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Abstract

Parallelisation of Neural Processing on
Neuromorphic Hardware

Luca Peres
A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy, 2022

Learning and development in biological brains typically happen over long timescales,

making experimental exploration at the level of individual neurons challenging.

Computer simulations of Spiking Neural Network (SNN) models offer a potential

route to investigate these phenomena. Accelerating large-scale brain simulations

on conventional hardware however is a challenge. Researchers therefore need

efficient simulation tools and platforms to complete these tasks in real- or sub

real time, to enable exploration of features such as long-term learning and neural

pathologies over meaningful periods. Neuromorphic engineering aims to provide

suitable platforms for such tasks by building architectures whose structures em-

ulate the mammalian brain and therefore to reduce the time and energy impact

that Neural Networks simulations have on standard computing platforms. In

order to perform real-time simulations of biologically representative Spiking Neu-

ral Networks however, digital Neuromorphic platforms need innovative program-

ming paradigms to best exploit their hardware features. This research explores

parallelisation strategies for neural applications to address real-time simulations

of SNNs, including on-line learning strategies, with the aim of maximising the

throughput of neural operations.

This work employs the many-core SpiNNaker digital Neuromorphic hardware

as a research platform, and proposes strategies that enabled the world’s first

17



real-time simulation of the Cortical Microcircuit model, a benchmark SNN de-

scribing the behaviour of the mammalian cortex, achieving performance 20×
better than previously published results. The parallelisation strategies are then

extended and generalised to on-line learning applications, involving the use of

multicompartmental neuron models for classification and regression tasks. Fi-

nally, new partitioning strategies affecting the placement of neural components

on Neuromorphic hardware are presented. These strategies make more efficient

use of the available hardware features, effectively reducing the required resources

and providing additional flexibility in order to handle sparser SNNs simulations.

Through this final development, up to 9× higher throughput of neural operations

is demonstrated, together with improved handling of biologically-representative

sparse connectivity patterns.
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Chapter 1

Introduction

1.1 Motivation

Networks of neurons allow the brain to perform tasks such as learning, inference

and motor control reliably and with limited energy consumption [HH11]. How-

ever, simulating such tasks is non-trivial, as long-range connectivity and sparse

temporal signals, typical of biologically-representative Spiking Neural Networks

(SNNs), make traditional communication mechanisms inefficient [FMCR19].

Conventional computer hardware is therefore not suited to perform such tasks,

as the communication cost dominates performance, scaling nonlinearly with neu-

ral network size, slowing down simulations and increasing the energy consumption

of the underlying simulator [vARS+18, IEPD17]. Alternatives have been proposed

to address these challenges, including Neuromorphic engineering [TMC+18], an

emerging field which aims at building machines by taking inspiration from the

mammalian brain. Various platforms and technologies [CDLB+22] have been de-

veloped with the ultimate goal of performing real-time simulations of complex

biologically-representative Spiking Neural Networks (SNNs). These aim at bet-

ter understanding the biological mechanisms which regulate activities such as

learning, memory and cognitive tasks on the one side and at finding alternative

architectures in order to overcome the end of Moore’s law [Moo06] on the other

[SKP+22]. Neuromorphic systems approach SNN simulations from a different

perspective, compared to conventional hardware [ILBH+11], by being power ef-

ficient and architecturally similar to neural networks. They furthermore provide

great scalability capabilities, overcoming the communication bottleneck of con-

ventional hardware. Although looking promising, these architectures still struggle

25
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to achieve the needed performance on more complex simulations. The reasons can

often be found in sub-optimal exploitation of the hardware resources and in the

lack of targeted programming models for these unique architectures [vARS+18].

These machines are therefore far from their potential, as demonstrated by cases

such as SpiNNaker, where no biologically-plausible network has been simulated

employing the full one-million core machine to date.

This work aims to address these issues by researching programming paradigms

based on parallelisation of neural processing on digital Neuromorphic hardware, in

order to bridge the gap in communication between the neuroscientific community

and computer architects. The target of this research is therefore to optimise

neural network simulations, by performing a more efficient use of the available

hardware resources, and highlight the weaknesses of such systems, in order to

inform the design of the next generation of Neuromorphic hardware.

1.2 Research Questions

The main hypotheses constituting the foundation of this work are presented here

in the form of research questions:

1. How can the process of mapping biologically-representative SNNs be opti-

mised on Neuromorphic Hardware?

2. What are the challenges of implementing on-line learning algorithms in real

time on Neuromorphic hardware?

3. How can the brain’s sparse connectivity and activity be modelled efficiently

on Neuromorphic hardware?

1.3 Contributions

The research presented in this manuscript addresses the questions formulated in

Section 1.2. The contributions provided by this work are here summarised:

1. The Cortical Microcircuit network [PD12], commonly regarded as bench-

mark in the neuroscience field, was used as a vehicle to explore neural models

and connectivity patterns, typical of biologically-representative SNNs. De-

tailed profiling and optimisations are here presented, together with the first
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real-time Neuromorphic simulation of the SNN, constituting a 20 × speedup

compared to previously published results. This contribution is addressed in

detail in Chapter 3.

2. Challenges and limitations related to the implementation of on-line learning

algorithms in real time on Neuromorphic hardware are explored, further im-

proving the developed software framework to include multicompartmental

neural modelling and rate-based densely-connected SNNs. This contribu-

tion is addressed in Chapter 4.

3. Brains’ levels of connectivity, fan-in and neuron density, are explored, pro-

viding a new efficient SNN placement methodology for digital Neuromorphic

hardware, which enables efficient simulations of biologically-representative

sparsity levels. This approach achieved a reduction in required hardware

resources and up to 9× neural operations throughput compared to previous

methodologies. This contribution is addressed in detail in Chapter 5.

1.4 Publications

Most of the work presented in this thesis has been submitted for publication and

is available in various forms:

• Journal Articles

– Oliver Rhodes, Luca Peres, Andrew G. D. Rowley, Andrew Gait, Luis

A. Plana, Christian Brenninkmeijer, and Steve B. Furber. Real-time

cortical simulation on neuromorphic hardware. Philosophical Transac-

tions of the Royal Society A: Mathematical, Physical and Engineering

Sciences, 378, Dec 2019 - this article summarises the work presented

in Chapter 3.

– Luca Peres and Oliver Rhodes. Parallelization of Neural Processing

on Neuromorphic Hardware. Frontiers in Neuroscience, 16, May 2022

- this article constitutes the work presented in Chapter 5.

• Posters



28 CHAPTER 1. INTRODUCTION

Introduction Neural modelling

Heterogeneous
partitioning

On-line learning

Multitarget
partitioning Conclusions

Figure 1.1: Thesis Structure. Each box corresponds to a chapter, while the arrows
indicate the relations between chapters.

– Luca Peres, Oliver Rhodes (2020) “Real-time cortical simulation

on SpiNNaker”. figshare. Poster. https://doi.org/10.6084/m9.

figshare.17086667.v1 [PR20]

1.4.1 External Coverage

The published work described in Chapter 3 received coverage from the general

press and was addressed in the 12th October 2019 issue of the New Scientist

[Gen19] magazine. The same work was cited among the biggest achievements

during the introductory keynote at the Human Brain Project (HBP) Summit in

Athens in February 2020.

1.5 Thesis Structure

This thesis is composed of 6 chapters in total. Its structure is shown in Figure 1.1.

Each box indicates a topic which maps to a specific chapter in this manuscript

and the arrows indicate the relations between them.

This chapter describes the motivations and the research questions addressed

in this work. Chapter 2 (Neural Modelling) provides an overview of the field

and the necessary background to understand this work. Chapter 3 (Heteroge-

neous partitioning) describes a parallelisation approach to improve SNN simu-

lations on Neuromorphic hardware. Chapter 4 (On-line learning) expands this

approach to biologically-plausible learning strategies. Chapter 5 (Multi-target
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partitioning) combines the previous developments and presents an evolved paral-

lelisation method, achieving optimal performance and including additional edge

cases. Chapter 6 (Conclusions) summarises the research and discusses potential

future work.

1.5.1 Chapter 2

Chapter 2 serves as a background on Spiking Neural Networks and neural mod-

elling, providing the reader with the information necessary to understand the

work. The initial focus is on the evolution of neural networks over the years,

with emphasis on Spiking Neural Networks, spiking neuron models and plasticity

rules. An overview of simulation platforms is also provided, showing the available

options on the market. Neuromorphic hardware is addressed in more detail and

chosen as target hardware for this research. Finally, a detailed descritpion of the

SpiNNaker Neuromorphic platform is provided as the main platform used for this

work.

1.5.2 Chapter 3

Chapter 3 addresses the first research question, and presents the development and

application of a parallelisation strategy, namely the Heterogeneous Programming

model, on digital Neuromorphic hardware. This programming model targets

real-time simulations of biologically-representative SNNs, and achieved the first

real-time simulation [RPR+19] of the Cortical Microcircuit network [PD12], a

well-known benchmark in the field of computational neuroscience. To date, this

represents the only complete Neuromorphic simulation of the network.

1.5.3 Chapter 4

Chapter 4 addresses the second research question, and expands the approach pre-

sented in Chapter 3 by applying it to a different context, targeting on-line learning

[LDBK20] challenges. Multicompartmental neuron models from the literature are

presented and simulated on SpiNNaker and the novel parallelisation strategy is

adapted to a rate-based context. Performance of this new implementation is then

tested in real-time supervised learning problems.
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1.5.4 Chapter 5

Chapter 5 addresses the third research question and builds on the knowledge

acquired from Chapters 3 and 4 to build an optimised framework which can

adapt to support simulations of various ranges of SNNs: from extremely sparse

connectivity patterns to denser networks, including support for biological learn-

ing mechanisms defined by plasticity rules. This method shows unprecedented

throughput of neural operations and a reduction in the required hardware re-

sources for a given simulation [PR22].

1.5.5 Chapter 6

Chapter 6 presents the conclusions of the thesis, summarising the research out-

comes and providing insights for potential future work.

1.6 Summary

This thesis focuses on the development of parallelisation techniques to achieve

real-time simulations of biologically-representative Spiking Neural Networks on

Neuromorphic hardware. This is achieved by performing a more efficient use

of the available hardware resources. First, the context is provided through a

description of the relevant fields and the available tools. An implementation

of a parallelisation technique is then provided for the SpiNNaker Neuromorphic

platform, together with its extensions to different contexts and forms. Finally

the results are presented together with considerations about future work.



Chapter 2

Neural Modelling and Dedicated

Hardware

2.1 Introduction

The human brain is a complex system able to perform learning tasks efficiently

with extremely low energy cost [LC20]. However, replicating such behaviour

on conventional computer hardware is challenging, due to a lack of complete

understanding of brain functioning and to inadequate simulation architectures.

Both the neuroscientific and computer science communities are investing con-

siderable effort in achieving full brain simulations, on the one side by providing

biologically-representative models and on the other side by building dedicated

hardware to simulate such models efficiently. This chapter presents an intro-

duction to biologically-inspired neural network simulation and to the available

platforms on the market to perform this task. This constitutes the background

necessary to introduce the research presented in this thesis. Section 2.2 presents

a description of neural networks and their structure, with focus on biologically-

inspired networks. A description of spiking neuron models and biological learning

mechanisms - such as synaptic plasticity - is provided, concluding with an intro-

duction to neural compartments and multicompartment neuron models. Section

2.3 describes the tools and techniques used to simulate neural networks, both

from hardware and software perspectives, providing evaluation of the advantages

and tradeoffs of every solution. Section 2.4 presents a more detailed descrip-

tion of Neuromorphic platforms as dedicated hardware simulators which mimic

the structure of the brain. Section 2.5 contains a detailed description of the

31
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SpiNNaker Neuromorphic system, the chosen platform for this research, together

with hardware and software features, and how neurons and neural networks are

simulated on it.

2.2 Neurons and Neural Networks

Neural networks are circuits of neurons, which take inspiration from biology. The

term takes its roots in the attempt to find mathematical representations of infor-

mation processing in biological systems [Bis06]. Neural networks are gaining pop-

ularity in the field of Computer Science, thanks to the reduction in computational

power consumption and advances in parallel computing paradigms, together with

a larger presence of high quality databases and training sets [GBC16]. The most

popular type of neural network is called Artificial Neural Networks (ANNs), which

in general are circuits of artificial neurons. ANNs are a broad class employed in

several Machine Learning (ML) tasks and commonly used by commercial appli-

cations in fields such as pattern recognition and inference. The basic building

blocks of neural networks are neurons, which can be modeled following different

abstraction levels from the biological neurons, according to the type of applica-

tion. Multiple generations of neural networks have been proposed to date and

they change according to the implemented type of neuron and connectivity. Fig-

ure 2.1 shows the evolution of neural networks through generations. The first

row represents the neuron models employed by each generation, the second row

shows how neurons interact with each other and the third row shows networks of

neurons.

The first generation (shown in the first column in Figure 2.1), evolving from

the first developed artificial neuron model (the McCulloch-Pitts neuron [MP43]),

employed a computational model called the Perceptron [Ros58]. This sums to-

gether the input weights (w1, w2 and w3 in Figure 2.1 top left) and then performs

a threshold step function on the result of the sum. The output assumes binary

values only. Multilayer combinations of these units generate networks called Mul-

tilayer Perceptrons (MLP) [Maa97].

The second generation (middle column in Figure 2.1) makes use of artifi-

cial neurons employing continuous nonlinear activation functions (such as the

sigmoid function [Mey01]) to transform the inputs and generate real-valued out-

puts. This, from a biological interpretation of neural networks, corresponds to a
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First Generation Neural Networks Second Generation Neural Networks Third Generation Neural Networks
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Figure 2.1: Neural networks generations. Each column shows a generation of
neural networks, including Multilayer Perceptrons (left column), ANNs (central
columns) and SNNs (right column). The first row contains the type of neuron
employed by each generation, the second row the communication model and the
third row the network structure.

representation of the current firing rate of a biological neuron [Maa97]. The acti-

vation function is applied, similarly to the first generation of neural networks, to

a weighted versionsum of the inputs. Second generation neural networks support

learning algorithms based on gradient descent, such as Error Backpropagation

[RHW86, Maa97]. This generation is currently the most popular in the Artificial

Intelligence (AI) field, being the basis of Deep Learning algorithms [GBC16].

Finally, the third generation (third column in Figure 2.1) is referred to as

Spiking Neural Networks (SNN). This type of network takes inspiration from real

neurons, by using the exact timing of spikes to encode information. This means

that neurons do not output mean firing rates, as for the previous generations,

but emit spikes at precise times and these times are used to encode information.

Spikes (or action potentials) are commonly modelled as events at a precise time,

therefore their mathematical representation is the Dirac delta function [Mey01].

SNNs present clear advantages over previous generations, including low power

consumption and the capability of processing real-time temporal data. However

the development of efficient learning algorithms for them is still at an early stage,
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therefore they have not yet fully replaced the previous generations of neural net-

works [LDC+20].

The simplest model of neural network is called feedforward and it is commonly

used to approximate a chosen function. The goal for the network is to learn the

values of some parameters to find the best approximation of the desired function.

This type of network has the information flowing in one direction only (there

is no feedback) and the neurons are organised in layers. Therefore at a higher

abstraction level, each layer performs a task, and the whole network an algorithm.

The most common representation is through a DAG (Directed Acyclic Graph),

the first layer is called input layer, the last is the output layer and all the middle

layers are called hidden layers [GBC16]. The introduction of feedback connections

defines a more complex class of neural network called Recurrent Neural Networks

(RNNs), which are employed for more complex tasks involving sequential data

processing, such as language translation, natural language processing (NLP) and

speech recognition. This type of neural network employs feedback connections to

create a form of “memory” of the previous inputs which persists in the network’s

internal state, influencing the outputs. Additional details about RNNs are left as

reference [Gra12].

This work focuses on algorithms and platforms related to SNNs simulations,

aiming to provide design methodologies to inform the design of future dedicated

hardware and algorithms. The following sections contain descriptions of SNNs

and hardware platforms employed to simulate them.

2.2.1 Point Neuron Models

Biological neurons have been modeled through the years at different levels of

abstraction, from simple Integrate-and-Fire models [GK02] to the ion channel

modeling proposed by Hodgkin and Huxley [HH52]. The common aspect is the

spiking nature of these models. Rate-based models, indeed, commonly encode

the information through the firing rate of the neurons; spiking models, on the

other hand, exploit the timings of the spikes to encode spatial and temporal in-

formation. Spikes are typically represented as Dirac delta functions, and the set

of emitted spikes is represented by a train of delta functions. Networks of spik-

ing neurons therefore communicate through this pulse-based mechanism, each

connection is represented through a strength, commonly called weight and the
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inputs come in the form of synaptic currents, where the synapses allow connec-

tion between neurons. When two neurons are connected, the source neuron is

called presynaptic, while the destination is denominated postsynaptic. A neuron

takes its inputs from other presynaptic neurons on tree-like structures called den-

drites and the junction between a presynaptic and a postsynaptic neuron is called

synapse. The synapses allow the transmission of neurotransmitters between the

two neurons. The core part of a neuron is called soma, or cell body, and it is the

nucleus of the neuron. In the soma all the input currents are collected. The soma

connects to the axon (a projection used to transmit information to other neu-

rons) through a cone-shaped section called axon hillock. This is the generation

site for action potentials, which are then propagated through the axon to reach

the dendrites of the target neurons (the schematic of spiking neurons is shown in

Figure 2.1 right).

Each spike contributes to postsynaptic neurons according to the weight of the

connection, and connections can be either excitatory, when they contribute to a

postsynaptic spike, or inhibitory, when they are opposed to postsynaptic spiking

activity. Learning in SNNs happens through a mechanism called synaptic plas-

ticity, which leads to weight modifications (more details about synaptic plasticity

are presented in Section 2.2.2) under specific conditions.

The most basic representation of spiking neurons is given by the Leaky Integrate-

and-Fire (LIF) model [GK02]. This model represents the neurons as simple elec-

trical RC circuits, having a resistor (R) in parallel with a capacitor (C), driven

by a current (Isyn(t)). The membrane voltage is measured as output voltage and

evolves with time according to Equation 2.1, where R is the cell membrane resis-

tance and τm represents the time constant (and is equal to the product between

R and C).

τm
dV

dt
= −(V − Vrest) +RIsyn(t) (2.1)

τsyn
dIsyn
dt

= −Isyn(t) +
∑
j

δ(t− tj) (2.2)

Vrest is the resting potential and is the value the membrane voltage converges

to when no synaptic input current (Isyn) is injected. The model acts in a way that

when the membrane voltage reaches a threshold value, it emits a spike and then

V is set to the resting potential level for an interval of time called the refractory
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period, during which the neuron cannot emit any spike. The current injected into

the neuron through its synapses is modeled by Equation 2.2. This is determined

by the incoming spikes (represented by the sum of δ functions, which include the

weight contribution for each activated synapse j ) and it is exponentially-shaped.

Another popular point neuron representation is given by the Izhikevich model

[Izh03], whose creator claims it to be as biologically-plausible as the Hodgkin-

Huxley [HH52] model, but with a complexity comparable to the LIF model [Izh03,

Izh04]. The Izhikevich model dynamics are modeled by the two-dimensional

system of equations shown in Equation 2.3.

dV

dt
= 0.04V 2 + 5V + 140 − U + I(t),

dU

dt
= a(bV − U)

(2.3)

V and U are dimensionless variables representing membrane potential and a mem-

brane recovery variable of the neurons respectively. I(t) the synaptic current. a

and b are dimensionless parameters used to tune the model dynamics and can

be configured to modify the neuron spiking behaviour according to simulation

conditions [Izh03].

Despite their simplicity compared to biological neurons, point neuron models

represent a powerful way to model biologically-plausible SNNs and are nowadays

employed in large networks used as benchmarks by the neuroscientific community,

such as the Cortical Microcircuit model [PD12], or the more complex multi-area

model [SBS+18], or even for cerebellar representations [BMC+21, CMM+19].

2.2.2 Synaptic Plasticity

The process that governs synaptic modification is termed synaptic plasticity and

it is believed to be the main learning mechanism in biology, as well as the sub-

strate of memory. Synaptic plasticity is also the main learning mechanism em-

ployed in SNNs. Most of the plasticity models originate from Hebb’s description

of synaptic changes [Heb49], which states that if a neuron’s firing activity results

in modifications of a connected postsynaptic neuron’s firing activity, then some

metabolic change happens in one or both the cells which causes the synaptic ef-

ficacy to increase. Therefore, correlations in pre- and postsynaptic firing activity

drive synaptic modifications. Hebb’s theory however does not take into account
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the fine temporal structure between pre- and postsynaptic spikes, stressing more

on causation, rather than correlation. The discovery of this aspect led to the

formulation of modern plasticity rules, in the form of Spike-Timing-Dependent

Plasticity (STDP) [MGS12]. Differently from what Hebb thought, according to

the temporal dynamics, both increases and decreases can be observed in synapses.

These two phenomena are termed Long-Term Potentiation (LTP) and Long-Term

Depression (LTD) respectively. An important feature of these rules is that only

variables locally available at the synapses can be involved in the synaptic weight

update. This means that effects caused by pre- and postsynaptic spikes, alone

or in conjunction, and membrane voltage changes are the only parameters that

can be taken into account when modeling synaptic plasticity [MDG08]. Several

STDP rules have been formulated, which vary according to the neuron models

and system type [AN00, BP01]. The most common STDP rule, as well as the

simplest, is the pair-based formulation [MDG08]. According to this formulation,

when a presynaptic neuron fires and, shortly after, a postsynaptic action poten-

tial is generated, then the involved synapse is potentiated, therefore the weight

increases. If the opposite situation happens, i.e. a postsynaptic action potential

is followed shortly after by a presynaptic spike, the synapse is depressed [BP98].

Therefore, a change in weight, according to pair-based STDP rules, depends on

the temporal difference between pairs of pre- and postsynaptic spikes.

∆w+ = F+(w)e
− |∆t|
τ+ if ∆t > 0

∆w− = −F−(w)e
− |∆t|
τ− if ∆t ≤ 0

(2.4)

Equation 2.4 shows the amount of weight modification according to the time

difference between a single pair of spikes ∆t = tj−ti. F+ and F− indicate functions

expressing the dependence of the update on the current weight, and τ+ and τ−

are time constants controlling the time windows over which synaptic modification

can happen. A common way to simulate this rule is through a history trace of

the spiking activity. This trace can be modeled through exponential decay (this

is equivalent to a low-pass filter of the input spike train, therefore the function

increases every time a spike arrives and then slowly decreases over time).

dsi
dt

= −si
τs

+
∑
ti

δ(t− ti) (2.5)
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The history trace evolution over time is shown in Equation 2.5, where si represents

the trace for the synapse i, τs is the time constant for the synapse and the sum

indicates the spike train. By keeping both a pre- and postsynaptic history trace,

it is possible to separate the two contributions. Therefore the weight update can

be modeled as the sum of two main contributions: a decrease induced by the

arrival of a presynaptic spike, which is proportional to the momentary value of

the postsynaptic trace, and an increase caused by the generation of a postsynaptic

action potential, which is proportional to the presynaptic trace [MDG08].

dwij

dt
= −F−(wij)si(t)δ(t− tj) + F+(wij)sj(t)δ(t− ti) (2.6)

Equation 2.6 shows the weight update relation for a synapse between a presynap-

tic neuron j and a postsynaptic neuron i, through an all-to-all pairing scheme.

The choice of the function F (w) indicates the update dependence on the

weight [BP98]. The case in which there is no dependence is called additive, and it

is the simplest representation. In this formulation, the function F (w) is replaced

by a constant, which controls the maximum weight update [MDG08]. Other

common weight dependence rules are multiplicative, where the weight update

is proportional to the weight itself [RLS01], and power law, where the update is

proportional to a power of the weight [MAD07]. Extensions to the pair-based rule

have been provided to achieve more accurate results, however these are beyond

the scope of this thesis and therefore are available as references [MDG08, PG06,

Izh07, AE05].

2.2.3 Multicompartment Neuron Models

Section 2.2.1 addressed Spiking neurons in the form of point models. Point neu-

ron models however, represent a simplification of real neurons, by assuming that

the membrane potential is constant across the entire cell membrane of the neuron.

This theory neglects the nature of dendrites as complex structures, simplifying

them to wires carrying signals to the soma of the neuron. This limitation becomes

evident in Pyramidal neurons, a type of neuron largely present in the cerebral

cortex of most mammals, birds, fish and reptiles [Spr08]. Pyramidal neurons

present dendritic trees which can be divided into two main categories: basal and

apical dendrites, descending from the base and the apex of the soma respectively

[Spr08]. The structure of these dendrites varies, and inputs can have different



2.3. NEURAL NETWORK SIMULATORS 39

effects according to where they are received, which means that different dendritic

domains have different integration properties for the inputs [Spr08]. This prop-

erty does not only apply to different domains, but is also position-dependent: the

farther the synapses are from the soma, the lower is their influence on the action

potential generation [HM03]. Neurons commonly take advantage of this prop-

erty to perform complex integrative processing [Spr08]. Multi-compartmental

models try to take into account these phenomena by modeling neurons as collec-

tions of smaller independent compartments within which the membrane voltage

is constant. Compartments are then connected together by passive conductance

[HM03]. Different models present different numbers of compartments, ranging

from the simplest, which condense the soma, axon and basal dendrites into a sin-

gle somatic compartment and model the apical dendrites as a separate compart-

ment [HM03], up to 100s of different dendritic compartments [SMKS00, SS01].

Multi-compartment modeling represents a tradeoff between efficiency and ac-

curacy, since these types of models are more complex to simulate and therefore

require more computational power, but are closer to biology than point models.

A big benefit of multicompartment modeling, however, is given by the chance to

build biologically-plausible learning rules, overcoming the limitations posed by

point neuron models, therefore reducing the gap between Deep learning applica-

tions and biology [GLR17a].

2.3 Neural Network Simulators

The models and rules described in the previous sections need adequate tools to

be simulated, and simulation is the key for further understanding and model

development. Simulating neural networks is a complex task, which requires han-

dling high parallelism and reliability. Scalability of systems is another important

feature, since complex tasks require large network representations.

Different approaches are nowadays available for SNN simulation and they fall

into different categories, presenting different advantages and drawbacks. The

two main categories are: Hardware simulators and Software simulators. Hard-

ware simulators are commonly ASICs (Application Specific Integrated Circuits)

specifically designed with the aim of simulating neural networks. These tend to

be very efficient, but often come with low flexibility, since the number of models
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or rules that can be implemented might be constrained by the hardware imple-

mentation of the simulator. Software simulators are tools designed to run on HPC

(High Performance Computing) platforms. These typically come with a higher

flexibility, however the performance is limited by the underlying hardware and

its communication mechanisms, which can represent a major bottleneck.

2.3.1 Software Simulators

Software simulators are software tools commonly designed to run on CPU-based

systems, which come with high flexibility, but performance constrained by the

hardware they are executed on. Neurons are described as sets of Ordinary Differ-

ential Equations (ODEs) implementing the mathematical properties of the chosen

model. Because of their flexibility it is generally straightforward to add new neu-

ron models, and it is possible to simulate networks of arbitrary sizes. The imple-

mented algorithms can follow either a clock-driven approach, or an event-driven

approach or a hybrid one. A clock-driven approach consists of a discretisation of

the simulation time into equally long intervals, called timesteps. These events are

used to mark the advance of time and represent the points during the simulation

where neural states are updated. This allows continuous time models to be dis-

cretised, and provided the timestep resolution is high enough, allows modelling

of neuron state updates via exponential integration, calculating the dynamics

timestep by timestep. The most commonly used resolutions, in accordance with

biological times, are therefore 1 ms or 0.1 ms. A major drawback of these sim-

ulators, however, is that all the spikes arriving within a timestep are considered

simultaneous in that timestep, reducing the maximum precision for the state up-

date to the timestep resolution. The event-driven approach, on the other hand,

performs the state update only when a spike is received. This property allows

the temporal nature of SNNs to be precisely mimicked, by implementing synaptic

and status changes when signals are received, instead of discretising them over

a longer timestep. However, biologically-plausible SNNs present fan-ins so large

that it becomes impractical to use this approach in many simulators [MMG+05].

The hybrid solution, which is the one preferred by most of the established sim-

ulators, employs a time-driven simulation for the neuron state update, and an

event-driven approach for the synapses. Examples of the use of this approach are

given by NEST [GD07], BRIAN [GB08] and NEURON [CH06].



2.3. NEURAL NETWORK SIMULATORS 41

An important requirement for software simulators is to perform real-time sim-

ulations. A software simulator is defined real-time when the simulation time

matches the wall-clock time, therefore the time taken to perform the simulation

corresponds to the biological time for the network. For biologically-representative

complex SNNs this condition might become hard to meet, due to the high num-

ber of neurons and connections and the tight timing constraints. For this reason,

some platforms perform soft real-time simulations, in which some timesteps are

allowed to overrun, and then they recover in future timer periods where the com-

putational load is reduced, yielding real-time performance on average. However

this violates hard real-time requirements, which mandate that every timestep

completes within the corresponding amount of wall-clock time (i.e. each 0.1 ms

of biological time is completed in 0.1 ms). Where real-time performance is not

possible, an operation called slowdown can be performed. This results in increas-

ing the length of each timestep by a multiplicative factor (or slowdown factor).

Therefore each timestep will have a longer duration compared to biological real-

time, giving the resources enough time to perform all the necessary updates.

2.3.1.1 MPI and OpenMP

Software simulation is commonly performed on CPU-based supercomputers, as

detailed in section 2.3.1. Supercomputers and HPC platforms typically consist

of a large number of compute nodes connected by fast interconnect. Each of

these nodes can contain a number of CPUs containing multiple cores. The mem-

ory system can be distributed or shared. In order to offer coding support to

programmers, two main standards have been developed, which are exploited by

many software simulators. These two standards are called OpenMP and MPI.

OpenMP is an API which provides directives for parallel programming in

shared memory systems. Its aim is to provide a model for parallel program-

ming which is portable across shared memory architectures. The standard allows

multiple threads of execution to perform tasks defined implicitly or explicitly

by OpenMP directives and provides a relaxed memory consistency mechanism,

where the memory view of a thread can be modified without reflecting to memory

until a flush operation is performed [Boa08].

MPI is a paradigm commonly used for multiprocess programming on dis-

tributed memory machines [For09]. This standard is based on a message-passing

communication system. Similarly to OpenMP, the main idea is to guarantee
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portability, by defining a standard. This API allows communication mechanisms

between different processes to be improved and provides abstraction for develop-

ers.

The two standards can be combined together in brain-scale network simu-

lations [IEPD17, JIH+18] to improve the exploitation of computer capabilities,

employing both thread-based parallelism and process-based parallelism.

2.3.1.2 NEST

NEST (NEural Simulation Tool) [GD07] is an open source software tool, devel-

oped and maintained by the NEST initiative under the GNU General Public

License. It has been designed to simulate large-scale networks of point neuron

models or neurons with a small number of compartments. Simulations are con-

trolled through a built-in scripting language or a Python module called PyNEST

[JIH+18]. Networks are modeled as sets of nodes and connections, where nodes

can be neurons, devices or sub-networks. Connections are defined by sending

node, receiving node, weight and delay, and communications are event-based.

Models of synaptic plasticity can be implemented in the form of STDP, and high

level functions to create connectivity schemes are provided. In order to opti-

mise the use of resources, NEST supports hybrid parallelisation, therefore MPI

is employed for inter-node communication, where each node is assigned to one

MPI process and events are communicated between processes by collective MPI

functions, and inside each MPI process multi-threading is supported through

OpenMP, making better use of the available memory.

2.3.2 Hardware Simulators

Hardware simulators are dedicated circuits and platforms designed with the pur-

pose of simulating neural networks. They commonly come with high performance,

but limited flexibility compared to their software counterparts, as the hardware

implementation of the neuron models limits the variety that can be simulated.

The hardware simulators can be analog, digital or mixed-signal. The time scale

can be continuous, discrete or abstract, and the simulators can be real-time, accel-

erated or non real-time [Dav12]. There are several classes of hardware simulator,

which span from FPGAs, Graphic Processing Unit (GPU), hardware accelerators,

to Neuromorphic platforms.
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2.3.2.1 FPGAs

FPGAs (Field Programmable Gate Arrays) are an alternative to ASICs for hard-

ware simulations. These systems allow the implementation of the desired logic

function by programming them. However FPGAs are a viable choice only for

small networks sizes, as the fabric process is much larger compared to ASICs

[KR07] and the number of neurons that can be implemented is limited [RHTF03].

Due to their clock speeds, which are commonly around hundreds of MHz, it is

possible to perform sub-realtime simulations of point neuron models and it is pos-

sible to connect multiple FPGAs together [MFM+12]. Scalability issues typical

of these platforms [MMG+07] seem to have been overcome with the latest de-

velopments, however programmability still requires expertise in hardware design,

reducing the accessibility of these platforms [NCA+20].

2.3.2.2 GPUs

GPUs (Graphics Processing Units) are nowadays well established neural net-

work simulators. Through their high parallelism they provide a good framework

for this type of application. The GeNN library [YTN16, KN21] allows code to

be generated efficiently to accelerate SNN simulations on NVIDIA GPUs and

demonstrated remarkable performance in simulating biologically-representative

SNNs [KN18, KKN21]. Despite the rapid advances in technology, which contin-

uously provide new more powerful platforms addressing issues such as sparsity

(e.g. the Ampere architecture [NVI]), scalability still represents a limitation when

simulating SNNs on GPUs. Multi-GPU simulations are problematic, as connec-

tions between separate GPUs still represent a bottleneck, being constrained by a

single communication channel which therefore limits the performance.

2.3.2.3 Hardware Accelerators

The final subcategory of hardware simulators is identified by hardware accelera-

tors. These are platforms commercially available from industry which aim to fa-

cilitate DNN and CNN algorithms [CBM+20]. Companies such as Intel (through

the Xeon series) and Apple (though the Bionic series of CPUs) are investing in

building new architectures commonly targetting inference and pattern recogni-

tion, and specific libraries are being developed to accelerate AI applications on

these platforms. A detailed analysis of these platforms is, however, beyond the
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scope of this thesis, due to the heterogeneity of these technologies. Additional

details are available as reference [CBM+20].

2.4 Neuromorphic Hardware

Neuromorphic Engineering is a field pioneered by Carver Mead in the 1980s,

which approaches neural network simulations from a different perspective [Mea90,

Mea89]. The original idea was, instead of employing standard computing systems,

to implement a platform which was architecturally similar to the brain structure.

Mead noticed that MOS transistors show very similar behaviours compared to ion

channels, therefore he suggested to implement hardware simulators through the

use of low-power sub-threshold analog circuits, instead of using digital computing

systems, showing a reduction in power consumption up to 4 orders of magnitude

[Mea90]. This was the first step towards a new field which is nowadays gaining

more popularity, and several platforms, both in the digital and analog domains,

have been developed [TMC+18, Fur16]. All these platforms share the basic idea

of non conventional computing (they are often referred to as non Von Neumann,

since their design deviates from the standard centralised approach commonly used

in computing platforms), where, instead of a single central and powerful computa-

tional unit, a distributed approach is preferred, having small units acting like the

neurons in the brain. The memory hierarchy is revised as well to be distributed

and as close as possible to the computational units, to mimic the behaviour of

synapses. The connectivity between computational nodes is enhanced, such that

the units are allowed to form multiple connections as happens in the brain.

Analog and digital platforms present quite different architectures and ap-

proaches, where the first are generally more performance oriented, at the expense

of lower flexibility, while the second allow more customisation and freedom in

neural modelling.

Neuromorphic Engineering has two main objectives: first to better understand

the computational properties of neural systems, by providing an electronic im-

plementation of them, second to provide new alternatives to standard computing

paradigms, to compensate for the end of Moore’s law [Moo06].
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2.4.1 Analog Neuromorphic Systems

Analog Neuromorphic platforms are the closest to Mead’s idea. Neurons and

synapses are implemented by physical circuits. This provides a very high effi-

ciency in terms of simulation times, often guaranteeing sub-realtime performance,

however this comes at the expense of flexibility. The physical implementation of

the neural circuitry sets a limit on the number of neurons and on the variety of

models that can be implemented. Well-known analog Neuromorphic platforms

include BrainScaleS [SKMM17] and ROLLS [QMC+15].

2.4.1.1 BrainScaleS

BrainScaleS was developed at the University of Heidelberg and is based on the

direct implementation of the neuron model equations in electronic circuits. The

electrical parameters that can be read out represent the model variables. The

system can run 104 times faster than biological real-time and the implemented

neuron model is the Adaptive Exponential Integrate-and-Fire Model [BG05]. The

neuron and all its synapses are implemented as a continuous-time analog circuit.

Simulations including more than a few hundreds of neurons require a multichip

implementation, which is achieved through wafer-scale integration [SFM08], a

postprocessing wafer technique which allows chips manufactured on the same

wafer to be interconnected without separating them. 128k synapses and 512 mem-

brane circuits are grouped into ANNCOREs (Analog Neural Network CORE)

and they can form neurons with up to 16k synapses each [SFM08, SKMM17].

Synaptic plasticity is available through a digital general purpose processor, im-

plementing programmable STDP rules and connected to the synapse memory

array [FSG+17, FFS+13].

At the moment of writing, a second generation of the BrainScaleS platform

is under development, called BrainScaleS-2. This aims to provide a flexible tool

for the machine learning and computational neuroscience communities, targeting

scalability and bio-inspired learning rules [PBC+22].

2.4.1.2 ROLLS

The Reconfigurable On-Line Learning Spiking Neuromorphic processor (ROLLS)

is composed of a configurable array of synapse and neuron circuits producing

biologically realistic response properties and behaviours [QMC+15]. Neurons are
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represented as silicon circuits as a row in an array of 256 elements and they phys-

ically implement the Adaptive Exponential Integrate-and-Fire model. Synapse

circuits are two blocks of the array of 256 × 256, the first modeling long-term

plasticity mechanisms and the second short-term plasticity. Through a synapse

de-multiplexer it is possible to choose how many rows of plastic synapses to con-

nect to the neurons [QMC+15, CSBI14]. Communication happens through the

Address Event Representation (AER) packet format [Mea89] and the system sup-

ports STDP. SNNs are defined through custom software called PyNCS [SNSI14].

2.4.2 Digital Neuromorphic Systems

Digital Neuromorphic platforms commonly make use of components available on

the market such as low-power processors, combining these with custom digital

circuits to build a different type of architecture with enhanced connectivity and

optimised for neural network simulations. Their structure guarantees a much

higher programmability compared to the analog platforms, which results in more

flexibility in the number and types of neurons that can be simulated. However

digital circuits cannot often reach the performance of the analog implementation.

Some examples of digital Neuromorphic platforms are Intel Loihi [DSL+18],

IBM TrueNorth [ASC+15] and SpiNNaker [FLP+13]. The first two platforms

are briefly presented below, SpiNNaker is addressed in the next section in more

detail, as it is the main platform used in this work.

2.4.2.1 TrueNorth

TrueNorth is a digital Neuromorphic chip developed by IBM, with the aim of

delivering a very dense, energy-efficient platform capable of supporting a range

of cognitive applications [ASC+15, MAAI+14]. This plaftorm makes use of cus-

tom digital neurosynaptic cores, each implementing 256 neurons receiving 256

synapses each. A TrueNorth chip contains 4096 neurosynaptic cores which op-

erate asynchronously. A 256 × 256 cross-bar connects source and destination

neurons, implementing individually configurable point-to-point routes. 16 chips

are connected to form larger boards, reaching a total of 16 million neurons and

4 billion synapses. Boards can be interconnected to provide higher scalability

[Fur16].
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2.4.2.2 Loihi

Loihi is Intel’s contribution to the Neuromorphic field. It is a fully digital chip

containing 128 digital Neuromorphic processors and 3 embedded x86 cores organ-

ised in a NoC, implemented as a two-dimensional mesh which allows asynchronous

communication in the form of packetised messages [DSL+18]. The Neuromorphic

cores implement the neural state update and handle the synapses in an event-

driven manner, computing all the state updates in-memory. The general purpose

cores, on the other hand, are used as service cores, loading the SNN configurations

on the Neuromorphic cores, pre- or post-processing the input and output data

and supervising the packet routing [LWC+18b]. Each Neuromorphic core can

implement up to 1024 spiking neural units, or compartments, which are grouped

into sets of trees building neurons. The state update is time-multiplexed and

pipelined. Loihi supports synaptic plasticity in the form of STDP and the equa-

tions are stored as microcode in a memory block local to the Neuromorphic cores

as part of a learning block [DSL+18, LWC+18b, LWC+18a].

SNNs are described in Python through a LoihiAPI library and a dedicated

software toolchain maps the network onto the Loihi system [LWC+18b, LWC+18a].

To provide scalability Loihi comes in different configurations, ranging from a 2-

chip USB device (called Kapoho Bay), to a system composed of 24 32-chip boards

(for a total of 768 chips), called Pohoiki Beach [FOF+20].

A Python software framework called Lava [Int21] has been released to provide

support to neuro-inspired applications and a second generation of the Loihi Neu-

romorphic platform is under development at the moment of writing [OFR+21].

2.5 The SpiNNaker System

This section provides details on the SpiNNaker Neuromorphic system [FGTP14],

which is the main platform chosen for the work performed for this thesis. The

system is described both from hardware and software perspectives. SpiNNaker

is an acronym for Spiking Neural Network architecture [FLP+13, FGTP14]. It

has been developed at the University of Manchester in the School of Computer

Science by Prof. Steve Furber and his group. The system is a many-core GALS

(Globally Asynchronous Locally Synchronous) system, composed of ≈ 1 million

general purpose ARM cores and its aim is to perform real-time simulations of

biologically-inspired SNNs.
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Figure 2.2: Block diagram of a SpiNNaker Chip

2.5.1 Hardware Overview

From a hardware perspective, the main building block of the SpiNNaker system

is the SpiNNaker chip. Each chip contains 18 ARM968 cores, 128 MB of shared

SDRAM memory, and a custom router allowing direct communication with 6

neighbouring chips. Among the 18 cores, 16 are assigned as Application proces-

sors and are used for simulation purposes, 1 is the Monitor Processor and has

the role of supervising the other cores’ behaviour and 1 is for fault tolerance

purposes. A schematic of a SpiNNaker chip is shown in Figure 2.2, while Figure

2.3 shows the layout. SpiNNaker chips are arranged on boards, which can be

accessed externally through an Ethernet interface.

2.5.1.1 The ARM968 Processor

The computational units employed by the SpiNNaker system are general purpose

ARM968 processors. They feature the ARM9TDMI architecture, supporting the

instruction set of the ARMv5TE architecture, an AHB bus interface and the
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Figure 2.3: Layout of a SpiNNaker Chip

Thumb instruction set [ARM06]. The cores run at 200 MHz clock frequency

and feature two local memories: a 32 KB ITCM (Instruction Tightly Coupled

Memory) and a 64 KB DTCM (Data Tightly Coupled Memory). The first is used

to store the instructions to be executed during a simulation, and the second for

the data. Each core has direct access to its private memories and can access the

shared SDRAM memory either via a core-specific DMA controller, or through

bridge access. Each processor node has access to 2 independent counters, which

can be used to trigger interrupts for real-time dynamics.

2.5.1.2 The Shared Memory

Each chip is connected to a 128 MB shared SDRAM. The access to it is through

a single channel and the cores are distributed in a tree-based structure for getting

access. A single core has access to the memory at a time, therefore when multiple

requests are issued simultaneously the memory channel is contended. This results

in different access times for different cores. The access tree consists of a binary

tree having an arbiter at each junction and cores placed at the leaves. For every

junction, the first core requesting a DMA transfer has the bus granted by the
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arbiter, the other cores get queued. This means that branches with multiple

cores trying to access memory will experience longer access times [PPG+13]. In

addition to the off-chip SDRAM memory, the SpiNNaker chips have an integrated

32 KB System RAM shared between the cores and a Boot ROM used during

bootstrap.

2.5.1.3 The Routing System

The routing infrastructure is a unique feature of the SpiNNaker system. Each

router allows each chip to connect directly with 6 neighbouring chips, building a

hexagonal mesh. The whole SpiNNaker system is then represented as a toroid,

by wrapping the extremities of the mesh, achieving full connectivity. Each router

has an input tree, which filters input communications and internal links, and

forwards data to 6 independent output links, as well as the 18 internal cores, as

shown in Figure 2.2 [PFT+07, MLP+15, WFG09, WF10].

There are 4 different types of packet that the routing system is able to handle:

• Point-to-Point (P2P) packets having a single source processor and a

single destination processor;

• Multicast (MC) packets having a single source and multiple destinations;

• Nearest Neighbour (NN) packets used to initialise the system and per-

form run-time flood-fill and debug functions;

• Fixed Route (FR) Packets having a predefined routing and as a target

the nearest chip connected to the board Ethernet interface;

According to the type of packet arriving at a router, the way it is processed

changes. Fixed Route packets have a predefined route which is defined inside a

register accessible to the router. Incoming Nearest Neighbour packets are sent

to the Monitor core for processing, while outgoing packets are sent either on a

specific link or on all the links and will be received by the neighbouring chips.

Multicast packets are routed according to a set of rules defined in a table accessible

by the router, known as the routing table. This has 1024 possible entries which

can be used to define where a packet needs to be transmitted. A routing entry is

composed of 3 fields: routing key, mask and direction vector. The key is used to

identify the correct entry. Each multicast packet has a key, which is masked and
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then compared to all the routing keys in the routing table. If the key matches

with a routing entry, the action to take is specified by the direction vector and

the packet can be routed to one or more output links as well as to the cores on

the chip.

Point-to-Point packets are routed through a different routing table which encodes

the direction of the packets in a 3-bit field. If the packet is directed to the local

chip, this is sent to the Monitor core which will take care of delivering the packet

to the correct destination processor [Spi11b, WFG09, Dav12].

2.5.1.4 The Boards

The SpiNNaker chips are available on boards. There are 2 types of board: SpiNN-

3 and SpiNN-5. The SpiNN-3 board (Figure 2.4 bottom left) contains 4 chips,

one Ethernet interface and Jtag ports. This can be used for small scale SNN

simulations. The SpiNN-5 board (Figure 2.4 bottom right) contains 48 chips,

one Ethernet interface for communications with an external host system and 3

FPGAs used to handle Board-to-Board communication, which happens through

SATA links. The full SpiNNaker system, built at the University of Manchester,

has one-million cores, and is composed of 1200 SpiNN-5 boards, arranged in 10

cabinets, each containing 5 racks, which contain 24 SpiNN-5 each.

2.5.2 Software Overview

The SpiNNaker software toolchain is composed of 2 main parts: host side software

and board side software.

The host side software runs on general purpose computers which will be re-

ferred as host in this manuscript. The purpose of this software is to configure

the SpiNNaker system correctly to run simulations, including resource allocation,

results gathering and display.

The board side software runs on SpiNNaker and is in charge of executing the

simulation and supervising the correct functioning of the system.

2.5.2.1 Host Side Software

The host side software is mostly written in Python. The 8 modules constituting

the SpiNNaker toolchain are shown in Figure 2.5. The role of each module is

described below.
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Figure 2.4: The SpiNNaker system. Top: the 1 million core machine; bottom
left: SpiNN-3 board with 4 SpiNNaker chips; bottom right: SpiNN-5 board with
48 SpiNNaker chips.
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Figure 2.5: Structure of the SpiNNaker software toolchain, representing each
module and their relations

• SpiNNUtils: this module contains a list of basic utility functions and classes

which are used by the SpiNNaker toolchain.

• SpiNNMachine: this module presents a Python abstraction of a SpiNNaker

machine. Its functionality is to create a representation of the current state

of the machine allocated for the simulation in terms of chips, cores, routable

links, available routing entries and available SDRAM.

• SpiNNMan: this module is used to communicate with a SpiNNaker board,

by instantiating a UDP-based communication. Through this module it is

possible to get the state of the machine, boot it, load application binaries

and access the shared memories of individual chips from a host machine.

• PACMAN: this module performs the partitioning of the network to be simu-

lated so that it fits the requirements imposed by the machine and then finds

an optimal placement for the allocated SpiNNaker machine. It is possible to

provide additional constraints both on the partitioning and the placement

phases in order to best fit application requirements.

• spalloc: this module is used to access the 1 million core machine. This

module allocates a portion of the machine large enough to run the simula-

tion and it is responsible for the cleanup and reset after the simulation is
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terminated.

• Data Specification: this module is used to generate memory images, which

contain data needed during the simulation, for each SpiNNaker core involved

in the simulation, starting from a specific set of instructions. The Data

Specification tool is composed of two main submodules: the Data Spec-

ification Generator, in charge of creating the file containing the required

instructions for generating the memory images, and the Data Specification

Executor, which executes the instructions and generates the memory images

to be loaded on SpiNNaker.

• SpiNNFrontEndCommon: this module provides functionalities common to

front ends translating application level programs into executables for the

SpiNNaker system.

• sPyNNaker: this module is the interface containing the implementation

of the PyNN API [DBE+09], a specification language commonly used to

describe SNNs, for the SpiNNaker system (more details in Section 2.6).

2.5.2.2 Board Side Software

The board side software is written in C. A schematic of it is shown in Figure 2.6.

The Monitor processors (MP in Figure 2.6) run dedicated software called SC&MP

(SpiNNaker Control & Monitor Program). This software supports the loading of

routing tables, application software for the Application cores and the generation

of memory structures in SDRAM. Furthermore SC&MP is able to determine

blacklisted elements on the board and the shortest path to the Ethernet chip

[RBD+19] and between chips.

The Application processors (AP in Figure 2.6) are provided with a hardware

interface library acting as a kernel called SARK (SpiNNaker Application Run-

time Kernel) [BFR+15, Tem16]. This library provides access to chip resources

while keeping a reduced memory usage, as the instruction memory (ITCM) is

limited and therefore it would not be possible to run a more complex OS such

as Embedded Linux [RBD+19]. On top of SARK another library provides sup-

port for event-driven applications. This is called Spin1API [Spi11a]. The role of

this library is to provide additional abstraction and support to neural modelling,

through an event-driven approach. Spin1API is in charge of interrupt and timer

handling, callback management and memory transfer requests [RBD+19].
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Figure 2.6: Structure of the software executed both on Monitor processors (MP)
and Application processors (AP)

The application software is written on top of Spin1API and follows the event-

driven approach. This means that Application cores remain idle most of the time

(i.e. in a low-power state) and when an event is triggered, usually through an

interrupt, the core starts to execute a callback, which is a function associated to

that particular event. The SpiNNaker system, through Spin1API, allows events to

be generated at different priority levels. These levels are associated with different

types of interrupts and are summarised in Table 2.1. The highest priority level

is labeled with -1 and is handled by the FIQ (Fast Interrupt Queue) Thread

[ARM06], which has dedicated resources to allow highest performance, since this

type of event requires to be executed as fast as possible. Callbacks associated

to events at this priority level can preempt any other function, however it is

possible to register only a single event and associated callback per application

with this priority. Events registered at priority 0 are handled as IRQ (Interrupt

ReQuest) and therefore will trigger an ISR (Interrupt Service Routine). Events

with priority 1 and 2 are treated as soft interrupts and can be queued differently

from events with priority 0 and -1.

Spin1API therefore maintains an event-driven framework with three main

threads (as shown in Figure 2.7): a dispatcher thread, a scheduler thread and

a FIQ thread. The scheduler thread, following an event, queues the tasks to be

executed. The dispatcher thread dequeues tasks and executes them. When a
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Spin1API Priority Levels
Priority Level Interrupt Type Queueable/Not Queueable

-1 FIQ NQ
0 IRQ NQ

1,2 Soft Q

Table 2.1: Priority levels allowed by Spin1API

priority 0 event is received, this is immediately executed directly by the sched-

uler, preempting any callback with priority > 0, and therefore it is not queued

[SPGF11]. The FIQ thread allows callbacks with priority 0 to be preempted, by

interacting directly with the scheduler thread.

SpiNNaker applications are built through a cross compiler which can either

be the ARM armcc compiler [ARM16a] or the open source GNU gcc compiler for

ARM [ARM16b]. Executables are generated using the APLX format [Tem11],

which can be directly loaded onto a SpiNNaker core.

2.6 Neural Modelling and Simulations on SpiN-

Naker

This section describes how SNN simulations are implemented on SpiNNaker, to-

gether with technical details, in order to create a basis for the technical work de-

scribed in this thesis. The main two references for this section [RBB+18, RBD+19]

describe the mapping and simulation of SNNs on SpiNNaker at two different ab-

straction levels.

SNNs are simulated on SpiNNaker starting from a network description us-

ing the PyNN specification language [DBE+09], which is a high level language

based on Python syntax that allows SNNs to be modeled abstracting from the

hardware implementation. The main building blocks of PyNN SNNs are Popu-

lations and Projections. Populations are collections of neurons of the same type,

typically representing layers or subregions of the brain [DBE+09]. Projections

represent connections between two Populations, and this type of object carries

all the properties of the connection (e.g. probability connectivity, weights and

delays). A schematic of these is shown in Figure 2.8A, where 2 Populations

(Source and Dest) connected through a Projection are presented. The network

description is interpreted by the sPyNNaker module, which builds a translation
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of the network so that it can be loaded onto SpiNNaker. This phase consists

of generating a graph representing the network, called Application graph, where

the vertices (Application Vertices) correspond to the Populations and the edges

(Application Edges) to the Projections, as shown in Figure 2.8B. The Application

graph does not reflect the mapping of the network on a SpiNNaker machine, but

it is a high level representation of the network with all the necessary constraints

ready to be partitioned in order to fit on a SpiNNaker machine.

2.6.1 Network Partitioning

The Application graph cannot be placed onto a SpiNNaker machine as it is, this

needs to be partitioned into what is called a Machine graph. A Machine graph

is a lower level representation of the Application graph after all the constraints

have been applied to it. A Machine graph representation is shown in Figure

2.8C. Each Application vertex is partitioned into one or more Machine vertices

(in Figure 2.8C Source is partitioned into 2 Machine vertices and Dest into 3),

this depends on the number of neurons the Application vertex contains and the
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maximum number of neurons allowed per SpiNNaker core according to the sim-

ulation parameters. Each Machine vertex represents a SpiNNaker core, therefore

the resources allocated to it must be in line with the machine requirements. Ap-

plication edges are then partitioned into Machine edges, in order to maintain the

same connectivity at Machine level to the Application level (depicted in green in

Figure 2.8C). Machine edges define the connections between cores on the SpiN-

Naker machine, which carry the synaptic connections linking neurons on different

cores, and will instruct the generation of the routing tables.

Once the machine is allocated and the Machine Graph is generated, the map-

ping phase is started. First of all, a set of placements is generated, which details

which core will simulate which Machine vertex; during this phase there might be

additional constraints to meet, which can force some vertices to be on the same

chip so that they can share memory structures, or instruct exactly where to place

some vertices, or define a specific placement strategy based on chip coordinates.

After the Machine vertices are placed, the routing tables are generated.

2.6.2 Routing Tables and Communications

Communication of spike packets in SNN simulations are performed through the

multicast network. As detailed in Section 2.5.1.3, the multicast network, in order

to correctly forward packets, uses a routing table stored on each chip. These

tables are generated after the placement phase is completed and then compressed

by the host side toolchain, by merging duplicates, in order to reduce their size.

Communication of spikes during SNN simulations on the SpiNNaker system follow

the AER (Address Event Representation) format [Mea89], which uses the key of

the source neuron to route the packet. Therefore each multicast packet contains

exclusively the key of the sender core (appropriately combined with the neuron

ID), which is automatically generated during the mapping phase, and routers will

use this value as key to be compared to the routing entries. This format allows

the size of packets sent over the network to be reduced, by eliminating the need

for a payload. It is furthermore not necessary to specify the list of receivers, since

the receivers themselves will be the only processors accepting the packets.



60 CHAPTER 2. NEURAL MODELLING AND DEDICATED HARDWARE

0

1

2

3

4

5

6

7

8

9

10

11

Core1

W0,1

W2,2W2,0

W4,2

W7,0

W8,2

W10,1

W11,3

W7,3

W0,6

W1,5

W5,7

W6,4

W9,7

W8,6

W7,5

0

1

2

3

4

5

6

7

8

9

10

11

Core2

W2,11

W0,10

W3,9

W7,10

W9,8 W9,10 W9,11

0

1

2

3

4

5

6

7

8

9

10

11

Core3

12

12

Pc=20%

Pre

Post

0

1

2

3

4

5

6

7

8

9

10

11

W2,0

W7,0

W0,1

W10,1

W2,2

W4,2

W8,2

W7,3

W6,4

W1,5

W0,6

W8,6

W5,7

W9,7 W9,8

W3,9

W2,11

W9,11

W7,10W7,5

W0,10

W9,10

0 1 2 3 4 5 6 7 8 9 10 11
Post neuron

Pre
neuron

W11,3
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2.6.3 Synaptic Matrices

The final phase before the simulation is started is the synaptic matrix generation.

Synaptic Matrices are structures stored in SDRAM, which contain data relevant

to the connections, such as weights and delays. These structures are stored in

the shared memory accessible from cores simulating the synapses. The choice

of storing these structures in shared memory, instead of locally to postsynaptic

cores, is motivated by the limited availability of local memory. By using the

SDRAM it is therefore possible to simulate SNNs with much larger fan-ins. This

implementation however requires synaptic information to be retrieved from shared

memory whenever a spike is received, incurring in additional memory accesses

which impact the simulation performance.

Synaptic matrix generation can happen either on the SpiNNaker machine or

on the host. Typically, small networks using simple connectors have the synap-

tic matrices generated on the host, while more complex networks require the

toolchain to preload some data onto each chip and then Application cores gener-

ate their subportion of the matrix using this data and connectivity information

available locally. A representation is shown in Figure 2.9, where a network com-

posed of 2 Populations (Pre and Post) with 12 neurons each, connected with 20%

probability of connection (depicted on the left) is presented. The full synaptic

matrix is displayed (top right), where each row corresponds to a presynaptic neu-

ron and each column to a postsynaptic neuron. Where a connection is formed a

weight is added to the respective cell. Figure 2.9 shows how synaptic matrices are

partitioned and mapped to SpiNNaker cores. The right bottom representation

shows 3 Application cores each with its own sparse representation of the synaptic

matrix, assuming a limit of 4 neurons per core. This representation allows the

size of the stored matrix to be reduced, only including the relevant information.

To allow efficient access, two additional structures are stored in the DTCM of

each core as support, as shown in Figure 2.10. The first, called Master Population

Table, is used to determine whether the presynaptic population has one or more

connections with the neurons on the postsynaptic core and, if so, it contains

the location of an entry into the second data structure, called Address List,

and the length of this entry in terms of its number of rows. Figure 2.10 shows

an example of the two structures from the perspective of the core simulating

the Machine vertex Dest A in Figure 2.8C. The presynaptic population ID is

obtained by masking the sender ID (Source 2 in the case presented in Figure
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Reproduced from [RBB+18] with permission.

2.10), in order to remove the least significant bits indicating the neuron ID. Each

entry in the Master Population Table corresponds to a connected source vertex

and contains the correct mask and the structure allows efficient binary search for

faster access. The Address List contains information about where the synaptic

data is stored. Each row of this data structure contains an address indicating the

starting position of the projection into the synaptic matrix and the maximum

number of postsynaptic neurons connected to a presynaptic neuron in the current

projection (meaning the maximum row length for this projection). There might

be multiple projections between two populations, therefore the Address List can

have multiple lines associated with a master population table entry. The example

presented in Figure 2.10 shows the steps necessary to retrieve the correct synaptic

row when a spike is received, therefore, once the correct line for Source 2 is located

in the Master Population Table, row 2 in the Address List is accessed (as it is the

single row in the Address List containing information regarding the connections

between the two Machine vertices). This row provides the address of the Synaptic

Matrix in SDRAM, together with the maximum row length (28 in this case). At

this point the correct synaptic row can be retrieved.

The synaptic matrices are indexed by presynaptic neuron, which means that
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a single row, in the sparse representation format, will contain all the connections

that a presynaptic neuron has with the postsynaptic neurons implemented by the

postsynaptic core for a specific projection. A synaptic row is composed of 3 main

fields and the use of them depends on whether the connection is static or plastic

(see section 2.2.2). The three fields are in order: plastic region, static region and

fixed plastic region (as shown in Figure 2.11). Each region is preceded by an

integer indicating its size, in terms of the number of postsynaptic connections.

If a section is unused, the corresponding size is set to 0. Static connections

make use of the static region only. This region is an array of 32-bit entries,

each corresponding to a synapse. The most significant 16 bits are used to store

the synaptic weight using fixed point arithmetic with right shift for maximum

precision. The remaining 16 bits are used to store the neuron ID (8 bits), the

synapse type (up to 4 bits) and the synaptic delay in timesteps (4 bits). Plastic

connections use the two plastic fields (fixed plastic region and plastic region). The

reason behind this choice is for efficiency purposes. Since plastic synapses require

the row to be updated, only the plastic region will be changed, i.e. the fixed data

doesn’t change, and so there is no need to write it back. This separation therefore

allows to perform shorter write-backs to SDRAM. The plastic region contains a

header defining the Presynaptic Event History, used to keep track of the previous

presynaptic spikes and an array of 16-bits values double packed into 32-bit words.

Each of these values represents a weight, which is updated during the simulation

and used to compute the synaptic contribution for the input current. The fixed

plastic region is an array of 16-bit values containing neuron ID, synapse type and

delay in the same structure as the 16 LSBs of the static region field. The indices

in this region correspond to those in the plastic region, to allow direct access.

2.6.4 Simulation Flow

After the placement and the synaptic matrix generation phases are concluded, the

cores are synchronised and the simulation starts. SNNs on SpiNNaker are simu-

lated through a hybrid mechanism, where neurons are simulated following a time-

driven approach, while handling of synapses is event-driven. This allows compara-

ble efficiency to event-based schemes when considering biologically-representative

spike rates, together with maintaining flexibility in neural modelling [RBB+18].

Each Application core involved in the simulation is in charge of implementing a
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predefined number of neurons, defined by the toolchain on host. Time is discre-

tised into fixed length timesteps, in which the neurons can fire and their internal

state is updated. Timesteps are updated through the use of Timer1, which is one

of the two counters available to the cores. A schematic of the simulation flow

for neural applications is presented in Figure 2.12, while figure 2.13 shows the

interactions between the callbacks for 2 simulation timesteps.

Every timestep is associated with a callback, called timer callback, which se-

quentially updates the state for each neuron simulated on the core (as shown on

the left in Figure 2.12), by computing the synaptic input currents and generat-

ing the state according to the model’s equations. All the neuron state variables

are held in DTCM, therefore no access to shared memory is required in this

phase. After the state of a neuron is updated, the neuron can fire. If it does, a

Multicast packet containing a key which is the result of a bitwise OR between

the unique core’s ID and the neuron ID is sent over the Multicast network, and

the timer callback moves to the next neuron implemented by the core, until all

the neurons have been processed. After the last neuron is updated, the state is
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recorded, which means that some neural parameters, which can be specified by

the host when configuring the simulation, are stored for the current timestep,

including the generation of spikes.

While the timer callback is processing the neural state update, spikes can ar-

rive, either from spike sources or from other neurons. In order to prevent traffic

from backing up in the network, as soon as a packet arrives at destination, the

source ID is extracted and locally stored (as shown in Figure 2.13). This is per-

formed through a multicast packet received callback assigned to priority -1 (shown

on the right in Figure 2.12). Each incoming spike is buffered in a circular buffer -

the input spike buffer - which is typically 256 entries long. This allows to queue

arriving spikes that will be processed when the core is available. If there are

no spikes currently being processed, the multicast packet received callback trig-

gers another event called user event, which initiates a spike processing pipeline

through a callback called user callback, registered at priority 0. The spike pro-

cessing pipeline extracts a spike from the input spike buffer and looks into the

Master Population Table in order to locate the position of the synaptic informa-

tion relative to that spike. Once an address is located in the Address List, it is

possible to access the correct block containing all the synaptic information in the

synaptic matrix. The synaptic row is retrieved by a DMA request to SDRAM. As

shown in Figure 2.13, the user callback is executed at a higher priority than the

neural state update (which is registered at priority 2); this allows DMA transfers

to start with minimum latency and the core can continue processing the neural

state update while the DMA controller handles the memory transfer.

Upon completion of the memory transfer a dma complete callback is started

by a DMA complete event triggered by the DMA controller (registered at priority

0). This callback, which again has higher priority compared to the timer callback,

as shown in Figure 2.13, processes the synaptic information for the current spike.

Each spike targets a synaptic row, therefore this callback will convert the synap-

tic row into individual postsynaptic neuron input. The amount of computation

at this stage depends on whether the row is static or plastic. Regardless of the

type of connection, the callback loops through the synaptic row, extracting the

single weight for each synapse. Another data structure, called synaptic input

buffer, inspired by previous works [MMG+05], is used at this stage to determine

the input contribution of each individual postsynaptic neuron (shown in blue and

red for inhibitory and excitatory synapses respectively in Figure 2.12). Input
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contributions are named synaptic events. A synaptic event is one spike inner-

vating one synapse. Synaptic events (in the form of weights) are added by the

dma complete callback to the correct postsynaptic neuron through the synaptic

input buffers. The synaptic input buffers are two-dimensional circular buffers,

indexed by postsynaptic neuron ID and delay. Every spike arriving at a post-

synaptic core has a delay ≥ 1 timestep. Incoming spikes represent the output

of neurons generated this timestep. Neural connections are characterised by a

synaptic weight and delay, an efficient way to implement delays is by immedi-

ately sending the generated spikes and allowing postsynaptic cores to handle the

delay. On the postsynaptic side, when the correct connection is identified, the

postsynaptic event is added to the correct time slot in the synaptic input buffer

for the correct postsynaptic neuron. At the end of the timestep, the synaptic in-

put buffer rotates and creates space for a new time slot. The neuron state update

at the beginning of the timestep extracts the information from the first time slot

on the synaptic input buffer. Each synaptic type has a different synaptic input

buffer (as shown in Figure 2.12), the values are combined together to obtain the

input current on the neuron state update phase. Once all the incoming synaptic

events related to an incoming spike are processed, the spike processing pipeline

checks whether there are additional spikes waiting to be processed into the input
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spike buffer (some might have arrived during the processing of the last spike). If

so, the first spike is processed according to the steps described above, otherwise

the pipeline terminates and the core goes back into processing lower priority tasks

or becomes idle.

Due to limited local memory, the maximum delay which can be stored into

synaptic input buffers by default is 16 timesteps. For connections having larger

delays, a different mechanism called delay extension is put in place. Delay exten-

sion employs application cores with the dedicated task of buffering spikes having

larger delays. This mechanism is implemented by splitting delays into a multiple

of 16 timesteps plus remainder. The remainder is handled by the core imple-

menting the postsynaptic neurons through the synaptic input buffer mechanism

described above, while the multiple is handled by delay extension cores. Each of

these cores stores each spike for the required time and then forwards it. If the

delay is larger than 8 × 16 timesteps (128 timesteps), additional steps are re-

quired, therefore the packet is sent to another delay extension core, otherwise the

spike is forwarded directly to the postsynaptic processor [vARS+18, RBB+18].

This mechanism allows in principle any amount of delay to be implemented, by

creating a chain of extensions.

E =

(
tP − t1st − tlast

tspike
+ 2

)
Pn (2.7)

tP = ∆t− tupd (2.8)

tspike = msPn+ cs (2.9)

The maximum number of synaptic events that can be processed per timestep,

while maintaining real-time performance is shown in Equation 2.7, where tP indi-

cates the fraction of the timestep available to process synaptic information, and

is obtained (as shown in Equation 2.8) by subtracting from the timestep dura-

tion (∆t) the time required to update the neural state (tupd) of all the neurons

simulated on core. The amounts of time required to process the first and the

last spikes in the spike processing pipeline are t1st and tlast respectively. These

differ from the generic spike processing time due to the pipelined spike processing

approach performing different API calls at the beginning and end of the pipeline.

The spike processing fraction of the timestep (obtained by substracting t1st and

tlast from tp) is then divided by the time required to process a single spike (tspike)

and incremented by 2, to account for the two spikes previously subtracted (t1st
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and tlast), resulting in the number of spikes that can be processed per timestep.

The number of synaptic events is therefore given by multiplying the number of

spikes that can be processed per timestep by the connectivity probability (P ),

which indicates the number of postsynaptic connections per spike, and then by

the number of postsynaptic neurons on the core (n). The time necessary to pro-

cess a single spike is expressed by Equation 2.9 and can be broken into a fixed

contribution (cs), which is paid once per spike packet, corresponding to context

switches, synaptic row location in the shared memory and transfer time, and a

variable contribution (ms) which corresponds to the cost of processing a single

synaptic event. The same rules apply to t1st and tlast, however they have different

values for fixed and variable costs [RBB+18].

2.6.5 Synaptic Update

Section 2.6.4 described the simulation flow related to static networks. For plastic

networks, every time a presynaptic spike is received, or a postsynaptic action po-

tential is generated, the synapses involved in the connection need to be updated,

according to the mechanisms described in Section 2.2.2. In order to do so, post-

synaptic neurons maintain local buffers, called postsynaptic buffers, including

information regarding the last postsynaptic spike, together with a postsynaptic

trace constructed from low-pass filtered postsynaptic spike trains. In a similar

way, synaptic matrices, in their plastic regions, keep the last presynaptic spike

time and the trace (see Section 2.2.2) for each row. These values combined al-

low to compute the weight update for every synapse. The SpiNNaker plasticity

framework uses the deferred event-driven model [JRG+10, DC14], where weight

updates are presynaptic-sensitive, therefore they happen when a synaptic row has

been fully copied into DTCM. This mechanism allows to deal with the synap-

tic weights being stored in SDRAM and therefore not always locally available.

Therefore, in simulations in which plastic connections are involved, when the

dma complete callback (see Section 2.6.4) loops over a synaptic row to extract

the synaptic events, before adding an event to the correct synaptic input buffer

slot, it updates the corresponding synaptic weight according to the implemented

plasticity rule. This entails evaluating potentiation by comparing the presynaptic

trace with postsynaptic spike events and depression with the postsynaptic trace

compared against presynaptic spike events. Updated weights are then written

back to SDRAM, together with the updated trace and presynaptic spike time
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after the row has been processed. The remaining portion of the spike processing

pipeline is analogous to the static case.

2.7 Summary

This chapter provided an introduction to Spiking Neural Network concepts. Neu-

ron models and rules for biological networks were presented, together with bio-

logical learning mechanisms. A list of tools to simulate neural networks was

provided, differentiating hardware and software solutions, and their strengths

and weaknesses. Emphasis was given to Neuromorphic platforms and their po-

tential, as a novel approach to address SNN simulations. Finally details about

the SpiNNaker system, used to perform this work, were provided, both from a

hardware and a software perspective, detailing how SNNs are simulated starting

from their description to the execution phase.

The next chapter presents a novel approach to parallelise SNN simulations on

the SpiNNaker Neuromorphic platform and its application to a use case popular

among the neuroscientific community.



Chapter 3

Real-Time Simulations of SNNs

3.1 Introduction

Real-time simulations of large-scale SNNs have implications in several domains,

spanning from artificial intelligence to neuroscience. On the one hand they allow

the study of long-term learning tasks, on the other hand they facilitate the anal-

ysis of neural pathologies over meaningful periods, which otherwise would require

much larger time scales. Achieving real-time performance is, however, challeng-

ing due to high input activity combined with very tight timing constraints. This

chapter therefore delivers research in this direction and describes a study to tackle

these issues, which allowed simulations of biologically-representative Spiking Neu-

ral Networks in real time on SpiNNaker, by providing all the necessary tools for

the task. Section 3.2 presents the Heterogeneous Programming model, a method

which evolved from a previous study performed on SpiNNaker [KF16] on synap-

tic matrix partitioning and neural event throughput. Section 3.3 describes the

application of this Heterogeneous Programming model to a complex biologically-

representative SNN, commonly regarded as a benchmark in the field, namely the

Cortical Microcircuit [PD12]. The results and benchmarking are shown in section

3.4. The challenges presented in this chapter cover static SNN simulations, where

synaptic weights are fixed at their initial level. Synaptic plasticity and the use of

the Heterogeneous Programming model in that context are discussed in the next

chapters.

Real-time simulations of biologically-representative SNNs present several chal-

lenges. First, the timing constraints: this type of application requires handling

71
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simulation time resolutions usually between 1 ms and 0.1 ms. This allows dis-

cretisation of continuous time models, therefore time resolutions need to be high

enough in order to allow modeling of neuron state updates via exponential inte-

gration, calculating the dynamics timestep by timestep. Within these ranges it

is necessary to process all the information, including the incoming signals from

presynaptic populations, the update of the neural states and the generation of

action potentials to be delivered to the connected postsynaptic populations.

The connectivity patterns play a key role too. Two different populations com-

monly connect with a pre-defined connectivity probability. Long-range connec-

tions are characterised by a very low probability, meaning that the postsynaptic

representation of the connectivity matrix will be very sparse; on the other hand,

short-range connections will result in denser connectivity patterns. Very sparse

connectivity patterns can cause performance degradation, as computation will

be affected by the latency of memory reads, when retrieving the synaptic rows,

which become the dominating term when processing an incoming spike packet.

This happens because sparser networks generate synaptic matrices which contain

only a limited number of synapses per row.

Finally, the high fan-in. Despite being characterised by relatively sparse connec-

tivity patterns, in biologically-representative SNNs, postsynaptic neurons com-

monly exhibit very large numbers of incoming connections, due to the high num-

ber of neurons involved. This results in large numbers of spikes being delivered

to postsynaptic neurons every timestep, which, because of the timing constraints,

need to be processed within the timestep boundaries.

The standard SpiNNaker software toolchain (described in Chapter 2) struggles

to deal with these characteristics while maintaining real-time performance. An

example is given by a previous study [vARS+18], where, despite SpiNNaker being

the first Neuromorphic platform to simulate a complex biologically inspired SNN,

namely the Cortical Microcircuit model [PD12], the achieved performance was

still 20× slower than real-time requirements.

Another study performed on SpiNNaker [KF16] however, demonstrated that

it is possible to improve the simulation efficiency by better acting on the par-

titioning of the synaptic matrices and on the network placement. A horizontal

fragmentation, as opposed to the vertical partitioning performed by the standard

SpiNNaker software toolchain, of the synaptic matrices allows to maximise the
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length of the processed postsynaptic rows and therefore to improve the perfor-

mance when dealing with sparsity. This is achieved by performing the synaptic

input processing on dedicated cores and by separating this phase from the neural

state update, which is now not preempted by the arrival of packets contain-

ing spikes anymore (as described in Section 2.6). By allocating multiple Synaptic

cores to each Neuron core, it is also possible to parallelise the input spike process-

ing phase, further increasing the number of synaptic events that can be processed

in a single timestep.

Starting from these principles it has been possible perform for the first time real-

time simulations of the Cortical Microcircuit model, guaranteeing a 20× speedup

compared to previous works [RPR+19].

3.2 The Heterogeneous Programming Model

This section describes the Heterogeneous Programming model, detailing its first

formulation and the implementation details on SpiNNaker. Profiling is also pro-

vided, showing its benchmarking on SpiNNaker, together with an updated cost

model, compared to that presented in Equation 2.7.

3.2.1 The Synapse-Centric Mapping

The Heterogeneous Programming model is a novel technique designed to enhance

the throughput of synaptic events on the SpiNNaker Neuromorphic platform. A

similar idea was originally conceived with the aim of improving the handling of

synaptic matrices [KF16], in order to increase the number of synaptic events which

can be processed per timestep. This first approach splits the synaptic matrices in

a way to maximise the length of each row. This improves the performance when

dealing with sparse networks, by increasing the number of postsynaptic neurons

per row, therefore amortising the cost of API calls and memory transfers over an

increased number of neural operations.

As detailed in section 2.6.3, due to limited availability of local memory, the

SpiNNaker system stores the synaptic matrices into the shared memory avail-

able to each chip (SDRAM). Through this mechanism, SpiNNaker allows to store

much larger synaptic matrices and therefore handle higher fan-ins, by exploiting

the large off-chip memory. The drawback of this mechanism is that, in order

to access the synaptic data, it is necessary to copy these structures locally (to
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DTCM). However, due to limited availability of local memory, it is possible to

store only a limited number of rows at a time. This requires to access shared

memory every time a spike is received, in order to obtain the postsynaptic data

targeted by it. All the processors on a chip share a single memory channel.

This characteristic causes memory contention, whenever multiple cores try to ac-

cess memory simultaneously [RBB+18]. Memory contention causes performance

degradation, which increases proportionally to the number of cores which try to

access memory at the same time. Furthermore, shorter synaptic rows lead to a

lower number of targets per postsynaptic core. This requires to allocate more

processors which will contribute to memory contention. This aspect is even more

significant when simulating sparse networks, and so biologically-representative

SNNs, since presynaptic neurons connect with a small subset of the postsynaptic

population, resulting in only a limited number of postsynaptic connections per

spike. In this case, the standard partitioning performed by the SpiNNaker soft-

ware toolchain generates synaptic matrices with very short rows, causing the cost

of API calls and memory transfer to be even more significant [RBB+18].

On the other hand, through a horizontal partitioning of the synaptic matrices it

is possible to include more synapses per core, resulting in longer synaptic rows,

which, in turn, reduce the number of memory accesses.

The Synapse-centric mapping approach introduced the concept of Synapse

cores and Neuron cores. As outlined in section 2.5.2, in the standard SpiNNaker

software toolchain, each Application processor performs both the neural state up-

date and the processing of all the incoming spikes for all the neurons simulated

by that core. This causes the neural state update procedure to be interrupted

multiple times per timestep, in order to accommodate the processing of incoming

spikes, which are treated by the software toolchain at a higher priority level. This

constitutes a hard limit on the number of neurons that can be simulated on a

single core, or, a simulation slowdown is required. This type of mapping provides

a vertical partitioning of the synaptic matrices. This means that a specific post-

synaptic core will have access to all the synapses for all the neurons implemented

by it. When simulating biologically-representative SNNs, the number of connec-

tions is generally very large, causing the total fan-in for each neuron to be very

high. This affects the synaptic matrices, which become very large, as a new line

is added for each presynaptic neuron. To ensure that all the incoming spikes are
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Figure 3.1: Synaptic matrix partitioning under the Heterogeneous Programming
Model. The same matrix presented in Figure 2.9 is used. Synapse cores allow
to partition the matrix by presynaptic index and to relieve Neuron cores from
processing spikes, enabling the possibility of simulating more neurons per core.
This, in turn, allows to increase the length of synaptic rows. A schematic of
the ensembles generated by this partitioning is shown on the right, where each
Neuron core receives inputs from two Synapse cores.



76 CHAPTER 3. REAL-TIME SIMULATIONS OF SNNS

processed and the neuron states are updated by the end of the timestep, it is nec-

essary to reduce the number of neurons per core. This, however, does not affect

the fan-in of the neurons, but only reduces the length of the processed synaptic

rows. The consequence is that the cost to API calls (interrupts and DMA trans-

fers) becomes too high compared to the neural processing, since cores spend more

time context switching and retrieving data from memory, than processing useful

information.

By introducing Synapse cores and Neuron cores, it is possible to split the load

over different computational units. The Neuron cores are dedicated to perform

the neural state update, while the Synapse cores handle the spike processing

side of the simulation. This allows longer synaptic rows, while preserving higher

numbers of neurons per core, by moving the partitioning towards the synapses

rather than neurons. Each Synapse core deals with a single synapse type and

receives inputs from a subset of the presynaptic neurons. An example is shown

in Figure 3.1, where the same network employed in Figure 2.9 is used. In Figure

3.1 the horizontal partitioning is performed on the synaptic matrix, resulting in

postsynaptic cores doubling the number of synapses they can access in a synaptic

row and reducing the number of empty rows per core. The allocated Synapse cores

with their sparse synaptic matrix representations are shown on the bottom left.

On the right, a mapping between Neuron and Synapse cores is shown. Through

this approach the number of neurons per Neuron core is increased, since Neuron

cores are in charge of the neural state update only.

3.2.2 Model Adaptations

The Synapse-centric approach was developed under a previous software infras-

tructure running on SpiNNaker [Spi15]. The current SpiNNaker toolchain, de-

scribed in section 2.5.2, is structurally different and employs different techniques

and languages. In order to implement an efficient parallelisation method, a new

approach has been developed starting from the Synapse-centric mapping, instead

of a simple porting of the original strategy. This new method is called the Hetero-

geneous Programming model. The principle behind it lies in the Synapse-centric

mapping described in section 3.2.1. By splitting the synaptic matrices horizon-

tally, and by introducing dedicated cores for the synaptic processing, it is possible

to increase the number of synaptic events processed per timestep.

Compared to the Synapse-centric mapping, the Heterogeneous Programming
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model adopts a new optimised partitioning strategy, described in Section 3.2.2.1,

which allows optimal placement of neurons per resource. This partitioning is fur-

thermore integrated in the SpiNNaker software toolchain, which was conceived

independently from the Synapse-centric mapping and did not offer any support

for this type of simulation. Furthermore, the Heterogeneous model is well inte-

grated into the SpiNNaker API, with additional emphasis on real-time simula-

tions, therefore the employed memory and task interactions have been revised in

order to maximise performance, as detailed in Section 3.2.2.2.

3.2.2.1 Network Partitioning

The Heterogeneous Programming model acts on various levels on the SpiNNaker

software toolchain: first a different partitioning technique is applied, second the

API is customised such that performance gain is maximised.

As described in section 2.6, the main building blocks of PyNN-based SNNs

are Populations and Projections. Each Population is automatically translated

into an Application Vertex by the software toolchain and then this is partitioned

into one or more Machine Vertices according to the number of neurons belong-

ing to that specific Population and the maximum allowed number of neurons

per core. Similarly, Projections are translated into Application Edges, which are

then partitioned into Machine Edges to match the partitioning of vertices. The

Heterogeneous Programming model changes the way networks are partitioned,

as shown in Figure 3.2. This approach generates an additional layer which lies

between the PyNN description of a network and the Application Graph, which

is called the PyNN Partition Layer. This additional layer allows the definition

of the desired mapping between Synapse cores and Neuron cores and to connect

them properly together. A PyNN Population is translated into a PyNN Parti-

tion Vertex, which will contain multiple Application Vertices (as shown in Figure

3.2B). Application Vertices can now represent Neuron vertices or Synapse ver-

tices (respectively light blue and light green in Figure 3.2B). Synapse vertices are

connected to Neuron vertices through Application Edges which are called Inter-

nal edges (in red). These edges allow to define constraints between these vertices,

so that they are stored on the same chip and the neuron and synapse indices are

correctly matching. At this stage, there are two levels of partitioning, the first is

introduced with the PyNN Partition layer and is used to connect PyNN Partition

Vertices, or Populations, together. This higher level fragments a PyNN Partition
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Figure 3.2: Network partitioning under the Heterogeneous Programming Model.
(A): Network composed of two PyNN populations. (B): PyNN Partition layer;
the source population is composed of 2 partitions, labelled “1” and “2”, the des-
tination population has 3 partitions “A”, “B” and “C”. Neuron vertices are
light blue, Synapse vertices light green. Internal edges are red and partition
edges black. (C): Machine Graph; the source population has the same number of
machine vertices, the destination population has 2 machine vertices per Neuron
vertex for the partitions “A” and “B” and 1 for the partition “C”. The repre-
sented edges here are the Machine edges resulting from the partitioning of the
Application edges from (B).
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Vertex according to a source-based partitioning strategy. This mechanism allows

to evenly spread the spikes among the receivers. Each of the receivers will im-

plement the synapses for all the postsynaptic neurons of the associated Neuron

Vertex, but receive only a portion of the presynaptic spikes. The reason behind

this decision is to keep the synaptic rows as long as possible and to keep this ap-

proach effective even for unbalanced networks, where the communication might

reach only a portion of the postsynaptic neurons. Each Population therefore

will contain a predefined number of PyNN Partitions, which can be specified in

the description of the network. This number will specify into how many Neuron

vertices the population will be fragmented. According to the number of PyNN

Partitions the presynaptic population has, the postsynaptic population needs the

same number of Synapse vertices, and each of them will be the recipient of all

the spikes coming from the presynaptic PyNN Partition having the same index.

In Figure 3.2B, the presynaptic Population has two partitions, which means that

each postsynaptic partition has two Synapse vertices. The presynaptic partition 1

communicates with all the three postsynaptic partitions A,B and C, but sends

spikes only to the synaptic vertex with label 1 of each partition.

PyNN Partition Edges are partitioned similarly, such that each Partition Edge

connects a presynaptic PyNN Partition to the correct postsynaptic Synapse ver-

tices.

The second level of partitioning generates the Machine Vertices and Edges.

The Neuron vertices are partitioned according to the standard software toolchain

procedure; the afferent Synapse vertices will be partitioned to match the Neuron

vertices and the imposed constraints. An example is shown in Figure 3.2C, where

the Neuron vertices A and B are both partitioned into two Machine vertices

labelled with the L and U subscripts. All the connected Synapse vertices are

therefore partitioned to match the higher level structure. The same happens for

the Edges in order to maintain the connectivity structure defined by the network.

On the SpiNNaker side, a different executable type is loaded according to the

type of Vertex (Synapse or Neuron) running on a core. Figure 3.3, shows how the

placement of executable changes from the standard toolchain (top), where single

applications simulating both neurons and synapses are placed on a SpiNNaker

chip, to the Heterogeneous Programming model (bottom), here simulating Neuron

cores with four connected Synapse cores. Packet communication from presynaptic

and postsynaptic populations are indicated by the blue arrows.
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The number of neurons per PyNN Partition has a severe impact on the balance

of the number of spikes arriving to each Synapse core in a postsynaptic popula-

tion. In order to spread the neurons as evenly as possible, a preprocessing step,

depending on the number of neurons and partitions per population, is applied

before allocating the vertices for the PyNN Partitioning step. The procedure is

described in Algorithm 1.

Algorithm 1: Population Partitioning

1 neurons per partition = tot neurons
tot partitions

;

2 cores per partition = Floor(neurons per partition
neurons per core

);

3 tot neurons placed = cores per partition× neurons per core;
4 unallocated neurons =

tot neurons− (tot neurons placed× tot partitions);

5 additional cores = Floor(unallocated neurons
neurons per core

);

6 remaining neurons =
unallocated neurons− (additional cores× neurons per core);

First, the minimum number of Neuron cores per partition is computed

(cores per partition, line 2); this allows to obtain the minimum number of neu-

rons allocated (tot neurons placed, line 3). The remaining neurons (line 4,

unallocated neurons) are then divided by the number of neurons per core and

rounded down to compute how many partitions will have an additional Neu-

ron core (additional cores, line 5). Finally the remaining neurons are added

to the last partition, which is the only one allowed to have a number of neu-

rons not a multiple of the maximum number of neurons per core imposed by

the toolchain. This means that the first additional cores (line 5) partitions get

neurons per core more neurons. The last partition gets remaining neurons (line

6) more neurons. This allows the most even distribution of neurons, while meeting

the listed constraints.

To allow higher flexibility, the Heterogeneous Programming model allows to

connect together populations having different numbers of PyNN Partitions. This

maintains the high efficiency of the model while running constrained applications,

for example when there are multiple Populations with different partitionings con-

necting to a single destination population, or when multiple synapse types having

different sources are involved. When the presynaptic Population has a lower num-

ber of PyNN Partitions, the connectivity follows a one-to-one pattern, leaving
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some postsynaptic Synapse vertices without an incoming Edge. On the oppo-

site situation the PyNN Partitioner loops over the postsynaptic Synapse vertices,

assigning the presynaptic partitions. This will result in postsynaptic PyNN Par-

titions having multiple incoming Edges from different presynaptic PyNN Parti-

tions.

3.2.2.2 Memory Operations and Tasks Interactions

Connected Neuron and Synapse Machine Vertices need to be placed on the same

chip, as the communication between them happens via SDRAM. During initial-

isation, each Neuron core allocates a portion of SDRAM that will be used for

communication and tags this region with the core ID. This region needs to be

large enough to contain the contributions that each Synapse core needs to trans-

mit to the connected Neuron core. This approach allows to perform a single

memory read per Neuron core per timestep, reducing the latency caused by mul-

tiple memory accesses. At the beginning of the simulation, each Synapse core

retrieves the memory address of the full contribution region by using the con-

nected Neuron core ID and adds an offset which indicates the beginning of its

own subregion. Both the connected Neuron core ID and the memory offset are

provided to the Synapse core during the second partitioning phase on the host

side.

At the beginning of each timestep, every Neuron core, through a single DMA

transfer from SDRAM, reads the synaptic contributions (Figure 3.4). Upon ter-

mination of the request, the core begins to process the synaptic inputs. This

phase consists of reconstructing the input currents, by adding the partial contri-

butions of all the connected Synapse cores of the same type sequentially for each

neuron and then for each synapse type. With the possibility of having multiple

connected Synapse cores of the same type, this operation needs to be performed

through a loop. Once this process is finished, the Neuron cores proceed to update

the neuron state, and determine whether to generate a spike or not, by following

the standard toolchain procedure and neuron model specifications.

On the synaptic side, at the beginning of each timestep, Timer2 (the second

counter available to SpiNNaker cores, as desrcibed in Section 2.5.1) is configured

to trigger an event towards the end of the timestep to signal to the core the

end of the spike processing phase. The spike processing procedure is similar to

the standard software toolchain. The Synapse cores receive packets containing
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Figure 3.4: Heterogeneous Programming model scheduling.

spikes, which are locally buffered and kickstart the spike processing pipeline if

the core was idle. The correct synaptic row will be retrieved from SDRAM and

the synaptic events related to each packet will be processed, by adding the weight

contribution to the appropriate slot in the synaptic input buffers. When Timer2

triggers its interrupt, a high priority callback is started, which halts the spike

processing and flushes all the unprocessed buffered spikes. At this point the

synaptic input buffer relative to the next timestep is written to SDRAM through

a DMA write operation (see Figure 3.4). The interrupt triggered by Timer2 takes

into account the time necessary to write the buffer to memory, plus the contention

caused by multiple Synapse cores simultaneously writing to memory at this stage

(for details about these timings see Section 3.2.3). If there are unprocessed spikes

when this event arises, these are flushed, which means that they are lost. This

operation is necessary because the information processing for this timestep is

concluded with the contribution writing to memory, which means that processing

remaining spikes after this point would cause previous spikes to be added into a

later timestep, resulting in incorrect delay values. Furthermore this would violate

the hard real-time requirement. Therefore all the information which is not fully

processed by the Timer2 event is considered lost.

All the cores are synchronised at the beginning of the simulation, and the

timer events have been set to have higher priority compared to the standard

software toolchain, to guarantee that the timestep update is not preempted by
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Synapse Cores Priority Levels
Spike Packet -1

Timer and Timer2 0
Spike Processing Pipeline 0

Table 3.1: Priority levels for the Synapse cores events.

other tasks and therefore that the simulation remains synchronous. The callback

interaction is shown in Figure 3.4, where two simulation timesteps are presented

for a generic N number of Synapse cores and one Neuron core. The purple blocks

on the Synapse cores represent the synaptic timer event callback, containing the

scheduling of the Timer2 event. The red blocks are the spikes arriving on each

core. The memory write phase is in light green and labelled A, while memory

reads on the Neuron core are light blue and labelled B. All the processing for

the Neuron core happens in a single callback. The neuron state update phase

is highlighted at the right bottom, where the yellow blocks represent the sum of

the partial contributions described above, while the grey the neuronal variables

update. The size of the yellow blocks changes according to the number of Synapse

cores contributing to each Neuron core and, as shown in Section 3.2.3, it has a

significant impact on the duration of the Neuron timer callback.

The events priorities for the Synapse cores are detailed in Table 3.1. The

priority levels are those defined by the SpiNNaker toolchain. As described in

Section 2.5.2.2, a priority level of -1 is the highest and handled as FIQ; priority

level 0 is handled as IRQ and can be preempted only by an event with priority

-1. Finally priority levels > 0 are handled as soft interrupts. The highest priority

event is the reception of a spike packet and this is inherited from the standard

software toolchain. Events triggering the spike processing pipeline have the same

priority as timer events, however the latter are assigned to a higher priority slot

in the VIC, meaning that, if the spike processing pipeline is active when a Timer2

event is received, when the currently processed spike is completed, the Timer2

event is executed before processing any other spike. The scheduling of Timer2

takes into account the possibility of a higher spike input activity; this means that

Timer2 events will be triggered early enough to ensure their completion before

the end of the timestep, preserving real-time operation.
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3.2.3 Model Benchmarking

The most useful metric that can be used to determine how well the Heteroge-

neous Programming model performs is the synaptic events throughput. This is

measured in terms of processed synaptic events per timestep. A synaptic event

corresponds to one spike innervating one synapse. By defining a mathematical

description of this metric under the Heterogeneous Programming model, it is

possible to determine the best fit for each application.

The mathematical model indicating the maximum number of synaptic events

that can be processed per timestep evolves from that presented in Equations 2.7

and 2.8 for the standard SpiNNaker toolchain, and is defined by Equation 3.1.

E = [
tp − t1st − tlast

tspike
+ 2] × P ×N (3.1)

tp = ∆t− tw − tr (3.2)

E is the total number of synaptic events per timestep, tP is the spike processing

window, and is obtained by subtracting from the timestep duration (∆t) the

time required for the Synapse cores to write the synaptic contributions (tw),

minus the time taken by the postsynaptic Neuron core to read the contributions

from shared memory (tr). Analogous to the standard toolchain case, t1st and tlast

are the amounts of time required to process the first and last spike respectively,

which are different from the other spikes due to the pipelined spike processing

approach. This quantity is divided by the time required to process a single

spike (tspike) and incremented by 2, to account for the two spikes previously

subtracted, resulting in the maximum number of spikes that can be processed

in a single timestep. The number of synaptic events is given by multiplying the

number of spikes by the connectivity probability (P ), and then by the number

of postsynaptic neurons on the Neuron core of the ensemble (N). The read and

write times are calculated through experimental evaluation and are detailed in

Sections 3.2.3.1 and 3.2.3.2 respectively. The value described in Equation 3.1

represents the number of processed synaptic events per Synapse core, therefore

the number of synaptic events per ensemble (or per Neuron core) is obtained by

adding together the values for each Synapse core in the ensemble.

In order to test the effectiveness of the Heterogeneous Programming model, a

configurable testbench SNN was defined, as shown in Figure 3.5(a). The presy-

naptic population contains 10000 neurons and the postsynaptic population 64
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Figure 3.5: Schematic of the test network. (a) Shows the full network; each
neuron in the source population has 10% probability to connect to each neuron
in the destination population. (b) Shows the partitioning of the network when
using 9 Synapse cores and 64 neurons per core. According to Algorithm 1, each
partition has 1088 neurons, the remaining 208 can be placed on 3 full cores with
a remainder of 16 neurons, therefore the first three partitions have 64 additional
neurons (for a total of 1152, which results in an additional core per partition),
and the remaining 16 neurons are included in the last partition.
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(this is the maximum number of neurons that can be simulated per Neuron core

in real-time using 0.1 ms timesteps, as shown in Section 3.2.3.1). The Projec-

tion is implemented through a fixed probability connector with 10% connectivity,

meaning that each neuron in the source Population connects with a neuron in the

destination with 10% probability. Some presynaptic neurons are initialised with

the internal voltage above threshold. This allows those neurons to fire during

the first timestep. Each spike is delivered with 1 timestep delay. This initialisa-

tion allows measurement of the neuron state update times in all three possible

scenarios:

• idle neurons;

• spiking neurons;

• refractory period dynamics;

The number of source spikes is set such that the Synapse cores are saturated (i.e.

they are busy processing spikes for the duration of a whole simulation timestep).

In order to explore peak throughput, neurons are chosen at random within the

presynaptic Population to ensure that spikes are evenly distributed throughout

the Neuron cores state update, replicating the random distribution of biologically-

plausible models [PD12]. The presynaptic Population is partitioned according

to Algorithm 1, assuming a limit of 64 neurons per core, and the number of

neurons per Partition in the presynaptic population is presented in Figure 3.5(b),

showing the optimal spread when using 9 partitions. Each partition contains at

least 1088 neurons. The remaining 208 neurons can be placed on 3 cores with

a remainder of 16 neurons. Therefore each of the first three partitions received

64 additional neurons (resulting in 1152 neurons per partition and therefore 1

more Neuron core) and the final partition will contain the remaining 16 neurons

(with a total of 1104 neurons). The first 8 partitions therefore contain multiples

of 64 neurons, providing a Machine graph with complete cores, the remainder is

added to the last partition, which is the only one allowed to have a core with

fewer than 64 neurons. This approach grants maximum efficiency on the machine

side, allowing the partitioner to assume that all the cores are complete, therefore

simplifying calculations such as indices among different cores and ensuring that

all the transfers are memory aligned, so that there is no need to add padding.

According to previous work [RBB+18], the number of synaptic events which can
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Figure 3.6: The Neuron core performance: DMA read time; synaptic summation
loop time; neuron state update; and total update time with increasing numbers
of Synapse cores.

be processed per timestep, simulating 64 neurons per core and having an incoming

connectivity probability of 10% is ≈ 1300 for 1 ms timesteps (corresponding to

≈ 130 when using 0.1 ms timesteps). Assuming the case in which the number

of processed synaptic events per timestep increases linearly with the number

of partitions, the test has been designed to generate a number of spikes which is

higher than these values at every iteration, with any excess spikes left unprocessed

and discounted from throughput profiling results.

3.2.3.1 Neuron Core Profiling

The time required to update the neuron state is independent from the duration of

the simulation timestep; the only difference is that, with a smaller simulation ∆t,

more neural updates are performed in a given simulation time. The presented

results are extracted from the Neuron core implementing the postsynaptic pop-

ulation from Figure 3.5. The number of Synapse cores connected to a Neuron

core affects its performance, since the Neuron core has to perform a larger DMA

transfer each timestep to retrieve the synaptic contribution of each Synapse core

and then sum these contributions for each simulated neuron.

Figure 3.6 shows timing measurements for different stages of the neuron state
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update phase, and how these vary with the number of Synapse cores. The hori-

zontal axis contains the number of Synapse cores connected to the Neuron core,

while the vertical axis the time, measured in microseconds. The light-blue line at

the bottom shows the DMA read time, therefore the time required to retrieve the

memory block containing all the synaptic contributions for all the implemented

neurons on the core for the current timestep. The efficiency of performing a single

DMA transfer for the whole block can be seen, as the read time remains constant

for high numbers of Synapse cores, with a plateau of 8 µs. This time, added to

that allocated to Synapse cores to write the same values to memory (10 µs), lies

between 13 µs with 2-3 Synapse cores and 18 µs with 14 Synapse cores every

timestep. This time interval however, cannot be used for neural computation, to

ensure data correctness, and represents a significant proportion in the case of 0.1

ms timesteps.

The purple line represents the synaptic summation loop time: this is the time

that the Neuron core takes to sum the synaptic contributions from the Synapse

cores for all 64 neurons. This number increases linearly with the number of

Synapse cores up to 43 µs, representing again a large fraction of the timestep in

the case of 0.1 ms timesteps. The central blue line is the effective neuron update

time, for all the 64 neurons, including all the necessary operations to update the

neuron state variables (measurements were performed using LIF neuron models

with current-based synapses) and it is, as expected, constant at 48 µs.

The dark blue line (on top) represents the total update time, therefore it is a

sum of all the previous contributions. This line is useful to indicate when the

last neuron on the core will spike. With a large number of Synapse cores, it

reaches 100 µs. This is problematic for 0.1 ms timestep simulations, since the

Synapse cores cannot receive these spikes before the time limit for the DMA write

is reached, meaning they will never be processed. For this reason, to achieve real-

time execution using 0.1 ms timesteps, it is necessary to limit the number of

Synapse cores per Neuron core (as further detailed in Section 3.2.3.2). These val-

ues show that a limit of 64 neurons per core is the best choice for 0.1 ms timesteps

simulations, 64 being the highest power of 2 that can meet the real-time require-

ments. 128 would not be a feasible choice as the neural state update phase would

require 96 µs, excluding the reading time and the synaptic summation time.

Using the measured values it is possible to obtain the reading time (tr) shown

in Equation 3.1. This value depends on the number of Synapse cores in the
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ensemble and is expressed by Equation 3.3. This dependency is due to the increase

in size of the memory block that is read by the Neuron core every timestep.

tr = 0.3 × Scores + 3.93 (3.3)

3.2.3.2 Synapse cores Profiling

Regarding Synapse cores profiling, the important metrics are the synaptic con-

tributions writing times and the synaptic events processed per timestep. These

values are reported in this section, distinguishing between processed synaptic

events per timestep with 1 ms and 0.1 ms timestep simulations.

As described in Section 2.5.1 and Section 3.2, each SpiNNaker chip has a single

access channel to SDRAM, meaning only a single core at a time can perform a

DMA transfer. The access to memory is tree-based, causing different cores to

have different access times and performance according to their position. This

means that cores belonging to branches with more access requests experience

longer access time. By increasing the number of Synapse cores, the likelihood

of memory contention becomes much higher. Each Synapse core, implementing

synapses for 64 postsynaptic neurons, has to write 64 × 16 bits = 128 Bytes per

timestep, as the size of the input contributions for a single postsynaptic neuron

is 16 bits. In order to define how this impacts the simulation, DMA times were

profiled from 2 to 14 contending cores, and the results are shown in Figure 3.7.

Each value represents the worst of 128 tests, and is taken from the core hav-

ing the longest access time. This is important, since it is not possible to predict

which cores the application will be assigned to, as the assignment is automatically

performed by the software toolchain to take into account failed cores. Therefore

a worst case time allocation becomes necessary. Figure 3.7 shows that, in the

worst measured case (in blue), the DMA write is processed in less than 7 µs,

which happens with 14 contending cores. This means that Synapse cores can set

the Timer2 event to be triggered 10 µs before the end of the timestep, being suf-

ficiently conservative to allow the current spike under processing to be completed

and to perform the memory write on time.

Through these measurements it is possible to obtain the writing time (tw)

shown in Equation 3.1. This value, which depends on the number of Synapse

cores in the ensemble, is expressed by Equation 3.4 and plotted in orange in Figure

3.7. This dependency is due to the growing contention when multiple Synapse
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Figure 3.7: DMA write latency: worst case measured write time when writing
128 Bytes to SDRAM simultaneously from different numbers of cores on the
same chip in blue. Allocated DMA writing time for the synaptic contributions,
according to Equation 3.4 in orange.

cores try to write to shared memory simultaneously at the end of each timestep.

This relation is obtained through linear interpolation between the first and last

values presented in Figure 3.7 with a constant increase of 3.1 µs. This added

quantity represents the time necessary to process a full spike when simulating 64

neurons per core [RBB+18, RPR+19]. The choice of limiting the interpolation

to the first and last values allows to keep the writing times above each measured

value, and at the same time simplifies the allocation of writing times according

to the number of Synapse cores.

tw = 0.4 × Scores + 4 (3.4)

Throughput profiling results for the Synapse cores when simulating with a 1

ms time scale resolution are shown in Figure 3.8.

The plot presents error bars measured over 4 executions of the same network,

on a different SpiNNaker machine allocation, in order to prove the robustness of

the approach.

The number of Synapse cores connected to the Neuron core in the postsy-

naptic population is increased from 2 to 14, in order to test the allocation of
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Figure 3.8: Processed Synaptic Events per timestep for 2 to 14 contributing
Synapse cores using 1 ms timesteps

a complete chip. The quantity measured is the number of synaptic events per

timestep. As outlined in Section 2.6, one spike packet on SpiNNaker carries

synaptic events equal to the number of connections that the presynaptic neuron

that generated the spike has on the postsynaptic core.

This metric is more meaningful than measuring the number of processed

spikes, as it gives a precise idea of the number of updated synapses per timestep.

The number of processed synaptic events shown in Figure 3.8 grows linearly with

the number of Synapse cores, reaching up to 16000 processed synaptic events,

representing an increase of 12.3× compared to previous work [RBB+18]. The

plot presents some regions where the rise in processed synaptic events seems to

be smaller; this is due to a different allocation of processors, which causes different

DMA timings, affecting the number of generated and processed spikes.

Figure 3.9 presents the processed synaptic events per timestep with 0.1 ms

timesteps. In this case, the same network has been used, however the number of

generated spikes has been scaled down by a factor of 10, to represent the number

of expected spikes in the reduced time frame.

Because of the time necessary to update the neuron state (more specifically

the growing synaptic summation loop, shown in Figure 3.6), with more than 8

Synapse cores per Neuron core it is not possible to run the simulations with
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Figure 3.9: Processed Synaptic Events per timestep for 2 to 8 contributing
Synapse cores using 0.1 ms timesteps

0.1 ms timesteps. This is because the computation that Neuron cores have to

perform during the timestep exceeds the length of the timestep itself, failing to

fulfill the real-time requirements. For this reason, only the synaptic events with

up to 8 Synapse cores per Neuron core have been reported here. Similarly to the

1 ms timesteps case, the plot presents error bars over 4 executions of the same

network over a different SpiNNaker machine allocation. The results achieved here

show a linear increase of processed synaptic events per timestep when increasing

the connected Synapse cores, with the highest number of synaptic events at 1100

when using 8 Synapse cores.

These profilings allow to make predictions on the required machine according

to the application that needs to be simulated. High fan-in networks require a

larger number of Synapse cores, in order to be able to process all the incoming

spikes. On the other hand, increasing the number of Synapse cores not only in-

creases the memory contention, which from the Neuron core’s perspective means

generating output spikes later which are therefore delivered later, but also in-

creases the size of the machine involved in the simulation, resulting in higher

power consumption. By comparing the processed synaptic events between 1 ms

and 0.1 ms simulations it can be observed that, in some cases, the efficiency of

the Synapse cores when using 1 ms timesteps appears to be lower than that with
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0.1 ms (the 1 ms throughput appears to be ≈ 9× 0.1 ms, with a 10× longer

timestep). This can be explained by the selection of presynaptic firing neurons.

The tests performed for the 1 ms cases resulted in a much higher quantity of

spikes delivered to the postsynaptic cores, compared to the ensemble process-

ing capability. The number of generated spikes was as close as possible to the

saturation limit of the routing infrastructure. The same situation did not hap-

pen for the 0.1 ms case, as the saturation limit at routing level appears to be

closer to the Synapse cores processing limit. As it can be observed in Figure

3.8, when the input activity is much higher than what the cores in the ensemble

can handle, this results in performance degradation, as Synapse cores have to

spend additional time buffering incoming packets that won’t be processed due

to timings constraints. It is however challenging to predict the maximum input

activity which allows Synapse cores to achieve the highest throughput for every

case, therefore an approach which generated spikes below the routing saturation

point has been chosen.

Section 3.3 shows the use of the Heterogeneous Programming model applied

to a biologically-representative SNN, in which the number of Synapse cores per

ensemble is limited to 3 and demonstrates a performance gain of 20× compared

to previous published results [vARS+18, RPR+19].

3.3 Real-Time Simulation of the Cortical Mi-

crocircuit Model

This section focuses on the application of the Heterogeneous Programming model

to a real-world use case. First a description of the problem is presented, together

with the details of the network and why this is considered a benchmark by the

neuroscience community, then the improvements and adaptations to the Hetero-

geneous Programming model to solve the problem are described, followed by the

results achieved.

3.3.1 The Cortical Microcircuit Network

The Cortical Microcircuit Model was developed by T. Potjans and M. Diesmann

in 2012 [PD12]. This is the first model to present full density of connectivity

of 1 mm2 of generic early sensory cortex of the mammalian brain. The model
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(A) (B) (C)

Figure 3.10: The cortical Microcircuit: (A) The network structure, including
layers and respective populations; (B) 400 ms of activity at steady state; (C)
Firing rates per population. Reproduced from [RPR+19] with permission.

combines data from rat primary visual and somatosensory areas and cat area

17 [PD12] and is the smallest network size where a realistic number of synapses

and a realistic connection probability are simultaneously achieved. Larger corti-

cal models are less densely connected, with a limited increase in the number of

synapses per neuron for increased model size [vARS+18]. These characteristics

make the network an accepted standard across the field of computational neu-

roscience. Furthermore, this network represents a good test case for comparison

between different simulators as it produces typical firing rates and peak synaptic

fan-in and fan-out experienced in the brain and sets constraints on communica-

tion, available synaptic memory and processing speed [RPR+19].

The network model is available in the PyNN specification language [DBE+09],

providing abstraction between the network specification and the hardware/software

implementation, facilitating comparisons between different simulation platforms.

Connections are defined according to probabilities, instead of being hand-tuned.

Each probability represents the distance between two populations (the higher,

the closer).

The network structure, together with firing rates, is shown in Figure 3.10. The

network consists of 77,169 current-based Leaky Integrate-and-Fire (LIF) point

neurons, connected through 3 × 108 synapses. Synapses are modeled as current-

based with exponential decay and are static (i.e. no plasticity is modelled). The
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Populations Parameters
Size

Name L2/3e L2/3i L4e L4i L5e L5i L6e L6i
20683 5834 21915 4579 4850 1065 14395 2948

Connectivity
L2/3e L2/3i L4e L4i L5e L5i L6e L6i

L2/3e 0.101 0.169 0.044 0.082 0.032 0.0 0.008 0.0
L2/3i 0.135 0.137 0.032 0.052 0.075 0.0 0.004 0.0
L4e 0.008 0.006 0.050 0.135 0.007 0.0003 0.045 0.0
L4i 0.069 0.003 0.079 0.160 0.003 0.0 0.106 0.0
L5e 0.100 0.062 0.051 0.006 0.083 0.373 0.020 0.0
L5i 0.055 0.027 0.026 0.002 0.060 0.316 0.009 0.0
L6e 0.016 0.007 0.021 0.017 0.057 0.020 0.040 0.225
L6i 0.036 0.001 0.003 0.001 0.028 0.008 0.066 0.144

Table 3.2: Cortical Microcircuit Parameters

neurons are organised into 8 populations (4 excitatory and 4 inhibitory) spread

over 4 layers (L2/3, L4, L5, L6). Connections are classified into 3 main groups:

recurrent, intralayer and interlayer connections. Multiple connections between

two neurons are allowed. The network topology is presented in Figure 3.10(A).

Furthermore, each population receives background stimulation, which represents

connections from adjacent cortex, other cortical areas and subcortical regions.

This additional input is either represented as Poisson input sources whose firing

rates depend on the target population or as direct currents injected into the

neurons, corresponding to the mean current generated by the Poisson sources per

population. The synaptic weights and time constants are chosen such that an

average excitatory postsynaptic potential has an amplitude of 0.15 mV with a

rise time of 1.60 ms and a width of 8.80 ms, mimicking in vivo measurements

[PD12]. To introduce heterogeneity into the network, the synaptic weights are

drawn from Gaussian distributions, with mean ± standard deviation equal to

87.80±8.78 pA for excitatory source neurons and 351.20±35.32 pA for inhibitory

source neurons (except for connections from L4 to L2/3, which have weights

175.60 ± 8.78 pA). Transmission delays are similarly distributed, but truncated

to the nearest simulation timestep, with parameters 1.50±0.75 ms for excitatory

sources and 0.75 ± 0.37 ms for inhibitory sources. The simulation timestep is

∆t = 0.1 ms and the model is simulated for 10 s of activity. Populations sizes

and connectivity probabilities are summarised in Table 3.2.
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3.3.2 Challenges and Previous Works

Simulations of the Cortical Microcircuit Model set important challenges common

to large-scale biologically-representative SNNs. By understanding and addressing

these challenges, it is possible to find the best fit for such models on Neuromor-

phic hardware and to pave the way for the design of future Neuromorphic chips

with the target of real-time biologically-plausible SNN simulations. Furthermore,

successful real-time simulations of the model can lay the foundations for scaling

up and modelling additional and more complex brain regions in the future.

The Cortical Microcircuit is a computationally intensive network with tight

timing constraints. As described in Section 3.3.1, the time resolution is sub-

millisecond, meaning that a hard real-time simulation requires all the processing

to complete in the time scale of 0.1 ms. This includes handling the synaptic

inputs, updating the state for all the neurons and generating the action potentials.

Different flavours of real-time performance can be achieved, namely hard real-

time and soft real-time simulations. In this context the target is hard real-time,

which mandates that all the information is processed within the boundaries of

the timestep. However, some simulation platforms allow a more relaxed con-

straint achieving soft real-time performance, meaning that the overall simulation

completes within biological real-time, but timesteps are allowed to overrun, re-

sulting in time intervals having different lengths. This means that, when the

computational load is higher, timesteps run for longer in order to process all the

information, this is then averaged out on shorter timesteps when the activity is

lower.

The large fan-in makes meeting hard real-time requirements even harder. Be-

cause of network oscillations, instantaneous rates produced by the network tend

to vary, increasing the complexity of a hard real-time simulation, compared to a

soft real-time execution, where it is sufficient to handle mean spike rates.

An example of this is shown in Figure 3.11. Here the total number of spikes

generated during 212 ms of simulation is presented. Since the connectivity in the

Cortical Microcircuit obeys Dale’s Law [SH99], which states that each excitatory

neuron will only create excitatory connections, and inhibitory neuron inhibitory

connections, excitatory and inhibitory spikes generated per timestep are also

presented. The right inset of Figure 3.11 shows the variation in instantaneous

and mean activity. While mean excitatory and inhibitory activity correspond

respectively to 17 and 8.3 spikes per timestep, the instantaneous activity reaches
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Figure 3.11: The cortical Microcircuit output activity. Reproduced from
[RPR+19] with permission.

peaks of 55 excitatory spikes and 38 inhibitory spikes per timestep, making the

worst case scenario for a hard real-time simulation 3× worse than average firing

activity. This analysis does not include the initial transient response of the model

(Figure 3.11 left inset), where, because of an above-threshold initialisation of the

neurons for the initial conditions, the network generates more than 4000 spikes in

the first timestep. This high activity however is not meaningful for the network

simulation, as the network quickly converges to steady-state behaviour, and this

initial transient does not represent meaningful biological activity.

The Cortical Microcircuit Model has been previously simulated on SpiNNaker

[vARS+18], through the standard software toolchain described in Section 2.5.2.

The number of neurons simulated per core was 80, as this was the smallest number

of neurons which still allowed to generate routing keys such that routing tables

would fit on the machine under the toolchain implementation at the time. The

activity in the SNN gave limitation on the maximum simulation speed, which re-

quired a 20× slow-down factor compared to real-time. Although this constituted

a breakthrough, resulting in SpiNNaker being the first Neuromorphic platform

able to simulate the Cortical Microcircuit model, performance was significantly

lower than competitors running on a HPC cluster through the NEST simulation

software [GD07], which were able to achieve a complete simulation 3× slower than

real-time [vARS+18]. GPU-based simulators, through the use of customised soft-

ware for SNNs simulations [YTN16], were able to achieve even better results,
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performing simulations 2× slower than real-time [KN18].

Similarly, energy consumption figures were not in favour of the SpiNNaker

platform, which was able to achieve 5.9µJ per synaptic event compared to the

5.8µJ registered on HPC or even worse, with the 0.47µJ achieved by GPU simula-

tors. These numbers were caused by the spread of the simulation over 6 boards,

which caused the baseline power to be amortised across many fewer synaptic

events, combined with the large slowdown factor, which forced the system to be

powered on for a much longer time.

The porting of the Cortical Microcircuit model to SpiNNaker inevitably added

additional challenges in adapting the mapping of the network to the architecture.

The first challenge is caused by the background input stimulation, as described

in Section 3.3.1. This input can either be directly injected into the neurons as

mean DC current, or delivered as spike trains from Poisson sources through the

synapses. The latter version, because of an intensive background activity, results

in an increased input activity, which, in the worst case, results in 300 additional

incoming spikes per timestep [vARS+18, RPR+19]. Furthermore, additional cores

are necessary to simulate the Poisson sources, increasing the size of the required

machine. Another challenge is given by how synaptic delays are handled within

the SpiNNaker system. As described in Section 2.6, each application core keeps

a synaptic input buffer, which allows it to store the synaptic contributions with

delays greater than 1 simulation timestep. However, the toolchain generally limits

the number of delay slots to 16, for memory reasons. This means that spikes

with synaptic delays over 16 timesteps (corresponding to 1.6 ms), need to be

routed through delay extension cores [RBD+19], which buffer the packets for the

required amount of time, as further detailed in Section 2.6. This aspect not only

increases the number of cores required to run the simulation, but also generates

additional network traffic, since packets need to be delivered both to the delay

extension cores and the postsynaptic cores, as not all the synapses require such a

delay. This reduces efficiency, since the number of postsynaptic targets per spike

is also reduced resulting in even shorter synaptic rows, due to the intermediate

step added by delay extension. Furthermore, as the synaptic connections are

defined according to probability of connectivity, it is not possible to perform

simplifying assumptions based on distance-dependence and proximity to improve

performance during the synaptic matrix generation and routing phases. This

means that routing must be performed on an all-to-all basis, resulting in an even
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higher incoming traffic.

3.3.3 Real-Time Simulation

This section focuses on the modifications to the Heterogeneous Programming

model to achieve hard real-time simulations of the Cortical Microcircuit network

on SpiNNaker. These changes reflect the challenges presented in section 3.3.2.

The main requirement for hard real-time simulations is the capability of pro-

cessing the neural state updates and the incoming synaptic events within the

timing constraints. The biggest challenges in this can be found in the peak spike

rates shown in Figure 3.11, which need to be combined with the packets coming

from the delay extension cores and the Poisson sources to get full figures of the

incoming packets. The traditional software toolchain is not suited to handle such

an intensive incoming traffic in such a tight time resolution. Single Application

cores cannot process all the incoming spike packets while they are busy updat-

ing neural states, therefore they spend most of the timestep performing context

switches or waiting for memory to respond. This is also exacerbated by the fact

that there are too many incoming spike packets to be processed per timestep.

For this reason, reducing the number of neurons per core is not a viable solution.

Since API activities such as the spike packet reception dominate the processing

time, a reduced number of neurons per core would reduce the spike processing

efficiency, because the fixed cost of turning a spike into neural input would be

amortised over fewer individual neuron contributions [RBB+18]. Furthermore,

a reduced number of neurons per core does not mean fewer incoming spikes, as

the neurons’ fan-in does not change. The Heterogeneous Programming model

provides a different approach to the problem by dedicating some cores to the

synaptic processing and others to the neural state update. The approach used for

the Cortical Microcircuit uses a fixed number of Synapse cores per Neuron core.

An example allocation of the Heterogeneous Programming model targeting the

Cortical Microcircuit on a SpiNNaker chip is shown in Figure 3.12. Each Synapse

processor implements a single synapse type. The partitioning is source-based as

described in Section 3.2. The excitatory activity of the Cortical Microcircuit

model is double that of the inhibitory (see Figure 3.11). For this reason the num-

ber of excitatory Synapse cores per Neuron core is twice that of the inhibitory

cores. This results in allocating two excitatory Synapse cores (the blue SL and

SU in Figure 3.12) and one inhibitory Synapse core (the red S in Figure 3.12) per
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Figure 3.12: Application cores mapping on a SpiNNaker chip for the Cortical
Microcircuit case: (a) Standard toolchain placement, including delay extension
cores (D), Poisson sources (P) and simulation cores implementing neurons and
synapses (N&S). Grey cores are used for system purposes; (b) Heterogeneous
programming model applied to the Cortical Microcircuit, including Synapse cores
(S), Neuron cores(N) and Poisson cores(P). Reproduced from [RPR+19] with
permission.

Neuron core. Each of the two excitatory Synapse cores will be the target of one

of the two halves of the presynaptic population. This type of partitioning is the

most effective way to spread the number of spikes over destination Synapse cores,

as all the neurons belonging to the same presynaptic population are equally likely

to spike. This also means that all spike packets no longer need routing to every

receiver, but, instead, causes excitatory and inhibitory spikes to be split among

the corresponding destination Synapse cores and excitatory packets to be split

again between the upper and lower destination excitatory Synape cores.

The Synapse cores have now an increased local memory, since the structures

containing the neural state variables are locally stored into Neuron cores’ DTCMs.

This means that it is possible to maintain additional synaptic input buffers locally,

eliminating the need for delay extension cores. Through the use of independent
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Synapse cores, it is possible to store 255 delay slots in local memory, which allows

to accumulate synaptic inputs for delivery over the next 25.5 ms, using 0.1 ms

timesteps. This quantity allows to simulate any delay present in the network. By

employing this approach it is possible to remove all the additional traffic caused

by the delay extension cores, together with eliminating the allocation of these

cores themselves.

Other elements heavily contributing to the incoming peak activity are the

Poisson source generators. These, on the standard software toolchain, are repre-

sented as independent cores generating spikes according to Poisson processes run-

ning on them. This, as outlined in section 3.3.2, increases the traffic through the

Network-on-Chip and puts additional pressure on the postsynaptic cores, which

need to process additional incoming spikes. To address this issue, this version of

the Heterogeneous Programming model, employs local Poisson source generators,

which communicate to Neuron cores in the same way as Synapse cores. These

can be called Poisson cores and are part of the main building block of the model

employed here, as shown in Figure 3.12.

The main building block of this version of the Heterogeneous Programming

model is, therefore, an ensemble of 5 cores: lower and upper excitatory Synapse

cores, an inhibitory Synapse core, a Poisson core and a Neuron core. This ensem-

ble communicates through shared memory, using SDRAM, therefore all the cores

need to reside on the same SpiNNaker chip. This allows to store 3 ensembles per

chip. A schematic of the updated callback interactions is shown in Figure 3.13,

where again 2 timesteps of execution are shown, here detailing the activity of a

Neuron core, a Poisson core and 2 Synapse cores (1 excitatory and 1 inhibitory).

For the Neuron cores, consistently with the standard Heterogeneous model,

the timestep begins with a DMA read (transfer D in Figure 3.13), in order to

retrieve the synaptic contribution that will constitute the input currents. The

block of contributions is retrieved in a single transfer and contains all the input

values from all the Synapse cores of the ensemble and from the Poisson core. After

the completion of this operation, the neurons are updated in a sequential fashion

by adding together the two excitatory contributions and the Poisson background

and by subtracting the inhibitory value. If the model mandates it, spikes are

then generated. Finally the state for each neuron is recorded and written back

to the dedicated memory region (transfer E). The neuron state update phase is

critical, as the last output spike will be sent after all the neuron states have been
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Figure 3.13: Callback interactions for the real-time execution of the Cortical
Microcircuit. Reproduced from [RPR+19] with permission.

updated. The measured update time for a single neuron is 1.05 µs. To guarantee

that all the spikes are generated within 70 µs from the beginning of the timestep,

in order to allow enough time for the Synapse cores to process them, the number

of neurons per core must be limited to 64. The choice of a power of 2 is to ensure

word-aligned memory transfers without padding and ease of computation for the

offset on the Neuron core side. This also allows increased efficiency, enabling the

use of shifts and bitwise operations with masks. Poisson cores internally generate

the background input for each postsynaptic neuron for the subsequent timestep.

This value is written into shared memory in the middle of the timestep (transfer

C). This allows reduction of the memory contention problem, having Synapse

cores writing to memory in a separate phase. Synapse cores receive input spike

packets throughout the timestep and compute the synaptic contributions to be

sent to the Neuron core. The contributions are written to shared memory at the

end of the timestep (transfer B).

To facilitate the state update operation as much as possible, the block read

by the Neuron core contains the contributions arranged in the following order:

• lower excitatory
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neural processing ensemble; the ordering of the regions match the one used on
SpiNNaker. Bold capital letters mark memory transfers corresponding to the
same labels in figure 3.13. Adapted from [RPR+19].

• inhibitory

• higher excitatory

• Poisson

When calculating the inhibitory contribution, the input current is equal to the

value read from memory. The excitatory values on the other hand, require sum-

ming together the lower and higher excitatory contributions together with the

Poisson input.

A schematic of the memory interactions is shown in Figure 3.14, where the

transfer labels match those in Figure 3.13. The choice of the synaptic contribution

ordering described above is motivated by efficiency during the summation phase.

The contributions block is a large array, where indices are represented on 8 bits,

where the 2 MSBs (in black in Figure 3.14) represent the synapse type and the 6

LSBs (in white) the postsynaptic neuron ID. By masking the synapse type, it is

possible to access the contributions efficiently, having the Poisson and inhibitory

values converted separately and the two excitatory contributions accessed with



3.4. RESULTS 105

cost O(1), added together and then converted.

Similarly to the general Heterogeneous Programming model, the shared mem-

ory regions are allocated, during initialisation, by the Neuron cores as a single

memory block large enough to contain the data for all the other cores belonging

to the ensemble. Once this is performed, the Synapse and Poisson cores retrieve

the pointer to the memory block, which is tagged with the ID of the Neuron core,

and add their offset to it. Through this operation they get the starting position

of their own subregion. This offset is calculated from the host side software dur-

ing the partitioning of the Population and communicated to each core before the

beginning of the simulation.

3.4 Results

This section presents results of the first hard real-time simulation of the Cor-

tical Microcircuit [RPR+19]. This result has been achieved by simulating the

network on SpiNNaker through the Heterogeneous Programming model with the

adaptations presented in Section 3.3.3. The important metrics here reported are

accuracy of the simulation and energy consumption. Model and system perfor-

mance are also measured.

Hard real-time simulation of the Cortical Microcircuit model requires the sim-

ulator to execute with a time resolution of 0.1 ms. The model has been simulated

for 10 s of biological simulation time, resulting in the system running for a wall-

clock simulation time of 10 s. Previous works [vARS+18] initialised the neurons’

membrane voltages above threshold, causing very high firing activity during the

first timestep (as shown in Figure 3.11). This work relaxed this condition, since

this has no biological relevance and does not affect the steady state behaviour of

the network, but only generates excessive traffic at the beginning of the simula-

tion. Both the DC and the Poisson versions of the Cortical Microcircuit model

have been simulated in hard real-time.

3.4.1 Simulation Accuracy

Figure 3.15 shows profiling data recorded from an upper excitatory Synapse core

from the L23E population for the duration of 200 ms of simulation. The solid red

line shows the total number of spikes arriving to the core and is in line with the

spikes produced by the model (grey dashed line, which is mostly covered by the
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Figure 3.15: Synapse core profiling during simulation of the Poisson input Cor-
tical Microcircuit. The total spike packets received per timestep are plotted,
together with the total processed and flushed spikes: left inset details the re-
sponse around the initial transient; while the right inset details the handling
of extreme peak spike rates during steady-state oscillations. Reproduced from
[RPR+19] with permission.

solid red line). This first equality demonstrates the correctness of the simulation,

since the number of received spikes at every timestep matches the expected ones.

The total number of spikes can be divided into processed spikes (blue line in the

plot) and flushed spikes (orange line in the plot). The number of processed spikes

matches that received throughout most of the simulation. In certain timesteps,

when the incoming spikes are above the number that can be processed (≈ 26

spikes per timestep), the core flushes the inputs that cannot be handled. This

causes some peaks in the number of flushed spikes as it can be observed in the

right inset (e.g. timestep 1190). By flushing spikes, the core maintains hard real-

time requirements, as it moves to the next timestep when the timer dictates. The

last two lines indicate zero target packets and the number of kickstarts of the spike

processing pipeline per timestep in dashed red and dashed green respectively. The

zero target packets constitute an issue, as the system can only determine one of

these when accessing the synaptic row, causing wasted computation to extract

this data. This issue is more common when low probability connections are used,

amounting, in some cases, to up to half the incoming spike traffic. The number

of kickstarts of the spike processing pipeline, on the other hand, has a low impact

on the execution, as timesteps where the input activity is higher maintain the
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pipeline active for longer, not incurring this penalty.

Since spikes are occasionally flushed from Synapse cores, it is important to

evaluate the accuracy of the simulation, in order to determine whether this im-

pacts the results. All flushed spikes represent information which is effectively

lost. The simulation accuracy is checked against the results obtained from NEST

simulations. The total number of processed synaptic events on SpiNNaker, dur-

ing the 10 s simulations, is 9.135 ×109 for the DC version and 9.343 ×109 for

the Poisson version. Compared to the NEST results, losses of 2.98% for the DC

version and 0.76% for the Poisson version are registered. A higher loss for the

DC version can be explained by a higher density of Synapse cores per chip (as

there are no Poisson cores in this case), which causes a higher memory contention

during the contribution writing phase, which results in a longer writing time per

core and therefore a shorter spike processing window.

To assess the effects of flushed spikes, a statistical analysis comparing the

within-population distributions of firing rates between SpiNNaker and NEST

simulations is performed. The results are presented in figure 3.16. The three

plots represent a comparison of firing rates, coefficients of variation of inter-spike

intervals and correlation coefficients for binned spiketrains. The blue line rep-

resents results obtained from the real-time execution of the Poisson version on

SpiNNaker, while the yellow line comes from the NEST simulator, running with

a 3× slowdown factor. The results appear to be coherent and slight variations

are in line with previous observations [vARS+18]. The analysis was performed

using the Elephant toolbox [YDH+15], by using output spiketrains from both the

simulators. The correctness of the simulation is therefore proven for the real-time

simulation on SpiNNaker.

3.4.2 Machine Allocation and Energy Consumption

Because of the low-power nature of Neuromorphic hardware it is interesting to

perform an analysis of the energy consumption, to check how the system per-

formed and to compare it against other platforms. Compared to previous work

[vARS+18], the network allocation on SpiNNaker requires a higher number of

cores and, therefore, a bigger machine. The Poisson version is mapped to a 8.4

boards machine (6050 cores, spanning to 404 chips), while the DC version fits on

6.6 boards (4840 cores, with 318 chips). The Spalloc utility from the software

toolchain (see Section 2.5.2) is in charge of providing the correct machine which,
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Figure 3.16: Comparison of spiking output from the last 10 s of cortical micro-
circuit simulations with Poisson input, executed using SpiNNaker in real time,
and NEST at 3× slow-down (all averaged over the last 9 s of simulation): A,
single neuron firing rates; B, coefficient of variation of inter-spike interval; C,
correlation coefficient between binned spiketrains. Reproduced from [RPR+19]
with permission.

in both cases, results in a 12-board SpiNNaker machine (having a total of 576

chips arranged in a 24×24 grid). Figure 3.17 details the core mapping for both

the DC (left) and the Poisson (right) versions. There is a 25% increase in machine

size for the Poisson case, which is caused by the addition of the Poisson cores

(one allocated per ensemble). From these figures it is possible to calculate the

neuron density per chip, which depends on the number of ensembles per chip,

multiplied by the neurons per core, amounting to 256 neurons per chip in the

case of the DC version (4 ensembles per chip and 64 neurons per core) and 192

for the Poisson version (3 ensembles per chip and 64 neurons per core).

Real-time simulations run 20× faster than previous achievements on SpiN-

Naker, causing the system to be powered on for much less time. It is therefore

important to obtain the energy consumption under these new conditions. The

most useful metric is the energy per synaptic event, which allows comparison of

how well SpiNNaker performs with respect to HPC platforms and GPUs. In order

to obtain these figures, the same technique used in previous studies [vARS+18]

was replicated, where the wall-socket power of the entire SpiNNaker system is

recorded. This is necessary, since there is no power monitoring for multi-board

systems. The energy is therefore measured through an energy meter (with an



3.4. RESULTS 109

(a) (b)

Figure 3.17: Cortical Microcircuit Placements on SpiNNaker
Layer-wise placements of the Cortical Microcircuit network on SpiNNaker: (a)
DC version, (b) Poisson version. Reproduced from [RPR+19] with permission.

accuracy of 0.01 kWh) which measured wall-socket power of the entire SpiN-

Naker system. A software-controlled camera took readings from the meter at

the beginning and end of the simulation, and the difference between these two

values indicates the total energy consumption. To obtain the energy per synaptic

event it is necessary to divide this value by the total number of synaptic events

generated by the model.

The measured values are detailed in Table 3.3, where a 24-board SpiNNaker

system has been used for the measurements. Both the simulated versions of the

Cortical Microcircuit (DC and Poisson) resulted into a 12-board machine alloca-

tion, leaving the unused boards powered off. The unused chips on the allocated

machine, on the other hand, remained idle all the time. The presented results

show, in order, the energy consumption for the auxiliary system components (e.g.

cooling fans, communication switch and rack power supplies) with all the boards

powered off, the values for 12 booted SpiNNaker boards and the consumption for

the Cortical Microcircuit simulations. Measurements are taken over a 12h period.

By comparing the energy figures for the Microcircuit and the booted system, it is

observed that energy consumption contribution of the network amounts to 25%

of the total consumption in the case of the DC version, and 30% in the case of the

Poisson version, as they show an increase in energy demand of 1.34× and 1.44×
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System configuration Time Total energy Synaptic events Energy per synaptic event
(kWh) (µJ/syn-event)

system only 12h 0.93 – –
12 booted boards 12h 4.93 – –

Cortical Microcircuit, DC 12h 6.59 – –
Cortical Microcircuit, Poisson 12h 7.11 – –

Cortical Microcircuit, DC 10s 0.001525 9.135 ×109 0.601
Cortical Microcircuit, Poisson 10s 0.001646 9.343 ×109 0.628

Table 3.3: Cortical Microcircuit Energy Measurements.

respectively. Finally, the bottom two lines indicate the energy per synaptic event,

calculated over 10 s simulations of the network. The obtained values amount to

0.601 µJ and 0.628 µJ for the DC and Poisson version respectively. These val-

ues are one order of magnitude smaller than previous results on both SpiNNaker

and HPC platforms [vARS+18]. Furthermore these values demonstrated that

SpiNNaker can compete with a range of modern GPUs running optimised SNN

libraries [KN18].

3.5 Discussion

The capability of processing all the information within each simulation timestep

is a necessary requirement for hard real-time simulations of biologically-inspired

SNNs. Large networks are affected by very high fan-ins, causing large numbers

of spikes to be delivered every timestep. The number of synaptic events that can

be processed per timestep therefore becomes a critical factor. SNN simulators

struggle when dealing with such heavy activity, because of their implementa-

tion. The proposed Heterogeneous Programming model, through parallelisation

of incoming spike traffic, provides a different perspective for the task. The im-

plementation for the SpiNNaker Neuromorphic platform of this approach allows

improvement of the performance of SNNs simulations, by achieving 12.3× more

synaptic events processed per timestep compared to previously published work,

and additional flexibility in targeting different computational loads.

When applied to a neuroscience benchmark, namely the Cortical Microcir-

cuit model, the new approach achieved unprecedented results, performing the

first hard real-time simulation of the model, surpassing any previously published

result on any other platform. The robustness of the approach has also been
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demonstrated by successfully performing multiple 12h simulations, placing Neu-

romorphic hardware as a viable choice for modelling long-term effects in SNN

models representing brain activity at the same speed and scale as they occur in

biology.

Other simulators recently attempted to accelerate the simulation of the net-

work, trying to achieve faster than real-time results. Sub-real time simulations

have been achieved respectively by HPC using NEST [KST+21] and on GPUs

through the GeNN framework [KKN21]. Even faster simulations have been

achieved by FPGA-based neural supercomputers, reaching 4× faster than real

time simulations [HPT+22]. SpiNNaker however still remains, at the moment

of writing, the only Neuromorphic platform able to simulate such benchmark in

hard real-time.

3.6 Summary

The aim of this Chapter was to address the first research question presented in

Section 1.2, which states: How can the process of mapping biologically-representative

SNNs be optimised on Neuromorphic Hardware?

This can be achieved through the Heterogeneous Programming model, a novel

parallelisation technique developed for the SpiNNaker Neuromorphic platform, in

order to improve the mapping of SNNs on Neuromorphic hardware, consequently

increasing the processed synaptic events per ms. By using dedicated components

to different aspects of SNNs simulations, namely the synaptic input processing

and the neural state update, and by performing a heterogeneous parallelisation of

them, it was possible to increase the processed synaptic events per timestep up to

12.3× compared to previous results. This enabled the first real-time simulation

of the Cortical Microcircuit model, constituting a 20× speedup compared to pre-

vious simulations, which, de facto, placed digital Neuromorphic platforms as key

competitors in the landscape of real-time simulators for biologically-representative

Spiking Neural Networks.

The presented approach, through its flexibility, allows to target different levels

of sparsity and throughput, by allowing to better adapt the allocated machine to

the network requirements.

Several challenges still remain related to biological learning mechanisms and

very sparse SNN simulations, which will be addressed in Chapters 4 and 5.





Chapter 4

On-line Learning on SpiNNaker

4.1 Introduction

Traditional learning mechanisms such as gradient descent with error backpropaga-

tion [RHW86], are energy and resource consuming and far from biological learn-

ing models [IGB19, Hun]. Several biologically-plausible alternatives have been

presented to date, in order to provide valid power-efficient strategies [SPCBS18,

BSS+20, LCTA16a]. These techniques commonly aim at replacing the error back-

propagation phase, where the network does not produce useful outputs, with al-

ternatives which allow the network to be always active. These approaches are

categorised under the definition of on-line learning algorithms [LDBK20]. It is,

however, problematic to simulate such mechanisms in real time, due to the chal-

lenges presented by large biologically-representative SNN simulations shown in

Chapter 3, combined with the addition of intrinsic learning mechanisms. Thanks

to the possibilities offered by this unconventional hardware, such as great scal-

ability and limited power consumption, a Neuromorphic implementation might

provide an efficient framework to develop novel learning algorithms, with poten-

tial to replace the power-hungry solutions which still are the main learning tools

currently used.

This chapter therefore describes the implementation of on-line learning tasks

on SpiNNaker. The approach used for this problem employs the Heterogeneous

Programming model presented in Chapter 3, with some adaptations. The chosen

learning strategy was originally proposed by Urbanczik and Senn [US14] in the

form of a multicompartmental error-correction rule, and then expanded by Sacra-

mento et al. [SPCBS18] to be applied to classification problems in the field of

113
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machine learning as an on-line replacement for the costly error backpropagation

rule [RHW86, LBH15]. This learning rule employs more biologically-plausible

neuron models, combined with plasticity rules, to obtain results comparable to

the standard backpropagation of errors algorithm [SPCBS18]. Because of the type

of employed neuron models, this approach represents a good fit for Neuromorphic

hardware.

Despite its biological plausibility, there are several challenges that arise when

porting this rule to Neuromorphic hardware. The networks described, together

with the learning rule itself, use rate encoding for the communications, requir-

ing frequent transmissions of neurons’ firing rates. Furthermore, the connectiv-

ity patterns are very dense, resulting in additional requirements when placing

the neural networks, in order to maintain real-time performance. The standard

SpiNNaker toolchain implementation fails to handle such constraints, therefore

an adapted version of the Heterogeneous Programming model is required. This

extension is presented throughout this chapter, including the added support to

synaptic plasticity. Additional strategies to improve the handling of rate-based

communications required by this task are also presented.

Section 4.2 presents the first two-compartment model described by Urbanczik

and Senn [US14], together with its rate-based implementation on SpiNNaker and

the adaptation of the plasticity framework to handle this new rule. Section 4.3 de-

scribes a three-compartment model [SPCBS18] representing pyramidal neurons,

used as the main building block for the learning rule. Section 4.4 presents the

learning rule combining the two neuron models and the neural network structure,

together with the implementation challenges. Section 4.5 describes how the Het-

erogeneous Programming model has been adapted to this context, including the

addition of a plasticity handling mechanism and other optimisations to speed up

the synaptic events processing. Section 4.6 shows the results of the implemen-

tation of the models on SpiNNaker, first by proving the correctness and then by

simulating larger networks addressing specific tasks.

4.2 The Urbanczik-Senn Neuron Model

The Urbanczik-Senn (US) neuron model [US14] (shown in Figure 4.1) is a two-

compartment neuron model, composed of Somatic and Dendritic compartments

coupled via a fixed conductance called “Coupling Conductance”. The model
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Figure 4.1: The Urbanczik-Senn neuron model. The two compartments with
the respective potentials are shown. Red synapses are static, blue synapses are
plastic. Dendritic synapses are current based, somatic synapses are conductance
based.

is rate-based and the output rate, emitted by the somatic compartment, is a

sigmoidal function of the somatic voltage (U in Figure 4.1). The somatic synapses

(red in Figure 4.1) are conductance-based and static and can be either excitatory

or inhibitory. The somatic input current, result of the combination of the somatic

inputs, is termed Teaching current. The dendritic compartment produces its own

internal voltage (V in Figure 4.1) as a linear combination of the input rates and

the synaptic weights. The dendritic synapses (blue in Figure 4.1) are current-

based and plastic. The role of the coupling conductance is to low-pass filter

the dendritic voltage that contributes to the calculation of the somatic voltage.

All the connections represented in red are modelled by static synapses, while the

blue connections are associated with plastic synapses. This convention is followed

throughout this chapter.

The instantaneous representation of the model’s equations is given by Equa-

tions 4.1 to 4.5.

U(t) =
gSDVw(t) + Iteach(t)

gtot
(4.1)
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gtot = gL + gSD + gE + gI (4.2)

Vw(t) =
Idnd(t)

gL
(4.3)

Idnd(t) =
∑
i

wxiri (4.4)

Iteach(t) = gE(t)(EE − U(t)) + gI(t)(EI − U(t)) (4.5)

Idnd is the dendritic current, gL is the leak conductance (fixed), Vw(t) is the

dendritic voltage, while Iteach is the somatic teaching current, which is obtained

by adding together the excitatory and inhibitory components. gE and EE are,

respectively, the excitatory conductance and reversal potential; gI and EI are

the inhibitory ones. The reversal potentials are fixed, while the conductances

are obtained via the synaptic inputs. gSD is the coupling conductance between

dendrite and soma, which is fixed, and gtot is a support variable expressing the

total conductance. Finally U(t) is the somatic potential.

The plasticity rule is an error-correcting rule and aims to minimise the differ-

ence between the somatic and dendritic compartments. In a supervised learning

scenario, nudging currents are applied to the somatic synapses, in order to force a

difference between the two compartmental voltages. This difference triggers the

dendritic plasticity, nudging the dendritic potential towards the somatic poten-

tial. When the teaching current is removed, the output is solely driven by the

dendritic input values. The weight change in time is represented by Equation 4.6.

∆wdi = ηdi(φ(V tgt
w (t)) − φ(Vw(t)))ri = ηdi(φ(

gL + gSD
gSD

U(t)) − φ(Vw(t)))ri (4.6)

wdi is the weight for the ith dendritic synapse. ηdi is the learning rate, which

scales the weight modification and is fixed. ri is the incoming rate for the ith

synapse. φ(Vw(t)) is the output rate calculated on the dendritic voltage and

φ(V tgt
w (t)) is the rate calculated on the target dendritic voltage. The target den-

dritic voltage is obtained by filtering the somatic potential, and therefore repre-

sents what would the dendritic pontential be if the somatic synapses were silent.

The difference between these rates amounts to the error the dendrite makes in
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predicting the somatic voltage. Such an error arises when a teaching signal is

applied on the somatic synapses, therefore the dendritic weights’ values are cor-

rected in order to eliminate this misprediction, resulting in correct operation when

the supervision is removed.

4.2.1 SpiNNaker Implementation

The SpiNNaker US model implementation requires some structural changes to

the software toolchain. The first change is motivated by the rate-based nature of

the model. For efficiency, from a computational point of view, it is preferrable to

have neurons communicating rates with each other, instead of having processors

to convert the firing rate into spikes and then the received spikes back into firing

rates. This choice however requires the use of multicast packets with payload, in

order to carry the rates over the communication network. This requirement adds

challenges in terms of real-time performance however, as packets with payload

are slower and can cause more traffic congestion over the SpiNNaker network in

a dense communication scenario.

The best option to represent output rates is through the accum data type

provided by the fixed point C standard library. The SpiNNaker system does not

contain a Floating Point Unit (FPU), therefore it is preferrable to handle this data

through fixed-point arithmetic, as software simulation of floating point operations

would be inefficient. The firing rates are positive numbers which can take values

greater than 1 (which excludes the use of the fract S031 data type), therefore

over 32 bits a S1615 (16 bits for the integer part and 15 for the fractional part,

plus one bit for the sign) is the most appropriate data type. The same data type

is also used by the SpiNNaker system to represent input currents and voltages,

therefore adopting this simplifies the data handling.

Input currents to the dendritic compartments are obtained by multiplying the

input rate by the corresponding weight. This operation considerably increases the

time per synaptic event, compared to standard spike-based SNN simulations, as it

involves a multiplication and sum (the input rate value is multiplied by the weight

and then added to the correct synaptic input buffer slot), instead of a single sum

per event (the weight is simply added to the correct synaptic input buffer) as

described in Section 2.6. Given the required operations, it is sensible to represent

weights as accum as well: this also allows greater precision. The synaptic input

buffers therefore need to be adapted to store accum values. However, since each
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input rate contributes to the postsynaptic voltage of the next timestep only,

there is no need for delay slots. On the other hand, the input spike buffer (the

data structure used to store incoming packets before processing synaptic events)

requires some adaptations as well, as each packet now carries a firing rate, which

needs to be stored for the synaptic event processing.

The somatic voltage update is performed sequentially after the dendritic po-

tential calculation for each neuron. This is due to the dependency of the somatic

potential on the dendritic one, as shown in Equation 4.1.

4.2.2 The Plasticity Framework

The plasticity rule requires adapting the existing structures provided by the SpiN-

Naker toolchain to accommodate the new parameters used by the rule. Therefore

a modified version of the STDP framework has been used. This choice is moti-

vated by the use of the event-driven processing of synaptic events described in

Section 2.6, combined with the chance of implementing a large pool of incoming

synapses.

The new protocol requires the neurons to save the difference between the out-

put rate calculated over the somatic voltage and the rate evaluated from filtered

dendritic potential. This difference is used to determine the amount of the correc-

tion which is applied to the synapses. Upon the reception of an input rate, after

the correct synaptic row is retrieved from shared memory, the incoming value is

stored in the row and the weights are updated according to Equation 4.6. For

this operations, the previous input rate (saved from the synaptic row) is used in

combination with the stored postsynaptic difference. Because of the teaching cur-

rent, which can modify the somatic potential through the somatic synapses, and

therefore independently from the dendritic input, the dendritic weights can be

subject to synaptic plasticity even in the absence of dendritic input (as shown by

Equation 4.6). This requires to constantly check whether the dendritic weights

need to be updated. In order to perform this check, the SpiNNaker toolchain

needs to have the synaptic rows locally available. Therefore each neuron will

emit a packet every timestep, allowing to retrieve the rows one at a time. This

proved to be the most efficient solution on SpiNNaker to make sure all the weights

are correctly updated. A calculation based on the difference between the input

rates on different timesteps requires additional operations for each weight update,

which results in performance degradation.
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Figure 4.2: The 3-compartment pyramidal neuron model. The three compart-
ments with respective potentials are shown. Blue synapses are plastic, red
synapses are static. All the synapses are current based

The plastic region of the synaptic row keeps a similar structure compared to

the standard SpiNNaker toolchain. The presynaptic history trace however is now

replaced by the last presynaptic input rate, and weights are now represented on

32 bits as described in Section 4.2.1. A schematic of the new structure of the

synaptic matrix is shown in Figure 4.5.

4.3 The Three-Compartment Pyramidal Model

Evolving from the US model, a three-compartment representation of pyramidal

neurons was modelled by Sacramento et al. [SPCBS18]. This model presents a

simplified structure of the basal and apical integration zones which define neocor-

tical pyramidal cells [Spr08, Lar13], through separate dendritic compartments.

Bottom-up and top-down synapses are handled separately by basal and apical

compartments respectively. The two dendritic compartments are coupled to a

somatic compartment via fixed conductances. There are no proximal synapses

to the somatic compartment, therefore the somatic voltage is exclusively shaped
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by the dendritic compartments. The model state evolves according to Equa-

tions 4.7 and 4.8. gA is the coupling conductance between the apical dendritic

compartment and the somatic compartment, gB between the basal and the so-

matic compartments. gL is the leak conductance, VA(t) and VB(t) are the den-

dritic potentials and are obtained similarly to Equation 4.3. All the synapses are

current based.

U(t) =
gAVA(t) + gBVB(t)

gtot
(4.7)

gtot = gL + gA + gB (4.8)

Both compartments have plastic synapses, however the plasticity rule changes

according to the compartment type. The basal compartment acts similarly to

the US model, trying to match the somatic potential, while the apical synapses

aim at silencing the apical voltage, therefore nudging the apical synapses to a

state where the apical dendritic potential matches the resting potential. Equa-

tions 4.9 and 4.10 show the weight changes for the basal and apical compartments

respectively.

∆wdi = ηdi(φ(V tgt
B (t)) − φ(VB(t)))ri = ηdi(φ(

gB + gA + gL
gB

U(t)) − φ(VB(t)))ri

(4.9)

∆wdi = ηdi(vrest − VA(t))ri (4.10)

Similarly to the Urbanczik-Senn case, in Equation 4.9, the error is computed

towards a target voltage, which, in this case, takes into account both the coupling

conductances. Equation 4.10 on the other hand, nudges the weights towards the

resting potential, by computing the error with respect to this value. For the apical

compartment plasticity, the error is calculated directly on the voltages, instead

of the rates.

4.3.1 SpiNNaker Implementation

The SpiNNaker implementation of the three-compartment model follows the same

approach adopted for the US model and presented in Section 4.2.1. The model
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is rate-based, therefore communication happens through Multicast Packets with

payload carrying rate values. Each rate is a fixed-point value represented accord-

ing to the S1615 format. All the compartment voltages are updated timestep

by timestep sequentially according to the following order: basal dendritic com-

partment, apical dendritic compartment and somatic compartment. Separate

synaptic input buffers are maintained for separate compartments. There are no

proximal synapses to the somatic compartment, and all the implemented synapses

are current-based.

4.3.2 The Plasticity Framework

The plasticity rule presented for the three-compartment model is of the same type

as the US model, however the behaviour is slightly different according to the in-

volved compartment. Given the similarities with the US model, the plasticity

framework adopted for the three-compartment model follows the same adapta-

tions presented in Section 4.2.2, with the addition of a second rule (the apical

plasticity rule) which is selected through a flag indicating the compartment in

which the weight update is happening.

4.4 Self-Predicting Learning Approximates Er-

ror Backpropagation

By combining the two models presented in Sections 4.2 and 4.3, it is possible

to build a learning rule that approximates the error backpropagation algorithm.

The idea originated from a previous study [KK01] which demonstrated that it

is possible to implement backpropagation-like strategies, by using neurons with

two separate integration sites. A similar approach was presented in a more recent

study [GLR17b], where it was demonstrated that, by combining neuron models

with segregated dendritic compartments into multilayer networks, it is possible

to obtain accurate results when performing deep learning tasks. Therefore, the

backpropagated error is represented by the activity of the apical compartment in

the presence or absence of teaching input. The learning algorithm presented by

Sacramento et al. [SPCBS18] evolves this idea, by explicitly encoding the error,

by having the apical compartment integrating two different types of signal. This

removes the need for representing two separate phases and therefore having the
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Figure 4.3: Schematic of the Self-predicting learning mechanism. Intralayer and
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plasticity always active.

The reason for different plasticity rules for separate integration zones comes

exactly from this necessity. Input signals are provided bottom-up to the basal

synapses, which propagate them to the somatic compartment. Teaching signals

are handled by the apical compartment, which receives both top-down and lat-

eral values, as shown in Figure 4.3. The authors termed these types of network

Dendritic Microcircuits.

4.4.1 Dendritic Microcircuits

Figure 4.3 represents both the inter-layer and intra-layer interactions for the

Dendritic Microcircuits. For clarity, by keeping the same convention through this

chapter, all the red connections are modelled by static synapses, while the blue

ones are plastic. Each layer contains a population of pyramidal neurons, as well

as a population of two-compartment US neurons, here termed Interneurons (or

SST neurons) by the authors [SPCBS18]. The inputs are propagated bottom-up

through the basal compartments of pyramidal neurons. The somatic compart-

ments generate the output rate, which is sent to the next layer and to the lateral
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Interneurons. The somatic potential is also backpropagated to the previous layer

as somatic proximal input for the Interneurons (acting as a teaching signal) and

as apical input for the pyramidal neurons (red arrows in Figure 4.3). The role

of the Interneurons is to match the behaviour of the pyramidal neurons in the

layer above, by integrating the somatic input of the pyramidal neurons of the

same layer (dark blue arrow between the pyramidal neuron and the Interneu-

ron) through the dendritic compartment. Pyramidal neurons from the next layer

then transmit the correct somatic potential back to the Interneurons, eventually

correcting misprediction errors. The apical compartment of pyramidal neurons

therefore receives lateral input from the somatic compartment of the Interneu-

rons (dark blue arrow) and top-down input from the layer above (light red arrow).

The difference between these two signals corresponds to the backpropagated er-

ror. Therefore synaptic plasticity intervenes to silence the apical compartment,

by acting on the top-down synapses, and so correcting this error. This network

state, when apical compartments are silent and there is therefore no learning, is

referred to as the self-predicting state by the authors [SPCBS18].

Because of the nature of the backpropagated signal, the teaching signal for

the Interneurons (dark red arrow) needs to be in the form of a balanced teaching

excitatory and inhibitory input, which is represented by the backpropagated so-

matic voltage, instead of separate components as described in Section 4.2. This

is achieved by defining a fixed somatic conductance, called gsom. Therefore the

somatic teaching current for Interneurons becomes:

Iteach = gsom(U tgt(t) − U(t)) (4.11)

where U tgt(t) is the backpropagated target potential and U(t) is the somatic

potential.

The nudging of Interneurons happens on a one-to-one basis, therefore the

number of Interneurons in each layer of a dendritic microcircuit must match the

number of pyramidal neurons in the next layer. All the other connections follow

an all-to-all connectivity pattern. Connections are formed between neurons of

contiguous layers only. An example of the connectivity pattern for the Dendritic

Microcircuits is given by the network in Figure 4.4, where all the connections are

all-to-all, except for those explicitly labeled as 1-to-1.
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4.5 Application of the Heterogeneous Partition-

ing

Currently, the most challenging application of the Dendritic Microcircuits is the

classification problem for the MNIST handwritten digits dataset [LBBH98]. The

authors achieved a test error of 1.96% [SPCBS18], which is comparable to state

of the art results for the dataset using non-convolutional ANNs optimised with

Error Backpropagation [LCTA16b]. This section describes the network used by

the authors, together with the steps necessary to implement it on SpiNNaker.

4.5.1 Microcircuit Network for MNIST

The network used for this classification task (shown in Figure 4.4) consists of four

layers (1 input layer, 2 hidden layers and 1 output layer). The input layer contains

the rate generators for the pixels composing each image in the dataset, therefore

784 sources are required (each image contains 28×28 pixels). The first hidden

layer contains 500 pyramidal neurons and 500 Interneurons, the second hidden

layer has 500 pyramidal neurons (matching the Interneurons of the first hidden

layer), together with 10 Interneurons. Finally, the output layer has 10 neurons,

which match the number of possible classes. The 10 output neurons receive direct

feedback during the learning phase from each of the classes. Having mostly all-

to-all connections (except for the ones labeled 1-to-1 in Figure 4.4), the resulting

synaptic matrices are fully connected, strongly impacting the requirements on
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SpiNNaker.

The worst case is given by the first hidden layer, where each pyramidal neuron

is fed by 784 bottom-up connections from the input layer, 500 lateral connections

from the Interneurons in hidden layer 1 and 500 top-down connections from the

pyramidal neurons from hidden layer 2. It is important to notice that, differently

from spike-based SNN where firing is irregular, for rate-encoded networks each

neuron receives inputs from each connection every timestep. This type of encod-

ing requires to process all the incoming information, as missing an input rate has

a stronger effect on the network behaviour, compared to not processing a single

spike.

The worst case is therefore represented by the hidden 1 pyramidal population.

A real-time implementation therefore needs to meet the requirements for this case.

4.5.2 Placements and Constraints

The MNIST dendritic microcircuit involves the use of synaptic plasticity. This

requirement, together with the large number of input signals, requires a timestep

resolution not higher than 1 ms. It is indeed a challenge to perform the weight

updates on SpiNNaker for large networks with tighter resolutions, due to the write

back of updated synaptic rows to shared memory. For this case a timestep-based

structure is preferred. The task involves real-time on-line learning, therefore, to

enforce real-time execution, it has been decided to maintain a timestep-based

structure analogous to that presented in Chapter 2 and 3, where the timesteps

are advanced through the use of a timer. This is preferred to a more general

implementation, where there are no explicit time mechanisms, but the simulation

state is advanced when all the neurons have been updated and the firing rates are

generated. Because of the large number of input signals received every timestep,

it is not possible to process all the necessary information within the timestep

boundaries, by using the standard SpiNNaker toolchain. Therefore an adaptation

of the Heterogeneous Programming model, presented in Chapter 3 is necessary to

maximise the processing capabilities of the system. In order to correctly model

the approach, an analysis of the synaptic update times according to different

numbers of target neurons is necessary. The number of postsynaptic neurons

implemented per core, indeed, impacts the number of synaptic events carried per

packet and therefore the processing time per packet. The connectivity pattern

is mostly all-to-all (which is analogous to a 100% probability of connectivity),
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Synaptic Processing Time
Target neurons Basal Time(µs) Apical Time(µs) Static Time(µs)

1 6.69 6.675 4.975
2 7.725 7.695 5.51
4 9.8 9.74 6.57
8 14.03 13.905 8.775
16 22.33 22.1 12.945
32 39.875 39.395 22.49
64 73.0 72.045 39.455

Table 4.1: Synaptic processing time for 1 rate packet, with different neurons
configurations. From left: basal, plastic apical and static apical synapses.

therefore this means that by adding one neuron per core, each received packet

will contain one more synaptic event. Such analysis is shown in Table 4.1, showing

total synaptic processing time.

The table shows the processing time in µs for a single input rate packet,

measured on SpiNNaker, with different numbers of neurons per core. Each column

corresponds to a specific synapse type. The plastic basal synaptic type is the

leftmost column, followed by the plastic apical and then static apical. Static

synapses are processed faster, since no weight update is required; similarly the

plastic apical are faster than the plastic basal, as the error is calculated over the

compartment voltage, therefore there is no need to calculate the output rates.

By combining these numbers it is possible to determine the time required to

update the synapses for the pyramidal population in hidden layer 1. The relation

is expressed by Equation 4.12.

T = 784 × tbasal + 500 × tapical + 500 × tstatic (4.12)

T represents the time required to process all the synaptic inputs for a timestep

per core, tbasal is the time necessary to process one basal input rate packet, tapical is

relative to plastic apical synapses and tstatic to static apical synapses. Therefore,

by having 16 neurons per core, the synaptic processing time amounts to 35 ms,

which is 35 times larger than the allowed timestep (for real-time simulations), de

facto requiring a 35× slowdown factor. Similarly with 8 neurons per core, the

synaptic processing amounts to 22.33 ms, and to 15.83 ms with 4 neurons per core.

These numbers are far from the real-time requirements and, furthermore, they

do not include the neuron update times. Since the Heterogeneous model allows
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equal splitting of the number of incoming synaptic inputs by performing a source-

based partitioning, it is possible to fragment these synaptic times according to

the number of associated synaptic cores. This is guaranteed by the uniform all-

to-all connectivity pattern. By using 14 Synapse cores therefore, which is the

maximum available on a chip (3 cores are reserved for system purpose as Monitor

core, Extra Monitor core, and Fault tolerance and 1 core is used as Neuron

core), the total synaptic time with 8 neurons per core amounts to 1.60 ms. This,

combined with synaptic processing optimisations, represents a good target for

real-time processing.

4.5.3 Synaptic Matrices in Local Memory

Previous work [RBB+18] has shown that there is a large cost in retrieving synaptic

rows from shared memory, which includes setting up a DMA request, performing

the memory transfer, and then responding to the transfer completion event with

the associated callback. This cost is partially amortised by the spike processing

pipeline, which, when triggered, allows cores to process synaptic events while

other rows are transferred. The fixed cost of setting up DMA transfers and

the interrupt response, however, must be paid regardless. Furthermore, transfer

times can increase due to multiple cores contending the access to memory. Finally,

plastic networks need to write back the updated plastic region of each processed

synaptic row (as detailed in Section 2.6.5), effectively doubling the number of

memory transactions.

Although having the synaptic matrices stored in shared memory is a necessity

in standard SNN simulations, where it is complex to foresee the size of synaptic

matrices, the connectivity patterns are irregular and the number of neurons per

core can be considerably large. For this specific case, the timing constraints limit

the number of neurons per core to 8, which amounts to a total of 1784 presynaptic

units for the pyramidal population hidden layer 1, resulting in a fixed number

of synaptic events of 1784 × 8 = 14272. This means that the synaptic matrix

for each ensemble (block of Neuron core with the afferent Synapse cores), for

the hidden 1 pyramidal population, contains 1784 rows (1284 plastic and 500

static). Each plastic row (according to the synaptic row structure presented in

Figure 4.5) requires 12 Bytes for the regions’ sizes (Plastic, Static and Fixed

Plastic), 4 Bytes for the presynaptic buffer, 4 × 8 = 32 Bytes for the weights,

plus 1 × 8 = 8 Bytes for the synapse type and Neuron ID, which amounts to a
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Figure 4.5: Updated synaptic row for rate-based models to be stored in DTCM.

total of 56 Bytes. Similarly, each static row requires 52 Bytes (12 for the sizes,

32 for the weights, 8 for synapse and neuron ID). Therefore, the total synaptic

matrix will be 56 × 1284 + 52 × 500 = 97.9 KB, which, if divided by the number

of synapse cores for that chip (14) gives 7 KB, which can easily be stored into

DTCM, therefore eliminating the need for transfers to SDRAM and of responding

to the DMA complete interrupt.

One limitation of the all-to-all connector provided by the standard SpiNNaker

toolchain is to assign the same weight value to all the weights. The MNIST task

requires random weight matrices [SPCBS18], with uniform distribution between

-1 and 1. Support for this feature has been added to the matrix generator,

providing the capability of generating random numbers in the range provided by

the user when the connections are specified, by using the support functions from

the math library available to SpiNNaker.

4.5.4 A Plasticity Framework for the Heterogeneous Model

The Heterogeneous model described in Chapter 3 addressed static spike-based

networks exclusively. In order to adapt this approach to on-line learning tasks it

is necessary to include a framework for synaptic plasticity.

Synapse cores require postsynaptic information to update the synaptic weights
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correctly (similarly to what is described in Section 2.6.5). The data required by

the Synapse cores from the Neuron cores changes according to the implemented

neuron model and the compartment type. In all the cases, however, this data

can be defined as a fixed point S1615 value representing the difference between

two rates (or voltages in the case of pyramidal dendritic apical compartments).

The Neuron cores are therefore required to provide the Synapse cores with an

array of these values, where each value is related to a postsynaptic neuron. This

array is called postsynaptic buffer. This aspect represents a challenge in the

implementation of this mechanism, since Synapse cores cannot proceed updating

the synaptic weights, and so processing the synaptic events, until the postsynaptic

buffer is received. The postsynaptic buffer, on the other hand, can be transmitted

only after all the neurons on the Neuron core have been updated for the current

timestep, which subtracts an additional portion of the timestep from the synaptic

update time.

A schematic of the memory interactions for the Heterogeneous partitioning

is shown in Figure 4.6. The execution flow for one Neuron core and one plastic

basal Synapse core is presented. The callback interactions between one Neuron

core and one Synapse core is shown in Figure 4.7, where the memory transfers are

labeled according to Figure 4.6. The communication of the postsynaptic buffer is

handled similarly to the contribution regions via shared memory (the contribution

regions are shown in Figure 4.6, keeping the convention of plastic synapses in blue

and static synapses in red, while the postsynaptic buffer is in brown). The Neuron

cores allocate a second region at the beginning of the simulation large enough to

accommodate all the data belonging to the postsynaptic buffer. Synapse cores

will retrieve the memory addresses for both their contribution region and the

postsynaptic buffer. The Neuron cores, after having updated all the neurons, start

a DMA transfer to SDRAM (labelled with C in Figure 4.6) for the postsynaptic

buffer, copying the content of the local postsynaptic buffer to shared memory.

The Synapse cores use Timer2 to schedule a second event (during the synapse

timer event, as shown in Figure 4.7), which will inform the core about when to

start reading the postsynaptic region from memory. This amount of time can

easily be precalculated by the Python toolchain, since the neuron update time is

fixed and related to the neuron model, and the total time depends on the number

of neurons per core. Therefore, when this time elapses all the Synapse cores start

reading the postsynaptic buffer from shared memory (labeled with D in Figure
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4.6, and 4.7).

In order to optimise the use of the timestep, all the incoming rates, before

reading the postsynaptic buffer, are buffered and preprocessed (yellow events in

Figure 4.7). This operation allows to receive all the packets and have the data

related to the synaptic event processing ready for when the postsynaptic buffer is

received. This is achieved by stopping the rate processing pipeline from process-

ing synaptic rows, until the read event is completed, but the core is allowed to

buffer locally the packet information. Therefore, for each packet received before

the postsynaptic buffer read, the top right line in Figure 4.6 is executed, but the

synaptic row is not retrieved from the synaptic matrix. After the read event is

complete (light purple block in Figure 4.7), an event triggers the synaptic event

processing (red block in figure 4.7). Some input rates can still be received at this

stage, which will be treated the same way as spikes in the standard SpiNNaker

toolchain (therefore unpacked and locally queued for processing). For this type of

application, where the connectivity is very dense and the firing rate high, the rate

processing pipeline takes most of the remaining portion of the timestep. Further-

more, the accumulated input packets allow to perform all the synaptic processing

without stopping and restarting the pipeline most of the times, eliminating the

start-up cost.



132 CHAPTER 4. ON-LINE LEARNING ON SPINNAKER

4.5.5 Rate Live Injector

Given the on-line nature of the learning task, it is beneficial to have a source

population able to take live input and feed it to the network. Furthermore, given

the sizes of common datasets in the field, such as Imagenet [DDS+09] or eMNIST

[CATvS17], it would become impractical, if not impossible to preload locally the

full set onto systems with limited memory such as Neuromorphic hardware.

This led to the development of the Rate Live Injector, which allows to sequen-

tially read one input image and then split this into the correct number of inputs

required by the postsynaptic partitioning. Therefore, while one input image is

presented to the network, the injector acquires the next image and prepares it.

This is performed via alternating two shared memory regions. This system is

composed of a single controller and multiple sources. The controller preprocesses

each image and makes it available for the sources, while each source transmits

one pixel in the form of a rate, with multiple sources on each Source core. Each

SpiNNaker chip implementing a Rate Live Injector contains one Injector core and

up to 14 Source cores. Each Source core can implement multiple sources which

are handled similarly to neurons, therefore they will fire within the boundaries of

the simulation timestep. The mechanism is shown in Figure 4.8.

The Controller core (left) receives the next image to be presented to the net-

work and fragments it according to the number of Source cores on the chip. The

fragmented image is then written into a shared memory region (labelled Future

Rates in Figure 4.8) to be processed by the Source cores. In the MNIST case,

each image is stored into SDRAM in the form of an array of images given the

limited size of the dataset and for simplicity, however it is possible to receive

each image from external sources such as sensors or DVS cameras [LPD08]. The

Source cores read the current rates to be presented to the network from shared

memory (Current Region in Figure 4.8). Each Source core reads from its own

subregion from the memory buffer and then starts sending the rates according

to the number of sources they implement, by extracting each pixel value and se-

quentially generating Multicast packets with payload to be sent to the network.

Each image needs to be kept stable on the network inputs for a fixed minimum

amount of time, which depends on the simulated network. This amount of time

is received by both the Controllers and Sources as a refresh rate in the form of

a number of timesteps. Therefore, the Source cores maintain a counter for each

image they present to the network. When this timer elapses, the Source cores
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Figure 4.8: Memory usage and data structures for the Rate Live Injector imple-
mentation.

perform a new read to shared memory to retrieve the next image. This allows to

reduce the number of shared memory accesses. In order to maintain efficiency,

at the beginning of the simulation, the Controller core of each chip allocates two

memory areas (Current Rates and Future Rates in Figure 4.8). This allows to

process the next image while the current image is still being transmitted, espe-

cially when the exposition time is very short. The two memory buffers are then

swapped every time a refresh occurs (which means that Current Rates becomes

Future Rates and vice versa at every memory read/write).

By allowing up to 14 Source cores per chip, it is possible to match the number

of postsynaptic partitions, therefore controlling the output traffic. Multi-chip

implementations of Rate Live Injectors are also allowed. The Python side of this

module allows specifying how many resources to allocate for it. This is convenient

for datasets having larger images, as it spreads the number of sources over a larger

number of cores. The toolchain is able to configure the application according to

the number of required partitions (on the postsynaptic side) and required source

chips. The dataset will then be fragmented to be sent to the required number

of chips and the controllers will be informed about their respective offset in the

image.
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4.5.5.1 Packet Compression

The rate injector implementation presented in Section 4.5.5 generates very in-

tense traffic. For the MNIST microcircuit the input layer sends 784 packets per

timestep, which will be routed to all the chips implementing the pyramidal pop-

ulation of hidden layer 1. The SpiNNaker communication network struggles to

deal with such intense traffic of packets with payload, resulting in a large number

of packets dumped by the routers and then reinjected, which get delivered late to

postsynaptic cores affecting the synaptic event processing. Given the presented

issue, in this section, a compression mechanism to alleviate communication net-

work overloading is described.

Each pixel intensity value for the MNIST dataset can be expressed between 0

and 255 and this value is then normalised to be between 0 and 1. Such information

can be represented in 8 bits. The payload of a SpiNNaker multicast packet

is 32-bits wide, which means that, since the input connection is all-to-all (all

postsynaptic neurons need to receive all the packets) it is possible to store 4 pixel

values per packet, by correctly shifting them into the payload. This operation

reduces the peak transmission for the input layer to a quarter, as well as reducing

the number of sources to be implemented to a quarter. This also results in fewer

packets being received at the destination, resulting in having the information

locally earlier in the timestep. A schematic of the mechanism is shown in Figure

4.9.

Source cores (left in Figure 4.9) retrieve 4 input rates from the current local

buffer and through shift and mask pack them into a single 32-bit value. This value

is then used as payload for multicast Packets. Synapse cores (right in Figure 4.9),

receive the packet and through shift and mask convert the payload into four S1615

values to be stored into the Input Rate Buffer for standard processing.

The only drawback of this operation is a higher cost upon packet reception for

the postsynaptic Synapse core. Each core needs to unpack the data into 4 values,

instead of simply converting and storing the payload. This means performing

3 additional mask and shift operations per packet. This operation is, however,

amortised by the reduced number of packets (only a quarter are received com-

pared to previous implementations), therefore by fewer event responses. This

compression strategy, however, can only be applied to the input layer, where the

information is encoded on 8 bits. For the neurons’ output rates the maximum

precision given by the S1615 data type is required, therefore each packet can only
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Figure 4.9: Rate compression mechanism. Source cores (left) compress 4 values
into one packet and send it over the network. Synapse cores (right) receive these
packets, uncompress the values and store them into the Rate input buffer.

carry a single rate.

4.6 Results

This section presents results of the execution of the multicompartment models on

SpiNNaker. First the correctness of the implementation is addressed, by replicat-

ing the experiments shown by the authors, then the MNIST classification problem

is investigated.

4.6.1 Correctness of the US Learning Rule

The first experiment aims at verifying the correctness of the learning mechanism

of the Urbanczik-Senn model (described in Section 4.2). In order to demonstrate

the correct behaviour of the model, the original experiment presented by the au-

thors is addressed [US14]. This experiment consists of a supervised learning task,

where a single two-compartment model receives random inputs on its dendrites

through a repeating 200 ms pattern. The replica presented here receives input
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Figure 4.10: SpiNNaker simulation of the Urbanczik-Senn plasticity experiment.

from 200 different input sources as constant input rate, matching the value pre-

sented in the original experiment. The total simulation time is 20.2 s. After 1 s

of simulation the somatic synapses are activated providing an oscillatory excita-

tory input and a constant inhibitory input. The combination of these two inputs

encodes a target potential called UM (or matching potential) by the authors. The

activation of the somatic synapses creates a voltage difference between the two

compartments, as the somatic potential starts to converge towards the matching

potential. This difference triggers the synaptic plasticity in the dendritic synapses

and the dendritic voltage slowly converges to the target potential. After 20 s the

somatic input is removed and the target output is still produced by the neuron,

but in this case is solely driven by the dendritic input, as the somatic synapses

are silent, therefore the learning happened.

Results of the execution of the experiment on SpiNNaker are shown in Fig-

ure 4.10. The red dashed line is UM , the somatic potential is blue, while the

dendritic potential is green. The four phases are indicated below the voltage plot,

where originally Vw matches the target potential, then the difference is introduced

creating divergence between the two potentials. Vw starts then to converge to the

target potential and finally reaches it. The bottom side of the plot shows the

evolution of the excitatory (gE) and inhibitory (gI) conductances over time. The

inhibitory value is static, while the excitatory is obtained by combining a sinusoid

between 0 and 1 with a parabola for the lower phase, in order to match as closely

as possible the results of the authors in the absence of a defined curve. The

experiment shown here is rate-based and the input rate is denoised (fixed to the
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average value shown in the paper), to ensure that the model behaves correctly.

The adopted colour scheme matches the results presented in the paper. In the

final stages of the learning phase, the dendritic potential converges to 0 and does

not reach the minimum value expressed by UM , in accordance to what shown

in the original experiment. This can be explained by the nature of the learning

rule (expressed by Equation 4.6), which employs output rates, which cannot be

negative, as they are obtained as rectified linear unit or sigmoid of the compart-

ments’ voltage. This means that when the somatic potential is negative, the rate

calculated over the target voltage becomes 0. Since the dendritic potential is also

0, there is no learning happening, therefore the dendritic compartment keeps its

voltage value.

It is possible to obtain the same results with the adapted version of the US

model for the dendritic microcircuits. The experiment in this context changes

by directly providing UM as a target to the somatic synapses, instead of the two

separate excitatory and inhibitory components.

4.6.2 Correctness of the Dendritic Microcircuits Learning

After showing the correctness of the plasticity implementation of the Urbanczik-

Senn model on SpiNNaker, the next step consists of simulating the learning mech-

anism presented for the dendritic microcircuits (detailed in Section 4.4). In order

to perform this experiment a network analogous to that presented in Figure 4.3

is used. This experiment is based on the first microcircuit presented in the paper

[SPCBS18]. In this case, the source is a simple rate source transmiting constant

input values to the basal dendrites of the pyramidal neuron. The network is a

two layer network having three populations with a single neuron each. The first

layer contains one pyramidal neuron and one Interneuron (or SST neuron), the

second layer contains one two-compartment neuron, so that it is possible to feed

a teaching current directly to it (as indicated by [SPCBS18]). The bottom-up

basal input is stable, while the teaching current is deactivated originally and then

set to the value 1.0.

The output of the network is shown in Figure 4.11. The top plot represents

the somatic voltage of the pyramidal neuron, the second plot contains the apical

voltage, which increases when a teaching signal is presented, and then slowly

decreases to 0, when the apical plasticity silences the compartment voltage. The

basal compartment is subject to plasticity as well, therefore the voltage value
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Figure 4.11: SpiNNaker simulation of the dendritic microcircuit learning rule.
The simulated network is a two-layer network with 1 Pyramidal neuron, 1 In-
terneuron and a Top-down 2-compartments neuron, replicating the first experi-
ment presented in [SPCBS18]. From top to bottom: Somatic potential, Apical
Dendritic potential, Basal Dendritic potential of the Pyramidal neuron, Somatic
potential of the Interneuron, Somatic potential of the Top-down neuron. The
network slowly converges to the self predicting state.



4.6. RESULTS 139

Figure 4.12: SpiNNaker simulation of the self-predicting state convergence. The
simulated network is a three-layer network (30-20-10). Left side shows pre-
learning outputs, right side shows post-learning values. From top to bottom:
top-down output voltage compared to lateral cancellation, sensory input and api-
cal voltage. Values sampled from random neurons in the network.

is initially stable when there is no teaching input, and then starts increasing

until the network stabilises due to the learning rule (middle plot). The last two

plots represent the somatic potential of the Interneuron (SST) and of the two-

compartment output neuron respectively. The Interneuron tracks the behaviour

of the output neuron and they both slowly converge to the teaching value, which

is 1.0. The network is simulated in the absence of background noise, to prove the

correctness of the mechanism.

4.6.3 Dendritic Microcircuit and Self-Predicting State Sim-

ulation

After having isolated the learning rule and shown the correct behaviour on SpiN-

Naker, the next experiment consists in simulating the convergence to the self-

predicting state for a network. To demonstrate this, the experiment conducted

in the supplementary material of the original paper [SPCBS18] was replicated.

A three-layer network with one hidden layer and 30-20-10 pyramidal neurons

(input-hidden-output) was simulated. The network does not receive any teaching

signal, resulting in the output values being driven solely from the inputs. Back-

ground noise was introduced in this context as described by the paper in the

form of input current injected into the neurons as white Gaussian noise having

parameter σ=0.1. The results are presented in Figure 4.12.

The left side of Figure 4.12 shows pre-learning values, while on the right side

post-learning values are shown. The top line presents top-down somatic voltage
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(blue) compared with lateral cancellation (orange). The values are sampled from a

random neuron from the output layer and the corresponding Interneuron from the

hidden layer, consistently with the original experiment. The middle line shows

the sensory input presented to the network. The same pattern was presented

1000 times before sampling the post learning values. Finally, the bottom line

shows the apical compartment voltage from a randomly sampled neuron. It is

possible to notice that, in the pre-learning stage, the top-down feedback and

lateral cancellation voltages are misaligned, together with large oscillations of the

apical voltage. When the network starts to converge to the self predicting state,

apical fluctuations are reduced (oscillating between -0.4 and 0.6 in a post learning

situation) and the lateral Interneuron learns to match the top-down signal. The

remaining small oscillations are caused by the background noise acting on the

compartment potentials.

4.6.4 Nonlinear Regression Task

A more complex task consists of approximating non-linear output generated by

another network. Therefore a 3-layer network of size 3-4-2 (input-hidden-output)

can learn to associate sensory input to the output of a second network (having

the same size) that transforms the same input.

The first network will be referred to as “student” from here on, while the

second one as “teacher”. The teacher network does not receive any teaching

signal, therefore the outputs are solely driven by the input, while the student

network receives the outputs of the teacher network as teaching signals. The

two networks have the same structure, but different weight initialisation, but in

both cases the values are drawn from a uniform distribution in the range [-1, 1].

Results of the execution are presented in Figure 4.13.

The structure of Figure 4.13 is analogous to Figure 4.12, where the left side

shows pre-learning outputs and the right side shows convergence after the learning

phase. The sensory input is shown in the middle line and has a period of 1000

timesteps (1 s). The same pattern was presented 10000 times at the inputs of both

networks and a convergence is reached after the learning phase. The background

noise is activated for the student network and the convergence of the output is

observed (the orange line shows the student’s outputs, while the blue line the

teacher’s). Similarly to the previous experiment, the presented output is sampled
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Figure 4.13: SpiNNaker simulation for a nonlinear regression task. The two
simulated networks are 3-4-2 size. Left side shows pre-learning outputs, right
side post-learning. From top to bottom: comparison between teacher output and
student output, sensory input and apical compartment convergence; samples are
taken from randomly chosen neurons.

from random neurons (matching the indices between the two networks). The self-

predicting state is reached, as shown by the bottom line, as the apical voltages

converge to 0 and oscillate between -0.06 and 0.06.

4.6.5 The MNIST Challenge

The most challenging task explored here is the classification of the MNIST dataset.

Several features introduced in Section 4.5 are developed to target this task. The

full network, shown in Figure 4.4, can be placed on 159 SpiNNaker chips (8 neu-

rons per chip for the Pyramidal populations, resulting in 125 chips and 16 neurons

per chip for the Interneurons, resulting in 34 chips), plus 2 chips for the sources

and 1 for the teacher, resulting in 162 chips. This requires 4 SpiNNaker boards.

According to the authors a good convergence (below 2% error) is reached after

200 trials of the dataset [SPCBS18], however the authors do not specify how long

every image should remain stable at the inputs of the network.

The first simulations were performed with 100 timesteps per input, running

200 trials of the dataset. The SpiNNaker system, however, struggles with such a

network, as the communication network cannot deal with this traffic. For the first

trial the system seems to cope with the amount of information (while recording

some packet losses), however, running the network for longer results in these

numbers largely growing, having packets delivered several timesteps later than

expected. This is exacerbated by the board-to-board connections handled by the

FPGAs, infact smaller networks spanning over a single board experience fewer

critical losses. Ad-hoc placement strategies might mitigate the issue, however
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these are not explored in this thesis.

4.7 Discussion

Learning tasks are computationally expensive and power hungry. Traditional

approaches such as error backpropagation with gradient descent require consid-

erable time for the error backpropagation phase, where the simulation needs to

be paused until the gradient descent phase is completed. This becomes imprac-

tical for large networks, where learning times become dominant over simulation

times and power consumption grows. These methods furthermore are believed

to be biologically-implausible [IGB19, Hun]. Several attempts at finding biology-

like learning rules are presented nowadays. One example is given by the Den-

dritic Microcircuits presented in this chapter and developed by Sacramento et

al. [SPCBS18]. The learning approach can be potentially implemented on Neu-

romorphic hardware, by exploiting strategies such as the Heterogeneous model

in order to process all the incoming information within the timestep boundaries.

However, the dense nature of this problem shows additional limitations of Neu-

romorphic hardware, which struggles to deal with such intensive communication

at the network level. Therefore more effective placement strategies are required

to tackle the bottleneck caused by the SNN, in order to correctly simulate more

complex tasks.

4.8 Summary

The aim of this chapter is to address the second research question presented

in Section 1.2, which states: What are the challenges of implementing on-line

learning algorithms in real time on Neuromorphic hardware?

These are presented throughout the chapter, together with possible approaches

targeting them. The implementation of such rules is achieved through the ap-

plication of the Heterogeneous Programming model to the context of on-line

learning strategies employing multicompartment neuron models. The presented

learning rule uses rate-based networks to approximate the error backpropagation

algorithm. The correctness of the approach has been explored on SpiNNaker

through isolated simulations of a controlled network, and through the use of the

Heterogeneous model, together with optimisation techniques enabling simulation
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of neural dynamics in real-time. However, because of the dense connectivity pat-

terns, combined with intensive communications, the underlying communication

network struggles to deliver all the information to the destinations in time. This

prevents the correct execution of more complex tasks, which will require more

targeted placement strategies to optimise the use of forwarding points.





Chapter 5

Multi-Target Partitioning

5.1 Introduction

Large biologically-representative SNNs, such as the Multi-Area model of macaque’s

visual cortex [SBS+18], simultaneously present extremely sparse connectivity pat-

terns among different regions, representing long-range connections, and very high

neuron input activity, due to the massive number of simulated neurons. De-

spite the improvements shown in Chapter 3, when scaling up parameters such as

sparsity of connections and neurons fan-in to these levels, the Heterogeneous Pro-

gramming model fails to achieve real-time performance. This Chapter therefore

presents a new partitioning strategy evolving from the Heterogeneous Program-

ming model, to address higher sparsity levels for SNN simulations and to further

increase the peak synaptic event processing per timestep, allowing a higher den-

sity of neurons per chip compared to previous results.

This new model originates from the idea of extending the concept of neu-

ral ensembles presented in Chapter 3, by employing Multi-Target Synapse cores.

This means that each Synapse core can now receive synaptic inputs for more

than one postsynaptic target Neuron core, instead of employing a single Neu-

ron core per ensemble as for the Heterogeneous Programming model. This work

builds on all the previously presented aspects, starting from the Heterogeneous

model, including plasticity. The focus of this study is real-time simulation of

spike-based biologically-representative SNNs addressing extremely sparse exam-

ples. The work presented in this chapter has been published in the form of journal

article [PR22].

Section 5.2 presents an introduction to this work and the motivations that

145
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led to it. Section 5.3 describes the SpiNNaker implementation of the Multi-

Target partitioning, detailing the used memory structures and the changes to the

software toolchain both for the static and plastic case. Section 5.4 shows the

results of this approach, in terms of memory contention and response time, peak

synaptic event processing and handling of sparsity, together with comparisons

with previous results.

5.2 Why Multi-Target Synapse Cores?

The improvements offered by the Heterogeneous Programming model presented

in Chapter 3 allowed to increase efficiently the number of synaptic events that

can be processed per timestep, by a performing targeted parallelisation of tasks.

The introduction of Synapse cores allows decoupling of the spike processing phase

from the neural state update, through the use of dedicated units for each different

task. Through this approach, it is possible to exploit the parallelism of digital

Neuromorphic hardware, such as SpiNNaker, to allocate multiple synaptic pro-

cessing units, in order to increase the input processing capabilities per neuron.

This results in a linear increase in the synaptic event throughput, according to

the number of employed synaptic units. Thanks to the synapse and neuron de-

coupling it is also possible to perform a more efficient partitioning of the synaptic

matrices, generating longer synaptic rows, as Neuron cores can simulate a larger

number of neurons, having the sole task of updating their internal state. The ma-

trices are therefore partitioned horizontally, and so by presynaptic id, resulting

in the Synapse cores implementing all the synapses (for all the postsynaptic neu-

rons implemented by the connected Neuron core) for a given presynaptic neuron,

and therefore the full synaptic row. Longer synaptic rows mean fewer accesses

to memory, which in turn result in fewer context switches and contention, and

in amortising the memory access time over a larger number of synapses. Longer

synaptic rows improve the handling of sparser networks too, as they reduce the

probability of zero target spikes, which are spike packets carrying a spike with

no target neurons when received on a postsynaptic core (i.e. the synaptic row is

empty). These are common in sparse SNN simulations, where the connectivity

is low and therefore presynaptic neurons form few connections with postsynaptic

neurons. This results in spike packets to be generated and delivered, but only a

limited number of postsynaptic processors will produce synaptic events, due to
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Figure 5.1: Synaptic matrix partitioning for the Multi-Target approach. The used
network is the same shown in Figure 2.9 and Figure 3.1 Here Synapse cores have
much longer synaptic rows, further reducing the risk of empty rows, therefore
fewer resources are required. The generated ensemble is shown on the right.

the low connectivity probability. These packets represent an issue, as they can

only be detected after a row has been retrieved from SDRAM, resulting in wasted

computation. Furthermore this type of packet represents additional information

which is propagated through the communication infrastructure, increasing the

risk of routers congestion.

The Heterogenous Programming model only partially addresses the issue of

zero target spike packets, as the number of synapses per Synapse core is limited

to the number of neurons that can be simulated on a single Neuron core. This

limits the maximum synaptic row length to the number of neurons per Neuron

core.

This chapter presents an evolution beyond this limitation. By allowing Synapse
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cores to target multiple Neuron cores, it is possible to generate even longer synap-

tic rows, further reducing the chance of zero target packets. This in principle

extends the synaptic row length limit to the sum of the postsynaptic neurons

that can be simulated on a chip, instead of a single core. This approach is also

advantageous because it offers a customised strategy, which can adapt to the net-

work to be simulated. Therefore sparser SNNs can benefit of a reduced number

of Synapse cores, in favour of more target Neuron cores and, viceversa, networks

presenting a high fan-in will map ensembles with a predominance of Synapse

cores.

An example of matrix partitioning according to the Multi-target approach is

shown in Figure 5.1. The synaptic matrix shown in this example is the same used

for Figure 2.9 and Figure 3.1. In the Multi-target case, by allowing Synapse cores

to target 2 Neuron cores each, the length of the implemented synaptic rows per

Synapse core doubles, therefore only 2 Synapse cores are now necessary, resulting

in no empty rows. This new partitioning approach also performs a more efficient

use of the available hardware resources (as shown in Figure 5.1), reducing the

number or processors necessary to simulate the same network, compared to the

Heterogeneous Programming model. This results in a higher density of neurons

per chip compared to the example shown in Figure 3.1.

E = [
tp − t1st − tlast

tspike
+ 2]PN (5.1)

tp = ∆t− tw − tr (5.2)

tw = 1.34 + 0.95Sc − 0.02Nc + 0.58NcSc (5.3)

tr = 1.22Sc + 0.4Nc − 0.21 (5.4)

N = nNc (5.5)

tspike = msPN + cs (5.6)

To evaluate the performance of the Multi-target approach, an updated cost

model is required. The maximum amount of synaptic events that can be processed

in a timestep, can be obtained by evolving the models presented in Chapter 2

(Equation 2.7) and Chapter 3 (Equation 3.1). This value is now modeled by

Equations 5.1-5.6.

The components are similar to the Heterogeneous Model case, where E is the
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number of synaptic events per timestep per Synapse core, tp is the fraction of the

timestep available for spike processing, t1st , tlast and tspike are the times necessary

to process the first, the last and a generic spike in the pipeline respectively. P

represents the connectivity probability. However, differently from the Heteroge-

neous partitioning case (Equation 3.1), N depends now on the number of Neuron

cores connected to each Synapse core. This value is obtained by multiplying the

number of neurons per core (n) by the number of connected Neuron cores (Nc),

as shown in Equation 5.5. This reflects also on the spike processing times, as

shown by Equation 5.6, where the variable cost is now multiplied by the total

number of neurons targeted by the spike, therefore by the Synapse core, as the

number of postsynaptic targets per spike is now larger. tp is obtained by subtract-

ing from the full timestep duration (∆t) the reading and writing contributions

times (tr and tw respectively), similarly to the Heterogeneous case. Reading (tr)

and writing (tw) times however now depend on the structure of the ensemble, as

both contention and size of the transfer play a key role. The values reported here

are obtained by profiling execution. These reflect the measurements presented in

Section 5.4.1.1 for tr and 5.4.1.2 for tw. Both the equations are obtained as linear

regression of the measured values and take into account the number of involved

Synapse and Neuron cores of the ensemble.

5.3 Multi-Target Synapse Cores Implementa-

tion

This Section describes the implementation of the Multi-target partitioning on

SpiNNaker. This approach requires a restructuring of the used memory struc-

tures, as well as a reorganisation of tasks among different cores. The network

partitioning is performed in the same way as for the Heterogeneous model, how-

ever, the core interactions and dynamics change significantly. These changes are

addressed separately in Section 5.3.1 for the memory allocations and Section 5.3.3

for the cores interactions. Section 5.3.4 presents the adaptations required to in-

clude the synaptic plasticity framework into the Multi-target implementation of

the neural ensembles.
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5.3.1 Memory Usage

The shift in paradigm presented in this chapter requires a different memory ar-

rangement, and consequently results in an increase in shared memory accesses

per timestep, to retrieve the synaptic contributions. Shifting from a many-to-one

(neural ensembles for the Heterogeneous model, having multiple Synapse cores

targeting a single Neuron core) to a many-to-many scenario (the Multi-target

partitioning) brings additional complexity on the shared memory regions han-

dling. Furthermore, more accesses results in increased memory contention, with

a further reduction in the effective spike processing time (as shown in Equations

5.2-5.4).

An efficient memory allocation and use is therefore required. This section

addresses two steps taken to mitigate this potential memory issue. The first

consists in a new distribution of the shared regions for the neural ensemble,

while the second proposes the use of multiple memories in order to reduce access

contention.

5.3.1.1 Memory Regions Redistribution

The Heterogeneous model shared memory interaction was based on a larger shared

memory block allocated in SDRAM by the Neuron cores, which was accessed in

form of smaller subregions by the Synapse cores (as detailed in Section 3.2.2.2).

For the Multi-Target partitioning, the memory allocation is reversed. An example

of the data structures employed for this new method, using 2 Synapse cores and

3 Neuron cores, is shown in Figure 5.2. Each Synapse core allocates a memory

region which is large enough to store all its synaptic contributions. Therefore,

this contains all the synaptic input buffer slots for all the neurons implemented

by the targeted Neuron cores. The Neuron cores access their own subregions by

retrieving the subset of contributions for their neurons for the current timestep.

This allows each Synapse core to perform a single write operation to shared

memory per timestep, instead of one per target Neuron core. The cost is however

paid on Neuron side, as Neuron cores have to perform as many reads as the

number of afferent Synapse cores. The reason behind this choice is due to the

higher efficiency on SpiNNaker of read operations compared to write operations

[PPG+13]. Therefore it is more efficient to have a single larger write on one side

combined with multiple smaller reads on the other side, than vice versa.
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5.3.2 Dual Memory Use

The memory contention problem has a large impact on the portion of the timestep

available for spike processing. Previous works demonstrated that multiple cores

accessing shared memory at once show faster degrading performance than per-

forming fewer longer transfers [RBB+18, RPR+19]. A viable solution to tackle

this problem is to make use of both the shared memories provided on chip. As

described in Section 2.5.1, each SpiNNaker chip as an off-chip SDRAM 128 MB

wide and an on-chip SysRAM 32 KB wide. Part of the SysRAM is used by the

Monitor core for system operations such as handling of Point-to-Point packets or

monitoring purposes. However, from experimental readings, 22 KB are available

and can be used by Application cores. One adidtional aspect that makes Sys-

RAM potentially a good choice to alleviate memory contention is that the two

shared memories (SDRAM and SysRAM) are on different bars of the cross-bar

composing the System NoC, therefore two separate cores accessing the two dif-

ferent memories at the same time would not create contention. A drawback of

using SysRAM however is that, although the access is faster than SDRAM (being

SysRAM on-chip), the transfer data rate is lower, as the SDRAM memory has a

DDR implementation. This can however be averaged out with the faster access

when transfers are relatively small, such as the case of synaptic contributions.

A dual memory system is therefore employed (as shown in Figure 5.2), which

informs the Synapse cores on which memory to use as destination for their

synaptic contributions. The shared memory is selected according to the phys-

ical Synapse core ID. This allows to spread evenly the contributions between the

two memories. Both memories are part of the system memory map, therefore the

allocation can be performed simply by specifying the correct memory heap, and

the address retrieval is transparent to this operation.

5.3.3 Cores Interaction

Together with a different memory allocation, the cores interaction for the Multi-

Target partitioning presents some differences. A schematic of the employed mem-

ory structures and the interactions is presented in Figure 5.2. The task scheduling

is analogous to that shown in Figure 3.4, however the memory structures and the

interactions between them and the cores change according to Figure 5.2.

The example shown in Figure 5.2 presents 2 Synapse cores targeting 3 Neuron
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Figure 5.2: Memory usage and data structures for the Multi-Target partitioning
approach on SpiNNaker (static version), for the case of 2 Synapse cores targeting
3 Neuron cores each. Both shared memories are shown with region allocation.

cores each. The host side SpiNNaker toolchain is provided with an additional

parameter per Population which indicates the number of target Neuron cores

per Synapse core. According to this value, a list of parameters is generated.

This includes the correct offset for neuron indices and the list of connected core

IDs (which means the afferent Synapse core IDs for each Neuron core and the

postsynaptic Neuron core IDs for each Synapse core). The whole ensemble needs

to be placed on a single chip, as for the Heterogeneous partitioning. Therefore

this constraint is specified to the mapper in the SpiNNaker toolchain. Each

Neuron core receives one offset parameter. This indicates its position in the neural

ensemble from the Synapse cores perspective. This parameter is useful to locate

the memory subregion from which the Neuron core will read the contributions.

At the beginning of the simulation, each Synapse core allocates its contribu-

tion region in one of the two shared memories, corresponding to its core ID, as

described in Section 5.3.2 (these correspond to the blue region for Synapse core 1

and to the green region for Synapse core 2 in Figure 5.2). Each region is tagged

using the core ID as unique identifier. During the first simulation timestep, each

Neuron core retrieves the array of memory addresses corresponding to each af-

ferent Synapse core, by using the list of connected Synapse core IDs provided by
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the Python toolchain (therefore Neuron core 1 has N1 from both the blue and

green regions, Neuron core 2 has N2 and Neuron core 3 has N3 in Figure 5.2).

The SpiNNaker API allows retrieval of memory addresses from different heaps,

by just specifying a memory tag, provided that this memory region is inside the

system memory map. This last operation is performed after the neuron state

update for timestep 0, when the Neuron cores are usually idle. This guarantees

that possible spikes due to above threshold initialisations are generated as soon as

possible in the timestep. Furthermore, during the first timestep the Neuron cores

do not receive any synaptic contributions, therefore it is sufficent to initialise the

local regions to 0 values and to skip the read phase for this timestep.

As shown in Figure 5.2, Synapse cores receive spikes starting from the first

timestep and process them in the same way as described in Chapter 3. This entails

unpacking each spike, retrieving the synaptic row address through the Master

Population Table, reading the row from the Synaptic matrix in SDRAM and

then adding the synaptic weight to the correct contribution slot of the synaptic

input buffer (blue and green for Synapse core 1 and 2 respectively), according

to neuron ID and delay. The difference in the Multi-target approach consists of

having longer synaptic rows, which therefore increase the chance of connections

in case of sparse networks, and also reduce the number of accesses to shared

memory, due to a larger number of synapses read per row at a time. This is

however paid at the cost of longer processing time per received spike packet (as

shown in Equation 5.6). At the end of the timestep, the synaptic input buffer

corresponding to the next simulation timestep is written to shared memory by the

Synapse cores. Again, similarly to what is described in Chapter 3, a Timer2 event

informs the Synapse cores to start writing the contributions, and the writing time

is calculated according to the Synapse cores and target Neuron cores allocated

for the simulation (according to Equation 5.3). The written contributions contain

the synapses for all the target Neuron cores. Therefore, as shown in Figure 5.2, if

there are 3 target Neuron cores, each Synapse core will write the synaptic input

buffers for all of them in the correct memory (therefore Synapse core 1 writes

into SDRAM its contributions for Neuron core 1, 2 and 3 and Synapse core 2

does the same into SysRAM).

Neuron cores, at the beginning of each timestep, send DMA read requests

for the contributions subregions from the connected Synapse cores. The time

required to read the memory regions is a crucial design parameter, because it
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sets a boundary on when the Neuron core can generate the first spike. In fact

until all the contributions are read, the Neuron cores cannot start processing

the neural state updates. This reflects on when postsynaptic Synapse cores can

start receiving spikes, effectively reducing the spike processing window. It is

therefore of paramount importance to reduce this reading interval as much as

possible. In order to address this issue, Neuron cores are instructed to perform

out-of-order read operations of the sub-regions. This means that, based on the

Neuron core ID, the first read region will be either from SysRAM or SDRAM.

This effectively halves the Neuron cores accessing the same memory at the same

time, by explicitly instructing half of them to first read from SDRAM and the

other half from SysRAM. After each read is completed, each Neuron core sends

the subsequent request to the other memory.

Each Neuron core, before starting processing the neural state update, needs

to wait for the completion of the read of all its memory subregions. This is per-

formed, similarly to the Heterogeneous model, by having the cores busy waiting

on a flag variable. In this case however, the variable is set to True when cumu-

latively all the reads have completed. Therefore each read completion triggers

an event which increments a counter. When this counter reaches the cumula-

tive value of the required reads (corresponding to the number of afferent Synapse

cores), it sets the flag to True, enabling the Neuron core to start performing the

state update.

The neural state update is performed sequentially per neuron similarly to

the previous implementations, however, to optimise the contribution summation

phase for each neuron, the synaptic data on Neuron core side is stored into a

matrix-based structure, which is accessed as shown in Figure 5.3.

The example shows the case in which 2 postsynaptic Neuron cores imple-

menting 8 neurons each receive contributions from 3 excitatory and 2 inhibitory

Synapse cores. The contribution regions are stored into SDRAM and each Neuron

core retrieves its subregion. After the data is locally loaded, each Neuron core has

a local matrix where each row represents the contributions of a specific Synapse

core, and each column contains the contributions for a postsynaptic neuron. The

synaptic summation loop therefore, for each neuron, accesses the corresponding

column and sums the contributions as shown in Figure 5.3. Since the number

of Synapse cores per synapse type can change according to the application, this

is provided by the Python toolchain to each core for each synapse type. The



5.3. MULTI-TARGET SYNAPSE CORES IMPLEMENTATION 155

SDRAM
Exc Syn_contr 1

Exc Syn_contr 2

Exc Syn_contr 3

Inh Syn_contr 1

Inh Syn_contr 2

0          1          2           3         4          5          6          7          8          9         10        11    12       13        14        15

Neuron Core 1 Neuron Core 2
0          1          2           3         4          5          6          7                               8          9    10        11        12       13        14        15

Input_current[2] = C1 + C2 + C3 - C4 - C5

C1

C2

C3

C4

C5

Input_current[12] = C1 + C2 + C3 - C4 - C5

C1

C2

C3

C4

C5

Figure 5.3: Synaptic contribution arrangement and summation for 2 postsynaptic
Neuron cores receiving from 3 excitatory and 2 inhibitory Synapse cores.

offset calculation is therefore performed efficiently. Once the input current is cor-

rectly calculated, and all the contributions are added together, the neural state

is updated according to the implemented neuron model.

5.3.4 Synaptic Plasticity

The Multi-Target partitioning can be extended to include support to synaptic

plasticity. For plastic networks, the time required to process synaptic events is

higher compared to the static case, as a weight update phase is needed. Therefore

simulations of plastic SNNs would also benefit from reduced processing time per

synaptic event. This section therefore shows the changes to the cores interaction

in order to perform such a task. A schematic of the updated approach is shown

in Figure 5.4.

The presented core allocation is analogous to that shown in Figure 5.2, where

two Synapse cores target 3 Neuron cores each. The addition required by synaptic

plasticity is a postsynaptic buffer including spiking information for the postsy-

naptic neurons. In a spike-based context, Synapse cores only need to be informed

whether postsynaptic neurons generated a spike or not this timestep. The way

this is handled is through an array of flags where each slot corresponds to a

postsynaptic neuron. All Synapse cores share the same postsynaptic region (red



156 CHAPTER 5. MULTI-TARGET PARTITIONING

SDRAM
N1

N1

N3

N3

N1

N3

N1

N2

N1

N2

N1

N2

N3

N3

N3

N1

N2

N3

N1

N2

N3

Neuron Core 1

Neuron Core 3

Synapse Core 1

Synapse Core 2

Weight
Update

Synaptic
Contribution

Synaptic MatrixIncoming
Spike

Synaptic Row
Address

Postsynaptic history

Postsynaptic history

Synaptic
Input
Buffer

N2

N2

N2

Compute Currents

Update Neuron State

Generate spike

Update Spike buffer

For each neuron on core

Neuron Core 2

SysRAM

Figure 5.4: Memory usage and data structures for the Multi-Target partitioning
approach on SpiNNaker (plastic version), for the case of 2 Synapse cores targeting
3 Neuron cores each. Both fixed point shared memories are shown with region
allocation.

region in Figure 5.4), therefore this area is allocated into SDRAM by the Synapse

core of the ensemble having the lowest index, and the address is retrieved by all

the other Synapse cores. The Neuron cores get the address in the same way as

the synaptic contributions, and will use the same offset to get access to their

specific sub-regions. This region is tagged through a unique ID generated by the

Python toolchain.

During each timestep, as Neuron cores update the neural state, they set each

corresponding field of the postsynaptic buffer either to 1 (if the neuron spiked)

or 0 (if the neuron did not spike). After all the Neurons have been updated, the

postsynaptic buffer is written to SDRAM by each Neuron core. Each Synapse

core can then read the postsynaptic buffer of the connected Neuron cores in a

single memory transfer. This step is scheduled to happen after a fixed amount of

time (for a given configuration), as the Neuron cores require a fixed amount of

time to update the neural state and write back the postsynaptic buffers. Once

the buffer is read, each Synapse core processes the postsynaptic events for all

the synapses and updates the postsynaptic history trace (purple in Figure 5.4).

All the incoming spike packets received up to this point are buffered similarly
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to what is described in Chapter 4, but the spike processing pipeline is prevented

from being started, in order to allow a correct update of the postsynaptic history

trace first. The completion of the postsynaptic history trace update triggers the

spike processing pipeline, which starts processing spike packets, updating weights

and then filling the synaptic input buffers to be transmitted to the Neuron cores,

following the same approach described in Section 5.3.3.

5.4 Results

This section presents benchmarking of the Multi-target partitioning on SpiN-

Naker. The performance of the approach is measured according to system mem-

ory (in Section 5.4.1), peak synaptic events throughput (in Section 5.4.2) and

connection sparsity (in Section 5.4.3).

5.4.1 Memory Benchmarking

This first experiment measures the impact of writing and reading the synap-

tic contributions between Synapse and Neuron cores under the new ensembles

scheme, showing timings for each possible combination of Neuron and Synapse

cores on a chip. For each arrangement timings are presented for both the Sys-

RAM + SDRAM case, and the SDRAM only case. The results are presented

in form of heatmaps, where the horizontal axis shows the number of employed

Synapse cores, while the vertical axis the Neuron cores. All the Synapse cores

for each case are connected to all the Neuron cores of the same case. To avoid

interference with external events, and therefore to isolate the transfer times, the

values are sampled in the context of a neural simulation in absence of spike pack-

ets. Therefore the standard neural state is updated, but the spike processing

pipeline and the spike generation phases are turned off. This prevents neural

processing from increasing contention, while maintaining the characteristics re-

quired by SNN simulations. Each simulation is run for 100 timesteps and read

and write times for each core for each timestep are recorded and extracted at the

end of the simulation. The presented results are obtained from 10 runs of the

same simulation, with different cores placements, in order to ensure consistency.

The reported values show worst, best and average case transfer times obtained

by the test. Worst case values are fundamental to estimate the impact of mem-

ory access time on the approach, and to correctly allocate timings to allow the
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processors to initiate DMA transfers in time to maintain real-time performance,

adapting them to the application requirements. Average and best cases provide

a more detailed analysis on the general performance of the memory operations,

showing where optimisations are possible.

5.4.1.1 Reading Times

The results are presented in the form of heatmaps, where the horizontal axis

contains the number of Synapse cores and the vertical axis the Neuron cores.

Each square provides the result for an ensemble composed of the number of

Synapse cores indicated by the column, targeting the number of Neuron cores

indicated by the row. The maximum number of cores that can be used on a

chip for SNN simulations is 15, therefore the cases in purple are configurations

not allowed. The case with a single Synapse core is omitted, as the transfer

terminates before the recording callback returns, therefore it does not affect the

processing times. Reading times are measured in µs.

The timings have been extracted in the context of a neural application sim-

ulating 64 LIF neurons per Neuron core. Each synaptic weight is stored on a

16 bit (2 B) integer, meaning the contributions of a Synapse core targeting a

single Neuron core amount to 64 × 2 B = 128 B (each DMA read has this fixed

length). An increase in the number of cores results in an increase in contention

and number of memory transfers.

Worst case reading times are presented in Figure 5.5. The top left plot shows

results employing both SysRAM and SDRAM, the top right plot contains results

when using only the SDRAM memory, and the bottom plot presents the case

by case ratio between SDRAM only and dual memory times. By increasing the

number of Synapse cores (moving from left to right on the horizontal axis), the

number of reads per timestep per Neuron core increases. Reads are scheduled by

the Neuron cores at the beginning of the timestep and performed sequentially,

since there is a single DMA engine. As expected, for both the plots, the case with

a single Neuron core (first line), shows linearly increasing reading times. The use

of two separate memories does not influence this aspect, as one read at a time

is performed. However it is observed that times in the dual memories plot are

slightly lower. This is due to half of the Synapse cores contributions being stored

into SysRAM which has a lower access time than SDRAM, therefore providing

faster access. By increasing the number of Neuron cores (from top to bottom on
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Figure 5.5: Comparison of worst case reading times between dual memory usage
(top left) and SDRAM only (top right). Ratio between the two cases is shown
as well (bottom). All the allowed configurations of Synapse and Neuron cores
allowed by a chip are presented.



160 CHAPTER 5. MULTI-TARGET PARTITIONING

the vertical axis), the contention increases, as multiple Neuron cores try to access

shared memory to retrieve their synaptic contributions simultaneously. This case

demonstrates the benefits of having two different memories in use with separate

access. The SysRAM + SDRAM case indeed performs generally better than the

single memory case allowing a gain up to 4 µs. There are, however, some isolated

allocations where the single memory case performs better. This is probably due

to a bad allocation of the cores on the chip, which results in a slower access to

memory. Core allocation affects the memory access time, as to grant fairness,

access to memory is regulated by a binary tree with arbiters at every junction

point, as detailed in Section 2.5.1. A situation where the allocation of Synapse

cores is unbalanced can cause higher contention between memory requests, as

requests coming from more populated branches of the tree need to be filtered by

multiple arbitration steps. Cores are assigned by the SpiNNaker toolchain during

the placement phase. The values reported here represent the measured worst case

reading times, therefore they are likely to represent the worst allocation of cores.

The worst case for both the experiments happens with 14 Synapse cores, which

represents the placement with the highest number of sequential reads, performed

by a single Neuron core. Furthermore, by keeping the number of Synapse cores

constant, and increasing the Neuron cores, the transfer time becomes higher,

as the reading contention increases. This reduces the portion of the timestep

available for neural processing. It is therefore of paramount importance to un-

derstand the requirement of the SNN to be simulated, in order to determine the

appropriate number of Synapse cores to allocate per Neuron core.

The worst case analysis is important from a reading perspective to understand

when the Neuron cores will start to fire, as the read phase must precede the neural

state update and therefore Neuron cores must wait until this phase is completed

before processing the neuron state update.

Figure 5.6 contains the best case reading times. Comparing the two cases

(single vs dual memory), the dual memory allocation always provides better re-

sults than the SDRAM only case, especially when the contention increases (from

top to bottom) and the number of transfers per core becomes higher (from left to

right). It is important to notice the difference between best case and worst case,

to understand how much the placement of cores impacts the measured times.

Best case reading times show improvements of up to 5 µs, representing a con-

siderable impact on 0.1 ms timesteps simulations (5% of the overall simulation
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Figure 5.6: Comparison of best case reading times between dual memory usage
(left) and SDRAM only (right). Ratio between the two cases is shown as well
(bottom). All the allowed configurations of Synapse and Neuron cores allowed
by a chip are presented.
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Figure 5.7: Comparison of average reading times between dual memory usage
(left) and SDRAM only (right). Ratio between the two cases is shown as well
(bottom). All the allowed configurations of Synapse and Neuron cores allowed
by a chip are presented.

timestep).

Similar considerations can be seen for the average case, shown in Figure 5.7.

The average values however are closer to the minimum, for most of the cases,

which shows that the majority of the cores act similarly to the best case, and

that the worst case tends to be isolated.

The core allocation phase therefore plays a key role in the memory timings.

This is confirmed by the presented results, and suggests that a more targeted

placement can achieve lower access times. This can be performed by informing

the SpiNNaker toolchain of the type of cores (Synapse and Neuron cores), so

that the most critical processors, according to the application requirements, are

placed on less contended branches of the memories access trees. This is however a
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non-trivial operation, as, due to fault tolerance, it is hard to predict which core is

available on each chip, and whether all the cores on the chip will be functioning.

5.4.1.2 Writing Times

The measurements for the writing times are shown in Figure 5.8: the top left

plot shows the dual memory case, while the top right plot contains the SDRAM

only case. The bottom plot presents the case by case ratio, obtained by dividing

the single memory times by the dual memory values. Times are measured in

µs, and each square represents a single write. Again increasing Synapse cores

are displayed on the horizontal axis with increasing Neuron cores on the vertical

axis. By increasing the number of Synapse cores (horizontal), the contention

grows, as multiple cores attempt to write to shared memory simultaneously. By

increasing the number of Neuron cores (vertical) however, the size of each write

becomes larger. This is because each Synapse core performs one single write

per timestep. Therefore, by increasing the number of implemented synapses

(connected Neuron cores), the number of synaptic contributions to be written

grows as well. The size of each write is expressed by Equation 5.7, where n is the

number of neurons per Neuron core (64 in this case), w is the size of a contribution

(2 B for standard SNNs) and T is the number of target Neuron cores for each

Synapse core. Therefore, in Figure 5.8, T increases vertically from top to bottom.

C = n× w × T (5.7)

Similarly to the read case, the reported times are the worst case measured

writing times, and, for some cases, the access time is worse for the dual mem-

ory case. This can be due to several factors, as Synapse core contributions are

partially located in SysRAM and partially in SDRAM. Although SysRAM pro-

vides a faster access, it has a slower transfer rate, therefore, for larger transfers,

it can result in having similar or worse performance compared to SDRAM. This,

combined with a bad cores placement can result in losing the advantages of using

SysRAM, negating the faster memory access while contending the access to the

memory controller.

From a writing perspective, the worst case scenario is useful to instruct

Synapse cores on when to stop processing incoming spikes and start writing the
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Figure 5.8: Comparison of worst case writing times between dual memory usage
(left) and SDRAM only (right). Ratio between the two cases is shown as well
(bottom). All the allowed configurations of Synapse and Neuron cores allowed
by a chip are presented.
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Figure 5.9: Comparison of best case writing times between dual memory usage
(left) and SDRAM only (right). Ratio between the two cases is shown as well
(bottom). All the allowed configurations of Synapse and Neuron cores allowed
by a chip are presented.

synaptic contributions to shared memory (in order to meet real-time require-

ments). The highest recorded writing time is when using SDRAM only with 6

Synapse cores targeting 9 Neuron cores. This time amounts to 26.98µs. This

does not represent an issue in simulations using a timestep resolution of 1 ms,

but amounts to more than a quarter of the timestep for real-time simulations

with 0.1 ms timesteps.

Figure 5.9 shows the best case writing times. For the writing phase it is

more evident how the placement of cores impacts on the transfer time (relative

to the reading phase above). Comparing the best with the worst case, significant

gains are seen, particularly for the dual memory case. This difference becomes

larger when the contending cores increase, and in some cases amounts to 15 µs,
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Figure 5.10: Comparison of average writing times between dual memory usage
(left) and SDRAM only (right). Ratio between the two cases is shown as well
(bottom). All the allowed configurations of Synapse and Neuron cores allowed
by a chip are presented.

representing a significant impact on 0.1 ms timestep simulations (15% of the

overall timestep). A similar comparison is performed between the dual memory

and SDRAM only best cases, showing that with higher contention the writing

time is halved with the dual memory approach, proving that it is possible to

halve the contention by using separate memories with separate accesses.

Similar considerations arise regarding the average case results (shown in Fig-

ure 5.10), where access times are up to 6 µs smaller than worst case for dual

memories. The SDRAM only case, however, shows numbers closer to worst case,

and appears, in some cases, to perform better than the dual memory case with

very low contention (2 Synapse cores) on the average case analysis. This can be

explained by the fact that SysRAM has a slower transfer rate, therefore, when
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contention is low this has a higher impact on the total time. However, when

contention increases, the dual-memory case usage drastically reduces the access

time (as only half of the cores are contending the access), therefore reducing the

total transfer time, relative to the SDRAM only case.

These results again show the impact of a sub-optimal placement of cores on

a chip, and demonstrate that an improved placement strategy, combined with

independent memory accesses can have a significant impact on the fraction of the

timestep available for neural processing, especially for critical cases such as 0.1

ms timestep simulations.

The worst case writing and reading measurements therefore allow to tai-

lor synaptic contribution writing and reading times to the required number of

Synapse and Neuron cores per ensemble. This avoids overestimations which

would further reduce the processing time shown in Equation 5.2. This analy-

sis shows the importance of balancing the number of Synapse and Neuron cores

according to the application requirements, in order to incur minimal memory

access penalties. Network sparsity and firing activity also play a key role in the

choice of core allocations. Therefore, the next sections focus on these aspects,

providing measurements of peak processing of synaptic events per timestep and

performance with different sparsity levels.

5.4.2 Peak Throughput Performance

A useful metric to measure the applicability of the Multi-Target partitioning is the

peak throughput performance. This consists of measuring the maximum number

of synaptic events that can be processed per timestep and comparing these num-

bers with previous implementations. The number of processed synaptic events

per timestep depends on the timestep resolution and on the network connectiv-

ity probability. Separate cases are therefore presented here to address different

scenarios. This experiment therefore compares the peak throughput performance

for the Multi-target partitioning to previous works. To perform a fair compari-

son, the same SNN is profiled using the different approaches: Multi-target and

Heterogeneous models. The same number of cores is allocated for both configu-

rations where possible, but with different internal connections between Synapse

cores and target Neuron cores. A third configuration is also presented, referred

to as single target expanded. This consists of a standard Heterogeneous parti-

tioning which maintains the same number of Neuron cores as the previous two
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Figure 5.11: Arrangement of Synapse and Neuron cores under the explored con-
figurations: Multi-target partitioning (left); Heterogeneous partitioning (right).
The example shown demonstrates the [3, 3] test case, with 3 Synapse cores and
3 Neuron cores. For the Multi-target partitioning configuration, each Synapse
core targets all Neuron cores. Comparison to the Heterogeneous approach is
provided by: the Single-target partitioning, where the same overall number of
cores are used, but connected one Synapse core to each Neuron core; and the
Single-target expanded partitioning, where the same number of Neuron cores is
maintained, but each with the same number of Synapse cores as implemented in
the Multi-target approach.

cases, but allocates the same input Synapse cores capacity per Neuron core as

the Multi-target approach. This last configuration provides a useful comparison,

as the number of cores required for the single target Heterogeneous partitioning is

adjusted to match the input capability of the Multi-target partitioning. The aim

of including these cases is, therefore, twofold: first to compare the Multi-target

partitioning to its Heterogeneous counterpart employing the same hardware re-

sources, evaluating the performance difference; second, to show that, to achieve

the input processing capability of the Multi-target approach, while using the Het-

erogeneous partitioning, it is necessary to employ a larger number of hardware

resources. This is represented by the single target expanded case.

A schematic of core allocations for the three approaches is shown in Figure
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5.11. The experiments run to evaluate this metric are structured in test cases

defined by 2 numbers in the form [Sc, Nc], where Sc is the number of Synapse

cores and Nc the number of Neuron cores – the case shown in Figure 5.11 is [3, 3].

The Multi-target partitioning is shown on the left, where all the Synapse cores

are connected to all the Neuron cores. The Heterogeneous partitioning is shown

on the right, including the two different mappings explored: single target and

single target expanded. The single target Heterogeneous partitioning presents 3

Neuron cores receiving input from a single Synapse core each, showing an input

capacity reduced by a third compared to the Multi-target case. The single target

expanded in the experiment is therefore comparable with the [3, 3] cases for the

two other configurations, however the number of cores allocated is [9, 3]. This

single-target expanded configuration matches the input capacity per Neuron core

of the Multi-target partitioning, keeping the same number of neurons and Neuron

cores (therefore in the presented example each Neuron core receives inputs from

3 Synapse cores similarly to the Multi-target case, but each Synapse core is single

target). The intent here is to show that the Multi-target partitioning can reach

similar performance compared to this extended configuration, requiring only a

fraction of the allocated resources.

The SNN model used for this experiment consists of 2 populations of neurons,

configurable with a range of sizes and connectivity. All the presynaptic neu-

rons are LIF [GK02] spiking neurons, with current-based exponentially-decaying

synapses. Neurons are initialised with the internal voltage above firing thresh-

old to produce spikes in a controlled manner. This approach is adopted to send

spikes, instead of using spike sources, as it better represents the interaction be-

tween cores when simulating biologically-representative SNNs. This is because

spike sources on SpiNNaker generate and send all spike packets together, causing

a high firing activity concentrated at the beginning of the timestep, and then

they remain silent. Cores implementing Populations (Neuron cores in this case)

on the other hand, generate spike packets every time a neuron is updated and the

model equations require it to spike, therefore distributing spike packet generation

over the timestep.

The size of the presynaptic Population changes according to the number of

incoming partitions (number of Synapse cores per ensemble) of the postsynaptic

Population. These numbers have been obtained experimentally, such that the

postsynaptic Population receives more spike packets than it can process. This
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Presynaptic Population Size
1 ms Timestep(static) 0.1 ms Timestep 1 ms Timestep (plastic)

2,2 476 40 476
3,3 833 63 715
4,2 1000 77 741
4,4 1000 77 770
5,5 1428 100 770
6,3 1667 111 833
6,6 1667 111 909
7,7 2000 125 1000
8,2 2000 143 1428
8,4 2000 143 1428
10,2 2500 N/A 1667
12,2 2500 N/A 2000

Table 5.1: Presynaptic firing neurons for the peak processing benchmark accord-
ing to the timestep resolution (columns) and allocated postsynaptic resources
(rows).

allows saturation of the receivers in order to determine their limits. The number

of generated spike packets however needs to be limited, due to limitations set

by the SpiNNaker routing infrastructure [MLP+15]. An excessive firing activity

would cause higher congestion at the routing level, causing spike packets to be

delivered late. This would result in lower processed synaptic events, compared

to the real peak throughput, due to late arrivals. The presynaptic Population

sizes are summarised in Table 5.1. The values are obtained from a population of

10000 neurons. Multiple simulations have been performed gradually decreasing

the presynaptic sizes, while monitoring the state of the SpiNNaker communication

network. These values represent the biggest sizes for which all the spike packets

were delivered to their destinations without adding network delays or creating

network congestion. At the same time, they are high enough to generate more

synaptic events than the processing capabilities of the allocated Synapse cores for

each case. This allowed testing of the limitations of the processing capabilities of

the various approaches. For the 0.1 ms timestep resolution, the last two tests have

been omitted. For these cases the timestep resolution represents a limiting factor

on the number of Synapse cores per ensemble, as the Neuron cores cannot retrieve

the synaptic contributions for more than 8 Synapse cores and update the neural

state, while honoring the real-time performance. Therefore all configurations

with more than 8 Synapse cores per ensemble cannot be simulated with 0.1 ms
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timesteps on SpiNNaker (as detailed in Section 3.2.3).

The postsynaptic Population employs the same type of neurons as the presy-

naptic Population, and has variable size between 64 to 896 neurons (corresponding

to 1 to 14 Neuron cores respectively). Different connectivity patterns have been

tested in order to demonstrate the robustness of the approach, including 0.1%,

1%, 5% and 10% connectivity. The same experiment was run both with 1 ms

and 0.1 ms timesteps. The simulated network was the same in all cases, with

the exception of the presynaptic Population size, which is scaled down of a factor

≈ 10×. The same experiment has been run both for plastic and static networks

and the results are presented separately.

5.4.2.1 Static Results

Results for the static experiment are presented in Figures 5.12, 5.13, 5.14 and 5.15

for 1 ms timestep simulations. Each figure shows results for different connectivity

probabilities. The Multi-target case is represented by the blue bars, while the

single target with the same amount of cores by the green bars. The purple bar

represents the single target expanded case. Finally, the yellow bars (labelled as

homogeneous in the plots) provide a baseline, representing the processed synaptic

events using the standard SpiNNaker toolchain with the same SNN and neurons

per core.

Both the single target cases (green and purple) make use of the Heteroge-

neous model. The number of employed cores for each test case is indicated on

the horizontal axes. The lower axis refers to the Multi-target (blue) and the sin-

gle target (green). The upper axis shows values for the single target expanded

(purple). The chosen configurations of cores allow direct comparison among the

approaches. The left number in each tuple represents the Synapse cores of that

test case, the right number the Neuron cores (as shown by the example presented

in Figure 5.11). In the case of the Multi-target partitioning, all the Synapse

cores of the ensemble target all the Neuron cores. For the single target cases the

number of Synapse cores per Neuron core is obtained dividing the first number

by the second. The blue and green bars are on the same axis because they em-

ploy the same number of cores, the difference between these two cases is in the

connections between cores. This demonstrates that it is possible to improve the

peak processing by rearranging the available units, thanks to the Multi-target
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Figure 5.12: Processed synaptic events for the static case with 0.1% connectivity
probability, using 1 ms timesteps.

approach. The purple cases use the same number of Synapse cores per ensem-

ble (input partition) of the blue tests, however, in this case each Synapse core

has one single target (therefore there is a single Neuron core per ensemble). This

replicates the input capabilities of the Multi-target partitioning per ensemble, but

it requires a considerably higher amounts of cores compared to the Multi-target

case, resulting in the worst case of 56 total cores compared to 14 (8th test case).

In all the cases the Multi-target approach (blue) performs better compared

to the single target model (green). This is because the Multi-target partitioning

performs a more efficient use of the available system resources compared to the

Heterogeneous partitioning, allocating a higher input processing capacity to each

Neuron core.

For the 1 ms timestep experiment the highest synaptic event throughput

is given by the [7,7] configuration for all the connectivity probabilities under

exam. The Multi-target partitioning processes up to 9× the synaptic events pro-

cessed from the heterogeneous partitioning, while employing the same hardware

resources. This happens for the 1% connectivity case (Figure 5.13), however

similar results can be observed for all the other cases. The reason why this hap-

pens is due to a full exploitation of the source-based partitioning offered by the

approach. Each Synapse core in the Multi-target case receives inputs from one
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Figure 5.13: Processed synaptic events for the static case with 1% connectivity
probability, using 1 ms timesteps.
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Figure 5.14: Processed synaptic events for the static case with 5% connectivity
probability, using 1 ms timesteps.
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Figure 5.15: Processed synaptic events for the static case with 10% connectivity
probability, using 1 ms timesteps.

seventh of the presynaptic neurons and targets all the 448 postsynaptic neurons.

The single target partitioning on the other hand, has each Synapse core receiving

inputs from all the presynaptic neurons, but targets only 64 neurons. Because

the connectivity is very sparse, a reduced input traffic achieves better results.

The Multi-target approach performs well also compared to the single target

expanded (purple), which represents a remarkable result, since the amount of

resources in use is much lower, especially in the [7, 7] case. The single target

expanded approach utilises the same number of Synapse cores per ensemble as

the Multi-target partitioning, but has a single target per ensemble. Therefore, in

the [7, 7] case ([49, 7] for the single target expanded) each Synapse core receives

from one seventh of the presynaptic neurons and targets 64 postsynaptic neurons

only. Furthermore, the improvements provided by the Multi-target approach

compared to the Heterogeneous model do not decrease with increasing connectiv-

ity probability. In some cases indeed, they even become more evident (e.g. the

[12,2] cases), demonstrating that the Multi-target partitioning also scales well

with SNN connection density.

Regarding 0.1 ms timesteps simulations, the results are presented in Figures

5.16, 5.17, 5.18 and 5.19. A similar trend is noted for these results, with the

Multi-target partitioning performing better than the single target case. With
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Figure 5.16: Processed synaptic events for the static case with 0.1% connectivity
probability, using 0.1 ms timesteps.

higher numbers of Synapse cores targeting higher numbers of Neuron cores how-

ever, performance compared to the single target expanded case tends to be lower.

This is due to the tight constraints set by the timestep resolution and the fact

that memory read and write times for the synaptic contributions do not scale

down with the timestep resolution, meaning they take a larger fraction of the

timestep. There are therefore some edge cases where the gain is small, partic-

ularly with 0.1% connectivity (Figure 5.16). The reason behind this is due to

the extremely low probability of connection, which results in zero target packets.

The SNN is relatively small in this case, and the total number of synaptic events

that are effectively received is low. However the [7, 7] case in Figure 5.16 left,

demonstrates again that having longer synaptic rows (the Multi-target approach

employs synaptic rows 7 times longer than the Heterogeneous model) enables

processing of many more synaptic events per timestep (≈ 3× here). The reason

behind large discrepancies between the extended Heterogeneous approach and the

Multi-target with 0.1 ms timesteps, as in the case of the [7, 7] is due to the much

higher computational power of the single target extended approach compared to

the Multi-target. With 0.1 ms timesteps the reading and writing times have a

much greater impact on the available spike processing time. Therefore, in this

case where there are 7× more Synapse cores, this translates into improved peak
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Figure 5.17: Processed synaptic events for the static case with 1% connectivity
probability, using 0.1 ms timesteps.

performance.

In accordance to what is specified in Chapter 3, it is not possible to perform

simulation with a number of Synapse cores per Neuron core higher than 8, because

of timestep overrun. Therefore 0.1 ms experiments are limited to the first 10 cores

configurations.

This experiment shows that, by efficiently using the Multi-target partitioning,

it is possible to achieve comparable results to the single target expanded case, but

with a fraction of the hardware resources (a quarter in the [7, 7] case). Further-

more, with the same amount of resources it is possible to achieve considerably

higher synaptic event throughput

The general trend for the three approaches, together with the SpiNNaker

toolchain baseline is compared in Figures 5.20, 5.21, 5.22, and 5.23 for 0.1%, 1%,

5% and 10% connectivity respectively, employing 1 ms timesteps. Figures 5.24,

5.25, 5.26, and 5.27 show the results for 0.1 ms timesteps. In these plots the

horizontal axis shows the total number of allocated cores, and the vertical axis

the processed synaptic events per timestep. The simulations are analogous to

those shown in the bar charts. Each point in these scatter plots matches one

of the bars (as indicated by the labels). This comparison is useful to evaluate

how good a specific approach is compared to the others. Ideally the number of
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Figure 5.18: Processed synaptic events for the static case with 5% connectivity
probability, using 0.1 ms timesteps.

[2, 2] [3, 3] [4, 2] [4, 4] [5, 5] [6, 3] [6, 6] [7, 7] [8, 2] [8, 4]0

500

1000

1500

2000

2500

3000

3500

4000

To
ta

l S
yn

ap
tic

 E
ve

nt
s

Total Processed Synaptic Events 10.0 % connectivity (Static) 0.1 ms

single expanded
multitarget
single target
homogeneous

[4, 2] [9, 3] [8, 2] [16, 4] [25, 5] [18, 3] [36, 6] [49, 7] [16, 2] [32, 4]

Figure 5.19: Processed synaptic events for the static case with 10% connectivity
probability, using 0.1 ms timesteps.
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Figure 5.20: Resource allocation vs peak performance. Connectivity probability
set to 0.1% and timestep resolution to 1 ms.

processed synaptic events should grow much faster than the required resources.

Therefore an optimal solution would result in most of the points in the top left

corner of the plot.

For all cases, the single extended case (purple points) processes the high-

est number of synaptic events, but also requires the largest allocation of hard-

ware resources. The optimal solution remains the Multi-target partitioning (blue

points), showing the steepest increases in processing performance with increasing

resources. The peak processed synaptic events for the Multi-target partitioning

remains close to the single target expanded for all 1 ms simulations, and is still

optimal for the 0.1 ms. Discrepancies between the Heterogeneous extended and

the Multi-target peak performance are due to timing constraints having a greater

effect on neural processing.

Higher connectivity probabilities result in higher numbers of synaptic events

processed per timestep, but flatter slopes in these plots. This can be explained

by the increasing number of synapses that each spike targets, which results in

a higher processing time per spike packet, combined with a higher transfer time

required by the longer synaptic rows.
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Figure 5.21: Resource allocation vs peak performance. Connectivity probability
set to 1% and timestep resolution to 1 ms.
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Figure 5.22: Resource allocation vs peak performance. Connectivity probability
set to 5% and timestep resolution to 1 ms.
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Figure 5.23: Resource allocation vs peak performance. Connectivity probability
set to 10% and timestep resolution to 1 ms.
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Figure 5.24: Resource allocation vs peak performance. Connectivity probability
set to 0.1% and timestep resolution to 0.1 ms.
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Figure 5.25: Resource allocation vs peak performance. Connectivity probability
set to 1% and timestep resolution to 0.1 ms.
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Figure 5.26: Resource allocation vs peak performance. Connectivity probability
set to 5% and timestep resolution to 0.1 ms.
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Figure 5.27: Resource allocation vs peak performance. Connectivity probability
set to 10% and timestep resolution to 0.1 ms.

5.4.2.2 Plastic Results

In order to test the performance of the plastic implementation of the Multi-Target

partitioning, a similar experiment has been designed. The same network used in

the static experiment has been employed here, but the connection between the

two populations has been defined using STDP, with Spike-Pair rule for timing

dependence with Additive Weight dependence. The number of firing neurons

has been reduced compared to the static case, as synaptic processing for plastic

synapses requires the weight update and the write back phase of the plastic region

of the synaptic row. The adopted presynaptic population sizes are shown in Table

5.1. The simulation has been run using 1 ms timestep resolution only. The results

are shown in Figures 5.28, 5.29, 5.30 and 5.31. The experiment was replicated

with different connectivity probabilities, mimicking the static case. Therefore

the simulated connectivity patterns are 0.1%, 1%, 5% and 10%. The used color

scheme is the same as the static case, where, for each bar chart the purple bar

indicates the single target expanded case, the blue bar is for the Multi-target case

and the green bar is for the single target.

For the plastic experiments the benefits of using the Multi-Target partition-

ing with very sparse networks become more evident, showing cases where the

Multi-Target approach overcomes even the single target expanded in processed



5.4. RESULTS 183

[2, 2] [3, 3] [4, 2] [4, 4] [5, 5] [6, 3] [6, 6] [7, 7] [8, 2] [8, 4] [10, 2] [12, 2]0

100

200

300

400

To
ta

l S
yn

ap
tic

 E
ve

nt
s

Total Processed Synaptic Events 0.1 % connectivity (Plastic) 1 ms

single expanded
multitarget
single target

[4, 2] [9, 3] [8, 2] [16, 4] [25, 5] [18, 3] [36, 6] [49, 7] [16, 2] [32, 4] [20, 2] [24, 2]

Figure 5.28: Processed synaptic events for the plastic case with 0.1% connectivity
probability and 1 ms timestep resolution

synaptic events per timestep. This is due to the differences in processing plastic

synapses compared to static synapses. Plasticity, requires the updated weights

to be written back to shared memory, therefore doubling the accesses to SDRAM

compared to the static case. This operation becomes extremely costly when the

number of synapses per row are limited. Therefore, having longer synaptic rows,

as in the case of the Multi-target approach, allows to amortise these two mem-

ory operations over a higher number of synapses, further increasing the number

of synaptic events that can be processed per timestep. As expected, this ef-

fect decreases with increasing connection density, as rows contain more synapses

and therefore the computational power of the extended Heterogeneous approach

grants higher processing capability.

In order to evaluate the throughput over the required hardware a scatter

representation of the plastic experiment is provided in Figures 5.32, 5.33, 5.34

and 5.35. The color scheme matches the bar charts and each point corresponds

to a bar as indicated by the labels. Similarly to the static case, this plots allow

to compare how well a specific solution performs compared to the others, with

solutions having values close to the top left of the plot considered optimal.

The Multi-target partitioning once again proves to be the optimal solution,
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Figure 5.29: Processed synaptic events for the plastic case with 1% connectivity
probability and 1 ms timestep resolution
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Figure 5.30: Processed synaptic events for the plastic case with 5% connectivity
probability and 1 ms timestep resolution
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Figure 5.31: Processed synaptic events for the plastic case with 10% connectivity
probability and 1 ms timestep resolution
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Figure 5.32: Resource allocation vs peak performance. Plastic configuration.
Connectivity probability set to 0.1%
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Figure 5.33: Resource allocation vs peak performance. Plastic configuration.
Connectivity probability set to 1%

showing the steepest increase of processed synaptic events with hardware re-

sources, dominating for the most sparse connectivity patterns over the other

two approaches. With increasing network density the total number of processed

synaptic events per timestep becomes larger for the single target expanded ap-

proach. However, this comes at a much higher cost in required hardware re-

sources, as highlighted for the bar charts. Compared to the single target ap-

proach the multi-target always results in higher processed synaptic events, while

employing the same hardware resources.

5.4.3 Sparsity Efficiency

This experiment evaluates the performance of the Multi-Target partitioning com-

paring different connection sparsity levels together. This experiment shows the

variation of the processed synaptic events per timestep with increasing numbers

of target Neuron cores. The number of Synapse cores is kept fixed and the target

Neuron cores are gradually increased. In order to provide a good balance (and

according to the peak performance shown in Section 5.4.2), the chosen number

of Synapse cores is 7 and the target Neuron cores range from 1 to 7, guarantee-

ing to fit on a single chip. This allocation also allows equal comparison between

simulations with 1 ms timestep resolution and 0.1 ms, having set the number of
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Figure 5.34: Resource allocation vs peak performance. Plastic configuration.
Connectivity probability set to 5%
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Figure 5.35: Resource allocation vs peak performance. Plastic configuration.
Connectivity probability set to 10%
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Figure 5.36: Processed synaptic events (1 ms timestep resolution) for different
target Neuron cores configurations and sparsity levels.

neurons per Neuron core in both cases to 64.

Similarly to the peak throughput experiment, the simulation is composed of

two populations with variable connectivity probability. The investigated connec-

tivity probabilities for this experiment are 0.1 %, 1%, 5%, 10% and 50%. Denser

connectivity patterns are rarely found in biology [HCG+08] and well simulated

by traditional hardware such as GPUs, therefore are omitted from this experi-

ment. The results are presented in Figure 5.36 for 1 ms timesteps and Figure

5.37 for 0.1 ms timesteps. On the horizontal axis the connectivity probabilities

are shown, the vertical axis displays the processed synaptic events. Each line

represents a different configuration of Synapse cores to Neuron cores, where each

Synapse core is connected to all the targets of that configuration. The number of

synapses per Synapse core therefore can be obtained by multiplying the number

of Neuron cores by 64 (number of neurons per Neuron core).

For the 1 ms case (Figure 5.36), as expected, the simulations with higher

number of targets process the highest number of synaptic events per timestep.

The most evident jump happens between the configurations with 1 and 2 targets

respectively, where the synaptic rows double their sizes. This shows that having

larger synaptic rows impacts the processing, especially for very sparse networks,

by improving the processed synaptic events of ≈ 1 order of magnitude for 0.1%
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Figure 5.37: Processed synaptic events (0.1 ms timestep resolution) for different
target Neuron cores configurations and sparsity levels.

connectivity between worst and best case. This gain reduces when the connectiv-

ity probability increases, because multiple synaptic events are carried per spike.

Therefore the time processing per spike increases as well.

The 0.1 ms case (Figure 5.37) follows a similar trend to the 1 ms case, however

the examples with 6 and 7 targets do not give any improvements. The reason

for this is due to the time required to perform the transfers between shared and

local memories for the synaptic contributions, which have a higher impact on the

timestep compared to the 1 ms case. For the sparser simulations (0.1% and 1%

connectivity), having multiple target Neuron cores gives advantage similarly to

the 1 ms case, however, when the network becomes denser the trend starts to

invert, having the cost of processing a single packet dominating over the gain

introduced by this approach.

5.5 Discussion

The method described in this chapter presents a novel parallelisation approach for

neural processing on Neuromorphic hardware, which improves the performance

of SNN simulations by acting on the way synaptic matrices are partitioned and

processed. The Multi-target partitioning approach provides additional freedom
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when designing SNN simulations, by allowing to target applications more specif-

ically, according to their requirements. By allowing parameterisation of synaptic

and neural processing units, it is possible to allocate the appropriate amount of

resources for a given requirement, prioritising the number of Neuron processing

units for sparser applications and increasing the number of Synapse processing

units when the fan-in dominates. Thanks to these improvements it is possible to

maximise the performance, while using minimal hardware resources and therefore

reducing power consumption.

Through a SpiNNaker implementation of the Multi-target partitioning ap-

proach, it is possible to improve the peak synaptic processing throughput up to

9× compared to previous results for the same hardware resources. Furthermore,

it is possible to obtain comparable processed synaptic events per ms, by reducing

the hardware resources to a quarter, resulting in a much smaller machine (and

energy consumption) dedicated to the simulation.

The Multi-target partitioning approach additionally enables optimal process-

ing of incoming spike packets, providing a larger pool of target neurons for each

spike, hence increasing the length of processed synaptic rows for a given con-

nection density. This greatly reduces the required number of accesses to shared

memory per timestep, therefore allowing more efficient processing of sparsely con-

nected networks. This is shown by Equation 5.1 and 5.6, where the number of

target neurons for each spike grows according to the number of target Neuron

cores, expanding the limit beyond a single postsynaptic Neuron core. This has

the effect of reducing, by a factor Nc the number of destination processors per

spike packet, facilitating the routing of spike packets and so reducing the pres-

sure on the communication fabric. Furthermore, this increased number of targets

per spike packet, allows to amortise the dominating fixed cost of processing a

spike (cs) [RBB+18] over a higher number of targeted synapses, which can now

be larger than that of a single Neuron core, overcoming this limitation which is

still observed for the Heterogeneous partitioning.

The Multi-target partitioning approach is optimal as it comes with minimal

additional costs compared to previous approaches, however the SpiNNaker im-

plementation is limited by the different access patterns to shared memory. The

shared memory access time plays a key role in the fraction of the timestep avail-

able for spike processing, as shown by Equation 5.2 and by the recorded values

presented in Section 5.4.1.1 and 5.4.1.2. The relatively old technology employed
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by SpiNNaker represents a bottleneck in this context, resulting in both memory

contention and transfer size limiting the total system throughput. This causes tw

and tr (Equations 5.2- 5.4) to increase with the number of cores in the ensemble,

consuming approximately half the timestep duration for high timestep resolution

simulations such as 0.1 ms. For this reason the need of faster access to shared

memory is proven, by showing that there is a large potential gain in having ac-

cess to multiple separate shared memories, compared to a single shared memory.

This consideration opens up to the possibility of using more advanced mem-

ory architectures for Neuromorphic hardware, such as multiport memories, since

structures like synaptic matrices and synaptic contributions are non-overlapping

and therefore would benefit from the capability of separate independent accesses.

The Multi-target partitioning approach also has potential benefits in Neuro-

morphic systems where all synaptic information is stored locally to the computa-

tional units. For these systems the approach would allow synaptic compartments

to target multiple neural compartments, improving the handling of sparse connec-

tions, and overcoming the limitations set by the fixed coupling between synaptic

and neural units. Furthermore the added benefits seen when processing plas-

tic connections offer advantages for online learning applications, particularly in

sparsely-connected biologically representative SNNs.

5.6 Summary

This Chapter addresses the third research question presented in Section 1.2, which

states: How can the brain’s sparse connectivity and activity be modelled efficiently

on Neuromorphic hardware?

This is addressed through the development of a new parallelisation framework

which builds on top of the Heterogeneous model previously proposed. This new

method is called Multi-target partitioning and aims at making more efficient use

of the system resources by increasing the density of neurons per chip, as well as the

size of the synaptic rows processed by each Synapse core. The main idea behind

this approach is to have Synapse cores, a concept introduced with the Hetero-

geneous Programming model, addressing multiple Neuron cores simultaneously.

These Synapse cores simulate a fraction of the synapses of all the postsynaptic

neurons in the group of targeted Neuron cores. Under this approach, the neu-

ral ensemble described for the Heterogeneous model becomes a group of Synapse
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cores all connected to a group of Neuron cores, instead of a group of Synapse

cores connected to a single Neuron core. Together with this approach, a more

efficient allocation of memory resources is proposed, highlighting the efficiency

of using multiple memories to store synaptic contributions, in order to reduce

memory access contention.

The Multi-target partitioning proved to be more efficient than the previous

approaches, showing an improvement of up to 9 × compared to the Heteroge-

neous model, with the same amount of resources allocated before, and reaching

comparable results with previous approaches when only using a quarter of the

hardware resources.
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Conclusions

The research presented in this thesis focused on programming techniques for real-

time simulations of Spiking Neural Networks on digital Neuromorphic hardware.

The SpiNNaker Neuromorphic system was chosen, as the preferred platform, due

to its flexibility and scalability to demonstrate efficient approaches to parallelise

Spiking Neural Network simulations, in order to achieve real-time simulations of

biologically representative networks.

The first research output, namely the Heterogeneous Programming model

(presented in Chapter 3), was developed with the aim of improving the place-

ment of Spiking Neural Networks on SpiNNaker, targeting the first research ques-

tion presented in this manuscript (How can the process of mapping biologically-

representative SNNs be optimised on Neuromorphic Hardware? ). By implement-

ing this approach on the current SpiNNaker software toolchain it was possible

to increase the number of processed synaptic events per ms by 12.3× compared

to previously published results, while maintaining real-time behaviour. These

results suggested to employ this approach to simulate the Cortical Microcircuit

network to achieve real-time performance. The application of the Heterogeneous

Programming model succeded in simulating the network in real time for the

first time ever, achieving a 20× speedup compared to previous simulations. As

demonstration of robustness of the approach the simulations were run for 12 hours

without interruption. To date this remains the only hard real-time simulation of

the full Cortical Microcircuit network on Neuromorphic hardware.

Next, the Heterogeneous Programming model was applied to on-line learning

tasks (as described in Chapter 4). This second research effort targeted the sec-

ond research question (What are the challenges of implementing on-line learning

193
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algorithms in real time on Neuromorphic hardware? ), by trying to implement

real-time on-line learning algorithms on Neuromorphic hardware. The chosen

approach employed multicompartment neuron models from literature to approx-

imate the standard error backpropagation with gradient descent algorithm, but

without interrupting the simulation for the backpropagation phase. Thanks to

the Heterogeneous model, expanded to include synaptic plasticity, it has been

possible to correctly simulate the models and the learning rule on SpiNNaker.

However, because of the dense structure of the network and its rate-based na-

ture, which requires constant communication of neurons’ firing rates, it was not

possible to correctly simulate larger networks, which achieved classification tasks

such as image recognition with the MNIST dataset. This exposed limitations of

the communication fabric of the chosen platform, which prevented to deliver the

correct information to all the destinations in time. The author however does not

exclude a future successful implementation, which would require targeted place-

ment strategies which take into account the traffic generated by such a neural

network.

Finally, addressing the third research question (How can the brain’s sparse

connectivity and activity be modelled efficiently on Neuromorphic hardware? ), the

Multi-target partitioning scheme was proposed (presented in Chapter 5), which

extends the concept of Synapse cores presented by the Heterogeneous Program-

ming model, to address multiple postsynaptic Neuron cores. This new approach

acts on synaptic matrix partitioning, by allowing postsynaptic processing units

to handle rows having configurable sizes (according to the number of target Neu-

ron cores). Through this novel strategy it was possible to improve the peak

throughput of synaptic events per ms up to 9× compared to the Heterogeneous

Programming model and to efficiently simulate sparser networks, by performing

a more efficient use of the available hardware resources.

6.1 Future Work

The models presented in this thesis achieved unprecedented throughput of pro-

cessed synaptic events per timesteps, enabling real-time simulations of biologically-

representative SNNs that could not be efficiently simulated before. This section

describes future possible extensions to the presented work in order to target fur-

ther challenges in biologically-representative SNN simulations.



6.1. FUTURE WORK 195

6.1.1 Further Models Extensions

The Multi-target partitioning allows simulations with various ranges of sparsity,

by tuning the Synapse cores to Neuron cores per ensemble ratio. This model is

however still limited to the maximum number of cores available per chip, being

constrained by shared memory communication. This approach therefore might

still present limitations with some edge cases. In simulations involving multiple

brain regions (e.g. the Multi-Area model [SBS+18]), the communication among

different areas is typically represented by extremely sparse connectivity patterns

to model long-range connections. This might result in zero target spike packets

even for ensembles with a predominant number of Neuron cores, which therefore

generate longer synaptic rows. On the other hand, very high fan-in networks

(such as cerebellar models [CMM+19]) can result in postsynaptic neurons having

an incoming traffic much higher than that allowed by ensembles having a pre-

dominance of Synapse cores [BMC+21]. For these cases, mechanisms which allow

to span beyond the limits of a single chip are needed.

Extreme sparsity could be handled through filtering cores (implementing a

mechanism which could be seen as axons in neurons) on external chips. Typically

long range connectivity is associated with long delays, therefore intermediate cores

which contain additional information on the destination neurons could be used

to determine where to send these packets. This would allow reducing the zero

target spike packets, having the source cores communicating to a single filtering

core, which would then be in charge of forwarding the communication to the

destinations.

High fan-in could be handled through a pooling mechanism, therefore it might

be possible to instantiate full Synapse chips receiving inputs from presynaptic

neurons. A potential core per chip could be nominated as Pooling core which

retrieves the contributions from the Synapse cores every timestep similarly to

the Neuron cores, calculating pooling contributions from the combination of the

various synaptic contributions on chip. The Pooling cores could then forward

their pooling contributions to the postsynaptic Neuron cores through packets

with payload. This approach would allow scalability, as Pooling cores could in

principle transmit pooling contributions to other Pooling cores that combine them

with the local synaptic contributions.
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6.1.2 Future Neuromorphic Generations

The applicability of the Heterogeneous and Multi-target partitionings is not lim-

ited to the first generation of the SpiNNaker system. The flexibility of the ap-

proaches also makes them portable and extendable for the next generation of

digital Neuromorphic platforms. The second iteration of SpiNNaker is due to re-

lease at the time of writing of this manuscript. This new generation features much

more advanced hardware characteristics, where each chip contains a total of 152

ARM Cortex-M4 cores (also referred to as Processing Elements, or PEs) arranged

in quartets denominated Quad-Processing Elements (QPEs). Inside a QPE each

processor can efficiently read another core’s local data memory, through a mod-

ified NoC. Each core has a private 128 KB SRAM, and a shared 8 GB DRAM

memory is provided per chip [HYD+21, YSC+21] together with 6 bidirectional

links managed by an on-chip router, containing 16384 associative routing entries.

A Multi-target model implementation for SpiNNaker 2 could therefore map a

cluster-based implementation of multiple neural ensembles per chip, where each

PE represents either a Neuron core or a Synapse core. Since each PE has the

capability to access the local memory of other PEs on the same QPE efficiently,

it is possible to share the synaptic contributions within a QPE, overcoming the

contention issue. A step further would include a tree-like structure, where QPEs

could implement a group of 4 Synapse cores, which generate the synaptic con-

tributions as a single block for the 4 cores, then a single PE per QPE accesses

the chip shared memory to communicate with other QPEs implementing blocks

of Neuron cores. Following the same strategy, a single Neuron core per Neuron

QPE accesses the shared memory to retrieve the contributions. This would ex-

pand the ensemble capabilities to a full chip, limiting the memory contention to a

quarter of the cores in use. Combined with the much higher memory throughput

(6 GB/s vs 1 GB/s for the SpiNNaker SDRAM), this would have a large impact

on the synaptic contributions reading and writing times.

6.2 Overall Summary

The presented parallelisation strategies demonstrated unprecedented results when

applied to SNNs simulations on digital Neuromorphic hardware. The real-time

simulations of the Cortical Microcircuit network demonstrated the capabilities of

digital Neuromorphic hardware in simulating complex biologically-representative
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SNNs, showing the large impact of a targeted programming approach and proving

the capabilities of such architectures in real-time simulations. The flexibility and

efficiency of the parallelisation approach have been furthermore demonstrated

by employing it in a different context, including dense connectivity patterns and

rate encoding, where it demonstrated to handle well such synaptic fan-in. Finally,

targeting very sparse SNN simulations, unprecedented results were demonstrated,

further enabling a customisation of the network placement phase, to optimise the

use of hardware resources, according to the network requirements.

This work aims at providing programming paradigms in order to better ex-

ploit this novel type of hardware to bridge the gap in communication between

neuroscientists and computer architects. Such programming paradigms can be

extended and customised to be applied to the next generation of Neuromorphic

hardware, providing further insights on design choices for the future generations

of such systems and learning algorithms, targeting sub real-time performance.

The design of efficient simulation platforms would in turn enable more efficient

learning applications, which combined with low power consumption, could be em-

ployed in edge computing scenarios, such as medical devices, space technologies

and IoT applications.
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[HYD+21] Sebastian Höppner, Yexin Yan, Andreas Dixius, Stefan Scholze, Jo-

hannes Partzsch, Marco Stolba, Florian Kelber, Bernhard Vogginger,

Felix Neumärker, Georg Ellguth, Stephan Hartmann, Stefan Schiefer,

Thomas Hocker, Dennis Walter, Genting Liu, Jim Garside, Steve B.

Furber, and Christian Mayr. The SpiNNaker 2 Processing Element

Architecture for Hybrid Digital Neuromorphic Computing, 2021.

[IEPD17] Tammo Ippen, Jochen M. Eppler, Hans E. Plesser, and Markus Dies-

mann. Constructing Neuronal Network Models in Massively Parallel

Environments. Frontiers in Neuroinformatics, 11:30, 2017.



BIBLIOGRAPHY 205

[IGB19] Bernd Illing, Wulfram Gerstner, and Johanni Brea. Biologically plau-

sible deep learning — But how far can we go with shallow networks?

Neural Networks, 118:90–101, 2019.

[ILBH+11] Giacomo Indiveri, Bernabe Linares-Barranco, Tara Hamilton, André
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