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Abstract

Classifiers based on a deep neural architecture inspired by the transformer, as

proposed by Vaswani et al. (2017)[Advances in neural information processing

systems (pp. 5998-6008)], were developed and studied with regards to their

performance on the task of detecting different types of cardiac arrhythmia in

12-lead ECG signals. All classifiers were trained on the Shaoxin People’s Hospi-

tal 12-lead ECG database and further evaluated on the PTB-XL database. Two

different labelling regimes were employed. Performance on the Shaoxin test set

(96.5±0.3% and 92.6±0.45% overall accuracy) was found to slightly exceed that

of a simple CNN benchmark (95.9± 0.4% and 90.25± 0.55% overall accuracy)

as well as the performance of the DNN-LSTM model proposed and reported

by Yildirim et al. (2020) [Computer methods and programs in biomedicine,

197, 105740] (96.13% and 92.24% overall accuracy) for both labelling regimes.

Evaluated on synthetic sequences of concatenated examples from the Shaoxin

database, the proposed algorithm showed superior ability to generalise to longer

sequences and mixed labels compared to the CNN-benchmark, although perfor-

mance generally decreased with the the length of the sequences. Performance on

the PTB-XL database was low and approaching random guessing, presumably

due to a combined effect of poor mapping of the different labelling regimes, dif-

ferences in the underlying populations, the presence of mixed labels, differences

in signal quality and potentially unknown artifacts.
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Chapter 1

Introduction

Medicine is a science of uncertainty and an art of probability.

- Sir William Osler

The Electrocardiogram (ECG) provides sequential data of the electric po-

tential between various positions on the surface of the body, which is assumed

to be primarily induced by cardiac electric activity and hence provides insight

into the electrophysiological state of the heart as a function of time. In clin-

ical practise, ECGs are commonly used to diagnose various forms or cardiac

arrhythmia (Gertsch, 2008) as well as other cardiac conditions thanks to their

inexpensive and non-invasive nature.

Historically, this information has been extracted manually by experienced

and often specially trained clinicians through visual inspection of the raw signal,

resulting in significant expenditure of expert time as well as the risk of human

error in addition to the already significant risk of misclassification owed to the

inherent ill-posedness of the problem itself (Kara, 2021).

Unsurprisingly, various attempts have been made to automate this rather

tedious classification process - which, for an experienced clinician, is often merely

an exercise in pattern recognition without the need for higher order reasoning

(Gertsch, 2008) - in order to reduce costs and improve patient outcomes. Ap-

proaches ranging from rule-based expert systems to deep learning techniques
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have been proposed and tested in recent decades, at times reaching super-human

performance (Hannun et al., 2019); and some have even found their way into

clinical practise through commercial applications (i.e. Turakhia et al., 2019).

Despite this, there is yet much progress to be made with regards to the per-

formance, range of applicability, safety, interpretability and generalisability of

the proposed methods, as well as their ability to detect the limits of their own

competence (see section 2.5.4 for a detailed discussion).

1.1 Aims and Objectives

Based on the considerations detailed in the following chapter, the overall aim

of this work is to scrutinize a deep learning algorithm based on the

transformer architecture (Vaswani et al., 2017) for the automatic

detection and classification of certain types of cardiac arrhythmia. It

is our belief that such an algorithm is not only uniquely appropriate to the task

at hand, but also more flexible and able to generalise, both of which are crucial

aspects of clinical implementation. Furthermore, we hypothesise a high degree

of interpretability by clinical experts inherent in the proposed architecture due

to the technical nature of the attention mechanism and the lack of recursion.

Consequently, the following objectives have been formulated:

1. Determine the effect of training data imbalance and pre-processing on the

performance of the proposed architecture.

2. Determine the performance effects of modifying the proposed architecture

to accept additional patient data as input and perform multitask classifi-

cation.

3. Determine whether the proposed architecture can outperform its bench-

marks in terms of out-of-sample performance.

4. Determine whether the proposed architecture generalises well to longer

sequences than those seen during training (as compared to benchmarks).

5. Determine whether the proposed architecture generalises well to data

drawn from other sources (as compared to benchmarks).

6. Determine the degree to which the proposed architecture is interpretable

by clinical experts.

17



Chapter 2

Theoretical and Historical

Background

2.1 The Physics of Electrocardiography

Figure 2.1: Illustration of the forward- and inverse problem of electrocardiogra-
phy. From Kara (2021).

The human heart and torso can be modelled as a source of electric poten-

tial within a volume conductor, where the electric activity of the former induces

a time-varying surface potential on the latter (Kara, 2021). Drawing conclusions

about the state of the source based on measurements of the surface potential of

the volume conductor is then what is known as solving the inverse problem of

electrocardiography (compare fig 2.1), which in its broadest sense can be said to
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be the underlying purpose behind all forms of ECG interpretation.

Despite the inherent ill-posedness of the problem, excaberated by the very

low spatial resolution of a standard clinical 12-lead ECG, clinicians have histori-

cally used this technology with remarkable success and the ECG is arguably the

most important and widely used physiological signal related to cardiac activity

and health. As such, it provides insight into the electrophysiological activity of

the heart and is used to diagnose a wide variety of pathologies including various

types of cardiac arrhythmia (Gertsch, 2008).

The twelve leads of the standard clinical ECG are obtained using 10 elec-

trodes arranged across the chest and limbs (see fig 2.2.). The right leg electrode

exclusively serves as a ground wire, while the remaining nine electrodes are

combined to produce the six chest and six limb leads1

Figure 2.2: Schematic of positions of the nine 12-lead ECG electrodes on the
human body. From Kusumoto and Bernath (2011).

The limb leads refer to various combinations of the limb electrodes (ex-

cluding the right leg), as illustrated in table 2.1 and figure 2.3. Their vectors

(i.e. the direction in which changes in potential difference are detected) are

lined up in the frontal- (or coronal-) plane of the heart (compare fig 2.4).

The chest leads V1-V6 (numbered from right to left) use their their re-

spective electrode as a positive, and the sum of the limb leads as a negative

1It is important to stress in this context that a lead is a purely mathematical concept
derived from the potential difference measured between two or more physical electrodes.
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Figure 2.3: Schematic of the directions of view for the six limb leads of a 12-lead
ECG.From Kusumoto and Bernath, 2011.

electrode. Since the latter is assumed to be at or near the centre of the heart

(certainly within the frontal plane), their respective vectors are hence lined up

in the horizontal- (or transverse) plane of the heart (compare figure 2.4b).

Lead Name Positive Electrode (+) Negative Electrode (-)
I Left arm Right arm
II Left leg Right arm
III Left leg Right arm
aVR Right arm Left arm + left leg
aVF Left leg Right arm + left arm
aVL Left arm Right arm + left leg

Table 2.1: Positions of positive and negative electrodes of the limb leads in a
12-lead ECG.

As a clinically optimal trade-off between sensitivity, specificty and feasibil-

ity (Rawshani, 2021), the 12-lead ECG hence provides a comprehensive (albeit

spatially coarse) 360◦ view of the heart’s electrical activity, and more specifi-

cally a means of observing the waves of de- and repolarisation across the heart

against time in a non-invasive and relatively inexpensive way (see section 2.2.1
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Figure 2.4: Schematic of the alignment of the six limb and six chest leads on the
(a) frontal and (b) horizontal plane, respectively. From Kusumoto and Bernath
(2011).

for more detail).

While all the data used in this work was obtained in digital form, in a

clinical context ECGs are often presented on physical paper and in a character-

istic format (figure 2.12 provides an example) where approximately one beat is

displayed for each lead in addition to a rhythm strip (usually lead II) comprising

multiple beats and allowing for the detection of less localised, rhythmic features

(Kusumoto, 2020). An example of this form is displayed in figure 2.12, yet it

is important to note that other forms of presentation are possible (i.e. figure

2.9).
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2.2 Fundamentals of Cardiac Electrophysiology

2.2.1 Normal Cardiac Electrical Activity and the Normal

ECG

The main function of the human heart is to maintain adequate blood circulation

and thereby provide itself and all other organs with sufficient oxygen and other

vital substances, as well as to ensure the disposal of waste and enable the gas

exchange mechanism in the lungs (Tortora & Derrickson, 2018). As such, it is

a vital organ whose inner workings hinge on complex electrophysiological and

fluid mechanical dynamics. Specifically, in order to perform its life-preserving

function, the heart must perform a perpetual series of orderly expansions and

contractions referred to as sinus rythm2.

Figure 2.5: Simplified schematic of the normal cardiac conduction system. From
Xing et al. (2014).

This motion is maintained through a periodically recurring series of elec-

trochemical interactions between cardiac myocytes, resulting in a cascade of

cellular depolarisations and repolarisations, causing contraction and subsequent

expansion (resp). At rest, a negative potential of approximately -90 mV builds

2The term refers to the spatial origin of the electrical depolarisation of the cardiac muscle
being at the sinus node (compare figure 2.5).
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up inside the cardiac myocytes (heart muscle cells) relative to the extracellular

space, mainly due to the combined activities of various protein pumps, exchang-

ers 3, the “leaky” inwardly rectifying current IK1 which allows K+ ions to flow

out of the cell down their concentration gradient and thereby reach an over-

all electrochemical equilibrium, as well as the presence of large anionic protein

molecules inside the cell that cannot cross the membrane (Kusumoto, 2020).

Figure 2.6: Schematic graphs of the fast and slow cardiac action potential as
well as that of a nerve cell. By Richard E. Klabude, last accessed 28th December
2021 from https://www.cvphysiology.com/Arrhythmias/A010.

When the cell membrane of an atrial or ventricular cardiac myocyte is de-

polarised, either due to the prior depolarisation of neighbouring cells (as is the

case during normal cardiac electrical activity) causing the outside potential to

drop, or by an outside source of potential difference (such as a pacemaker), this

leads to an opening of the hitherto closed NA+ channels in the cell membrane

and, as Na+ ions flow down their electrochemical gradient, a spike in membrane

potential up to approximately +10 mV occurs, corresponding to Phase 0 of the

cardiac action potential (Kusumoto, 2020).

Closing of the NA+ ion channel and brief opening of the transient outward

potassium channels then facilitates Phase 1 (early repolarisation), which leads

into the plateau phase (Phase 2), characterised by a stable membrane potential

of approximately 0 mV. During this phase, the inward flow of positive charge in

3Namely the Na+-K+ ATPase and Ca2+ATPase protein pumps and Na+-Ca2+ exchanger.
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the form of Ca2+ ions is balanced by the outward flow of K+ ions, as enabled

by the L-type Calcium channel and the delayed rectifier potassium channels re-

spectively. Closing of the former then leads to a net outflow of positive charge

and hence the onset of rapid repolarisation phase (Phase 3), during which the

delayed rectified channels gradually closes and the “leaky” inwardly rectifying

current takes over to facilitate resting potential (Phase 4).

Figure 2.7: Schematic of a normal ECG and its components. From Zheng et al.
(2020).

Cells in the sinoatrial and atrioventricular nodes exhibit a different type

of de- and repolarisation behaviour, known as slow response action potential.

Unlike working muscle cells, which exhibit fast response action potential as de-

scribed above, these cells depolarise less rapidly, lack plateau phase and do not

reach the maximum membrane potential of -90 mV. The electrophysiological be-

haviour is characterised by a different set of ion channels but similar in principle.

Most importanly, these slow response action potential cells have the property of

spontaneous depolarisation , making them act as natural pacemaker cells. Fur-

thermore, they delay the pulse of depolarisation as initiated by the sinoatrial

node as it reaches the atrioventricular node, thereby coordinating the sequences
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of atrial and ventricular contraction, and also act as a buffer against overstim-

ulation of the ventrices through rapid impulses caused by atrial arrythmia such

as atrial fibrillation and atrial flutter (compare section 2.2.2). Figure 2.6 illus-

trates the temporal evolution of both fast- and slow-response action potential

in contrast to that of a nerve cell.

The combined effects of de- and repolarisation of cells exhibiting fast and

slow action potential in the atria, ventrices, the sinoatrial and atrioventricu-

lar nodes as well as the rest of the conduction system (compare figure 2.5)

determines the shape of the normal ECG signal (see figures 2.7 and 2.8). In

particular, the “smooth” shape of the p-wave is due to the contribution of slow

action potential cells in the sinoatrial and atrioventricular nodes to the overall

electrical signal (Kusumoto, 2020).

It is further important to note that the heart is not the only source of

time-varying electric potential within the body and that besides the idiosyn-

cratic noise of the ECG machine itself, the signals are obscured by constant

noise, mainly from muscle contraction (i.e. Chowdhury et al., 2013). The issue

of appropriate de-noising through pre-processing techniques is non-trivial and

will repeatedly be touched on throughout this work.
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Figure 2.8: Illustration of the connection between the characteristic features of
a normal ECG cycle and the cumulative effects of underlying cardiac electrody-
namics. From Kusumoto and Bernath (2011).

2.2.2 Cardiac Arrythmia

As mentioned above, the presence of sinus rhythm can be considered a neces-

sary (yet not sufficient) condition of normal cardiac electrical activity (Gertsch,

2004). The heart’s failure to operate in this manner leads to a range of serious

and in some cases life-threatening rhythmic abnormalities collectively known as

cardiac arrhythmia.

Arrhythmia is present when the heart either beats too fast, too slow, or

in an irregular manner (Kusumoto and Bernath, 2011). Common approaches

to classifying the different known types of arrhythmia are to distinguish them

by either their speed and rhythm characteristics, their anatomical origin or
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by their underlying electrophysiological mechanism (Kusumoto and Bernath,

2011). Rhythm in particular can be classified as too slow (bradycardia) or

too fast (tachycardia), anatomical origin as ventricular and superventricular

(including atrial and nodal) and electrophysiological mechanism as either caused

by abnormal impulse formation at a pacemaker site (automaticity) or by re-entry

(Antzelevitch & Burashnikov, 2011).

Due to the constraints of the databases that were chosen for this study

(compare chapter 4), we will limit our further discussion to the following com-

mon types of arrhythmia:

• Atrial Fibrillation - AFIB

• Atrial Flutter - AF

• Sinus Irregularity - SI

• Sinus Bradycardia - SB

• Supraventricular Tachycardia - SVT (including sinus tachycardia and ex-

cluding AF and AFIB)

Clinicians often identify different types of cardiac arrhythmia by recog-

nising specific morphological and rhythmic patterns in a patient’s ECG signal.

The aim of this study is to propose and test a method of leveraging publicly

available physician-annotated data and advances in machine learning technology

in order to automate this process. In order to first provide an understanding

of the task we want our model to perform, we will give a brief introduction yo

the pathophysiology of the types of arrhythmia mentioned above, as well as the

morphological and rhythmic intricasies of their associated ECGs.

Atrial Fibrillation (AFIB)

Atrial fibrillation (AFIB) is one of the most common forms of cardiac arrhythmia

characterised by rapid electrical discharges caused by defects in the conductive

properties of the atrial tissue (Waks & Josephson, 2014). While not imme-

diately life-threatening, the most important complication of AFIB is cerebral

stroke (Gertsch, 2008).

Rhythmically, AFIB is characterised by a fast heart rate as well as a very

irregular ventricular response to the highly irregular impulses from the atria,
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Figure 2.9: Example ECG of a patient with AFIB. From Kusumoto and Bernath
(2011).

resulting in strong heart rate variabililty. This correlation is so strong that clas-

sifiers have been built solely based on RR vs. ∆RR plots (compare figure 2.7)

in order to detect AFIB with some success (Lian et al., 2011).

Morphologically, AFIB is often characterised by missing p-waves due to the

lack of coordinated atrial depolarisation (Ferguson et al., 2014) and sometimes

by inverted t-waves (Kawaji et al., 2021). The presence of high-frequency f-

waves (caused by the uncoordinated electrical activity of the atria) is a further

diagnostic indicator (Gertsch, 2008). Figure 2.9 provides an example.

Atrial Flutter (AF)

While eight times rarer than AFIB, Atrial Flutter (AF) is still not an uncom-

mon arrhythmia, particularly in elderly patients (Gertsch, 2008). Like AFIB,

it is characterised by abnormal atrial electrical activity and a faster than usual

(atrial) rate. Unlike in AFIB, however, AF is caused by re-entry (Kusumoto,

2020) and the rate tends to be more stable or at least “regularly regular” in

an individual patient (Gertsch, 2008). In fact, it is this rhythmic feature that

is most commonly used by clinicians in order to distunguish between AF and

AFIB (Kusumoto & Bernath, 2011).
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Figure 2.10: Example ECG of a patient with AF. From Kusumoto and Bernath
(2011).

Morphologically, AF is characterised by flutter waves (F-waves) with a

picket-fence-like appearance (Gertsch, 2008). Figure 2.10 provides an example.

Sinus Irregularity (SI)

Figure 2.11: Example ECG of a patient with SI. The asterisks represent the
locations of the p-waves. From Kusumoto and Bernath (2011).

Sinus irregularity (SI), also know as sinus arrhythmia, is a usually benign

type of arrhythmia characterised by sinus rhythm with irregular spacing between

the p-waves (representing irregular intervals between atrial depolarisations) and

an otherwise normal ECG (Kusumoto & Bernath, 2011). Figure 2.11 provides

an example.
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Sinus Bradycardia (SB)

Figure 2.12: Example ECG of a patient with SB. From Drezner et al. (2013).

Sinus Bradycardia (SB) is a slow heart rate cause by a sinus node that

is dysfunctional in fulfilling its pacemaker function, resulting in a rate of less

than 60 beats per minute and an otherwise normal ECG (Gertsch, 2008). It is a

condition commonly found in elderly people as well as well-conditioned athletes

(Salyer, 2007, chapter 2). See figure 2.12 for an example ECG.

Supraventricular Tachycardia (SVT)

Supraventricular Tachycardia (SVT) is a fairly general term used for describing

rapid heart rates (more than 100 bpm) that do not originate in the ventrices

but instead have their site of abnormally rapid activity in either the atria or the

nodes. They can hence be further distinguished by their anatomic origin (i.e.

atrial or junctional) and their mechanism (automatic or re-entrant) (Kusumoto

& Bernath, 2011). As opposed to ventricular tachycardias, supraventricular

tachycardias usually have a narrow QRS-complex, and it is this morphologi-

cal criterion that is often used to make the distinction (Kusumoto & Bernath,

2011). Figure 2.13 provides an example while figure 2.14 illustrates the simple

taxonomy detailed above.

It should further be noted that SVT is sometimes used as an independent

diagnostic class in addition to more specific classes such as atrial- or atrioven-

tricula re-entrant tachycardia. This, however, is usually due to incomplete in-
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Figure 2.13: Example ECG of a patient with atrioventricular re-entrant tachy-
cardia, a form of SVT. From Kusumoto and Bernath (2011).

Figure 2.14: A simple taxonomy of supraventricular tachycardia. From
Kusumoto and Bernath (2011).
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formation and an inability of the diagnosing clinician to make a decision on the

site and/or mechanism of the tachycardia (Zheng et al., 2020).

2.3 Historic and Current Approaches

When trying to provide a comprehensive overview of past and current compu-

tational approaches to solving the inverse problem in a broad sense as discussed

in section 2.1, one first has to make a destinction between approaches revolving

around first-principles-modelling and simulations based on a theoretical under-

standing of the electrodynamics and fluid mechanics of cardiac processes (i.e.

along the lines of Clayton et al., 2011) and those that are based on either hard-

coded rules of clinical decision making and/or statistical modelling.

While the former approach is clearly in a sense more elegant and shows

much promise in fields like hypothetical drug testing (i.e. Whittaker, 2018) and

improving our understanding of the pathophysiological mechanisms of cardiac

conditions and how they relate to features of ECG and ECGI data (i.e. Kara,

2021), one could argue that such a high degree of physical detail and computa-

tional expense is not needed for most clinical classification tasks. In fact, most

algorithmic approaches that are mainly concerned with diagnostic power as op-

posed to theoretical accuracy and insight into the inner workings of the heart

therefore take the latter approach. That said, effective hybrid systems that

combine machine learning and first-principles-modelling have been developed in

recent years (i.e. Buerger et al., 2020).

The landscape of systems and approaches presented in literature for the

automation of many ECG-related diagnostic tasks is so vast that in this section,

only a selected sample can be presented in order to provide the reader with a

non-comprehensive overview of the state of the field and the rationales which

have lead to the development of the architecture proposed in this study.

As in other areas of what could be calledmachine intelligence, the first sys-

tems designed for the purpose of physiological signal classification and computer

aided diagnosis (CAD) were so-called expert systems, based on hard-coded rules

and/or methods from “traditional” statistics and signal processing (i.e. Ledos

et al., 1988; Li et al., 1995).
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More recently, with the advent of the strongly empirical approaches to

computational predictive statistics hereinafter referred to as machine learning,

a wide variety of data-driven approaches has been developed. The most promi-

nent common characteristic of these approaches, which will be discussed in more

detail in section 2.4, is that they do not rely on explicit (or symbolic) and sub-

sequently hard-coded rules, but instead learn statistical patterns and decision

boundaries directly from data. The necessary knowledge of human experts (the

ground truth) is hence injected into the system through iterative parameter op-

timization (“training”), as opposed to hard-coded into the system in the form

of first principles and/or clinical rules.

With regards to such approaches to time-series in general, Zhao et al.

(2017) suggest a distinction between model-based, distance-based and feature-

based approaches. In that order, these terms refer to approaches based on a

clearly defined (generative) model of the data-generating process which is fit

due the data available and then used to make predictions through some mode

of comparison, approaches based on direct comparison of the input data with

elements of the training data through some form of distance measure (also called

exemplar-based models) and approaches based on the extraction of characteristic

features from the data which are then used to draw (learned) class-distinctions,

respectively.

The main short-coming of the model-based approach, which could also

be deemed “traditional” time-series modelling, is clearly our lack of knowledge

with regards to the data-generating processes of most real-world time-series (in-

cluding ECGs), and/or their mathematical intractability (Zhao et al., 2017).

Since ECG signals are dominated by deterministc, yet highly non-linear be-

haviour (Clifford et al., 2006), the modelling of such would ultimately take

us down the path of first principle modelling described at the beginning of

this section. Furthermore, many “general purpose” time-series models (such as

ARIMA) were designed for signals dominated by stochastic behaviour and hence

-amongst other issues- have strong stationarity requirements which ECG-signals

and other physiological time-series in general do not meet (See section 2.5.2 for

a discussion). Although there exists a number of empirical studies into this

type of approach in the context of ECG-analysis (i.e. Vuksanovic and Alhamdi,

2013;Faal and Almasganj, 2021), it has been given no further consideration in
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the development of the proposed algorithms due to the limitations described

above.

Distance-based methods such as k-Nearest-Neighbours have also been in-

vestigated in the context of ECG-analysis (i.e. Faziludeen and Sankaran, 2016;Pandey

et al., 2020) and shown to show satisfactory results on their respective tasks.

However, by their very nature, the computational cost and memory usage of

such methods tends to increase with the amount of available training data, rais-

ing concerns about scalability and efficiency.

To stay within the above taxonomy, the most prominent type of approach

in contemporary literature is clearly the feature based approach, the aim of

which is to design a discriminative model that draws decision boundaries be-

tween diagnostic classes based on relevant features. This is the domain of most

(if not all) Machine Learning algorithms and will be the approach taken in this

work.

2.3.1 Machine Learning Approaches in Literature

Various methods and architectures have been tried, including more “traditional”

sequence-modelling methods such as and hidden markov models (see Gomes et

al., 2009, for a comparison), shallow machine learning algorithms based on var-

ious characteristic features of the raw or transformed ECG data (i.e. Baydogan

et al., 2013) and deep learning techniques (see below).

To make a further distinction, we note that most of the shallow architec-

tures (such as decision Trees or support vector machines) by their very nature

require extensive and elaborate pre-processing and feature engineering. This is

due to inherent limitations in learning non-linear decision-boundaries from high-

dimensional and strongly correlated input such as raw temporal and spatial data

(see section 2.4.4 for a more detailed discussion). The process of generating a

manageable number of reasonably uncorrelated input features from raw data,

also known as feature engineering, is essential for the success of these methods

and usually involves both experimentation and extensive domain knowledge

(Goodfellow et al., 2016).
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More recently, as a result of breakthroughs made in the field of deep

learning (also historically called connectionism) after decades of fundamental

research, a wealth of new approaches have been proposed based on Machine

Learning models often called artificial neural networks (ANNs) or deep neural

networks (DNNs) (see LeCun et al., 2015, for an introduction). The idea behind

these models is to combine a relatively weak classifier, such as logistic regression,

with a number of hierarchically organised layers of learned non-linear trans-

formations, which essentially serve as a pre-processor extracting un-correlated

features from raw-data (see section 2.4.4 for more detail). The main advantage

of deep learning architectures is that they make very few assumptions about the

underlying generative process (i.e. Zhao et al., 2017) and are able to learn their

own predictive features from raw signal data, often resulting in higher accuracy

and adaptability. Their drawbacks – the need for larger amounts of data and

tendency to overfit compared to other methods that make stronger assumptions

- have recently been mitigated through improvements in computing power, the

capacity to generate and store large amounts of digital data and the develop-

ment of powerful specialized learning algorithms and regularisation techniques

(see section 2.4.5-2.4.7).

Approaches of this kind were presented by Hannun et al. (2019), He et

al., 2019 and Zhang and Li (2021) amongst many others. While Hannun et al.

(2019) use a fairly standard deep convolutional architecture and achieve supe-

rior performance on their proprietary data-set labelled by a panel of expert-

cardiologists against a human benchmark, He et al. (2019) and Yildirim et

al. (2020) employ a architectures based on a CNN-(bi-)LSTM network, which

should in theory be able to learn both local morphological and global rhythmic

features (compare sections 2.4.5 and 2.4.6). Some researchers also propose us-

ing these models in conjunction with pre-processing techniques such as wavelet

transforms (Yildirim, 2018), as opposed to using the raw data as input to the

model. Zhang and Li (2021) further employ a CNN-LSTM architecture com-

bined with an attention mechanism which largely outperformes their respective

benchmarks. The attention mechanism, developed by Bahdanau et al. (2014)

and adapted by Luong et al. (2015) will also form an integral part of the algo-

rithm proposed in this work (see section 2.4.7).

Furthermore, Natarajan et al. (2020) have proposed an architecture based

on the transormer architecture for natural language processing as proposed by
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Vaswani et al. (2017), which scored highest in the Physionet Challenge 2020

(Alday et al., 2020). While the author was unaware of their work at the time

this study was conceived, ideas regarding design choices were nevertheless ulti-

mately incorporated in this work (see section 3.1).

While all of the studies mentioned above report satisfactory results based

on various performance metrics against their chosen benchmarks, it is crucial

to keep in mind that these need to be interpreted in light of the available data,

the type and quality of labelling, the type and difficulty of the classification

task and the computational costs of the models used. There is therefore very

limited utility in reporting figures such as overall accuracy and other metrics

here without providing extensive context.

2.4 Fundamentals of Machine Learning

The aim of what is commonly known as (supervised) Machine Learning is to esti-

mate some unknown quantity or category (also called a label), y, given a known

vector of data-points (also called a feature), x. In general, this relationship is

not perfectly deterministic and hence takes the form

P (y|x) = P (x, y)∑
i P (x, yi)

. (2.1)

.

As stated in the previous section, what is unique about machine learning

techniques is that, rather than trying to establish the given relationships through

first principles (i.e. physics-based modelling) or hard-coded expert knowledge,

they employ a combination of generic model architectures in conjunction with

an appropriate objective or cost function and a corresponding optimiser in or-

der to learn4 the relationship incrementally from a set of training examples and

corresponding labels (also known as the ground truths).

Mathematically, this is done by estimating a set of parameters, θ, that

is assumed to parameterise the (probabilistic) relationship between x and y.

4We are aware that the use of the of the word “learning” in this context is an anthro-
pomorphism whose appropriateness is an ongoing subject for debate, which is why we will
hereinafter use the word in italics.

36



One way this can be done is by treating θ as a random variable, formulating a

prior belief about its distribution, P (θ), and then updating that belief based on

the available data to obtain P (θ|Data). This is called the bayesian approach

(Murphy, 2022).

An alternative approach is finding a single point estimate as a function of

the data, θ̂, called an estimator, that is optimal with regards to some pre-defined

criterion, under the assumption that it represents the “best” approximation of

the presumed “true” set of parameters, and hence

P (y|x) ≈ fθ̂(x), (2.2)

for some function fθ̂ defined by the model architecture and the learned

parameters θ̂.

This is known as the frequentist approach (Murphy, 2022). One very

common estimator is the maximum likelihood estimator (MLE), i.e. the set

of parameters that maximises the likelihood of the data, P (Data|θ).One well-

known problem of this approach, particularly when using maximum likelihood,

is known as overfitting. This will further be discussed in section 2.4.2.

While it has been argued (i.e. by Jaynes, 2003) that the bayesian view

is more principled with regards to its mathematical foundation (the theory of

probability), a philosophical discussion of the relative merits and underlying

assumptions of both doctrines is beyond the scope of this work. It should be

noted, however, that although we follow an approach more in line with the

frequentist framework, this is solely for reasons of mathematical and computa-

tional feasibility, and in no way reflects our fundamental views on the nature of

statistical inference.

2.4.1 Terminology

Please note that in the following, we will refer to a specific θ̂, in conjunction

with a defined computational structure in which to interpret it, as a model, the

structure itself without the specific set of parameters as an architecture, and an

architecture in conjunction with an objective- or cost function and an optimiser

as a learning algorithm. A parameter that defines the architecture but are is
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not learned from data is furthermore called a hyperparameter (HP). The act of

tuning hyperparameters forms part of a meta-optimisation process also called

model selection and will further be discussed in the next subsectio and well as

section 5.6.

2.4.2 Model Complexity and Regularisation

Naturally, the (hypothetical) function describing the true relationship we are

trying to model might be far more complex than the functions available to the

model as defined by its architecture and the corresponding hyperparameters (the

so-called hypothesis space). Such a situation would lead to what is known as

underfitting. Converserly, the hypothesis space might also be too large with re-

gards to the complexity of the relationship and/or there might not be sufficient

incentive for the learning algorithm to choose simpler models over unnecessarily

complex ones, causing the model to learn idiosyncratic the noise in the training

data rather than (just) the relationship in question (Goodfellow et al., 2016).

Such a situation is known as overfitting. While a full bayesian analysis, such as

through what is known as evidence approximation (see for example Bishop &

Nasrabadi, 2006, for a detailed discussion), has an inherent tendency towards

favouring models of appropriate complexity and can hence be performed on the

full training data, the guiding principle used to deal with these issues within

the frequentist framework is the bias-variance-tradeoff (Dixon et al., 2020).

In practise, this is done through a form of re-sampling known as cross-

validation, where the available data is separated into a training and a validation

set. The so-called generalisation gap in performance on both sets of a model

only trained on the training set is then closely monitored and viewed of a meta-

optimisation problem in its own right. A large generalisation gap is indicative

of overfitting (high variance), while a low gap paired with a high overall error

is indicative of underfitting (high bias) (Goodfellow et al., 2016). While avoid-

ing underfitting is necessary for the model make accurate predictions, avoiding

overfitting ensures that what the model learns actually generalises to unseen

data drawn from the same data-generating process or population and not just

the idiosyncratic noise of the training set - it draws the distinction between mere

optimisation and learning.
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Most regularisation techniques are aimed at preventing overfitting through

effectively limiting the models effective capacity (i.e. it’s ability to fit the train-

ing data) and many can be interpreted as bayesian priors over the model pa-

rameters Goodfellow et al., 2016.

The process of optimising the effective capacity of a model (i.e. through

choosing hyper parameters and employing regularisation techniques) is known

as model selection and will be discussed in more detail in section 5.6.

2.4.3 Empirical Risk Minimization and (Stochastic) Gra-

dient Descent

While some simple learning algorithms have closed-form solutions (i.e. the nor-

mal equations in the case of linear regression), most machine learning models

rely on a technique called gradient descent (GD) in order to optimise their

parameters incrementally by minimizing the empirical risk (i.e. the “error” be-

tween the data and the model predictions) as measured by some loss function

(Murphy, 2022). To achieve this, the loss function is evaluated on the training

data or a random subset, as in the context of stochastic gradient descent (SGD),

and its gradient calculated with respect to the model parameters. Then, an in-

cremental step, the learning rate (LR), is taken “down” the gradient by updating

the parameters accordingly, leading to an incrementally more optimal solution.

For a given per-example loss function, L(xi, yi,θ) and corresponding cost

function, ∇θJ(θ), representing the average loss over a set of m elements of the

training data, the gradient is then given by

∇θJ(θ) ≈
1

m

m∑
i=1

∇θL(xi, yi,θ). (2.3)

Many adaptations of the standard SGD-algorithm have been developed,

including ADAM (Kingma & Ba, 2014) and its adaptations ADAGRAD and

ADADELTA, which attempt to improve the learning process through improve-

ments such as an adaptive learning rate.

For deep neural networks that consist of hierarchical layers, one needs to

further backpropagate the scalar loss through the model in order to obtain en

estimate of the gradient. The chain rule of differentiation is at the heart of
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this process (since hierarchical models can naturally be viewed as composite

functions) and for an in-depth discussion, we refer the reader to (LeCun et al.,

2012).

2.4.4 Deep Learning

As mentioned in section 2.3.1, many machine learning algorithms struggle with

unstructured and high dimensional input (such as raw spatial or temporal data)

and are therefore not very well-suited for tasks such as computer-vision and

signal-processing, at least not without significant feature engineering. This is

known as the curse of dimensionality (Bishop & Nasrabadi, 2006).

A useful concept in this context is the so-called manifold hypothesis, i.e.

the assumption that the statistical properties of many types of real-world data

(such as images and sequences) do not fill the whole “space” of possible reali-

sations but instead are arranged in ways that resemble much lower-dimensional

manifolds of the space comprised by all possible degrees of freedom of any given

input (Goodfellow et al., 2016).

Deep learning models exploit this hypothesis by employing a hierarchical

set of learned non-linear transformations in order to project the input into a

much lower dimensional and more easily separable feature space, within which

predictions can then be made by relatively weak classifiers or regressors . Inci-

dentally, this is also what feature engineering achieves manually for “shallow”

architectures.

The most fundamental building block of deep learning models is sometimes

called a neuron, and is essentially a unit that computes a weighted sum of all

or some of the previous layer’s outputs (and sometimes a bias term, b) based on

learned weights wi and then performs a fixed non-linear transformation (often

a sigmoid or ReLu function) on the output:

fneuron = ϕ(
∑
i

wixi + b) (2.4)

It can be shown that in the limit, even a single fully-connected (FC)5

5By fully-connected, we mean that all neurons of previous and subsequent layers are con-
nected to each other.
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hidden layer of such neurons can learn any possible input function. Therefore.

such models are often considered universal function approximators (Hornik et

al., 1989).

This expressiveness comes at a price, however, in the form of longer train-

ing times (often for many epochs, i.e. cycles through the whole training set)

due to the potentially very high capacity that is hard to estimate due to the

non-convexity of these models’ cost functions (see Goodfellow et al., 2016, p.111

for a further discussion of this issue).

In sum, this results in the need for much larger data sets compared to

shallow models and a correspondingly higher propensity to overfitting. Many

regularisation techniques such as weight-decay (including but not limited to

Tikhonov regularisation), multitask learning (i.e. letting the model perform

multiple related tasks simultaneously) , early stopping (i.e. stopping training

after a peak in performance on the test set has been reached) and dropout (i.e.

“shutting down” some of the neurons randomly during training in order to avoid

excessive co-dependence) have been devised in order to deal with this tendency

(Goodfellow et al., 2016). While most of the named techniques will be revisited

at some point throughout this work, dropout in particular has a very interesting

bayesian interpretation that will be revisited in section 2.5.4 when discussing

the aspect of model risk and its importance in the medical domain.

It must further be said that the tendency of ANNs to overfit and their

resulting need for large amounts of data in order to prevent this6, have recently

been mitigated through improvements in computing power, the capability to

generate and store large amounts of digital data as well as a more profound

understanding of why and how they work at all(Valle-Perez et al., 2018)7. This

has made deep learning techniques the method of choice for many researchers

in the domain of ECG-analysis.

This tendency has further been supported by the development of powerful

specialized learning algorithms. These are necessary since despite the promising

6The inverse relationship between the amount of available data and overfitting should be
quite intuitive with regards to a notion of degrees of freedom. Goodfellow et al., 2016 provide
a more rigorous discussion in light of statistical learning theory.

7Specifically, it is interesting to ask why they are able to derive at sensible solutions given
their apparent overparameterisation.

41



results of Hornik et al. (1989), single-layer fully-connected networks are of little

use due to their exploding computational and memory requirements. Further-

more, the so-called no free lunch theorem (Wolpert, 1996) states that there is

no a-priori distinction between learning algorithms and that therefore, design

choices that reliably lead to above-average performance must be made with a

specific task in mind.

Two of the most frequently used specialised architectures for automatic

ECG-interpretation as well as a third that is particularly relevant to this work

will be discussed below.

2.4.5 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) and their defining layer architecture,

the convolutional layer are particularly well adapted to the task of extracting

features from large unstructured natural inputs such as images or sequences.

Their strength lies in their ability to detect localised features (such as a line

segment of certain shape) at any position in an image or sequence using the

same set of weights (called a filter or kernel). They achieve this translation-

invariability through sliding each filter across the image or sequence, thereby

producing a filter map that is then passed on to the next layer. Mathematically,

this operation is represented by a discrete convolution. For a one-dimensional

time-series x(t) and a kernel w(t), the resulting feature map ffeature is then

ffeature(t) =

amax∑
a=amin

x(a)w(t− a). (2.5)

In order to detect localised features, filters usually have a certain learned

shape within a narrowly defined region (called their size) and are zero elsewhere

(Goodfellow et al., 2016).

In the standard CNN-architecture, blocks of convolutional layers combined

with a non-linear activation function (usually the ReLu function) and downsam-

pling (pooling) layers are then stacked, before the resulting feature maps are

flattened out and fed into a FC-layer followed by a sigmoid function (for binary

classification) which in turn produces a class label ∈ [0, 1]. While effective for

short sequences and beat-wise classification (Acharya et al., 2017), it is clear
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that this technique when used in isolation is fundamentally unable to capture

the complex temporal relations (i.e. of large-scale rhythmic patterns) due to

its fixed field of vision and, owed to its preservation of the (albeit often down-

sampled) time-dimension, poses technical challenges when applied to sequences

of variable length. For an in-depth discussion, we refer the reader to LeCun

et al., 1989.

2.4.6 Long Short Term Memory Networks

Figure 2.15: Schematic of a single LSTM-neuron, where ht−1 and xt represents
the previous hidden state and the current input respectively, while bf ,bi,bc and
b0 are bias terms associated with the respective gates. From Yildirim (2018).

While CNNs are very good at extracting relevant localised features from

time-series or images, they are ultimately ignorant of the concept of time (or

sequentiality), which has in part led to the development of Long Short Term

Memory Networks (Hochreiter & Schmidhuber, 1997). The reason they will

briefly be discussed here is that they form an essential part of many state-of-

the-art classification algorithms for types of cardiac arrhythmia, including the

one proposed by (Yildirim et al., 2020).

Like their conceptual forebarers, recurrent neural networks (RNNs) (Rumel-

hart et al., 1986), LSTMs introduce the notion of before and after by sequentially
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processing the input features along the time-domain together with a hidden state

stored from the previous step of the iteration (Hochreiter & Schmidhuber, 1997).

That said, they represent an improvement over RNNs both because they are less

prone to the so-called vanishing- or exploding gradient problem through the use

of learned gates, and because these gates make the time-distributed structure

more adaptive to varying statistical properties of the input data8 (see figure

2.15 for a schematic illustration of a single LSTM-neuron).

Without going unnecessarily into the technical details of LSTMs, we can

immediately notice a potential shortcoming in their use of sequential processing:

Even if the input sequences are very long and in large parts irrelevant to the

task, the model still has to iterate through the whole sequence while storing all

relevant information in its hidden states. Besides being computationally waste-

ful and and impediment to parallelisation, as Vaswani et al. (2017) have pointed

out, in practise this has also been found to diminish performance in very long

sequences, i.e. those encountered in Natural Language Processing (NLP).

In the domain of ECG-analysis, LSTMs are often combined with stacked

convolutional layers that serve as pre-processors, in ab attempt to use the former

to extract “global” features such as those concerning rhythmic patterns form

the more localised feature maps of the latter (i.e. He et al., 2019;Yildirim et al.,

2020;Zhang and Li, 2021).

2.4.7 Scaled-Dot-Product Attention and the Transformer

Architecture

As stated in the previous section, a well-studied issue of RNNs that still remains

with LSTMs under certain circumstances is the vanishing-/exploding gradient

problem, meaning the phenomenon of the loss gradient becoming very small/very

large throughout the process of backpropagation 9, thereby rendering learning

effectively impossible (Goodfellow et al., 2016). The problem is exacerbated

when attempting to process long sequences with an abundance of long-term de-

pendencies relevant to the given task, as, due to nature of recursion, information

8In fact, Dixon et al., 2020 have argued that “traditional” RNNs make assumptions similar
to those of an ARIMA-process, making them fundamentally unsuitable for non-stationary
data.

9for a detailed technical discussion of gradient descent and backpropagation, see LeCun
et al., 2012
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has to travel through an increasingly long computational graph as the temporal

distance between two relevant data points increases (Vaswani et al., 2017).

One significant development to overcome these issues has been developed

in the field of natural language processing (NLP), more specifically the area

of machine translation. A common type of architecture in this domain has

long been the encoder-decoder architecture, based on two serially interconnected

LSTMs, called encoder and decoder respectively. As the name suggests, the

encoder encodes the input - i.e. a sentence in language A - by turning it into

a feature vector. This vector is then used as a hidden state to condition the

second LSTM, which autoregressively10 produces (decodes) an output in the

form of a sentence in language B. To deal with the problem of increasingly long

computational graphs between relevant parts of the two sequences, in 2014,

Bahdanau et al. proposed a new mechanism that allows the decoder to “decide”

on the most relevant parts of the input through a learned weighted sum over

the encoder outputs, provided by an auxillary alignment model (or attention

layer). This not only solves some of the technical issues to be discussed be-

low, but also is much more closely in keeping with how humans are presumed to

process verbal information (this aspect will further be discussed in section 2.5.3).

In 2017, Vaswani et al. proposed a new type of architecture for neural

machine translation subsequently named transformer. The defining feature of

this architecture is that unlike most comparable encoder-decoder type models,

it does not use LSTMs or any other type of recurrent neural network, hence

eliminating the technical limitations discussed above.

Instead, the transformer relies solely on the attention mechanism as mod-

ified by Luong et al. (2015) using computationally efficient dot products 11.

Vaswani et al. (2017) argue that the attention mechanism in itself is sufficient

for the model to learn all relevant dependencies in the data and do so in a

more effective and efficient way, without the need for recursion. The model has

since been adapted many times and forms the basis of state-of the-art machine

translation models such as BERT (Devlin et al., 2018) and roBERTa (Liu et

al., 2019), as well as a burgeoning class of language-based general intelligence

models such as GPT-2 (Radford et al., 2019) and its successor, GPT-3 (Brown

10This means that the output at each time-step is used as an input to the next.
11Sometimes called “Luong attention” as opposed to “Bahdanau-attention”.
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Figure 2.16: Illustration of the transformer architecture. From Vaswani et al.
(2017).

et al., 2020). The architecture of the original transformer is illustrated in figure

2.16.

For reasons that will be explained in 3.1, we will limit our discussion

to the encoder part of this architecture. The layer-type at the heart of it is

the multi-head attention layer, which employs scaled-dot-product attention (or
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Figure 2.17: Illustration of the Scaled-Dot-Product Attention mechanism (left)
and Multi-Head Attention layer used in the Transformer Architecture (right).
From Vaswani et al. (2017).

scaled luong attention). For each example in the batch, it takes three matrices as

input, which, at least in case of the encoder, are all identical and of dimensions

Ls × dmodel, where Ls is the sequence-length and dmodel is the dimension of

the embedding vector of each word in a sentence. Within each individual head

Hi, each of these input vectors then gets projected into a dkeys-dimensional

subspace12 through by set of learned matrices WQ
i ,WK

i ,WV
i ∈ Rdmodel×dkeys

unique to that head, resulting in the matrices Q (for query), K (for key) and

V (for value) of dimensions Ls × dkeys (Vaswani et al., 2017). The scaled-dot-

product-attention mechanism then performs an operation that is best described

as a differentiable dictionary lookup (Géron, 2019, p.559) with the standard dot-

product as a similarity measure between query and key and given by equation

2.6.

Attention(Q,K, V ) = softmax(
QTK√
dkeys

)V (2.6)

Trying to interpret this equation from the inside out (see figure 2.17 on the

left for a computational graph), we notice that the expression QTK produces

a matrix of said similarity measures with dimensions Ls × Ls. The softmax

function is then applied row-wise, where

12dkeys is always smaller than or equal to dmodel and often chosen so that dmodel = Nheads×
dkeys, where Nheads is the number of attention heads.
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softmax(x) =
exi∑Ls

j=0 e
x
j

. (2.7)

The resulting matrix, still of dimensions Ls × Ls and now with rows nor-

malised to 1, contains the so-called attention-scores. After applying the scaling

factor, the final multiplication essentially “weights” each element of the sequence

by the sum of its relevances (as measured by the similarity or dissimilarity of

their respective query and value matrices) with regards to all the other elements

of the sequence (including itself). It is important for understanding to note at

this point that while in the encoder, the sequence is compared to itself (so-

called self-attention), the Q, K and V matrices can nevertheless be expected

to be very different from each other since they are the result of multiplication

with the learned matrices WQ
i ,WK

i and WV
i and fulfill very different functions

within the layer (compare equation 2.6).

After concatenating the output of each head and a final linear transfor-

mation (ensuring projection back in dmodel-dimensional space regardless of the

choice of dkeys and Nheads), the output of this layer once again has dimensions

Ls × dmodel (see figure 2.17). It is then added to the original input13, the re-

sult of which is normed and used as input to a time-distributed FC-network

of hidden dimension dffn (treated as a hyperparameter) and output dimension

dmodel, resulting in a final output dimension of the encoder of Ls×dmodel, which

is identical to the dimensions of the original input.

While in the original transformer for machine translation, the output of

the transformer is further processed as query-input to the decoder’s multi-head-

attention layer in order to ultimately perform machine translation (compare

figure 2.16), it is sufficient for our discussion to note that -given the correct ob-

jective function- it is plausible to assume that the features obtained and stored

in the output of the encoder contain highly relevant information regarding the

relative importance of different parts of the sequence which could just as well be

extracted for the purpose of solving other tasks, such as sequence classification.

This hypothesis forms the central rationale behind the architecture

that is and tested in this work (see section 3.1).

13To ensure better gradient-flow in a ResNet-type manner (compare He et al., 2016).
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Positional Encoding

Figure 2.18: Visualisation of the positional encoding vectors in position-depth
space based on the encoding method proposed by Vaswani et al. (2017).

Figure 2.19: Illustration of how relative positional information is preserved by
vectors of the positional encoding method proposed by Vaswani et al. (2017).
Figure produced by the author, based on the work of Géron (2019).
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Due to the lack of recursion and therefore the inherent inability of the

model to learn a notion of absolute and relative temporal position (i.e. here

and there as well as before and after), one needs to introduce a crucial step

called positional encoding. On a high level, this comprises injecting positional

information into the embedding vector of each word in the sequence by simply

adding an encoding vector of the same dimension. This operation is represented

by the plus sign in figure 2.16. As a result, the positional information becomes

available in explicit form (i.e. as part of the vector representation of each word)

and can hence be accessed by the attention mechanism without the need for

recursion.

While these encoding vectors, not unlike the word embeddings used in

NLP, could in principle be learned from data, Vaswani et al. (2017) instead

propose the following equation for calculating the i-th element of the encoding

at word position p:

Pp,i =

{
sin( p

100002i/d
) for i ∈ {0, 2, 4, ...}

cos( p
100002i/d

) for i ∈ {1, 3, 5, ...},
(2.8)

.

where p is the position in the sequence, i ∈ {1, 2, 3, ..., dmodel} refers to the

i-th element of the embedding vector and 10000 is a number arbitrarily chosen

as the maximum possible sequence length before the resulting pattern repeats

itself.

In order to understand the merits of this method, it helps to visualise

the resulting encoding values in p-i-space (i.e. position-depth-space), which has

been done in fig 2.18. We can immediately see that the resulting vectors are

position-wise unique, hence each absolute position in the sentence (or other type

of sequence) is represented by a unique encoding vector. In figure 2.19, we can

further see that the proposed method of encoding not only ensures uniqueness

of absolute position but also preserves relative position through the periodicity

of trigonometric functions.14

14For a more detailed yet fairly informal discussion of the merits of this method and its
roots in the mathematics of unit spheres, we refer the reader to Rothman, 2021.
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2.5 Guiding Principles and Observations

This section will discuss a number of observations about the nature of the task

of arrhythmia classification and principles of medical machine learning that

cummulatively served as “boundary conditions” for the design choices presented

in section 3.1.

2.5.1 Machine Learning and the Nature of Clinical Expert

Knowledge

As we have noted before, it is reasonable to assume that while clinicians in train-

ing often rely on explicit symbolic rules when first learning the skill of ECG

interpretation 15, the process soon gets automated and a major part of the

knowledge involved becomes implicit or procedural (Kusumoto, 2020;Gertsch,

2008).

More generally, it can be argued that medicine, as an ancient discipline

predating the advent of modern natural science and due to the hyper complex

nature of the domain itself, has always had a very strong experiential and intu-

itive quality 16. Furthermore, it could be said that particularly those aspects of

practise that heavily rely on the clinician’s prior experience and judgement are

best represented by the concept of procedural knowledge (Patel et al., 1999). If

these assumptions were true, then pattern recognition tasks such as those in-

volved in ECG-analysis would certainly fall in this category, and provide further

evidence that machine learning techniques, which are particularly well suited to

tasks of a more intuitive nature (Goodfellow et al., 2016), are in fact appropriate.

Furthermore, as Jaynes, 2003 points out, even expert systems in the med-

ical domain ultimately have to formulate their predictions in the language of

(conditional) probability due to the nature of the domain17. Therefore, once

we start fitting (i.e. learning) the associated distributions using available data

through methods such as MLE, we have arrived at a point where machine learn-

ing techniques appear to be the most “natural” approach.

15A prominent example would be the absence of a p-wave and presence of high-frequency,
low-amplitude f-waves in it’s place during Atrial Fibrillation.

16Commonly referred to as the art as opposed to the science of medicine
17Which, while being sufficiently orderly to lend itself to rational analysis, has a strong

stochastic element to it.
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A Word on Pattern Recognition

As Kusumoto and Bernath (2011) point out, advances in fundamental research

have provided a better understanding of the underlying pathophysiological mech-

anisms of cardiac arrhythmia and, as a result, medical education increasingly

focused on studying the characteristics of the associated ECGs in light of a

first-principles-based understanding of these mechanisms, as opposed to the

more ad-hoc pattern recognition approach. However, it is very plausible to as-

sume that with growing experience, a physician’s approach to reading ECGs

becomes increasingly intuitive and based around a growing mental repository

of characteristic ECGs with which the currently seen one is compared (Gertsch,

2008).

2.5.2 Statistical Properties of ECG Signals

Like most physiological signals, ECG signals are non-stationary, non-linear and

noisy (i.e. Maji et al., 2020; Al-Shoshan and Al-Shoshan, 2019), ruling out

many “traditional” time-series methods aimed at signals dominated by stochas-

tic, rather than non-linear deterministic effects.

They also elicit a high degree of auto-correlation 18 which is supported by

clinicians’ use of characteristic morphological features when making diagnosis

(compare section 2.2.2.), and suggests the use of methods that are able to au-

tomatically extract and exploit these features (such as convolutional layers).

Furthermore, as discussed in section 2.4.4, the temporal auto-correlation

implies that the use of shallow methods must be accompanied by a significant

degree of feature engineering, and that deep learning methods that learn uncor-

related features from raw data are likely to be appropriate.

2.5.3 On the Analogy between Natural Language Process-

ing (NLP) and ECG-Classification

Now that the general case for the use of deep learning techniques is established,

we will provide a rationale behind the more specific design choices made in the

18This must be true due to the deterministic and periodic nature of the signal.
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proposed algorithm.

As hinted at in section 2.4.7, the fundamental hypothesis behind the archi-

tecture proposed in this work is that there is a fundamental commonality in how

we as humans process language and other types of sequential information not

through systematic recursive iteration and the cumulative storing of previous

information in the form of hidden states (as in RNNs and LSTMs), but by con-

sidering a sequence largely as a whole and looking for meaningful connections

that allow us to draw conclusions. While the plausibility of this assumption is

fairly obvious with regards to language - after all, we can only understand a

sentence once we have received it in full and by establishing meaning through

our implicit understanding of grammar and syntax-, revisiting the patterns de-

scribed in section 2.2.2. suggests that the same might by true for the task of

detecting cardiac arrhythmia in ECG signals.

More specifically, one could hypothesize an analogy between certain seg-

ments of an ECG-signal and words in natural language. If that analogy held

true, it would then be desirable to allow the model to learn meaningful rela-

tionships between different parts of the sequence and to develop a sense of their

functional relationship (i.e. verbs our nouns in the case of language correspond-

ing to QRS-complexes or p-waves in the case of ECGs). Incidentally, this is

exactly what the encoder module of the transformer architecture does through

its dictionary-lookup-type approach (compare section 2.4.7).

This hypothesis, if true, would warrant the conclusion that the trans-

former architecture not only provides a technical improvement through its in-

creased parallelisation and support for long sequences, but also represents a

fundamentally more appropriate way of processing information in the domain

of classifying physiological signals in general and ECGs in particular with likely

implications for the design of specialised architectures for use in clinical practise.

2.5.4 Specific Challenges and Desiderata in Medical Ma-

chine Learning

In addition to the above considerations with respect to the nature of the data

as well as the task at hand, the design choices made in the development of the
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proposed algorithm were further informed by a set of desiderata which, while

not specific to ECG-analysis, are nevertheless crucial in the domain of medical

diagnosis.

While safety is perhaps the most important general concern in all areas

of machine intelligence (Amodei et al., 2016), it has very specific implications

in the field of of medical diagnosis. Amongst these, two recent review papers

authored by Parvaneh et al. (2019) and Antoniades et al. (2021) discuss cur-

rent areas for improvement and further research based on their assessment of the

state of the field. They agree that issues regarding generalisability, interpretabil-

ity, the quantification of model risk and reporting of computational efficieny are

amongst the most pressing. These will be discussed in some detail in the fol-

lowing, with a particular emphasis on the impact on design decisions involved

in developing the algorithm proposed in this work.

Interpretability

A very common objection to the use of machine learning, particularly deep

learning, in the medical domain is a lack of transparency with regards to how

these models come to their conclusions. Due to this characteristic, they are

often described as black boxes in contrast to models based on hard-coded rules

and/or first principles which have been explicitely formulated and validated by

their human creators (see Durán and Jongsma, 2021 for a detailed discussion).

While on a principal level, the issue is unavoidable due to the very nature

of how these models obtain their “skill”, and although a case could be made for

assessing an algorithm based on its proven diagnostic prowess rather than an

immaterial discussion on how this prowess was achieved19, it might nevertheless

be desirable to attempt to gain insight into the inner workings of a successful

model, both to bolster our own confidence and to provide a further element of

meta-regularisation and protection against overfitting.

Since lack of understanding of the inner workings of machine learning mod-

els is a general phenomenon, a range of model-agnostic methods - such as fea-

19This argument is especially compelling in light of the fact that humans can be said to
be as prone -if not more- to error as machines and that from a lay person’s point of view, a
clinical expert is a kind of black box himself.
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ture importance (Che et al., 2016) - have been devised to gain insight. However,

these methods come with a range of challenges outlined by Ribeiro et al. (2016).

An alternative is to exploit modes of representation “native” to a particular

type of architecture that happen to possess a certain degree of interpretability

for humans. As an example, it often makes sense to visualise the filter banks

learned by convolutional layers20 and to track their activation across the domain

of convolution. While this approach is taken by Selvaraju et al. (2017) in the

development of Grad-CAM, and employed successfully by He et al. (2019) to

validate their model, Xi and Panoutsos (2018) combine a convolutional archi-

tecture with fuzzy logic an a classification layer based on radial basis functions

(as opposed to softmax or sigmoid) in order to make interpretable predictions.

Part of the rationale for the choice of the transformer -like architecture pro-

posed in this work is the fact that it allows the attention-mechanism to act di-

rectly on the embeddings without any recursion that would effectively “collapse”

the time-domain before the point where attention is employed. The hypothesis

is that this could allow us to visualise the temporal relationships extracted by

the encoder and subsequently used by the classifier to make predicions. We

could then compare these preditions with our knowledge of the morphological

and rhythmic patterns of ECG-signals associated with various types of arrhyth-

mia in order to add an additional expert-driven dimension to the validation

process. Section 6.8 explores this aspect as it relates to objective 6.

Furthermore, using well-justified design choices and careful feature selec-

tion based on our understanding of the domain and the nature of the data can

be seen as way of adding interpretability and robustness in itself, and is an

approach that has been attempted in this work.

Generalisability and Benchmarking

As Parvaneh et al. (2019) point out, many studies report their results only

within the scope of one particular data set which has been resampled to be used

for training, model selection and testing. The problem with this approach is

that while the model might well have learned features that generalise well to

data from other sources, there is no way of testing whether this the case without

20Incidentally, this idea also forms the basis of the burgeoning art form of deep dreaming.
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subsequently testing it on outside databases.

Furthermore, the nature of the task and hence the degree of difficulty and

achievable performance varies largely depending on the training data, the qual-

ity, strength, balance and diversity of the labels as well as other factors. There-

fore, it is imperative to compare the performance of any learning algorithm to a

benchmark which, if not evaluated first-hand under identical conditions, should

at the very least have been tested on the same dataset using identical labelling.

In this work, the proposed algorithm is consequently evaluated against

the performance of a common-sense benchmark designed to allow conclusions

on marginal performance gains of employing a transformer-type encoder module

as well as against a third-party benchmark provided by Yildirim et al. (2020),

trained on the same data. This coincides with objective 3. Furthermore, mod-

els based on the proposed architecture were scrutinised regarding their ability to

generalise to examples from a different database as well as to longer sequences

than those seen during training (objective 4 and 5.

Confidence Estimates, Model Risk and Adversarial Examples

One of the inherent problems of non-bayesian machine learning classifiers such

as those based on MLE is that they represent point estimates θ̂ of the supposed

“true” set of parameters θ. This implies that while their output can take the

form of a probability-measure, they must be inherently ignorant of the uncer-

tainty associated with their predictions as they relate to the choice of model

parameters themselves..

Therefore, as Gal (2016) points out, the probability measure returned by

classifiers based on logistic-/softmax regression, i.e. P (y|x, θ̂), is not an ade-

quate comprehensive measure of the uncertainty associated with a model’s pre-

dictions, especially when dealing with input examples that are far away from

the training data by any meaningful measure of distance or not part of the

theoretical population at all - also known as adversarial examples21. In anthro-

pomorphic terms, a model based on such point estimates “does know what it

21A classic example would be a picture of a Chimpanzee fed to a binary classifier trained
to distinguish between cats and dogs.
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Figure 2.20: Illustration of the growing uncertainty (grey shading) associated
with the output of an arbitrary learned function (left) and the corresponding
decision function output (right), as predictions are made for examples “far away”
from the training set. From Gal and Ghahramani (2016).

does not know” (or when it could likely be wrong), and hence, at inference, is

unable to determine whether or not an example is drawn from outside its do-

main and will therefore likely result in nonsensical predictions 22. A schematic

illustration of this problem is displayed in figure 2.20.

Mathematically, what the predicted conditional sample distribution P (y|x, θ̂)
fails to capture is the uncertainty associated with the parameter estimate itself

or -in bayesian terms-, the full posterior distribution over θ given the training

data, i.e.

P (θ|Xtrain) =
P (Xtrain|θ)P (θ)

P (Xtrain)
. (2.9)

The uncertainty in θ, expressed in the entropy of the distribution of P (θ|Xtrain)

(called the posterior), is also known as the epistemic uncertainty (or model risk)

as opposed to the aleatoric uncertainty inherent in the non-deterministic nature

of the prediction problem itself (i.e. P (y|x)). For a more detailed discussion of

the different types of uncertainty affecting the predictions of Machine Learning

models we refer the reader to Hüllermeier and Waegeman (2021) and/or Gal

(2016).

In an effort to estimate the model risk associated with the predictions of

deep learning classifiers, Gal and Ghahramani, 2016 have shown that dropout,

originally devised as a regularisation technique to prevent excessive co-dependence

between individual neurons (Srivastava et al., 2014), can be adapted in a straight-

forward way for this purpose. Based on the concept of bayesian neural networks

22Note that this problem is further excaberated by the use of the softmax activation function
in multiclass classification, as the unitarity constraint essentially “forces” the model to make
nonsensical predictions.
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(i.e. networks whose weights take the form of random variables with distribu-

tions determined by prior beliefs as well as evidence in the form of data), they

show that using dropout at inference over multiple iterations can be interpreted

as approximate bayesian inference with a gaussian prior. The entropy of the

resulting distribution over predictions can then be interpreted as a measure

of model confidence. This method has been appropriately name monte carlo

dropout.

However, as Lakshminarayanan et al. (2016) point out, in order for such

an analysis to be truly bayesian, the dropout rate (i.e. the proportion of neurons

to be shut down at each iteration) would have to to be learnable and change

during training as the entropy of the posterior decreases. Instead, they propose

a more frequentist interpretation of monte carlo dropout as a form of ensem-

bling that allows one to assess model confidence by introducing randomness

into the model and interpret the variability of predictions under such changes

as a measure of model risk. They further argue that it is a common feature of

ensembling methods to enable one to draw conclusions regarding model risk by

looking at the statistical properties of the resulting set of predictions. There

is also an ongoing debate on whether batch normalisation can serve a similar

purpose (Mukhoti et al., 2020).

From a frequentist point of view, which assumes there exists one unique

set of “true” model parameters, θ̂, to be estimated from data, uncertainty is

commonly dealt with through re-sampling (or bootstrapping) the training data

in order to assess uncertainty through variability in the estimated model pa-

rameters. Since in practise, the resulting distribution can be quite similar to

the corresponding bayesian posterior (particularly in the limit of large training

data sets and weak prior beliefs, P (θ), about the model parameters), Murphy

(2022) refers to the distribution of model parameters resulting from bootstrap-

ping as a “poor man’s posterior”. A corresponding ensemble method based on

subsets of the training data drawn with replacement is known as bagging (i.e.

Géron, 2019). For a further and more detailed discussion on various techniques

of handling uncertainty in the context of deep learning, we refer the reader to

Khosravi et al. (2011).

Within the scope of this work, we have adapted the view of Lakshmi-

narayanan et al. (2016) insofar as that - barring a full bayesian analysis - some
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form of ensembling is needed in order to assess and compare the performance of

deep learning classifiers, especially when pushing them towards the edge of their

ability to generalise. The method that has consequently been devised for re-

porting confidence intervals on the performance characteristics of different types

of model architectures (see section 5.7) is based on this insight and, if only for

pragmatic reasons, in keeping with the frequentist framework described above.

Furthermore, while the classifiers involved in this study are neither based on

ensembling (largely due to memory constraints) nor a full bayesian analysis or

any computationally traceable approximation of such, the architectures have

nevertheless been designed in such a way as to enable monte carlo dropout by

including dropout layers between all layers containing learned weights.

Reporting Computational Efficiency

Parvaneh et al., 2019 further point out that detailed tracking and reporting

of the computational efficiency and running time requirements of various algo-

rithms is of great importance in light of their potential use in clinical and/or

wearable devices with limited computational resources.

While limiting model-size served as a subordinate criterion of the model

selection process (see section 6.1) and potential use in wearable devices has been

anticipated through testing on longer sequences (compare section 6.6 and ob-

jective 4), the fact that the experiments for this work were conducted using

the cloud-computing resources provided by Google Colab and are subject to

changing allocations of hardware resources (including the model and make of

GPU) made a consistent comparison of running time impossible.
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Chapter 3

Model Architectures

This section will provide a detailed description of both the proposed architecture

and the chosen benchmark architectures, as well as explain some of the rationales

behind the design choices made.

3.1 The Proposed Architecture

As stated in section 1.1, the aim of this study is to investigate whether a trans-

former -inspired architecture is suitable for the task of detecting signs of cardiac

arrhythmia in ECG signals. This problem is very different in nature to what

the transformer architecture has originally been designed for, namely the auto-

regressive sequence-to-sequence task of machine translation. In order to adapt

the architecture accordingly, a few major changes had to be made.

Firstly, since the output we are looking for is a set of binary class labels

containing (probabilistic) information about the presence of different types of

cardiac arrhythmia rather than a sequence of word-embeddings based on the

original sequence as well as previous outputs, the decoder module of the origi-

nal architecture has been abandoned.

Secondly, since we are not dealing with discrete words but quasi-continuous

electrical signals, we need to find an alternative way of creating a form of em-

bedding that can serve as input to the encoder module. The most intuitive way

to do this is to use a stack of 1D-Convolutional layers followed by max-pooling,
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where the cross-sectional slice of all feature maps at each (downsampled) time-

step can be interpreted as an embedding vector for that part of the original

sequence. This builds on the analogy between words and beats, as discussed

in section 2.5.3. Batch normalisation and dropout layers are further added to

improve performance, prevent overfitting as well as for the purposes described

in section 2.5.4. For an in-depth discussion of the benefits of adding these layer-

types see Ioffe and Szegedy (2015) and Srivastava et al. (2014) respectively.

Thirdly, we need to note that one of the defining characteristics of the

encoder and decoder modules of the original architecture is their preserving of

dimensions, with both their input and output tensors being of shape [batch-

size,sequence-length,dmodel] where dmodel is the dimension of the embedding

vector (i.e. in our case the number of filters in the final CNN-layer). However,

as we have discussed in section 2.4.7, each vector of the output time-series now

contains information regarding all the other time-steps (this is what scaled-dot-

product Attention does), and we can hence “collapse” the time-dimension by

averaging over it using a global average pooling layer. The resulting tensor is of

dimension [batch-size,dmodel], allowing the transformer - at least from a purely

technical perspective- to process variable-sized input sequences at test time.

This is also in line with the approach taken by Natarajan et al. (2020).

Lastly, in order to make use of the additional data provided by the Shaoxin

People’s Hospital ECG Database (see section 4.1), we propose three possible

modifications to increase performance through additional inputs and outputs.

The rationale behind these modifications is to condition the output of the en-

coder module on patient-specific data that would be easy to acquire in a clinical

setup (i.e. age, gender,...) and to improve performance and robustness by giv-

ing the model the additional task of predicting beat/condition labels (compare

table 4.4) for each signal respectively. The theoretical basis for the latter as a

regularisation technique has been described by Caruana (1997) and has been

explored in various studies (c)itehusken2003recurrent, which have found that

so-called multitask models can also lead to better results than an otherwise

identical benchmark based on a single task.

Figure 3.1 illustrates the layer structure in the form of a flow chart and

also states the output dimensions associated with each layer. For added de-

tail, the embedding and encoder modules are illustrated in figure 3.2 and 3.3
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respectively. The three possible modifications, resulting from the three possi-

ble combinations of using alternative input and/or output illustrated in figure

3.1 (dashed lines), will henceforth be referred to multi-in, multi-out and multi-

in/out. The positional encoding is calculated in the same way as proposed by

Vaswani et al. (2017) with a maximum sequence length of 10000.

Figure 3.1: Diagram of the proposed architecture and it’s potential modifica-
tions (dashed lines).
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Figure 3.2: Diagram of CNN-embedding module.

3.1.1 Morphological feature extraction

Unlike in the original transformer model for NLP, ECG-data cannot be to-

kenised due to lack of a finite vocabulary. Instead, as mentioned above, a

one-dimensional convolutional neural network is used to extract morphologi-

cal features through a learned filter bank. This approach is in line with our

favouring of feature-learning over the use of hardcoded morphological features,

as discussed throughout chapter 2. The resulting feature maps have (approxi-

mately) beat-wise resolution1 and the number of feature maps per time step is

equal to the model depth of the transformer module.

3.1.2 Rhythmic feature extraction

In keeping with our natural language analogy, the extraction of global dependen-

cies from the localised features of the CNN-embedding module is the domain of

the encoder module. More specifically, the purpose of the multi-head attention

1That said, the downsampling factor has been treated as a hyper parameter during model
selection, so other scales were tried but led to declining performance (compare section 6.1).
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Figure 3.3: Diagram of the encoder module.

layers within the encoder stack is to “compare” the sequence to itself and es-

tablish relevant connections, which are then fed into the final classification layer.

3.1.3 Classification layer and loss function

Since the presence of individual classes of cardiac arrhythmia is not necessarily

mutually exclusive (i.e. Asirvatham & Stevenson, 2016) and in order to mitigate

the detrimental effect of the model encountering adversarial examples by giving

the model more flexibility of outcome2, the task was chosen to be presented in

2The idea is to not “force” the model to decide on a positive class when none is appropriate,
thereby reducing systematic model risk
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Figure 3.4: Graph of the sigmoid function. The horizontal grid line drawn at
y=0.5 corresponds the standard decision boundary.

the form of multi-label classification.

Consequently, the activation function of the classification layer was chosen to

be a sigmoid function rather than the softmax commonly used in multi-class

classification tasks.

The functional equation of the sigmoid is as follows:

S(x) =
1

1 + e−x
(3.1)

One can easily see that limx→−∞ S(x) = 0 and limx→∞ S(x) = 1. Con-

ceptually, the function hence bijectively projects the real line onto the ] − 1, 1[

interval, making the result interpretable in terms of a probability measure.

With four/seven target classes corresponding to the two different labelling

regimes employed in our experiments (compare section 4.1.1), the final clas-

sification layer will comprise four/seven neurons respectively, i.e. one for each

class. The corresponding loss function for the resulting multi-label classification

problem is the binary crossentropy loss,

L(yi, ŷi) = − 1

n

n∑
i=1

(yilog(ŷi) + (1− yi)log(1− ŷi)), (3.2)
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where yi and ŷi are the ground truth label and the model output (resp)

for the i-th class. With n being is the total number of classes, n ∈ {4, 7} in our

case.

3.2 Benchmark architectures

3.2.1 Simple-CNN-Benchmark

Since the main aim of this study is to establish whether or not the transformer-

inspired architecture presented above, and more specifically the attention-based

encoder module provides any marginal utility for the task at hand, the main

common-sense benchmark that needs to be outperformed is simply the CNN

module identical to the one used in the transformer, employed in isolation and

followed by flattening of the feature maps and the same two-fold classification

layer used in the proposed architecture. See figure 3.5 for a diagram illustrating

this configuration.

3.2.2 DNN-LSTM-Benchmark proposed by Yildirim et al.,

2020

The second benchmark that was used is based on the work of Yildirim et

al. (2020), in which a DNN-LSTM network was proposed and trained on the

Shaoxin People’s Hospital ECG database. Since CNN-LSTM-type architec-

tures, sometimes combined with an attention-mechanism, are very commonly

and successfully used for ECG related tasks in recent publications (i.e. He et al.,

2019;Zhang and Li, 2021) and therefore can be seen a state-of-the-art, the model

was chosen as an additional benchmark against which to measure the proposed

architecture.
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Figure 3.5: Diagram of the Simple-CNN-Benchmark.
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Figure 3.6: Diagram of the DNN-LSTM-Benchmark proposed by Yildirim et al.,
2020. From Yildirim et al. (2020).
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Chapter 4

The data

All the data used in this study is publicly available and hence the results ob-

tained can be tested and verified in future investigations. The data was chosen

based on the following criteria:

1. Relevant labelling.

2. Size - larger databases are better in order to increase performance and

prevent overfitting (compare section 2.4.4).

3. Total number of patients - in order to avoid learning patient-specific fea-

tures and improve generalisability.

4. Class balance - the diagnostic classes should be as balanced as possible

within the limitations of clinical incidence.

5. Availability of suitable benchmarks in literature.

4.1 The Shaoxing People’s Hospital ECG

Database

The Shaoxing People’s Hospital ECG Database was assembled by Zheng et al.

and published in 2020. It comprises ECG data from more than 10646 unique

patients and hence meets our second criterion. Furthermore, the sam-

ples are of unique length and sampling frequency at 10 seconds and

500 Hz respectively, fulfilling the third criterion. Extra effort has further
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Table 4.1: Summary table of the rhythm classes present in the Shaoxing dataset
with corresponding frequencies and baseline characteristics. Table from Zheng
et al. (2020).

Table 4.2: Mapping of the Shaoxing rhythm classes to corresponding super-
classes as proposed by Zheng et al. (2020). From Zheng et al., 2020.

Table 4.3: List of the additional global features associated with each record of
the Shaoxing database. From Zheng et al. (2020).
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(a) (b)

Figure 4.1: Example signal drawn from the Shaoxing database in (a) raw and
(b) pre-processed form. From Zheng et al. (2020).

been invested into balancing the classes through a physician-verified regroup-

ing, and hence the dataset meets our fourth criterion better than comparable

datasets such as the MIT-BIH Cardiac Arrhythmia dataset (Zheng et al., 2020).

For each example, the database provides one rhythm label per example,

comprising sinus rhythm and various types of arrhythmia (see table 4.1), thereby

meeting the first criterion, as well as an optional condition label based on cardiac

conditions or abnormal beats (see table 4.4). Furthermore, a total of 16 cate-

gories of patient-specific data are provided, including the baseline-characteristics

of name and age as well as a number of global statistical properties of the re-

spective ECG-signals (see fig 4.3).

The availability of a state-of-the-art benchmark through the work of Yildirim

et al. (2020) further checks our fifth criterion.

The data is provided in a raw as well as a pre-processed, with the latter

having undergone de-noising using a butterworth-low-pass filter at a cutoff of 50

Hz in order to remove high frequency noise unlikely to be of meaningful cardiac

physiological origin as well as LOESS-smoothing to remove baseline wandering

(Zheng et al., 2020). This will be further discussed in section 5.3.
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Condition Acronym Description
AVB 1st degree atrioventricular block
2AVB 2nd degree atrioventricular block
2AVB1 2nd degree atrioventricular block(Type one)
2AVB2 2nd degree atrioventricular block(Type two)
3AVB 3rd degree atrioventricular block
ABI atrial bigeminy
ALS Axis left shift
APB atrial premature beats
AQW abnormal Q wave
ARS Axis right shift
AVB atrioventricular block
CCR countercolockwise rotation
CR colockwise rotation
ERV Early repolarization of the ventricles
FQRS fQRS Wave
IDC Interior differences conduction
IVB Intraventricular block
JEB junctional escape beat
JPS J point shift
JPT junctional premature beat
LBBB left bundle branch block
LBBBB left back bundle branch block
LFBBB left front bundle branch block
LRRI Long RR interval
LVH left ventricle hypertrophy
LVHV left ventricle high voltage
LVQRSAL lower voltage QRS in all lead
LVQRSCL lower voltage QRS in chest lead
LVQRSLL lower voltage QRS in limb lead
MI myocardial infarction
MIBW myocardial infraction in back wall
MIFW Myocardial infgraction in the front wall
MILW Myocardial infraction in the lower wall
MISW Myocardial infraction in the side wall
PRIE PR interval extension
PWC P wave Change
QTIE QT interval extension
RAH right atrial hypertrophy
RAHV right atrial high voltage
RBBB right bundle branch block
RVH right ventricle hypertrophy
STDD ST drop down
STE ST extension
STTC ST-T Change
STTU ST tilt up
TWC T wave Change
TWO T wave opposite
UW U wave
VB ventricular bigeminy

Table 4.4: Comprehensive list of the optional condition- and beat labels included
in the Shaoxing database.
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Table 4.5: Summary table of the reduced classes proposed by Yildirim et al.,
2020 for the Shaoxing dataset. Table from Yildirim et al. (2020)

. .

Superclass Reduced classes contained
AFIB AFIB, AF
GSVT SVT,ST
SB SB
SR SR, SI

Table 4.6: Mapping between the superclasses and reduced regime.

4.1.1 Labelling Regimes

Since the varying frequencies of incidence in the original labelling regime re-

sult in a large class imbalance (see figure 4.1), Zheng et al. (2020) have fur-

ther suggested a four-fold labelling regime of superclasses comprising atrial

fibrillation/atrial flutter (AFIB/AF), generalised supraventricular tachycardia

(gSVT), sinus bradycardia (SB) and sinus rhythm/sinus irregularity (SR). Table

4.2 shows this mapping as well as the resulting frequencies of the superclasses

and baseline characteristics.

In order to take full advantage of both the size and diversity of this

database while remaining within the realm of practicability with regards to

class imbalance, Yildirim et al. (2020) propose an alternative labelling regime

by eliminating the rarest labels (namely AT, AVNRT, AVRT and SAAWR -

compare table 4.1) altogether, which was appropriately named reduced regime.

The resulting dataset provides a finer “diagnostic resolution” than the super-

classes regime proposed by Zheng et al. (2020), at the cost of higher (yet still

manageable) class imbalance. Summary statistics of the reduced regime are

provided in table 4.5 while a mapping of reduced to superclasses is provided in

table 4.6.
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PTB-XL Diagnostic Class Shaoxin Superclass
Atrial Flutter (AFL) AFIB/AF
Atrial Fibrillation (AFIB) AFIB/AF
Sinus Tachycardia (STACH) gSVT
Supraventricular tachycardia (SVTAC) gSVT
Paroxysmal supraventricular tachycardia (PSVT) gSVT
Sinus Tachycardia (STACH) gSVT
Sinus Bradycardia (SBRAD) SB
Sinus Arrhythmia (SARRH) SR
Sinus Rhythm (SR) SR

Table 4.7: Mapping of PTB-XL rhythm annotations to Shaoxing superclasses.

4.2 The PTB-XL Database

The PTB-XL database (Wagner et al., 2020) is a comparably large database of

clinical 12-lead ECG signals comprising 21837 examples from 18885 patients at

a uniform length of 10 seconds and a sampling frequency of 500 Hz. According

to the authors, the value of the dataset results from “the comprehensive collec-

tion of many different co-occurring pathologies, but also from a large proportion

of healthy control samples.”.

The database was chosen for validation, thanks to its similarities to the

Shaoxing database in size, sample length and corresponding label strength. In

order to make it compatible with classifiers trained on one of the above labelling

regimes, we ignored all labels other than those with an (approximate) equivalent

within one of the four superclasses defined by Zheng et al. (2020). The resulting

class-mapping can be found in table 4.7.
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Chapter 5

Methods

5.1 Structure and Overview of Experiments

Table 5.1 provides a comprehensive summary of the unique experimental con-

figurations that form the empirical basis of this work. All models use the same

training set drawn from the Shaoxin People’s Hospital database as well as the

same test set drawn from either the Shaoxing or PTB-XL database.

In order to account for the intrinsic randomness of the training process

(i.e. through weight-initialisation and the use of SGD) as well as to establish

a measure of uncertainty in the performance metrics of the resulting models,

ten models were trained for each experimental configuration at 30 epochs each,

using early stopping with a patience of 10 epochs and employing the Adam al-

gorithm (Kingma & Ba, 2014) with a LR of 0.001, β1 = 0.9, β2 = 0.999 and

ϵ = 1e− 07 for optimisation.

The raw results where then used to compute various performance metrics

and characteristics as detailed in section 5.5 and the corresponding confidence

intervals were established through the method detailed in section 5.7. While con-

fusion matrices and ROC-curves for all experiments are provided in Appendix

A, individual performance metrics are provided and compared in context in the

tables and figures of sections 6.2-6.7.
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Exp. Architecture Test Data Balancing Pre-Proc. Labelling
1 Benchmark Shaoxing Over Yes Super
2 Benchmark Shaoxing None Yes Reduced
3 Benchmark PTB-XL Over No Super
4 Benchmark Shaoxing (20s) Over Yes Super
5 Benchmark Shaoxing (50s) Over Yes Super
6 Plain Shaoxing None No Super
7 Plain Shaoxing Under No Super
8 Plain Shaoxing Over No Super
9 Plain Shaoxing Over Yes Super
10 Plain Shaoxing None Yes Reduced
11 Plain PTB-XL Over No Super
12 Plain Shaoxing (20s) Over Yes Super
13 Plain Shaoxing (50s) Over No Super
14 Multi-In Shaoxing Over Yes Super
15 Multi-In Shaoxing None Yes Reduced
16 Multi-Out Shaoxing Over Yes Super
17 Multi-Out Shaoxing None Yes Reduced
18 Multi-In/Out Shaoxing Over Yes Super
19 Multi-In/Out Shaoxing None Yes Reduced

Table 5.1: Summary table of the experimental configuration for each experiment
conducted.
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5.2 Balancing

There are several reasons for why class-imbalance in the training set can be un-

desirable in machine learning, perhaps the most important and obvious being

that an imbalanced data set will -on average- result in imbalanced mini-batches

and thereby create an incentive for the optimizer to overemphasize performance

on the majority class, as can be seen from equation 2.3.

While in multi-label classification problems, even given a perfectly bal-

anced training set, each individual class will be in the minority compared to all

the others combined, it has nevertheless been our hypothesis that a balanced

data set will lead to a better and/or more consistent performance as well as

better applicability of common metrics such as accuracy during the training

process (compare section 5.5)1.

The first balancing method consisted of oversampling of the training set

by randomly duplicating examples until the number of examples for each class

was equal to the number of unique examples of the majority class (Sinus Brady-

cardia). This resulted in a training set of 12444 examples. The second balancing

method comprised random undersampling of the data by only using as many ex-

amples of each class as there are unique examples of the most underrepresented

minority class. This naturally led to an overall loss of unique examples which

hence became unavailable for training. The resulting training set comprised

6800 examples.In table 5.1, these methods are declared as “over” and “under”

respectively.

For reasons of comparability and reproducibility, only the training data

was manipulated while the test data was always maintained in its original, un-

balanced form.

1To understand why this is the case, one has to remember that the test set has the same
imbalances as the training set and hence if one was to skew performance towards the majority
class by performing training on an unbalanced data-set, the result would be an overly optimist
estimate.
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5.3 Pre-Processing

Pre-processing techniques such as de-noising, de-trending and feature engineer-

ing are indispensable for many classification techniques including most tradi-

tional (or “shallow”) Machine Learning techniques (compare section 2.4). De-

spite this, there is the argument that all forms of pre-processing and/or de-

noising rely on more or less arbitrary assumptions and (presumed) prior knowl-

edge about the data. It follows that one should avoid such “ad-hoceries” in

favour preserving information and “letting the model decide what is signal and

what is noisy” (Jaynes, 2003, p.223-236). This argument is supported by the

fact that there is growing evidence that deep learning models are much more

robust to such disturbances since their hierarchically organised feature extrac-

tion layers can learn to separate the signal from the noise2

The main sources of poor signal quality in ECG signals are baseline wan-

der, muscle noise, power-line interference and - in some cases- sensor motion

artifacts (Kher, 2019). As stated in section 4.1, Zheng et al. (2020) employ

LOESS-smoothing to remove baseline wander and a 50-Hz butterworth-low-pass

filter to filter out muscle noise and power-line interference. Motion artifacts are

more difficult to detect due to their idiosyncratic nature, however, these are

more common in long-term ECG recordings such as those obtained in ICU (i.e.

Bashar et al., 2019).

In this work, for reasons of reproducibility and comparability, pre-processing

will by default mean use of the pre-processed data proivided by Zheng et al.

(2020). This is indicated by a “yes” in the corresponding columns in table 5.1.

Following the same reasoning, pre-preocessing was omitted for models to be

subsequently tested on a test set drawn from the PTB-XL database.

Note that there are a total of 18 examples in the pre-processed Shaoxing

database which were considered “faulty” due to missing or NaN-values. These

were consequently removed from the data-set and replaced with randomly copies

of other examples with the same class-label in order to ensure unchanged car-

dinality.

2Provided that overfitting is prevented through regularisation and appropriate model ca-
pacity (Goodfellow et al., 2016).
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5.4 Use of Augmented Data Sets

In order to enable scrutiny of the models’ ability to generalise to longer se-

quences and the potential presence of different types of cardiac arrhythmia in

the same signal (resulting in mixed labels), we created two sets of augmented

data based on the Shaoxing test set. The two sets have the same cardinality as

the original test set and comprise sequences of 20s and 50s respectively. In table

5.1, these are denoted as “Shaoxing (20s)” and “Shaoxin (50s)” respectively.

Examples were created by random concatenation of elements of the orig-

inal test set and linear combination of the associated label vectors. Naturally,

due to the fact that the sampling was random, labels are mixed and include

a maximum of two positive classes for the shorter sequences and four positive

classes (i.e. the maximum) for the longer sequences.

The rationale behind this approach is that despite the resulting signals

being discontinuous as hence “unnatural”, the models should nevertheless be

able to pick up characteristic features of the different diagnostic classes due to

the position-invariant nature of the feature-extraction process.

5.5 Performance Metrics and Characteristics

Because all models in this study were designed to perform multi-label classifi-

cation, i.e. multiple simultaneous binary classifications, we will limit our dis-

cussion to performance metrics for binary classifiers, i.e. classifiers designed to

distinguish between positives and negatives.

In the following, the different types of performance metrics used in evalu-

ating our experiments are briefly introduced.

5.5.1 Accuracy

The accuracy of a classifier on a task is the frequency of correct predictions

compared to the total number of predictions made:
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accuracy =
Number of correct predictions

Number of predictions made
(5.1)

While being a good measure of overall performance, one can easily see

that the utility of accuracy as a performance metric breaks down with increas-

ing class-imbalance, as in the limit the classifier could achieve almost perfect

accuracy by simply always predicting the dominant class (i.e. Géron, 2019).

Furthermore, to avoid confusion in the context of multilabel classification,

it is important to note that we define overall accuracy as the number of correct

label vectors divided by the total number of examples, as opposed to an aver-

age of the class-wise binary accuracies. Since partially correct predictions do

not count under the former definition, it gives a more pessimistic estimate than

the latter. Although it is not explicitly stated in the publication, based on our

scrutiny of the results reported, we assume that Yildirim et al., 2020 have done

the same.

5.5.2 Precision

An accuracy-like metric that only focuses on positive predictions is precision or

positive predictive value, defined in equation 5.2.

precision =
TP

TP + FP
(5.2)

One can see that since this metric is normalised by the total number of

positive examples, the base rate of the positive class in the test-set/population

does not distort the result. Precision can be thought of as the likelihood that a

positive classification is in fact correct.

5.5.3 Sensitivity

A metric often used in conjunction with precision is sensitivity, sometimes called

recall or true positive rate (TPR). It is defined in equation 5.3.

sensitivity =
TP

TP + FN
(5.3)
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Instead of normalising the true positive predictions by the total total num-

ber of positive predictions, it normalises by the total number of positives and

therefore gives a measure of the likelihood that a positive example is identified

as such.

5.5.4 Specificity

Another metric often used in conjunction with sensitivity is specificity or true

negative rate (TNR), defined in equation 5.4.

specificity =
TN

TN + FP
(5.4)

One can see that this metric complements sensitivity in the sense that it

provides a measure of the probability that a member of the negative class is

actually classified as such.

5.5.5 F1-Score

The F1-Score is a combined metric based on both precision and recall as specified

in equation 5.5.

F1 =
2

1
precision + 1

recall

=
TP

TP + FN+FP
2

(5.5)

As one can see from the denominator, F1 gets maximised when precision

and recall are both high. However, since high precision usually comes at the

cost of low recall (see below), it can be said that the F1-Score favours classifiers

that have similar values for both (Géron, 2019).

5.5.6 Confusion Matrices

One way of visually summarising the performance of a classifier based on some

of the metrics defined above are confusion matrices. In the case of a binary

classifier this is a 2x2 matrix either comprising the absolute numbers TP, TF,

FP and FN, or their respective rates TPR, TFR, FPR, FNR. Definitions of FPR

and FNR are given in equation 5.6 and 5.7 respectively.

FPR = 1− TNR =
FP

TN + FP
(5.6)
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Figure 5.1: Schematic of a confusion matrix. By Kevin Jolly, last accessed 29th
December 2021 from www.oreilly.com.

FNR = 1− TPR =
FN

TP + FN
(5.7)

A schematic of a confusion matrix based on rates (as opposed to absolute

values) is given in figure 5.1.

Note that in order to present the outcomes of our multiple evaluation runs

in the best possible way, we had to summarise over the individual results in or-

der to create average confusion matrices. These naturally violate the row-wise

unitarity property of normal confusion matrices, however this trade-off was ac-

cepted in favour of conciseness and expressiveness.

Furthermore, although we have chosen to frame the problem in a multi-

label way, we have additionally included average multi-class confusion matrices

for those experiments were ground truth labels were mutually exclusive.
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Figure 5.2: Graph of the sigmoid function. The horizontal grid line drawn at
y=0.5 corresponds the standard decision boundary.

5.5.7 ROC, Sensitivity/Specificity Curves and AUC

Many machine learning classifiers such as ANNs obtain their classification re-

sults by means of a decision function with a continuous yet bounded outcome

(∈ [0, 1]) that is often interpreted as the probability measure associated with a

logit model3. As desicussed in chapter 3, the commonly used decision function

in binary classification is the sigmoid function (see equation 3.1).

When trying to decide which threshold to use on the output value in

order to separate positive from negative predictions, one encounters the preci-

sion/recall and sensitivity/specificity trade-off - the fact that by manipulating

the threshold upwards or downwards in order to improve one of the performance

metrics, one tends to decrease the other4. The central horizontal grid line in

figure 5.2 provides an illustration of such a threshold, corresponding to the

value 0.5. This trade-off is comprehensively captured in the Receiver Operating

Characteristic or ROC-curve of a classifier, which plots TPR against FPR for a

number of different threshold values.

3In fact, the classification layer of a neural network can be viewed as performing ordinary
logistic regression using the learned features of previous layers as input.

4It is easy to see why this has to be the case for by looking at the extreme cases of thresholds
of either 1.0 (perfect precision) or 0.0 (perfect recall).
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A very concise and comprehensive metric derived from ROC-curves is the

area under the curve (AUC), capturing the performance of a classifier over the

whole spectrum of possible thresholds values by approximately “integrating”

TPR over the corresponding FPR values.

All metrics displayed in the results tables where calculated for a default

threshold of 0.5 and the corresponding AUC curves and confusion matrices of

each set of classifiers can be found in Appendix A.

5.6 Model Selection Procedure

The task of model-selection in ANNs and other models with non-convex loss

functions and large numbers of hyperparameters is non-trivial and - by its very

nature - not perfectly rigorous, as one can rarely be certain of the non-existence

of another set of hyperparameters outside of the search space which leads to

better performance results given the same training and testing data. In fact,

this tuning of HPs can be seen as an optimization problem in its own right,

albeit without a differentiable gradient due to the discrete nature of most HPs.

There are a number of methods that each add a certain amount of rigour

to the process of finding the “optimal” set of hyper parameters. These include

brute-force methods such as grid search and random search (Bergstra & Bengio,

2012) as well as bandit-based (Li et al., 2017) and bayesian methods (i.e. Joy

et al., 2016).

While the use of grid search might be the most obvious choice, it is impor-

tant to note that it can quickly lead to a waste of computational resources due

to some HPs having negligible impact on the result. Furthermore, the act of

defining the grid itself can limit the search space and thereby arbitrarily exclude

feasible solutions.

A less wasteful improvement over the grid search method has been pro-

posed by Bergstra and Bengio (2012) in the form of random search. The main

benefit of this method is that it decreases the likelihood of a disproportionate

amount of computational time being spend on unproductive “dead ends” of the

HP space. Yet, one still has to design the search-space carefully in order to al-
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low the optimiser to find an adequate solution within a feasible number of trials.

Bandit-based and bayesian methods such as hyperband search and bayesian

optimization both attempt to dynamically adapt the search space based on prior

results, thereby incrementally “zeroing in” on an optimal set of hyper param-

eters. The cardinal problem of the former is the trade-off between exploration

and exploitation, while the latter tends can be analytically intractable (Bishop

& Nasrabadi, 2006) or - at the very least- computationally expensive, and they

both seem to be most appropriate for very large highly irregular HP spaces,

where only a small subset of the space leads to feasible solutions.

Like most deep learning architectures, our proposed architecture and its

corresponding benchmark have a significant yet not excessive number of hy-

perparameters which - due to their substantial impact on model capacity and

performance - need to be optimised prior to conducting further experiments.

Based on the discussion above, the following three-step procedure for selecting

optimal hyperparameters was consequently devised:

1. Initially, a number of unsystematic trials were conducted using a fixed

train-validation-split (of the training set) in order to establish reasonable

bounds to the search space.

2. Within the henceforth established bounds of the grid (see table 6.1.), 500

trials using the random search method were subsequently conducted -

again at fixed training-validation split - and a maximum of 30 epochs

per trial, while using an early stopping mechanism with a patience of 10

epochs.

3. After these trials were complete, the 6 most promising sets of HPs (see

Appendix B) were chosen and subjected to a more rigorous 10-fold cross-

validation procedure, which due to its use of multiple training and vali-

dation bootstraps and corresponding models allows not only for a more

effective use of the training data but also for an establishment of confidence

intervals (see section 5.7).
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5.7 Confidence Intervals

As discussed in section 2.5.4, non-bayesian machine learning classifiers not based

on ensembles are inherently ignorant of the model risk associated with their in-

dividual predictions. The same problem arises when trying to determine the

confidence intervals associated with the performance metrics obtained for a sin-

gle classifier.

One possible solution would be the use of bootstrapped sub-samples of

both the training and the test set in order to gain an estimate of the associ-

ated variance in performance. However, this approach would also introduce a

pessimistic bias through a reduction in size of the training set (Vanwinckelen &

Blockeel, 2012) as well as require an artificially large test set, thereby further

reducing the available training data.

The approximate, data-efficient solution chosen in this study is the follow-

ing:

1. Use the inherent randomness of the training process to produce an esti-

mate of the variance in model performance.

2. Employ binomial proportion confidence intervals (see Wallis, 2013) in or-

der to gain an estimate of the uncertainty associated with our particular

choice of test set.

With regards to 1., one needs to note that even when trained on iden-

tical data, there is no guarantee that two classifiers based on the same model

architecture will find identical minima of the objective function and weight-

configurations due to the non-convexity of the problem (Goodfellow et al., 2016)

and the inherent randomness of the training process (i.e. due to random weight

initialisation and random mini-batch sampling, both of which were used in the

experiments here presented). This randomness, which us assumed to domi-

nate the variability on model parameters, can be exploited in order to gain an

uncertainty-estimate for the model performance on our particular test set.

2. is aimed at the uncertainty associated with the finiteness of the test

set, and hinges on the observation that the performance metrics introduced in

section 5.5 can all be interpreted “success/failure ratios” (or, in the case of
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F1,derived from such). We can assume their variance to approximately take the

form of a Binomial distribution (Wallis, 2013) with variance given by equation

5.8,

V (p̂) =
p̂(1− p̂)

n
, (5.8)

where p̂ is the estimated metric and n is the number of examples in the

test set.

Since both of these sources of uncertainty are clearly independent from

each other, they can assumed to add in quadrature. Combined with the general

expression for the standard error on the mean (see Barlow, 1993), this leads to

the following equation as the expression for the uncertainty associated with the

mean of each performance metric based on m training runs of the model, each

tested on the same training set of n examples and yielding a result pi:

SE(¯̂p) =

√√√√ 1∑
m

1

V ar(p̂)+
p̂(1−p̂i)

n

(5.9)

,

Here, V ar(p̂) is just the sample variance of {pi|i ∈ 1, ...,m}.
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Chapter 6

Results and Discussion

In this chapter, we will first present the results of the model selection procedure

presented in section 5.6, followed by a detailed presentation and discussion of

the results obtained from the experiments defined in 5.1 in light of the research

objectives (compare section 1.1). For added clarity, at the beginning of each

chapter, elements of a set of defining characteristics are mapped to correspond-

ing experiments from table 5.1 and, within that section, will serve as a working

title for that particular experiment.1

With regards to the objectives as specified in section 1.1, section 6.2 and

6.3 are aimed at objective 1, section 6.4 at objective 2, section 6.5 at objec-

tive 3, section 6.6 at objective 4 and section 6.7 at objective 5 and section

6.8 at objective 6.

6.1 Establishing Hyperparameters

One significant finding that emerged from step one of our model selection pro-

cedure (see section 5.6) was that a down-sampling factor associated with the

cumulative effect of successive pooling layers inside the CNN-embedding module

of ∼ 500, leading to an effective sampling-frequency of ∼ 1 Hz for the encoder

input (compare figures 3.1 and 3.3) was optimal - coinciding in order of magni-

1This mapping approach was deemed necessary due to the significant overlap between the
experimental results relevant to each section.
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tude with the frequency of the human cardiac cycle 2. Deviations from this in

both directions led to deteriorating performance and - in the case of decreased

down-sampling - exploding training times.

Furthermore, since no statistically significant difference in performance

could be identified based in the trials associated with step 3, the total number

of learnable parameters as a result of a given choice of hyperparameters was cho-

sen as an additional criterion for model selection, with less parameters at equal

performance being considered more desirable3.The HPs which were chosen as a

result of this process are detailed in table 6.1.

Hyper Parameter Grid Values Best Value
N.o. filters in CNN-layer 1 {2n|n ∈ {4, 5, 6, 7, 8, 9}} 256
Filter-size in CNN-layer 1 {4,6,8,10,12,14,16,24,32} 32
Number of filters in CNN-layer 2 {2n|n ∈ {4, 5, 6, 7, 8, 9}} 128
Filter-size in CNN-layer 2 {4,6,8,10,12,14,16,24,32} 4
Number of filters in CNN-layer 3 {2n|n ∈ {4, 5, 6, 7, 8, 9}} 64
Filter-size in CNN-layer 3 {4,6,8,10,12,14,16,24,32} 16
Size of CNN-pooling-layer {4,6,8,10} 8
N.o. encoder -layers {1,2,3,4} 1
N.o. attention-heads in enc-layer {1,2,4,6,8,10,16,32,64} 10
N.o. neurons in t.d. FC-layer {1024,2058,5098} 2048
N.o. neurons in pre-final FC-layer {2n|n ∈ {5, 6, 7, 8}} 32

Table 6.1: Best hyper parameter choices based on the model selection procedure.

Once the best optimal set of hyper parameters was established, the dropout

rate was chosen through a series of unsystematic trials and fixed at 0.1.

2One possible explanation for why this might be the case lies in the analogy between
words and beats (or cycles) that partly inspired the proposed architecture. Ideally, one might
assume, all the relevant information concerning each beat is captured in the CNN-feature
maps at each down-sampled time-step that then gets processed by the encoder in order to
identify global patterns and/or predictive relationships. Of course this relationship can only be
approximate due to natural intra- and inter-individual fluctuations in heart rate, particularly
under pathological conditions. If true, the hypothesis would be an illustrative example of the
effectiveness of domain knowledge in choosing effective priors in HP-space.

3This can be viewed as a naive implementation of Occam’s Razor.
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Defining Characteristic Experiment Number
Unbalanced Experiment 6
Undersampled Experiment 7
Oversampled Experiment 8

Table 6.2: Mapping of defining characteristics and experiment numbers for sec-
tion 6.2

6.2 Comparing Models Based on Unbalanced Ver-

sus Balanced Training Data

In order to understand the effect of balancing the training data (see objective

1), models based on the proposed architecture were trained on our raw unbal-

anced training set drawn from the Shaoxing database as well as an oversampled

and undersampled version of the same set. All experiments were conducted

following the procedure outline in section 5.2 and the corresponding experiment

numbers are 4,7 and 8 (see table 6.2).

The performance metrics are summarised in table 6.15 and class-wise as

well as overall comparisons are made in figure 6.1 . ROC-curves and confusion

matrices for all training runs are displayed in sections A.6, A.7 and A.8 of the

Appendix A.

6.2.1 Discussion

One can see from table 6.15 as well as figure 6.1 that a statistically significant

difference in the performance of either of the proposed methods of preparing the

training set cannot be inferred. One might however conclude from the consis-

tent trend in performance in the overall category that the oversampling methods

leads to slightly better results than the unbalanced training set while the under-

samping method has the opposite effect. The latter is hardly surprising since we

are effectively withholding information from the model during training. What

is interesting, furthermore, is that balancing the training data does not appear

to result better relative performance on minority classes. In fact, with regards

to the generalised supraventricular tachycardia class, is seems to have quite the

opposite effect.
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(a) Accuracy (b) Precision

(c) Sensitivity (d) Specificity

(e) F1

Figure 6.1: Mean values and 2-σ (95.4%) confidence intervals of performance
metrics obtained for models based on unbalanced, oversampled and un-
dersampled training data.
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Diagnostic
Class

Metric
Model: Un-
balanced

Model: Raw/
Oversampled

Model: Raw/
Undersampled

Overall

Accuracy 0.9625 ±0.0030 0.9635 ±0.0030 0.9595 ±0.0035
Precision 0.9630 ± 0.0030 0.9635 ± 0.0030 0.9635 ± 0.0030
Recall 0.9615 ± 0.0030 0.9630 ± 0.0030 0.9630 ± 0.0030

Specificity 0.9875 ± 0.0010 0.9880 ± 0.0010 0.9880 ± 0.0010
F1 0.9620 ± 0.0020 0.9635 ± 0.0020 0.9635 ± 0.0020

Atrial
Fibrillation/
Atrial
Flutter

Accuracy 0.9725 ± 0.0030 0.9740 ± 0.0025 0.9740 ± 0.0025
Precision 0.9420 ± 0.0105 0.9300 ± 0.0085 0.9300 ±0.0085
Recall 0.9245 ± 0.0140 0.9455 ± 0.0080 0.9455 ±0.0080

Specificity 0.9850 ± 0.0030 0.9810 ± 0.0025 0.9810 ±0.0025
F1 0.9330 ± 0.0085 0.9380 ± 0.0060 0.9380 ±0.0060

Generalised
Supraven-
tricular
Tachycardia

Accuracy 0.9710 ± 0.0025 0.9730 ± 0.0025 0.9730 ±0.0025
Precision 0.9220 ± 0.0115 0.9390 ± 0.0075 0.9390 ±0.0075
Recall 0.9470 ± 0.0095 0.9365 ± 0.0090 0.9365 ±0.0090

Specificity 0.9780 ± 0.0035 0.9830 ± 0.0020 0.9830 ±0.0020
F1 0.9345 ± 0.0075 0.9375 ± 0.0060 0.9375 ±0.0060

Sinus
Bradycardia

Accuracy 0.9925 ± 0.0015 0.9815 ± 0.0025 0.9925 ±0.0015
Precision 0.9885 ± 0.0040 0.9815 ± 0.0025 0.9885 ±0.0035
Recall 0.9985 ± 0.0015 0.9915 ± 0.0030 0.9915 ±0.0030

Specificity 0.9935 ± 0.0025 0.9935 ± 0.0020 0.9935 ±0.0020
F1 0.9900 ± 0.0025 0.9900 ± 0.0020 0.9900 ±0.0020

Sinus
Rhythm/
Sinus
Irregularity

Accuracy 0.9885 ± 0.0020 0.9870 ± 0.0020 0.9870 ±0.0020
Precision 0.9830 ± 0.0050 0.9800 ± 0.0055 0.9800 ±0.0055
Recall 0.9610 ± 0.0080 0.9585 ± 0.0075 0.9585 ±0.0075

Specificity 0.9955 ± 0.0015 0.9950 ± 0.0015 0.9950 ±0.0015
F1 0.9715 ± 0.0045 0.9690 ± 0.0050 0.9690 ±0.0050

Table 6.3: Mean metrics and 2-σ (95,4%) confidence intervals obtained for
models based on unbalanced, oversampled and undersampled train-
ing data.
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Despite the inconclusive experimental evidence and based on the theoret-

ical argument in favour of oversampling, it was decided that all of the following

experiments involving models based on the four superclasses would be conducted

using oversampled training data.

6.3 Comparing models based on pre-processed

versus raw input

In order to test the utility of pre-processing empirically for the proposed archi-

tecture (see objective 1), models based on training data consisting of raw and

pre-processed signals were compared. (see sections 4.1 and 5.3 for details on the

pre-processing methodology).

Based on the results of the previous section, models compared in this

section were based on our oversampled training set drawn from the Shaoxin

database and evaluated on the corresponding training set using the superclasses

regime. As shown in table 6.4, the experiment numbers corresponding to the

models based on raw and pre-processed data are 8 and 9 respectively.

The resulting performance metrics are summarised and compared in table

6.5 as well as figure 6.2, while confusion matrices and corresponding ROC-curves

are displayed in sections A.8 and A.9 of Appendix A.

6.3.1 Discussion

Based on the results, we cannot infer a statistically significant difference in per-

formance between models based on raw and pre-processed data for the given

architecture. While it appears that the models based on pre-processed data

Defining Characteristic Experiment Number
Raw data Experiment 8
Pre-processed data Experiment 9

Table 6.4: Mapping of defining characteristics and experiment numbers for sec-
tion 6.3.
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(a) Accuracy (b) Precision

(c) Sensitivity (d) Specificity

(e) F1

Figure 6.2: Mean values and 2-σ (95.4%) confidence intervals of performance
metrics obtained for models based on raw and pre-processed data.
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Diagnostic
Class

Metric Model:
Raw Data

Model: Pre-
processed Data

Overall

Accuracy 0.9635 ±0.0030 0.0.9650 ±0.0030
Precision 0.9635 ±0.0030 0.9655 ±0.0030
Recall 0.9630 ±0.0030 0.9645 ±0.0030

Specificity 0.9880 ±0.0010 0.9885 ±0.0010
F1 0.9635 ±0.0020 0.9650 ±0.0020

Atrial
Fibrillation/
Atrial
Flutter

Accuracy 0.9740 ± 0.0025 0.9745 ±0.0025
Precision 0.9300 ±0.0085 0.9470 ±0.0120
Recall 0.9455 ±0.0080 0.9295 ±0.0150

Specificity 0.9810 ±0.0025 0.9860 ±0.0035
F1 0.9380 ±0.0060 0.9380 ±0.0095

Generalised
Supraven-
tricular
Tachycardia

Accuracy 0.9730 ±0.0025 0.9730 ±0.0025
Precision 0.9390 ±0.0075 0.9310 ±0.0135
Recall 0.9365 ±0.0090 0.9475 ±0.0115

Specificity 0.9830 ±0.0020 0.9805 ±0.0040
F1 0.9375 ±0.0060 0.9390 ±0.0090

Sinus
Bradycardia

Accuracy 0.9925 ±0.0015 0.9930 ±0.0015
Precision 0.9885 ±0.0035 0.9885 ±0.0035
Recall 0.9915 ±0.0030 0.9925 ±0.0020

Specificity 0.9935 ±0.0020 0.9935 ±0.0020
F1 0.9900 ±0.0020 0.9905 ±0.0020

Sinus
Rhythm/
Sinus
Irregularity

Accuracy 0.9870 ±0.0020 0.9895 ±0.0015
Precision 0.9800 ±0.0055 0.9820 ±0.0060
Recall 0.9585 ±0.0075 0.9685 ±0.0075

Specificity 0.9950 ±0.0015 0.9955 ±0.0015
F1 0.9690 ±0.0050 0.9750 ±0.0050

Table 6.5: Mean metrics and 2-σ (95.4%) confidence intervals obtained formod-
els based on raw and pre-processed data.

perform slightly better overall, the picture is less clear when looking at individ-

ual diagnostic classes. In particular, the large variance in precision, sensitivity

and specificity for the AFIB and gSVT classes appears to be caused by the

high number of misclassifications between the two classes, as illustrated by the

confusion matrices for both models (see sections A.8 and A.9). One might as-

sume this to be the case due to the morphological and rhythmic similarities

between the two classes, yet the concern that low-pass filtering might cause the

signal to lose vital physiological information in the high-frequency domain and

thereby result in systematic underperformance seems to be unfounded based on

the overall similar performance characteristics.

Consequently, and also because the only available third-party benchmark

(provided by Yildirim et al., 2020) also uses the pre-processed data, the experi-

ments for the subsequent sections (with an exception of section 6.7) where based

on pre-processed data.
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Defining Characteristic Experiment Number
Plain,Superclasses Regime Experiment 9
Plain, Reduced Regime Experiment 10
Multi-input, Superclasses Regime Experiment 14
Multi-input, Reduced Regime Experiment 15
Multi-output, Superclasses Regime Experiment 16
Multi-output, Reduced Regime Experiment 17
Multi-in/out, Superclasses Regime Experiment 18
Multi-in/out, Reduced Regime Experiment 19

Table 6.6: Mapping of defining characteristics and experiment numbers for sec-
tion 6.4

6.4 Evaluating Possible Modifications of the Pro-

posed Architecture

In this section, the performance of the proposed architecture was compared to

its modifications as discussed in section 3.1 (see objective 2. All models were

trained using our de-noised and de-trended test set from the Shaoxin database

(compare sections 4.1 and 5.3).

In order to further investigate whether one of the proposed modifications

would be particularly useful with regards to certain types of arrhythmia, we

made the same comparison for both the superclasses and reduced classes label-

ing regime. A mapping of the various combinations of architecture-modifications

and labelling regimes the the corresponding experiments are detailed in table

6.6.

The performance metrics for the proposed model and potential modifica-

tions (i.e. multi-input, multi-output and multi-input/multi-output) are sum-

marised in table 6.7 and 6.8, and class-wise as well as overall comparisons are

drawn in figures 6.3 and 6.4. As before, the corresponding ROC-curves and

mean confusion matrices for all ten training runs are displayed in sections A.9-

A.10 as well as sections A.14 - A.19.
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(a) Accuracy (b) Precision

(c) Sensitivity (d) Specificity

(e) F1

Figure 6.3: Mean values and 2-σ (95.4%) confidence intervals of performance
metrics obtained for models based on different modifications of the pro-
posed architecture within the superclasses labelling regime.
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Diagnostic
Class

Metric
Model:
Plain

Model:
Multi- input

Model:
Multi-output

Model:
Multi-in-out

Overall

Accuracy 0.9650 ±0.0030 0.9600 ±0.0045 0.9630 ±0.0025 0.9605 ±0.0035
Precision 0.9655 ±0.0030 0.9655 ±0.0040 0.9660 ±0.0025 0.9640 ±0.0035
Recall 0.9645 ±0.0030 0.9615 ±0.0045 0.9660 ±0.0030 0.9655 ±0.0040

Specificity 0.9885 ±0.0010 0.9885 ±0.0015 0.9885 ±0.0010 0.9880 ±0.0010
F1 0.9650 ±0.0020 0.9635 ±0.0030 0.9660 ±0.0020 0.9650 ±0.0025

Atrial
Fibrillation/
Atrial
Flutter

Accuracy 0.9745 ±0.0025 0.9745 ±0.0030 0.9760 ±0.0025 0.9755 ±0.0030
Precision 0.9470 ±0.0120 0.9445 ±0.0105 0.9485 ±0.0100 0.9410 ±0.0130
Recall 0.9295 ±0.0150 0.9325 ±0.0125 0.9360 ±0.0085 0.9425 ±0.0085

Specificity 0.9860 ±0.0035 0.9855 ±0.0030 0.9865 ±0.0025 0.9840 ±0.0035
F1 0.9380 ±0.0095 0.9385 ±0.0085 0.9420 ±0.0065 0.9415 ±0.0080

Generalised
Supraven-
tricular
Tachycardia

Accuracy 0.9730 ±0.0025 0.9730 ±0.0025 0.9740 ±0.0025 0.9735 ±0.0025
Precision 0.9310 ±0.0135 0.9360 ±0.0110 0.9360 ±0.0085 0.9390 ±0.0100
Recall 0.9475 ±0.0115 0.9410 ±0.0115 0.9455 ±0.0110 0.9395 ±0.0145

Specificity 0.9805 ±0.0040 0.9820 ±0.0030 0.9820 ±0.0025 0.9830 ±0.0030
F1 0.9390 ±0.0090 0.9385 ±0.0080 0.9405 ±0.0070 0.9390 ±0.0090

Sinus
Bradycardia

Accuracy 0.9930 ±0.0015 0.9915 ±0.0025 0.9930 ±0.0015 0.9920 ±0.0015
Precision 0.9885 ±0.0035 0.9915 ±0.0030 0.9900 ±0.0040 0.9870 ±0.0035
Recall 0.9925 ±0.0020 0.9855 ±0.0075 0.9915 ±0.0035 0.9915 ±0.0035

Specificity 0.9935 ±0.0020 0.9950 ±0.0015 0.9940 ±0.0025 0.9925 ±0.0020
F1 0.9905 ±0.0020 0.9885 ±0.0040 0.9905 ±0.0025 0.9890 ±0.0025

Sinus
Rhythm/
Sinus
Irregularity

Accuracy 0.9895 ±0.0015 0.9880 ±0.0035 0.9885 ±0.0020 0.9885 ±0.0015
Precision 0.9820 ±0.0060 0.9720 ±0.0140 0.9730 ±0.0080 0.9740 ±0.0070
Recall 0.9685 ±0.0075 0.9700 ±0.0070 0.9735 ±0.0065 0.9695 ±0.0065

Specificity 0.9955 ±0.0015 0.9925 ±0.0040 0.9930 ±0.0020 0.9930 ±0.0020
F1 0.9750 ±0.0050 0.9710 ±0.0080 0.9730 ±0.0050 0.9720 ±0.0050

Table 6.7: Mean metrics and 2-σ (95.4%) confidence intervals obtained formod-
els based on different modifications of the proposed architecture based
on the superclasses labelling regime.
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(a) Accuracy (b) Precision

(c) Sensitivity (d) Specificity

(e) F1

Figure 6.4: Mean values and 2-σ (95.4%) confidence intervals of performance
metrics obtained for models based on different modifications of the pro-
posed architecture within the reduced labelling regime.
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Diagnostic
Class

Metric
Model:
Plain

Model:
Multi- input

Model:
Multi-output

Model:
Multi-in-out

Overall

Accuracy 0.9260 ±0.0045 0.9195 ±0.0050 0.9245 ±0.0040 0.9220 ±0.0045
Precision 0.9330 ±0.0045 0.9320 ±0.0045 0.9330 ±0.0045 0.9305 ±0.0045
Recall 0.9285 ±0.0050 0.9180 ±0.0080 0.9290 ±0.0050 0.9230 ±0.0050

Specificity 0.9890 ±0.0005 0.9890 ±0.0010 0.9890 ±0.0010 0.9885 ±0.0010
F1 0.9310 ±0.0030 0.9250 ±0.0045 0.9310 ±0.0035 0.9265 ±0.0035

Atrial
Flutter

Accuracy 0.9675 ±0.0030 0.9675 ±0.0030 0.9700 ±0.0025 0.9670 ±0.0030
Precision 0.9675 ±0.0030 0.9675 ±0.0030 0.9700 ±0.0025 0.9670 ±0.0030
Recall 0.4890 ±0.0655 0.4100 ±0.0715 0.4870 ±0.0555 0.4120 ±0.0615

Specificity 0.9890 ±0.0030 0.9920 ±0.0025 0.9915 ±0.0025 0.9920 ±0.0025
F1 0.6445 ±0.0575 0.5680 ±0.0695 0.6450 ±0.0490 0.5730 ±0.0600

Atrial
Fibrillation

Accuracy 0.9690 ±0.0030 0.9665 ±0.0030 0.9690 ±0.0025 0.9690 ±0.0030
Precision 0.9690 ±0.0030 0.9665 ±0.0030 0.9690 ±0.0025 0.9690 ±0.0030
Recall 0.9240 ±0.0165 0.9390 ±0.0175 0.9355 ±0.0185 0.9360 ±0.0175

Specificity 0.9780 ±0.0035 0.9720 ±0.0045 0.9760 ±0.0040 0.9755 ±0.0035
F1 0.9460 ±0.0085 0.9525 ±0.0090 0.9520 ±0.0095 0.9520 ±0.0090

Sinus
Irregularity

Accuracy 0.9825 ±0.0020 0.9810 ±0.0025 0.9825 ±0.0020 0.9805 ±0.0025
Precision 0.9825 ±0.0020 0.9810 ±0.0025 0.9825 ±0.0020 0.9805 ±0.0025
Recall 0.6810 ±0.0610 0.7055 ±0.0465 0.6865 ±0.0475 0.6190 ±0.0655

Specificity 0.9955 ±0.0020 0.9930 ±0.0020 0.9955 ±0.0020 0.9960 ±0.0015
F1 0.8015 ±0.0425 0.8195 ±0.0315 0.8070 ±0.0330 0.7555 ±0.0490

Sinus
Bradycardia

Accuracy 0.9930 ±0.0015 0.9925 ±0.0015 0.9930 ±0.0015 0.9920 ±0.0015
Precision 0.9930 ±0.0015 0.9925 ±0.0015 0.9930 ±0.0015 0.9920 ±0.0015
Recall 0.9890 ±0.0035 0.9920 ±0.0025 0.9940 ±0.0020 0.9905 ±0.0050

Specificity 0.9950 ±0.0015 0.9930 ±0.0020 0.9925 ±0.0020 0.9930 ±0.0025
F1 0.9910 ±0.0020 0.9925 ±0.0015 0.9935 ±0.0015 0.9915 ±0.0025

Sinus
Rhythm

Accuracy 0.9815 ±0.0025 0.9800 ±0.0020 0.9815 ±0.0025 0.9800 ±0.0030
Precision 0.9815 ±0.0025 0.9800 ±0.0020 0.9815 ±0.0025 0.9800 ±0.0030
Recall 0.9620 ±0.0095 0.9360 ±0.0165 0.9535 ±0.0130 0.9575 ±0.0095

Specificity 0.9855 ±0.0030 0.9890 ±0.0035 0.9870 ±0.0040 0.9845 ±0.0035
F1 0.9720 ±0.0050 0.9575 ±0.0090 0.9670 ±0.0070 0.9685 ±0.0050

Sinus
Tachycardia

Accuracy 0.9875 ±0.0020 0.9860 ±0.0020 0.9860 ±0.0020 0.9865 ±0.0020
Precision 0.9875 ±0.0020 0.9860 ±0.0020 0.9860 ±0.0020 0.9865 ±0.0020
Recall 0.9595 ±0.0100 0.9485 ±0.0130 0.9490 ±0.0150 0.9465 ±0.0115

Specificity 0.9920 ±0.0025 0.9925 ±0.0020 0.9925 ±0.0020 0.9935 ±0.0015
F1 0.9730 ±0.0050 0.9670 ±0.0070 0.9670 ±0.0075 0.9660 ±0.0060

Supra-
ventricular
Tachycardia

Accuracy 0.9830 ±0.0020 0.9815 ±0.0025 0.9825 ±0.0020 0.9810 ±0.0025
Precision 0.9830 ±0.0020 0.9815 ±0.0025 0.9825 ±0.0020 0.9810 ±0.0025
Recall 0.8850 ±0.0270 0.8230 ±0.0595 0.8780 ±0.0290 0.8945 ±0.0275

Specificity 0.9885 ±0.0025 0.9905 ±0.0025 0.9880 ±0.0020 0.9860 ±0.0025
F1 0.9310 ±0.0150 0.8925 ±0.0350 0.9270 ±0.0165 0.9355 ±0.0150

Table 6.8: Mean metrics and 2-σ (95.4%) confidence intervals obtained formod-
els based on different modifications of the proposed architecture based
on the reduced labelling regime.
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6.4.1 Discussion

One can see no significant difference in performance between the different vari-

ations of the proposed architecture. The only trend that might be inferred from

the results is that the models taking ECG signals as well as global features as

input performed slightly worse than those that do not, albeit not necessarily in a

statistically significant way. Nevertheless, given these results, all modifications

of the original proposed architecture can -at least within the scope of this study-

be considered a likely waste of computational and data collection resources and

were hence discarded in subsequent experiments.

6.5 Validating the Proposed Architecture against

the Chosen Benchmarks

In order to decide whether or not the proposed architecture marks an improve-

ment in performance over alternative approaches (see objective 3, in this sec-

tion, its performance compared to the benchmarks discussed in section 3.2.

As before, both the models based on the proposed architecture and those

based on the CNN-benchmark were trained on a pre-processsed, balanced (by

oversampling) training set drawn from the Shaoxing database. They were then

evaluated on the corresponding Shaoxing test set. Results were obtained for

both the superclasses and the reduced classes labelling regime and summarised

in table 6.10 and 6.11 respectively. Furthermore, class-wise as well as overall

comparisons were made for each metric in figures 6.5 and 6.6. Furthermore,

average confusion matrices as well as ROC-curves are provided in sections A.1-

A.2 as well as A.9 - A.10 of Appendix A. A mapping of the relevant combinations

Defining Characteristic Experiment Number
CNN-Benchmark, Superclasses Regime Experiment 1
CNN-Benchmark, Reduced Regime Experiment 2
Proposed Architecture, Superclasses Regime Experiment 9
Proposed Architecture, Reduced Regime Experiment 10

Table 6.9: Mapping of defining characteristics and experiment numbers for sec-
tion 6.5
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(a) Accuracy (b) Precision

(c) Sensitivity (d) Specificity

(e) F1

Figure 6.5: Mean values and 2-σ (95.4%) confidence intervals of performance
metrics obtained for models based on the proposed architecture as well
as its benchmarks under the superclasses labelling regime.
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(a) Accuracy (b) Precision

(c) Sensitivity (d) Specificity

(e) F1

Figure 6.6: Mean values and 2-σ (95.4%) confidence intervals of performance
metrics obtained for models based on the proposed architecture as well
as its benchmarks under the reduced labelling regime.
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Diagnostic
Class

Metric
Architecture:
Proposed

Architecture:
CNN Benchmark.

Architecture:
Yildirim et al.

Overall

Accuracy 0.9650 ±0.0030 0.9590 ±0.0040 0.9613
Precision 0.9655 ±0.0030 0.9585 ±0.0045 0.9578
Recall 0.9645 ±0.0030 0.9575 ±0.0035 0.9543

Specificity 0.9885 ±0.0010 0.9860 ±0.0015 0.9543
F1 0.9650 ±0.0020 0.9580 ±0.0030 0.9557

Atrial
Fibrillation/
Atrial
Flutter

Accuracy 0.9745 ±0.0025 0.9695 ±0.0035 0.9782
Precision 0.9745 ±0.0025 0.9695 ±0.0035 0.9416
Recall 0.9295 ±0.0150 0.9255 ±0.0130 0.9617

Specificity 0.9860 ±0.0035 0.9810 ±0.0025 0.9830
F1 0.9515 ±0.0080 0.9470 ±0.0070 0.9515

Generalised
Supraven-
tricular
Tachycardia

Accuracy 0.9730 ±0.0025 0.9670 ±0.0040 0.9754
Precision 0.9730 ±0.0025 0.9670 ±0.0040 0.9675
Recall 0.9475 ±0.0115 0.9275 ±0.0100 0.8994

Specificity 0.9805 ±0.0040 0.9780 ±0.0040 0.9930
F1 0.9600 ±0.0060 0.9470 ±0.0055 0.9322

Sinus
Bradycardia

Accuracy 0.9930 ±0.0015 0.9915 ±0.0015 0.9886
Precision 0.9930 ±0.0015 0.9915 ±0.0015 0.9825
Recall 0.9925 ±0.0020 0.9900 ±0.0035 0.9865

Specificity 0.9935 ±0.0020 0.9925 ±0.0030 0.9893
F1 0.9930 ±0.0015 0.9910 ±0.0020 0.9850

Sinus
Rhythm/
Sinus
Irregularity

Accuracy 0.9895 ±0.0015 0.9880 ±0.0020 0.9801
Precision 0.9895 ±0.0015 0.9880 ±0.0020 0.9396
Recall 0.9685 ±0.0075 0.9625 ±0.0085 0.9688

Specificity 0.9955 ±0.0015 0.9950 ±0.0020 0.9832
F1 0.9790 ±0.0040 0.9750 ±0.0045 0.9540

Table 6.10: Mean metrics and 2-σ (95.4%) confidence intervals obtained for
models based on the proposed architecture and its benchmarks based
on the superclasses labelling regime.
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Diagnostic
Class

Metric
Architecture:
Proposed

Architecture:
CNN Benchmark.

Architecture:
Yildirim et al.

Overall

Accuracy 0.9260 ±0.0045 0.9025 ±0.0055 0.9224
Precision 0.9330 ±0.0045 0.9165 ±0.0060 0.8031
Recall 0.9285 ±0.0050 0.9000 ±0.0060 0.8015

Specificity 0.9890 ±0.0005 0.9865 ±0.0010 0.9872
F1 0.9310 ±0.0030 0.9080 ±0.0045 0.8004

Atrial
Flutter

Accuracy 0.9675 ±0.0030 0.9625 ±0.0035 0.9607
Precision 0.9675 ±0.0030 0.9625 ±0.0035 0.9202
Recall 0.4890 ±0.0655 0.3240 ±0.0540 0.2500

Specificity 0.9890 ±0.0030 0.9910 ±0.0035 0.9832
F1 0.6445 ±0.0575 0.4805 ±0.0600 0.2807

Atrial
Fibrillation

Accuracy 0.9690 ±0.0030 0.9625 ±0.0030 0.9798
Precision 0.9690 ±0.0030 0.9625 ±0.0030 0.9202
Recall 0.9240 ±0.0165 0.9105 ±0.0190 0.9493

Specificity 0.9780 ±0.0035 0.9730 ±0.0040 0.9853
F1 0.9460 ±0.0085 0.9355 ±0.0100 0.9345

Sinus
Irregularity

Accuracy 0.9825 ±0.0020 0.9710 ±0.0035 0.9760
Precision 0.9825 ±0.0020 0.9710 ±0.0035 0.7297
Recall 0.6810 ±0.0610 0.4325 ±0.0815 0.6428

Specificity 0.9955 ±0.0020 0.9945 ±0.0020 0.9900,
F1 0.8015 ±0.0425 0.5890 ±0.0770 0.9873

Sinus
Bradycardia

Accuracy 0.9930 ±0.0015 0.9910 ±0.0015 0.9904
Precision 0.9930 ±0.0015 0.9910 ±0.0015 0.9848
Recall 0.9890 ±0.0035 0.9900 ±0.0035 0.9898

Specificity 0.9950 ±0.0015 0.9920 ±0.0025 0.9907
F1 0.9910 ±0.0020 0.9905 ±0.0020 0.9873

Sinus
Rhythm

Accuracy 0.9815 ±0.0025 0.9690 ±0.0030 0.9703
Precision 0.9815 ±0.0025 0.9690 ±0.0030 0.9263
Recall 0.9620 ±0.0095 0.9330 ±0.0150 0.9119

Specificity 0.9855 ±0.0030 0.9765 ±0.0040 0.9835
F1 0.9720 ±0.0050 0.9505 ±0.0080 0.9190

Sinus
Tachycardia

Accuracy 0.9875 ±0.0020 0.9850 ±0.0025 0.9875
Precision 0.9875 ±0.0020 0.9850 ±0.0025 0.9693
Recall 0.9595 ±0.0100 0.9500 ±0.0175 0.9518

Specificity 0.9920 ±0.0025 0.9910 ±0.0025 0.9943
F1 0.9730 ±0.0050 0.9670 ±0.0090 0.9604

Supra-
ventricular
Tachycardia

Accuracy 0.9830 ±0.0020 0.9780 ±0.0025 0.9798
Precision 0.9830 ±0.0020 0.9780 ±0.0025 0.7714
Recall 0.8850 ±0.0270 0.8335 ±0.0405 0.9152

Specificity 0.9885 ±0.0025 0.9860 ±0.0035 0.9837
F1 0.9310 ±0.0150 0.8990 ±0.0235 0.8372

Table 6.11: Mean metrics and 2-σ (95.4%) confidence intervals obtained for
models based on the proposed architecture and its benchmarks based
on the reduced labelling regime.
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of architectures and labelling regimes to the corrsepconding experiment numbers

is provided in table 6.9.

6.5.1 Discussion

We notice that while the proposed architecture outperforms the naive CNN-

benchmark as well as the DNN-LSTM-benchmark proposed by Yildirim et al.

(2020) overall and with regards to most classes in both labelling regimes, there

are a few classes for which the picture is not so clear. In particular, the AFIB/AF

and gSVT classes in the superclass regime as well as the SI, and SVT classes

in the reduced regime show a high variety of different model outperformances.

Specifically, we notice that the Yildirim et al. (2020) model outperforms the pro-

posed models as well as the benchmark in the ST class and that the proposed

architecture shows a larger positive performance differential with regards to the

benchmark for AFIB/AF and gSVT (a potential explanation will be discussed

in section 6.8).

With regards to the reduced classes regime one has to further keep in

mind that there is a considerable class imbalance in the reduced classes labelling

regime and that we would therefore expect a strong underperformance in the

minority classes. Looking at multiclass confusion matrices in section A.2 and

A.10, we notice that most of the misclassified examples result from one of the

following:

• AF classified as AFIB

• SI classified as SR or (less prominently) SB

• SVT being missclassied ad ST or AF

These findings not only makes sense with regards to the morphological

and rhythmic patterns discussed in section 2.2.2, but also in light of the fact

that AF, SI and SVT are the most underrepresented classes in this labelling

regime (compare table 4.5. The obvious conclusion is that when dealing with

classes that are inherently difficult to distinguish -i.e. because the belong to

the same “family” of arrhythmia or, as in the case of SVT and AFIB, one is on

fact a subset of the other- adjusting the class balance of the training set or even

oversampling the relevant classes could significantly boost performance.
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Defining Characteristic Experiment Number
Benchmark, Shaoxing Experiment 1
Benchmark, Shaoxing 20s Experiment 4
Benchmark, Shaoxing 50s Experiment 5
Model, Shaoxing Experiment 9
Model, Shaoxing 20s Experiment 12
Model, Shaoxing 50s Experiment 13

Table 6.12: Mapping of defining characteristics and experiment numbers for
section 6.6

6.6 Validating the Proposed Architecture on Aug-

mented Data

In order to scrutinise the architectures’ ability to generalise to sequences longer

than those seen during training (see objective 4), models based on the proposed

architecture as well as the benchmark, trained on the original balanced (over-

sampled) and pre-processed training data drawn from the Shaoxing database

under the superclasses labelling regime were evaluated on the two “augmented”

test sets described in section 5.4.

The resulting performance metrics for sequences of length 20 and 50 are

summarised in tables 6.13 and 6.14, while figure 6.7 illustrates the change in

overall and class-wise performance with varying sequence lengths. ROC-curves

and mean confusion matrices are further available in sections A.4-A.5 and A.12-

A.13. A mapping of the relevant combinations of architecture and test data to

the corresponding experiment numbers is provided in table 6.12.

6.6.1 Discussion

The most immediate and unsurprising observation is that the performance of

classifiers based on both the proposed and the benchmark architecture gener-

ally deteriorate with increasing sequence length (and hence, degree of mixed

labelling). The obvious exception here is specificity (see figure 6.7d), which in-

creases at 50s back to the level achieved on the original test set. However, it

is important note that this is is most likely due to the classifiers having made

a slightly different trade-off between sensitivity and specificity (at threshold 0.5).
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Diagnostic
Class

Metric Architecture:
Bechmark

Architecture:
Proposed

Overall

Accuracy 0.5890 ±0.0080 0.5975 ±0.0095
Precision 0.6485 ±0.0085 0.6525 ±0.0095
Recall 0.6190 ±0.0095 0.6075 ±0.0115

Specificity 0.6190 ±0.0095 0.8920 ±0.0045
F1 0.6335 ±0.0065 0.6290 ±0.0075

Atrial
Fibrillation/
Atrial
Flutter

Accuracy 0.8295 ±0.0060 0.8265 ±0.0055
Precision 0.8295 ±0.0060 0.8265 ±0.0055
Recall 0.4005 ±0.0285 0.4995 ±0.0635

Specificity 0.9515 ±0.0080 0.9200 ±0.0190
F1 0.5390 ±0.0255 0.6170 ±0.0490

Generalised
Supraven-
tricular
Tachycardia

Accuracy 0.8285 ±0.0055 0.8300 ±0.0060
Precision 0.8285 ±0.0055 0.8300 ±0.0060
Recall 0.3985 ±0.0275 0.3980 ±0.0440

Specificity 0.9455 ±0.0060 0.9475 ±0.0135
F1 0.5370 ±0.0250 0.5350 ±0.0400

Sinus
Bradycardia

Accuracy 0.7815 ±0.0060 0.7840 ±0.0070
Precision 0.7815 ±0.0060 0.7840 ±0.0070
Recall 0.7885 ±0.0365 0.6525 ±0.0375

Specificity 0.7775 ±0.0230 0.8610 ±0.0245
F1 0.7840 ±0.0185 0.7105 ±0.0225

Sinus
Rhythm/
Sinus
Irregularity

Accuracy 0.8440 ±0.0055 0.8430 ±0.0060
Precision 0.8440 ±0.0055 0.8430 ±0.0060
Recall 0.7870 ±0.0250 0.8735 ±0.0285

Specificity 0.8580 ±0.0085 0.8355 ±0.0110
F1 0.8140 ±0.0135 0.8575 ±0.0140

Table 6.13: Mean values and 2-σ (95.4%) confidence intervals of performance
metrics obtained for models based on the proposed architecture as well
as the benchmark on synthetic sequences of length 20s as compared
to performance on the original test set.
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Diagnostic
Class

Metric Architecture:
Bechmark

Architecture:
Proposed

Overall

Accuracy 0.1980 ±0.0210 0.2970 ±0.0425
Precision 0.9855 ±0.0035 0.9740 ±0.0070
Recall 0.2995 ±0.0160 0.3105 ±0.0100

Specificity 0.9910 ±0.0025 0.9830 ±0.0050
F1 0.4595 ±0.0185 0.4710 ±0.0115

Atrial
Fibrillation/
Atrial
Flutter

Accuracy 0.4425 ±0.0135 0.5330 ±0.0305
Precision 0.4425 ±0.0135 0.5330 ±0.0305
Recall 0.0845 ±0.0200 0.2455 ±0.0550

Specificity 0.9985 ±0.0010 0.9800 ±0.0105
F1 0.1405 ±0.0275 0.3320 ±0.0515

Generalised
Supraven-
tricular
Tachycardia

Accuracy 0.4505 ±0.0135 0.4870 ±0.0260
Precision 0.4505 ±0.0135 0.4870 ±0.0260
Recall 0.1015 ±0.0200 0.1650 ±0.0430

Specificity 1.0000 ±0.0005 0.9940 ±0.0035
F1 0.1640 ±0.0265 0.2410 ±0.0470

Sinus
Bradycardia

Accuracy 0.6030 ±0.0460 0.4570 ±0.0370
Precision 0.6030 ±0.0460 0.4570 ±0.0370
Recall 0.5300 ±0.0560 0.3540 ±0.0445

Specificity 0.9830 ±0.0095 0.9940 ±0.0055
F1 0.5635 ±0.0375 0.3985 ±0.0315

Sinus
Rhythm/
Sinus
Irregularity

Accuracy 0.6205 ±0.0300 0.6580 ±0.0320
Precision 0.6205 ±0.0300 0.6580 ±0.0320
Recall 0.3950 ±0.0530 0.4615 ±0.0635

Specificity 0.9780 ±0.0085 0.9705 ±0.0195
F1 0.4805 ±0.0405 0.5400 ±0.0450

Table 6.14: Mean values and 2-σ (95.4%) confidence intervals of performance
metrics obtained for models based on the proposed architecture as well
as the benchmark on synthetic sequences of length 50s as compared
to performance on the original test set.
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(a) Accuracy (b) Precision

(c) Sensitivity (d) Specificity

(e) F1

Figure 6.7: Mean values and 2-σ (95.4%) confidence intervals of performance
metrics obtained for models based on the proposed architecture as well
as the benchmark on synthetic sequences of different length as com-
pared to performance on the original test set.

In conjunction with the confusion matrices, which indicate that both

benchmark and proposed architecture classifiers become increasingly more prone

to false negatives as the sequence lengths increase, this again suggests the conclu-
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sion that the classifiers might have in fact learned a notion of mutual exclusivity

of classes.

What is reassuring, however, is that based on the available information,

there appears to be significant skill involved in the predictions made by all clas-

sifiers. Furthermore, there appears to be a gradual decline of performance with

sequence length (compared to the original test set) as well as, perhaps more im-

portantly, a widening differential in the performance of proposed-architecture

classifiers and benchmark classifiers in figures figure 6.7 (performance on Sinus

Bradycardia being the obvious exception), which supports our hypothesis that

-given appropriate and representative training data-, transformer-based models

have superior generalisation capabilities.

6.7 Validating the proposed architecture on the

PTB-XL Database

In order to determine our proposed architecture’s ability to generalise to data

drawn from a different source (see objective 5), models based on our proposed

architecture as well as the benchmark were trained on raw data from the Shaox-

ing training set and then tested on a test set drawn from the PTB-XL database.

The reason for the lack of pre-processing was mainly the fact that the PTX-

XL data is only available in raw form. Had we introduced our own method, we

would have made the results less useful for later comparison by other researchers.

Additionally, since we did not see much difference in performance between

models trained on the raw- and pre-processed classfiers to begin with (compare

section 6.3), it is our belief that any potential performance gains would have

been far outweighed by the results loss of generality.

Defining Characteristic Experiment Number
Benchmark, Shaoxing Experiment 3
Proposed Architecture, Shaoxing Experiment 11

Table 6.15: Mapping of defining characteristics and experiment numbers for
section 6.4
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Diagnostic
Class

Metric Architecture:
Benchmark

Model:
Proposed

Overall

Accuracy 0.0750 ±0.0260 0.0620 ±0.0200
Precision 0.0825 ±0.0210 0.0705 ±0.0160
Recall 0.0620 ±0.02050.0580± 0.0135

Specificity 0.7010 ±0.0580 0.6660 ±0.0065
F1 0.0710 ±0.0155 0.0635 ±0.0105

Atrial
Fibrillation/
Atrial
Flutter

Accuracy 0.7120 ±0.1790 0.7830 ±0.1340
Precision 0.7120 ±0.1790 0.7830 ±0.13400
Recall 0.2000 ±0.2530 0.1000 ±0.1895

Specificity 0.8000 ±0.2530 0.9000 ±0.1895
F1 0.0510 ±0.0505 0.0255 ±0.0430

Generalised
Supraven-
tricular
Tachycardia

Accuracy 0.7565 ±0.2165 0.9275 ±0.0025
Precision 0.7565 ±0.2165 0.9275 ±0.0025
Recall 0.2000 ±0.2530 0.0000 ±0.0000

Specificity 0.8000 ±0.2530 1.0000 ±0.0000
F1 0.0270 ±0.0270 0.0000 ±0.0000

Sinus
Bradycardia

Accuracy 0.4930 ±0.2730 0.1495 ±0.1660
Precision 0.4930 ±0.2730 0.1495 ±0.1660
Recall 0.5105 ±0.3105 0.9000 ±0.1895

Specificity 0.4920 ±0.3115 0.1000 ±0.1895
F1 0.0770 ±0.0315 0.1050 ±0.1000

Sinus
Rhythm/
Sinus
Irregularity

Accuracy 0.0650 ±0.0020 0.0650 ±0.00205
Precision 0.0650 ±0.0020 0.0650 ±0.0020
Recall 0.0000 ±0.0000 0.0000 ±0.0000

Specificity 1.0000 ±0.0000 1.0000 ±0.0000
F1 0.0000 ±0.0000 0.0000 ±0.0000

Table 6.16: Mean metrics obtained for models based on the proposed ar-
chitecture as well as the CNN-benchmark on the PTB-XL database.

After converting the labels according to table 4.7., we drew a stratified

sample of 5000 examples in order to validate our model. Table 6.16 gives a

comprehensive overview of the performance metrics obtained, and figure 6.8

makes class-wise comparisons for each metric. ROC-curves and mean confu-

sion matrices are available in sections A.3 and A.11. The experiment numbers

corresponding to the benchmark and the proposed architecture are 3 and 11

respectively (see table 6.15).

6.7.1 Discussion

We can see that the overall performance for both model and benchmark is very

poor and in fact, if we consider the fact that there is a total of 16 possible

label-configurations, close to random guessing. This conclusion is supported by

the ROC-curves, which indicate that there is nearly no skill in the classfiers’

predictions for the AFIB/AF class, and very little for the other three classes.
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(a) Accuracy (b) Precision

(c) Sensitivity (d) Specificity

(e) F1

Figure 6.8: Mean values and 2-σ confidence intervals of performance metrics
obtained for models based on the proposed architecture as well as the
CNN-benchmark on the PTB-XL dataset.
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Yet, based purely on accuracy (figure 6.8a), one might be tempted to con-

clude that both types of models are actually quite good at detecting AFIB,

and gSVT. However, looking at the other metrics we must realise that while

precision and specificity are high, both of these metrics are on the same side of

the trade-off and the corresponding sensitivity is nearly zero4. The correct in-

terpretation is of course that the classifiers simply do not classify any examples

(or nearly none) as AFIB or gSVT, reaping high precision and accuracy as a

result.

A look at the confusion matrices further reveals that the classifier has sim-

ply classified the vast majority of examples as non-AFIB/AF, all as non-gSVT

and non-SR/SI and the vast majority as SB. One possible explanation for this

result might be a poor mapping in the design of the experiment and/or the

inability of the classifier to deal with mixed-label examples which are not part

of the training set, and it can also not be excluded that there are significant

systematic differences between the populations from which the two databases

were sampled. However, neither of these hypothesis provide an explanation for

why both types of classifiers show such an extremely one-sided bias.

Although the strong proclivity of the classifiers to predicit a positive label

for SB seems at odds with this , another possible explanation for the poor per-

formance could be the aforementioned hypothesis that due to the lack of mixed

labels in the training set, the classifiers have actually learned that classes are

mutually exclusive. As a result, in a mixed-multi-label situation, most classes

would get rejected simply because the classifier has a higher conviction on an-

other class.

6.8 Evaluating Model Interpretability through

Attention Mapping

As stated before, part of the guiding principles that informed the development

of the proposed architecture were the desiderata for medical machine learning

laid out in section 2.5.4. In particular, one reason for choosing to investigate the

4In fact, one of the error-bars erroneously indicates a value of below zero, which reminds
us that binomial proportion confidence intervals are a mere approximation and can produce
artifacts called overshoot at the edges of bounded quantities (Newcombe, 1998).
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transformer-based architecture was the presence of an attention-mechanism op-

erating directly on CNN-features instead of the output of LSTM- or GRU-layers

like in architectures inspired by the encoder-decoder architecture (i.e. Zhang

and Li, 2021). The hypothesis is that this leads to a potentially high degree

of potential insight into the relationships learned by the model through joint

analysis of CNN-filter-banks and attention scores. While a full-scaled analysis

of the interpretability of models based on the proposed architecture is beyond

the scope of this work, this section is intended to provide an anecdotal insight

into the interpretability of models based on the proposed architecture (see ob-

jective 6) and thereby illustrate the potential for further research in this area.

For this purpose, one example from our test set drawn from the Shaoxing

database was chosen for each class of the superclasses labelling regime based on

the fact that these have been classified successfully by an overwhelming majority

of the classifiers here discussed5. Then, the first realisation of the ten classi-

fiers trained on a balanced (oversampled) training set drawn from the Shaoxin

database using the superclasses labelling regime (i.e. Experiment 9 in table 5.1;

ROC curves and confusion matrices available in section A.9 of Appendix A) was

used to make a prediction on each of the examples. The corresponding matri-

ces attention scores, i.e. softmax(QTK/
√
dkeys) (compare equation 2.6) for each

of the ten attention heads were then extracted and displayed in figures 6.9 - 6.12.

6.8.1 Discussion

Although the resulting patterns are much less expressive than what we might

have hoped for based on the results presented by Vaswani et al. (2017) in the

context of machine translation, we can nevertheless identify some subtle differ-

ences between the different examples.

Without claiming generality, we notice that the pattern for SR/SI and

SB, as well as to some degree gSVT are more “simple” in the sense that there

appears to be no or few distinctive connections drawn between different parts

of the sequence and if there are, they appear less nuanced than in the case of

AFBI/AF. It would be interesting to show these to a clinical expert in order

5The underlying assumption is that these represent “iconic” examples of their respecitve
classes
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to decide whether the patterns are reasonably interpretable within a clinically

valid diagnostic framework.

Based on the results of the previous experiments, it is our own (albeit

speculative) hypothesis that in many classifications under the given labelling

regimes, the encoder is not actually needed and the information contained in

the feature maps obtained by the CNN module are simply “passed through”

to the classifier. This would certainly explain the more differentiated patterns

emerging for AFIB/AF and (to a lesser degree) gSVT and is supported by the

observation that the proposed architecture’s outperformance against the bench-

marks is most pronounced for these classes (compare section 6.5).
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(a) Head 1 (b) Head 2

(c) Head 3 (d) Head 4

(e) Head 5 (f) Head 6

(g) Head 7 (h) Head 8

(i) Head 9 (j) Head 10

Figure 6.9: Attention scores for AFIB/AF.
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(a) Head 1 (b) Head 2

(c) Head 3 (d) Head 4

(e) Head 5 (f) Head 6

(g) Head 7 (h) Head 8

(i) Head 9 (j) Head 10

Figure 6.10: Attention scores for gSVT
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(a) Head 1 (b) Head 2

(c) Head 3 (d) Head 4

(e) Head 5 (f) Head 6

(g) Head 7 (h) Head 8

(i) Head 9 (j) Head 10

Figure 6.11: Attention scores for SB.
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(a) Head 1 (b) Head 2

(c) Head 3 (d) Head 4

(e) Head 5 (f) Head 6

(g) Head 7 (h) Head 8

(i) Head 9 (j) Head 10

Figure 6.12: Attention scores for SR.
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Chapter 7

Conclusion and Outlook

Based on the the experiments discussed in the previous section, we can first

and foremost conclude that our proposed algorithm benefits from both pre-

processing and a training set over-sampled to the majority class, if only marginally

and not necessarily in a statistically significant way (objective 1).

Our evaluations of the proposed and benchmark architectures on the re-

duced classes labelling regime further showed the detrimental effect of the pres-

ence of minority classes on performance, particularly when these are easily

confusable with other classes based on the nature of their features (compare

section 6.5). If balancing cannot be achieved due to varying clinical incidence,

the use of advanced data-augmenting techniques such as generative adversarial

networks (Goodfellow et al., 2020) for creating synthetic examples might be

indicated.

While the proposed modifications were deemed largely a waste of compu-

tational resources (objective 2), our experiments show that the transformer-

inspired architecture proposed in this work can compete with other state-of-the-

art deep learning architectures such as a CNN-LSTM and a plain CNN and at

times outperform them (objective 3).

With regards to the ability to generalise to longer sequences and mixed la-

bels (objective 4), it has become extraordinarily clear that in order to achieve

acceptable performance in these areas, one has to include similar experiences

in the training data. Despite this hardly surprising result, it is interesting
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(although again not exceptionally surprising) to see that model performance

decreases gradually with increasing sequence length. This suggests that at se-

quence lengths closer to the length of the training sequences, the models are

still able to apply some of the predictive power acquired during training.

Another reassuring result based on the results presented in section 6.6 is

the fact that at a sequence length of 50 seconds, the models based on the pro-

posed architecture have outperformed those based on the benchmark architec-

ture significantly, and by a larger margin than for shorter sequence lengths. This

suggests that our baseline assumption of the superior ability of transformer-type

architectures to generalise and handle long sequences might be correct, which

is further supported by our informal observation that during training, the gen-

eralisation gap between performance on the training and test set was generally

larger for the benchmark, indicating greater overfitting of the latter. We hope

that in the future, this result can be replicated and expanded upon.

An alternative, more rigorous approach to the data augmentation tech-

nique outlined in section 5.4 and adopted in creating the test data used in

experiments 4,5,12 and 13 would have been the use of deep generative models

such as the aforementioned generative adversarial networks or variational au-

toencoders (Kingma, Welling, et al., 2019). This could form the basis of future

work.

With regards to the proposed architecture’s ability to generalise to data

drawn from other sources (objective 5), the results were indeed disappointing.

However, due to the poor performance of both the benchmark and the proposed

architecture, it cannot be concluded that the proposed architecture is uniquely

inferior in this regard. Rather, as discussed before, one might hypothesise that

the cause for the poor performance, besides a lack of generalisation, are to be

found in an incorrect mapping of diagnostic classes, mixed labels, vastly differ-

ing levels of signal quality1, systematic differences in the underlying populations

and/or the presence of unseen artifacts in the PTB-XL database. In any case,

further research is needed to answer these questions.

Regarding the interpretability desideratum as laid out in section 2.5.4 and

1In fact, the signal quality labels that are part of the original PTB-XL annotations had to
be ignored due to the constraints of the Shaxing labelling regime.
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manifested in objective 6, we note that the proposed architecture does indeed

provide insight into the relationships used for classification, although to a lesser

degree than was expected. It cannot be concluded from our analysis whether

the patterns of the sort shown in figures 6.9 - 6.12 from models based on our

proposed architecture have any clinical significance, and in order to come to a

conclusion, a representative set of these images would have to be shown to a

panel of experienced clinicians in order to be evaluated with regards to their

validity.

In any case, as hypothesised in section 6.8.1, it is possible that the encoder

module is not actually needed for many of the individual classification tasks we

confronted the models with. This hypothesis is supported by the very thin (yet

in some cases statistically significant) margin of outperformance shown by the

proposed architecture against the benchmarks. One might conclude that the

given classification tasks (not including those on external examples on long se-

quences) are in a sense too “easy”, and that the bayes error2 can be approached

to a reasonable degree by simpler classifiers such as out CNN-benchmark. It

would therefore be interesting to see how the proposed architecture would per-

form on longer sequences and/or finer labelling given appropriate training data.

Another interesting question for further research along this line would be to

look more closely at the attention scores associated with those examples that

tended to be misclassified by the benchmark but classified correctly by the mod-

els based on the proposed architecture, in order uncover potential underlying

patterns.

In closing, we would like to stress that the results presented in sections

6.7 and 6.6 are very good examples of the importance of model risk and the

need for robust confidence estimates when pushing classifiers towards the edge

of their ability to generalise. The expanding error-bars in figure 6.7 are testi-

mony to this fact. An important question to answer would be, for example,

whether methods of approximate bayesian inference (i.e. monte carlo dropout)

and/or ensemble techniques (as discussed in section 2.5.4) would have been

able to detect the exploding model risk that emerged with sequences that were

longer and label combinations that were much unlike those seen during training.

2This refers to the theoretical maximum performance a classifier can reach for a given task
(Goodfellow et al., 2016).
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Appendix B

Alternative Sets of Hyper

Parameters for the

Proposed Architecture

Hyper Parameter Set 1 Set 2 Set 3 Set 4 Set 5
N.o. filters in CNN-layer 1 128 128 64 256 32
Filter-size in CNN-layer 1 8 24 32 16 4
Number of filters in CNN-layer 2 16 256 256 64 16
Filter-size in CNN-layer 2 10 32 4 14 10
Number of filters in CNN-layer 3 64 64 64 64 64
Filter-size in CNN-layer 3 12 10 12 16 10
Size of CNN-pooling-layer 8 10 6 6 8
N.o. encoder -layers 2 1 1 3 4
N.o. attention-heads in enc-layer 4 16 3 1 4
N.o. neurons in t.d. FC-layer 5098 1024 1024 1024 2048
N.o. neurons in pre-final FC-layer 64 32 128 128 256
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