\prime q^\prime _2 q_3 }\ra \delta _\rho (1,2,3) \Theta _{\zc }(12|3) \Theta (\theta _{13}<\theta _{12}) \\ =C_F T_R n_f \left ( \frac {\alpha _s}{2\pi } \right )^2 \int _{\zc }^{1-\zc } \left (H_2^{\text {fin.-soft}}(z)+H_2^{\text {fin.}}(z) \right )\ \sd z\,  
















   

\mathcal {F}^{\theta _{13}<\theta _{12}}(\rho )= 2 \int \sd \Phi _3 \frac {\left (8\pi \alpha _s\right )^2}{s_{123}^2} \la P_{\bar q_1^\prime q^\prime _2 q_3 }\ra \delta _\rho (1,2,3) \Theta _{\zc }(12|3) \Theta (\theta _{13}<\theta _{12}) \\ =C_F T_R n_f \left ( \frac {\alpha _s}{2\pi } \right )^2 \int _{\zc }^{1-\zc } \left (H_2^{\text {fin.-soft}}(z)+H_2^{\text {fin.}}(z) \right )\ \sd z\,





 






 





which has no collinear pole i.e. Hcoll.
2 (z) = 0 and where 

  \begin {split} H_2^{\text {fin.-soft}}(z)&=\frac {16}{3}\frac {1}{1-z}, \\ \int _0^1H_2^{\text {fin.}}(z) \sd z &= -6.242\pm 0.006. \end {split} 
 








  \begin {split} H_2^{\text {fin.-soft}}(z)&=\frac {16}{3}\frac {1}{1-z}, \\ \int _0^1H_2^{\text {fin.}}(z) \sd z &= -6.242\pm 0.006. \end {split} 




   

  \begin {split} H_2^{\text {fin.-soft}}(z)&=\frac {16}{3}\frac {1}{1-z}, \\ \int _0^1H_2^{\text {fin.}}(z) \sd z &= -6.242\pm 0.006. \end {split} 

where, as before, the final term is evaluated numerically with zcut = 0 to remove 
power corrections.

A final ingredient for generating the result is the TRnf piece of the one-real–one-virtual 
contribution. This is reported in A.3 (see Eq. (A.17)) and a finite result is obtained 
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on combining the virtual contribution with F θ13>θ12(ρ). Defining 

  V^{C_F T_R n_f}\left (\rho ,\epsilon \right ) = \int _{\zc }^{1-\zc } \sd z \mathcal {V}_{1,1}^{C_FT_R n_f}\left (\rho ,z,\epsilon \right )   







    (4.49)

and 
  \mathcal {F}^{\mathrm {tot.}}(\rho ,\epsilon )=\mathcal {F}^{\theta _{12}<\theta _{13}}(\rho ,\epsilon ) +\mathcal {F}^{\theta _{13}<\theta _{12}}(\rho ),          (4.50)

we can combine the results to obtain 

{eq:nftot} \mathcal {F}^{\mathrm {tot.}}(\rho ) + V^{C_FT_R n_f}\left (\rho ,\epsilon \right ) = \\ C_F T_R n_f \left (\frac {\alpha _s}{2\pi } \right )^2 \left ( \int _{\zc }^{1-\zc } \sd z \, G(z,\rho ) -7.721 \pm 0.007\right ),      

{eq:nftot} \mathcal {F}^{\mathrm {tot.}}(\rho ) + V^{C_FT_R n_f}\left (\rho ,\epsilon \right ) = \\ C_F T_R n_f \left (\frac {\alpha _s}{2\pi } \right )^2 \left ( \int _{\zc }^{1-\zc } \sd z \, G(z,\rho ) -7.721 \pm 0.007\right ),









   




where 

  G(z,\rho ) = \frac {4}{3} p_{qq}(z) \ln (\rho (1-z)) -\frac {20}{9} p_{qq}(z) -\frac {4}{3} p_{qq}(z) \ln z+\frac {26}{9}(1+z).  



  







   


   (4.52)

It is worth making some remarks on the form of G(z, ρ). Firstly we note a piece cor-
responding to the nf term in −2 × pqqb0 ln (ρ(1− z)), where b0 = 11

6
CA − 2

3
TRnf

is the first perturbative coefficient of the QCD β function. This term produces an 
NLL contribution from the dependence on ln ρ. In the soft limit, i.e. z → 1 and 
pqq(z) → 2

1−z
it can be absorbed into the leading-order result by correcting the scale 

of the coupling αs

(
Q2

4

)
→ αs

(
Q2

4
ρ(1− z)

)
= αs(k

2
t ), consistent with the NLL for-

mula (4.2). The term −20
9
pqq(z) corresponds to the appearance of the nf piece of the 

CMW constant K, as also anticipated in the NLL result. The remaining terms pro-
duce a constant in the small zcut limit, on integration over z, which can be combined 
with the constants we obtained numerically. However before doing so we shall evalu-
ate the correction term due to the proper use of the C/A clustering sequence within 
the mMDT.

Turning to the clustering correction we first note that, in the angular region where 
θ12 is smallest, our treatment of the tagger, working as if partons 1 and 2 are always 
clustered, needs no correction. The regions where a correction is needed are when 
θ13 is smallest and when θ23 is smallest which is identical due to the symmetry under 
1 ↔ 2. These regions contain no divergences and hence the calculation of the correc-
tion term, i.e. the difference between the correct and simplified calculations, can be 
performed numerically in four dimensions. We shall also work in the limit zcut → 0

to eliminate power-suppressed terms in zcut, explicitly take the case that θ13 is the 
smallest angle and double the result to account for θ23 being smallest. We can then 

{eq:clustnf} \mathcal {F}^{\text {clust.}}_{C_F T_R n_f} = \lim _{\zc \to 0} 4 \int \frac {\left (8\pi \alpha _s\right )^2}{s_{123}^2} \, \la P_{\bar q_1^\prime q^\prime _2 q_3 }\ra \Theta (\theta _{23}>\theta _{13}) \Theta (\theta _{12}>\theta _{13})\times \\ \bigg ( \delta _\rho (1,2,3) \Theta _{\zc }(2|13) + \delta _\rho (1,3) \Theta _{\zc }(1|3)- \delta _\rho (1,2,3) \Theta _{\zc }(3|12) \bigg )\sd \Phi _3 .



write 

{eq:clustnf} \mathcal {F}^{\text {clust.}}_{C_F T_R n_f} = \lim _{\zc \to 0} 4 \int \frac {\left (8\pi \alpha _s\right )^2}{s_{123}^2} \, \la P_{\bar q_1^\prime q^\prime _2 q_3 }\ra \Theta (\theta _{23}>\theta _{13}) \Theta (\theta _{12}>\theta _{13})\times \\ \bigg ( \delta _\rho (1,2,3) \Theta _{\zc }(2|13) + \delta _\rho (1,3) \Theta _{\zc }(1|3)- \delta _\rho (1,2,3) \Theta _{\zc }(3|12) \bigg )\sd \Phi _3 .





















    {eq:clustnf} \mathcal {F}^{\text {clust.}}_{C_F T_R n_f} = \lim _{\zc \to 0} 4 \int \frac {\left (8\pi \alpha _s\right )^2}{s_{123}^2} \, \la P_{\bar q_1^\prime q^\prime _2 q_3 }\ra \Theta (\theta _{23}>\theta _{13}) \Theta (\theta _{12}>\theta _{13})\times \\ \bigg ( \delta _\rho (1,2,3) \Theta _{\zc }(2|13) + \delta _\rho (1,3) \Theta _{\zc }(1|3)- \delta _\rho (1,2,3) \Theta _{\zc }(3|12) \bigg )\sd \Phi _3 .

       




The above equation reflects that when θ13 is the smallest angle, there are two con-
figurations that yield a massive hemisphere: when parton 2 passes the zcut condition 
and all three partons are retained (the first term on the second line), and when par-
ton 2 fails the zcut condition but partons 1 and 3 pass (the second term on the sec-
ond line). The clustering correction may then be expressed as 

{eq:nfClust} \mathcal {F}^{\text {clust.}}_{C_F T_R n_f}= \\ \lim _{\zc \to 0} \int _0^1 \left (\text {I}_{n_f}(z,z_p)\left (\Theta _{\zc }(13|2)-\Theta _{\zc }(12|3)\right ) +\tilde {\text {I}}_{n_f}(z,z_p)\Theta _{\zc }(1|3) \right ) \sd z \sd z_p\ ,




{eq:nfClust} \mathcal {F}^{\text {clust.}}_{C_F T_R n_f}= \\ \lim _{\zc \to 0} \int _0^1 \left (\text {I}_{n_f}(z,z_p)\left (\Theta _{\zc }(13|2)-\Theta _{\zc }(12|3)\right ) +\tilde {\text {I}}_{n_f}(z,z_p)\Theta _{\zc }(1|3) \right ) \sd z \sd z_p\ ,









  



 

where the subtraction term corresponds to removal of the simplified contribution 
where 1 and 2 were taken to be clustered first and our usual notation applies where 
Θzcut(a|b) denotes the two branches a and b that pass the zcut condition in each case.8

The integrals Inf
(z, zp) and ̃Inf

(z, zp) arise from the angular integration for the case 
when all three partons contribute to the jet mass and when only two partons con-
tribute respectively.9 Explicitly we have 

{eq:Idef} \text {I}_{n_f}(z,z_p)= 4\int \frac {(8\pi \alpha _s)^2}{s_{123}^2} \la P_{q\rightarrow \bar {q}'_1 q'_2 q_3 }\ra \delta _\rho (1,2,3) \times \\ \Theta (\theta _{13}<\theta _{23}) \Theta (\theta _{13}<\theta _{12}) \delta (z(1-z_p)-z_2) \delta (z z_p-z_3) \sd \Phi _3 \ ,
  















 

{eq:Idef} \text {I}_{n_f}(z,z_p)= 4\int \frac {(8\pi \alpha _s)^2}{s_{123}^2} \la P_{q\rightarrow \bar {q}'_1 q'_2 q_3 }\ra \delta _\rho (1,2,3) \times \\ \Theta (\theta _{13}<\theta _{23}) \Theta (\theta _{13}<\theta _{12}) \delta (z(1-z_p)-z_2) \delta (z z_p-z_3) \sd \Phi _3 \ ,         

and

{eq:ITildeDef} \tilde {\text {I}}_{n_f}(z,z_p)= 4\int \frac {(8\pi \alpha _s)^2}{s_{123}^2} \la P_{q\rightarrow \bar {q}'_1 q'_2 q_3 }\ra \delta _\rho (1,3) \\ \Theta (\theta _{13}<\theta _{23}) \Theta (\theta _{13}<\theta _{12}) \delta (z(1-z_p)-z_2) \delta (z z_p-z_3) \sd \Phi _3 \ ,
  

















{eq:ITildeDef} \tilde {\text {I}}_{n_f}(z,z_p)= 4\int \frac {(8\pi \alpha _s)^2}{s_{123}^2} \la P_{q\rightarrow \bar {q}'_1 q'_2 q_3 }\ra \delta _\rho (1,3) \\ \Theta (\theta _{13}<\theta _{23}) \Theta (\theta _{13}<\theta _{12}) \delta (z(1-z_p)-z_2) \delta (z z_p-z_3) \sd \Phi _3 \ ,         

where a factor of 4 accounts for both hemispheres and the case when θ23 is the small-
est angle.

We can evaluate the integrals numerically by choosing a small zcut to suppress power 
corrections and find that the result tends to a zcut independent constant on decreas-

8This implies also the condition that partons not included in these branches fail the zcut e.g. for parton 2 in 
Θzcut (1|3).

9In the case when a parton is soft enough to be groomed away it is not constrained by the jet mass and can in 
principle be at a large angle. For correlated emission such configurations, where one of the gluon decay offspring is 
at a large angle to the other, are dynamically suppressed and only contribute at the level of power corrections in ρ. 
This implies that the integrals converge within the triple-collinear region which does not need to be modified, which 
we have also verified numerically.
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ing zcut. On evaluation of the integrals numerically with Suave we obtain, for zcut =

10−5 as for the C2
F clustering piece, the result 

  \label {eq:nfclust} \mathcal {F}^{\text {clust.}}_{C_F T_R n_f} = C_F T_R n_f \left (\frac {\alpha _s}{2\pi }\right )^2 \left (-1.754\pm 0.002 \right ). 









   (4.57)

Further insight into the nature of the clustering correction reported above can be ob-
tained via similar considerations to those for the C2

F clustering correction. Firstly 
one notes that in the limit parton 2 goes soft and fails the zcut condition the angu-
lar integral ̃Inf

(z, zp) may be replaced by Inf
(z, zp) up to terms that vanish with zcut. 

This lets us combine the constraints on the z integrals and, again, with neglect of 
power corrections in zcut one obtains the conditions on z1 and z2: 

  z_1+z_2>\zc \ , \qquad z_1<\zc \ , \qquad z_2<\zc .              (4.58)

These conditions are the same as for the C2
F case, however here the clustering cor-

rection enters with a negative sign while a positive correction was noted for the C2
F

term. The reason for this is that our simplified treatment in the C2
F channel amounted 

to discarding two emissions that individually failed the zcut, thereby excluding the 
contribution where they pass the zcut when correctly treated as a cluster since z1 +
z2 > zcut. Here, on the other hand, our simplified picture includes configurations 
where incorrectly treating emissions as a cluster causes them to pass the zcut condi-
tion, while in the correct treatment of clustering, where the gluon decay products are 
not clustered, the emissions each fail the zcut, leading to a massless hemisphere.

Furthermore, we note once again that our clustering corrections originate in the soft 
region, albeit still also within the triple-collinear regime and that our calculations 
can be extended to include finite zcut terms. The numerical value we obtain for the 
clustering piece, F clust.

CFTRnf
, is once again in agreement within errors (and potential 

zcut ln2 zcut terms) to that previously obtained, for the nf part of the clustering term 
for the non-cusp global soft anomalous dimension for mMDT, in the SCET frame-
work [47], [187].

Finally we quote our overall result for the CFTRnf channel, combining the different 
contributions i.e. performing the integral over z in Eq. (4.51) and adding in the clus-
tering correction: 

{eq:nfres} \rho \frac {\sd \Sigma ^{C_F T_Rn_f}_2}{\sd \rho } = C_F T_R n_f \left ( \frac {\alpha _s}{2\pi } \right )^2 \bigg (-\frac {2}{3}(3+4\ln \zc )\ln \rho \\ -\frac {4}{3}\ln ^2\zc +\frac {40}{9}\ln \zc +\frac {4 \pi ^2}{9}+\frac {25}{3}-7.721 \pm 0.007 -1.754 \pm 0.002 \bigg ),















     

{eq:nfres} \rho \frac {\sd \Sigma ^{C_F T_Rn_f}_2}{\sd \rho } = C_F T_R n_f \left ( \frac {\alpha _s}{2\pi } \right )^2 \bigg (-\frac {2}{3}(3+4\ln \zc )\ln \rho \\ -\frac {4}{3}\ln ^2\zc +\frac {40}{9}\ln \zc +\frac {4 \pi ^2}{9}+\frac {25}{3}-7.721 \pm 0.007 -1.754 \pm 0.002 \bigg ),


 




 









   




where the −1.754 is the clustering correction computed above, and the other terms 
are the full result for our simplified treatment of the tagger. We note that the ln ρ
and ln zcut dependent terms in Eq. (4.59) are in exact agreement with expectations 

{eq:nffinal2} \rho \frac {\sd \Sigma ^{C_F T_Rn_f}_2}{\sd \rho } = C_F T_R n_f \left ( \frac {\alpha _s}{2\pi } \right )^2 \times \\ \bigg (-\frac {2}{3}(3+4\ln \zc )\ln \rho -\frac {4}{3}\ln ^2\zc +\frac {40}{9}\ln \zc + 5 - 1.754 \pm 0.002 \bigg ) ,



from the expansion of the NLL result (4.15). Further light can be shed on the con-
stant term 4π2

9
+ 25

3
− 7.721± 0.007 following an analytic calculation carried out in [4], 

which gives 

{eq:nffinal2} \rho \frac {\sd \Sigma ^{C_F T_Rn_f}_2}{\sd \rho } = C_F T_R n_f \left ( \frac {\alpha _s}{2\pi } \right )^2 \times \\ \bigg (-\frac {2}{3}(3+4\ln \zc )\ln \rho -\frac {4}{3}\ln ^2\zc +\frac {40}{9}\ln \zc + 5 - 1.754 \pm 0.002 \bigg ) ,












{eq:nffinal2} \rho \frac {\sd \Sigma ^{C_F T_Rn_f}_2}{\sd \rho } = C_F T_R n_f \left ( \frac {\alpha _s}{2\pi } \right )^2 \times \\ \bigg (-\frac {2}{3}(3+4\ln \zc )\ln \rho -\frac {4}{3}\ln ^2\zc +\frac {40}{9}\ln \zc + 5 - 1.754 \pm 0.002 \bigg ) ,




      


 




    




which is fully consistent with eq. (4.59).

CFCA contribution from q → qgg

The same kinematic variables apply as in Fig. 4.2 for the gluon decay to qq̄. One of 
the key differences with the nf piece is now the presence of soft divergences as zp →
0 and zp → 1.10

We can organise the calculation in precisely the same way as for the nf piece by first 
computing a simplified term where for applying the grooming the offspring gluons 
are always treated as a cluster equivalent to the parent gluon. We then correct for 
the proper C/A clustering so that, as before, our correction term is finite and calcu-
lable in four dimensions. Again as done before for the nf piece, we can further divide 
the simplified calculation into two pieces where θ12 < θ13 and vice-versa. The region 
with θ12 < θ13 contains all the divergences, resulting in 1

ε2
and 1

ε
poles. The region 

θ13 > θ12 gives only a finite contribution in spite of the presence of soft divergences in 
the g → gg splitting, as a consequence of the angular ordering property of soft radia-
tion, ie coherence, as discussed in section 2.4.2. The CFCA contribution in the region 
θ12 < θθ13 can then be expressed as 

\mathcal {F}_{C_F C_A}^{\theta _{12}<\theta _{13}}(\rho ,\epsilon ) = 2 S_\epsilon ^{-2} \left (\frac {Q}{2}\right )^{4\epsilon } \times \\ \int \sd \Phi _3 \frac {\left (8 \pi \alpha _s \right )^2}{s_{123}^2} \la P^{(\text {nab})}_{q\rightarrow g_1 g_2 q_3 }\ra \delta _\rho (1,2,3) \Theta _{\zc }(12|3) \Theta (\theta _{12}<\theta _{13}) \ ,


  









\mathcal {F}_{C_F C_A}^{\theta _{12}<\theta _{13}}(\rho ,\epsilon ) = 2 S_\epsilon ^{-2} \left (\frac {Q}{2}\right )^{4\epsilon } \times \\ \int \sd \Phi _3 \frac {\left (8 \pi \alpha _s \right )^2}{s_{123}^2} \la P^{(\text {nab})}_{q\rightarrow g_1 g_2 q_3 }\ra \delta _\rho (1,2,3) \Theta _{\zc }(12|3) \Theta (\theta _{12}<\theta _{13}) \ ,












     

which is written as before in terms of the renormalised MS coupling with µR = Q/2, 
and a factor of 2 to account for both hemispheres. Further analysis using our general 
integration method, outlined in appendix A.2, gives 

{eq:CaRealPoles} \mathcal {F}_{C_F C_A}^{\theta _{12}<\theta _{13}}(\rho ,\epsilon )=C_F C_A \left (\frac {\alpha _s}{2\pi } \right )^2 \times \\ \int _{\zc }^{1-\zc } \left (\frac {H^{\text {soft-coll.}}(z,\rho ,\epsilon )}{\epsilon ^2} +\frac {H^{\text {coll.}}(z,\rho ,\epsilon )}{\epsilon }+H^{\text {finite}}(z) \right ) \sd z\ ,


  






{eq:CaRealPoles} \mathcal {F}_{C_F C_A}^{\theta _{12}<\theta _{13}}(\rho ,\epsilon )=C_F C_A \left (\frac {\alpha _s}{2\pi } \right )^2 \times \\ \int _{\zc }^{1-\zc } \left (\frac {H^{\text {soft-coll.}}(z,\rho ,\epsilon )}{\epsilon ^2} +\frac {H^{\text {coll.}}(z,\rho ,\epsilon )}{\epsilon }+H^{\text {finite}}(z) \right ) \sd z\ ,




 



 





 

10In order to avoid considering both limits one can simply take the region zp < 1 − zp, where the divergence only 
comes from zp → 0, and double the result exploiting the symmetry between the gluons.
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where 

  \begin {split} H^{\text {soft-coll.}}(z,\rho ,\epsilon )&= \rho ^{-2\epsilon }(1-z)^{-2\epsilon } p_{qq}(z,\epsilon ) \left (2-\frac {\pi ^{2}}{3}\epsilon ^2 +\mathcal {O}(\epsilon ^3)\right ), \\ H^{\text {coll.}}(z,\rho ,\epsilon )&= \rho ^{-2\epsilon }(1-z)^{-2\epsilon } p_{qq}(z,\epsilon ) \left (\frac {11}{3}+\frac {134}{9}\epsilon -\frac {4\pi ^2}{3}\epsilon +\mathcal {O}(\epsilon ^2)\right ). \end {split}      










  \begin {split} H^{\text {soft-coll.}}(z,\rho ,\epsilon )&= \rho ^{-2\epsilon }(1-z)^{-2\epsilon } p_{qq}(z,\epsilon ) \left (2-\frac {\pi ^{2}}{3}\epsilon ^2 +\mathcal {O}(\epsilon ^3)\right ), \\ H^{\text {coll.}}(z,\rho ,\epsilon )&= \rho ^{-2\epsilon }(1-z)^{-2\epsilon } p_{qq}(z,\epsilon ) \left (\frac {11}{3}+\frac {134}{9}\epsilon -\frac {4\pi ^2}{3}\epsilon +\mathcal {O}(\epsilon ^2)\right ). \end {split}      


















  \begin {split} H^{\text {soft-coll.}}(z,\rho ,\epsilon )&= \rho ^{-2\epsilon }(1-z)^{-2\epsilon } p_{qq}(z,\epsilon ) \left (2-\frac {\pi ^{2}}{3}\epsilon ^2 +\mathcal {O}(\epsilon ^3)\right ), \\ H^{\text {coll.}}(z,\rho ,\epsilon )&= \rho ^{-2\epsilon }(1-z)^{-2\epsilon } p_{qq}(z,\epsilon ) \left (\frac {11}{3}+\frac {134}{9}\epsilon -\frac {4\pi ^2}{3}\epsilon +\mathcal {O}(\epsilon ^2)\right ). \end {split} 

As in section 4.4.2 the finite term Hfinite(z) is enhanced in the limit of a soft parent, 
z → 1, and produces ln zcut terms, which we wish to separate since they relate to 
the CMW scheme. As before we use a series expansion about z = 1, to make the 
decomposition 

  H^{\text {finite}}(z)=\frac {c}{1-z} + f(z), 



  (4.64)

where f(z) is finite as z → 1. The constant, c is evaluated numerically (on integrat-
ing over the angular variables and zp), as is the integral over f(z) and, again using 
NIntegrate with zcut = 0, we obtain:   \int _{\zc }^{1-\zc }H^{\text {finite}}(z)=(2.4361\pm 0.0002)\ln \zc -0.117\pm 0.001. 



         (4.65)

In the region θ13 < θ12 there are no poles in ε and we can perform the calculation 
setting ε→ 0, so we have 

  \mathcal {F}^{\theta _{13}<\theta _{12}}_{C_F C_A} (\rho )=\int \sd \Phi _3 \frac {\left (8 \pi \alpha _s \right )^2}{s_{123}^2} \la P_{q\rightarrow g_1 g_2 q_3 }\ra \delta _\rho (1,2,3) \Theta _{\zc }(12|3) \Theta (\theta _{13}<\theta _{12}). 











      (4.66)

Again separating the integrand into pieces which diverge as z → 1 and those which 
do not, we obtain, after numerical integration with zcut = 0, 

  \mathcal {F}_{C_F C_A}^{\theta _{13}<\theta _{12}}(\rho )=C_F C_A \left (\frac {\alpha _s}{2\pi } \right )^2 \left [(5.8730\pm 0.0006)\ln \zc +(6.795\pm 0.006)\right ]. 


 






        (4.67)

Finally we account for the clustering corrections. This is done as for the nf piece in 
Eq. (4.53) and the result is finite as soft divergences cancel in the combination of the 
correct and simplified treatments. The result can be computed numerically in four 
dimensions. Using Suave with zcut = 10−5 we obtain: 

 \label {eq:CAclustfinal} \mathcal {F}^{\text {clust.}}_{C_F C_A}=C_F C_A \left (\frac {\alpha _s}{2\pi } \right )^2\left (-1.161\pm 0.001\right ). 









   (4.68)

The same comments apply to the origin of the clustering correction here as for the 
nf piece, namely it originates from incorrectly allowing, in the simplified result, the 
gluon pair to pass the clustering due to the fact that the parent passes the zcut. The 
correct tagging procedure would be applied to the individual gluons instead, which 
fail the clustering leading to a massless jet and a nil contribution. The result again 
agrees with previous calculations of the clustering piece in the mMDT SCET non-
cusp soft anomalous dimension [47], [187] to within errors and potential zcut ln2 zcut
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corrections.

Finally we combine all pieces and include the one-real–one-virtual correction V CFCA (ρ, ε) =∫ 1−zcut
zcut

dzVCFCA
1,1 (ρ, z, ε) defined in appendix A.3 to obtain the result 

{eq:CAfinal} \rho \frac {d\Sigma _2}{d\rho }^{q \to qgg, \mathrm {nab.}} =C_F C_A \left (\frac {\alpha _s}{2\pi }\right )^{2} \bigg [\frac {11}{6}\left ( 3+4\ln \zc \right )\ln \rho \\ +\frac {11 \ln ^2\zc }{3} +\bigg (\frac {4}{3}\pi ^{2} -\frac {268}{9} +(8.3091\pm 0.0006)\bigg )\ln \zc \\ +16 \zeta (3)-\frac {11 \pi ^2}{9}-\frac {121}{6}+(6.678\pm 0.006)-(1.161\pm 0.001)\bigg ] \ \ ,














     

{eq:CAfinal} \rho \frac {d\Sigma _2}{d\rho }^{q \to qgg, \mathrm {nab.}} =C_F C_A \left (\frac {\alpha _s}{2\pi }\right )^{2} \bigg [\frac {11}{6}\left ( 3+4\ln \zc \right )\ln \rho \\ +\frac {11 \ln ^2\zc }{3} +\bigg (\frac {4}{3}\pi ^{2} -\frac {268}{9} +(8.3091\pm 0.0006)\bigg )\ln \zc \\ +16 \zeta (3)-\frac {11 \pi ^2}{9}-\frac {121}{6}+(6.678\pm 0.006)-(1.161\pm 0.001)\bigg ] \ \ ,
 








 


 




{eq:CAfinal} \rho \frac {d\Sigma _2}{d\rho }^{q \to qgg, \mathrm {nab.}} =C_F C_A \left (\frac {\alpha _s}{2\pi }\right )^{2} \bigg [\frac {11}{6}\left ( 3+4\ln \zc \right )\ln \rho \\ +\frac {11 \ln ^2\zc }{3} +\bigg (\frac {4}{3}\pi ^{2} -\frac {268}{9} +(8.3091\pm 0.0006)\bigg )\ln \zc \\ +16 \zeta (3)-\frac {11 \pi ^2}{9}-\frac {121}{6}+(6.678\pm 0.006)-(1.161\pm 0.001)\bigg ] \ \ , 





   




where the labelling q → qgg, nab. indicates the non-abelian contribution to the q →
qgg process and where we have separately written the numerically computed clus-
tering contribution and the numerically computed part of the simplified calculation. 
The result above is in agreement with our expectations from the expansion of the 
NLL resummed result Eq. (4.15) for the terms involving ln ρ and ln zcut since the nu-
merical value 8.3091 ± 0.0006 is in good agreement with 134

9
− 2π2

3
, signalling again 

that the ln zcut term is associated with the CMW scheme, while the ln ρ and ln2 zcut

terms are associated to the argument of the running coupling i.e. kt in the soft limit. 
This leaves us to comment on the constant term, other than the clustering correc-
tion, which we shall do in the next section, where we shall consider the full CFCA re-
sult including that from the CF (CF − CA/2) term.

4.5 Structure of NNLL results

In this section we discuss the structure of our results for each of the C2
F , CFCA and 

CFTRnf channels. As has already been noted for every channel, the result at order 
α2
s reproduces the terms expected from the expansion of the NLL formula (4.15) in 

addition to producing genuine NNLL corrections.11 Therefore we may focus only on 
the additional terms not produced as part of the NLL expansion and hence we write: 

  \label {eq:beyondll} \rho \frac {d\Sigma _2}{d\rho } = \rho \frac {d\Sigma ^{\mathrm {NLL}}_2}{d\rho } + \rho \frac {d\Sigma ^{\mathrm {NNLL}}_2}{d\rho }, 















 (4.70)

where ρdΣNLL
2

dρ
is reported in Eq. (4.15) and ρdΣNNLL

2

dρ
describes the NNLL terms unre-

lated to NLL dynamics.

To obtain our result for the ρdΣNNLL
2

dρ
in the C2

F channel we combine the result from 
gluon emission Eq. (4.39) with the C2

F term arising from the gluon decay (4.40) iden-
11Recall that the expansion of the NLL formula also contains formally NNLL terms but which can be embedded 

within the NLL strongly ordered dynamics.

{eq:cf2nll} \left (\rho \frac {d\Sigma ^{\mathrm {NNLL}}_2}{d\rho }\right )^{C_F^2} = \left (\frac {C_F \alpha _s}{2\pi } \right )^2 \times \\ \left (2\pi ^2 -24 \zeta (3) +\frac {1}{2} +\left (1.866 \pm 0.002 \right ) + \left ( 1.4386 \pm 0.0001 \right ) \right ) +\mathcal {F}^{\mathrm {clust.}}_{C_F^2}\,,



tical particle piece. After removal of the NLL contribution we can write: 

{eq:cf2nll} \left (\rho \frac {d\Sigma ^{\mathrm {NNLL}}_2}{d\rho }\right )^{C_F^2} = \left (\frac {C_F \alpha _s}{2\pi } \right )^2 \times \\ \left (2\pi ^2 -24 \zeta (3) +\frac {1}{2} +\left (1.866 \pm 0.002 \right ) + \left ( 1.4386 \pm 0.0001 \right ) \right ) +\mathcal {F}^{\mathrm {clust.}}_{C_F^2}\,,



















{eq:cf2nll} \left (\rho \frac {d\Sigma ^{\mathrm {NNLL}}_2}{d\rho }\right )^{C_F^2} = \left (\frac {C_F \alpha _s}{2\pi } \right )^2 \times \\ \left (2\pi ^2 -24 \zeta (3) +\frac {1}{2} +\left (1.866 \pm 0.002 \right ) + \left ( 1.4386 \pm 0.0001 \right ) \right ) +\mathcal {F}^{\mathrm {clust.}}_{C_F^2}\,,
  




    


 






where F clust.
C2

F
is the clustering contribution Eq. (4.34).

The corresponding result for the CFTRnf term can be obtained partly in numerical 
form from Eq. (4.59) or fully analytically from Eq. (4.60), using a result presented in 
[4]. after removal of the NLL contribution we get   \label {eq:cfnfnll} \left (\rho \frac {d\Sigma ^{\mathrm {NNLL}}_2}{d\rho }\right )^{C_F T_R n_f} = C_F T_R n_f \left (\frac {\alpha _s}{2\pi } \right )^2 \times 5.0+ \mathcal {F}^{\mathrm {clust.}}_{C_F T_R n_f}, 

















   


 (4.72)

where we used above the analytical result of [4] and the clustering contribution is 
given in Eq. (4.57).

The result for the CFCA channel is obtained by combining Eq. (4.69) with the iden-
tical particle contribution in Eq. (4.40) and removing the NLL contributions so that 
we obtain 

{eq:CFCAnll} \left (\rho \frac {d\Sigma ^{\mathrm {NNLL}}_2}{d\rho }\right )^{C_F C_A} = C_F C_A \left (\frac {\alpha _s}{2\pi } \right )^2 \bigg ( 16 \zeta (3)-\frac {11 \pi ^2}{9} \\ -\frac {121}{6}+(6.678\pm 0.006) - \left (0.7193 \pm 0.00005 \right )\bigg ) +\mathcal {F}^{\mathrm {clust.}}_{C_F C_A} \ ,




















{eq:CFCAnll} \left (\rho \frac {d\Sigma ^{\mathrm {NNLL}}_2}{d\rho }\right )^{C_F C_A} = C_F C_A \left (\frac {\alpha _s}{2\pi } \right )^2 \bigg ( 16 \zeta (3)-\frac {11 \pi ^2}{9} \\ -\frac {121}{6}+(6.678\pm 0.006) - \left (0.7193 \pm 0.00005 \right )\bigg ) +\mathcal {F}^{\mathrm {clust.}}_{C_F C_A} \ ,


   


 




where F clust.
CFCA

is reported in (4.68).

Leaving aside the clustering corrections for the moment, whose soft (and collinear) 
origin we have already discussed, we focus on the structure of the rest of the result. 
It is well-known that the intensity of collinear radiation from a quark at second order 
in αs is related to a coefficient in the quark form factor generally referred to as B(2)

[192]–[195]. While there is not a unique definition of B(2) since it depends on the de-
tails of how the full resummation formula is organised, i.e. the resummation scheme, 
it is always related to the endpoint δ(1 − z) contribution to the NLO DGLAP split-
ting functions via the form (for a quark initiated jet) [204]–[206], 

  \label {eq:b2} B^{(2)} = -2\gamma _q^{(2)}+C_F b_0 X,       (4.74)

where b0 = 1
6
(11CA − 4TRnf ) and where γ(2)q , the DGLAP endpoint contributions for 

{eq:g2} \gamma _q^{(2)} = C_F^2 \left (\frac {3}{8} -\frac {\pi ^2}{2}+6 \zeta (3) \right )\\ +C_F C_A \left (\frac {17}{24}+\frac {11 \pi ^2}{18} -3 \zeta (3) \right ) -C_F T_R n_f \left (\frac {1}{6}+\frac {2\pi ^2}{9} \right ).



a quark jet, are [207], [208] 

{eq:g2} \gamma _q^{(2)} = C_F^2 \left (\frac {3}{8} -\frac {\pi ^2}{2}+6 \zeta (3) \right )\\ +C_F C_A \left (\frac {17}{24}+\frac {11 \pi ^2}{18} -3 \zeta (3) \right ) -C_F T_R n_f \left (\frac {1}{6}+\frac {2\pi ^2}{9} \right ). 












{eq:g2} \gamma _q^{(2)} = C_F^2 \left (\frac {3}{8} -\frac {\pi ^2}{2}+6 \zeta (3) \right )\\ +C_F C_A \left (\frac {17}{24}+\frac {11 \pi ^2}{18} -3 \zeta (3) \right ) -C_F T_R n_f \left (\frac {1}{6}+\frac {2\pi ^2}{9} \right ).




























We note that our analytic result for the coefficient of CFTRnfα
2
s/(2π)

2 in Eq. (4.72)
is precisely consistent with the form in Eq. (4.74) with 

  \label {eq:x} X= \frac {2\pi ^2}{3}-7. 



  (4.76)

Taking this value of X we obtain a result −7.03766 for the CFCA term in Eq. (4.74)
in good agreement with the numerical value for our result in Eq. (4.73) without the 
clustering corrections, where we get −7.03791 ± 0.006. Finally Eq. (4.74) gives a 
value −5.30508 for the coefficient of C2

F , which again agrees well with the result in 
Eq. (4.71) without the clustering correction, which has the numerical value −5.30556±
0.002. Furthermore, using the de Florian and Grazzini analytical result (Eq. (4.41)), 
for the identical particle gluon decay contribution, we can identify the remaining nu-
merical contributions with analytic results i.e. the result 1.866 for the C2

F piece in 
Eq. (4.71) corresponds to 8ζ(3) − 31

4
while the result 6.678 in Eq. (4.73) corresponds 

to 13π2

18
− 8ζ(3) + 55

6
.

We conclude that without the clustering corrections our NNLL results for the mMDT, 
as defined above, are given by the general collinear form Eq. (4.74) with the value of 
X specified in (4.76). Thus, excluding the clustering corrections, which are of soft 
origin, our NNLL result for the mMDT has a simple correspondence to the collinear 
order α2

s contribution to the quark form factor. Moreover the results for the CFCA

and CFTRnf channels, without the clustering correction, agree exactly with the or-
der α2

s NNLL term in the expansion of the un-groomed heavy jet mass [196], [209], 
[210], a consequence of grooming affecting only soft emissions in the small zcut limit. 
Finally we note that our overall results in every channel are in agreement with those 
from previous SCET calculations. An explicit expansion of the SCET results to or-
der α2

s, for the jet mass distribution, was provided in ref. [190] as this work was being 
finalised.12

4.6 Conclusions

In this work we have computed the groomed jet mass distribution at O(α2
s) and find 

full agreement with the SCET resummation of the same quantity, constituting a pow-
erful cross check of the SCET result. In carrying out this calculation we have estab-
lished a connection between the NNLL result for the groomed jet mass and standard 

12Note that we have removed ln 2 terms in the CFCA and CFnf channels present in the results of [190] via the 
choice of Q2/4 in the scale of αs for our leading-order result.
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QCD resummation ingredients. Specifically, we recover: the scale of the coupling as 
expected in the soft limit, kt, and find that this also holds in the collinear limit, as 
expanded upon in [211]. We also recover terms proportional to KCMW, which are 
typically included through use of the CMW scheme for the QCD coupling. We also 
establish a connection between the triple collinear limit and the B(2) coefficient which 
governs the intensity of collinear radiation from a quark at second order, which emerged 
from a simplified treatment of the groomer where all partons were assumed to be 
clustered to their parent parton. We then corrected for treating the groomer in this 
simplified manner via the F clust. terms. These terms originate in the soft and collinear 
limit without any ordering between the two emissions. Aside from being of theoreti-
cal interest, the understanding gained in this work paves the way for the NNLL re-
summation of groomed jet shape observables as in chapter 5. It can also be consid-
ered as a step towards addressing other collinear problems such as that involving the 
small jet radius limit of QCD jets [212], which has not yet been achieved at NNLL, 
or the inclusion of triple collinear splitting functions in an NNLL accurate parton 
shower. Another possible extension to this work would be to address finite zcut cor-
rections beyond NLL accuracy. Although expected to be numerically small, they may 
well be relevant in the context of the N3LL resummation carried out in the SCET 
formalism.
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Chapter 5

NNLL resummation of groomed 

observables

The work presented in this chapter follows on from the preceding chapter and is cur-
rently being prepared for publication by myself and collaborators: Mrinal Dasgupta 
and Basem El-Menoufi. As such, there will be significant overlap of text between 
this chapter and the forthcoming publication. As the forthcoming publication is not 
finalised yet, this chapter, although substantially complete, should be regarded as 
work in progress.

5.1 Introduction

In this chapter we present an NNLL resummed result for rIRC safe additive observ-
ables computed on jets groomed with mMDT [21], or equivalently soft drop with 
β = 0[23]. This builds on the work presented in the previous chapter where the 
NNLL structure was investigated at O(α2

s). As was discussed in section 3.3, observ-
ables computed on groomed jets are less sensitive to hadronisation, UE and PU than 
un-groomed observables, making them good candidates for direct comparisons be-
tween perturbative QCD calculations and experimental measurements. On top of 
this, grooming with mMDT removes any non-global logarithms (NGLs) which would 
be present for the same observable computed on un-groomed jets [21]. This lack of 
NGLs removes one of the major difficulties associated with producing precise predic-
tions for jet shape observables. Because of these favourable properties a number of 
calculations have been carried out for groomed observables and compared directly to 
unfolded LHC data [40], [44], [46], [47], [123], [154], [213], [214].
The resummation for the groomed jet mass was first carried out in ref. [21] at NLL 
accuracy. This resummation was matched to NLO [44] and compared with unfolded 
LHC data in refs. [41], [123] which also show a comparison with an NNLL calcula-
tion carried out in the small zcut limit [47] without NLO matching. This latter calcu-
lation was carried out in the SCET formalism and has since been extended to N3LL 
accuracy by extracting the relevant anomalous dimensions from fixed-order codes 
[48], [190]. Although the SCET factorisation theorem has been presented for energy 
correlation functions [47] and angularities [49], NNLL predictions for observables other 
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than those equivalent to the jet mass have not, to our knowledge, been presented.
Many un-groomed observables satisfy the conditions for recursive infra red and collinear 
safety (rIRC safety) and continuous globalness, allowing one to use the CAESAR and
ARES programs to generate NLL and NNLL resummed predictions respectively. Al-
though observables computed on groomed jets do not satisfy rIRC safety and contin-
uous globalness, the CAESAR plug-in for Sherpa [46], [158], [213] does produce the cor-
rect result at NLL accuracy because, as we shall see in this work, the rIRC un-safety 
of groomed observables only starts to matter at NNLL accuracy.
In this work we build on the NLL resummation carried out in ref. [21] using the un-
derstanding gained from the work presented in chapter 4, combined with known NNLL 
results from [196], [210], to derive the resummed distribution for additive rIRC safe 
observables, computed on jets groomed with mMDT, up to NNLL accuracy. This is 
done directly in perturbative QCD, in the regime where v � zcut � 1. Our gen-
eral approach to the resummation is outlined in section 5.2 in which we show how 
the resummation can be computed as an inclusive piece, which is evaluated in sec-
tion 5.3, and a clustering term, calculated in section 5.4. Having derived the NNLL 
resummed distribution for additive observables in the small zcut limit, we show, in 
section 5.5.1, how to include the NLL accurate O(zcut) corrections first calculated in 
[44]. We then define our NLO matching procedure in section 5.5.2, before presenting 
our NNLL results including both finite zcut terms at NLL accuracy and NLO match-
ing for the heavy jet mass, width and Les Houches angularity [215], in section 5.5.3. 
Finally we comment on the context of our results and possible developments of this 
work in section 5.6.

5.2 Observable definition and approach to resummation

Our goal is to derive the cumulative distribution for additive jet shapes computed on 
jets groomed with mMDT, Σ(v, zcut) = 1

σ0

∫ v

0
dσ
dv′dv

′, up to NNLL accuracy in ln(v), 
in the regime where v � zcut � 1. Here v represents some jet shape observable. 
Taking v < zcut restricts us to the region where grooming is active. In this region 
the distribution is single logarithmic in v as the argument of soft logarithms becomes 
zcut, whereas for v > zcut one finds that the distribution coincides with that of the 
un-groomed observable, which is double logarithmic. For phenomenological purposes 
it is typical to take zcut ' 0.1, making resummation of ln(zcut) unnecessary. This hi-
erarchy of scales also allows us to ignore terms suppressed by powers of v, zcut and 
v/zcut. For simplicity we work in the context of e+e− collisions and separate the event 
into two hemispheres. This separation is traditionally done by a plane perpendicular 
to the thrust axis, although, as we are concerned only with the soft and/or collinear 
limits this plane can be taken as perpendicular to the initial qq̄ pair. We then run 
mMDT (defined in section 3.3) on each hemisphere and compute our observable on 
each of the groomed hemispheres. We then require that the larger value of the ob-
servable from the two hemispheres is less than v.
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We define V ({p̃}, , k1, ..., kn) to be a rIRC safe additive observable [69], which in the 
soft and collinear limit can be parametrised as 

 \label {eq:softColObservable} V_{\mathrm {s.c}}(\tilp ,k_1,...,k_n)=\sum _{i=1}^n d \bigg (\frac {k_{ti}}{Q}\bigg )^a e^{-b \eta _i} \ ,    












  (5.1)

where d is just a normalisation constant, {p̃} represents the momenta of the primary 
qq̄ pair and ki are the momenta of emissions off the initial qq̄ pair. In this work we 
need the groomed variant of such an observable which we write as 

V^{\mathrm {mMDT}}(\tilp ,k_1,...,k_n)= \\ \sum _{i=1}^n\bigg ( V(\tilp ,k_i)\Theta ^{\mathrm {mMDT}}(k_i,\tilp ,k_1,...,k_{i-1},k_{i+1},...,k_n) \bigg )\ ,    
V^{\mathrm {mMDT}}(\tilp ,k_1,...,k_n)= \\ \sum _{i=1}^n\bigg ( V(\tilp ,k_i)\Theta ^{\mathrm {mMDT}}(k_i,\tilp ,k_1,...,k_{i-1},k_{i+1},...,k_n) \bigg )\ ,




        




where ΘmMDT(ki, {p̃}, k1, ..., ki−1, ki+1, ..., kn) = 1 if the ith emission is retained by the 
groomer and zero if it is removed. It is the dependence of ΘmMDT on emissions other 
than the ith that causes mMDT and, more generally, soft drop groomed observables 
to fail the rIRC safety condition. This is because part of rIRC safety is that the ob-
servable should scale in the same way for multiple emissions as for a single emission 
[69], whereas groomed observables may or may not scale at all for an emission with 
zi < zcut, depending on if there is a wider angle emission with zj > zcut.
We can then write the cumulative distribution as 

{eq:distribution} \Sigma (v;\zc )= \\\mathcal {H}(Q) \sum _{n=0}^\infty \frac {1}{n!} \prod _{i=1}^{n}\int [\sd ^4 k_i]\mathcal {M}^2(k_1,...,k_n) \Theta \left (v- V^{\mathrm {mMDT}}(\tilp ,k_1,...,k_n)\right ) \ , 

{eq:distribution} \Sigma (v;\zc )= \\\mathcal {H}(Q) \sum _{n=0}^\infty \frac {1}{n!} \prod _{i=1}^{n}\int [\sd ^4 k_i]\mathcal {M}^2(k_1,...,k_n) \Theta \left (v- V^{\mathrm {mMDT}}(\tilp ,k_1,...,k_n)\right ) \ ,











 


     




where H(Q) encodes the (normalized) all orders virtual corrections to the Born pro-
cess up to NNLL accuracy, M2(k1, ..., kn) is the squared matrix-element for n soft 
and/or collinear emissions and the factor of 1

n!
is the symmetry factor for n identical 

particles.
The QCD resummation of this type of observable to NLL accuracy is already well 
known [21] and can be expressed as 

{eq:LL} \Sigma (v,\zc )= \left (1+\frac {\alpha _sC_F}{2\pi }C_1\right )\times \\ \exp \bigg [-\int \frac {C_F\alpha ^{\mathrm {CMW}}_s(k_t^2)}{\pi } \bigg (\frac {2}{z}+\gamma ^0_{\mathrm {h.c}}\delta (1-z) \bigg )\sd z \frac {\sd k_t^2}{k_t^2}\Theta \left (V_{\mathrm {s.c}}(z,k_t)-v\right ) \bigg ]\ . 












{eq:LL} \Sigma (v,\zc )= \left (1+\frac {\alpha _sC_F}{2\pi }C_1\right )\times \\ \exp \bigg [-\int \frac {C_F\alpha ^{\mathrm {CMW}}_s(k_t^2)}{\pi } \bigg (\frac {2}{z}+\gamma ^0_{\mathrm {h.c}}\delta (1-z) \bigg )\sd z \frac {\sd k_t^2}{k_t^2}\Theta \left (V_{\mathrm {s.c}}(z,k_t)-v\right ) \bigg ]\ .






 







 





 




Where γ0h.c = −3
2

is the endpoint of the LO DGLAP splitting function. In the above 
expression, use of the CMW scheme for the coupling [73], [196], [197] with its argu-
ment set to the transverse momentum squared, as opposed to just scaling with v, as 
well as inclusion of the C1 term multiplying the exponential, introduces terms which 
are actually NNLL, but can be accommodated within the strongly ordered picture, 
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as is also well known. The term proportional to C1 is the difference between the full 
leading-order result and what is captured by the Sudakov factor.
The groomed jet mass distribution at NNLL accuracy was investigated in chapter 4, 
where it was demonstrated, via a fixed-order calculation, that the NNLL part of the 
groomed jet mass distribution not related to the strongly ordered picture is struc-
tured as an inclusive hard-collinear piece, often referred to as B(2) [216]–[219], plus a 
term accounting for the effect of the C/A clustering sequence in the grooming pro-
cedure. This motivates us to structure the resummation in a similar way, by resum-
ming a suitably inclusive version of the groomed observable, which is added to a clus-
tering correction to give the resummed distribution we seek. Motivated by this we 
define an observable, V simp.({p}, k1, ..., kn), computed using a simplified groomer which 
functions exactly as mMDT except that the C/A clustering sequence is replaced by 
one where all partons are clustered to their parent partons. The distribution (eq.
(5.3)) is then written as 

\Sigma (v;\zc ) = \Sigma _{\text {simp.}}(v;\zc ) + \Sigma _{\text {clust.}}(v;\zc ) \ ,         \Sigma (v;\zc ) = \Sigma _{\text {simp.}}(v;\zc ) + \Sigma _{\text {clust.}}(v;\zc ) \ ,

where the first contribution reads 

{eq:simpcum} \Sigma _\text {simp.}(v;\zc )= \\ \mathcal {H}(Q) \sum _{n=0}^\infty \frac {1}{n!} \int \prod _{i=1}^{n}[\sd ^4 k_i]\mathcal {M}^2(k_1,...,k_n) \Theta \left ( v - V^{\mathrm {simp.}}(\tilp ,k_1,...,k_n)\right ) \ \ , 

{eq:simpcum} \Sigma _\text {simp.}(v;\zc )= \\ \mathcal {H}(Q) \sum _{n=0}^\infty \frac {1}{n!} \int \prod _{i=1}^{n}[\sd ^4 k_i]\mathcal {M}^2(k_1,...,k_n) \Theta \left ( v - V^{\mathrm {simp.}}(\tilp ,k_1,...,k_n)\right ) \ \ ,










 

     




and represents the integrated distribution computed using the inclusive groomer. 
The second contribution embodies the difference between the standard and inclusive 
groomers as follows 

{eq:clustcum} \Sigma _{\text {clust.}}(v;\zc )= \mathcal {H}(Q) \sum _{n=0}^\infty \frac {1}{n!} \prod _{i=1}^{n}\int [\sd ^4 k_i]\mathcal {M}^2(k_1,...,k_n)\\ \times \big [ \Theta \left (v - V^{\mathrm {mMDT}}(\{p\},k_1,...,k_n)\right )-\Theta \left (v - V^{\mathrm {simp.}}(\{p\},k_1,...,k_n)\right )\big ] \ \ .  











 

{eq:clustcum} \Sigma _{\text {clust.}}(v;\zc )= \mathcal {H}(Q) \sum _{n=0}^\infty \frac {1}{n!} \prod _{i=1}^{n}\int [\sd ^4 k_i]\mathcal {M}^2(k_1,...,k_n)\\ \times \big [ \Theta \left (v - V^{\mathrm {mMDT}}(\{p\},k_1,...,k_n)\right )-\Theta \left (v - V^{\mathrm {simp.}}(\{p\},k_1,...,k_n)\right )\big ] \ \ .



     





     




The clustering correction starts contributing only at NNLL, and arises from the re-
gions of phase space where the C/A declustering sequence differs from that of our 
simplified groomer, leading to a different set of emissions being groomed away. In 
the next two sections we shall describe in detail the resummation of both pieces in 
Eqs. (5.6) and (5.7).

5.3 The simplified groomer

In this section we compute the NNLL resummed cumulant for the simplified groomer 
given in Eq. (5.6). This should contain all of the structures given in eq. (5.4); the 
ones which stem from strongly ordered configurations of emissions, as well as hard-
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collinear terms which enter at O(α2
s), often collected together and referred to as B2

[216]–[219]. At O(α2
s) the term proportional to B2 takes the form 

  \left (\frac {\alpha _s}{2\pi }\right )^2 B_2 \int _{v^{\frac {2}{a+b}}Q^2}^{Q^2}\frac {\sd k_t^2}{k_t^2}, 
















 (5.8)

where a and b are defined through eq. (5.1) and it is known that [204]–[206] 

 \label {eq:B2} B^{(2)}=\gamma ^{(1)}_{hc}+C_F b_0 X\ ,  

     (5.9)

where γ(1)hc is the coefficient of the δ(1 − z) term in the the NLO DGLAP splitting 
function [220], [221]: 

\gamma _{\mathrm {h.c}}^{(1)} = C_F^2 \left (\frac {3}{8} -\frac {\pi ^2}{2}+6 \zeta (3) \right ) +\\C_F C_A \left (\frac {17}{24}+\frac {11 \pi ^2}{18} -3 \zeta (3) \right ) -C_F T_R n_f \left (\frac {1}{6}+\frac {2\pi ^2}{9} \right )\ ,

 















\gamma _{\mathrm {h.c}}^{(1)} = C_F^2 \left (\frac {3}{8} -\frac {\pi ^2}{2}+6 \zeta (3) \right ) +\\C_F C_A \left (\frac {17}{24}+\frac {11 \pi ^2}{18} -3 \zeta (3) \right ) -C_F T_R n_f \left (\frac {1}{6}+\frac {2\pi ^2}{9} \right )\ ,




























b0 = 1
6
(11CA − 4TRnf ) and X is an observable dependent coefficient. This term 

was identified, for the groomed jet mass, via an NLO calculation in chapter 4, which 
found X = 2π2

3
− 7, which is the same as for the un-groomed case [209], [210], as one 

might expect as hard emissions are not affected by grooming. We note that at our 
prescribed level of accuracy there is some freedom in how these terms are included in 
the resummation, i.e. whether on not they are exponentiated.
The γ(1)hc term is universal to all observables and is just part of the quark form factor 
[202], [204]. It should therefore sit in the hard-collinear part of the Sudakov radiator 
as it does for un-groomed observables [196], which reads 

 \label {eq:Rhc} R^{\mathrm {h.c}}(v)=\int _{v^{\frac {2}{a+b}}Q^2}^{Q^2} \frac {C_F\alpha _s(k_t^2)}{\pi }\bigg (\gamma ^{(0)}_{\mathrm {h.c}}+\frac {\alpha _s(k_t^2)}{2\pi }\gamma ^{(1)}_{\mathrm {h.c}} \bigg ) \frac {\sd k_t^2}{k_t^2} \ , 
































 (5.11)

and is unchanged by grooming. Note that the coupling should be evaluated at two-
loop accuracy in order to capture all NNLL terms. The soft part of the Sudakov ra-
diator is almost exactly the same as the NLL result for groomed observables [21], 
with the modification that the coupling is evaluated at two-loop accuracy using the 
CMW scheme: 

R^{\mathrm {s}}(v,\zc )= \int _{0}^{1} \int _{0}^{z^2Q^2} \frac {\alpha _s(k_{t})}{\pi }\bigg (\frac {2 }{z}\bigg (1 +\frac {\alpha _s(k_{t}^2)K_{CMW}}{2\pi }\bigg )\\\Theta (z-\zc ) \Theta \left (k_t^2-v^{\frac {2}{a+b}}\zc ^{\frac {2b}{a+b}}Q^2\right ) \frac {\sd k_{t}^2}{k_{t}^2} \sd z \ , 




























R^{\mathrm {s}}(v,\zc )= \int _{0}^{1} \int _{0}^{z^2Q^2} \frac {\alpha _s(k_{t})}{\pi }\bigg (\frac {2 }{z}\bigg (1 +\frac {\alpha _s(k_{t}^2)K_{CMW}}{2\pi }\bigg )\\\Theta (z-\zc ) \Theta \left (k_t^2-v^{\frac {2}{a+b}}\zc ^{\frac {2b}{a+b}}Q^2\right ) \frac {\sd k_{t}^2}{k_{t}^2} \sd z \ , 


 














 

where the upper limit on the k2t integral is due to computing the radiator for a single 
hemisphere (0 < η < ∞), and a factor of two is included to account for the opposite 
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hemisphere. The complete Sudakov radiator is then: 

 \label {eq:Sudakov} R(v,\zc )= R^{\mathrm {s}}(v,\zc )+R^{\mathrm {h.c}}(v)\ .        (5.13)

We now discuss how the the observable dependent piece of the hard-collinear terms 
proportional to b0X are included in the resummation. As already stressed, the hard-
collinear pieces of the resummation are the same as for un-groomed observables and 
so can be re-summed using the same methods. By examining refs. [196], [210], we 
can see that the hard-collinear b0X term is related to the leading-order result and 
can be found by computing the C1 term of eq. (5.4) with the argument of the cou-
pling set to k2t 1. The C1 term was calculated for the heavy hemisphere mass in chap-
ter 4 which found C1 = −2 ln 2

(
4 ln 1

zcut
− 3
)
− 1. So as to reduce the number of 

terms in equations we use the definition ρ =
M2

H
Q2 as opposed to ρ =

4M2
H

Q2 as this re-
moves the factors of ln(2) so that C1 = −1. If we absorb the factor of CFαs

2π
into the 

definition of C1 and repeat this calculation with the argument of the coupling set to 
kt we find 2: 

C^{\mathrm {r.c}}(\rho )=\frac {C_F}{2\pi }\bigg (\alpha _s(\rho Q^2)\bigg (7-\frac {2\pi ^2}{3}\bigg )+\alpha (\zc ^2Q^2)\bigg (\frac {-\pi ^2}{2} \bigg ) +\alpha _s(Q^2)\bigg (\frac {7\pi ^2}{6}-8\bigg )\bigg )\\ \simeq -\frac {C_F\alpha _s(Q^2)}{2\pi }+C_F\bigg (\frac {\alpha _s(Q^2)}{2\pi }\bigg )^2b_0 \left (\frac {2\pi ^2}{3}-7\right )\ln (\rho ) +\mathrm {N}^3\mathrm {LL}+\mathcal {O}(\alpha _s^3)\ ,




































C^{\mathrm {r.c}}(\rho )=\frac {C_F}{2\pi }\bigg (\alpha _s(\rho Q^2)\bigg (7-\frac {2\pi ^2}{3}\bigg )+\alpha (\zc ^2Q^2)\bigg (\frac {-\pi ^2}{2} \bigg ) +\alpha _s(Q^2)\bigg (\frac {7\pi ^2}{6}-8\bigg )\bigg )\\ \simeq -\frac {C_F\alpha _s(Q^2)}{2\pi }+C_F\bigg (\frac {\alpha _s(Q^2)}{2\pi }\bigg )^2b_0 \left (\frac {2\pi ^2}{3}-7\right )\ln (\rho ) +\mathrm {N}^3\mathrm {LL}+\mathcal {O}(\alpha _s^3)\ ,
























  

 

which exactly reproduces both the C1 and b0X = b0(
2π2

3
− 7) terms identified in chap-

ter 4. Use of the running coupling also results in a term where the argument of the 
coupling in the final result is proportional to zcut. Expanding this term in powers 
of αs(Q

2) results in terms which are N3LL and beyond. We are therefore free to set 
αs(z

2
cutQ

2) → αs(Q
2) within NNLL accuracy.

Due to its dependence on the details of an observable’s definition in the hard-collinear 
limit it is not as simple to write down a general result for Cr.c(v) as it is for the ra-
diator. However, all that is required is, in essence, a leading-order calculation. An 
example of this is given in section 5.3.1 where we compute Cr.c(v) for the angular-
ities with respect to the winner takes all (WTA) axis, although the method can be 
applied to any observable which is rIRC safe.
We now consider the effect of multiple emissions. The key point here is that it is pos-
sible to drop any emission with zi < zcut from V simp.({p̃}, k1, ..., kn)) whilst only ne-
glecting power corrections in v and zcut, as is proven in appendix B.13. By partition-
ing the energy fraction integrals into regions where z < zcut and z > zcut, the virtual 

1In ARES [196], [210] the functions C1
h.c and δFrec reproduce our b0X term and parts of C1.

2see section 5.3.1 for an example of how this calculation is carried out.
3We stress that this only applies to the simplified groomer and not to the clustering correction.

\mathcal {H}(Q)=(1+H_1(Q))\times \\ \exp \left [-\int _0^1 R'(v',\zc )\frac {\sd v'}{v'}-\int \frac {\alpha ^{\mathrm {CMW}}_s(k_{t}^2)}{\pi }\frac {2}{z}\sd z \frac {\sd k_{t}^2}{k_{t}^2}\Theta (\zc -z)\right ] \ ,



corrections can be expressed as 

\mathcal {H}(Q)=(1+H_1(Q))\times \\ \exp \left [-\int _0^1 R'(v',\zc )\frac {\sd v'}{v'}-\int \frac {\alpha ^{\mathrm {CMW}}_s(k_{t}^2)}{\pi }\frac {2}{z}\sd z \frac {\sd k_{t}^2}{k_{t}^2}\Theta (\zc -z)\right ] \ ,  

\mathcal {H}(Q)=(1+H_1(Q))\times \\ \exp \left [-\int _0^1 R'(v',\zc )\frac {\sd v'}{v'}-\int \frac {\alpha ^{\mathrm {CMW}}_s(k_{t}^2)}{\pi }\frac {2}{z}\sd z \frac {\sd k_{t}^2}{k_{t}^2}\Theta (\zc -z)\right ] \ ,













 









 




where H1(Q) is the finite part of the one loop virtual correction to the Born pro-
cess which is absorbed into Cr.c(v), and R′(v, zcut) = −dR(v,zcut)

d ln(v) . The energy frac-
tion integrals are partitioned the same way for real emissions. We can then write 
Θ(v − V simp.({p̃}, k1, ..., kn)) as its Laplace representation and drop from it any emis-
sions with zi < zcut to write 

\Sigma _{\mathrm {simp}}(v,\zc )=(1+C^{\mathrm {r.c}}(v)) \\ \exp [-\int _0^1 R'(v')\frac {\sd v'}{v'}-\int \frac {\alpha ^{\mathrm {CMW}}_s(k_{t}^2)}{\pi }\frac {2}{z}\sd z \frac {\sd k_{t}^2}{k_{t}^2}\Theta (\zc -z)] \int _c \frac {\sd \nu }{2\pi i \nu }e^{-\nu v} \\ \sum _{n=0}^\infty \frac {1}{n!} \bigg (\int _0^v R'(v',\zc )e^{\nu v'}\frac {\sd v'}{v'} + \int \frac {\alpha ^{\mathrm {CMW}}_s(k_{t}^2)}{\pi }\frac {2 }{z}\sd z \frac {\sd k_{t}^2}{k_{t}^2}\frac {\sd \phi _i}{2\pi }\Theta (\zc -z) \bigg )^n\ ,    

\Sigma _{\mathrm {simp}}(v,\zc )=(1+C^{\mathrm {r.c}}(v)) \\ \exp [-\int _0^1 R'(v')\frac {\sd v'}{v'}-\int \frac {\alpha ^{\mathrm {CMW}}_s(k_{t}^2)}{\pi }\frac {2}{z}\sd z \frac {\sd k_{t}^2}{k_{t}^2}\Theta (\zc -z)] \int _c \frac {\sd \nu }{2\pi i \nu }e^{-\nu v} \\ \sum _{n=0}^\infty \frac {1}{n!} \bigg (\int _0^v R'(v',\zc )e^{\nu v'}\frac {\sd v'}{v'} + \int \frac {\alpha ^{\mathrm {CMW}}_s(k_{t}^2)}{\pi }\frac {2 }{z}\sd z \frac {\sd k_{t}^2}{k_{t}^2}\frac {\sd \phi _i}{2\pi }\Theta (\zc -z) \bigg )^n\ ,











 









 









\Sigma _{\mathrm {simp}}(v,\zc )=(1+C^{\mathrm {r.c}}(v)) \\ \exp [-\int _0^1 R'(v')\frac {\sd v'}{v'}-\int \frac {\alpha ^{\mathrm {CMW}}_s(k_{t}^2)}{\pi }\frac {2}{z}\sd z \frac {\sd k_{t}^2}{k_{t}^2}\Theta (\zc -z)] \int _c \frac {\sd \nu }{2\pi i \nu }e^{-\nu v} \\ \sum _{n=0}^\infty \frac {1}{n!} \bigg (\int _0^v R'(v',\zc )e^{\nu v'}\frac {\sd v'}{v'} + \int \frac {\alpha ^{\mathrm {CMW}}_s(k_{t}^2)}{\pi }\frac {2 }{z}\sd z \frac {\sd k_{t}^2}{k_{t}^2}\frac {\sd \phi _i}{2\pi }\Theta (\zc -z) \bigg )^n\ ,


















 













 





noting the absence of a factor of e−νv′ from the term accounting for real emissions 
with z < zcut, as real emissions have been dropped from the observable in this region 
of phase space. This can then be evaluated using what are now standard techniques 
[222] to give 

  \Sigma _{\mathrm {simp}}(v,\zc )=(1+C^{\mathrm {r.c}}(v)) \frac {\exp \left [-R(v,\zc )-\gamma _{E}R'(v,\zc )\right ]}{\Gamma [1+R'(v,\zc )]}\ .     
  



 
 (5.17)

Here we can see that the emissions which are softer than zcut have cancelled com-
pletely against the corresponding virtual corrections. By expanding exp[−γER′(v)]

Γ[1+R′(v)]
, we 

find that, as R(v) is single logarithmic, this factor is actually N3LL and so can be ne-
glected, giving a remarkably simple NNLL result of 

 \label {eq:SimplifiedResult} \Sigma _{\mathrm {simp}}(v,\zc )=(1+C^{\mathrm {r.c}}(v)) \exp [-R(v,\zc )]\ .          (5.18)

This result bears a strong resemblance to the NLL result of [21]. The NLL result is 
recovered if one neglects the Cr.c(v) term as well as the γ(1)h.c and KCMW terms in the 
Sudakov factor.
We now discuss how the above result for Σsimp(v, zcut) is related to NNLL resumma-
tions of un-groomed observables as carried out using ARES [210]. The Sudakov factor 
reported in eq. (5.13) has the same structure as that given in [196], the only differ-
ences being the boundary of the energy fraction integrals and that here there is no 
K(2) term in the soft physical coupling as this would be N3LL. Our Cr.c(v) function 
is related to the terms H1(Q), δF rec, C1

hc, and δFwa in [210], although δFwa would 
be zero for groomed observables as groomed observables do not differ from their soft 
and collinear parametrisation in the soft wide angle region of phase space. As ARES
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is not formulated for groomed observables it should not be expected to, and indeed 
does not, completely reproduce Cr.c(v). The ARES terms FNLL, δFh.c and δF s.c are 
related to multiple emission effects which we have shown start at N3LL for the ob-
servables considered in this work, although they could come into play at NNLL for 
non-additive observables such as the broadening [223]. Finally, for un-groomed ob-
servables one should, at NNLL accuracy, correct for the inclusive treatment of cor-
related emissions for a single correlated pair, giving a correction starting at α2

s ln(v)
which in ARES is called δFcorrel.. This logarithm is of soft origin and for groomed ob-
servables is replaced by a logarithm of zcut, making the correction N3LL.

5.3.1 Calculating Cr.c(v)

We now turn our attention to illustrating more precisely what is captured by the 
function Cr.c(v) and how it can be calculated. Cr.c(v) is the difference between the 
leading-order result, computed with the argument of the coupling set to k2t , and what 
is found by expanding the Sudakov factor to O(αs). Rather than carrying out the 
full leading-order calculation and expanding the Sudakov factor, we can equivalently 
calculate the difference between the real contribution to the leading-order result and 
the part of this that is exponentiated and add to this H1(Q) = CFαs

2π
(7π

2

6
− 8), the 

piece of the leading-order virtual corrections that are not included in the Sudakov 
factor, to write 

{eq:C1} C^{\mathrm {r.c}}(v)=H_1(Q)+\int [\sd ^{4-2\epsilon } k]\mathcal {M}^2(k;\epsilon )\Theta \left (v-V^{\mathrm {mMDT}}(\tilp ,k)\right )- \\ \int _{0}^1 \int _{0}^{z^2Q^2} \frac {C_F\alpha _s(k_t^2)}{\pi }\bigg ( \frac {2}{z^{1+2\epsilon }}+\gamma ^{(0)}_{\mathrm {h.c}}\delta (1-z)\bigg )\frac {\sd k_t^2}{k_t^{2(1+\epsilon )}}\sd z \Theta \left (v-V^{\mathrm {mMDT}}_{\mathrm {s.c}}(\tilp ,z,k_t)\right )\ .  





   


{eq:C1} C^{\mathrm {r.c}}(v)=H_1(Q)+\int [\sd ^{4-2\epsilon } k]\mathcal {M}^2(k;\epsilon )\Theta \left (v-V^{\mathrm {mMDT}}(\tilp ,k)\right )- \\ \int _{0}^1 \int _{0}^{z^2Q^2} \frac {C_F\alpha _s(k_t^2)}{\pi }\bigg ( \frac {2}{z^{1+2\epsilon }}+\gamma ^{(0)}_{\mathrm {h.c}}\delta (1-z)\bigg )\frac {\sd k_t^2}{k_t^{2(1+\epsilon )}}\sd z \Theta \left (v-V^{\mathrm {mMDT}}_{\mathrm {s.c}}(\tilp ,z,k_t)\right )\ .






























  

  



{eq:C1} C^{\mathrm {r.c}}(v)=H_1(Q)+\int [\sd ^{4-2\epsilon } k]\mathcal {M}^2(k;\epsilon )\Theta \left (v-V^{\mathrm {mMDT}}(\tilp ,k)\right )- \\ \int _{0}^1 \int _{0}^{z^2Q^2} \frac {C_F\alpha _s(k_t^2)}{\pi }\bigg ( \frac {2}{z^{1+2\epsilon }}+\gamma ^{(0)}_{\mathrm {h.c}}\delta (1-z)\bigg )\frac {\sd k_t^2}{k_t^{2(1+\epsilon )}}\sd z \Theta \left (v-V^{\mathrm {mMDT}}_{\mathrm {s.c}}(\tilp ,z,k_t)\right )\ .

This calculation is carried out in 4−2ε dimensions as the two integrals are separately 
divergent, however the difference is finite in four dimensions. The integral on the first 
line is the real contribution to the leading order result, with the argument of the cou-
pling set to k2t , while the second line is the part of the real O(αs) result which is ex-
ponentiated, where the argument of the coupling is retained as k2t .
Although eq. (5.19) cannot be evaluated in a completely general manner, all that is 
required is a leading-order calculation, which can be carried out without too much 
difficulty. We now evaluate Cr.c(v) for the angularities [130], [224] with respect to the 
WTA axis [27], which are defined for e+e− colliders as [196], [224] 

  \lambda _\beta ^1=\frac {\sum _i E_i|\sin (\theta _i)|^{2-\beta }(1-|\cos (\theta _i)|)^{\beta -1}}{\sum _i E_i}\ , 


  



 (5.20)

where the sum runs over all particles in the hemisphere after grooming and θi is the 
angle between a particle and the WTA axis. In the soft and collinear approximation 
these observables can be parametrised as per eq. (5.1) with a = 1 and b = β − 1.

{eq:C1_soft} C_{\text {soft}}^{\mathrm {r.c}}(v)= \\ \int _0^{\zc } \frac {\alpha _s(Q)C_F}{\pi } \frac {2\sd z}{z^{ 1+2\epsilon }} \bigg (\int _0^1 \frac {e^{-\epsilon \gamma _E}}{\Gamma [1-\epsilon ]}\frac {2^{1+2\epsilon }\sd \cos (\theta )}{(1+\cos (\theta ))^{1+\epsilon }(1-\cos (\theta ))^{1+\epsilon }} -\int _0^{1} \frac {\sd u}{u^{1+\epsilon }} \bigg ) \\= \frac {\alpha _s(Q)C_F}{2\pi } \bigg (\frac {-\pi ^2}{2}\bigg )\ ,



Evaluating Cr.c(v) is achieved most simply by considering the region of phase space 
where the gluon is retained by the groomer (z > zcut) separately from the region 
where it is removed (z < zcut), as when it is retained it can be treated in the collinear 
limit, whilst when it is removed it can be treated as soft, up to power corrections in 
zcut, which we neglect. The soft part of eq. (5.19) is then given by 

{eq:C1_soft} C_{\text {soft}}^{\mathrm {r.c}}(v)= \\ \int _0^{\zc } \frac {\alpha _s(Q)C_F}{\pi } \frac {2\sd z}{z^{ 1+2\epsilon }} \bigg (\int _0^1 \frac {e^{-\epsilon \gamma _E}}{\Gamma [1-\epsilon ]}\frac {2^{1+2\epsilon }\sd \cos (\theta )}{(1+\cos (\theta ))^{1+\epsilon }(1-\cos (\theta ))^{1+\epsilon }} -\int _0^{1} \frac {\sd u}{u^{1+\epsilon }} \bigg ) \\= \frac {\alpha _s(Q)C_F}{2\pi } \bigg (\frac {-\pi ^2}{2}\bigg )\ ,
 {eq:C1_soft} C_{\text {soft}}^{\mathrm {r.c}}(v)= \\ \int _0^{\zc } \frac {\alpha _s(Q)C_F}{\pi } \frac {2\sd z}{z^{ 1+2\epsilon }} \bigg (\int _0^1 \frac {e^{-\epsilon \gamma _E}}{\Gamma [1-\epsilon ]}\frac {2^{1+2\epsilon }\sd \cos (\theta )}{(1+\cos (\theta ))^{1+\epsilon }(1-\cos (\theta ))^{1+\epsilon }} -\int _0^{1} \frac {\sd u}{u^{1+\epsilon }} \bigg ) \\= \frac {\alpha _s(Q)C_F}{2\pi } \bigg (\frac {-\pi ^2}{2}\bigg )\ ,



















  










{eq:C1_soft} C_{\text {soft}}^{\mathrm {r.c}}(v)= \\ \int _0^{\zc } \frac {\alpha _s(Q)C_F}{\pi } \frac {2\sd z}{z^{ 1+2\epsilon }} \bigg (\int _0^1 \frac {e^{-\epsilon \gamma _E}}{\Gamma [1-\epsilon ]}\frac {2^{1+2\epsilon }\sd \cos (\theta )}{(1+\cos (\theta ))^{1+\epsilon }(1-\cos (\theta ))^{1+\epsilon }} -\int _0^{1} \frac {\sd u}{u^{1+\epsilon }} \bigg ) \\= \frac {\alpha _s(Q)C_F}{2\pi } \bigg (\frac {-\pi ^2}{2}\bigg )\ ,












where u =
k2t

z2Q2 and we have set the argument of the coupling to Q2 as setting it to 
k2t only gives rise to logarithms of zcut which we have argued will be N3LL. This part 
of the calculation is the same for any observable.
For the collinear part of eq. (5.19) we need an expression for the observable in the 
presence of a single collinear emission, which for the angularities with respect to the 
WTA axis reads 

  \lambda _\beta ^1=\frac {\min (z,1-z)}{(z(1-z))^\beta }\bigg (\frac {k_t}{Q}\bigg )^\beta . 
 









 (5.22)

The collinear part of eq. (5.19) is then4

C_{\text {col.}}^{\mathrm {r.c}}(v)=\int _0^{Q^2} \int _{\zc }^1 \frac {\alpha _s(k_t^2)}{\pi } P_{gq}(z;\epsilon ) \Theta \left (\lambda _\beta ^1-\frac {\min (z,1-z)}{(z(1-z))^\beta }\bigg (\frac {k_t}{Q}\bigg )^\beta \right ) \sd z \frac {\sd k_t^2}{k_t^{2(1+\epsilon )}}\\-\int _0^{Q^2} \int _{\zc }^1 \frac {\alpha _s(k_t^2)C_F}{\pi } \bigg (\frac {2}{z}-\gamma _0^{\mathrm {h.c}}\delta (1-z)\bigg )\sd z \Theta \left (\lambda ^{\frac {2}{\beta }}z^{2\frac {\beta -1}{\beta }}Q^2-k_t^2\right )\frac {\sd k_t^2}{k_t^{2(1+\epsilon )}}\ .




















 















C_{\text {col.}}^{\mathrm {r.c}}(v)=\int _0^{Q^2} \int _{\zc }^1 \frac {\alpha _s(k_t^2)}{\pi } P_{gq}(z;\epsilon ) \Theta \left (\lambda _\beta ^1-\frac {\min (z,1-z)}{(z(1-z))^\beta }\bigg (\frac {k_t}{Q}\bigg )^\beta \right ) \sd z \frac {\sd k_t^2}{k_t^{2(1+\epsilon )}}\\-\int _0^{Q^2} \int _{\zc }^1 \frac {\alpha _s(k_t^2)C_F}{\pi } \bigg (\frac {2}{z}-\gamma _0^{\mathrm {h.c}}\delta (1-z)\bigg )\sd z \Theta \left (\lambda ^{\frac {2}{\beta }}z^{2\frac {\beta -1}{\beta }}Q^2-k_t^2\right )\frac {\sd k_t^2}{k_t^{2(1+\epsilon )}}\ .




















 











  








To evaluate this within NNLL accuracy, we can make the approximation [210] that 

 \label {eq:C1_col_start} \alpha _s\big (k_t^2\big )\simeq \alpha _s\big (\lambda ^{\frac {2}{\beta }}Q^2\big )\ , 













 (5.24)

or more generally, for any rIRC safe observable, 

 \label {eq:Argumet_of_coupling} \alpha _s\big (k_t^2\big )\simeq \alpha _s\big (v^{\frac {2}{a+b}}Q^2\big )\ , 













 (5.25)

where a and b are defined through eq. (5.1). This can be justified by making the 

change of variables k2t → ζ = 1
v

d
zb

(
kt
Q

)a+b

, so that αs(k
2
t ) becomes αs

((
zbζv
d

) 2
a+b

)
, 

and arguing that, for rIRC safe observables, the integral is dominated by values of 

ζ close to 1 [210]. Expanding αs

((
zbζv
d

) 2
a+b

)
about ζ = 1, one finds that terms 

beyond the zeroth order correspond to corrections to eq. (5.25) which are at least 
4This piece of the calculation is equivalent to evaluating the functions C1

hc and δFrec in [210].

102



N3LL. With this in hand we can now evaluate eq. (5.24) to find 

 \label {eq:C1_col} C_{\text {col.}}^{\mathrm {r.c}}(v)=\frac {C_F\alpha _s \big (\lambda ^\frac {2}{\beta }Q^2\big )}{2\pi }\left (-\frac {6}{\beta }+\frac {2 \pi ^2}{3 \beta }-\frac {6 \ln (2)}{\beta }-\frac {4 \pi ^2}{3}+13 \right )\ . 






















 








 (5.26)

Adding together eq. (5.21), eq. (5.26) and H1, we can then write the expression for 
Cr.c(v) for the angularities with respect to the WTA axis: 

C^{\mathrm {r.c}}(v)= \\ \frac {C_F}{2\pi }\bigg (\alpha _s(\lambda ^\frac {2}{\beta }Q^2)\bigg (-\frac {6}{\beta }+\frac {2 \pi ^2}{3 \beta }-\frac {6 \ln (2)}{\beta }-\frac {4 \pi ^2}{3}+13\bigg ) +\alpha _s(Q^2)\bigg (\frac {2\pi ^2}{3}-8\bigg ) \bigg )\ .

C^{\mathrm {r.c}}(v)= \\ \frac {C_F}{2\pi }\bigg (\alpha _s(\lambda ^\frac {2}{\beta }Q^2)\bigg (-\frac {6}{\beta }+\frac {2 \pi ^2}{3 \beta }-\frac {6 \ln (2)}{\beta }-\frac {4 \pi ^2}{3}+13\bigg ) +\alpha _s(Q^2)\bigg (\frac {2\pi ^2}{3}-8\bigg ) \bigg )\ .


















 





















Expanding this to second order in powers of αs(Q
2) we find 

C^{\mathrm {r.c}}(v)= \frac {C_F\alpha _s(Q^2)}{2\pi }\bigg (5-\frac {6}{\beta }+\frac {2 \pi ^2}{3}\left (\frac {1}{\beta }-1\right )-\frac {6 \ln (2)}{\beta } \bigg )\\ - \frac {C_F\alpha _s^2(Q^2)}{2\pi }\beta _0 \ln \left (\lambda ^\frac {2}{\beta }\right ) \bigg (-\frac {6}{\beta }+\frac {2 \pi ^2}{3 \beta }-\frac {6 \ln (2)}{\beta }-\frac {4 \pi ^2}{3}+13\bigg )\ ,























 




C^{\mathrm {r.c}}(v)= \frac {C_F\alpha _s(Q^2)}{2\pi }\bigg (5-\frac {6}{\beta }+\frac {2 \pi ^2}{3}\left (\frac {1}{\beta }-1\right )-\frac {6 \ln (2)}{\beta } \bigg )\\ - \frac {C_F\alpha _s^2(Q^2)}{2\pi }\beta _0 \ln \left (\lambda ^\frac {2}{\beta }\right ) \bigg (-\frac {6}{\beta }+\frac {2 \pi ^2}{3 \beta }-\frac {6 \ln (2)}{\beta }-\frac {4 \pi ^2}{3}+13\bigg )\ ,
























 










which contains a leading order term, C1 =

(
5 − 6

β
+ 2π2

3

(
1
β
− 1
)
− 6 ln(2)

β

)
, and an 

NLO piece, β0X, with X = −
(
− 6

β
+ 2π2

3β
− 6 ln(2)

β
− 4π2

3
+ 13

)
, which forms part of 

the hard-collinear coefficient B2.

5.4 The clustering correction

We now turn our attention to the clustering correction which is given by 

{eq:ClusteringCorDef} \Sigma ^{\text {clust.}}(v,\zc )=\mathcal {H}(Q) \sum _{n=0}^\infty \frac {1}{n!}\prod _{i=1}^{n}\int [\sd ^4 k_i] \mathcal {M}^2(k_1,...,k_n)\times \\ [\Theta (v>V^{\mathrm {mMDT}}(\{p\},k_1,...,k_n))-\Theta (v>V^{\mathrm {simp.}}_{\mathrm {sc}}(\{p\},k_1,...,k_n))],  











 

{eq:ClusteringCorDef} \Sigma ^{\text {clust.}}(v,\zc )=\mathcal {H}(Q) \sum _{n=0}^\infty \frac {1}{n!}\prod _{i=1}^{n}\int [\sd ^4 k_i] \mathcal {M}^2(k_1,...,k_n)\times \\ [\Theta (v>V^{\mathrm {mMDT}}(\{p\},k_1,...,k_n))-\Theta (v>V^{\mathrm {simp.}}_{\mathrm {sc}}(\{p\},k_1,...,k_n))],        
    

which is added to eq. (5.18) to give Σ(v, zcut) as in eq. (5.3). It is in this part of the 
calculation where the lack of rIRC safety of groomed observables plays a role. This is 
because, as we shall see, the clustering correction is generated as a result of the ob-
servable’s scaling with the momentum of one emission depending on the momentum 
of another.

5.4.1 Independent emission clustering correction

As there are some differences between the clustering corrections for independent and 
correlated emissions we will first compute Σclust.(v, zcut) considering only independent 
emissions. Here independent emissions refers to soft emissions from the born parton 
i.e. primary emissions, whereas correlated emissions are those which originate from 
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branch 2

branch 1

Figure 5.1. The configuration responsible for the independent emission clustering correction, where 
two soft emissions with zi < zcut are de-clustered from the parent parton as a single branch which 

as a whole passes the zcut condition.

the branching of a primary emission and so carry either a CFCA of CFTRnf colour 
factor. The calculation is carried out considering emissions in a single hemisphere, 
with a factor of two provided to account for the opposite hemisphere. This piece ac-
counts for the fact that gluons softer than zcut, which in the previous section were 
always treated as being groomed away, can be retained by the groomer, when, due 
to the C/A clustering sequence, they are examined for the zcut condition as part of a 
branch containing another independent soft gluon. This configuration is depicted at 
O(α2

s) in figure 5.1 and was calculated at this order in section 4.4.1. 

As per eq. (5.29), the clustering correction Σclust.(v, zcut) is proportional to 

 \label {eq:ClusteringThetas} \Theta (v-V^{\mathrm {mMDT}}(\{p\},k_1,...,k_n))- \Theta (v-V^{\mathrm {simp.}}_{\mathrm {sc}}(\{p\},k_1,...,k_n)) \ .         
      (5.30)

Considering only independent emissions, this quantity is only non zero when there is 
a branch of the C/A clustering sequence containing two or more emissions which:

• would individually be groomed away

• collectively pass the grooming condition

• set a value of the observable larger than the cut on it: V mMDT({p}, k1, ..., kn) >
v,

resulting in these emissions being allowed by our simplified groomer when in fact 
they should be vetoed. This corresponds to the region of phase space where
V mMDT({p}, k1, ..., kn) > v, but V simp.

sc ({p}, k1, ..., kn) < v, so that the combination 
of step functions in eq. (5.30) is equal to −1. This region of phase space is illustrated 
on a Lund diagram in figure 5.2. For such a branch to be examined by the groomer, 
all branches at wider angles must be softer than zcut and thus groomed away. 

At NNLL accuracy it is sufficient to consider that this branch contains two emis-
sions, which we label α and β. We will first compute the clustering correction assum-
ing that this is valid before showing that higher numbers of emissions in a branch 

\Theta _{\text {clust.}}^{\text {Ind.}}= \Theta (\theta _\alpha -\theta _{\alpha ,\beta })\Theta (\theta _\beta -\theta _{\alpha ,\beta }) \times \\ \Theta (\zc -z_\alpha )\Theta (\zc -z_\beta )\Theta (z_\alpha +z_\beta -\zc )\Theta (V^{\mathrm {mMDT}}(\{p\},k_\alpha ,k_\beta )-v) \ ,



v

ln(kt)

η

zcut

v

ln(kt)

η

2zcut
zcut

1

Figure 5.2. Lund diagram showing the region of phase space responsible for the independent 
emission clustering correction in blue. The region shown in red is the vetoed phase space 

responsible for the Sudakov factor. The two dots represent possible locations in the phase space for 
the pair of emissions which generate the clustering correction. Discussion of the hashed area, which 
contributes in principle to the clustering correction but turns out only to beyond NNLL accuracy, is 

postponed to later in this section.

correspond to corrections at higher logarithmic accuracy. We define the function 

\Theta _{\text {clust.}}^{\text {Ind.}}= \Theta (\theta _\alpha -\theta _{\alpha ,\beta })\Theta (\theta _\beta -\theta _{\alpha ,\beta }) \times \\ \Theta (\zc -z_\alpha )\Theta (\zc -z_\beta )\Theta (z_\alpha +z_\beta -\zc )\Theta (V^{\mathrm {mMDT}}(\{p\},k_\alpha ,k_\beta )-v) \ ,
     

\Theta _{\text {clust.}}^{\text {Ind.}}= \Theta (\theta _\alpha -\theta _{\alpha ,\beta })\Theta (\theta _\beta -\theta _{\alpha ,\beta }) \times \\ \Theta (\zc -z_\alpha )\Theta (\zc -z_\beta )\Theta (z_\alpha +z_\beta -\zc )\Theta (V^{\mathrm {mMDT}}(\{p\},k_\alpha ,k_\beta )-v) \ ,             

where θα is the angle between the quark and α, with θβ defined similarly and θα,β is 
the angle between partons α and β. Provided we also ensure that the groomer exam-
ines the branch containing α and β, ΘInd.

clust. isolates the region of phase space which 
generates the clustering correction. Requiring that V simp.

sc ({p}, k1, ..., kn) < v guaran-
tees that the groomer will examine the α, β branch as this forces any emissions with 
zi > zcut to be at smaller angles than the pair responsible for the clustering correc-
tion. Emissions other than α and β with zi < zcut can be dropped from V simp.

sc ({p}, {kj})
as in section 5.3. We can then write 

{eq:SigmaClustInd} \Sigma ^{\text {clust.}}_{\text {Ind.}}(v,\zc )=-\mathcal {H}(Q) \frac {1}{2!} \int \mathcal {M}_{\mathrm {s.c}}^2(k_\alpha ) \mathcal {M}_{\mathrm {s.c}}^2(k_\beta ) [\sd ^4 k_\alpha ] [\sd ^4 k_\beta ] \Theta _{\text {clust.}}^{\text {Ind.}} \sum _{n=0}^\infty \frac {1}{n!} \\ \prod _{j=0}^{n}\int [\sd ^4 k_j]\mathcal {M}_{\mathrm {c}}^2(k_j) \big \{\Theta (\zc -z_j)+\Theta (z_j-\zc )\Theta \left (v-V^{\mathrm {simp.}}_{\mathrm {sc}}(\{p\},\{k_{j}\})\right )\big \} ,
   





















{eq:SigmaClustInd} \Sigma ^{\text {clust.}}_{\text {Ind.}}(v,\zc )=-\mathcal {H}(Q) \frac {1}{2!} \int \mathcal {M}_{\mathrm {s.c}}^2(k_\alpha ) \mathcal {M}_{\mathrm {s.c}}^2(k_\beta ) [\sd ^4 k_\alpha ] [\sd ^4 k_\beta ] \Theta _{\text {clust.}}^{\text {Ind.}} \sum _{n=0}^\infty \frac {1}{n!} \\ \prod _{j=0}^{n}\int [\sd ^4 k_j]\mathcal {M}_{\mathrm {c}}^2(k_j) \big \{\Theta (\zc -z_j)+\Theta (z_j-\zc )\Theta \left (v-V^{\mathrm {simp.}}_{\mathrm {sc}}(\{p\},\{k_{j}\})\right )\big \} ,







     


  

 



where Mc[d4k] =
CFαs(k2t )

π

(
2
z
+ γ0h.cδ(1− z)

)
dz dk2t

k2t
, and Ms.c[d4k] =

CFαs(k2t )

π

(
2dz
z

) dk2t
k2t

, 
the matrix element for a soft and collinear emission. The real emissions labelled with 
j, i.e. the ones not responsible for generating the clustering correction, can then be 
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combined with H(Q) to give. 

  \Sigma ^{\text {clust.}}_{\text {Ind.}}(v,\zc )= \mathcal {F}_{\text {clust.}}^{\text {Ind.}} \exp [-R(v,\zc )], 
    

   (5.33)

where 

{eq:FclustInd} \mathcal {F}_{\text {clust.}}^{\text {Ind.}}=-\int \frac {1}{2!}\mathcal {M}_{\mathrm {s.c}}^2(k_\alpha ) \mathcal {M}_{\mathrm {s.c}}^2(k_\beta ) [\sd ^4 k_\alpha ][\sd ^4k_\beta ] \Theta _{\text {clust.}}^{\text {Ind.}}\\ =-C_F^2\int \frac {\alpha _s(k_{t\alpha })}{\pi }\frac {\alpha _s(k_{t\beta })}{\pi }\frac {2\sd z_\alpha }{z_\alpha }\frac {2\sd z_\beta }{z_\beta }\frac {\Delta ^{-\frac {1}{2}}}{2\pi } \sd \theta _{\alpha ,\beta }^2\frac {\sd \theta _{\beta }^2}{\theta _\beta ^2}\frac {\sd \theta _{\alpha }^2}{\theta _{\alpha }^2} \Theta _{\text {clust}} \Theta (\Delta )\Theta (\theta _\alpha -\theta _\beta )\ .
 













{eq:FclustInd} \mathcal {F}_{\text {clust.}}^{\text {Ind.}}=-\int \frac {1}{2!}\mathcal {M}_{\mathrm {s.c}}^2(k_\alpha ) \mathcal {M}_{\mathrm {s.c}}^2(k_\beta ) [\sd ^4 k_\alpha ][\sd ^4k_\beta ] \Theta _{\text {clust.}}^{\text {Ind.}}\\ =-C_F^2\int \frac {\alpha _s(k_{t\alpha })}{\pi }\frac {\alpha _s(k_{t\beta })}{\pi }\frac {2\sd z_\alpha }{z_\alpha }\frac {2\sd z_\beta }{z_\beta }\frac {\Delta ^{-\frac {1}{2}}}{2\pi } \sd \theta _{\alpha ,\beta }^2\frac {\sd \theta _{\beta }^2}{\theta _\beta ^2}\frac {\sd \theta _{\alpha }^2}{\theta _{\alpha }^2} \Theta _{\text {clust}} \Theta (\Delta )\Theta (\theta _\alpha -\theta _\beta )\ .





























   

In the above equation ∆ = 4θ2αθ
2
β − (θ2α,β − θ2α − θ2β)

2 is the Gram determinant [225], 
[226] and we have used the symmetry between partons α and β to eliminate 1

2!
in 

favour of Θ(θα − θβ). For the jet mass, this is just the NLL Sudakov factor, multi-
plied by the NLO clustering correction calculated in chapter 4, where the argument 
of the coupling has been set to the transverse momentum of the emission it is associ-
ated with.
Factorising the clustering correction from the Sudakov factor in this way allows one 
to write the full resummed distribution as 

 \label {eq:NLLResult} \Sigma (v,\zc )=(1+C^{\mathrm {r.c}}(v)+\mathcal {F}_{\mathrm {clust.}})e^{-R(v,\zc )} \ ,       
  (5.35)

where R(v, zcut) is the NNLL Sudakov factor from section 5.3 and we have antic-
ipated a similar factorisation for the correlated emission clustering correction and 
grouped the clustering terms together as Fclust. = F ind.

clust. + FCor.
clust.. We note that this 

compact way of writing the result introduces N3LL terms through the interplay of 
the clustering correction with NNLL terms in the Sudakov factor.
Returning to evaluate the clustering correction, we can make two approximations: 
firstly, making the replacement αs(ktβ) → αs(ktα) is equivalent to integrating over 
the phase space of emission β and dropping terms which are beyond NNLL accuracy 
5; secondly we can drop the contribution of emission β to the observable,
V ({p}, kα, kβ) → V ({p}, kα). The latter results only in the neglect of terms which 
do not contain a logarithm of ρ, and so are N3LL or are suppressed by powers of zcut, 
which are neglected. This can be seen most easily at fixed coupling by exchanging 
the integral over θ2α for an integral over v and neglecting terms which are not sin-
gular as zβ or θ2β are taken to zero 6. We can now evaluate the integrals over θβ and 

5We have checked this by expanding αs(ktβ) ' αs(Q)
(
1 + β0αs(Q) ln( ktβ

Q
)
)
, evaluating the integrals over 

zα, zβ , θ
2
α,β and θ2β and observing that the logarithm of kβ becomes a logarithm of ktα. Any additional terms not 

accounted for in our prescription are just a constant with an additional power of αs(Q) and so are N3LL.
6We have also verified this numerically for the heavy hemisphere mass without any approximations beyond use of 

the collinear limit.

\mathcal {F}_{\text {clust.}}^{\text {Ind.}}=-\frac {8}{\pi }\text {Cl}_2\left (\frac {\pi }{3}\right )\bigg (\int _{\max (k_t,\frac {k_t^{\frac {a+b}{b}}}{v^{\frac {1}{b}}})}^{\zc }\frac {\sd z_\alpha }{z_\alpha }\int _{\zc -z_\alpha }^{\zc }\frac {\sd z_\beta }{z_\beta } \int _{(v\zc ^b)^{\frac {2}{a+b}}Q^2}^{\zc ^2Q^2}\left (\frac {\alpha _s(k_{t\alpha })}{2\pi }\right )^2\frac {\sd k_{t\alpha }^2}{k_{t\alpha }^2} \\+\Theta (b) \int _{k_{t\alpha }}^{\frac {k_{t\alpha }^{\frac {a+b}{b}}}{v^{\frac {1}{b}}}}\frac {\sd z_\alpha }{z_\alpha }\int _{\zc -z_\alpha }^{\zc }\frac {\sd z_\beta }{z_\beta } \int _{v^{\frac {2}{a}}Q^2}^{(v\zc ^b)^{\frac {2}{a+b}}Q^2}\left (\frac {\alpha _s(k_{t\alpha })}{2\pi }\right )^2\frac {\sd k_{ta}^2}{k_{ta}^2} \bigg )\ ,



θα,β to obtain 

\mathcal {F}_{\text {clust.}}^{\text {Ind.}}=-\frac {8}{\pi }\text {Cl}_2\left (\frac {\pi }{3}\right )\bigg (\int _{\max (k_t,\frac {k_t^{\frac {a+b}{b}}}{v^{\frac {1}{b}}})}^{\zc }\frac {\sd z_\alpha }{z_\alpha }\int _{\zc -z_\alpha }^{\zc }\frac {\sd z_\beta }{z_\beta } \int _{(v\zc ^b)^{\frac {2}{a+b}}Q^2}^{\zc ^2Q^2}\left (\frac {\alpha _s(k_{t\alpha })}{2\pi }\right )^2\frac {\sd k_{t\alpha }^2}{k_{t\alpha }^2} \\+\Theta (b) \int _{k_{t\alpha }}^{\frac {k_{t\alpha }^{\frac {a+b}{b}}}{v^{\frac {1}{b}}}}\frac {\sd z_\alpha }{z_\alpha }\int _{\zc -z_\alpha }^{\zc }\frac {\sd z_\beta }{z_\beta } \int _{v^{\frac {2}{a}}Q^2}^{(v\zc ^b)^{\frac {2}{a+b}}Q^2}\left (\frac {\alpha _s(k_{t\alpha })}{2\pi }\right )^2\frac {\sd k_{ta}^2}{k_{ta}^2} \bigg )\ ,
  
















































\mathcal {F}_{\text {clust.}}^{\text {Ind.}}=-\frac {8}{\pi }\text {Cl}_2\left (\frac {\pi }{3}\right )\bigg (\int _{\max (k_t,\frac {k_t^{\frac {a+b}{b}}}{v^{\frac {1}{b}}})}^{\zc }\frac {\sd z_\alpha }{z_\alpha }\int _{\zc -z_\alpha }^{\zc }\frac {\sd z_\beta }{z_\beta } \int _{(v\zc ^b)^{\frac {2}{a+b}}Q^2}^{\zc ^2Q^2}\left (\frac {\alpha _s(k_{t\alpha })}{2\pi }\right )^2\frac {\sd k_{t\alpha }^2}{k_{t\alpha }^2} \\+\Theta (b) \int _{k_{t\alpha }}^{\frac {k_{t\alpha }^{\frac {a+b}{b}}}{v^{\frac {1}{b}}}}\frac {\sd z_\alpha }{z_\alpha }\int _{\zc -z_\alpha }^{\zc }\frac {\sd z_\beta }{z_\beta } \int _{v^{\frac {2}{a}}Q^2}^{(v\zc ^b)^{\frac {2}{a+b}}Q^2}\left (\frac {\alpha _s(k_{t\alpha })}{2\pi }\right )^2\frac {\sd k_{ta}^2}{k_{ta}^2} \bigg )\ ,












































where we have made use of the soft and collinear parametrisation of the observable 
in terms of a and b given in eq. (5.1). The integral in the last line corresponds to the 
phase space indicated by the hashed region in figure 5.2 and does not contribute at 
NNLL. It is therefore neglected from here on, and the remaining integrals evaluated, 
neglecting power corrections, to give 

{eq:abelianClust} \mathcal {F}^{\text {Ind.}}_{\text {clust.}}=-\left (\frac {\alpha _s(Q^2)C_F}{2\pi }\right )^2\frac {4\pi }{3}\text {Cl}_2\left (\frac {\pi }{3}\right )\times \\ \frac {\ln \left (\zc ^{\frac {2}{a+b}} v^{\frac {-2}{a+b}}\right )}{(1+\beta _0\alpha _s(Q^2)\ln ( v^{\frac {2}{a+b}}\zc ^{\frac {2b}{a+b}}))(1+\beta _0\alpha _s(Q^2)\ln \zc ^2)}\ .
 



















{eq:abelianClust} \mathcal {F}^{\text {Ind.}}_{\text {clust.}}=-\left (\frac {\alpha _s(Q^2)C_F}{2\pi }\right )^2\frac {4\pi }{3}\text {Cl}_2\left (\frac {\pi }{3}\right )\times \\ \frac {\ln \left (\zc ^{\frac {2}{a+b}} v^{\frac {-2}{a+b}}\right )}{(1+\beta _0\alpha _s(Q^2)\ln ( v^{\frac {2}{a+b}}\zc ^{\frac {2b}{a+b}}))(1+\beta _0\alpha _s(Q^2)\ln \zc ^2)}\ .











  







    


At leading order F Ind.
clust. contains the NNLL term 7

(
αs(Q2)CF

2π

)2
2π
3

Cl2
(
π
3

)
ln(v

2
a+b ) as 

well as an N3LL term proportional to αs(Q
2)2 ln(zcut). It also contains NNLL terms 

to all orders due to the running coupling which generates the term in the denomina-
tor proportional to αs(Q

2)β0 ln(v
2

a+b ). The running coupling also generates the terms 
in the denominator proportional to ln(zcut) which start at N3LL. This tells us that it 
is not really important that the argument of each factor of the coupling is precisely 
the transverse momentum of the emission it is associated with, only that it scales 
with the observable as v

2
a+b . Within NNLL accuracy we could set zcut → 1 in eq.

(5.37) so as to eliminate terms beyond NNLL accuracy 8.
We have shown that a sub-jet consisting of two independent emissions, a and b, gen-
erates a correction with a single collinear logarithm of the observable, and that for 
this to happen 

  z_\alpha ,z_\beta <\zc \ \ \text {and} \ \ z_\alpha +z_\beta >\zc           (5.38)

must be satisfied. The generalisation of this to three emissions, α, β, γ, is that 

  \begin {split} z_i<&\zc \\ z_i+z_j<&\zc \ ,\ \ i \neq j \\ z_\alpha +z_\beta +z_\gamma >&\zc \ , \end {split} 

  \begin {split} z_i<&\zc \\ z_i+z_j<&\zc \ ,\ \ i \neq j \\ z_\alpha +z_\beta +z_\gamma >&\zc \ , \end {split}       

  \begin {split} z_i<&\zc \\ z_i+z_j<&\zc \ ,\ \ i \neq j \\ z_\alpha +z_\beta +z_\gamma >&\zc \ , \end {split}      

  \begin {split} z_i<&\zc \\ z_i+z_j<&\zc \ ,\ \ i \neq j \\ z_\alpha +z_\beta +z_\gamma >&\zc \ , \end {split} 

where i, j ∈ α, β, γ. As all three emissions are constrained to be at similar angles, 
this configuration can have only one logarithm of the observable and so is N3LL. A 

7This term has been checked using Event2[227], [228] for the jet mass, width and Les Houches angularity. It also 
agrees with the collinear O(α2

s) calculation carried out in chapter 4.
8In practice we have retained these NNLL ln zcut terms in our final results
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branch 1

branch 2

Figure 5.3. The configuration responsible for the correlated emission clustering correction. Both 
gluons have zi < zcut, but have a combined energy fraction greater than zcut. The two gluons are 

clustered in separate C/A branches, with branch two being de-clustered from the jet first and 
groomed away. The other gluon is then de-clustered from the quark and is also groomed way.

similar argument holds for more emissions so that at NnLL accuracy one only has to 
consider clustering corrections involving up to n emissions, the exception being NLL 
accuracy where there is no clustering correction.
Our treatment of the clustering corrections in the C2

F colour channel produces results 
which are equivalent at NNLL accuracy to the relevant pieces of the SCET resum-
mation given in [47], but differs beyond this accuracy. The terms which we account 
for in our clustering correction are included in the SCET result through the soft, and 
collinear-soft, two-loop non-cusp anomalous dimensions, which appear in the expo-
nent given in appendix F of ref. [47] 9. In other words, they are exponentiated, and 
whilst the two resummations are equivalent at NNLL, we believe that their method 
leads to errors at N3LL [190]. This is because the groomer stops as soon as it en-
counters a branch which passes the zcut condition, implying that there should be no 
terms in the resummed distribution, or its expansion in powers of αs, involving mul-
tiple powers of F Ind.

clust.. Such terms are present if one expands the resummed distri-
bution presented in ref. [47] up to O(α4

s). Note that the square of the two emission 
clustering correction cannot give part of the four emission clustering correction as, by 
the arguments outlined in the preceding paragraph, this would have the wrong num-
ber of logarithms per power of αs.

5.4.2 Correlated emission clustering correction

The correlated emission clustering correction shares some similarities with the in-
dependent emission correction. The main difference being that it is due to a pair of 
emissions being groomed away in a region of phase space where the simplified groomer 
treats them as being retained, as opposed to the other way around for independent 
emissions. An O(α2

s) configuration where this occurs is shown in figure 5.3, which 
shows a pair of gluons, which are treated as being retained by the simplified groomer, 
but are actually removed due to the C/A clustering sequence. This configuration of 
emissions corresponds to the clustering correction computed in the previous chapter 
for the CFCA channel.
We can calculate the correlated emission clustering correction up to NNLL accuracy 

9We would like to thank Aditya Pathak for his help in understanding the SCET resummation.

\Theta _{\text {clust.}}^{\text {Cor.}}=(\Theta (\theta _{\alpha ,\beta }-\theta _\alpha )\Theta (\theta _{\beta }-\theta _\alpha )+(\alpha \leftrightarrow \beta ))\times \\ \Theta (\zc -z_\alpha )\Theta (\zc -z_\beta )\Theta (z_\alpha +z_\beta -\zc ) \Theta (V^{\mathrm {simp.}}_{\mathrm {sc}}(\{p\},k_\alpha ,k_\beta )-v)\ .



by considering a pair of correlated emissions which we again label α and β. Configu-
rations involving three emissions would be N3LL as argued for the independent emis-
sion clustering correction. The region of phase space responsible for the clustering 
correction can be summarised as zα + zβ > zcut with V simp.

sc ({p}, kα, kβ) > v and 
V mMDT({p}, kα, kβ) = 0, which is illustrated in figure 5.4. The relevant region of 
phase space for these two emissions is isolated by 

\Theta _{\text {clust.}}^{\text {Cor.}}=(\Theta (\theta _{\alpha ,\beta }-\theta _\alpha )\Theta (\theta _{\beta }-\theta _\alpha )+(\alpha \leftrightarrow \beta ))\times \\ \Theta (\zc -z_\alpha )\Theta (\zc -z_\beta )\Theta (z_\alpha +z_\beta -\zc ) \Theta (V^{\mathrm {simp.}}_{\mathrm {sc}}(\{p\},k_\alpha ,k_\beta )-v)\ .
         

\Theta _{\text {clust.}}^{\text {Cor.}}=(\Theta (\theta _{\alpha ,\beta }-\theta _\alpha )\Theta (\theta _{\beta }-\theta _\alpha )+(\alpha \leftrightarrow \beta ))\times \\ \Theta (\zc -z_\alpha )\Theta (\zc -z_\beta )\Theta (z_\alpha +z_\beta -\zc ) \Theta (V^{\mathrm {simp.}}_{\mathrm {sc}}(\{p\},k_\alpha ,k_\beta )-v)\ .        
     

In the same spirit as eq. (5.32), we can then write: 

\Sigma ^{\text {clust.}}_{\text {Cor.}}(v,\zc )= \mathcal {H}(Q) \int \frac {1}{2!}\mathcal {M}_{\mathrm {cor}}^2(k_\alpha ,k_\beta ) [\sd ^4k_\alpha ] [\sd ^4k_\beta ] \Theta _{\text {Clust.}}^{\text {Cor.}} \sum _{n=0}^\infty \frac {1}{n!} \\ \prod _{j=0}^{n}\int [\sd ^4 k_j]\mathcal {M}_{\mathrm {c}}^2(k_j) \big (\Theta (\zc -z_j) + \Theta (z_j-\zc )\Theta (v-V^{\mathrm {simp.}}_{\mathrm {sc}}(\{p\},\{k_{j}\}))\big ),
   


















\Sigma ^{\text {clust.}}_{\text {Cor.}}(v,\zc )= \mathcal {H}(Q) \int \frac {1}{2!}\mathcal {M}_{\mathrm {cor}}^2(k_\alpha ,k_\beta ) [\sd ^4k_\alpha ] [\sd ^4k_\beta ] \Theta _{\text {Clust.}}^{\text {Cor.}} \sum _{n=0}^\infty \frac {1}{n!} \\ \prod _{j=0}^{n}\int [\sd ^4 k_j]\mathcal {M}_{\mathrm {c}}^2(k_j) \big (\Theta (\zc -z_j) + \Theta (z_j-\zc )\Theta (v-V^{\mathrm {simp.}}_{\mathrm {sc}}(\{p\},\{k_{j}\}))\big ),







        

 



where M2
cor(kα, kβ) is the correlated emission part of the two gluon matrix element. 

As before we can write this as 

  \Sigma ^{\text {clust.}}_{\text {Cor.}}(v,\zc )= \mathcal {F}_{\text {clust.}}^{\text {Cor.}} \exp [-R(v,\zc )], 
   

   (5.42)

where, 
 \label {eq:FclustCorDef} \mathcal {F}_{\text {clust.}}^{\text {Cor.}}(v,\zc )=\frac {1}{2!}\int \mathcal {M}_{\mathrm {cor}}^2(k_\alpha ,k_\beta ) [\sd ^4k_\alpha ] [\sd ^4k_\beta ] \Theta _{\text {Clust.}}^{\text {Cor.}}. 

 









 (5.43)

We have not been able to compute these integrals analytically. However, it is possi-
ble to re-write them as an integral over the total transverse momentum of emissions 
α and β, which collects all the observable dependence and is straightforward to eval-
uate, multiplied by an integral which is computable numerically and is just a con-
stant. We can write the phase space as 

 \label {eq:NAPhaseSpace} [\sd ^4k_\alpha ] [\sd ^4k_\beta ]\delta (\vec {k_t}-\vec {k}_{t\alpha }-\vec {k}_{t\beta }) \sd k_t,      (5.44)

As we are working with rIRC safe observables we can immediately make the replace-
ment Vs({p}, kα, kβ) → V simp.

sc ({p}, kα + kβ) [69], [210], which, due to the ordering 
v < zcut can be further simplified to v

2
a+b z

2b
a+b

cut < k2t < z2cut.
The argument of both factors of the coupling can be approximated as k2t , the total 
transverse momentum of the two partons 10 similar to what is done for the corre-
lated emission correction in [196], [210]. Like the independent emission case, it is not 
important exactly what the argument of both powers of the coupling are, only that 
they scale with the observable as v

2
a+bQ2.

10Due to the separation in angle required for the clustering correction and fact that the parent gluon and both 
decay products must have z of order zcut, the relative transverse momenta of a and b must be of order the transverse 
momentum of the parent.
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Figure 5.4. Lund diagram showing the region of phase space responsible for the correlated 
clustering correction in blue, and in red the vetoed phase space responsible for the Sudakov factor. 
The black dots depict two correlated emissions, which, due to their separation in angle are clustered 

into different C/A branches, giving rise to the clustering correction, while the black square 
represents the parent whose branching gives rise to the correlated pair responsible for the clustering 

correction.

We then choose θα > θβ and provide a factor of two to account for the opposite or-
dering to write 

{eq:FclustExpanded} \mathcal {F}_{\text {clust.}}^{\text {Cor.}}(v,\zc )=\\\int _{Q^2v^{\frac {2}{a+b}}\zc ^{\frac {2b}{a+b}}}^{Q^2\zc ^2} \left (\frac {\alpha _s(k_t^2)}{2\pi }\right )^2 \times \bigg (\int \frac {1}{2!}\mathcal {\bar {M}}_{\mathrm {cor}}^2(k_\alpha ,k_\beta )k_t\delta (\vec {k_t}-\vec {k}_{t\alpha }-\vec {k}_{t\beta }) \Theta (\theta _\alpha -\theta _\beta )\\\Theta (\theta _{\alpha ,\beta }-\theta _\beta )\Theta (\zc -z_\alpha )\Theta (\zc -z_\beta ) \Theta (z_\alpha +z_\beta -\zc ) [\sd ^4k_\alpha ] [\sd ^4k_\beta ] \bigg ) \frac {\sd k_{t}^2}{k_{t}^2} \,
  {eq:FclustExpanded} \mathcal {F}_{\text {clust.}}^{\text {Cor.}}(v,\zc )=\\\int _{Q^2v^{\frac {2}{a+b}}\zc ^{\frac {2b}{a+b}}}^{Q^2\zc ^2} \left (\frac {\alpha _s(k_t^2)}{2\pi }\right )^2 \times \bigg (\int \frac {1}{2!}\mathcal {\bar {M}}_{\mathrm {cor}}^2(k_\alpha ,k_\beta )k_t\delta (\vec {k_t}-\vec {k}_{t\alpha }-\vec {k}_{t\beta }) \Theta (\theta _\alpha -\theta _\beta )\\\Theta (\theta _{\alpha ,\beta }-\theta _\beta )\Theta (\zc -z_\alpha )\Theta (\zc -z_\beta ) \Theta (z_\alpha +z_\beta -\zc ) [\sd ^4k_\alpha ] [\sd ^4k_\beta ] \bigg ) \frac {\sd k_{t}^2}{k_{t}^2} \,




























     

{eq:FclustExpanded} \mathcal {F}_{\text {clust.}}^{\text {Cor.}}(v,\zc )=\\\int _{Q^2v^{\frac {2}{a+b}}\zc ^{\frac {2b}{a+b}}}^{Q^2\zc ^2} \left (\frac {\alpha _s(k_t^2)}{2\pi }\right )^2 \times \bigg (\int \frac {1}{2!}\mathcal {\bar {M}}_{\mathrm {cor}}^2(k_\alpha ,k_\beta )k_t\delta (\vec {k_t}-\vec {k}_{t\alpha }-\vec {k}_{t\beta }) \Theta (\theta _\alpha -\theta _\beta )\\\Theta (\theta _{\alpha ,\beta }-\theta _\beta )\Theta (\zc -z_\alpha )\Theta (\zc -z_\beta ) \Theta (z_\alpha +z_\beta -\zc ) [\sd ^4k_\alpha ] [\sd ^4k_\beta ] \bigg ) \frac {\sd k_{t}^2}{k_{t}^2} \,         







where the bar on M2
cor(kα, kβ) indicates that we have pulled out the two factors of 

αs

2π
from the matrix element. Using the delta function in eq. (5.45) to integrate over 

θβ, the remaining integrals within [d4kα][d4kβ] can be re-scaled so that, other than 
the overall factor of dk2t

k2t
, there is no kt dependence in the integrals. Leaving aside the 

integral over k2t , we can carry out the rest of the integrals numerically in the limit of 
zcut → 0, to give: 

 \label {eq:NAclustering} \mathcal {F}^{\text {Cor.}}_{\text {clust.}}= (C_FT_Rn_f1.754+C_FC_A1.161) \int _{Q^2v^{\frac {2}{a+b}}\zc ^{\frac {2b}{a+b}}}^{Q^2\zc ^2} \left (\frac {\alpha _s(k_t^2)}{2\pi }\right )^2 \frac {\sd k_{t}^2}{k_{t}^2} \ . 
   






















 (5.46)

{eq:Corelated_Clust} \mathcal {F}^{\text {Cor.}}_{\text {clust.}}= \left (\frac {\alpha _s(Q^2)}{2\pi }\right )^2 (C_FT_Rn_f1.754+C_FC_A1.161) \\ \frac {\ln \left (\zc ^{\frac {2}{a+b}} v^{\frac {-2}{a+b}}\right )}{(1+\beta _0\alpha _s(Q^2)\ln \zc ^{\frac {2b}{a+b}} v^{\frac {2}{a+b}})(1+\beta _0\alpha _s(Q^2)\ln \zc ^2)} \ .



This is then simply evaluated to give: 

{eq:Corelated_Clust} \mathcal {F}^{\text {Cor.}}_{\text {clust.}}= \left (\frac {\alpha _s(Q^2)}{2\pi }\right )^2 (C_FT_Rn_f1.754+C_FC_A1.161) \\ \frac {\ln \left (\zc ^{\frac {2}{a+b}} v^{\frac {-2}{a+b}}\right )}{(1+\beta _0\alpha _s(Q^2)\ln \zc ^{\frac {2b}{a+b}} v^{\frac {2}{a+b}})(1+\beta _0\alpha _s(Q^2)\ln \zc ^2)} \ .











 

{eq:Corelated_Clust} \mathcal {F}^{\text {Cor.}}_{\text {clust.}}= \left (\frac {\alpha _s(Q^2)}{2\pi }\right )^2 (C_FT_Rn_f1.754+C_FC_A1.161) \\ \frac {\ln \left (\zc ^{\frac {2}{a+b}} v^{\frac {-2}{a+b}}\right )}{(1+\beta _0\alpha _s(Q^2)\ln \zc ^{\frac {2b}{a+b}} v^{\frac {2}{a+b}})(1+\beta _0\alpha _s(Q^2)\ln \zc ^2)} \ .











   







    


As for the independent emission clustering correction, the terms which contribute 
at NNLL accuracy are those proportional to ln(v

2
a+b ), with terms proportional to 

ln(zcut) being at least N3LL. We re-iterate that the it is only important that the ar-
gument of the coupling scales with the observable so as to produce the factor of ln

(
v

−2
a+b

)
in the denominator of eq. (5.47), and that the precise details of the argument do not 
matter at NNLL accuracy.
We have checked the leading O(α2

s) NNLL term in eq. (5.47) for the CFCA channel 
using Event2 for the jet mass, width, and Les Houches angularity, and found good 
agreement. The correlated clustering correction, and our resummed result as a whole, 
agrees with the collinear O(α2

s) calculation carried out for the jet mass in chapter 4
and is consistent with the SCET resummation of the groomed jet mass [47], up to 
NNLL accuracy.
Within NNLL accuracy it is sufficient to account for a single correlated pair of emis-
sions as described above, as two correlated pairs would give a correction proportional 
to α4

s ln2(ρ) an N3LL correction. However as the groomer can remove any number of 
correlated pairs of emissions without being stopped, it is envisaged that this contri-
bution could be exponentiated to correctly capture a set of corrections beyond NNLL 
accuracy.

5.5 Phenomenology

Though the main focus of this work has been to compute the resummation of next 
to leading logarithms in the regime where v � zcut � 1, this is not the only regime 
relevant for phenomenology. Firstly, one typically sees zcut ∼ 0.1 in experimental 
analyses. Terms of order αn

s z
n
cut lnn(v) could reasonably be expected to be of a simi-

lar size to the NNLL terms which we resum. It is therefore desirable to resum these 
terms, as was done for the jet mass in ref.[44]. We therefore show in section 5.5.1
how our results can be modified so that such terms are resummed at the NLL level. 
Although an interesting problem, the resummation of NNLL finite zcut terms (i.e. 
O(αn

s zcut lnn−1(v))) is beyond the scope of this work. For typical values of zcut ∼ 0.1, 
such terms are, anyway, likely to be small compared to the NNLL terms which sur-
vive in the small zcut limit, but could be comparable in size to N3LL correction.
Secondly it is desirable to present results that are valid as v approaches zcut, which 
can be achieved by matching to fixed order calculations. We define a fixed-order match-
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ing prescription in section 5.5.2 before studying the impact of including these terms 
for three commonly studied observables in section 5.5.3.

5.5.1 Finite zcut

We will first deal with the resummation of terms which are leading logarithmic but 
which vanish with zcut, as this will inform our matching procedure. The leading log 
resummation including these terms was carried out, for the jet mass distribution, in 
ref. [44]. Dropping the arguments of the radiators for compactness, their result can 
be expressed as 

\frac {1}{\sigma _0}\frac {\sd \sigma }{\sd \ln \left (1/\rho \right )}=\begin {pmatrix} R^{'\mathrm {NLL}}_q & R^{'\mathrm {NLL}}_g \end {pmatrix}\\\exp \begin {pmatrix} -R^{\mathrm {NLL}}_{q}-R_{q\ \zc }-R_{q\to g} & R_{g\to q}\\ R_{q\to g} & -R^{\mathrm {NLL}}_{g}-R_{g\ \zc }-R_{g\to q}\end {pmatrix} \begin {pmatrix} \sigma _q\\ \sigma _g\end {pmatrix}\ ,




 












\frac {1}{\sigma _0}\frac {\sd \sigma }{\sd \ln \left (1/\rho \right )}=\begin {pmatrix} R^{'\mathrm {NLL}}_q & R^{'\mathrm {NLL}}_g \end {pmatrix}\\\exp \begin {pmatrix} -R^{\mathrm {NLL}}_{q}-R_{q\ \zc }-R_{q\to g} & R_{g\to q}\\ R_{q\to g} & -R^{\mathrm {NLL}}_{g}-R_{g\ \zc }-R_{g\to q}\end {pmatrix} \begin {pmatrix} \sigma _q\\ \sigma _g\end {pmatrix}\ ,




   


  









where σq and σg are the Born cross sections for quark and gluon initiated jets respec-
tively, and compared to ref. [44] we have expressed the quark and gluon radiators as 
the small zcut limit of the radiator RNLL

q/g , the NLL accurate radiator, plus the func-
tions, Rq/g zcut which vanish with zcut. This allows us to easily replace the parts of 
the radiators which survive in the small zcut limit with the NNLL radiators given in 
section 5.3. For a general observable v, the other components of the radiators are de-
fined as follows: 

  \begin {split} R_{q \ \zc }(v,\zc )=& -\bigg (\int _{1-\zc }^1 P_{gq}(z)\sd z\int _0^{Q^2}\frac {\alpha _s(k_t^2)}{\pi }\frac {\sd k_t^2}{k_t^2}+ \\\int _0^{\zc }(P_{gq}(z)-&\frac {2}{z})\sd z \int _0^{Q^2}\frac {\alpha _s(k_t^2)}{\pi }\frac {\sd k_t^2}{k_t^2}\bigg )\Theta (V_{\mathrm {sc}}(z,k_t)-v) \\ R_{g \ \zc }(v,\zc )=& \bigg (\int _{1-\zc }^1 \frac {2}{z}\sd z\int _0^{Q^2}\frac {\alpha _s(k_t^2)}{\pi }\frac {\sd k_t^2}{k_t^2}+\\ \int _0^{\zc }(P_{gg}(z)-&\frac {1}{z}-\frac {1}{1-z}+n_f P_{qg}(z))\sd z \int _0^{Q^2}\frac {\alpha _s(k_t^2)}{\pi }\frac {\sd k_t^2}{k_t^2}\bigg ) \Theta (V_{\mathrm {sc}}(z,k_t)-v) \\ R_{q\to g}(v,\zc )=&\int _{1-\zc }^1P_{gq}(z)\sd z \int _0^{Q^2}\frac {\alpha _s(k_t^2)}{\pi }\frac {\sd k_t^2}{k_t^2}\Theta (V_{\mathrm {sc}}(z,k_t)-v) \\ R_{g\to q}(v,\zc )=&\int _{1-\zc }^1 n_f P_{qg}(z)\sd z\int _0^{Q^2}\frac {\alpha _s(k_t^2)}{\pi }\frac {\sd k_t^2}{k_t^2}\Theta (V_{\mathrm {sc}}(z,k_t)-v) \end {split}   


















  \begin {split} R_{q \ \zc }(v,\zc )=& -\bigg (\int _{1-\zc }^1 P_{gq}(z)\sd z\int _0^{Q^2}\frac {\alpha _s(k_t^2)}{\pi }\frac {\sd k_t^2}{k_t^2}+ \\\int _0^{\zc }(P_{gq}(z)-&\frac {2}{z})\sd z \int _0^{Q^2}\frac {\alpha _s(k_t^2)}{\pi }\frac {\sd k_t^2}{k_t^2}\bigg )\Theta (V_{\mathrm {sc}}(z,k_t)-v) \\ R_{g \ \zc }(v,\zc )=& \bigg (\int _{1-\zc }^1 \frac {2}{z}\sd z\int _0^{Q^2}\frac {\alpha _s(k_t^2)}{\pi }\frac {\sd k_t^2}{k_t^2}+\\ \int _0^{\zc }(P_{gg}(z)-&\frac {1}{z}-\frac {1}{1-z}+n_f P_{qg}(z))\sd z \int _0^{Q^2}\frac {\alpha _s(k_t^2)}{\pi }\frac {\sd k_t^2}{k_t^2}\bigg ) \Theta (V_{\mathrm {sc}}(z,k_t)-v) \\ R_{q\to g}(v,\zc )=&\int _{1-\zc }^1P_{gq}(z)\sd z \int _0^{Q^2}\frac {\alpha _s(k_t^2)}{\pi }\frac {\sd k_t^2}{k_t^2}\Theta (V_{\mathrm {sc}}(z,k_t)-v) \\ R_{g\to q}(v,\zc )=&\int _{1-\zc }^1 n_f P_{qg}(z)\sd z\int _0^{Q^2}\frac {\alpha _s(k_t^2)}{\pi }\frac {\sd k_t^2}{k_t^2}\Theta (V_{\mathrm {sc}}(z,k_t)-v) \end {split} 























 

  \begin {split} R_{q \ \zc }(v,\zc )=& -\bigg (\int _{1-\zc }^1 P_{gq}(z)\sd z\int _0^{Q^2}\frac {\alpha _s(k_t^2)}{\pi }\frac {\sd k_t^2}{k_t^2}+ \\\int _0^{\zc }(P_{gq}(z)-&\frac {2}{z})\sd z \int _0^{Q^2}\frac {\alpha _s(k_t^2)}{\pi }\frac {\sd k_t^2}{k_t^2}\bigg )\Theta (V_{\mathrm {sc}}(z,k_t)-v) \\ R_{g \ \zc }(v,\zc )=& \bigg (\int _{1-\zc }^1 \frac {2}{z}\sd z\int _0^{Q^2}\frac {\alpha _s(k_t^2)}{\pi }\frac {\sd k_t^2}{k_t^2}+\\ \int _0^{\zc }(P_{gg}(z)-&\frac {1}{z}-\frac {1}{1-z}+n_f P_{qg}(z))\sd z \int _0^{Q^2}\frac {\alpha _s(k_t^2)}{\pi }\frac {\sd k_t^2}{k_t^2}\bigg ) \Theta (V_{\mathrm {sc}}(z,k_t)-v) \\ R_{q\to g}(v,\zc )=&\int _{1-\zc }^1P_{gq}(z)\sd z \int _0^{Q^2}\frac {\alpha _s(k_t^2)}{\pi }\frac {\sd k_t^2}{k_t^2}\Theta (V_{\mathrm {sc}}(z,k_t)-v) \\ R_{g\to q}(v,\zc )=&\int _{1-\zc }^1 n_f P_{qg}(z)\sd z\int _0^{Q^2}\frac {\alpha _s(k_t^2)}{\pi }\frac {\sd k_t^2}{k_t^2}\Theta (V_{\mathrm {sc}}(z,k_t)-v) \end {split}   






















  \begin {split} R_{q \ \zc }(v,\zc )=& -\bigg (\int _{1-\zc }^1 P_{gq}(z)\sd z\int _0^{Q^2}\frac {\alpha _s(k_t^2)}{\pi }\frac {\sd k_t^2}{k_t^2}+ \\\int _0^{\zc }(P_{gq}(z)-&\frac {2}{z})\sd z \int _0^{Q^2}\frac {\alpha _s(k_t^2)}{\pi }\frac {\sd k_t^2}{k_t^2}\bigg )\Theta (V_{\mathrm {sc}}(z,k_t)-v) \\ R_{g \ \zc }(v,\zc )=& \bigg (\int _{1-\zc }^1 \frac {2}{z}\sd z\int _0^{Q^2}\frac {\alpha _s(k_t^2)}{\pi }\frac {\sd k_t^2}{k_t^2}+\\ \int _0^{\zc }(P_{gg}(z)-&\frac {1}{z}-\frac {1}{1-z}+n_f P_{qg}(z))\sd z \int _0^{Q^2}\frac {\alpha _s(k_t^2)}{\pi }\frac {\sd k_t^2}{k_t^2}\bigg ) \Theta (V_{\mathrm {sc}}(z,k_t)-v) \\ R_{q\to g}(v,\zc )=&\int _{1-\zc }^1P_{gq}(z)\sd z \int _0^{Q^2}\frac {\alpha _s(k_t^2)}{\pi }\frac {\sd k_t^2}{k_t^2}\Theta (V_{\mathrm {sc}}(z,k_t)-v) \\ R_{g\to q}(v,\zc )=&\int _{1-\zc }^1 n_f P_{qg}(z)\sd z\int _0^{Q^2}\frac {\alpha _s(k_t^2)}{\pi }\frac {\sd k_t^2}{k_t^2}\Theta (V_{\mathrm {sc}}(z,k_t)-v) \end {split} 
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The definitions of the splitting functions were given in section 2.4.3.
To complete the matching of our NNLL result to the NLL finite zcut result we must 
also include the NNLL corrections which are not exponentiated. As we do not at-
tempt to capture finite zcut NNLL terms it is sufficient to make sure that however 
these are included, we reproduce eq. (5.35) on taking the small zcut limit. For our 
purposes σg = 0, and we can normalize our distributions to the Born cross section for 
the production of a qq̄ pair and finally write the NNLL result including NLL finite 

\frac {1}{\sigma _0}\Sigma (v)=\begin {pmatrix} 1+C_{1}^q(v)+\mathcal {F}_{\mathrm {clust.}} &, 1 \end {pmatrix} \\ \exp \begin {pmatrix} -R_{q}-R_{q\ \zc }-R_{q\to g} & R_{g\to q}\\ R_{q\to g} & -R_{g}-R_{g\ \zc }-R_{g\to q}\end {pmatrix}\begin {pmatrix} 1\\ 0\end {pmatrix}\ ,



zcut effects as: 

\frac {1}{\sigma _0}\Sigma (v)=\begin {pmatrix} 1+C_{1}^q(v)+\mathcal {F}_{\mathrm {clust.}} &, 1 \end {pmatrix} \\ \exp \begin {pmatrix} -R_{q}-R_{q\ \zc }-R_{q\to g} & R_{g\to q}\\ R_{q\to g} & -R_{g}-R_{g\ \zc }-R_{g\to q}\end {pmatrix}\begin {pmatrix} 1\\ 0\end {pmatrix}\ ,





 

   


\frac {1}{\sigma _0}\Sigma (v)=\begin {pmatrix} 1+C_{1}^q(v)+\mathcal {F}_{\mathrm {clust.}} &, 1 \end {pmatrix} \\ \exp \begin {pmatrix} -R_{q}-R_{q\ \zc }-R_{q\to g} & R_{g\to q}\\ R_{q\to g} & -R_{g}-R_{g\ \zc }-R_{g\to q}\end {pmatrix}\begin {pmatrix} 1\\ 0\end {pmatrix}\ ,


   

   









where Fclust. = F clust.
Ind. +F clust.

Cor. . In the small zcut approximation the off diagonal entries 
in the exponential vanish and we return to our NNLL result.

5.5.2 Matching

We now turn to matching our resummed calculation to fixed-order, which we do at 
O(α2

s). Although our NNLL calculation captures all logarithms of the observable at 
O(α2

s) which are not suppressed by powers of zcut, there still exist terms at O(α2
s)

which are O(zcut) but diverge as v → 0. For this reason we choose to use a mul-
tiplicative matching procedure similar to that employed in [46]. This ensures that 
the O(zcut) logarithmically divergent terms are suppressed by the Sudakov factor as 
v → 0, whilst correctly capturing both the NNLL resummed distribution and the full 
fixed order distribution at NLO.
We introduce the notation Σ(1)

NNLL(v) for the O(αs) part of the NNLL resummed dis-
tribution including the NLL finite zcut effects, with Σ(2)

NNLL(v) representing the α2
s

terms. The nth order contribution to the distribution is written as Σ(n)(v). The matched 
cumulative distribution is then given by 

\Sigma (v)=\Sigma _{\mathrm {NNLL}}\big [1+ (\Sigma ^{(1)}(v)-\Sigma _{\mathrm {NNLL}}^{(1)}(v)) + \\ (\Sigma ^{(2)}(v)-\Sigma _{\mathrm {NNLL}}^{(2)}(v)) - \Sigma _{\mathrm {NNLL}}^{(1)}(v)(\Sigma ^{(1)}(v)-\Sigma _{\mathrm {NNLL}}^{(1)}(v)) \big ]. 

  




\Sigma (v)=\Sigma _{\mathrm {NNLL}}\big [1+ (\Sigma ^{(1)}(v)-\Sigma _{\mathrm {NNLL}}^{(1)}(v)) + \\ (\Sigma ^{(2)}(v)-\Sigma _{\mathrm {NNLL}}^{(2)}(v)) - \Sigma _{\mathrm {NNLL}}^{(1)}(v)(\Sigma ^{(1)}(v)-\Sigma _{\mathrm {NNLL}}^{(1)}(v)) \big ].













The first term above is just the NNLL distribution. The term, (Σ(1)(v) − Σ
(1)
NNLL(v)), 

is the O(αs) part of the distribution with the terms already captured by the NNLL 
distribution subtracted. This term is multiplied by the full NNLL distribution which 
generates spurious terms at O(α2

s), which are removed by the final term in the above 
equation, Σ(1)

NNLL(v)(Σ
(1)(v)−Σ

(1)
NNLL(v)). The term, (Σ(2)(v)−Σ

(2)
NNLL(v)) is the O(α2

s)

part of the distribution with the terms already captured by the NNLL distribution 
subtracted. There are no spurious terms within our accuracy generated by the inter-
play of this term with ΣNNLL.

We perform the matching for the process e+e− → qq̄ for three jet shapes: the heavy 
hemisphere mass, the width (λ11), and the Les Houches angularity(λ10.5). The fixed-
order results are calculated, for zcut = 0.1, using Event2. Each event was partitioned 
into two hemispheres by a plane perpendicular to the C/A jet axis. mMDT is then 
run on each hemisphere and the jet shape calculated on the groomed hemispheres. 
The larger value of the observable from the two hemispheres is then binned.
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Figure 5.5. Matched NLL predictions alongside the LL result, both with finite zcut effects showing 
the central values and uncertainty bands.

5.5.3 Results

Having defined the matching procedures for incorporating both the O(zcut) effects 
at NLL and the full NLO distribution, we now investigate the impact of including 
these effects and the size of the uncertainties, which we derive from resummation and 
renormalisation scale variation. We investigate three observables, the jet mass, the 
width (λ11) and the Les Houches angularity (λ10.5), the later two with respect to the 
WTA axis [27]. The functions required for the NNLL resummation of these observ-
ables are given in sections 5.3 and 5.4.
Figure 5.5 shows our matched results for the three observables alongside the next to 
leading log with finite zcut results for a typical value of zcut = 0.1 so as to show the 
size of the NNLL correction.
For the jet mass and width, the uncertainty bands are found by simultaneously vary-
ing the resummation and renormalisation scales by factors of two in such a way as to 
not introduce any spurious terms within the stated accuracy, similar to ref. [26]. The 
renormalisation scale enters through the argument of the coupling, and is included 
by making the replacement 

  \alpha (Q)\to \alpha '(xQ)=\alpha (xQ)+\alpha ^2(Q)\beta _0 \ln (x)         (5.52)

114



and varying x between 0.5 and 2. This preserves the NNLL result whilst generating 
our renormalisation scale variation. The resummation scale uncertainty is found for 
the small zcut NNLL calculation by writing the radiator as R(v, zcut) = RNLL(v, zcut)+

Rremainder(xv, zcut), where again, x is varied between 0.5 and 2. Here RNLL(v, zcut)

contains purely the next to leading logarithms in the small zcut limit, and nothing 
else, and Rremainder(xv, zcut) = R(v, zcut) − RNLL(v, zcut). To obtain the resumma-
tion scale uncertainty for the NLL accurate results11 shown in figure 5.5 we simply 
replace v → xv which introduces terms due to scale variation at NNLL.
The Les Houches angularity becomes sensitive to very small transverse momentum 
emissions much faster than the other two observables. It was therefore necessary to 
introduce a freezing scale for the coupling, which we set at 1GeV, to avoid divergences 
due to the Landau pole. The uncertainty band shown in figure 5.5 for this observable 
therefore incorporates variation in the freezing scale by factors of two as well as the 
uncertainties previously discussed.
Figure 5.6 shows results for the jet mass for zcut = 0.1, 0.2, 0.3 at several levels of 
accuracy along with the ratio of these results to our NNLL result matched to NLO 
and the O(zcut) NLL calculation.

From figures 5.5 and 5.6 we see that the inclusion of NNLL terms is important both 
for the noticeable shift in the central value, but also for the large reduction in the 
uncertainty it provides. We also see from figure 5.6 that, even at moderate values 
of ln(v), resummation of NLL finite zcut terms is at least as important as matching 
to NLO, with the importance of finite zcut terms growing with ln(v). We also see 
that as zcut grows the resummation of finite zcut effects even overtakes the size of the 
NNLL small zcut effects. For values of zcut ' 0.1 or larger, such as might be used 
for phenomenology, finite zcut effects at NLL accuracy should therefore be retained, 
if one is keeping similarly sized NNLL terms, which are not suppressed by powers of 
zcut. One caveat to this is that, if fixed order matching is carried out, the finite zcut

effects will automatically be included up to the order which the matching is carried 
out to, which may decrease the importance of re-summing finite zcut effects. This 
may explain the small effect of finite zcut resummation observed in previous studies 
[44].

5.6 Conclusions

In this chapter the distribution of additive rIRC safe observables, computed on jets 
groomed with mMDT, in the context of e+e− collisions, was calculated at NNLL ac-
curacy in the small zcut limit. This result agrees up to NNLL accuracy with a pre-
vious resummation of the groomed jet mass carried out in SCET [47], [190], which 
provides a powerful cross check between the two results 12. However, there are dif-

11This includes the finite zcut corrections which we match our NNLL result to.
12Our result can be compared to the SCET result by the formulae presented in appendix F of ref. [47]. Our Su-

dakov factor is captured by the sum of the KF factors in the SCET resummation. These KF factors also contain the 
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Figure 5.6. Predictions for the cumulative jet mass distribution at various levels of accuracy for 
three different values of zcut

ferences between the two calculations at N3LL. This is due to the exponentiation of 
terms in the SCET calculation, which we account for in our independent clustering 
correction, and argued in section 5.4.1 should not be exponentiated. We believe that 
this will introduce spurious terms at N3LL accuracy in the SCET resummation [47], 
[48], [190].
Having presented our NNLL result in the small zcut limit, we then modified our re-
sult so as to include NLL terms which vanish with zcut , which were previously re-
terms accounted for by our clustering corrections. The combination of the hard, soft, jet, and collinear-soft functions 
of ref. [47] captures the terms which are referred to as C1 and β0 X in this work. Other terms in eq. F.15 of [47] are 
either N3LL for the heavy hemisphere mass, or are a consequence of the SCET result being presented as a differential 
distribution.
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summed in [21], [44]. This was done because NLL terms suppressed by a power of 
zcut could reasonably be expected to be numerically similar in size to the NNLL terms 
we resummed in the small zcut limit, for values of zcut ∼ 0.1. We then performed 
fixed order matching to O(α2

s) for the heavy jet mass, width, and Les Houches angu-
larity. Our results for these three observables are shown in section 5.5.3 at different 
levels of accuracy to asses the impact of different effects. From these results we saw 
that, for values of zcut ≥ 0.1, the NLL finite zcut effects are indeed of a similar size 
to the NNLL terms kept in the small zcut limit, and so, for phenomenology, should 
be retained if one is keeping the NNLL terms. Although we noted that if matching 
to NLO fixed order calculations, the effect of resumming finite zcut may well be less 
noticeable.
One continuation of this work would be to extend the resummation presented here 
to gluon jets. Together with the work presented here, this could then be used to pro-
duce NNLL accurate predictions, matched with NLL finite zcut effects and NLO re-
sults, suitable for comparison with hadron collider measurements, for any groomed, 
additive, rIRC safe observable.
Though this work has only considered additive observables, we believe that it should 
be possible to extend it, using similar techniques, to non-additive observables such 
as the broadening [229]. It may also be possible to compute NNLL resummations 
of groomed observables in an automated way through an extension of the ARES for-
malism. This is prompted by the notion that the simplified groomer can be treated 
as if it were rIRC safe, a requirement for resummation within ARES. In fact, many 
of the NNLL terms which are resummed by σsimp are already accounted for in ARES. 
How, or even whether the clustering contribution, which is where the rIRC un-safety 
of groomed observables is manifest, could be included in such a framework is as yet 
unclear.
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Chapter 6

Understanding boosted top tagging 

with prong finding and 

N-subjettiness

This chapter covers work investigating top tagging from an analytical QCD perspec-
tive which was carried out in collaboration with my supervisor. It is published in [5], 
from which much of the text and figures are taken.

6.1 Introduction

Jet substructure is now firmly established as a tool for tagging boosted heavy parti-
cles. As was discussed in chapter 3, questions were initially raised about the robust-
ness of these techniques, resulting in a large body of work aiming to understand jet 
substructure techniques, both from first principles calculations and by using event 
generators to asses the impact of hadronisation and UE. In some cases weaknesses 
in these techniques were found and improved methods proposed to eliminate or mit-
igate problems [21], [25]. This program of work has been particularly successful in 
the case of taggers designed to identify two prong structures such as boosted W,Z 
and Higgs bosons [21], [22], [26], [28]–[31], [127], [230], however, the understanding of 
methods designed to tag three prong structures, such as boosted top quarks, is less 
complete. Even at the level of the background distribution, three pronged taggers 
are harder to study analytically as they typically require one to consider an extra 
emission compared to two-pronged tagger, while the signal distribution (top quarks) 
is more complicated due to the top quark carrying a colour charge, unlike the elec-
troweak bosons relevant for two-pronged jets.
More recently, machine learning algorithms have proven to be extremely powerful 
tools for tagging boosted objects. Although the performance obtainable from such 
methods appears to be excellent, there exists the same questions surrounding their 
robustness as for more traditional jet substructure taggers, as discussed in section 
3.4.3. One study that was discussed there [34] highlighted the trade-off between per-
formance and resilience to non-perturbative effects with the Lund net tagger. Fur-
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thermore, recent work has identified flaws in the structure of existing dipole shower 
algorithms [95], [96]. This raises further questions around the reliability of machine 
learning algorithms owing to the large majority being trained on mock data samples 
simulated using these parton showers. This further reinforces the need to understand 
any tagging method as fully as possible from first principles.
With this motivation in mind we build on the work of ref.[25], which analytically 
studied methods to identify a three prong structure within a jet, to investigate the 
combination of grooming, prong finding, and cutting on a jet shape ratio as a method 
for tagging boosted top quarks. These are the three key steps commonly taken in a 
realistic top tagging procedure, though of course each step can vary from analysis 
to analysis. In this work we use soft drop [23] as the grooming step, an adaption of 
the Ym-Splitter algorithm for top tagging [25], which is described in section 3.4.1 as 
the prong finding step, and the N-subjettiness ratio [14], [137], τβ=2

32 , as our jet shape. 
For the N-subjettiness variables we use the gen-kt (p = 1

2
) axes (henceforth referred 

to as the gen-kt axes) described in section 3.4. This combination of techniques was 
chosen because, as well as being a powerful top tagging method, it is more amenable 
to resummation than some similar methods. The definitions of these procedures was 
given in sections 3.3, 3.4.1 and 3.4.2 respectively. Other choices of prong finding al-
gorithm include the CMS top tagger [16], [133], [231], the Johns Hopkins top tagger 
[232] and the HEP top tagger [233], whilst cuts on Energy Correlation Function ra-
tios [234] are a widely used alternative to N-subjettiness ratios. Other top tagging 
methods include shower deconstruction [124] and template tagging [235].
In section 6.2 we perform a Monte Carlo study to investigate the performance of var-
ious combinations of cutting on τ32, grooming with mMDT and soft drop with β = 2, 
and prong finding with Ym-Splitter , as well as how these procedures are impacted 
by hadronisation effects, ISR and UE. Having established that using all three steps 
together maximises both the performance and resilience to non-perturbative effects 
we go on to calculate the tagged background fraction up to modified LL accuracy in 
section 6.3. This represents the first time that a realistic top tagging method, such 
as might be used in an experimental analysis, has been understood analytically. We 
then carry out similar calculations for the signal jets, starting with a calculation of 
the tagged fraction of events within a mass window. We then incorporate the effect 
of applying the Ym-Splitter algorithm where we go beyond the analysis carried out 
in [25] to include configurations where a gluon is identified as a prong by Ym-Splitter 
and find improved agreement with Pythia as a result. Finally we include the cut on 
τ32 in our calculations where we find interesting interplay between the cut on τ32 and 
the mass cut, which is investigated further in 6.5. Our conclusions are presented in 
section 6.6.
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6.2 Monte-Carlo study

In this section we investigate the performance of various tagging procedures based 
around the N-subjettiness variable τ32 as well as how they are impacted by hadro-
nisation, ISR, and MPI. The tagging procedures considered all have the restriction 
that the jet mass is between 160GeV and 225GeV, corresponding to a window around 
the top mass, and are studied as a function of the cut on τ32. After examining N-
subjettiness cuts with and without pre-grooming we combine these cuts with the 
Ym-Splitter method which we again investigate with and without pre-grooming. Two 
pre-grooming options are considered, SD (β = 2) and mMDT (equivalent to SD with 
β = 0).

We start by generating 1 million tt and qq events with Pythia 1. ISR, MPI and hadro-
nisation were initially deactivated, and a generation cut of pt > 1600 GeV was ap-
plied. Jets were clustered with the Cambridge/Aachen algorithm with R = 1 and 
pt,min = 2TeV using Fastjet 3 [109], as was the case for the studies in ref. [25]. Where 
jets are groomed we use zcut = 0.05, τ32 is calculated using the N-subjettiness Fast-
Jet contrib [137], and where Ym-Splitter is used we choose mmin = 50 GeV and 
ζ = 0.05. This information is then used to construct the tagged fraction of events 
and the signal to square-root–background as a function of a cut on τ32. The same 
procedure is used both with only hadronisation, and then hadronisation, ISR and 
MPI activated to assess their impact.
To discuss the features that emerge from our Monte Carlo studies let us first exam-
ine the top row of Fig. 6.1, i.e. Figs. 6.1a and 6.1b, which show the signal signifi-
cance as a function of the τ32 cut, τ , without any grooming and without Ym-Splitter 
on the left and with Ym-Splitter on the right. It is clear that in the absence of a groom-
ing step that ISR and MPI significantly damage performance in each case, although 
the inclusion of Ym-Splitter results in a higher signal significance after all effects are 
considered.

Next we come to the plots involving the application of grooming i.e. Figs. 6.1c and 
6.1d for SD (β = 2) pre-grooming and Figs. 6.1e and 6.1f in the bottom row for the 
mMDT. From these one notes that grooming, especially with mMDT, is an effective 
method to significantly mitigate ISR and MPI. When combining grooming with Ym-
Splitter we observe that both hadronisation and ISR+MPI are significantly reduced, 
resulting in high performance with an optimal value of τ ∼ 0.2 emerging for mMDT 
pre-grooming and τ ∼ 0.3 for SD (β = 2). The best performance, i.e. highest signal 
significance, comes with mMDT pre-grooming and Ym-Splitter applied in addition to 
the τ cut, as shown in Fig. 6.1f. This combination is also more resilient to ISR and 
all non-perturbative effects at the same time. In contrast, although pre-grooming jets 
and cutting on τ32 without Ym-Splitter (see figure 6.1e) gives good performance at 

1Light quark jets are chosen as the background here as they are the main background to top jets, although we 
have studied the impact of including gluon jets and found that in the Pt range under consideration they do not signif-
icantly modify the distributions presented.
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(b) Cut on τ32 after application of 
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(c) Cut on τ32 after application of Soft Drop 
(β = 2).
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(d) Cut on τ32 after application of 
Ym-Splitter and Soft Drop (β = 2).
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(e) Cut on τ32 after application of mMDT.
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(f) Cut on τ32 after application of 
Ym-Splitter and mMDT.

Figure 6.1. Plots showing the signal to square-root background of the six variants of the tagging 
procedure at parton level, hadron level, and with ISR and MPI activated at hadron level.

hadron level, the discrepancy with the parton level result indicates that the perfor-
mance of this procedure cannot necessarily be understood from perturbative QCD 
arguments alone and may be more susceptible to mis-modelling of non-perturbative 
effects in parton showers 2.

2A possible reason for this might be that a pure τ32 cut is not IRC safe and is instead only Sudakov safe [126], 
[135] while the application of Ym-Splitter prior to the subjettiness cut prevents τ2 from vanishing, resulting in an IRC 
safe quantity.
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In summary, applying Ym-Splitter to pre-groomed jets with cuts on τ32 and the jet 
mass is a high performing method for tagging hadronically decaying high-pT top quarks.3

The performance is also well described by parton level predictions and is therefore 
reasonably robust against effects which are less well theoretically understood in this 
context. These observations provide some of the main motivation for detailed the-
oretical studies using perturbative QCD, which will be the subject of the next two 
sections.

6.3 Ym-Splitter splitter with a τ32 cut : QCD jets

We start by examining the impact of a τ32 cut on QCD jets after applying Ym-Splitter 
. Analytical studies for Ym-Splitter as applied to top-tagging, with and without pre-
grooming, have already been carried out in ref. [25]. These studies derived resummed 
results for the jet mass distribution, and consequently, the efficiency for QCD jets 
tagged with Ym-Splitter . Resummation is required in order to address the multi-
scale nature of the problem. Crucially the highly boosted limit implies that the in-
variant jet mass m2 � p2T , with m2 ∼ m2

t and pT values in the TeV range, which 
leads to large logarithms in ρ = m2/R2p2T . A good description of the jet-mass dis-
tribution then requires resummation of the logarithms in ρ. Additionally for Ym-
Splitter we have ρmin = m2

min/p
2
TR

2 � 1 and a further small scale ζpT , the minimum 
energy of an emission that passes the ζ condition, with ζ � 1. Large logarithms are 
then expected and do arise in ρ, ρmin, ζ and in ρmin/ρ. In ref. [25] a modified leading 
logarithmic resummation was performed which included all double-logarithmic terms 
and a subset of single-logarithmic terms such as those arising from hard-collinear 
emissions. The logarithms that are most crucial to resum are those in the smallest 
parameters ρ and ρmin. Typical values of ζ ∼ 0.05 and ρmin/ρ ∼ m2

W/m2
top are larger 

and hence we only aim to retain logarithms in these parameters at leading double-
logarithmic accuracy.

Here, relative to previous work [25] we shall additionally include the τ32 cut, con-
sidering the possibility that τ32 is not small. In doing so we shall follow closely the 
treatment of ref. [26] for resummation of jet mass with a τ21 cut.

6.3.1 Leading-order result

We start with the leading-order result, computed in the soft and collinear approx-
imation, which yields the leading logarithmic terms. For Ym-Splitter this starts at 
order α2

s for QCD jets, since one requires at least two emissions within the jet (i.e. 
at least three partons) in order to be accepted by Ym-Splitter . Since for three par-

3We find that, for comparable signal significance, these methods appear, in the high pT region, to outperform the 
dense neural net and boosted decision tree used by ATLAS in [20], although it should be noted that the two stud-
ies are perhaps not equivalent, as no attempt was made here to examine detector effects, which were included in the 
ATLAS study.
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tons τ3 vanishes, a cut requiring τ32 < τ is trivially satisfied. Therefore the leading-
order result is unchanged from the pure Ym-Splitter case of ref. [25]. For the case of 
a quark initiated jet and in the abelian C2

F channel it is given by 4

{eq:LLbasic} \frac {1}{\sigma }\left (\frac {d\sigma }{d\rho }\right )^{\mathrm {LO, soft-collinear}} = \bar {\alpha }^2 \int \frac {dz_1}{z_1} \frac {dz_2}{z_2} \frac {d\theta _1^2}{\theta _1^2} \frac {d\theta _2^2}{\theta _2^2} \times \Theta (\theta _2^2<\theta _1^2<1)\times \\ \delta (\rho -\text {max}(z_1 \theta _1^2, z_2 \theta _2^2)) \Theta (z_1>\zeta )\,\Theta (z_2>\zeta )\, \Theta ( \text {min}(z_2 \theta _2^2,z_1z_2\theta _1^2) > \rho _{\mathrm {min}} ),

























   

{eq:LLbasic} \frac {1}{\sigma }\left (\frac {d\sigma }{d\rho }\right )^{\mathrm {LO, soft-collinear}} = \bar {\alpha }^2 \int \frac {dz_1}{z_1} \frac {dz_2}{z_2} \frac {d\theta _1^2}{\theta _1^2} \frac {d\theta _2^2}{\theta _2^2} \times \Theta (\theta _2^2<\theta _1^2<1)\times \\ \delta (\rho -\text {max}(z_1 \theta _1^2, z_2 \theta _2^2)) \Theta (z_1>\zeta )\,\Theta (z_2>\zeta )\, \Theta ( \text {min}(z_2 \theta _2^2,z_1z_2\theta _1^2) > \rho _{\mathrm {min}} ),         

where we defined ᾱ = CFαs

π
, taking for definiteness the case of a quark initiated jet. 

In deriving the above result we have taken a configuration which is strongly-ordered 
in angle with θ2 � θ1, made a leading logarithmic approximation that the jet mass is 
dominated by the emission that makes the larger contribution, and imposed the tag-
ger conditions by requiring both emissions to pass the ζ and implemented the ρmin

condition in the strongly-ordered limit where θ12 ∼ θ1.

We then obtain: 

{eq:cmsll} \frac {\rho }{\sigma }\left (\frac {d\sigma }{d\rho }\right )^{\mathrm {LO,soft-collinear}} & \overset {\frac {\rho _\text {min}}{\rho }<\zeta }{=} \bar {\alpha }^2 \ln ^2 \frac {1}{\zeta } \ln \frac {\rho }{\rhomin },\\ & \overset {\frac {\rho _\text {min}}{\rho }>\zeta }{=} \bar {\alpha }^2 \ln ^2\frac {\rho }{\rhomin } \left (\frac {3}{2}\ln \frac {1}{\zeta } -\frac {1}{2} \ln \frac {\rho }{\rhomin }\right ).\nonumber
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A similar result is obtained for the CFCA colour factor while in the CFTRnf chan-
nel the result is one logarithm down due to the lack of a soft enhancement in the pgq
splitting function. For future convenience we note that the leading-order result can 
also be expressed in terms of the highest-mass emission ρa and the next-highest–mass 
emission ρb. Written in these terms we have 

{eq:LLbasicAlt} \frac {1}{\sigma }\left (\frac {d\sigma }{d\rho }\right )^{\mathrm {LO, soft-collinear}} = \bar {\alpha }^2 \int \frac {dz_a}{z_a} \frac {dz_b}{z_b} \frac {d\rho _a}{\rho _a} \frac {d\rho _b}{\rho _b} \, \delta (\rho -\rho _a) \Theta \left (\rho _a>\rho _b\right )\times \\\Theta (z_a>\zeta )\,\Theta (z_b>\zeta ) \Theta ( \text {min}\left \{\rho _b, z_a z_b \max (\theta _a^2,\theta _b^2) \} > \rho _{\mathrm {min}} \right ),

























   

{eq:LLbasicAlt} \frac {1}{\sigma }\left (\frac {d\sigma }{d\rho }\right )^{\mathrm {LO, soft-collinear}} = \bar {\alpha }^2 \int \frac {dz_a}{z_a} \frac {dz_b}{z_b} \frac {d\rho _a}{\rho _a} \frac {d\rho _b}{\rho _b} \, \delta (\rho -\rho _a) \Theta \left (\rho _a>\rho _b\right )\times \\\Theta (z_a>\zeta )\,\Theta (z_b>\zeta ) \Theta ( \text {min}\left \{\rho _b, z_a z_b \max (\theta _a^2,\theta _b^2) \} > \rho _{\mathrm {min}} \right ),   

     




where in the ρmin condition we used strong angular ordering to replace θ2ab by max(θ2a, θ2b ). 
Finally, we note that beyond double logarithmic accuracy a more precise result at or-
der α2

s can be achieved by considering three collinear partons within a jet without 
imposing strong ordering between the partons. Such configurations are described by 
triple-collinear splitting functions and calculations implementing the triple-collinear 
result were included in the studies of Ym-Splitter carried out in ref. [25].

4We shall define all our angles to correspond to the actual angles rescaled by the jet radius R.
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6.3.2 Resummed results

Now we turn to the resummed result. We first consider the case where τ32 < τ �
1. Then we shall lift the requirement that τ � 1 i.e. we shall account for finite τ
effects.

The small τ limit

For the case of Ym-Splitter one considers, as in ref. [25], two real emissions that pass 
the tagger cuts accompanied by an ensemble of soft and collinear emissions which are 
constrained to set a smaller gen-kt distance (i.e. mass) than either of the two lead-
ing emissions. This constraint on real emissions produces a Sudakov form factor. In 
the current case the emissions are additionally constrained by the τ cut. Here we 
shall derive the Sudakov form factor at leading-logarithmic (LL) accuracy, capturing 
all double-logarithmic terms including those in τ and running coupling effects, and 
also include some important single logarithmic effects such as accounting for hard-
collinear radiation.
For the two emissions accounted for at leading-order, Eq. (6.2), we shall again label 
ρa as the emission that sets the larger mass and ρb the smaller mass. Consider first 
all subsequent primary emissions, i.e. emissions from the hard parton initiating the 
jet. These emissions must not give rise to larger mass (gen-kt) values than the first 
two emissions de-clustered by Ym-Splitter and they must set a value of τ32 < τ . Re-
call that the contribution of an emission i to τN is given by zi min(θ2i1, ..., θ2iN). As 
was the case for τ2 [28], the limit of strong angular-ordering ensures that, for emis-
sions coming from a leg lying along one of the N-subjettiness axes, the smallest of 
the θia angles is either the angle between the emission and its emitter, or can be ap-
proximated by this angle to LL accuracy. For a primary emission this implies that 
the contribution to τ3, τ3i = ziθ

2
i where zi is the energy fraction and θi is the angle 

of the emission with respect to the hard initial parton. The value of τ2 on the other 
hand is dominated, to LL accuracy, by the second highest mass emission ρb, due to 
the strong ordering in masses relevant at LL accuracy. 5 The condition on primary 
emissions then reads: 

  \Theta \left (\frac {\sum _{i=3}^{\infty } z_i\theta _i^2}{\rho _b}<\tau \right ) \prod _{i=3}^{\infty }\Theta \left (z_i\theta _i^2<\rho _b \right ). 


















 


 (6.4)

The first step function reflects the condition on τ32 while the second condition re-
flects the constraint on mass which gives the primary emission Sudakov form factor 
for Ym-Splitter in ref. [25], i.e. that none of the emissions i have a gen-kt distance 
larger than ρb by assumption. Since τ < 1 the second condition is automatically 
satisfied and the condition on primary emissions is just given by the stronger con-
straint Θ(

∑∞
i=3 ziθ

2
i < ρbτ). The primary emission Sudakov factor then arises from 

5For going beyond the small τ limit and including finite τ effects we shall, in the next subsection, lift this require-
ment of strong ordering in masses as was done in ref. [26].
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a veto on any emissions violating this condition. More precisely it takes the form 
S = e−R(primary) with the “radiator” R(primary) given by 

  R^{\text {(primary)}} \left (\tau \rho _b \right )= \frac {C_R}{2\pi } \int \alpha _s(z^2\theta ^2 R^2p_T^2)p(z) \sd z\frac {\sd \theta ^2}{\theta ^2}\Theta (z\theta ^2>\rho _b \tau ),  











   (6.5)

where CR is a colour factor that depends on the identity of the initiating jet i.e. CF

for a quark and CA for a gluon jet, and p(z) is the QCD splitting function describing 
collinear emission from a quark (p(z) = pgq(z)) or gluon (p(z) = pgg(z)). For the 
argument of the running coupling we have used the kt of the emission (in terms of z
and θ) as required in the soft and collinear limit.

As well as vetoing primary emissions from the parton initiating the jet, the overall 
Sudakov factor must also account for a veto on secondary emissions which would set 
a value of τ32 larger than τ from either of the two emissions included in the leading 
order pre-factor. In the case of soft secondary emissions the angle of emission θi is 
limited by angular-ordering to be less than the angle of the parent θa or θb. Apart 
from this constraint, for emissions off parton a we have the same constraint as for 
primary emissions and hence we obtain, for emissions off parton a: 

\label {eq:secondaryymtau} R^{\text {(secondary,a)}}\left (\tau ,\rho _a,\rho _b \right ) = \\\frac {C_A}{2\pi } \int \alpha _s(z^2 z_a^2 \theta ^2 R^2p_T^2)p_{gg}(z)\sd z\frac {\sd \theta ^2}{\theta ^2}\Theta (z z_a \theta ^2>\rho _b \tau )\Theta (\theta ^2<\theta _a^2),   

\label {eq:secondaryymtau} R^{\text {(secondary,a)}}\left (\tau ,\rho _a,\rho _b \right ) = \\\frac {C_A}{2\pi } \int \alpha _s(z^2 z_a^2 \theta ^2 R^2p_T^2)p_{gg}(z)\sd z\frac {\sd \theta ^2}{\theta ^2}\Theta (z z_a \theta ^2>\rho _b \tau )\Theta (\theta ^2<\theta _a^2),














    

where we note that z represents the energy fraction of parton a’s energy carried by 
the soft secondary emission. We also note that for secondary emissions, the gen-kt
distance, entering the veto condition above, differs from the mass even in the soft 
limit, involving one less factor of za. A similar equation gives the result for emissions 
off parton b, with the obvious replacement of za and θa by zb and θb.

The overall result can be written as a Sudakov form factor weighting the leading-
order, order α2

s result which serves as a pre-factor. For simplicity if one retains just 
the leading-logarithmic expression for the pre-factor reported in Eq. (6.3), we can ob-
tain the resummed result by inserting the factor S = e−R in the integrand in Eq. (6.3)
where R = R(primary) + R(secondary,a) + R(secondary,b). While our results include the full 
running coupling and hard-collinear effects we report below a simplified result for the 
Sudakov factor S in the limit of a fixed coupling and retaining only the soft-collinear 
behaviour i.e. replacing p(z) and pgg(z) by the soft limit expression 2/z: 

  \label {eq:LLfixed-coupling} S^{\text {(fixed-coupling, soft)}} = \exp \left [-\frac {C_R \alpha _s}{2\pi } \ln ^2\frac {1}{\tau \rho _b} -\frac {C_A \alpha _s}{2\pi } \ln ^2\frac {\rho _a}{\tau \rho _b} -\frac {C_A \alpha _s}{2\pi } \ln ^2 \frac {1}{\tau }\right ],  





















 (6.7)

where the term involving ln2 1/ρτb comes from primary emissions, the term involv-
ing ln2 ρa

τρb
comes from vetoing emissions from emission a and finally the suppression 

involving just ln2 1/τ comes from vetoing emissions from emission b. The difference 
between primary and secondary emissions arises entirely from angular-ordering and 
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the ensuing limitation on emission angle we mentioned previously. Although the log-
arithms present in S are written above in terms of ρa and ρb, these will eventually be 
related to logarithms of ρ, ρmin and ratios thereof once the integrals in the pre-factor 
a carried out. In the limit τ → 1 of the above result we obtain the pure Ym-Splitter 
result of ref. [25].

A couple of further remarks are in order concerning the result in Eq. (6.7). First of 
all the result captures leading double logarithms in τ in addition to the logarithms 
involved in the resummation of plain Ym-Splitter [25]. Including hard-collinear emis-
sion via using the full splitting functions, rather than just their soft limit, and using 
the running coupling helps to improve the result beyond double-logarithmic accu-
racy. The result indicates that the effect of the N-subjettiness cut is to produce an 
extra suppression relative to the case of Ym-Splitter [25] just by changing the scale 
ρb to the smaller scale τρb and the extra secondary suppression factor we get from 
emissions off parton b. This suppression of the background is of course desirable but 
choosing a small τ value potentially also suppresses the signal, which in this case is 
a coloured particle namely the top quark. Also as is well-known from several prior 
applications [14], [137] and additionally emerges in the Monte Carlo studies we re-
ported in section 6.2, optimal values of τ do not necessarily satisfy τ � 1, so that 
finite τ effects generally need to be considered [26] in addition to the resummation 
of logarithms of τ . The inclusion of finite τ corrections is thus the topic of the next 
subsection.

6.3.3 Finite τ corrections

To obtain an insight into the role of the τ32 cut in a phenomenological context, one 
has to address values of τ ∼ 1. From the viewpoint of resummation this has impli-
cations identical to those first pointed out in the τ21 case [26]. The small τ limit re-
summation of the previous subsection is designed to fully capture double logarithmic 
terms of the form αn

sL
2n where, for power counting purposes, we use the symbol L2n

to denote double logarithms in any of ln ρ, ln ρmin, ln ρ
ρmin

, ln τ or any combination 
of them. From the fixed-coupling Sudakov form factor, Eq. (6.7), written in terms of 
ρa, ρb and τ we note that we obtain terms that are single logarithmic in jet masses 
(and jet mass ratios) but double logarithmic overall due to the role of ln τ i.e. terms 
of the form αs ln ρb ln τ and αs ln ρa

ρb
ln τ. Beyond the small τ limit we need to account 

for such terms beyond just their ln τ dependence i.e. obtain the full function fτ that 
multiplies single logarithms in jet mass. However, given that single logarithms in jet 
mass ratios i.e. αs ln ρb/ρa are smaller, we do not attempt to obtain the finite τ cor-
rections for such terms, which is substantially more involved, and accordingly retain 
their small τ form only. In the Sudakov form factor with inclusion of running cou-
pling, we therefore wish to control terms of the form αn

sL
n
ρfn(τ) (where Lρ generi-

cally denotes logarithms in jet masses but not ratios), while the small τ resumma-
tion accounts only for terms that approximate fn(τ) by its leading small τ behaviour 

126



∼ lnn τ .

While in the small τ limit resummation of the previous subsection we assumed that 
emissions were strongly ordered in terms of their contribution to the jet mass (in ad-
dition to strong ordering in angle), in order to achieve resummation of terms αn

sL
n
ρ

with their accompanying τ dependence we no longer assume strong ordering in jet 
masses. In particular we assumed that τ2 was set by a single emission b, and hence 
its value was taken to be ρb. Beyond the small τ limit, we must account for the fact 
that τ2 receives a contribution from all emissions in the jet except emission a. Since 
we still desire terms that are at least single logarithmic in jet masses, we continue to 
assume that emissions are strongly ordered in angle. This approximation of emissions 
ordered in angle but not in mass is the same as was made in the case of τ21 studies 
for two-pronged decays [26], to obtain the finite τ correction to the small τ results 
[28]. We can then write 

  \tau _{32} = \frac {\rho -\rho _a-\rho _b}{\rho -\rho _a}, 
  


 (6.8)

where the numerator comes from τ3 being given by the sum of jet masses contributed 
by all emissions except a and b, while the denominator is τ2 which is given by the 
sum of jet masses contributed by all emissions except emission a. The sum of all emis-
sions’ contributions to jet mass, including those of a and b, just gives the total jet 
mass ρ.

Differential distribution in τ

We begin by presenting a result for the joint distribution in jet mass ρ and τ i.e. the 
quantity ρτ

σ
d2σ
dρdτ

, where τ is a set value of τ32. To begin with we shall consider pri-
mary emissions only, since it is straightforward to account for secondary emissions 
in the final result.

We first write the result for the cross-section differential in both τ and ρ, which ac-
counts for the two emissions a and b included in the leading-order formula but now 
accompanied by an infinite number of additional emissions which are strongly or-
dered in angle. The strong ordering in angle ensures that these emissions are emit-
ted independently from the hard initial parton which leads to the standard factorised 
formula for any number of emissions: 

{eq:finiteTauStart} \frac {\rho \tau }{\sigma } \frac {\sd ^2\sigma }{\sd \rho \sd \tau }=\bar {\alpha }^2 \int _\zeta ^1\frac {\sd z_a}{z_a}\int _0^1 \frac {\sd \rho _a}{\rho _a}\int _\zeta ^1\frac {\sd z_b}{z_b}\int _0^{\rho _a} \frac {\sd \rho _b}{\rho _b}\times \\ \Theta (\min (\rho _b,z_az_b\max (\frac {\rho _a}{z_a},\frac {\rho _b}{z_b}))>\rho _{\text {min}}) \exp \left [-\int _0^1 R'(\rho ')\frac {\sd \rho '}{\rho '}\right ] \\\sum _{p=1}^{\infty }\frac {1}{p!}\prod _{i=1}^p\int _{0}^{\rho _b}R'(\rho _i)\frac {\sd \rho _i}{\rho _i} \rho \delta (\rho -\rho _a-\rho _b-\sum _{i\neq a,b}\rho _i)\, \tau \delta \left (\tau -1+\frac {\rho _b}{\rho -\rho _a}\right ).
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The above result is written using a fixed-coupling approximation for the emission of 
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partons a and b though we shall account for the running of the coupling, with the kt
of those emissions, in the pre-factor for our final results. It involves considering p fac-
torised real emissions, with a sum over all p, alongside a sum over all virtual correc-
tions included via the exponential form factor. The factor R′, appearing in both real 
and virtual terms above, stems from the integral over the emission probability for a 
single emission in the soft and collinear limit, at a fixed mass, ρ : 

  \label {eq:rprime} R'{(\rho )} = C_R\int _0^1 \frac {\sd \theta ^2}{\theta ^2} \sd z \ p(z) \frac {\alpha _s(z\theta p_T R)}{2\pi } \rho \delta (z\theta ^2-\rho ) \overset {\text {f.c.}}{=} \frac {C_R \alpha _s}{\pi } \left (\ln \frac {1}{\rho }+B_i \right ),  











 














 (6.10)

where the RHS of the above equation gives the fixed-coupling result and we have re-
placed the splitting functions p(z) by their soft piece ∝ 1/z and incorporated the ef-
fect of hard-collinear emissions by introduction of the Bi terms, corresponding to in-
clusion of the hard-collinear piece of the splitting function to our accuracy. For quark 
and gluon jets respectively Bq = − 3/4 and Bg = (−11CA + 4nfTR)/(12CA).

Integrating over ρb in Eq. (6.9) using the delta function constraint involving τ allows 
us to set ρb = (1− τ) (ρ− ρa) which then leads to the result, assuming τ < 1/2,

{eq:finiteTauTwo} \frac {\rho \tau }{\sigma } \frac {\sd ^2\sigma }{\sd \rho \sd \tau }=\\ \bar {\alpha }^2 \frac {\tau }{1-\tau } \int _\zeta ^1\frac {\sd z_a}{z_a} \int _\zeta ^1\frac {\sd z_b}{z_b} \int _0^\rho \frac {\sd \rho _a}{\rho _a} \Theta \left (\rho _a > \frac {1-\tau }{2-\tau } \rho \right ) \Theta _{\rho _\text {min}} \left (\rho _a,\tau , \rho _{\text {min}} ,z_a,z_b\right ) \\ \exp \left [-\int _0^1 R'(\rho ')\frac {\sd \rho '}{\rho '}\right ] \sum _{p=1}^{\infty }\frac {1}{p!}\prod _{i=1}^p\int _{0}^{\rho _b}R'(\rho _i)\frac {\sd \rho _i}{\rho _i} \, \rho \delta \left ((\rho -\rho _a ) \tau -\sum _{i\neq a,b}\rho _i \right ),








{eq:finiteTauTwo} \frac {\rho \tau }{\sigma } \frac {\sd ^2\sigma }{\sd \rho \sd \tau }=\\ \bar {\alpha }^2 \frac {\tau }{1-\tau } \int _\zeta ^1\frac {\sd z_a}{z_a} \int _\zeta ^1\frac {\sd z_b}{z_b} \int _0^\rho \frac {\sd \rho _a}{\rho _a} \Theta \left (\rho _a > \frac {1-\tau }{2-\tau } \rho \right ) \Theta _{\rho _\text {min}} \left (\rho _a,\tau , \rho _{\text {min}} ,z_a,z_b\right ) \\ \exp \left [-\int _0^1 R'(\rho ')\frac {\sd \rho '}{\rho '}\right ] \sum _{p=1}^{\infty }\frac {1}{p!}\prod _{i=1}^p\int _{0}^{\rho _b}R'(\rho _i)\frac {\sd \rho _i}{\rho _i} \, \rho \delta \left ((\rho -\rho _a ) \tau -\sum _{i\neq a,b}\rho _i \right ),



































    

{eq:finiteTauTwo} \frac {\rho \tau }{\sigma } \frac {\sd ^2\sigma }{\sd \rho \sd \tau }=\\ \bar {\alpha }^2 \frac {\tau }{1-\tau } \int _\zeta ^1\frac {\sd z_a}{z_a} \int _\zeta ^1\frac {\sd z_b}{z_b} \int _0^\rho \frac {\sd \rho _a}{\rho _a} \Theta \left (\rho _a > \frac {1-\tau }{2-\tau } \rho \right ) \Theta _{\rho _\text {min}} \left (\rho _a,\tau , \rho _{\text {min}} ,z_a,z_b\right ) \\ \exp \left [-\int _0^1 R'(\rho ')\frac {\sd \rho '}{\rho '}\right ] \sum _{p=1}^{\infty }\frac {1}{p!}\prod _{i=1}^p\int _{0}^{\rho _b}R'(\rho _i)\frac {\sd \rho _i}{\rho _i} \, \rho \delta \left ((\rho -\rho _a ) \tau -\sum _{i\neq a,b}\rho _i \right ),
































 









where we have used the shorthand notation Θρmin to denote the ρmin condition and 
the ρb that occurs as an upper limit in the ρi integral is understood to be the value 
set by the delta function i.e (ρ− ρa)(1− τ). The other step function constraint on ρa
derives from the condition that ρa > ρb and the value of ρb set by the delta function 
integral we have performed. Finally we observe that we are left to evaluate the mul-
tiple emission contribution where the sum over the ρi are constrained to be equal to 
(ρ−ρa)τ . Additionally each emission i is constrained so that ρi < ρb = (1−τ)(ρ−ρa), 
however for τ < 1/2 this condition is automatically met if the stronger condition on 
the sum of ρi is satisfied. In what follows we restrict our attention to τ < 1/2 as this 
region is sufficient given the optimal value of τ that emerged from the Monte Carlo 
studies in section 6.2. Finally we note that one can evaluate the multiple emission 
contribution on the second line of Eq. 6.9 simply by using known results for the stan-
dard jet mass [236], since the constraint on multiple emissions is the same as for the 
plain jet mass ρ but with ρ replaced by (ρ− ρa)τ . Hence without needing to perform 

\label {eq:taudist} \frac {\rho \tau }{\sigma } \frac {\sd ^2\sigma }{\sd \rho \sd \tau }\overset {\tau <1/2}{=} \bar {\alpha }^2 \frac {1}{1-\tau } \\\int _\zeta ^1\frac {\sd z_a}{z_a} \int _\zeta ^1\frac {\sd z_b}{z_b} \int _0^\rho \frac {\sd \rho _a}{\rho _a} \frac {\rho }{\rho -\rho _a} \Theta \left (\rho _a > \frac {1-\tau }{2-\tau } \rho \right ) \Theta _{\rho _\text {min}} \left (\rho _a,\tau , \rho _{\text {min}} ,z_a,z_b\right ) \\ R'((\rho -\rho _a)\tau )\frac {\exp [-R((\rho -\rho _a)\tau )-\gamma _E R'((\rho -\rho _a)\tau )]}{\Gamma [1+R'((\rho -\rho _a)\tau )]}.



any further explicit calculation one can write: 

\label {eq:taudist} \frac {\rho \tau }{\sigma } \frac {\sd ^2\sigma }{\sd \rho \sd \tau }\overset {\tau <1/2}{=} \bar {\alpha }^2 \frac {1}{1-\tau } \\\int _\zeta ^1\frac {\sd z_a}{z_a} \int _\zeta ^1\frac {\sd z_b}{z_b} \int _0^\rho \frac {\sd \rho _a}{\rho _a} \frac {\rho }{\rho -\rho _a} \Theta \left (\rho _a > \frac {1-\tau }{2-\tau } \rho \right ) \Theta _{\rho _\text {min}} \left (\rho _a,\tau , \rho _{\text {min}} ,z_a,z_b\right ) \\ R'((\rho -\rho _a)\tau )\frac {\exp [-R((\rho -\rho _a)\tau )-\gamma _E R'((\rho -\rho _a)\tau )]}{\Gamma [1+R'((\rho -\rho _a)\tau )]}.
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\label {eq:taudist} \frac {\rho \tau }{\sigma } \frac {\sd ^2\sigma }{\sd \rho \sd \tau }\overset {\tau <1/2}{=} \bar {\alpha }^2 \frac {1}{1-\tau } \\\int _\zeta ^1\frac {\sd z_a}{z_a} \int _\zeta ^1\frac {\sd z_b}{z_b} \int _0^\rho \frac {\sd \rho _a}{\rho _a} \frac {\rho }{\rho -\rho _a} \Theta \left (\rho _a > \frac {1-\tau }{2-\tau } \rho \right ) \Theta _{\rho _\text {min}} \left (\rho _a,\tau , \rho _{\text {min}} ,z_a,z_b\right ) \\ R'((\rho -\rho _a)\tau )\frac {\exp [-R((\rho -\rho _a)\tau )-\gamma _E R'((\rho -\rho _a)\tau )]}{\Gamma [1+R'((\rho -\rho _a)\tau )]}.
 



 


The above result accounts for configurations where the three prongs tagged by Ym-
Splitter are the hard parton which initiates the jet along with two gluons emitted in-
dependently from it, however, our final result also contains configurations where a 
gluon emitted from the hard parton branches, with the resulting three particles cor-
responding to the three Ym-Splitter prongs.

For the region τ > 1/2 one could in principle follow the same method as outlined 
for the τ21 calculation in ref. [26], though given our immediate motivation we do not 
consider this region further in the present study. We could also have initially inte-
grated over ρa instead of ρb to obtain the result in the equivalent form 

\label {eq:taudistRhob} \frac {\rho \tau }{\sigma } \frac {\sd ^2\sigma }{\sd \rho \sd \tau }\overset {\tau <1/2}{=} \bar {\alpha }^2 \frac {1}{1-\tau } \int _\zeta ^1\frac {\sd z_a}{z_a} \int _\zeta ^1\frac {\sd z_b}{z_b} \int _0^{\frac {\rho }{2}} \frac {\sd \rho _b}{\rho _b} \frac {\rho }{\rho -\frac {\rho _b}{1-\tau }} \Theta _{\rho _\text {min}} \left (\rho _b,\tau , \rho _{\text {min}} ,z_a,z_b\right ) \\ R'(\rho _b\frac {\tau }{1-\tau })\frac {\exp [-R(\rho _b\frac {\tau }{1-\tau })-\gamma _E R'(\rho _b\frac {\tau }{1-\tau })]}{\Gamma [1+R'(\rho _b\frac {\tau }{1-\tau })]}.







 






























    

\label {eq:taudistRhob} \frac {\rho \tau }{\sigma } \frac {\sd ^2\sigma }{\sd \rho \sd \tau }\overset {\tau <1/2}{=} \bar {\alpha }^2 \frac {1}{1-\tau } \int _\zeta ^1\frac {\sd z_a}{z_a} \int _\zeta ^1\frac {\sd z_b}{z_b} \int _0^{\frac {\rho }{2}} \frac {\sd \rho _b}{\rho _b} \frac {\rho }{\rho -\frac {\rho _b}{1-\tau }} \Theta _{\rho _\text {min}} \left (\rho _b,\tau , \rho _{\text {min}} ,z_a,z_b\right ) \\ R'(\rho _b\frac {\tau }{1-\tau })\frac {\exp [-R(\rho _b\frac {\tau }{1-\tau })-\gamma _E R'(\rho _b\frac {\tau }{1-\tau })]}{\Gamma [1+R'(\rho _b\frac {\tau }{1-\tau })]}.























A key feature of our results is the presence of an overall 1/(1 − τ) factor as was also 
the case in the τ21 result of ref. [26]. Taking the small τ limit of Eq. (6.12) we should 
return to the small τ result we derived in the previous subsection, which is indeed 
the case up to subleading terms in the order ᾱ2 pre-factor. To be more precise, in 
the previous subsection we had evaluated the pre-factor taking ρa to dominate the 
jet mass, by using the condition δ(ρ−ρa)Θ(ρa > ρb), which correctly captures all dou-
ble logarithmic terms in the pre-factor. If instead one uses the more accurate condi-
tion δ(ρ− ρa− ρb)Θ(ρa > ρb), then after integration over ρb we obtain the same result 
as the small τ limit of Eq. (6.12). Relative to the strong ordering of emissions ρa and 
ρb, using the exact jet mass conditions affects only single logarithmic terms ᾱ2L2 in 
the pre-factor where L denotes logarithms in ρ/ρmin or ζ. Such terms are two loga-
rithms below the leading ᾱ2L4 terms in the pre-factor and only involve more modest 
logarithms than those in the jet mass. We can therefore consider such terms as neg-
ligible and hence the small τ limit of Eq. (6.12) is equivalent to the result of the pre-
vious subsection. For an explicit calculation demonstrating the argument above, we 
refer the reader to appendix C.1.

Beyond the small τ limit the most crucial feature of the result is the overall 1/(1− τ)

factor in Eq. (6.12). While there is additionally a τ dependence in the step functions 
in Eq. (6.12), that is again responsible for introducing τ dependent terms of order 
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ᾱ2L2 in the pre-factor, and hence can be neglected to our accuracy as illustrated in 
appendix C.1. In what follows we shall use the freedom to set τ to zero in the step 
function conditions to obtain an analytic form for the cumulative distribution.

Cumulative distribution

It is of direct interest to also obtain the result for the differential distribution in the 
jet mass with a cut on τ32, τ32 < τ , rather than fixing a value for τ32 as required for 
the double differential distribution above. In order to do this one can integrate the 
differential distribution, Eq. (6.12), between 0 and τ . Setting τ to zero in the step 
functions of the pre-factor, which has only a sub-leading impact as discussed before, 
we can write 

\left .\rho \frac {d\sigma }{d \rho }\right |_{\tau _{32}<\tau } \overset {\tau <1/2}{=} \bar {\alpha }^2 \int _\zeta ^1\frac {\sd z_a}{z_a} \int _\zeta ^1\frac {\sd z_b}{z_b} \int _0^\rho \frac {\sd \rho _a}{\rho _a} \frac {\rho }{\rho -\rho _a} \Theta \left (\rho _a > \frac {\rho }{2} \right ) \Theta _{\rho _\text {min}} \left (\rho _a,\rho _{\text {min}} ,z_a,z_b\right ) \\ \int _0^\tau \frac {d\tau '}{\tau ^{'}(1-\tau ')} R'((\rho -\rho _a)\tau ')\frac {\exp [-R((\rho -\rho _a)\tau ')-\gamma _E R'((\rho -\rho _a)\tau ')]}{\Gamma [1+R'((\rho -\rho _a)\tau ')]},











































    \left .\rho \frac {d\sigma }{d \rho }\right |_{\tau _{32}<\tau } \overset {\tau <1/2}{=} \bar {\alpha }^2 \int _\zeta ^1\frac {\sd z_a}{z_a} \int _\zeta ^1\frac {\sd z_b}{z_b} \int _0^\rho \frac {\sd \rho _a}{\rho _a} \frac {\rho }{\rho -\rho _a} \Theta \left (\rho _a > \frac {\rho }{2} \right ) \Theta _{\rho _\text {min}} \left (\rho _a,\rho _{\text {min}} ,z_a,z_b\right ) \\ \int _0^\tau \frac {d\tau '}{\tau ^{'}(1-\tau ')} R'((\rho -\rho _a)\tau ')\frac {\exp [-R((\rho -\rho _a)\tau ')-\gamma _E R'((\rho -\rho _a)\tau ')]}{\Gamma [1+R'((\rho -\rho _a)\tau ')]},





  










  


which corresponds to integrating the distribution up to some maximum value τ for 
τ32. To single-logarithmic accuracy, we can expand the radiator about some point τ0
to write: 

  R((\rho -\rho _a)\tau ')\simeq R((\rho -\rho _a)\tau _0)-R'((\rho -\rho _a)\tau _0)\ln \left (\frac {\tau '}{\tau _0} \right ) +\mathcal {O} \left (R^{''} \right ), 
    














 (6.15)

where R′(x) = − ∂R
∂ lnx

. With τ0 chosen such that in the small τ limit τ0 is of order 
τ , and given that the integral is dominated by values τ ′ ∼ τ , terms of order R′′ and 
beyond can be neglected as they are beyond single-logarithmic accuracy and we may 
replace τ ′ by τ0 in the R′ terms to obtain:

\label {eq:tauint} \left .\rho \frac {d\sigma }{d \rho }\right |_{\tau _{32}<\tau } \overset {\tau <1/2}{=} \bar {\alpha }^2 \int _\zeta ^1\frac {\sd z_a}{z_a} \int _\zeta ^1\frac {\sd z_b}{z_b} \int _0^\rho \frac {\sd \rho _a}{\rho _a} \frac {\rho }{\rho -\rho _a} \Theta \left (\rho _a > \frac {\rho }{2} \right ) \Theta _{\rho _\text {min}} \left (\rho _a,\rho _{\text {min}} ,z_a,z_b\right ) \\ R'((\rho -\rho _a)\tau _0)\frac {\exp [-R((\rho -\rho _a)\tau _0)-\gamma _E R'((\rho -\rho _a)\tau _0)]}{\Gamma [1+R'((\rho -\rho _a)\tau _0)]} \times I(R^{'},\tau ,\tau _0),











































   

\label {eq:tauint} \left .\rho \frac {d\sigma }{d \rho }\right |_{\tau _{32}<\tau } \overset {\tau <1/2}{=} \bar {\alpha }^2 \int _\zeta ^1\frac {\sd z_a}{z_a} \int _\zeta ^1\frac {\sd z_b}{z_b} \int _0^\rho \frac {\sd \rho _a}{\rho _a} \frac {\rho }{\rho -\rho _a} \Theta \left (\rho _a > \frac {\rho }{2} \right ) \Theta _{\rho _\text {min}} \left (\rho _a,\rho _{\text {min}} ,z_a,z_b\right ) \\ R'((\rho -\rho _a)\tau _0)\frac {\exp [-R((\rho -\rho _a)\tau _0)-\gamma _E R'((\rho -\rho _a)\tau _0)]}{\Gamma [1+R'((\rho -\rho _a)\tau _0)]} \times I(R^{'},\tau ,\tau _0),
 



 



  

where 
  \label {eq:tauintegral} I(R^{'},\tau ,\tau _0) = \int _0^\tau \frac {d\tau '}{\tau '(1-\tau ')} \exp \left [R^{'} \left (\left (\rho -\rho _a \right ) \tau _0\right ) \ln \frac {\tau '}{\tau _0} \right ]. 


  







  






   






 (6.17)

Upon evaluating the integral over τ we obtain 

  \label {eq:hyp} I(R^{'},\tau ,\tau _0) = \left (\frac {\tau }{\tau _0} \right )^{R'} \frac {{}_2 F_1(1,R',1+R',\tau )}{R'}, \qquad R' \equiv R'((\rho -\rho _a)\tau _0). 

  









  

      (6.18)

We then have the result for the cumulative distribution given by Eq. (6.16) with fi-
nite τ effects encoded in the Hypergeometric function of Eq. (6.18) precisely as for 
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the τ21 case [26]. The origin of the Hypergeometric factor is simply the extra overall 
factor of 1/(1− τ) in the finite τ differential distribution. Without this factor we sim-
ply obtain the usual result for the cumulative (integrated distribution) up to terms 
involving R′′ beyond our accuracy, as long as τ0 ∼ τ . In what follows we shall simply 
choose τ0 = τ while noting that varying this choice by an O(1) factor will correspond 
to an effective resummation scale uncertainty on our results.

To obtain an alternate form of Eq. (6.16) we could have integrated Eq. (6.13) over 
τ instead. Again, as before, we can drop any τ dependence in the pre-factor other 
than the overall 1

1−τ
, which leads to a factor ρ/(ρ − ρb), rather than ρ/

(
ρ− ρb

1−τ

)
. 

This again leads one to consider only the overall 1/(1 − τ) factor together with the τ
dependence in the exponent. Then integrating over τ using the same steps that gave 
Eq.(6.16) we obtain 

{eq:CumulantRhoB} \left .\rho \frac {d\sigma }{d \rho }\right |_{\tau _{32}<\tau }\overset {\tau <1/2}{=} \bar {\alpha }^2 \int _\zeta ^1\frac {\sd z_a}{z_a} \int _\zeta ^1\frac {\sd z_b}{z_b} \int _{\rho _{min}}^{\frac {\rho }{2}} \frac {\sd \rho _b}{\rho _b}\frac {\rho }{\rho -\rho _b} \Theta _{\rho _\text {min}} \left (\rho _b,\rho _{\text {min}} ,z_a,z_b\right )\\ {}_2F_1(1,R'(\rho _b\frac {\tau }{1-\tau }),1+R'(\rho _b\frac {\tau }{1-\tau }),\tau ) \frac {\ \exp [-R(\rho _b\frac {\tau }{1-\tau })-\gamma _E R'(\rho _b\frac {\tau }{1-\tau })]}{\Gamma [1+R'(\rho _b\frac {\tau }{1-\tau })]},



































   

{eq:CumulantRhoB} \left .\rho \frac {d\sigma }{d \rho }\right |_{\tau _{32}<\tau }\overset {\tau <1/2}{=} \bar {\alpha }^2 \int _\zeta ^1\frac {\sd z_a}{z_a} \int _\zeta ^1\frac {\sd z_b}{z_b} \int _{\rho _{min}}^{\frac {\rho }{2}} \frac {\sd \rho _b}{\rho _b}\frac {\rho }{\rho -\rho _b} \Theta _{\rho _\text {min}} \left (\rho _b,\rho _{\text {min}} ,z_a,z_b\right )\\ {}_2F_1(1,R'(\rho _b\frac {\tau }{1-\tau }),1+R'(\rho _b\frac {\tau }{1-\tau }),\tau ) \frac {\ \exp [-R(\rho _b\frac {\tau }{1-\tau })-\gamma _E R'(\rho _b\frac {\tau }{1-\tau })]}{\Gamma [1+R'(\rho _b\frac {\tau }{1-\tau })]},





 

























where we have again used the freedom to neglect factors of τ in the pre-factor which 
only introduce terms of order ᾱ2

sL
2 and set τ0 to τ .

While so far we have worked with a fixed-coupling approximation in our pre-factor, 
we now introduce the running of the coupling for “emissions” a and b. In order to do 
so we replace the ᾱ2 term with ᾱ(zaρap2TR2) × ᾱ(zb(ρ − ρa)p

2
TR

2) inside the integral 
of Eq. (6.16). This corresponds to using the kt of each emission in the argument of 
the corresponding coupling factor, with neglect of a factor of 1 − τ in the coupling 
associated to emission b, i.e. using ρb = (ρ − ρa) instead of (ρ − ρa)(1 − τ). The 
1 − τ factor only results in sub-leading terms involving logarithms of 1 − τ which we 
neglect, consistent with our general treatment of the pre-factor.

Finally to include secondary emissions we use the full radiator including the secondary 
emission terms i.e. replace 

R((\rho -\rho _a)\tau )\to R^{\text {(primary)}}((\rho -\rho _a)\tau )+R^{\text {(secondary,a)}}((\rho -\rho _a)\tau ,z_a,\theta _a^2)\\+R^{\text {(secondary,b)}}((\rho -\rho _a)\tau ,z_b,\theta _b^2),       



R((\rho -\rho _a)\tau )\to R^{\text {(primary)}}((\rho -\rho _a)\tau )+R^{\text {(secondary,a)}}((\rho -\rho _a)\tau ,z_a,\theta _a^2)\\+R^{\text {(secondary,b)}}((\rho -\rho _a)\tau ,z_b,\theta _b^2),  

 

where θ2a =
ρa
za

, θ2b =
ρb
zb

and ρb = (ρ− ρa).

Pre-grooming with Soft Drop

It is known that the Y-Splitter and Ym-Splitter methods need to be supplemented by 
some form of grooming in order to yield good performance for the signal significance 
(signal to square-root of background ratio) [25], [29], [30]. In ref. [29] it was found, in 
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the context of W/Z/H tagging, that pre-grooming jets with Soft Drop was optimal in 
terms of increasing performance while minimising the sensitivity to non-perturbative 
effects. Furthermore, in the context of top-tagging there is another advantage to pre-
grooming, namely that the pre-grooming procedure leads to a Sudakov form factor 
inherited from the groomer [29]. In other words for mMDT pre-grooming we obtain 
the mMDT Sudakov structure, while for Soft Drop with non-zero β we obtain the 
Soft Drop Sudakov for both signal and background jets. Given that a modest rather 
than strong Sudakov suppression was found to be beneficial for signal significance in 
top-tagging [25], pre-grooming with mMDT which has only a single-logarithmic Su-
dakov form factor, followed by Ym-Splitter , emerged as the most performant method 
as well as being resilient to non-perturbative effects.

Here we consider QCD jets pre-groomed with mMDT as well as Soft Drop for β = 2

. In ref. [25] a result was obtained for the jet mass distribution with Soft Drop pre-
grooming followed by the application of Ym-Splitter i.e. without the additional τ cut 
involved here. As described in detail in ref. [25], three situations can arise : a) the 
largest gen-kt emission, i.e. a in the present paper, stops the groomer, b) the next 
largest gen-kt emission, i.e. b stops the groomer and c) another emission stops the 
groomer. For the first situation the result obtained for the primary emission radiator, 
with mMDT grooming, was shown to be of the form: 

  \label {eq:mmdtplus} R^{(1),(\text {primary)}}(\theta _a,\rho _b) = R_{\text {mMDT}}(\rho _b) +R_{\text {mMDT}}^{\text {angle}}(\theta _a,\rho _b).    
  (6.21)

This corresponds to the usual mMDT Sudakov at the scale ρb but modified by the 
addition of an extra piece, Rangle

mMDT that arises because emissions with angle below θa
are not examined by the groomer and hence need to be vetoed (if they have mass 
above ρb) even if they have z < ζ. This extra contribution, at fixed-coupling and 
leading logarithmic accuracy, is given by [25]: 

  \label {eq:rangle} R_{\text {mMDT}}^{\text {angle}}(\theta _a,\rho _b) = \frac {C_R \alpha _s}{\pi } \int \frac {dz}{z} \frac {d\theta ^2}{\theta ^2} \Theta \left (z<\zeta \right ) \left ( z\theta ^2>\rho _b \right ) \Theta \left ( \theta _a^2 > \theta ^2\right ) \ . 
 













 


 




 


 (6.22)

In case b), where emission b stops the tagger, one obtained instead just the standard 
mMDT result RmMDT(ρb), while for case c) where an emission other than a or b stops 
the tagger, there is a complete cancellation against virtual corrections and hence no 
contribution.

For our current work, where we also apply a τ cut, situation a) yields the result re-
ported in Eq. (6.21) but now the mass scale ρb is replaced by τ(ρ− ρa) in both terms 
of Eq. (6.21). In the case b) where emission b stops the tagger we now have to also 
account for the fact that while emissions with z < ζ and θ < θb can never set a mass, 
or equivalently gen-kt distance, above ρb, they can set a mass larger than τ(ρ − ρa). 
This is disallowed by the τ cut and hence such emissions have to be vetoed which 
leads to the appearance of a term Rangle

mMDT(θb, τ(ρ− ρa)) , in addition to RmMDT(τ(ρ−
ρa)), also in case b). For case c) there is no change, i.e. there is complete cancella-
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tion with virtual corrections.

Taking into account hard-collinear emissions and the running of the coupling we can 
write our result in the form 

\label {eq:mMDTradiator} R^{\text {(primary)}}_{\text {groomed-mMDT}}((\rho -\rho _a)\tau ,\theta _1)=\\ \int \frac {C_R\alpha _s(z\theta p_T)}{\pi }\left (\frac {1}{z}+B_i\right )\sd z\frac {\sd \theta ^{2}}{\theta ^2}\Theta (z\theta ^2>(\rho -\rho _a)\tau ) \Theta (z>\zeta ) +\\ +\int \frac {C_R\alpha _s(z\theta p_T)}{\pi }\left (\frac {1}{z}+B_i\right )\sd z\frac {\sd \theta ^{2}}{\theta ^2}\Theta (z\theta ^2>(\rho -\rho _a)\tau ) \Theta (z<\zeta ) \Theta (\theta ^2<\theta _1^2),

   \label {eq:mMDTradiator} R^{\text {(primary)}}_{\text {groomed-mMDT}}((\rho -\rho _a)\tau ,\theta _1)=\\ \int \frac {C_R\alpha _s(z\theta p_T)}{\pi }\left (\frac {1}{z}+B_i\right )\sd z\frac {\sd \theta ^{2}}{\theta ^2}\Theta (z\theta ^2>(\rho -\rho _a)\tau ) \Theta (z>\zeta ) +\\ +\int \frac {C_R\alpha _s(z\theta p_T)}{\pi }\left (\frac {1}{z}+B_i\right )\sd z\frac {\sd \theta ^{2}}{\theta ^2}\Theta (z\theta ^2>(\rho -\rho _a)\tau ) \Theta (z<\zeta ) \Theta (\theta ^2<\theta _1^2),















    

\label {eq:mMDTradiator} R^{\text {(primary)}}_{\text {groomed-mMDT}}((\rho -\rho _a)\tau ,\theta _1)=\\ \int \frac {C_R\alpha _s(z\theta p_T)}{\pi }\left (\frac {1}{z}+B_i\right )\sd z\frac {\sd \theta ^{2}}{\theta ^2}\Theta (z\theta ^2>(\rho -\rho _a)\tau ) \Theta (z>\zeta ) +\\ +\int \frac {C_R\alpha _s(z\theta p_T)}{\pi }\left (\frac {1}{z}+B_i\right )\sd z\frac {\sd \theta ^{2}}{\theta ^2}\Theta (z\theta ^2>(\rho -\rho _a)\tau ) \Theta (z<\zeta ) \Theta (\theta ^2<\theta _1^2),
















       

where the first line is just the standard mMDT result [21], the second line is the ex-
tra Rangle contribution and θ1 = max(θa, θb) is the angle of the emission which stops 
the groomer. The basic form of the result is then that of the mMDT Sudakov evalu-
ated at the scale (ρ − ρa)τ , which corresponds to a single-logarithmic Sudakov sup-
pression. In a fixed-coupling leading log approximation, the Rangle term can be writ-
ten as 

 \label {eq:RangleFC} R^{\text {angle}}(\theta _1,(\rho -\rho _a)\tau )=\frac {C_R \alpha _s}{2\pi } \ln ^2 \frac {\zeta \theta _1^2}{(\rho -\rho _a) \tau }\Theta (\theta _1^2\zeta >(\rho -\rho _a)\tau ) \ ,   






     (6.24)

where the logarithm involves a ratio of two small quantities similar to be behaviour 
obtained for secondary emission contributions. Overall therefore we retain the fea-
ture that pre-grooming with mMDT results in a reduced Sudakov suppression fac-
tor relative to the un-groomed case. The step function in eq. (6.24) switches off the 
Rangle contribution when θ21 <

(ρ−ρa)τ
ζ

leading to the two regimes shown on the Lund 
diagrams in figure 6.2, where the Rangle piece is active only in figure 6.2a and is re-
sponsible for vetoing emissions in the region of phase space shown in blue. The stan-
dard soft drop Sudakov factor at the scale (ρ − ρa)τ is responsible for vetoing the 
region of phase space shown in red in figure 6.2.
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Figure 6.2. Lund diagrams showing the region of phase space vetoed for jets which are groomed 
with Soft Drop and tagged with Ym-Splitter and a cut on τ32.
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One can also consider pre-grooming with Soft Drop. Identical considerations to the 
mMDT case apply, with the only difference being in the grooming condition i.e. for 
an emission to pass the grooming one needs z > ζθβ. We then obtain a result along 
similar lines to that for the mMDT above, but with the Soft Drop Sudakov (i.e. ra-
diator) replacing that for the mMDT and a corresponding Rangle contribution whose 
fixed-coupling leading-log form is explicitly reported in ref. [25].

Secondary emissions are unaffected by grooming so the only change to the radiator, 
relative to the un-groomed case, arises from the primary emission term discussed 
above. The inclusion of finite τ effects is also unchanged relative to our previous dis-
cussions so that we still have the result Eq. (6.12) for the differential distribution and 
Eq. (6.16) for the cumulant but with the primary emission radiator replaced by that 
for the groomed case Eq. (6.23) for mMDT and its analogue for Soft Drop.

Numerical implementation and parton shower studies

For the rest of this section we focus on quark initiated jets, as in the jet pT range un-
der consideration, these are the dominant background to top jets, though most of 
what follows could equally be applied to gluon initiated jets with minimal modifica-
tions. The form of Eq. (6.19) is that of the leading O (α2

s) result multiplied by a fac-
tor accounting for further emissions. We now perform a type of matching to improve 
the accuracy with which we calculate this leading order pre-factor. While we have 
mentioned in section 6.3.1 that a more precise calculation of the leading order pre-
factor based around the triple collinear splitting functions is possible, it was shown in 
[25] that the numerical difference between such a calculation and one using a prod-
uct of 1 → 2 splitting functions, but the full phase-space, is slightly less than 10% for 
a jet mass of 175GeV and mmin = 50 GeV. Further to this, when a pair of collinear 
emissions are strongly ordered in angle, as we have considered them to be through-
out this work, the appropriate matrix element is a product of 1 → 2 splitting func-
tions. We therefore choose to match our resummed calculation on to a pre-factor cal-
culated by taking the matrix element to be a product of 1 → 2 splitting functions 
but still using the full three-particle phase-space in the collinear limit. This partic-
ular matching procedure also potentially serves to bring the effects included in our 
calculations more in line with what is captured by the parton showers which we will 
compare our calculations to, as while these may be expected to contain elements of 
the phase-space, they do not include the full triple collinear splitting functions.

We now re-calculate the LO pre-factor at this higher level of accuracy, before show-
ing how it is matched to the full resummation. As before, we use the C2

F channel 
for illustrative purposes, although our final results contain contributions from the 
CFCA and CFnf colour channels where similar modifications can be made to those 
listed below. In what follows, the parton initiating the jet is labelled as parton 3, 
with the emission at the widest angle to this parton labelled with 1 and the smaller 

{eq:HardCollinearPrefactor} \frac {\sd \Sigma ^{\text {LO}}(\tau ,\rho )}{\sd \rho }= \left (\frac {C_F\alpha _s}{2\pi }\right )^2 \int p_{gq}(z)p_{gq}(z_p)\sd z \sd z_p \Delta ^{\sfrac {-1}{2}}\frac {\sd \theta _{12}^2}{\pi }\frac {\sd \theta _{13}^2}{\theta _{13}^2}\frac {\sd \theta _{23}^2}{\theta _{23}^2} \times \\ \delta \left (\rho -\frac {s_{123}}{p_T^2R^2} \right )\Theta _\text {\Ym } \Theta _{\text {clust.}}\Theta (\theta _{13}>\theta _{23}) \



z1 = 1− z

z2 = z(1− zp)

z3 = zzp

Figure 6.3. Diagram showing the parametrisation of the energy fraction variables used along with 
our labelling of the partons in the C2

F channel.

angle emission labelled 2. So as to ensure that the variables appearing as the argu-
ments of the factorised 1 → 2 splitting functions are defined appropriately, we work 
with the energy fraction variables z and zp defined so that z1 = 1 − z and z2 =

z(1− zp) as illustrated in figure 6.3. At this level of accuracy, the leading-order calcu-
lation in section 6.3.1 becomes 

{eq:HardCollinearPrefactor} \frac {\sd \Sigma ^{\text {LO}}(\tau ,\rho )}{\sd \rho }= \left (\frac {C_F\alpha _s}{2\pi }\right )^2 \int p_{gq}(z)p_{gq}(z_p)\sd z \sd z_p \Delta ^{\sfrac {-1}{2}}\frac {\sd \theta _{12}^2}{\pi }\frac {\sd \theta _{13}^2}{\theta _{13}^2}\frac {\sd \theta _{23}^2}{\theta _{23}^2} \times \\ \delta \left (\rho -\frac {s_{123}}{p_T^2R^2} \right )\Theta _\text {\Ym } \Theta _{\text {clust.}}\Theta (\theta _{13}>\theta _{23}) \
































  

where the Gram determinant is given by 

  \Delta =4\theta _{13}^{2}\theta _{23}^{2}-(\theta _{13}^{2}-\theta _{12}^{2}-\theta _{23}^{2})^{2}, 

     

 (6.26)

and 

  \Theta _{\text {\Ym }}= \Theta (\min (\rho _{12},\rho _{13},\rho _{23})>\rho _{\text {min}})\Theta (\min (z_1,z_2,z_3)>\zeta ),            (6.27)

where ρij = zizjθ
2
ij, encapsulating the conditions imposed by Ym-Splitter without 

approximating any particles as soft. Similarly, without approximating any particles 
as soft 

  \label {eq:clustering} \Theta _{\text {clust.}}=\sum _{i<j\neq k}\Theta (\theta _{ij}<\min (\theta _{ik},\theta _{jk}))\Theta (\theta _{ij}<R)\Theta (\theta _{ij,k}<R). 



        (6.28)

Although the LO part of ρ
σ

dσ
dρ

∣∣∣
τ32<τ

is now calculated without approximating any of 
the three LO partons as soft, we cannot simply substitute it in place of the O(α2

s)

part of Eq.(6.19). We must first specify how the quantities appearing in the Sudakov 
factor of Eq. (6.19), which are defined in the soft and collinear limit, are related to 
the kinematic variables appearing in our improved LO pre-factor (Eq. 6.25). For the 
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C2
F channel we make the following prescription: 

 \label {eq:defs} \begin {split} \rho _b=\min (\min (z z_p,(1-&z))\theta _{13}^2,z \min (z_p,1-z_p)\theta _{23}^2), \\[0.4cm] k_{t1}=\min (z,1-z)\theta _{13}Rp_T, & \qquad \ k_{t2}=z\min (z_p,1-z_p)\theta _{23}Rp_T, \\[0.4cm] \theta _{1}=\theta _{13}, & \qquad \ \ \ \rho =\frac {s_{123}}{p_T^2R^2}+\sum _i\rho _i, \end {split}      



 \label {eq:defs} \begin {split} \rho _b=\min (\min (z z_p,(1-&z))\theta _{13}^2,z \min (z_p,1-z_p)\theta _{23}^2), \\[0.4cm] k_{t1}=\min (z,1-z)\theta _{13}Rp_T, & \qquad \ k_{t2}=z\min (z_p,1-z_p)\theta _{23}Rp_T, \\[0.4cm] \theta _{1}=\theta _{13}, & \qquad \ \ \ \rho =\frac {s_{123}}{p_T^2R^2}+\sum _i\rho _i, \end {split}           

 \label {eq:defs} \begin {split} \rho _b=\min (\min (z z_p,(1-&z))\theta _{13}^2,z \min (z_p,1-z_p)\theta _{23}^2), \\[0.4cm] k_{t1}=\min (z,1-z)\theta _{13}Rp_T, & \qquad \ k_{t2}=z\min (z_p,1-z_p)\theta _{23}Rp_T, \\[0.4cm] \theta _{1}=\theta _{13}, & \qquad \ \ \ \rho =\frac {s_{123}}{p_T^2R^2}+\sum _i\rho _i, \end {split}    










 \label {eq:defs} \begin {split} \rho _b=\min (\min (z z_p,(1-&z))\theta _{13}^2,z \min (z_p,1-z_p)\theta _{23}^2), \\[0.4cm] k_{t1}=\min (z,1-z)\theta _{13}Rp_T, & \qquad \ k_{t2}=z\min (z_p,1-z_p)\theta _{23}Rp_T, \\[0.4cm] \theta _{1}=\theta _{13}, & \qquad \ \ \ \rho =\frac {s_{123}}{p_T^2R^2}+\sum _i\rho _i, \end {split} 

which we note that there is some freedom in choosing, the only constraint being that 
the correct result must be recovered in the soft and strongly-ordered limit.

Replacing the O(α2
s) part of equation (6.19) with Eq. (6.25) and using the matching 

prescription given in Eq. (6.29) we can write: 

{eq:TC_result} \rho \frac {\sd \Sigma ^{\tau <\frac {1}{2}}(\tau )}{\sd \rho }= \left (\frac {C_F}{2\pi }\right )^2 \int \alpha _s(k_{t1}) \alpha _s(k_{t2}) p_{gq}(z)p_{gq}(z_p) \Delta ^{\sfrac {-1}{2}}\Theta (\theta _{13}>\theta _{23})\\\delta (\rho -\frac {s_{123}}{p_T^2R^2}) \Theta _\text {\Ym } \Theta (\theta _{13}>\theta _{23}) \ _2F_1(1,R'(\rho _b\frac {\tau }{1-\tau }),1+R'(\rho _b\frac {\tau }{1-\tau }),\tau )\\\frac {e^{-R(\rho _b\frac {\tau }{1-\tau })-\gamma _E R'(\rho _b\frac {\tau }{1-\tau })}}{\Gamma [1+R'(\rho _b\frac {\tau }{1-\tau })]} \sd z \sd z_p \frac {\sd \theta _{12}^2}{\pi }\frac {\sd \theta _{13}^2}{\theta _{13}^2}\frac {\sd \theta _{23}^2}{\theta _{23}^2} \ ,















  





   





 






{eq:TC_result} \rho \frac {\sd \Sigma ^{\tau <\frac {1}{2}}(\tau )}{\sd \rho }= \left (\frac {C_F}{2\pi }\right )^2 \int \alpha _s(k_{t1}) \alpha _s(k_{t2}) p_{gq}(z)p_{gq}(z_p) \Delta ^{\sfrac {-1}{2}}\Theta (\theta _{13}>\theta _{23})\\\delta (\rho -\frac {s_{123}}{p_T^2R^2}) \Theta _\text {\Ym } \Theta (\theta _{13}>\theta _{23}) \ _2F_1(1,R'(\rho _b\frac {\tau }{1-\tau }),1+R'(\rho _b\frac {\tau }{1-\tau }),\tau )\\\frac {e^{-R(\rho _b\frac {\tau }{1-\tau })-\gamma _E R'(\rho _b\frac {\tau }{1-\tau })}}{\Gamma [1+R'(\rho _b\frac {\tau }{1-\tau })]} \sd z \sd z_p \frac {\sd \theta _{12}^2}{\pi }\frac {\sd \theta _{13}^2}{\theta _{13}^2}\frac {\sd \theta _{23}^2}{\theta _{23}^2} \ ,




























where the quantities ρb, kt1, and kt2 are as defined in Eq. (6.29) 6. Eq. (6.19) can be 
recovered from Eq. (6.30) by replacing s123 → ρa + ρb, neglecting the hard collinear 
part of the splitting functions, carrying out the θ12 integral (equivalent to an azimuthal 
integral) and changing phase-space variables back to ρa, ρb, za and zb. For the sake of 
brevity, the above result is given only for the C2

F colour channel, however, our final 
results include the CFCA and CFnf colour channels, where a single gluon is emit-
ted and then decays as opposed to the two independent emissions shown above. We 
also include secondary Sudakov factors in our final result exactly as before. Our re-
sults for pre-groomed jets are obtained by replacing the primary radiator with the 
groomed variant as discussed in section 6.3.3.

Eq. (6.30) is evaluated numerically using the Suave numerical integrator [237] inter-
faced to Mathematica [203]. As the cut on τ32 restricts emissions down to very low 
transverse momenta, we freeze the running coupling at kt = 1.5 GeV to prevent 
divergences due to the Landau pole. The tagged background fraction is constructed 
from Eq. (6.30) by integrating ρ over the mass window. This is shown in figure 6.4
along with the same quantity derived from parton shower simulations using both 
Pythia and Herwig [86] for three variations on our calculation: no grooming, Soft 
Drop with β = 2 pre grooming, and pre-grooming with mMDT.

6In deriving equation (6.30) all emissions are considered to contribute to the jet mass as shown in eq. (6.29). 
As well as allowing us to capture the function of τ multiplying single logarithms in mass scales, this also generates 
τ dependant terms which are beyond our accuracy. These terms are removed, as discussed in section 6.3.3, by ne-
glecting the τ dependence in the pre-factor beyond the leading 1/1 − τ term which leads to the hypergeometric func-
tion in eq. (6.30). Specifically, we have set τ to zero inside the delta function, which would otherwise be written as 

δ

(
ρ− s123

p2
T

+O(τ)

)
.
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(b) With β = 2 Soft Drop  
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(c) With mMDT

Figure 6.4. A comparison of our calculation for background tagging rate against parton show Monte 
Carlo simulations for no grooming, grooming with Soft Drop β = 2, and grooming with mMDT.

In all cases one notes that our results are in reasonable agreement with parton shower 
predictions, given the uncertainties of the calculations and the shower predictions 
due to subleading terms present in each case, and also reflected in the difference be-
tween Herwig and Pythia showers. In the case of no pre-grooming or grooming with 
β = 2 Soft Drop, our finite τ calculation is clearly an improvement of the small τ cal-
culation over a wide range of τ values. Where jets are pre-groomed with mMDT, the 
finite τ effects we include still have a sizeable impact and improve agreement with 
the parton showers as τ → 1

2
, however, at smaller values of τ it is not clear that 

agreement with the parton showers is improved by their inclusion. This is potentially 
due to the fact that the leading logs in this case are single logs and we do not include 
any sources of next-to–leading logarithms (or their interplay with the τ dependence), 
other than the finite τ corrections we introduced here.

Figure 6.4 also shows increasing differences between results from parton showers as 
the level of grooming decreases. Hence the mMDT result, involving more aggressive 
grooming, is in better agreement between the two shower descriptions over a wider 
range in τ , while the un-groomed case shows the largest differences. This is likely 
due to the differences in the modelling of soft gluon effects between the two showers, 
which is ameliorated by grooming.

6.4 Signal jets

Here we consider the action of the Ym-Splitter method with a τ32 cut on the top quark 
initiated signal jet. In ref. [25] studies were carried out for top jets with a range of 
tagging methods including Ym-Splitter both with mMDT and Soft Drop pre-grooming. 
Here one has to account, in principle, for gluon radiation in both the top produc-
tion and top decay processes. In the highly boosted limit the top quark is similar to 
a light quark and the role of soft gluon radiation and its resummation therefore be-
comes as important as for the background QCD case. In particular, in the boosted 
limit one can ignore the dead-cone effect [238], which does not affect our logarithmic 
accuracy. We shall also consider soft gluon energies well above the top width where 
we can neglect additional details of the soft gluon emission pattern studied for in-
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stance in [239]. In the region relevant to our studies we can therefore consider soft 
emissions as arising from a single fast moving colour charge aligned with the initial 
top quark direction. 7

In spite of these simplifying dynamical assumptions, for top jets, the resummation 
of large logarithms for the tagging and grooming combinations we consider is more 
complicated than for the case of background jets. In particular the three-pronged 
structure of the jet can arise in multiple ways including from the electroweak decay 
of the top system as well as from soft gluon emission effects. Therefore as in ref. [25] 
our targeted accuracy will be lower for the signal case and shall omit double loga-
rithms in ζ, ρ/ρmin and other similar ratios. We shall mainly aim at capturing lead-
ing logarithms in m2/R2p2T where m is a mass-scale which is at most of the order of 
the top mass.

6.4.1 Jet mass distribution for top jets

We start by computing the fraction of top jets tagged by simply requiring the in-
variant mass to be within some mass window. Radiation produced by the virtual 
top quark emerging from the hard process can be recombined with the final top de-
cay products to form the final jet. Placing an upper limit on the jet mass therefore 
directly constrains this radiation and results in a Sudakov form factor precisely as 
for a light quark jet. We restrict ourselves to the case where the lower edge of the 
mass window is below the top mass, so that jets containing all of the top decay prod-
ucts will have mass larger than this. Of course, there will be some fraction of events 
where not all of the top decay products are reconstructed as a single jet, however 
such configurations as suppressed by a power of mt

pT
[30] and hence can be neglected 

to our accuracy. We can then write the tagged fraction of events as 

  \label {eq:topMassDist} \Sigma (\rho )=\frac {1}{\sigma _{0}}\int |M_{t\rightarrow bq\overline {q}}|^{2} \sd \Phi _{3} \delta \left (\frac {s_{123}}{R^2p_{t}^{2}}-\rho _{t}\right ) \Theta _{\text {Clust}} \ S_{\text {QCD}}, 














  (6.31)

where |Mt→bqq|2 is the squared matrix-element for the top decay, dΦ3 is the three-
body phase-space in the collinear approximation, and ΘClust is the jet clustering con-
dition as for the background case (see Eqs. (6.25) and (6.28) ). The normalisation 
factor σ0 is just the result without considering QCD corrections i.e. the squared matrix-
element for top decay integrated over the final state phase-space with the jet clus-
tering requirement. The factor SQCD takes into account the constraint on QCD ra-
diation through limiting the jet mass. Given that the jet mass can be expressed in 
terms of multiple soft gluon emissions such that ρ = ρt+

∑
i ρi, with ρt = m2

t/(R
2p2T ), 

the constraint on ρi just produces a Sudakov form factor which factorises from the 
7To account for large logarithms with a τ32 cut we will also need to consider additional collinear radiation from 

the colour charges arising from W decay within the top jet.
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integral over the top-decay phase-space to give: 

  \label {eq:signalsudakov} \Sigma (\rho ) = \ S_{\text {QCD}} =e^{-R\left (\rho -\rho _t \right )},      (6.32)

where R (ρ− ρt) is the standard jet mass Sudakov evaluated to NLL accuracy [222] 
at the shifted scale ρ− ρt.8
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Figure 6.5. A comparison between our analytical calculation of the cumulative jet mass distribution 
Σ(ρ) for top quark initiated jets with ρ = m2/R2p2T , with pT > 2 TeV and the same distribution 

derived from Pythia simulations.

In order to test this result and the approximations inherent in deriving it, we com-
pare our result to expectations from Pythia 8. For our Pythia study we choose the 
lower edge of the mass window to be 10 GeV below the top mass which serves to 
further reject events where the top decay constituents are not recombined into the 
final jet. Effects contributing at the lower edge of the mass range should thus only 
differ from our result by numerically small effects. Pythia was used to create a sam-
ple of 1 million tt events, with UE, MPI and hadronisation deactivated, and Fastjet 
[109] was then used to find CA jets with R = 1. Figure 6.5 shows the integrated jet 
mass distribution as the upper limit on the mass range is varied. Our analytical es-
timate is in good agreement with the distribution obtained with Pythia and Fastjet. 
As m approaches the top mass the agreement between our calculation and Pythia 
slightly worsens, which is to be expected, as effects which we neglect, including non-
perturbative effects, become relevant for values of m very close to the top mass.

8Although we use the full heavy jet mass radiator evaluated to NLL accuracy the result is only accurate to mod-
ified LL accuracy for our case. In particular we neglect non-global [70] and clustering logarithms [240] that are rele-
vant here at NLL level.
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6.4.2 Top jets with Ym-Splitter 

Next we consider the application of Ym-Splitter to the tagging of top jets. This was 
already studied in ref. [25] where it was noted that the signal case had a number of 
additional complications relative to the description of QCD background jets, which 
made the attainment of leading logarithmic accuracy in each of the parameters ρ, 
ρmin/ρ and ζ substantially harder. For this reason only basic leading logarithmic ac-
curacy in ρ (or equivalently in ρmin) was targeted which allowed for a simplified treat-
ment of the Sudakov form factor. Consistently with the accuracy goal of that article, 
complications including the possibility of soft gluon emissions giving one of the three 
prongs found by the tagger, and the interplay with the mass window constraint were 
neglected. The results, broadly speaking, gave a reasonable description of the main 
behaviour seen with parton showers, but the agreement was not as good as seen for 
QCD background jets.

Here, prior to discussing N-subjettiness, we shall attempt to at least partially address 
some of the complications that are mentioned above for pure Ym-Splitter . In par-
ticular we now consider in the soft-collinear limit, the situation where a single soft 
emission can be de-clustered as one of the prongs found by the tagger in addition to 
the case where the de-clustered prongs arise from the electroweak top decay process. 
Let us start by considering the result at leading-order i.e. neglecting all QCD radia-
tive corrections. Then we can write 

 \label {eq:LoTopYmDist} \Sigma (\rho ,\rho _{\text {min}},\zeta )=\frac {1}{\sigma _{0}}\int |M_{t\rightarrow bq\overline {q}}|^{2} \sd \Phi _{3} \delta \left (\frac {s_{123}}{R^2p_{t}^{2}}-\rho _{t}\right ) \Theta _{\text {Clust}} \Theta _{\text {\Ym }},   














 (6.33)

where 

  \Theta _{\text {\Ym }}= \Theta (\text {Min}(\rho _{12},\rho _{13},\rho _{23})>\rho _{\text {min}})\Theta (\text {Min}(z_{1},z_{2},z_{3})>\zeta ),            (6.34)

and 1, 2, 3 refer to the three prongs identified by Ym-Splitter . As there is no soft en-
hancement to the top decay matrix element, we use only a collinear approximation 
for the pairwise invariant masses, ρij = xixjθ

2
ij in our calculations of the leading-

order top decay.
Next we consider QCD radiative corrections in the soft and collinear limit. We first 
take into account the situation that no soft gluon emissions are de-clustered as a prong 
by Ym-Splitter . This imposes a constraint on real emissions in addition to the con-
straint on jet mass, which comes from the requirement that the soft emission must 
set a smaller gen-kt distance than those set by the three-pronged top system. La-
belling the soft emission by i we then have that min(di1, di2, di3) < min(d12, d13, d23). 
This complicated constraint simplifies in the soft and strongly-ordered limit responsi-
ble for the leading double logarithms we seek. To be more precise, the three-pronged 
top decay results in relatively energetic particles owing to the lack of soft enhance-
ment in the electroweak decay. For a soft gluon emission to set a comparable gen-kt
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distance it must be emitted at a relatively large angle compared to the opening angle 
between the top decay products, 1 � θ2i � θ2ij, where θi is the angle with respect 
to the jet axis, or equivalently, the emitting top quark. In this region we can approx-
imate the angle made by the soft emission with any given prong from the top decay 
simply by the angle with respect to the jet axis which allows us to write the gen-kt
distance for the gluon as ziθ2i .

In addition to the gen-kt distance, the soft emissions are also subject to the jet mass 
constraint as before. Therefore the argument of the Sudakov corresponds to whichever 
is the tighter constraint which gives 

{eq:alpha0TopYm} \Sigma ^{(0)}(\rho ,\rho _{\text {min}},\zeta )=\\ \frac {1}{\sigma _{0}}\int |M_{t\rightarrow bq\overline {q}}|^{2} \sd \Phi _{3} \delta \left (\frac {s_{123}}{R^2p_{t}^{2}}-\rho _{t}\right ) \Theta _{\text {Clust}}\Theta _{\text {\Ym }} \ e^{-R(\min (d_{12},d_{13},d_{23},\rho -\rho _t))},  

{eq:alpha0TopYm} \Sigma ^{(0)}(\rho ,\rho _{\text {min}},\zeta )=\\ \frac {1}{\sigma _{0}}\int |M_{t\rightarrow bq\overline {q}}|^{2} \sd \Phi _{3} \delta \left (\frac {s_{123}}{R^2p_{t}^{2}}-\rho _{t}\right ) \Theta _{\text {Clust}}\Theta _{\text {\Ym }} \ e^{-R(\min (d_{12},d_{13},d_{23},\rho -\rho _t))},

















where by Σ(0) we mean the contribution where we enforce that no soft gluons can 
give one of the 3 prongs found by the tagger.

Next we correct this picture by allowing a soft emission to form one of the prongs 
found by Ym-Splitter , a situation that can first arise at order αs. Consider a single 
gluon emerging from the declustering process before one of the top decay products, 
and thus being identified as a prong. This gluon is constrained so that it has energy 
fraction z > ζ and sets a minimum pairwise mass with the other prongs (labelled 1 
and 2) of mmin, i.e. min(ρ1g, ρ2g) > ρmin, where g labels the gluon. The gluon must 
also not set a jet mass which pushes the jet outside of the mass window. The emis-
sion of a single soft gluon factorises from the top decay process and gives an order 
αs contribution to the pre-factor. Subsequent gluon emissions are constrained by the 
requirement of not being de-clustered as a prong as well as being subject to the jet 
mass constraint and again give rise to a Sudakov suppression. Hence we obtain the 
result: 

{eq:alpha1TopYm} \Sigma ^{(1)}(\rho ,\rho _{\text {min}},\zeta )=\\\frac {1}{\sigma _{0}}\int |M_{t\rightarrow bq\overline {q}}|^{2} \sd \Phi _{3} \delta \left (\frac {s_{123}}{R^2p_{t}^{2}}-\rho _{t}\right )\int \sd z \frac {d\theta ^2}{\theta ^2} \frac {\alpha _{s}(z\theta p_{t}) C_F}{\pi }p_{gq}(z)\Theta (z\theta ^{2}<\rho -\rho _{\text {top}})\\ \Theta _{\text {Clust}} \sum _{i<j\neq k}\bigg (\Theta (d_{ij}<\text {Min}(d_{ik},d_{kj}))\Theta (z\theta ^2>d_{ij})\Theta (\text {Min}(\rho _{k(ij)}, \, z\theta ^{2})>\rho _{\text {min}}) \\ \Theta (\text {Min}(z,z_{k},(z_{i}+z_{j})>\zeta ) e^{-R (\text {Min}(d_{k(ij)},z\theta ^{2},\rho -\rho _t-z\theta ^2))}\bigg ).  

{eq:alpha1TopYm} \Sigma ^{(1)}(\rho ,\rho _{\text {min}},\zeta )=\\\frac {1}{\sigma _{0}}\int |M_{t\rightarrow bq\overline {q}}|^{2} \sd \Phi _{3} \delta \left (\frac {s_{123}}{R^2p_{t}^{2}}-\rho _{t}\right )\int \sd z \frac {d\theta ^2}{\theta ^2} \frac {\alpha _{s}(z\theta p_{t}) C_F}{\pi }p_{gq}(z)\Theta (z\theta ^{2}<\rho -\rho _{\text {top}})\\ \Theta _{\text {Clust}} \sum _{i<j\neq k}\bigg (\Theta (d_{ij}<\text {Min}(d_{ik},d_{kj}))\Theta (z\theta ^2>d_{ij})\Theta (\text {Min}(\rho _{k(ij)}, \, z\theta ^{2})>\rho _{\text {min}}) \\ \Theta (\text {Min}(z,z_{k},(z_{i}+z_{j})>\zeta ) e^{-R (\text {Min}(d_{k(ij)},z\theta ^{2},\rho -\rho _t-z\theta ^2))}\bigg ).





















  

{eq:alpha1TopYm} \Sigma ^{(1)}(\rho ,\rho _{\text {min}},\zeta )=\\\frac {1}{\sigma _{0}}\int |M_{t\rightarrow bq\overline {q}}|^{2} \sd \Phi _{3} \delta \left (\frac {s_{123}}{R^2p_{t}^{2}}-\rho _{t}\right )\int \sd z \frac {d\theta ^2}{\theta ^2} \frac {\alpha _{s}(z\theta p_{t}) C_F}{\pi }p_{gq}(z)\Theta (z\theta ^{2}<\rho -\rho _{\text {top}})\\ \Theta _{\text {Clust}} \sum _{i<j\neq k}\bigg (\Theta (d_{ij}<\text {Min}(d_{ik},d_{kj}))\Theta (z\theta ^2>d_{ij})\Theta (\text {Min}(\rho _{k(ij)}, \, z\theta ^{2})>\rho _{\text {min}}) \\ \Theta (\text {Min}(z,z_{k},(z_{i}+z_{j})>\zeta ) e^{-R (\text {Min}(d_{k(ij)},z\theta ^{2},\rho -\rho _t-z\theta ^2))}\bigg ).




       

{eq:alpha1TopYm} \Sigma ^{(1)}(\rho ,\rho _{\text {min}},\zeta )=\\\frac {1}{\sigma _{0}}\int |M_{t\rightarrow bq\overline {q}}|^{2} \sd \Phi _{3} \delta \left (\frac {s_{123}}{R^2p_{t}^{2}}-\rho _{t}\right )\int \sd z \frac {d\theta ^2}{\theta ^2} \frac {\alpha _{s}(z\theta p_{t}) C_F}{\pi }p_{gq}(z)\Theta (z\theta ^{2}<\rho -\rho _{\text {top}})\\ \Theta _{\text {Clust}} \sum _{i<j\neq k}\bigg (\Theta (d_{ij}<\text {Min}(d_{ik},d_{kj}))\Theta (z\theta ^2>d_{ij})\Theta (\text {Min}(\rho _{k(ij)}, \, z\theta ^{2})>\rho _{\text {min}}) \\ \Theta (\text {Min}(z,z_{k},(z_{i}+z_{j})>\zeta ) e^{-R (\text {Min}(d_{k(ij)},z\theta ^{2},\rho -\rho _t-z\theta ^2))}\bigg ).     




In the above result the first line gives the pre-factor which, aside from the usual squared 
matrix-element and phase-space integration for top decay, now also has the QCD 
pre-factor coming from real emission of the soft gluon. The three prongs are given by 
the soft gluon, a clustered pair of particles (ij) from the top decay and the remain-
ing particle k arising from the top decay. The condition Θ(zθ2 > dij) alongside the 
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requirement that z > ζ ensures that the soft gluon is de-clustered as a prong. 9 The 
condition Θ(Min(ρk(ij), zθ2) > ρmin is the ρmin condition where again we used the fact 
that at our accuracy we can replace the gluon angle with respect to a given prong by 
that with respect to the jet axis. Finally we discuss the Sudakov which has an argu-
ment Min(dk(ij), zθ2, ρ−ρt− zθ2), reflecting the competing constraints on subsequent 
soft emissions. Firstly we have that emissions must not set a gen-kt distance larger 
than the smallest gen-kt distance amongst the 3 prongs found by Ym-Splitter , given 
by Min(dk(ij), zθ2). Secondly we have that the soft emissions must not push the jet 
out of the mass window, i.e. the jet mass should be below ρ. Taking into account the 
additional soft emission we now have as a prong, this condition implies that for mul-
tiple subsequent emissions i we must have 

∑
i ρi < ρ− ρt − zθ2. Taken together these 

conditions, on gen-kt and mass, produce the Sudakov in Eq. (6.36).

It is additionally possible for two soft emissions to be resolved i.e. form two of the 
prongs found by Ym-Splitter . This occurs at order α2

s with only modest logarithmic 
enhancements 10 and hence such contributions are suppressed relative to the terms 
we include. We therefore omit them here. We also note that we have ignored soft 
emissions from the qq̄ system produced by the splitting of the W boson. Soft emis-
sions from this dipole are restricted in angle, by virtue of angular ordering, to have 
an angle less than that of the qq̄ pair. Since they are part of the top system they also 
do not contribute to a shift in mass. Hence to our leading logarithmic accuracy they 
can also be ignored.

Our results are compared to Pythia 8 in Fig. 6.6, where we plot the signal efficiency 
as a function of mmin (c.f. similar plots in ref. [25]). We show our results for both 
cases with (red crosses) and without (blue dots) a resolved gluon prong. Our ana-
lytics agrees in both cases with the general behaviour seen with Pythia and we note 
an improved agreement with Pythia when the Σ(1) contribution, amounting to an 
O(15%) correction, is included. As before we choose the lower limit of the mass win-
dow to be 10 GeV below the top mass.

6.4.3 Ym-Splitter with grooming for signal jets

Next we examine the impact of pre-grooming with Soft Drop on our results for Ym-
Splitter applied to top jets. Relative to results from previous studies [25] here we 
also account for the possibility of a resolved gluon prong as in the previous subsec-
tion. The result of pre-grooming with mMDT or Soft Drop is again to essentially re-
place the Sudakov for the un-groomed case by the Sudakov for the groomer i.e. we 
make the following replacements in the Σ(0) and Σ(1) terms of the un-groomed results 

9Note that here we used the same leading-logarithmic simplification for the gen-kt distance for soft gluon emis-
sions that led to the result in Eq. (6.33).

10We remind the reader that resolved emissions are constrained in several ways. They need to have energy larger 
than ζ as well as a mass large enough to satisfy the ρmin condition but not large enough to push the jet out of the 
mass window. These constraints lead to the appearance of only modest logarithmic contributions.

e^{-R(\min (d_{12},d_{13},d_{23},\rho -\rho _t))} &\to e^{-R_{\text {mMDT/SD}}(\min (d_{12},d_{13},d_{23},\rho -\rho _t)}, \\ \nonumber e^{-R(\text {Min}(d_{k(ij)},z\theta ^{2},\rho -\rho _t-z\theta ^2))} &\rightarrow e^{-R_{\text {mMDT/SD}}(\text {Min}(d_{k(ij)},z\theta ^{2},\rho -\rho _t-z\theta ^2)},
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Figure 6.6. A comparison between different levels of approximation in analytical calculations and a 
Pythia simulation for top jets tagged with Ym-Splitter in a mass range 163GeV < m < 225GeV

with ζ = 0.05 as a function of mmin.

(see Eqs. (6.35) and (6.36)): 

e^{-R(\min (d_{12},d_{13},d_{23},\rho -\rho _t))} &\to e^{-R_{\text {mMDT/SD}}(\min (d_{12},d_{13},d_{23},\rho -\rho _t)}, \\ \nonumber e^{-R(\text {Min}(d_{k(ij)},z\theta ^{2},\rho -\rho _t-z\theta ^2))} &\rightarrow e^{-R_{\text {mMDT/SD}}(\text {Min}(d_{k(ij)},z\theta ^{2},\rho -\rho _t-z\theta ^2)},   e^{-R(\min (d_{12},d_{13},d_{23},\rho -\rho _t))} &\to e^{-R_{\text {mMDT/SD}}(\min (d_{12},d_{13},d_{23},\rho -\rho _t)}, \\ \nonumber e^{-R(\text {Min}(d_{k(ij)},z\theta ^{2},\rho -\rho _t-z\theta ^2))} &\rightarrow e^{-R_{\text {mMDT/SD}}(\text {Min}(d_{k(ij)},z\theta ^{2},\rho -\rho _t-z\theta ^2)},

e^{-R(\min (d_{12},d_{13},d_{23},\rho -\rho _t))} &\to e^{-R_{\text {mMDT/SD}}(\min (d_{12},d_{13},d_{23},\rho -\rho _t)}, \\ \nonumber e^{-R(\text {Min}(d_{k(ij)},z\theta ^{2},\rho -\rho _t-z\theta ^2))} &\rightarrow e^{-R_{\text {mMDT/SD}}(\text {Min}(d_{k(ij)},z\theta ^{2},\rho -\rho _t-z\theta ^2)}, 

where the suffix mMDT or SD is used to indicate the grooming variant. We note 
that unlike the case of the QCD background jets, we have not included Rangle terms 
in the signal case. Although such terms would in principle be present, the angular 
scales involved are of the order of the opening angles between top decay products. 
At such angular scales the radiation pattern becomes more complicated as one also 
needs to account for radiation from the qq̄ dipole produced by the colour singlet W 
decay. Given that the terms produced are logarithms in the ratio of two small scales, 
i.e. of the same level of significance as ln ρ/ρmin terms, they are beyond the accuracy 
we aim for in the case of signal jets.

The tagged signal fraction, with our usual choice of parameter values, is compared to 
a Pythia simulation in Figure 6.7, again showing the results with and without a re-
solved gluon prong and for grooming with SD (left) and mMDT(right). We see that 
except for the extreme region, where the tagged signal fraction is very small, our an-
alytic results, especially after inclusion of the resolved gluon case, are in good overall 
agreement with the behaviour seen with Pythia.
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(a) Pre-grooming with Soft Drop (β = 2)  
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Figure 6.7. A comparison between our analytical calculations and a Pythia simulation for 
pre-groomed top jets tagged with Ym-Splitter in a mass range 163GeV < m < 225GeV with 

ζ = 0.05 as a function of mmin.

6.4.4 Ym-Splitter with τ32 and grooming for signal jets

We now wish to understand the effect of adding a cut on τ32 to the tagged signal dis-
tribution after application of Ym-Splitter . We shall first consider the un-groomed 
case and then include the effects of grooming. We begin with the configuration where 
all three of the LO top decay products are identified as prongs by Ym-Splitter . With 
no additional emissions τ3 vanishes and hence a cut on τ32 has no impact. Adding a 
set of soft and collinear emissions, one has to consider how these emissions are con-
strained by the τ cut, the mass-window cut and the requirement that they should 
not give a resolved prong on applying Ym-Splitter .

We first introduce an approximation into our definition of τ2 which is valid to within 
the overall accuracy we can obtain with our current calculations for the signal case, 
i.e. LL accuracy in ρ with neglect of logs in ratios of mass scales and ζ. Consider the 
region of phase space where say d12 < min(d13, d23), so that the first declustering will 
lead to two gen-kt axes lying along p3 and p1 + p2. In this region of phase space, to 
leading order where there are no additional emissions, τ2 = z1θ

2
1,12 + z2θ

2
2,12. As the 

p1 + p2 direction will be aligned more with the harder of partons 1 and 2 we make 
the approximation that the gen-kt axis is aligned with this parton, so that to LO we 
can approximate τ2 = min(d12, d13, d23). As there is no logarithmic enhancement as-
sociated with the leading order decay of the top, this approximation will introduce 
an O(1) rescaling of the argument of the Sudakov factor, which is consistent with an 
NLL correction and hence beyond our LL accuracy.

When considering the role of additional soft emissions let us first consider, as in sec-
tion 6.4.3 before, primary emissions at a large angle to the opening angles of the top 
decay system. Regardless of which of the gen-kt axes these emissions are closer to, 
their contribution to τ3 and τ2 may always be approximated by 

∑
i ρi, where ρi =

ziθ
2
i and θi is the emission angle with respect to the emitting top quark direction. 
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The constraint on emissions due to the τ32 cut is then τ32 ≈
∑

i ρi
min(d12,d13,d23)+

∑
i ρi

< τ

which gives the constraint 
∑

i ρi < min(d12, d13, d23) τ
1−τ

. For τ < 1/2 this subjettiness 
constraint overcomes the constraint from Ym-Splitter , ρi < min(d12, d13, d23) and 
hence the argument of the primary emission Sudakov depends only on the competing 
subjettiness and jet mass constraints.

Until now we have neglected the role of secondary radiation from the qq̄ system (aris-
ing from W decay) since these emissions bring only enhancements in ratios of sim-
ilar mass scales. If we wish to obtain a good description of the signal with a τ cut 
including also the region where τ � 1, we need to consider all sources of double-
logarithmic corrections in τ . Secondary emissions are a source of such double-
logarithmic terms and hence we include them here. The secondary emission terms 
are given by taking into account soft and collinear emissions from the q and q̄ with 
the constraint that the emission angle is smaller than θqq̄ the opening angle of the qq̄
dipole. This leads to results which have the same form as the corresponding results 
for the background case (see Eq. (6.6)) with za replaced by zq and θa by θqq̄ for emis-
sion from q and similarly for emission from the q̄. We note that secondary emissions 
are part of the decaying top system and hence do not contribute to a shift in mass so 
that the jet mass constraint is irrelevant here.

Thus we can write 

{eq:topTau} \Sigma ^{\tau <\frac {1}{2}}(\rho _{\text {min}},\zeta ,\tau ) = \\\frac {1}{\sigma _{0}}\int |M_{t\rightarrow bq\overline {q}}|^{2} \sd \Phi _{3} \delta \left (\frac {s_{123}}{R^2p_{t}^{2}}-\rho _{t}\right ) \Theta _{\text {Clust}}\Theta _{\text {\Ym }} \frac {e^{-R -\gamma _E R'}}{\Gamma [1+R']},
   

{eq:topTau} \Sigma ^{\tau <\frac {1}{2}}(\rho _{\text {min}},\zeta ,\tau ) = \\\frac {1}{\sigma _{0}}\int |M_{t\rightarrow bq\overline {q}}|^{2} \sd \Phi _{3} \delta \left (\frac {s_{123}}{R^2p_{t}^{2}}-\rho _{t}\right ) \Theta _{\text {Clust}}\Theta _{\text {\Ym }} \frac {e^{-R -\gamma _E R'}}{\Gamma [1+R']},




















with 

R \equiv R \left (\min (\frac {\tau }{1-\tau }\min (d_{12},d_{13},d_{23}),\rho _{\text {max}}-\rho _t)\right )+\\R^{\text {secondary}}\left (\frac {\tau }{1-\tau }\min (d_{12},d_{13},d_{23}),z_q,\theta _{q\overline {q}}^2\right ) \\+R^{\text {secondary}}\left (\frac {\tau }{1-\tau }\min (d_{12},d_{13},d_{23}),z_{\overline {q}},\theta _{q\overline {q}}^2 \right ), 





    




R \equiv R \left (\min (\frac {\tau }{1-\tau }\min (d_{12},d_{13},d_{23}),\rho _{\text {max}}-\rho _t)\right )+\\R^{\text {secondary}}\left (\frac {\tau }{1-\tau }\min (d_{12},d_{13},d_{23}),z_q,\theta _{q\overline {q}}^2\right ) \\+R^{\text {secondary}}\left (\frac {\tau }{1-\tau }\min (d_{12},d_{13},d_{23}),z_{\overline {q}},\theta _{q\overline {q}}^2 \right ),





   


R \equiv R \left (\min (\frac {\tau }{1-\tau }\min (d_{12},d_{13},d_{23}),\rho _{\text {max}}-\rho _t)\right )+\\R^{\text {secondary}}\left (\frac {\tau }{1-\tau }\min (d_{12},d_{13},d_{23}),z_q,\theta _{q\overline {q}}^2\right ) \\+R^{\text {secondary}}\left (\frac {\tau }{1-\tau }\min (d_{12},d_{13},d_{23}),z_{\overline {q}},\theta _{q\overline {q}}^2 \right ),





   




where ρmax is the upper limit on the jet mass. Finally we account for the effect of 
grooming. To take this into account one makes the usual replacement of the primary 
emission radiator by its groomed counterpart. An additional subtlety that is present 
here is the existence of Rangle terms (see Eq. (6.22)) which originate from emissions 
which are not visible to the groomer as they are shielded by larger angle emissions 
that stop the grooming. Such terms have been ignored for the signal since they are 
complicated to account for and produce only logarithms of mass ratios which we ne-
glect. However in the presence of a τ cut such terms also induce double logarithms in 
τ as described by Eq. (6.23). A consistent description of the double logs in τ should 
also include the double logarithm originating here while we can neglect all other de-

R(\min (\frac {\tau }{1-\tau }\min (d_{12},d_{13},d_{23}),\rho _{\text {max}}-\rho _t))\to \\ R_{\text {mMDT}}(\min (\frac {\tau }{1-\tau }\min (d_{12},d_{13},d_{23}),\rho _{\text {max}}-\rho _t))+R_{\text {angle}}(\tau ),



tails associated to this term. Grooming is therefore included through the replace-
ment of the radiator as 

R(\min (\frac {\tau }{1-\tau }\min (d_{12},d_{13},d_{23}),\rho _{\text {max}}-\rho _t))\to \\ R_{\text {mMDT}}(\min (\frac {\tau }{1-\tau }\min (d_{12},d_{13},d_{23}),\rho _{\text {max}}-\rho _t))+R_{\text {angle}}(\tau ),


     

R(\min (\frac {\tau }{1-\tau }\min (d_{12},d_{13},d_{23}),\rho _{\text {max}}-\rho _t))\to \\ R_{\text {mMDT}}(\min (\frac {\tau }{1-\tau }\min (d_{12},d_{13},d_{23}),\rho _{\text {max}}-\rho _t))+R_{\text {angle}}(\tau ),


      

where, at fixed coupling, Rangle(τ) =
CFαs

2π
ln2 τ .

We have thus far not considered the case where a soft gluon is resolved as a Ym-Splitter 
prong, which we took into account in the previous subsections. For such a config-
uration, the effect of the τ cut is actually to constrain the phase space of partons 
arising from the LO top decay. As the electroweak top decay is not logarithmically 
enhanced, the restriction from the τ cut leads to a suppression proportional to τ . 
Given that the configuration with a resolved gluon prong is already suppressed by a 
power of αs, a further suppression with τ implies that we may ignore this term while 
still retaining a reasonable description of the overall behaviour.11

Equation (6.38) is evaluated and compared to the same distribution derived from 
simulations using Pythia in figure 6.8. Although given the accuracy of the shower 
and the analytic calculations (each of which is leading-logarithmic albeit with in-
clusion of some key NLL effects), one would expect to see the moderate level of dif-
ference that can be observed in the figure, it is noticeable that the behaviour in τ is 
well captured by the analytics, especially for the un-groomed case and for pre-grooming 
with Soft Drop. For grooming with mMDT there is good agreement at smaller τ and 
a deviation at larger values of τ . Here, given that the leading logarithms are single 
logarithms, the analytics and the shower would each only contain (at best) a correct 
leading-logarithmic description, but with potentially larger differences from spurious 
NLL effects in the shower and their interplay with τ . Moreover our neglect of config-
urations where a gluon is one of the resolved prongs from Ym-Splitter would also lead 
to differences at larger values of τ where the power suppression with τ , which was a 
factor in our neglecting this configuration, will be less pronounced. Neglect of such 
configurations may have more of an impact on the distributions where jets are pre-
groomed, as they can allow the jet to be tagged even if one of the electroweak top 
decay products is groomed away.

We note that Eq. (6.38) for the signal case reflects a few features that are different to 
the corresponding results for the QCD background. In particular for signal jets there 
is a lack of soft and collinear enhancements in the pre-factor resulting in the absence 
of the Hypergeometric function. Also, to our accuracy, the jet mass constraint does 
not affect the distribution for small enough τ cuts, or large enough ρmax, as a result 
of the fixed invariant mass of the leading-order system. This is clear from the argu-
ment of the Sudakov factor in equation (6.38) which contains a competition between 

11We remind the reader that the value of τ that gives the highest signal significance is τ ∼ 0.2. We have checked 
numerically, by studying specific configurations, that the power suppression with τ holds at leading order.
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(b) With β = 2 Soft Drop  
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(c) With mMDT

Figure 6.8. Comparison between our analytic calculation (crosses) and Pythia for the tagged signal 
distribution as a function of the cut on τ32 for jets without pre-grooming (left) , with pre-grooming 

using Soft Drop (centre) and with pre-grooming using the mMDT.

the τ cut and the mass-window. For a given τ32 cut we can estimate the threshold 
below which mmax should be taken if varying it is to have an effect on the tagged sig-
nal fraction: 

 \label {eq:TauToMass} m_{\text {max}}^{2}<m_t^2+ p_T^2 \frac {\tau }{1-\tau }\min (d_{12},d_{13},d_{23}). 
 

 



   (6.41)

For top jets, where min(d12, d13, d23)p2T may be roughly approximated by the W bo-
son mass squared, we estimate that, for τ = 0.3 and mt = 173 GeV, the jet mass 
constraint will not significantly affect the signal efficiency unless mmax . 181 GeV. In 
reality there will not be a hard threshold but some range of parameters over which 
the Sudakov suppression transitions from being due to the cut on τ32 to being due to 
the jet mass constraint. The application of this will be discussed further in the next 
section.

6.5 Exploiting jet mass cuts

In this section we discuss a notable feature of our calculations in terms of the differ-
ences between signal and background jets. As suggested by Eq. (6.41), one can re-
duce the cut on jet mass mmax, without impacting the signal until we reach a critical 
value depending on τ . Until we reach this point, reducing mmax results in a decrease 
in the background tagging rate and hence an increase in performance. While our an-
alytic studies are somewhat simplified and in particular neglect subleading terms, 
it is interesting to study the extent to which our observations may apply to parton 
shower studies when subleading effects are present. Figure 6.9 shows, using both an-
alytic calculations (left) and parton level MC simulations (right), how the signal tag-
ging rate varies with mmax for several fixed τ cuts both without grooming and with 
grooming via Soft Drop and the mMDT.

For the signal distribution the overall shape and dependence on τ is well described 
by our calculation, although, as before, there is some difference in the overall normal-
isation. The difference between our calculation and the distribution derived from MC 
worsens for smaller values of mmax, which should be expected, as non-perturbative 
effects, which can not be completely removed from parton shower simulations, will 
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(c) Analytic, groomed with Soft Drop (β = 2).
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(d) Parton level Monte Carlo, groomed with 
Soft Drop (β = 2).
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(e) Analytic, groomed with mMDT.
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(f) Parton level Monte Carlo, groomed with 
mMDT.

Figure 6.9. Analytic and Monte Carlo parton level curves showing how the signal tagging rate 
varies with mmax.

start to play more of a role in this region. While the signal tagging rate derived from 
MC simulations does not flatten off to the same extent as the analytic calculations 
do as mmax is increased, it is clear that beyond a certain value of mmax the signal effi-
ciency depends only very weakly on mmax .

Figure 6.10 shows similar plots for the case of quark jets. Our analytic predictions 
are again seen to be in overall good agreement with the Pythia shower capturing the 
mmax and τ dependences. It is notable that the jet mass constraint affects the back-
ground tagging rate in the same way for any cut on τ32, as there are not two compet-
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ing scales in the Sudakov factor. This opens up the possibility to improve the perfor-
mance of the tagging procedure by reducing mmax so that the signal tag rate remains 
approximately constant whilst removing a significant portion of the background.

170 180 190 200 210 220
mmax

0.000

0.001

0.002

0.003

0.004

0.005

0.006

b

Analytic < 0.4
Analytic < 0.3
Analytic < 0.2

(a) Analytic, un-groomed.
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(b) Parton level Monte Carlo, un-groomed.
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(c) Analytic, groomed with Soft Drop (β = 2).
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(d) Parton level Monte Carlo, groomed with 
Soft Drop (β = 2).
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Figure 6.10. Analytic and Monte Carlo (parton level) curves showing how the background tagging 
rate varies with mmax.

One may wonder, given the effectiveness of a tight cut on the jet mass, what improve-
ment is gained by cutting on τ32 in these circumstance. Figure 6.11 also shows a curve 
generated by varying mmax over the range 173 GeV to 225 GeV, but with no cut on 
τ32. In this case the signal significance is higher than cutting on τ32 with mmax = 225

GeV, but cutting on τ32 with mmax = 180 GeV is still the highest performing tagging 
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procedure.
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Figure 6.11. Signal significance against efficiency for three variations on the tagging procedure. All 
jets are groomed with mMDT and tagged with Ym-Splitter . Either τ or mmax is varied with a 

fixed cut placed on the other. The samples were produced using Pythia with hadronisation and UE 
activated.
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Figure 6.12. A measure of resilience to non-perturbative effects as mmax varies for three cuts on τ32. 
Jets are pre-groomed with mMDT.

We now investigate the impact of non-perturbative corrections on this tagging proce-
dure as mmax is varied. Figure 6.12 shows the resilience [170] to non-perturbative ef-

fects, defined as ζNP =
(

∆ε2s
〈εs〉2 +

∆ε2b
〈εb〉2

)− 1/2

where ∆ε is the difference between the par-
ton and hadron level tagging efficiency and 〈ε〉 is the mean of the two, for jets pre-
groomed with mMDT, as mmax is varied, for three different values of τ . To construct 
the resilience 10 million qq̄ events and 1 million tt̄ events were generated at both par-
ton and hadron level using Pythia. From figure 6.12 we see that the resilience to non-
perturbative effects does not strongly depend on mmax in the range considered, even 
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with mmax as low as 180 GeV. By contrast, reducing the cut on τ32 from 0.4 to 0.2
results in a marked drop in resilience. It would therefore be beneficial, in terms of 
reducing the impact of non-perturbative effects, to take τ not too small, say τ =

0.4, while imposing a rather tight cut on the jet mass to provide the discriminat-
ing power. These cuts provide a signal significance of around 6 with a signal effi-
ciency around 0.35. This is both a higher signal efficiency and significance than was 
reported in section 6.2 with mmax = 225 GeV and τ = 0.2, the highest significance 
achieved with the higher value of mmax.

6.6 Conclusions

In section 6.2 we studied the tagging performance of various combinations of groom-
ing with mMDT or soft drop with β = 2, Ym-Splitter and cutting on τ32, using three 
different levels of Monte Carlo simulation. From this we established that the per-
formance and resilience to hadronisation and UE were simultaneously maximised 
by the combination of grooming with mMDT, prong finding with Ym-Splitter and a 
cut on τ32 along with requiring the jet to be within a mass window. We then, in sec-
tion 6.3, calculated the tagged background fraction for this procedure with and with-
out grooming at modified LL accuracy and matched this to the triple collinear limit 
at order α2

s. Having understood the background distribution we moved onto signal 
jets, starting with a calculation of the tagging efficiency with just a mass window. 
We then incorporated the effect of tagging with Ym-Splitter into our calculations and 
found that configurations where a single gluon is identified as a prong by Ym-Splitter 
account for ten to fifteen percent of the tagged fraction. This configuration was ne-
glected in previous work. Finally, we included the cut on τ32 in our calculation of the 
tagged signal fraction. Here we found that the cut on τ32 competes with the upper 
limit on the jet mass for which sets the argument of the Sudakov factor, the scale 
above which emissions are vetoed. This gave rise to an approximate threshold, de-
pendent on τ , above with the mass cut has little effect on the signal distribution to 
be determined. This was then exploited in section 6.5 to improve the performance 
of the tagging procedure as it was understood that the upper limit on the jet mass 
could be reduced, thus suppressing the background, without significantly reducing 
the signal efficiency. We then studied the impact of hadronisation and UE with the 
reduced mass window and concluded that a tight mass window and looser cut on 
τ32 than was initially suggested in 6.2 is optimal if one wants to maintain signal ef-
ficiency and resilience to non-perturbative effects whilst increasing the signal signifi-
cance.
We have demonstrated that it is possible to analytically understand top tagging pro-
cedures of the kind widely used in experiment and that this understanding can bring 
optimisations in the way that the tagger is applied as well as giving confidence as to 
the robustness of the tagger. Moving forward, future work could investigate τβ32 with 
different values of β. τβ=1

32 would be particularly of interest as it is a common choice 
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in experiments. Studying similar steps but with a different prong finding algorithm, 
or exchanging τ32 for an energy correlation function would also be of interest.
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Chapter 7

Summary

The work presented in this thesis has focused on two topics, groomed observables at 
NNLL accuracy, and understanding a boosted top tagging method involving a combi-
nation of grooming, prong-finding, and a radiation constraining jet shape.
The work on groomed observables was presented in chapters 4 and 5, beginning in 
chapter 4 with a calculation of the groomed jet mass distribution at O(α2

s), start-
ing from the triple collinear splitting functions. It was shown there that the calcu-
lation could be structured as an inclusive piece, where the C/A clustering sequence 
of the groomer was replaced by one where all partons are clustered to their parent 
parton, and a piece accounting for the effect of the C/A clustering sequence. This 
clustering correction could be computed in the soft and collinear, but not strongly 
ordered, limit. Once terms related to strongly ordered dynamics had been removed, 
it was found that the inclusive piece was simply the O(α2

s) collinear contribution to 
the quark form factor, which is proportional to a coefficient often referred to as B(2)

[192]–[195]. This collinear NNLL term is the same as for the un-groomed jet mass, 
which reflects the fact that grooming only affects soft emissions. This work has not 
only provided the insight needed to derive resummed results for the distributions of 
groomed observables, as is done in chapter 5, but has also established a link between 
the NNLL hard collinear coefficient B(2) and the triple collinear splitting functions. 
This link between the triple collinear splitting functions and NNLL hard collinear 
terms has since been investigated further in ref. [211], and is relevant for efforts to 
include triple collinear splitting functions in parton showers and push their accuracy 
towards NNLL.
Making use of the insights from chapter 4, an expression for the distribution of ad-
ditive, rIRC safe, observables, computed on groomed jets, was derived at NNLL ac-
curacy, in the small zcut limit, in chapter 5. It was then shown how finite zcut effects 
could be included up to NLL accuracy, as per ref. [21], [44]. The heavy hemisphere 
mass, width, and Les Houches angularity, distributions were then matched to NLO, 
and the impact of NNLL terms, finite zcut effects, and matching were studied. It was 
found that finite zcut effects at NLL could be as important as NNLL terms, for values 
of zcut ≥ 0.1, although it was noted that fixed order matching could be used to ac-
count for some of this difference, by including finite zcut effects at fixed order. Whilst 
complete agreement was found with the SCET resummation of the jet mass distri-
bution at NNLL accuracy [47], differences in the treatment of terms which arise due 
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to the C/A clustering sequence were found at N3LL accuracy [48], [190]. It seems 
that these differences lead to an error at N3LL in the SCET result [47], [48], [190]. 
As this resummation is currently only formulated for quark jets, it can be applied 
to the phenomenology of e+e− collisions, but not compared to hadron collider data, 
where one has a mixture of quark and gluon initiated jets. A useful continuation of 
this work would therefore be to extend the resummation to gluon initiated jets, en-
abling comparison with measurements of jet shape observables at the LHC. Such 
comparisons could, for instance, be used to extract a value for the strong coupling, 
similar to what has been done using event shapes at e+e− colliders [159], [161]–[163], 
[241]. Another possible extension to this work is to extend the resummation to non-
additive jet shape observables, such as the broadening [223].
In chapter 6 a top tagging method, utilising the Ym-Splitter prong finding method, 
a cut on the N-subjettiness variable τ32, and a mass window constraint, was studied 
from an analytical QCD perspective. It was established, using a Monte Carlo study, 
that, out of the variations on the tagging procedure studied, pre-grooming the jets 
with mMDT before applying Ym-Splitter , the mass window constraint and the N-
subjettiness cut, maximised the performance whilst minimising the effects of hadro-
nisation and UE. Resummed predictions for the background tagging rate were then 
presented for both groomed and un-groomed jets, initially in the limit that τ � 1, 
before accounting for finite τ effects. Resummed results for the signal were then pre-
sented, beginning with the signal efficiency where the only tagging step was a cut on 
the jet mass. The signal efficiency after application of Ym-Splitter was then calcu-
lated, taking into account configurations where a gluon is identified as a prong by 
Ym-Splitter . This builds on previous work [25] where the only configurations con-
sidered were ones where a leading order top decay product (qq̄b) were identified as 
a prong. Compared to this work we found improved agreement with the tagging ef-
ficiency derived from Pythia simulations. Finally we implemented the cut on τ32 in 
our calculations. Here we found that the cut on τ32 competes with the cut on the jet 
mass for which sets the mass scale above which additional emissions are vetoed. This 
enabled us to find an approximate expression, in terms of τ , above which, increas-
ing the upper bound on the jet mass will not significantly increase the signal tagging 
efficiency, but will increase the background tag rate, resulting in a loss of signal sig-
nificance. An optimal mass cut could then be chosen, based on this understanding, 
for any given cut on τ , so as to maximise the performance of the tagging procedure. 
We found that to increase performance, whilst maintaining signal efficiency and min-
imising the effects of hadronisation, that a very tight cut on the mass with a higher 
cut on τ32 was beneficial. Interesting extensions to this work could include study-
ing τβ32 with values of β, β = 1 being a popular choice in experiment. Other choices 
of jet shape or prong finding method would also be of interest. Taking a somewhat 
broader view, machine learning based methods, as discussed in section 3.4, are an-
other important class of jet tagging procedure which are widely used in experimen-
tal analyses. Attempting to gain a deeper of these techniques, such as is done in ref. 
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[128], could be considered as a continuation of the type of work presented in chap-
ter 6. Particularly, it is important to understand what information is being learnt by 
these algorithms, and how robust they are against non-perturbative effects.
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Appendix A

Appendices for Chapter 4

A.1 Triple-Collinear splitting functions

We use the results in the form listed in Refs. [51], [52]. Following the notation of 
those references we define T as the squared matrix element for e+e− → 4 partons. In 
the limit where three of the final partons are collinear, it can be shown that T satis-
fies the following factorized form: 

  \begin {split} \label {eq:tripcollfac} &\mathcal {T}(e^+e^-\rightarrow 4~\mathrm {partons})\simeq \mathcal {T}(e^+e^-\rightarrow q\bar q)\cdot \sum _k\mathcal {T}_k^\mathrm {coll}(1\rightarrow 3) \\ &=\mathcal {T}(e^+e^-\rightarrow q\bar q)\cdot \frac {(8\pi \alpha _s\mu ^{2\epsilon })^2}{s_{123}^2}\sum _k\la \hat P^k_{1\rightarrow 3}\ra . \end {split}         
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  \begin {split} \label {eq:tripcollfac} &\mathcal {T}(e^+e^-\rightarrow 4~\mathrm {partons})\simeq \mathcal {T}(e^+e^-\rightarrow q\bar q)\cdot \sum _k\mathcal {T}_k^\mathrm {coll}(1\rightarrow 3) \\ &=\mathcal {T}(e^+e^-\rightarrow q\bar q)\cdot \frac {(8\pi \alpha _s\mu ^{2\epsilon })^2}{s_{123}^2}\sum _k\la \hat P^k_{1\rightarrow 3}\ra . \end {split} 

Here, the k runs over the possible quark initiated 1 → 3 parton channels q → g1g2q3 (q̄ →
g1g2q̄3), q → q′1q̄

′
2q3 (q̄ → q̄′1q

′
2q̄3) or q → q1q̄2q3 (q̄ → q̄1q2q̄3), s123 is the squared 

invariant mass of the three collinear parton system, and 
〈
P̂ k
1→3

〉
are the process in-

dependent spin averaged triple-collinear splitting functions.

Hereinafter, we report the relevant expressions for the triple-collinear splitting func-
tions [51]. Note that due to charge conjugation invariance, the splitting functions for 
the anti-quark initiated channels can be obtained from the corresponding functions 
for the quark initiated ones,. i.e. P̂q̄′1q

′
2q̄3

= P̂q̄′1q
′
2q3

and P̂q̄1q2q̄3 = P̂q̄1q2q3 .
The spin-averaged splitting function for the q → g1g2q3 process can be written in 
terms of the different colour factors:   \label {qggsf} \la \Ph _{g_1 g_2 q_3} \ra \, = C_F^2 \, \la \Ph _{g_1 g_2 q_3}^{({\rm ab})} \ra \, + \, C_F C_A \, \la \Ph _{g_1 g_2 q_3}^{({\rm nab})} \ra \;\;, 




















 (A.2)

where the abelian and non-abelian contributions are 

{eq:qggabsf} \la \Ph _{g_1 g_2 q_3}^{({\rm ab})} \ra \, =\\ \Biggl \{\f {s_{123}^2}{2s_{13}s_{23}} z_3\left [\f {1+z_3^2}{z_1z_2}-\epsilon \f {z_1^2+z_2^2}{z_1z_2}-\epsilon (1+\epsilon )\right ]+\f {s_{123}}{s_{13}}\Biggl [\f {z_3(1-z_1)+(1-z_2)^3}{z_1z_2} +\epsilon ^2(1+z_3) \\ -\epsilon (z_1^2+z_1z_2+z_2^2)\f {1-z_2}{z_1z_2}\Biggr ]+(1-\epsilon )\left [\epsilon -(1-\epsilon )\f {s_{23}}{s_{13}}\right ] \Biggr \}+(1\leftrightarrow 2) \;\;,
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{qggnabsf} \la \Ph _{g_1 g_2 q_3}^{({\rm nab})} \ra \, =\Biggl \{(1-\epsilon )\left (\f {t_{12,3}^2}{4s_{12}^2}+\f {1}{4}-\f {\epsilon }{2}\right )+\\\f {s_{123}^2}{2s_{12}s_{13}} \Biggl [\f {(1-z_3)^2(1-\epsilon )+2z_3}{z_2}+\f {z_2^2(1-\epsilon )+2(1-z_2)}{1-z_3}\Biggr ]\\ -\f {s_{123}^2}{4s_{13}s_{23}}z_3\Biggl [\f {(1-z_3)^2(1-\epsilon )+2z_3}{z_1z_2} +\epsilon (1-\epsilon )\Biggr ] \\ +\f {s_{123}}{2s_{12}}\Biggl [(1-\epsilon ) \f {z_1(2-2z_1+z_1^2) - z_2(6 -6 z_2+ z_2^2)}{z_2(1-z_3)} +2\epsilon \f {z_3(z_1-2z_2)-z_2}{z_2(1-z_3)}\Biggr ]\\ +\f {s_{123}}{2s_{13}}\Biggl [(1-\epsilon )\f {(1-z_2)^3+z_3^2-z_2}{z_2(1-z_3)} -\epsilon \left (\f {2(1-z_2)(z_2-z_3)}{z_2(1-z_3)}-z_1 + z_2\right )\\ -\f {z_3(1-z_1)+(1-z_2)^3}{z_1z_2} +\epsilon (1-z_2)\left (\f {z_1^2+z_2^2}{z_1z_2}-\epsilon \right )\Biggr ]\Biggr \}+(1\leftrightarrow 2) \;.







   





  


  



{qggnabsf} \la \Ph _{g_1 g_2 q_3}^{({\rm nab})} \ra \, =\Biggl \{(1-\epsilon )\left (\f {t_{12,3}^2}{4s_{12}^2}+\f {1}{4}-\f {\epsilon }{2}\right )+\\\f {s_{123}^2}{2s_{12}s_{13}} \Biggl [\f {(1-z_3)^2(1-\epsilon )+2z_3}{z_2}+\f {z_2^2(1-\epsilon )+2(1-z_2)}{1-z_3}\Biggr ]\\ -\f {s_{123}^2}{4s_{13}s_{23}}z_3\Biggl [\f {(1-z_3)^2(1-\epsilon )+2z_3}{z_1z_2} +\epsilon (1-\epsilon )\Biggr ] \\ +\f {s_{123}}{2s_{12}}\Biggl [(1-\epsilon ) \f {z_1(2-2z_1+z_1^2) - z_2(6 -6 z_2+ z_2^2)}{z_2(1-z_3)} +2\epsilon \f {z_3(z_1-2z_2)-z_2}{z_2(1-z_3)}\Biggr ]\\ +\f {s_{123}}{2s_{13}}\Biggl [(1-\epsilon )\f {(1-z_2)^3+z_3^2-z_2}{z_2(1-z_3)} -\epsilon \left (\f {2(1-z_2)(z_2-z_3)}{z_2(1-z_3)}-z_1 + z_2\right )\\ -\f {z_3(1-z_1)+(1-z_2)^3}{z_1z_2} +\epsilon (1-z_2)\left (\f {z_1^2+z_2^2}{z_1z_2}-\epsilon \right )\Biggr ]\Biggr \}+(1\leftrightarrow 2) \;.    



 


 





    

The spin-averaged splitting functions for non-identical fermions in the final state read 

{qqqpf} \la \Ph _{{\bar q}^\prime _1 q^\prime _2 q_3} \ra \, = \\ \f {1}{2} \, C_F T_R \,\f {s_{123}}{s_{12}} \left [ - \f {t_{12,3}^2}{s_{12}s_{123}} +\f {4z_3+(z_1-z_2)^2}{z_1+z_2}+ (1-2\epsilon ) \left (z_1+z_2-\f {s_{12}}{s_{123}}\right ) \right ] \;,








{qqqpf} \la \Ph _{{\bar q}^\prime _1 q^\prime _2 q_3} \ra \, = \\ \f {1}{2} \, C_F T_R \,\f {s_{123}}{s_{12}} \left [ - \f {t_{12,3}^2}{s_{12}s_{123}} +\f {4z_3+(z_1-z_2)^2}{z_1+z_2}+ (1-2\epsilon ) \left (z_1+z_2-\f {s_{12}}{s_{123}}\right ) \right ] \;,














   



 
 


  







where 
 \label {tvar} t_{ij,k}\equiv 2 \,\frac {z_i s_{jk}-z_j s_{ik}}{z_i+z_j} + \frac {z_i-z_j}{z_i+z_j} \,s_{ij} \;\;.  

 
 


 
 

  (A.6)

In the case of final-state fermions with identical flavour, the splitting function can be 
written in terms of Eq. (A.5), as  \label {qqqsf} \la \Ph _{{\bar q}_1q_2q_3} \ra \, = \left [ \la \Ph _{{\bar q}^\prime _1q^\prime _2q_3} \ra \, + \,(2\leftrightarrow 3) \,\right ] + \la \Ph ^{({\rm id})}_{{\bar q}_1q_2q_3} \ra \;\;, 












  









 (A.7)

where 

{idensf} \la \Ph ^{({\rm id})}_{{\bar q}_1q_2q_3} \ra \, = C_F \left ( C_F-\f {1}{2} C_A \right ) \Biggl \{ (1-\epsilon )\left ( \f {2s_{23}}{s_{12}} - \epsilon \right )\\ + \f {s_{123}}{s_{12}}\Biggl [\f {1+z_1^2}{1-z_2}-\f {2z_2}{1-z_3} -\epsilon \left (\f {(1-z_3)^2}{1-z_2}+1+z_1-\f {2z_2}{1-z_3}\right ) - \epsilon ^2(1-z_3)\Biggr ] \\ - \f {s_{123}^2}{s_{12}s_{13}}\f {z_1}{2}\left [\f {1+z_1^2}{(1-z_2)(1-z_3)} -\epsilon \left (1+2\f {1-z_2}{1-z_3}\right ) -\epsilon ^2\right ] \Biggr \} + (2\leftrightarrow 3)\,.








 















{idensf} \la \Ph ^{({\rm id})}_{{\bar q}_1q_2q_3} \ra \, = C_F \left ( C_F-\f {1}{2} C_A \right ) \Biggl \{ (1-\epsilon )\left ( \f {2s_{23}}{s_{12}} - \epsilon \right )\\ + \f {s_{123}}{s_{12}}\Biggl [\f {1+z_1^2}{1-z_2}-\f {2z_2}{1-z_3} -\epsilon \left (\f {(1-z_3)^2}{1-z_2}+1+z_1-\f {2z_2}{1-z_3}\right ) - \epsilon ^2(1-z_3)\Biggr ] \\ - \f {s_{123}^2}{s_{12}s_{13}}\f {z_1}{2}\left [\f {1+z_1^2}{(1-z_2)(1-z_3)} -\epsilon \left (1+2\f {1-z_2}{1-z_3}\right ) -\epsilon ^2\right ] \Biggr \} + (2\leftrightarrow 3)\,.




 













   





 



{idensf} \la \Ph ^{({\rm id})}_{{\bar q}_1q_2q_3} \ra \, = C_F \left ( C_F-\f {1}{2} C_A \right ) \Biggl \{ (1-\epsilon )\left ( \f {2s_{23}}{s_{12}} - \epsilon \right )\\ + \f {s_{123}}{s_{12}}\Biggl [\f {1+z_1^2}{1-z_2}-\f {2z_2}{1-z_3} -\epsilon \left (\f {(1-z_3)^2}{1-z_2}+1+z_1-\f {2z_2}{1-z_3}\right ) - \epsilon ^2(1-z_3)\Biggr ] \\ - \f {s_{123}^2}{s_{12}s_{13}}\f {z_1}{2}\left [\f {1+z_1^2}{(1-z_2)(1-z_3)} -\epsilon \left (1+2\f {1-z_2}{1-z_3}\right ) -\epsilon ^2\right ] \Biggr \} + (2\leftrightarrow 3)\,.






 

 



 








    

&\frac {1}{z_1(1-z_1)+y z_2 (1-z_2) +2 \sqrt {y} z_1 z_2} < x \ , \\ &x < \frac {1}{z_1(1-z_1)+y z_2 (1-z_2) -2 \sqrt {y} z_1 z_2}\, .



A.2 Integrals and pole structure 

We illustrate our approach by referring explicitly to the calculations for Fpass(ρ, ε), 
though similar considerations apply to all our calculations. When all three partons 
contribute to the jet mass i.e. we have the delta function condition δρ(1, 2, 3), we 
can eliminate the integral over an angle, say θ12, by using the delta function condi-
tion. In order to perform the remaining integrals over the triple-collinear phase space 
dΦ3, (see Eq. (4.18)) it proves to be convenient to exploit the fact that all partons 
are collinear, with a collinearity essentially set by the jet mass or more accurately by 
the parameter ρ

zcut
. One may extract the overall 1/ρ scaling of dΣ/dρ by working in 

terms of rescaled angular variables y =
θ223
θ213

and x =
θ213
ρ

. The limits on the x inte-
gral follow from the positivity of the Gram Determinant ∆ > 0, corresponding to the 
conditions (θ13 + θ23)

2 > θ212 > (θ13 − θ23)
2, which can be expressed in terms of our 

chosen variables as a condition on x: 

&\frac {1}{z_1(1-z_1)+y z_2 (1-z_2) +2 \sqrt {y} z_1 z_2} < x \ , \\ &x < \frac {1}{z_1(1-z_1)+y z_2 (1-z_2) -2 \sqrt {y} z_1 z_2}\, .

     



   &\frac {1}{z_1(1-z_1)+y z_2 (1-z_2) +2 \sqrt {y} z_1 z_2} < x \ , \\ &x < \frac {1}{z_1(1-z_1)+y z_2 (1-z_2) -2 \sqrt {y} z_1 z_2}\, .

&\frac {1}{z_1(1-z_1)+y z_2 (1-z_2) +2 \sqrt {y} z_1 z_2} < x \ , \\ &x < \frac {1}{z_1(1-z_1)+y z_2 (1-z_2) -2 \sqrt {y} z_1 z_2}\, .


    



 &\frac {1}{z_1(1-z_1)+y z_2 (1-z_2) +2 \sqrt {y} z_1 z_2} < x \ , \\ &x < \frac {1}{z_1(1-z_1)+y z_2 (1-z_2) -2 \sqrt {y} z_1 z_2}\, .

It proves to be convenient to map the integral over x to one with simple limits i.e. 0
and 1 by introducing the change of variables x = u(r2 − r1) + r1, where r1 and r2
are the lower and upper limits on x respectively. Our integration variables are then u
and y for the angular integration, both lying in a range 0 to 1, and the energy frac-
tions z1 and z2 (recall that z3 = 1− z1 − z2) or equivalently z and zp.

We then have to consider the extraction of ε poles, to separate the integral into di-
vergent and finite terms. Our strategy is to isolate the divergences and exploit the 
simplification of the integrand in divergent regions, to obtain the divergence struc-
ture analytically. This also generates finite terms that do not vanish as ε → 0 , which 
are obtained via an ε expansion of the factors multiplying the poles. Additionally we 
also obtain a finite integral leftover from the removal of singular terms, which on the 
other hand is not a compact expression. However, being finite, it can always be inte-
grated numerically.

Since we study the differential distribution rather than its integral, we work at fixed 
jet-mass which regulates both soft and collinear divergences. In general that leaves 
us with at most a 1/ε2 singularity from an emission that does not set the jet mass. 
For the calculation of Fpass in particular, the larger-angle emission passes zcut and 
cannot produce any divergence, while the smaller angle emission produces divergences 
from the soft zp → 1 and collinear y → 0 limits. Setting 1 − zp = v we encounter a 
general integral of the standard form 

  I(\epsilon ) = \int _0^1 \sd v \int _0^1 \sd y \frac {G \left (v,y,\epsilon \right )}{v^{1+2\epsilon } y^{1+\epsilon }}, 










  


 (A.11)

I(\epsilon ) = \\ \int _0^1 \sd v \int _0^1 \sd y \left [ \frac {G(v,y,\epsilon )-G(v,0,\epsilon )}{v^{{1+2\epsilon }} y^{1+\epsilon }}+ \frac {G(v,0,\epsilon )-G(0,0,\epsilon )}{v^{{1+2\epsilon }} y^{1+\epsilon }} +\frac {G(0,0,\epsilon )} {v^{{1+2\epsilon }} y^{1+\epsilon }}\right ],



where G(v, y, ε) is finite as v → 0 as well as y → 0 and integration over the other 
variables is left implicit so as to focus on the divergences. We can re-express this re-
sult in the following form 

I(\epsilon ) = \\ \int _0^1 \sd v \int _0^1 \sd y \left [ \frac {G(v,y,\epsilon )-G(v,0,\epsilon )}{v^{{1+2\epsilon }} y^{1+\epsilon }}+ \frac {G(v,0,\epsilon )-G(0,0,\epsilon )}{v^{{1+2\epsilon }} y^{1+\epsilon }} +\frac {G(0,0,\epsilon )} {v^{{1+2\epsilon }} y^{1+\epsilon }}\right ], I(\epsilon ) = \\ \int _0^1 \sd v \int _0^1 \sd y \left [ \frac {G(v,y,\epsilon )-G(v,0,\epsilon )}{v^{{1+2\epsilon }} y^{1+\epsilon }}+ \frac {G(v,0,\epsilon )-G(0,0,\epsilon )}{v^{{1+2\epsilon }} y^{1+\epsilon }} +\frac {G(0,0,\epsilon )} {v^{{1+2\epsilon }} y^{1+\epsilon }}\right ],










   



   



 






where by construction the first term on the LHS of the above has only a soft pole i.e. 
as v → 0, the second term has only a collinear pole from y → 0, while the final term 
has a double pole arising from v → 0 and y → 0. We define for convenience f(v, ε) =
(G(v, 0, ε)−G(0, 0, ε)) /v1+2ε where f(v, ε) is finite as v → 0 and also define

 h(v,y,\epsilon ) = \left (G(v,y,\epsilon )-G(v,0,\epsilon ) \right )/y^{1+\epsilon },        

which is finite as y → 0. Then one obtains the form 

I(\epsilon ) = \frac {G(0,0,\epsilon )}{2\epsilon ^2} \\ -\frac {1}{\epsilon } \int _0^1 f(v,\epsilon ) \sd v -\frac {1}{2\epsilon } \int _0^1 h(0,y,\epsilon ) \sd y + \int _0^1 \sd v \int _0^1 \frac {h(v,y,\epsilon )-h(0,y,\epsilon )}{v^{1+2\epsilon }} \sd y \ .
 



I(\epsilon ) = \frac {G(0,0,\epsilon )}{2\epsilon ^2} \\ -\frac {1}{\epsilon } \int _0^1 f(v,\epsilon ) \sd v -\frac {1}{2\epsilon } \int _0^1 h(0,y,\epsilon ) \sd y + \int _0^1 \sd v \int _0^1 \frac {h(v,y,\epsilon )-h(0,y,\epsilon )}{v^{1+2\epsilon }} \sd y \ .







  







  









    


 

The final integral on the RHS above is purely finite by construction and can be eval-
uated in the limit ε → 0 i.e in 4 dimensions. The above result shows explicitly the 
pole structure that emerges from the integral I(ε). The integrals multiplying the 1/ε
poles need only to be evaluated up to order ε terms i.e. one can expand the inte-
grand in ε and retain only terms up to order ε. This strategy gives us all divergent 
and finite contributions in the limit ε→ 0.

A.3 One-loop corrections to 1 → 2 collinear splittings 

In addition to the case of two real emissions, for the jet mass distribution at order 
α2
s, we also have to consider a real emission that sets the mass, ρ, alongside a one-

loop virtual correction which is divergent and where the divergences cancel against 
those in the double-real emission case, to leave behind finite terms. The relevant real-
virtual contribution to ρdΣ2/dρ, may be collectively written in the form 

 \label {eq:VirtualsCF} \mathcal {V}_{1,1} \left (\rho ,z,\epsilon \right ) = \mathcal {V}_{1,1}^{C_F^2}(\rho , z,\epsilon )+\mathcal {V}_{1,1}^{C_FC_A}(\rho ,z,\epsilon )+ \mathcal {V}_{1,1}^{C_FT_R n_f}\left (\rho ,z,\epsilon \right ),     


    
    

     (A.14)

where we have separated out the various contributions according to the colour fac-
tor i.e. C2

F , CFCA and CFTRnf terms and in our notation V1,1 is the one-real, one-
virtual correction to qq̄ production, in the approximation of a real emission, which is 
collinear to the q or q̄, passes grooming and sets a (normalised) jet mass ρ.
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For VC2
F

1,1 (ρ, z, ε) there are two distinct contributions : firstly the one-loop correction 
to the Born level qq̄ production, V(ε) (see Eq. (4.8)) multiplying the squared matrix-
element for a real collinear emission, and secondly the one-loop correction to a 1 → 2

collinear splitting [242]. The latter contribution can be explicitly obtained using the 
expression for P (1)

q→qg in Eq. (103) of ref. [242], in the CDR scheme with α = 1 and 
δ = 1, and setting s12 = Q2

4
ρ, µ2 = Q2/4 and z1 = 1 − z. The Hypergeometric 

function in Eq. (103) of ref. [242] may be expressed in terms of a function

 f\left (\epsilon ,1/x\right ) = \frac {1}{\epsilon }\left [ _2 F_1\left (1,-\epsilon ,1-\epsilon ,1-x\right )-1\right ],  



      

with the ε expansion [243] 

  f(\epsilon ,x) = \ln x-\epsilon \left [\text {Li}_2(1-x)+\sum _{k=1}^{\infty } \epsilon ^k \, \text {Li}_{k+2}(1-x)\right ].    


 




 


 (A.15)

Writing our result in terms of the renormalised MS coupling, accounting for both 
hemispheres with a factor of two, we have 

\label {eq:r1v1} \mathcal {V}_{1,1}^{C_F^2}(\rho ,z,\epsilon ) = \left (\frac {C_F \alpha _s}{2\pi }\right )^2 \left [ \vphantom {\mathrm {Li}_2\left (\frac {z-1}{z}\right )} 2 \, p_{qq}(z;\epsilon )\rho ^{-\epsilon }(4z(1-z))^{-\epsilon }\left ( -\frac {2}{\epsilon ^2} +\frac {4\pi ^2}{3}-8 -\frac {3}{\epsilon } \right ) \right .\\ \left . + p_{qq}(z,\epsilon ) \rho ^{-2 \epsilon }(z(1-z))^{-\epsilon } \left (\frac {4}{\epsilon }\ln z+4\ \mathrm {Li}_2\left (\frac {z-1}{z}\right )\right )-2 \right ].\\


   







 












 




\label {eq:r1v1} \mathcal {V}_{1,1}^{C_F^2}(\rho ,z,\epsilon ) = \left (\frac {C_F \alpha _s}{2\pi }\right )^2 \left [ \vphantom {\mathrm {Li}_2\left (\frac {z-1}{z}\right )} 2 \, p_{qq}(z;\epsilon )\rho ^{-\epsilon }(4z(1-z))^{-\epsilon }\left ( -\frac {2}{\epsilon ^2} +\frac {4\pi ^2}{3}-8 -\frac {3}{\epsilon } \right ) \right .\\ \left . + p_{qq}(z,\epsilon ) \rho ^{-2 \epsilon }(z(1-z))^{-\epsilon } \left (\frac {4}{\epsilon }\ln z+4\ \mathrm {Li}_2\left (\frac {z-1}{z}\right )\right )-2 \right ].\\







   


 









\label {eq:r1v1} \mathcal {V}_{1,1}^{C_F^2}(\rho ,z,\epsilon ) = \left (\frac {C_F \alpha _s}{2\pi }\right )^2 \left [ \vphantom {\mathrm {Li}_2\left (\frac {z-1}{z}\right )} 2 \, p_{qq}(z;\epsilon )\rho ^{-\epsilon }(4z(1-z))^{-\epsilon }\left ( -\frac {2}{\epsilon ^2} +\frac {4\pi ^2}{3}-8 -\frac {3}{\epsilon } \right ) \right .\\ \left . + p_{qq}(z,\epsilon ) \rho ^{-2 \epsilon }(z(1-z))^{-\epsilon } \left (\frac {4}{\epsilon }\ln z+4\ \mathrm {Li}_2\left (\frac {z-1}{z}\right )\right )-2 \right ].\\

The corresponding result for the CFTRnf piece, after removal of UV poles via renor-
malisation (see e.g. ref. [243] for a detailed discussion), can be expressed as 

  \label {eq:nfvirtual} \begin {split} \mathcal {V}_{1,1}^{C_FT_R n_f}\left (\rho ,z,\epsilon \right ) &= 2 C_F T_R n_f \left (\frac {\alpha _s}{2\pi }\right )^2 \frac {2}{3} p_{qq}(z,\epsilon )\left (\frac {1}{\epsilon }\rho ^{-2\epsilon }(z(1-z))^{-\epsilon }+\ln \rho \right ). \end {split} 

    













   


   \label {eq:nfvirtual} \begin {split} \mathcal {V}_{1,1}^{C_FT_R n_f}\left (\rho ,z,\epsilon \right ) &= 2 C_F T_R n_f \left (\frac {\alpha _s}{2\pi }\right )^2 \frac {2}{3} p_{qq}(z,\epsilon )\left (\frac {1}{\epsilon }\rho ^{-2\epsilon }(z(1-z))^{-\epsilon }+\ln \rho \right ). \end {split} 

The result for the CFCA piece has two distinct components i.e. a component derived 
like the corresponding C2

F piece using Eq. (103) of ref. [242] which includes the dou-
ble poles that will cancel those in the real emission result, and a component involv-
ing the β function coefficient b0 which is simply related to Eq. (A.17) via the replace-
ment 2

3
TRnf → −11

6
CA. The combined result can be expressed in the form 

\label {eq:cavirtual} \mathcal {V}_{1,1}^{C_F C_A}\left (\rho ,z,\epsilon \right ) = 2 C_F C_A \left (\frac {\alpha _s}{2\pi }\right )^2\left \{ \vphantom {\mathrm {Li}_2\left (\frac {z-1}{z}\right )} p_{qq}(z,\epsilon ) \rho ^{-2\epsilon } (z(1-z))^{-\epsilon } \right .\\ \left . \times \left [\frac {-1}{\epsilon ^2}+\frac {1}{\epsilon }\left (\ln \frac {1-z}{z}-\frac {11}{6}\right ) \right ] + p_{qq}(z) \left [ \mathrm {Li}_2 \left (\frac {z}{z-1} \right ) - \right .\right . \\ \left .\left . \mathrm {Li}_2 \left (\frac {z-1}{z} \right ) +\frac {2\pi ^2}{3} -\frac {11}{6}\ln \rho \right ] +1 \right \}.
    










\label {eq:cavirtual} \mathcal {V}_{1,1}^{C_F C_A}\left (\rho ,z,\epsilon \right ) = 2 C_F C_A \left (\frac {\alpha _s}{2\pi }\right )^2\left \{ \vphantom {\mathrm {Li}_2\left (\frac {z-1}{z}\right )} p_{qq}(z,\epsilon ) \rho ^{-2\epsilon } (z(1-z))^{-\epsilon } \right .\\ \left . \times \left [\frac {-1}{\epsilon ^2}+\frac {1}{\epsilon }\left (\ln \frac {1-z}{z}-\frac {11}{6}\right ) \right ] + p_{qq}(z) \left [ \mathrm {Li}_2 \left (\frac {z}{z-1} \right ) - \right .\right . \\ \left .\left . \mathrm {Li}_2 \left (\frac {z-1}{z} \right ) +\frac {2\pi ^2}{3} -\frac {11}{6}\ln \rho \right ] +1 \right \}.











 















 




\label {eq:cavirtual} \mathcal {V}_{1,1}^{C_F C_A}\left (\rho ,z,\epsilon \right ) = 2 C_F C_A \left (\frac {\alpha _s}{2\pi }\right )^2\left \{ \vphantom {\mathrm {Li}_2\left (\frac {z-1}{z}\right )} p_{qq}(z,\epsilon ) \rho ^{-2\epsilon } (z(1-z))^{-\epsilon } \right .\\ \left . \times \left [\frac {-1}{\epsilon ^2}+\frac {1}{\epsilon }\left (\ln \frac {1-z}{z}-\frac {11}{6}\right ) \right ] + p_{qq}(z) \left [ \mathrm {Li}_2 \left (\frac {z}{z-1} \right ) - \right .\right . \\ \left .\left . \mathrm {Li}_2 \left (\frac {z-1}{z} \right ) +\frac {2\pi ^2}{3} -\frac {11}{6}\ln \rho \right ] +1 \right \}.
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Appendix B

Appendices for Chapter 5

B.1 Exponentiation of soft emissions

Here we provide an explicit demonstration that all emissions satisfying zi < zcut

can be dropped from V simp
sc ({p̃}, k1, ..., kn) up to power corrections in v, regardless of 

whether or not they are groomed away and thus can be fully exponentiated.
We start by considering an ensemble of soft and collinear emissions which are or-
dered in angle with an emission, (s), singled out as the one which, in configurations 
where the groomer does not remove all emissions, stops the groomer: 

{eq:start} \Sigma ^{\text {real}}=\sum _{p=0}^\infty \sum _{m=0}^p \bigg \{ \prod _{j=0}^m \bar {\alpha }\int _0^{\zc }\frac {\sd z_j}{z_j} \int _{\theta _s^2}^1 \frac {\sd \theta _j^2}{\theta _j^2} \Theta (\theta _j-\theta _{j+1}) \bigg ( \bar {\alpha }\int _0^{\zc }\frac {\sd z_s}{z_s} \int _0^1 \frac {\sd \theta _s^2}{\theta _s^2}\Theta (\zc -z_i) \\ +\bar {\alpha }\int _{\zc }^{1}\frac {\sd z_s}{z_s} \int _0^1 \frac {\sd \theta _s^2}{\theta _s^2} \Theta (v-V(k_s)-V(\{k_i \})) \bigg ) \times \\ \prod _{i=0}^{p-m} \bigg ( \bar {\alpha }\int _0^{\zc }\frac {\sd z_i}{z_i} \int _0^{\theta _s^2} \frac {\sd \theta _i^2}{\theta _i^2} + \bar {\alpha }\int _{\zc }^{1}\frac {\sd z_s}{z_s} \int _0^{\theta _s^2} \frac {\sd \theta _i^2}{\theta _i^2} \bigg )\Theta (\theta _i-\theta _{i+1}) \bigg \} \ ,

























 


















 

{eq:start} \Sigma ^{\text {real}}=\sum _{p=0}^\infty \sum _{m=0}^p \bigg \{ \prod _{j=0}^m \bar {\alpha }\int _0^{\zc }\frac {\sd z_j}{z_j} \int _{\theta _s^2}^1 \frac {\sd \theta _j^2}{\theta _j^2} \Theta (\theta _j-\theta _{j+1}) \bigg ( \bar {\alpha }\int _0^{\zc }\frac {\sd z_s}{z_s} \int _0^1 \frac {\sd \theta _s^2}{\theta _s^2}\Theta (\zc -z_i) \\ +\bar {\alpha }\int _{\zc }^{1}\frac {\sd z_s}{z_s} \int _0^1 \frac {\sd \theta _s^2}{\theta _s^2} \Theta (v-V(k_s)-V(\{k_i \})) \bigg ) \times \\ \prod _{i=0}^{p-m} \bigg ( \bar {\alpha }\int _0^{\zc }\frac {\sd z_i}{z_i} \int _0^{\theta _s^2} \frac {\sd \theta _i^2}{\theta _i^2} + \bar {\alpha }\int _{\zc }^{1}\frac {\sd z_s}{z_s} \int _0^{\theta _s^2} \frac {\sd \theta _i^2}{\theta _i^2} \bigg )\Theta (\theta _i-\theta _{i+1}) \bigg \} \ ,















    



{eq:start} \Sigma ^{\text {real}}=\sum _{p=0}^\infty \sum _{m=0}^p \bigg \{ \prod _{j=0}^m \bar {\alpha }\int _0^{\zc }\frac {\sd z_j}{z_j} \int _{\theta _s^2}^1 \frac {\sd \theta _j^2}{\theta _j^2} \Theta (\theta _j-\theta _{j+1}) \bigg ( \bar {\alpha }\int _0^{\zc }\frac {\sd z_s}{z_s} \int _0^1 \frac {\sd \theta _s^2}{\theta _s^2}\Theta (\zc -z_i) \\ +\bar {\alpha }\int _{\zc }^{1}\frac {\sd z_s}{z_s} \int _0^1 \frac {\sd \theta _s^2}{\theta _s^2} \Theta (v-V(k_s)-V(\{k_i \})) \bigg ) \times \\ \prod _{i=0}^{p-m} \bigg ( \bar {\alpha }\int _0^{\zc }\frac {\sd z_i}{z_i} \int _0^{\theta _s^2} \frac {\sd \theta _i^2}{\theta _i^2} + \bar {\alpha }\int _{\zc }^{1}\frac {\sd z_s}{z_s} \int _0^{\theta _s^2} \frac {\sd \theta _i^2}{\theta _i^2} \bigg )\Theta (\theta _i-\theta _{i+1}) \bigg \} \ ,




































 




where ᾱ = CFαs

π
. The term on the second line has zs > zcut and represents all config-

urations where the groomer is stopped, resulting in a massive jet, and thus all emis-
sions at smaller angles (those on the final line) are retained and contribute to the ob-

{eq:SoftEmissionCorrection} \Sigma ^{\text {real}}_{\text {massive}}=\sum _{p=0}^\infty \sum _{m=0}^p \bigg \{ \prod _{j=0}^m \bar {\alpha }\int _0^{\zc }\frac {\sd z_j}{z_j} \int _{\theta _s^2}^1 \frac {\sd \theta _j^2}{\theta _j^2} \Theta (\theta _j-\theta _{j+1}) \\\left (\bar {\alpha }\int _{\zc }^{1}\frac {\sd z_s}{z_s} \int _0^1 \frac {\sd \theta _s^2}{\theta _s^2} \Theta (v-V_{\mathrm {sc}}(k_s)-V_{\mathrm {sc}}(\{k_i \})) \right ) \\ \prod _{i=0}^{p-m} \bigg ( \bar {\alpha }\int _0^{\zc }\frac {\sd z_i}{z_i} \int _0^{\theta _s^2} \frac {\sd \theta _i^2}{\theta _i^2} + \bar {\alpha }\int _{\zc }^{1}\frac {\sd z_s}{z_s} \int _0^{\theta _s^2} \frac {\sd \theta _i^2}{\theta _i^2} \bigg )\Theta (\theta _i-\theta _{i+1}) \bigg \} =\\ \int \frac {\sd \nu }{2\pi i\nu } e^\nu \sum _{p=0}^\infty \sum _{m=0}^p \bigg \{ \prod _{j=0}^m \left (\bar {\alpha }\int _0^{\zc }\frac {\sd z_j}{z_j} \int _{\theta _s^2}^1 \frac {\sd \theta _j^2}{\theta _j^2} \Theta (\theta _j-\theta _{j+1})\right ) \\ \bar {\alpha }\int _{\zc }^{1}\frac {\sd z_s}{z_s} \int _0^1 \frac {\sd \theta _s^2}{\theta _s^2}e^{-\nu \frac {V_{\mathrm {sc}}(k_s)}{v}} \prod _{i=0}^{p-m} \bigg (\bar {\alpha }\int _{\zc }^{1}\frac {\sd z_i}{z_i} \int _0^{\theta _s^2} \frac {\sd \theta _i^2}{\theta _i^2}e^{-\nu \frac {V_{\mathrm {sc}}(k_i)}{v}} \\ + \bar {\alpha }\int _0^{\zc }\frac {\sd z_i}{z_i} \int _0^{\theta _s^2} \frac {\sd \theta _i^2}{\theta _i^2}+ \left [\textcolor {red}{\bar {\alpha }\int _0^{\zc }\frac {\sd z_i}{z_i} \int _0^{\theta _s^2} \frac {\sd \theta _i^2}{\theta _i^2}(e^{-\nu \frac {V_{\mathrm {sc}}(k_i)}{v}}-1)}\right ]\bigg )\Theta (\theta _i-\theta _{i+1}) \bigg \}.



servable. This term can be re-written as 

{eq:SoftEmissionCorrection} \Sigma ^{\text {real}}_{\text {massive}}=\sum _{p=0}^\infty \sum _{m=0}^p \bigg \{ \prod _{j=0}^m \bar {\alpha }\int _0^{\zc }\frac {\sd z_j}{z_j} \int _{\theta _s^2}^1 \frac {\sd \theta _j^2}{\theta _j^2} \Theta (\theta _j-\theta _{j+1}) \\\left (\bar {\alpha }\int _{\zc }^{1}\frac {\sd z_s}{z_s} \int _0^1 \frac {\sd \theta _s^2}{\theta _s^2} \Theta (v-V_{\mathrm {sc}}(k_s)-V_{\mathrm {sc}}(\{k_i \})) \right ) \\ \prod _{i=0}^{p-m} \bigg ( \bar {\alpha }\int _0^{\zc }\frac {\sd z_i}{z_i} \int _0^{\theta _s^2} \frac {\sd \theta _i^2}{\theta _i^2} + \bar {\alpha }\int _{\zc }^{1}\frac {\sd z_s}{z_s} \int _0^{\theta _s^2} \frac {\sd \theta _i^2}{\theta _i^2} \bigg )\Theta (\theta _i-\theta _{i+1}) \bigg \} =\\ \int \frac {\sd \nu }{2\pi i\nu } e^\nu \sum _{p=0}^\infty \sum _{m=0}^p \bigg \{ \prod _{j=0}^m \left (\bar {\alpha }\int _0^{\zc }\frac {\sd z_j}{z_j} \int _{\theta _s^2}^1 \frac {\sd \theta _j^2}{\theta _j^2} \Theta (\theta _j-\theta _{j+1})\right ) \\ \bar {\alpha }\int _{\zc }^{1}\frac {\sd z_s}{z_s} \int _0^1 \frac {\sd \theta _s^2}{\theta _s^2}e^{-\nu \frac {V_{\mathrm {sc}}(k_s)}{v}} \prod _{i=0}^{p-m} \bigg (\bar {\alpha }\int _{\zc }^{1}\frac {\sd z_i}{z_i} \int _0^{\theta _s^2} \frac {\sd \theta _i^2}{\theta _i^2}e^{-\nu \frac {V_{\mathrm {sc}}(k_i)}{v}} \\ + \bar {\alpha }\int _0^{\zc }\frac {\sd z_i}{z_i} \int _0^{\theta _s^2} \frac {\sd \theta _i^2}{\theta _i^2}+ \left [\textcolor {red}{\bar {\alpha }\int _0^{\zc }\frac {\sd z_i}{z_i} \int _0^{\theta _s^2} \frac {\sd \theta _i^2}{\theta _i^2}(e^{-\nu \frac {V_{\mathrm {sc}}(k_i)}{v}}-1)}\right ]\bigg )\Theta (\theta _i-\theta _{i+1}) \bigg \}.



























  {eq:SoftEmissionCorrection} \Sigma ^{\text {real}}_{\text {massive}}=\sum _{p=0}^\infty \sum _{m=0}^p \bigg \{ \prod _{j=0}^m \bar {\alpha }\int _0^{\zc }\frac {\sd z_j}{z_j} \int _{\theta _s^2}^1 \frac {\sd \theta _j^2}{\theta _j^2} \Theta (\theta _j-\theta _{j+1}) \\\left (\bar {\alpha }\int _{\zc }^{1}\frac {\sd z_s}{z_s} \int _0^1 \frac {\sd \theta _s^2}{\theta _s^2} \Theta (v-V_{\mathrm {sc}}(k_s)-V_{\mathrm {sc}}(\{k_i \})) \right ) \\ \prod _{i=0}^{p-m} \bigg ( \bar {\alpha }\int _0^{\zc }\frac {\sd z_i}{z_i} \int _0^{\theta _s^2} \frac {\sd \theta _i^2}{\theta _i^2} + \bar {\alpha }\int _{\zc }^{1}\frac {\sd z_s}{z_s} \int _0^{\theta _s^2} \frac {\sd \theta _i^2}{\theta _i^2} \bigg )\Theta (\theta _i-\theta _{i+1}) \bigg \} =\\ \int \frac {\sd \nu }{2\pi i\nu } e^\nu \sum _{p=0}^\infty \sum _{m=0}^p \bigg \{ \prod _{j=0}^m \left (\bar {\alpha }\int _0^{\zc }\frac {\sd z_j}{z_j} \int _{\theta _s^2}^1 \frac {\sd \theta _j^2}{\theta _j^2} \Theta (\theta _j-\theta _{j+1})\right ) \\ \bar {\alpha }\int _{\zc }^{1}\frac {\sd z_s}{z_s} \int _0^1 \frac {\sd \theta _s^2}{\theta _s^2}e^{-\nu \frac {V_{\mathrm {sc}}(k_s)}{v}} \prod _{i=0}^{p-m} \bigg (\bar {\alpha }\int _{\zc }^{1}\frac {\sd z_i}{z_i} \int _0^{\theta _s^2} \frac {\sd \theta _i^2}{\theta _i^2}e^{-\nu \frac {V_{\mathrm {sc}}(k_i)}{v}} \\ + \bar {\alpha }\int _0^{\zc }\frac {\sd z_i}{z_i} \int _0^{\theta _s^2} \frac {\sd \theta _i^2}{\theta _i^2}+ \left [\textcolor {red}{\bar {\alpha }\int _0^{\zc }\frac {\sd z_i}{z_i} \int _0^{\theta _s^2} \frac {\sd \theta _i^2}{\theta _i^2}(e^{-\nu \frac {V_{\mathrm {sc}}(k_i)}{v}}-1)}\right ]\bigg )\Theta (\theta _i-\theta _{i+1}) \bigg \}.
















  


{eq:SoftEmissionCorrection} \Sigma ^{\text {real}}_{\text {massive}}=\sum _{p=0}^\infty \sum _{m=0}^p \bigg \{ \prod _{j=0}^m \bar {\alpha }\int _0^{\zc }\frac {\sd z_j}{z_j} \int _{\theta _s^2}^1 \frac {\sd \theta _j^2}{\theta _j^2} \Theta (\theta _j-\theta _{j+1}) \\\left (\bar {\alpha }\int _{\zc }^{1}\frac {\sd z_s}{z_s} \int _0^1 \frac {\sd \theta _s^2}{\theta _s^2} \Theta (v-V_{\mathrm {sc}}(k_s)-V_{\mathrm {sc}}(\{k_i \})) \right ) \\ \prod _{i=0}^{p-m} \bigg ( \bar {\alpha }\int _0^{\zc }\frac {\sd z_i}{z_i} \int _0^{\theta _s^2} \frac {\sd \theta _i^2}{\theta _i^2} + \bar {\alpha }\int _{\zc }^{1}\frac {\sd z_s}{z_s} \int _0^{\theta _s^2} \frac {\sd \theta _i^2}{\theta _i^2} \bigg )\Theta (\theta _i-\theta _{i+1}) \bigg \} =\\ \int \frac {\sd \nu }{2\pi i\nu } e^\nu \sum _{p=0}^\infty \sum _{m=0}^p \bigg \{ \prod _{j=0}^m \left (\bar {\alpha }\int _0^{\zc }\frac {\sd z_j}{z_j} \int _{\theta _s^2}^1 \frac {\sd \theta _j^2}{\theta _j^2} \Theta (\theta _j-\theta _{j+1})\right ) \\ \bar {\alpha }\int _{\zc }^{1}\frac {\sd z_s}{z_s} \int _0^1 \frac {\sd \theta _s^2}{\theta _s^2}e^{-\nu \frac {V_{\mathrm {sc}}(k_s)}{v}} \prod _{i=0}^{p-m} \bigg (\bar {\alpha }\int _{\zc }^{1}\frac {\sd z_i}{z_i} \int _0^{\theta _s^2} \frac {\sd \theta _i^2}{\theta _i^2}e^{-\nu \frac {V_{\mathrm {sc}}(k_i)}{v}} \\ + \bar {\alpha }\int _0^{\zc }\frac {\sd z_i}{z_i} \int _0^{\theta _s^2} \frac {\sd \theta _i^2}{\theta _i^2}+ \left [\textcolor {red}{\bar {\alpha }\int _0^{\zc }\frac {\sd z_i}{z_i} \int _0^{\theta _s^2} \frac {\sd \theta _i^2}{\theta _i^2}(e^{-\nu \frac {V_{\mathrm {sc}}(k_i)}{v}}-1)}\right ]\bigg )\Theta (\theta _i-\theta _{i+1}) \bigg \}.




































 




{eq:SoftEmissionCorrection} \Sigma ^{\text {real}}_{\text {massive}}=\sum _{p=0}^\infty \sum _{m=0}^p \bigg \{ \prod _{j=0}^m \bar {\alpha }\int _0^{\zc }\frac {\sd z_j}{z_j} \int _{\theta _s^2}^1 \frac {\sd \theta _j^2}{\theta _j^2} \Theta (\theta _j-\theta _{j+1}) \\\left (\bar {\alpha }\int _{\zc }^{1}\frac {\sd z_s}{z_s} \int _0^1 \frac {\sd \theta _s^2}{\theta _s^2} \Theta (v-V_{\mathrm {sc}}(k_s)-V_{\mathrm {sc}}(\{k_i \})) \right ) \\ \prod _{i=0}^{p-m} \bigg ( \bar {\alpha }\int _0^{\zc }\frac {\sd z_i}{z_i} \int _0^{\theta _s^2} \frac {\sd \theta _i^2}{\theta _i^2} + \bar {\alpha }\int _{\zc }^{1}\frac {\sd z_s}{z_s} \int _0^{\theta _s^2} \frac {\sd \theta _i^2}{\theta _i^2} \bigg )\Theta (\theta _i-\theta _{i+1}) \bigg \} =\\ \int \frac {\sd \nu }{2\pi i\nu } e^\nu \sum _{p=0}^\infty \sum _{m=0}^p \bigg \{ \prod _{j=0}^m \left (\bar {\alpha }\int _0^{\zc }\frac {\sd z_j}{z_j} \int _{\theta _s^2}^1 \frac {\sd \theta _j^2}{\theta _j^2} \Theta (\theta _j-\theta _{j+1})\right ) \\ \bar {\alpha }\int _{\zc }^{1}\frac {\sd z_s}{z_s} \int _0^1 \frac {\sd \theta _s^2}{\theta _s^2}e^{-\nu \frac {V_{\mathrm {sc}}(k_s)}{v}} \prod _{i=0}^{p-m} \bigg (\bar {\alpha }\int _{\zc }^{1}\frac {\sd z_i}{z_i} \int _0^{\theta _s^2} \frac {\sd \theta _i^2}{\theta _i^2}e^{-\nu \frac {V_{\mathrm {sc}}(k_i)}{v}} \\ + \bar {\alpha }\int _0^{\zc }\frac {\sd z_i}{z_i} \int _0^{\theta _s^2} \frac {\sd \theta _i^2}{\theta _i^2}+ \left [\textcolor {red}{\bar {\alpha }\int _0^{\zc }\frac {\sd z_i}{z_i} \int _0^{\theta _s^2} \frac {\sd \theta _i^2}{\theta _i^2}(e^{-\nu \frac {V_{\mathrm {sc}}(k_i)}{v}}-1)}\right ]\bigg )\Theta (\theta _i-\theta _{i+1}) \bigg \}.






























 



{eq:SoftEmissionCorrection} \Sigma ^{\text {real}}_{\text {massive}}=\sum _{p=0}^\infty \sum _{m=0}^p \bigg \{ \prod _{j=0}^m \bar {\alpha }\int _0^{\zc }\frac {\sd z_j}{z_j} \int _{\theta _s^2}^1 \frac {\sd \theta _j^2}{\theta _j^2} \Theta (\theta _j-\theta _{j+1}) \\\left (\bar {\alpha }\int _{\zc }^{1}\frac {\sd z_s}{z_s} \int _0^1 \frac {\sd \theta _s^2}{\theta _s^2} \Theta (v-V_{\mathrm {sc}}(k_s)-V_{\mathrm {sc}}(\{k_i \})) \right ) \\ \prod _{i=0}^{p-m} \bigg ( \bar {\alpha }\int _0^{\zc }\frac {\sd z_i}{z_i} \int _0^{\theta _s^2} \frac {\sd \theta _i^2}{\theta _i^2} + \bar {\alpha }\int _{\zc }^{1}\frac {\sd z_s}{z_s} \int _0^{\theta _s^2} \frac {\sd \theta _i^2}{\theta _i^2} \bigg )\Theta (\theta _i-\theta _{i+1}) \bigg \} =\\ \int \frac {\sd \nu }{2\pi i\nu } e^\nu \sum _{p=0}^\infty \sum _{m=0}^p \bigg \{ \prod _{j=0}^m \left (\bar {\alpha }\int _0^{\zc }\frac {\sd z_j}{z_j} \int _{\theta _s^2}^1 \frac {\sd \theta _j^2}{\theta _j^2} \Theta (\theta _j-\theta _{j+1})\right ) \\ \bar {\alpha }\int _{\zc }^{1}\frac {\sd z_s}{z_s} \int _0^1 \frac {\sd \theta _s^2}{\theta _s^2}e^{-\nu \frac {V_{\mathrm {sc}}(k_s)}{v}} \prod _{i=0}^{p-m} \bigg (\bar {\alpha }\int _{\zc }^{1}\frac {\sd z_i}{z_i} \int _0^{\theta _s^2} \frac {\sd \theta _i^2}{\theta _i^2}e^{-\nu \frac {V_{\mathrm {sc}}(k_i)}{v}} \\ + \bar {\alpha }\int _0^{\zc }\frac {\sd z_i}{z_i} \int _0^{\theta _s^2} \frac {\sd \theta _i^2}{\theta _i^2}+ \left [\textcolor {red}{\bar {\alpha }\int _0^{\zc }\frac {\sd z_i}{z_i} \int _0^{\theta _s^2} \frac {\sd \theta _i^2}{\theta _i^2}(e^{-\nu \frac {V_{\mathrm {sc}}(k_i)}{v}}-1)}\right ]\bigg )\Theta (\theta _i-\theta _{i+1}) \bigg \}.











































{eq:SoftEmissionCorrection} \Sigma ^{\text {real}}_{\text {massive}}=\sum _{p=0}^\infty \sum _{m=0}^p \bigg \{ \prod _{j=0}^m \bar {\alpha }\int _0^{\zc }\frac {\sd z_j}{z_j} \int _{\theta _s^2}^1 \frac {\sd \theta _j^2}{\theta _j^2} \Theta (\theta _j-\theta _{j+1}) \\\left (\bar {\alpha }\int _{\zc }^{1}\frac {\sd z_s}{z_s} \int _0^1 \frac {\sd \theta _s^2}{\theta _s^2} \Theta (v-V_{\mathrm {sc}}(k_s)-V_{\mathrm {sc}}(\{k_i \})) \right ) \\ \prod _{i=0}^{p-m} \bigg ( \bar {\alpha }\int _0^{\zc }\frac {\sd z_i}{z_i} \int _0^{\theta _s^2} \frac {\sd \theta _i^2}{\theta _i^2} + \bar {\alpha }\int _{\zc }^{1}\frac {\sd z_s}{z_s} \int _0^{\theta _s^2} \frac {\sd \theta _i^2}{\theta _i^2} \bigg )\Theta (\theta _i-\theta _{i+1}) \bigg \} =\\ \int \frac {\sd \nu }{2\pi i\nu } e^\nu \sum _{p=0}^\infty \sum _{m=0}^p \bigg \{ \prod _{j=0}^m \left (\bar {\alpha }\int _0^{\zc }\frac {\sd z_j}{z_j} \int _{\theta _s^2}^1 \frac {\sd \theta _j^2}{\theta _j^2} \Theta (\theta _j-\theta _{j+1})\right ) \\ \bar {\alpha }\int _{\zc }^{1}\frac {\sd z_s}{z_s} \int _0^1 \frac {\sd \theta _s^2}{\theta _s^2}e^{-\nu \frac {V_{\mathrm {sc}}(k_s)}{v}} \prod _{i=0}^{p-m} \bigg (\bar {\alpha }\int _{\zc }^{1}\frac {\sd z_i}{z_i} \int _0^{\theta _s^2} \frac {\sd \theta _i^2}{\theta _i^2}e^{-\nu \frac {V_{\mathrm {sc}}(k_i)}{v}} \\ + \bar {\alpha }\int _0^{\zc }\frac {\sd z_i}{z_i} \int _0^{\theta _s^2} \frac {\sd \theta _i^2}{\theta _i^2}+ \left [\textcolor {red}{\bar {\alpha }\int _0^{\zc }\frac {\sd z_i}{z_i} \int _0^{\theta _s^2} \frac {\sd \theta _i^2}{\theta _i^2}(e^{-\nu \frac {V_{\mathrm {sc}}(k_i)}{v}}-1)}\right ]\bigg )\Theta (\theta _i-\theta _{i+1}) \bigg \}.





































 


 




where the step functions involving the observable have been written in their Laplace 
representation. Emissions at smaller angles (labelled with i) are now represented by 
three terms, one for emissions with z > zcut, which always contribute to the observ-
able, another accounting for emissions with z < zcut as if they do not contribute to 
the observable, and a correction (shown in square brackets and highlighted in red) 
accounting for the fact that emissions with z < zcut do in fact contribute to the ob-
servable. Emissions at smaller angles than θs can be exponentiated and the correc-
tion evaluated: 

{eq:ExponentiatedSoftEmissionCorrection} \Sigma ^{\text {real}}_{\text {massive}}=\\\int \frac {\sd \nu }{2\pi i\nu } e^\nu \sum _{q=0}^\infty \bigg \{ \prod _{j=0}^q \bigg (\bar {\alpha }\int _0^{\zc }\frac {\sd z_j}{z_j} \int _{\theta _s^2}^1 \frac {\sd \theta _j^2}{\theta _j^2} \Theta (\theta _j-\theta _{j+1})\bigg ) \bar {\alpha }\int _{\zc }^{1}\frac {\sd z_s}{z_s} \int _0^1 \frac {\sd \theta _s^2}{\theta _s^2}e^{-\nu \frac {V_{\mathrm {sc}}(k_s)}{v}} \\ \exp \bigg [\bar {\alpha }\int _{\zc }^{1}\frac {\sd z}{z} \int _0^{\theta _s^2} \frac {\sd \theta ^2}{\theta ^2}e^{-\nu \frac {V_{\mathrm {sc}}(k)}{v}} + \bar {\alpha }\int _0^{\zc }\frac {\sd z}{z} \int _0^{\theta _s^2} \frac {\sd \theta ^2}{\theta ^2}+\textcolor {red}{\mathcal {O}(\bar {\alpha _s}\zc ^a\theta _s^{a+b})}\bigg ] \bigg \}.
 {eq:ExponentiatedSoftEmissionCorrection} \Sigma ^{\text {real}}_{\text {massive}}=\\\int \frac {\sd \nu }{2\pi i\nu } e^\nu \sum _{q=0}^\infty \bigg \{ \prod _{j=0}^q \bigg (\bar {\alpha }\int _0^{\zc }\frac {\sd z_j}{z_j} \int _{\theta _s^2}^1 \frac {\sd \theta _j^2}{\theta _j^2} \Theta (\theta _j-\theta _{j+1})\bigg ) \bar {\alpha }\int _{\zc }^{1}\frac {\sd z_s}{z_s} \int _0^1 \frac {\sd \theta _s^2}{\theta _s^2}e^{-\nu \frac {V_{\mathrm {sc}}(k_s)}{v}} \\ \exp \bigg [\bar {\alpha }\int _{\zc }^{1}\frac {\sd z}{z} \int _0^{\theta _s^2} \frac {\sd \theta ^2}{\theta ^2}e^{-\nu \frac {V_{\mathrm {sc}}(k)}{v}} + \bar {\alpha }\int _0^{\zc }\frac {\sd z}{z} \int _0^{\theta _s^2} \frac {\sd \theta ^2}{\theta ^2}+\textcolor {red}{\mathcal {O}(\bar {\alpha _s}\zc ^a\theta _s^{a+b})}\bigg ] \bigg \}.




























 






















{eq:ExponentiatedSoftEmissionCorrection} \Sigma ^{\text {real}}_{\text {massive}}=\\\int \frac {\sd \nu }{2\pi i\nu } e^\nu \sum _{q=0}^\infty \bigg \{ \prod _{j=0}^q \bigg (\bar {\alpha }\int _0^{\zc }\frac {\sd z_j}{z_j} \int _{\theta _s^2}^1 \frac {\sd \theta _j^2}{\theta _j^2} \Theta (\theta _j-\theta _{j+1})\bigg ) \bar {\alpha }\int _{\zc }^{1}\frac {\sd z_s}{z_s} \int _0^1 \frac {\sd \theta _s^2}{\theta _s^2}e^{-\nu \frac {V_{\mathrm {sc}}(k_s)}{v}} \\ \exp \bigg [\bar {\alpha }\int _{\zc }^{1}\frac {\sd z}{z} \int _0^{\theta _s^2} \frac {\sd \theta ^2}{\theta ^2}e^{-\nu \frac {V_{\mathrm {sc}}(k)}{v}} + \bar {\alpha }\int _0^{\zc }\frac {\sd z}{z} \int _0^{\theta _s^2} \frac {\sd \theta ^2}{\theta ^2}+\textcolor {red}{\mathcal {O}(\bar {\alpha _s}\zc ^a\theta _s^{a+b})}\bigg ] \bigg \}.




















 


























One can consider expanding this exponential to any order and observe that the term 
in square brackets (highlighted in red) will at most generate NNLL terms suppressed 
by powers of both v and zcut once the integral over θs is carried out, which is suffi-
cient to show that this term can be dropped unless one wants to capture power cor-
rections in v and zcut, which we do not. Equivalently, any emission softer than zcut

can be dropped from Vs({p̃}, k1, ..., kn), as we have made use of in the main text.
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Appendix C

Appendices for Chapter 6

C.1 Finite τ approximations at fixed order

Here we explain the impact of the different approximations on emissions ρa and ρb, 
which enter the pre-factor for the resummed expressions in the small τ limit and for 
finite τ . In order to illustrate this we examine the differential distribution in a fixed-
coupling approximation and at order ᾱ3, which is the first order at which τ32 is non-
zero. The finite τ result truncated at order ᾱ3 is (from Eq. (6.12)): 

\frac {\rho \tau }{\sigma } \frac {\sd ^2\sigma }{\sd \rho \sd \tau }\overset {\tau <1/2}{=} \bar {\alpha }^2 \frac {1}{1-\tau } \\ \int _\zeta ^1\frac {\sd z_a}{z_a} \int _\zeta ^1\frac {\sd z_b}{z_b} \int _0^\rho \frac {\sd \rho _a}{\rho _a} \frac {\rho }{\rho -\rho _a} \Theta \left (\rho _a > \frac {1-\tau }{2-\tau } \rho \right ) \Theta _{\rho _\text {min}} R'((\rho -\rho _a)\tau ),







 

 \frac {\rho \tau }{\sigma } \frac {\sd ^2\sigma }{\sd \rho \sd \tau }\overset {\tau <1/2}{=} \bar {\alpha }^2 \frac {1}{1-\tau } \\ \int _\zeta ^1\frac {\sd z_a}{z_a} \int _\zeta ^1\frac {\sd z_b}{z_b} \int _0^\rho \frac {\sd \rho _a}{\rho _a} \frac {\rho }{\rho -\rho _a} \Theta \left (\rho _a > \frac {1-\tau }{2-\tau } \rho \right ) \Theta _{\rho _\text {min}} R'((\rho -\rho _a)\tau ),




































 

where in a fixed-coupling approximation, and to leading-logarithmic accuracy, we 
have, 

  R'((\rho -\rho _a)\tau ) = \bar {\alpha } \left ( \ln \frac {1}{\rho -\rho _a}+\ln \frac {1}{\tau } \right ).   





 




 (C.2)

We remind the reader that 

  \Theta _{\rho _\text {min}} = \Theta \left (\min \left ((\rho -\rho _a)(1-\tau ),z_a z_b\max \left (\frac {\rho _a}{z_a},\frac {(\rho -\rho _a)(1-\tau )}{z_b} \right )\right )>\rho _{\text {min}}\right ),  





   





 







 (C.3)

where ρa
za

= θ2a and (ρ−ρa)(1−τ)
zb

= ρb
zb

= θ2b . For our illustrative purposes, let us take a 
specific contribution to the pre-factor that arises from the region θ2a � θ2b and ρb =

(ρ−ρa)(1−τ) < zbρa. We also assume values of the parameters so that ρmin
ρ
> ζ, again 

purely as part of our illustrative example 1. The conclusions we derive will apply to 
other regions of phase space and parameter ranges too. For the region of phase space 

1Strictly speaking the condition is ρmin
ρ

> ζ
1+ζ

.

\label {eq:taudist2} \frac {\rho \tau }{\sigma } \frac {\sd ^2\sigma }{\sd \rho \sd \tau }\overset {\tau <1/2}{=} \bar {\alpha }^2 \frac {1}{1-\tau }\\ \int _\zeta ^1\frac {\sd z_a}{z_a} \int _\zeta ^1\frac {\sd z_b}{z_b} \int _0^\rho \frac {\sd \rho _a}{\rho _a} \frac {\rho }{\rho -\rho _a} \Theta \left (\rho _a > \frac {1-\tau }{2-\tau } \rho \right ) R'((\rho -\rho _a)\tau ) \Theta \left ( (\rho -\rho _a)(1-\tau ) > \rho _{\text {min}} \right ) \\ \Theta \left ( \frac {\rho _a}{z_a}>\frac {(\rho -\rho _a)(1-\tau )}{z_b}\right ) \Theta \left ((\rho -\rho _a)(1-\tau ) <z_b \rho _a \right ).



considered we obtain the contribution 

\label {eq:taudist2} \frac {\rho \tau }{\sigma } \frac {\sd ^2\sigma }{\sd \rho \sd \tau }\overset {\tau <1/2}{=} \bar {\alpha }^2 \frac {1}{1-\tau }\\ \int _\zeta ^1\frac {\sd z_a}{z_a} \int _\zeta ^1\frac {\sd z_b}{z_b} \int _0^\rho \frac {\sd \rho _a}{\rho _a} \frac {\rho }{\rho -\rho _a} \Theta \left (\rho _a > \frac {1-\tau }{2-\tau } \rho \right ) R'((\rho -\rho _a)\tau ) \Theta \left ( (\rho -\rho _a)(1-\tau ) > \rho _{\text {min}} \right ) \\ \Theta \left ( \frac {\rho _a}{z_a}>\frac {(\rho -\rho _a)(1-\tau )}{z_b}\right ) \Theta \left ((\rho -\rho _a)(1-\tau ) <z_b \rho _a \right ).







 

 \label {eq:taudist2} \frac {\rho \tau }{\sigma } \frac {\sd ^2\sigma }{\sd \rho \sd \tau }\overset {\tau <1/2}{=} \bar {\alpha }^2 \frac {1}{1-\tau }\\ \int _\zeta ^1\frac {\sd z_a}{z_a} \int _\zeta ^1\frac {\sd z_b}{z_b} \int _0^\rho \frac {\sd \rho _a}{\rho _a} \frac {\rho }{\rho -\rho _a} \Theta \left (\rho _a > \frac {1-\tau }{2-\tau } \rho \right ) R'((\rho -\rho _a)\tau ) \Theta \left ( (\rho -\rho _a)(1-\tau ) > \rho _{\text {min}} \right ) \\ \Theta \left ( \frac {\rho _a}{z_a}>\frac {(\rho -\rho _a)(1-\tau )}{z_b}\right ) \Theta \left ((\rho -\rho _a)(1-\tau ) <z_b \rho _a \right ).


































    

\label {eq:taudist2} \frac {\rho \tau }{\sigma } \frac {\sd ^2\sigma }{\sd \rho \sd \tau }\overset {\tau <1/2}{=} \bar {\alpha }^2 \frac {1}{1-\tau }\\ \int _\zeta ^1\frac {\sd z_a}{z_a} \int _\zeta ^1\frac {\sd z_b}{z_b} \int _0^\rho \frac {\sd \rho _a}{\rho _a} \frac {\rho }{\rho -\rho _a} \Theta \left (\rho _a > \frac {1-\tau }{2-\tau } \rho \right ) R'((\rho -\rho _a)\tau ) \Theta \left ( (\rho -\rho _a)(1-\tau ) > \rho _{\text {min}} \right ) \\ \Theta \left ( \frac {\rho _a}{z_a}>\frac {(\rho -\rho _a)(1-\tau )}{z_b}\right ) \Theta \left ((\rho -\rho _a)(1-\tau ) <z_b \rho _a \right ).






 




     

The directly computed small τ limit result, corresponding to the result in section 
6.3.2, is

\frac {\rho \tau }{\sigma } \frac {\sd ^2\sigma }{\sd \rho \sd \tau }=\bar {\alpha }^2 \int _\zeta ^1 \frac {\sd z_a}{z_a} \int _\zeta ^1\frac {\sd z_b}{z_b}\int _0^\rho \frac {\sd \rho _b}{\rho _b} \Theta \left (\rho _b > \rho _{\mathrm {min}} \right ) \times \\ \Theta \left (\rho _b < z_b \rho \right ) \Theta \left (\rho >\frac {z_a}{z_b} \rho _b\right )\bar {\alpha }\left ( \ln \frac {1}{\tau }+\ln \frac {1}{\rho _b} \right )





























 

\frac {\rho \tau }{\sigma } \frac {\sd ^2\sigma }{\sd \rho \sd \tau }=\bar {\alpha }^2 \int _\zeta ^1 \frac {\sd z_a}{z_a} \int _\zeta ^1\frac {\sd z_b}{z_b}\int _0^\rho \frac {\sd \rho _b}{\rho _b} \Theta \left (\rho _b > \rho _{\mathrm {min}} \right ) \times \\ \Theta \left (\rho _b < z_b \rho \right ) \Theta \left (\rho >\frac {z_a}{z_b} \rho _b\right )\bar {\alpha }\left ( \ln \frac {1}{\tau }+\ln \frac {1}{\rho _b} \right ) 















 






which gives 

  \label {eq:smalltauacubed} \frac {\rho \tau }{\sigma } \frac {\sd ^2\sigma }{\sd \rho \sd \tau } = \frac {1}{2}\bar {\alpha }^2 \ln \frac {1}{\zeta } \ln ^2 \frac {\rho }{\rho _{\text {min}}} \times \bar {\alpha }\left ( \ln \frac {1}{\rho _{\mathrm {min}}}+ \ln \frac {1}{\tau }+\frac {1}{3} \ln \frac {\rho _{\mathrm {min}}}{\rho } \right ). 











 











 












 (C.6)

Evaluating the small τ limit of the exact result in our chosen configuration i.e. Eq. (C.4), 
gives: 

  \frac {\rho \tau }{\sigma } \frac {\sd ^2\sigma }{\sd \rho \sd \tau } = \frac {1}{2}\bar {\alpha }^2 \ln \frac {1}{\zeta } \ln ^2 \frac {\rho }{\rho _{\text {min}}} \times \bar {\alpha }\left ( \ln \frac {1}{\rho _{\mathrm {min}}}+ \ln \frac {1}{\tau }+\frac {1}{3} \ln \frac {\rho _{\mathrm {min}}}{\rho } \right )+\frac {3}{4} \bar {\alpha }^3 \zeta (3) \ln \frac {1}{\zeta }, 











 











 

















 


 (C.7)

which differs from Eq. (C.6) by a highly subleading ᾱ3ζ(3) ln 1
ζ

term. The full τ de-
pendent result from Eq. (C.4) reads 

\frac {\rho \tau }{\sigma } \frac {\sd ^2\sigma }{\sd \rho \sd \tau }= \\ \frac {\bar {\alpha }^3}{1-\tau } \bigg [\frac {1}{2}\ln \frac {1}{\zeta } \ln ^2 \frac {\rho }{\rho _{\text {min}}} \times \left ( \ln \frac {1}{\rho _{\mathrm {min}}} +\ln \frac {1}{\tau }+\frac {1}{3} \ln \frac {\rho _{\mathrm {min}}}{\rho } +\ln \left (1-\tau \right )\right ) - \\ \ln \frac {1}{\zeta } \, \text {Li}_3\left (\frac {1}{\tau -1} \right ) \bigg ].








\frac {\rho \tau }{\sigma } \frac {\sd ^2\sigma }{\sd \rho \sd \tau }= \\ \frac {\bar {\alpha }^3}{1-\tau } \bigg [\frac {1}{2}\ln \frac {1}{\zeta } \ln ^2 \frac {\rho }{\rho _{\text {min}}} \times \left ( \ln \frac {1}{\rho _{\mathrm {min}}} +\ln \frac {1}{\tau }+\frac {1}{3} \ln \frac {\rho _{\mathrm {min}}}{\rho } +\ln \left (1-\tau \right )\right ) - \\ \ln \frac {1}{\zeta } \, \text {Li}_3\left (\frac {1}{\tau -1} \right ) \bigg ].



















 










  




\frac {\rho \tau }{\sigma } \frac {\sd ^2\sigma }{\sd \rho \sd \tau }= \\ \frac {\bar {\alpha }^3}{1-\tau } \bigg [\frac {1}{2}\ln \frac {1}{\zeta } \ln ^2 \frac {\rho }{\rho _{\text {min}}} \times \left ( \ln \frac {1}{\rho _{\mathrm {min}}} +\ln \frac {1}{\tau }+\frac {1}{3} \ln \frac {\rho _{\mathrm {min}}}{\rho } +\ln \left (1-\tau \right )\right ) - \\ \ln \frac {1}{\zeta } \, \text {Li}_3\left (\frac {1}{\tau -1} \right ) \bigg ].







 




We note that retaining the finite τ effects results in the appearance of three features 
: Firstly there is the overall 1/(1 − τ) multiplicative term, which has a significant 
impact on the result beyond the small τ region and is important to retain. Secondly 
there is a ln(1− τ) term in addition to the large logarithms we resum. Given that we 
do not resum logarithms of 1 − τ , and indeed focus on the region τ ∼ 0.2, this con-
stitutes a negligible contribution relative to the logarithms we resum, dominated by 
the ln 1

ρmin
term. Finally there is a highly subleading ᾱ3 ln 1

ζ
term accompanied by a 
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trilogarithm in 1−τ which we can safely neglect. Hence ignoring the τ dependence in 
the pre-factor, other than the 1/(1− τ) term, is a valid approximation for our work.

C.2 Direct calculation of the cumulative background distribution

Here we provide an alternate derivation of ρdΣ(τ)
dρ that directly derives this distribu-

tion as opposed to integrating the double differential. We can start from the stan-
dard factorised formula for any number of emissions, similar to Eq. (6.9) but instead 
of fixing τ32 we set an upper bound τ32 < τ : 

\frac {\rho }{\sigma } \frac {\sd \sigma }{\sd \rho \sd \tau }=\bar {\alpha }^2 \\ \int _\zeta ^1\frac {\sd z_a}{z_a}\int _0^1 \frac {\sd \rho _a}{\rho _a}\int _\zeta ^1\frac {\sd z_b}{z_b}\int _0^{\rho _a} \frac {\sd \rho _b}{\rho _b}\Theta (\min (\rho _b,z_az_b\max (\frac {\rho _a}{z_a},\frac {\rho _b}{z_b}))>\rho _{min}) \exp \left [-\int _0^1 R(\rho ')\frac {\sd \rho '}{\rho '}\right ] \\ \sum _{p=1}^{\infty }\frac {1}{p!}\prod _{i=1}^p\int _{0}^{\rho _b}R'(\rho _i)\frac {\sd \rho _i}{\rho _i} \rho \delta (\rho -\rho _a-\rho _b-\sum _{i\neq a,b}\rho _i)\, \Theta ((\rho -\rho _a)(1-\tau )<\rho _b).






 \frac {\rho }{\sigma } \frac {\sd \sigma }{\sd \rho \sd \tau }=\bar {\alpha }^2 \\ \int _\zeta ^1\frac {\sd z_a}{z_a}\int _0^1 \frac {\sd \rho _a}{\rho _a}\int _\zeta ^1\frac {\sd z_b}{z_b}\int _0^{\rho _a} \frac {\sd \rho _b}{\rho _b}\Theta (\min (\rho _b,z_az_b\max (\frac {\rho _a}{z_a},\frac {\rho _b}{z_b}))>\rho _{min}) \exp \left [-\int _0^1 R(\rho ')\frac {\sd \rho '}{\rho '}\right ] \\ \sum _{p=1}^{\infty }\frac {1}{p!}\prod _{i=1}^p\int _{0}^{\rho _b}R'(\rho _i)\frac {\sd \rho _i}{\rho _i} \rho \delta (\rho -\rho _a-\rho _b-\sum _{i\neq a,b}\rho _i)\, \Theta ((\rho -\rho _a)(1-\tau )<\rho _b).



























 




  













\frac {\rho }{\sigma } \frac {\sd \sigma }{\sd \rho \sd \tau }=\bar {\alpha }^2 \\ \int _\zeta ^1\frac {\sd z_a}{z_a}\int _0^1 \frac {\sd \rho _a}{\rho _a}\int _\zeta ^1\frac {\sd z_b}{z_b}\int _0^{\rho _a} \frac {\sd \rho _b}{\rho _b}\Theta (\min (\rho _b,z_az_b\max (\frac {\rho _a}{z_a},\frac {\rho _b}{z_b}))>\rho _{min}) \exp \left [-\int _0^1 R(\rho ')\frac {\sd \rho '}{\rho '}\right ] \\ \sum _{p=1}^{\infty }\frac {1}{p!}\prod _{i=1}^p\int _{0}^{\rho _b}R'(\rho _i)\frac {\sd \rho _i}{\rho _i} \rho \delta (\rho -\rho _a-\rho _b-\sum _{i\neq a,b}\rho _i)\, \Theta ((\rho -\rho _a)(1-\tau )<\rho _b).
















   




    

The delta function can now be used to do the sum over emissions labelled with i, 
where it is crucial to notice that for any i, ρi < ρ − ρa − ρb as implied by the delta 
function, and that the upper limit on ρi of ρb is weaker than this for τ < 1

2
. Using 

the standard jet mass result for the sum over emissions, as we did before, we arrive 
at 

\frac {\rho }{\sigma } \frac {\sd \sigma }{\sd \rho }\overset {\tau <1/2}{=} \bar {\alpha }^2 \\ \int _\zeta ^1\frac {\sd z_a}{z_a} \int _\zeta ^1\frac {\sd z_b}{z_b} \int _{\frac {1-\tau }{2-\tau } \rho }^\rho \frac {\sd \rho _a}{\rho _a} \int _{(1-\tau )(\rho -\rho _a)}^{\min (\rho -\rho _a,\rho _a)} \frac {\sd \rho _b}{\rho _b} \frac {\rho }{\rho -\rho _a-\rho _b} \Theta _{\rho _\text {min}} \left (\rho _a,\rho _b,\tau , \rho _{\text {min}} ,z_a,z_b\right ) \\ R'(\rho -\rho _a-\rho _b)\frac {\exp [-R(\rho -\rho _a-\rho _b)-\gamma _E R'(\rho -\rho _a-\rho _b)]}{\Gamma [1+R'(\rho -\rho _a-\rho _b)]}.







 \frac {\rho }{\sigma } \frac {\sd \sigma }{\sd \rho }\overset {\tau <1/2}{=} \bar {\alpha }^2 \\ \int _\zeta ^1\frac {\sd z_a}{z_a} \int _\zeta ^1\frac {\sd z_b}{z_b} \int _{\frac {1-\tau }{2-\tau } \rho }^\rho \frac {\sd \rho _a}{\rho _a} \int _{(1-\tau )(\rho -\rho _a)}^{\min (\rho -\rho _a,\rho _a)} \frac {\sd \rho _b}{\rho _b} \frac {\rho }{\rho -\rho _a-\rho _b} \Theta _{\rho _\text {min}} \left (\rho _a,\rho _b,\tau , \rho _{\text {min}} ,z_a,z_b\right ) \\ R'(\rho -\rho _a-\rho _b)\frac {\exp [-R(\rho -\rho _a-\rho _b)-\gamma _E R'(\rho -\rho _a-\rho _b)]}{\Gamma [1+R'(\rho -\rho _a-\rho _b)]}.
































  
     

\frac {\rho }{\sigma } \frac {\sd \sigma }{\sd \rho }\overset {\tau <1/2}{=} \bar {\alpha }^2 \\ \int _\zeta ^1\frac {\sd z_a}{z_a} \int _\zeta ^1\frac {\sd z_b}{z_b} \int _{\frac {1-\tau }{2-\tau } \rho }^\rho \frac {\sd \rho _a}{\rho _a} \int _{(1-\tau )(\rho -\rho _a)}^{\min (\rho -\rho _a,\rho _a)} \frac {\sd \rho _b}{\rho _b} \frac {\rho }{\rho -\rho _a-\rho _b} \Theta _{\rho _\text {min}} \left (\rho _a,\rho _b,\tau , \rho _{\text {min}} ,z_a,z_b\right ) \\ R'(\rho -\rho _a-\rho _b)\frac {\exp [-R(\rho -\rho _a-\rho _b)-\gamma _E R'(\rho -\rho _a-\rho _b)]}{\Gamma [1+R'(\rho -\rho _a-\rho _b)]}.  
   

  

   


We now wish to integrate over ρb which we note contains two regions, ρa < ρ−ρa and 
ρa > ρ − ρa, the former of which vanishes if we neglect the τ dependence of the ρa
integral limits as in section 6.3.3 2. Enforcing the condition ρb > ρmin, which is em-
bodied in Θρmin gives an upper limit on ρa of ρ − ρmin

1−τ
, which, within our accuracy we 

can approximate as ρ. To carry out this integral within single logarithmic accuracy, 
we can expand the radiator about some fixed ρb which we take as (ρ − ρa)(1 − τ0)so 
that: 

  R(\rho -\rho _a-\rho _b)\simeq R((\rho -\rho _a)\tau _0)-R'((\rho -\rho _a)\tau _0)\ln \left (\frac {\rho -\rho _a-\rho _b}{(\rho -\rho _a)\tau _0}\right ) + \mathcal {O}(R''),        

  



 (C.11)

2The neglected term is proportional to α3L2Lρ where Lρ is a log of ρ or ρmin while L is a log of the ratio or ζ. 
This is clearly beyond our accuracy.

{eq:alternateDerivation} \frac {\rho }{\sigma } \frac {\sd \sigma }{\sd \rho }\overset {\tau <1/2}{=} \bar {\alpha }^2 \int _\zeta ^1\frac {\sd z_a}{z_a} \int _\zeta ^1\frac {\sd z_b}{z_b} \int _{\frac {1}{2} \rho }^{\rho } \frac {\sd \rho _a}{\rho _a}\frac {\rho }{\rho -\rho _a} \Theta _{\rho _\text {min}} \left (\rho _a,\rho _{\text {min}} ,z_a,z_b\right ) \\ \left (\frac {\tau }{\tau _0} \right )^{R'((\rho -\rho _a)\tau _0)} {}_2F_1(1,R'(\rho -\rho _a)\tau _0,1+R'(\rho -\rho _a)\tau _0,\tau )\\ \frac {\ \exp [-R((\rho -\rho _a)\tau _0)-\gamma _E R'((\rho -\rho _a)\tau _0)]}{\Gamma [1+R'((\rho -\rho _a)\tau _0)]},



where τ0 should be chosen close to τ as values of ρb close to (ρ − ρa)(1 − τ) are ex-
pected to dominate the integral. The integral can then be carried out to give 

{eq:alternateDerivation} \frac {\rho }{\sigma } \frac {\sd \sigma }{\sd \rho }\overset {\tau <1/2}{=} \bar {\alpha }^2 \int _\zeta ^1\frac {\sd z_a}{z_a} \int _\zeta ^1\frac {\sd z_b}{z_b} \int _{\frac {1}{2} \rho }^{\rho } \frac {\sd \rho _a}{\rho _a}\frac {\rho }{\rho -\rho _a} \Theta _{\rho _\text {min}} \left (\rho _a,\rho _{\text {min}} ,z_a,z_b\right ) \\ \left (\frac {\tau }{\tau _0} \right )^{R'((\rho -\rho _a)\tau _0)} {}_2F_1(1,R'(\rho -\rho _a)\tau _0,1+R'(\rho -\rho _a)\tau _0,\tau )\\ \frac {\ \exp [-R((\rho -\rho _a)\tau _0)-\gamma _E R'((\rho -\rho _a)\tau _0)]}{\Gamma [1+R'((\rho -\rho _a)\tau _0)]},



































    {eq:alternateDerivation} \frac {\rho }{\sigma } \frac {\sd \sigma }{\sd \rho }\overset {\tau <1/2}{=} \bar {\alpha }^2 \int _\zeta ^1\frac {\sd z_a}{z_a} \int _\zeta ^1\frac {\sd z_b}{z_b} \int _{\frac {1}{2} \rho }^{\rho } \frac {\sd \rho _a}{\rho _a}\frac {\rho }{\rho -\rho _a} \Theta _{\rho _\text {min}} \left (\rho _a,\rho _{\text {min}} ,z_a,z_b\right ) \\ \left (\frac {\tau }{\tau _0} \right )^{R'((\rho -\rho _a)\tau _0)} {}_2F_1(1,R'(\rho -\rho _a)\tau _0,1+R'(\rho -\rho _a)\tau _0,\tau )\\ \frac {\ \exp [-R((\rho -\rho _a)\tau _0)-\gamma _E R'((\rho -\rho _a)\tau _0)]}{\Gamma [1+R'((\rho -\rho _a)\tau _0)]},








    

{eq:alternateDerivation} \frac {\rho }{\sigma } \frac {\sd \sigma }{\sd \rho }\overset {\tau <1/2}{=} \bar {\alpha }^2 \int _\zeta ^1\frac {\sd z_a}{z_a} \int _\zeta ^1\frac {\sd z_b}{z_b} \int _{\frac {1}{2} \rho }^{\rho } \frac {\sd \rho _a}{\rho _a}\frac {\rho }{\rho -\rho _a} \Theta _{\rho _\text {min}} \left (\rho _a,\rho _{\text {min}} ,z_a,z_b\right ) \\ \left (\frac {\tau }{\tau _0} \right )^{R'((\rho -\rho _a)\tau _0)} {}_2F_1(1,R'(\rho -\rho _a)\tau _0,1+R'(\rho -\rho _a)\tau _0,\tau )\\ \frac {\ \exp [-R((\rho -\rho _a)\tau _0)-\gamma _E R'((\rho -\rho _a)\tau _0)]}{\Gamma [1+R'((\rho -\rho _a)\tau _0)]}, 


 


in perfect agreement with Eq. (6.16).

Although less convenient for making contact with the result reported in Eq. (6.16), 
we could equally well have integrated over ρa, leaving the ρb integral to be done nu-
merically, as we could have done in section 6.3.3. To do this one would expand R(ρ−
ρa − ρb) around ρa = ρ− ρb

1−τ
which would lead to: 

\frac {\rho }{\sigma } \frac {\sd \sigma }{\sd \rho }\overset {\tau <1/2}{=} \\ \bar {\alpha }^2 \int _\zeta ^1\frac {\sd z_a}{z_a} \int _\zeta ^1\frac {\sd z_b}{z_b} \int _{\rho _{min}}^{\frac {\rho }{2}} \frac {\sd \rho _b}{\rho _b}\frac {\rho }{\rho -\rho _b} \left ( \frac {\tau (1-\tau _0)}{(1-\tau )\tau _0}\right )^{R'(\rho _b\frac {\tau _0}{1-\tau _0})} \Theta _{\rho _\text {min}} \left (\rho _b,\rho _{\text {min}} ,z_a,z_b\right ) \\ {}_2F_1(1,R'(\rho _b\frac {\tau _0}{1-\tau _0}),1+R'(\rho _b\frac {\tau _0}{1-\tau _0}),\frac {\rho _b\tau _0}{(1-\tau _0)(\rho -\rho _b)})\\ \frac {\ \exp [-R(\rho _b\frac {\tau _0}{1-\tau _0})-\gamma _E R'(\rho _b\frac {\tau _0}{1-\tau _0})]}{\Gamma [1+R'(\rho _b\frac {\tau _0}{1-\tau _0})]},









\frac {\rho }{\sigma } \frac {\sd \sigma }{\sd \rho }\overset {\tau <1/2}{=} \\ \bar {\alpha }^2 \int _\zeta ^1\frac {\sd z_a}{z_a} \int _\zeta ^1\frac {\sd z_b}{z_b} \int _{\rho _{min}}^{\frac {\rho }{2}} \frac {\sd \rho _b}{\rho _b}\frac {\rho }{\rho -\rho _b} \left ( \frac {\tau (1-\tau _0)}{(1-\tau )\tau _0}\right )^{R'(\rho _b\frac {\tau _0}{1-\tau _0})} \Theta _{\rho _\text {min}} \left (\rho _b,\rho _{\text {min}} ,z_a,z_b\right ) \\ {}_2F_1(1,R'(\rho _b\frac {\tau _0}{1-\tau _0}),1+R'(\rho _b\frac {\tau _0}{1-\tau _0}),\frac {\rho _b\tau _0}{(1-\tau _0)(\rho -\rho _b)})\\ \frac {\ \exp [-R(\rho _b\frac {\tau _0}{1-\tau _0})-\gamma _E R'(\rho _b\frac {\tau _0}{1-\tau _0})]}{\Gamma [1+R'(\rho _b\frac {\tau _0}{1-\tau _0})]},






































   

\frac {\rho }{\sigma } \frac {\sd \sigma }{\sd \rho }\overset {\tau <1/2}{=} \\ \bar {\alpha }^2 \int _\zeta ^1\frac {\sd z_a}{z_a} \int _\zeta ^1\frac {\sd z_b}{z_b} \int _{\rho _{min}}^{\frac {\rho }{2}} \frac {\sd \rho _b}{\rho _b}\frac {\rho }{\rho -\rho _b} \left ( \frac {\tau (1-\tau _0)}{(1-\tau )\tau _0}\right )^{R'(\rho _b\frac {\tau _0}{1-\tau _0})} \Theta _{\rho _\text {min}} \left (\rho _b,\rho _{\text {min}} ,z_a,z_b\right ) \\ {}_2F_1(1,R'(\rho _b\frac {\tau _0}{1-\tau _0}),1+R'(\rho _b\frac {\tau _0}{1-\tau _0}),\frac {\rho _b\tau _0}{(1-\tau _0)(\rho -\rho _b)})\\ \frac {\ \exp [-R(\rho _b\frac {\tau _0}{1-\tau _0})-\gamma _E R'(\rho _b\frac {\tau _0}{1-\tau _0})]}{\Gamma [1+R'(\rho _b\frac {\tau _0}{1-\tau _0})]},





 






 



\frac {\rho }{\sigma } \frac {\sd \sigma }{\sd \rho }\overset {\tau <1/2}{=} \\ \bar {\alpha }^2 \int _\zeta ^1\frac {\sd z_a}{z_a} \int _\zeta ^1\frac {\sd z_b}{z_b} \int _{\rho _{min}}^{\frac {\rho }{2}} \frac {\sd \rho _b}{\rho _b}\frac {\rho }{\rho -\rho _b} \left ( \frac {\tau (1-\tau _0)}{(1-\tau )\tau _0}\right )^{R'(\rho _b\frac {\tau _0}{1-\tau _0})} \Theta _{\rho _\text {min}} \left (\rho _b,\rho _{\text {min}} ,z_a,z_b\right ) \\ {}_2F_1(1,R'(\rho _b\frac {\tau _0}{1-\tau _0}),1+R'(\rho _b\frac {\tau _0}{1-\tau _0}),\frac {\rho _b\tau _0}{(1-\tau _0)(\rho -\rho _b)})\\ \frac {\ \exp [-R(\rho _b\frac {\tau _0}{1-\tau _0})-\gamma _E R'(\rho _b\frac {\tau _0}{1-\tau _0})]}{\Gamma [1+R'(\rho _b\frac {\tau _0}{1-\tau _0})]},


















where again, τ0 should be taken close to τ , and any τ dependence in the leading or-
der pre-factor has been neglected.
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