
UNDERSTANDING THE
PERFORMANCE OF MANAGED

RUNTIME ENVIRONMENTS

A THESIS SUBMITTED TO THE UNIVERSITY OF MANCHESTER

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

IN THE FACULTY OF SCIENCE AND ENGINEERING

2022

Timothy Hartley

Department of Computer Science

Contents

Abstract 7

Declaration 9

Copyright 10

Acknowledgements 11

1 Introduction 12
1.1 Thesis Outline . 13

2 Arm JIT Compilation: Call Site Code Consistency 17
2.1 Abstract . 17

2.2 Introduction . 18

2.3 Background . 20

2.3.1 Harvard Architectures and SMC 20

2.3.2 Categorization of Processors 21

2.4 Architectural Constraints on SMC 22

2.4.1 Call-Site Size, Patch Size, and Atomicity — ISA 22

2.4.2 Visibility and Timeliness — Memory Consistency and Coher-
ence . 23

2.4.3 Patchable Instructions — SMC Support 25

2.5 Call-Site Implementations . 26

2.5.1 Direct Calls . 26

2.5.2 Absolute-load Indirect Calls 27

2.5.3 Relative-load Indirect Calls 28

2.5.4 Trampolines . 29

2.5.5 Patching only at Safe-points 29

2

2.6 Comparison of Call-Site Implementations 30
2.6.1 Code vs Data Patching and SMC Support 30
2.6.2 Code Size . 31
2.6.3 Patching Complexity . 31

2.7 Evaluation . 32
2.7.1 Experimental Platforms . 32
2.7.2 Microbenchmark . 34

2.7.2.1 Methodology . 34
2.7.3 Microbenchmark Results . 35

2.7.3.1 Patching . 36
2.7.3.2 Limitations of the Microbenchmark 37

2.7.4 JVM Benchmarks . 37
2.7.4.1 MaxineVM . 38
2.7.4.2 Relative-load Indirect, MaxineVM 38
2.7.4.3 Affected calls . 39
2.7.4.4 Methodology . 39

2.7.5 Benchmark Results . 40
2.7.5.1 DaCapo, Further Analysis 43

2.7.6 Impact on Code Size . 45
2.8 Summary . 47
2.9 Related Work . 48

3 MRE Performance Understanding based on eBPF 50
3.1 Abstract . 50
3.2 Introduction . 51
3.3 Background and Motivation . 54

3.3.1 Managed Runtime Performance Understanding 55
3.3.2 Execution Phase/Behaviour Analysis 57
3.3.3 Instrumentation Approaches 59
3.3.4 Discussion Concerning Background Work 60

3.4 Top-Down Performance Analysis . 62
3.5 eBPF and BCC . 65
3.6 The Design of BPF-xVM . 66

3.6.1 OpenJDK Tracing . 68
3.6.2 DVFS Tracing . 69
3.6.3 Chrome Profiler Visualizations 69

3

3.7 Evaluation . 70
3.7.1 Experimental Environment 70

3.7.1.1 The Renaissance Benchmarks 71
3.7.1.2 OpenJDK GC Algorithms 72

3.7.2 Tracing Overheads . 73
3.7.3 Phase Classification based on Changepoint Analysis 81

3.7.3.1 Discriminating Section Trends 82
3.7.3.2 Results . 83

3.7.4 Top Down Analysis . 84
3.8 Conclusions . 89

4 Conclusions 92
4.1 CallSites: ARM JIT Compilation . 92

4.1.1 Future Work . 93
4.2 MRE Performance Understanding using BPFxVM 93

4.2.1 Future Work . 94

Bibliography 96

4

List of Tables

2.1 Comparison of call-site implementation approaches. 32
2.2 Microbenchmark performance counters 36
2.3 Number of cycles per patch operation. 37
2.4 Effect of callsite scheme on code size. 47

3.1 Selected related background work 55
3.2 Level 1 top-down - Intel . 64
3.3 Level 1 top-down - Armv8 . 64
3.4 BPFxVM: sample CSV snippet . 72
3.5 Phase and steady-state results . 87

5

List of Figures

2.1 Code-patching illustration . 20
2.2 Call-site microbenchmark results . 35

2.3 DaCapo benchmark results for alternate call-sites and MaxineVM. . . 41
2.4 Renaissance benchmark results for alternate call-sites and MaxineVM. 41
2.5 SPECjvm2008 benchmark results from Graviton2. 42
2.6 SPECjvm2008 benchmark results from XGene-1. 42
2.7 Showing the DaCapo call profile for Java and MaxineVM 44

2.8 An illustration of the partitioned code cache in MaxineVM. 45
2.9 The percentage change of trampolines taken: DaCapo and MaxineVM. 46

3.1 BPFxVM instrumentation tooling concepts. 53
3.2 Renaissance reactors benchmark, zoomed in on-cpu flamegraph . . . 56
3.3 Top-Down Analysis hierarchy for X86 63
3.4 eBPF/BCC principle of operation . 67

3.5 Top-Down tracing in BPFxVM for OpenJDK. 70
3.6 BPFxVM sched switch tracepoint. 71

3.7 Visualising stop-the-world GC pauses 73

3.8 Timeline of per thread top-down statistics 74
3.9 Tracing overheads: x86, Renaissance, G1, Shenandoah 75

3.10 Tracing overheads: x86, Renaissance, Shenandoah 76
3.11 Tracing overheads: x86, Renaissance, G1 77

3.12 Tracing overheads: x86, finagle-http 78

3.13 Tracing overheads: ARMv8, Renaisance, G1 79
3.14 Tracing overheads: ARMv8, Renaisance, Shenandoah 80
3.15 Changepoints: fannkuchredux, G1 85
3.16 Changepoints: nbody, G1 . 86
3.17 L1 Top-Down analysis: scrabble, G1 88

3.18 L1 Top-Down analysis: reactors, GC comparison. 90

6

Abstract

Managed runtime environments (MRE) have become commonplace across the spec-
trum of computing devices and are nowadays found on portable devices such as mo-
bile phones, personal computers and data-centre servers. Optimising MRE execution
requires insight into the performance of the MRE components themselves and their
interactions with the workloads they host. This thesis, in two parts, is concerned with
aspects of performance engineering and understanding in the context of managed run-
time environments.

The first part, covers an investigation arising from porting MaxineVM, a research
virtual machine to the ARMv8 architecture. During this work aspects of the origi-
nal design were encountered, that cut across constraints imposed by the ARMv8 ar-
chitecture affecting elements of the just-in-time compilation system, specifically the
construction and subsequent treatment of call-sites at runtime, that must be patched
to redirect control. We investigate functionally equivalent implementations of call-
sites, evaluating the performance and tradeoffs using a microbenchmark, three JVM
benchmark suites and statistical profiles derived from microarchitecture performance
counters, on three diverse ARMv8 platforms. The experiments show the variation in
performance between the alternate strategies of up to 12%, and also variation across
the different implementations of the architecture. We find the potential opportunity to
explore optimisation relevant to all instruction set architectures with limited direct call
ranges using code cache management to encourage local direct branches.

The second part of the thesis presents two fine-grained studies into managed run-
time performance. Firstly, the Top-Down Microarchitecture Analysis methodology is
extended to individual managed runtime threads, demonstrating dynamic microarchi-
tectural utilisation behaviours of individual threads at OS-scheduling quantum granu-
larity. These behaviours reveal which threads are effectively utilising the processors
microarchitecture, and which are not, identifying opportunities for optimisation and
motivation for further investigation. The second study explores and refines warm-up

7

and steady-state behaviour analysis of a MRE. Benchmarking experiments are a com-
mon technique used to gain insight into the performance of MREs, and methodologies
typically rely on timing iterations in order to ascertain when peak performance has
been achieved. This thesis proposes a new approach, including microarchitecture per-
formance counters, specifically using counts of retired micro-operations as a measure
of work done. It is argued that this approach offers a more reliable metric than elapsed
time, that is less susceptible to interference from the OS, and microarchitectural ef-
fects.

8

Declaration

No portion of the work referred to in this thesis has been
submitted in support of an application for another degree or
qualification of this or any other university or other institute
of learning.

9

Copyright

i. The author of this thesis (including any appendices and/or schedules to this the-
sis) owns certain copyright or related rights in it (the “Copyright”) and s/he has
given The University of Manchester certain rights to use such Copyright, includ-
ing for administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard or electronic
copy, may be made only in accordance with the Copyright, Designs and Patents
Act 1988 (as amended) and regulations issued under it or, where appropriate,
in accordance with licensing agreements which the University has from time to
time. This page must form part of any such copies made.

iii. The ownership of certain Copyright, patents, designs, trade marks and other in-
tellectual property (the “Intellectual Property”) and any reproductions of copy-
right works in the thesis, for example graphs and tables (“Reproductions”), which
may be described in this thesis, may not be owned by the author and may be
owned by third parties. Such Intellectual Property and Reproductions cannot
and must not be made available for use without the prior written permission of
the owner(s) of the relevant Intellectual Property and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication and
commercialisation of this thesis, the Copyright and any Intellectual Property
and/or Reproductions described in it may take place is available in the Univer-
sity IP Policy (see http://documents.manchester.ac.uk/DocuInfo.aspx?
DocID=24420), in any relevant Thesis restriction declarations deposited in the
University Library, The University Library’s regulations (see http://www.library.
manchester.ac.uk/about/regulations/) and in The University’s policy on
presentation of Theses

10

Acknowledgements

I thank my supervisor Mikel Luján for all his help, encouragement and guidance.
Thanks also to Christos Kotselidis my co-supervisor, Andy Nisbet and Foivos Zakkak.
Thanks to my family for their love, support and welcome distractions. This research
was generously funded by an EPSRC iCASE award with Arm Ltd.

11

Chapter 1

Introduction

In order to increase performance in the post Dennard scaling era, the microprocessor
industry adopted multicore architectures, scaling the number and configuration of cores
for targeted applications or to meet a specific price/performance target. Exploiting the
potential of multicore parallel execution has required a shift in the approach to software
design and implementation in order to efficiently map parallel tasks onto hardware.
Several paradigms and parallel programming frameworks have been developed in order
to help realise this objective.

The demand for software applications in the current era has ensured that many are
nowadays implemented in managed languages that require a Managed Runtime Envi-
ronment (MRE) to execute them. The safety features of managed languages coupled
with their feature rich runtime libraries lower the inherent cost of software engineering,
enabling higher developer productivity. MREs have subsequently become ubiquitous
across the computing spectrum and can be found deployed in datacentres, on personal
computers and mobile phones. Gaining insight into the performance of a workload
running on a MRE is compounded by the nature of the runtime itself, where parallel
execution includes not only the application payload, but also components of the MRE
itself, such as just-in-time (JIT) compilers and garbage collection (GC). Extensible
tools are needed to aid performance understanding and expose optimisation opportu-
nities for both MREs and the applications they host.

This thesis investigates performance understanding for managed runtimes. Specifi-
cally, it investigates the performance impact of architectural constraints on just-in-time
compilation issues, and it presents two studies of the performance of managed lan-
guage application and runtime threads at operating system thread scheduling quantum

12

1.1. THESIS OUTLINE 13

granularity. Our tools can identify the execution phases of an MRE executing an ap-
plication, and can determine if application and MRE service threads are efficiently
utilising the underlying processor architecture.

1.1 Thesis Outline

The remainder of the thesis is based on two independent but related pieces of work in
which we investigate the performance of two MREs: MaxineVM and the OpenJDK
JVM.

Chapter 2

The work described here arose from porting MaxineVM [WHVDV+13] to the ARMv8
architecture, and the need to support method calls that must reach beyond the limit
imposed by the branch and link instruction BL. The complication of constructing such
long range call-sites on ARMv8 platforms resides along three vectors:

• The ISA limits direct branch targets to within 128MB of the program counter.

• The coherency protocol does not include the instruction caches, delaying up-
dates to instructions accessible to the CPU from being observable until a cache
maintenance sequence of instructions has been completed.

• The architecture excludes all but 8 instructions from being safe to both execute
and patch concurrently. Out of that set only the two branch instructions: B and
BL, are particularly useful for constructing callsites.

At the time the port was done, there was no clear picture of an optimum canonical
implementation of a concurrently and executable and patchable call-site for JIT com-
piled code for ARMv8, including the port of OpenJDK. The OpenJDK strategy was
to trap into the interpreter and patch code sequentially with all other threads paused
[HD14]. This approach was not available to MaxineVM being a compile only MRE,
where patching must be done to compiled code that may be concurrently executed by
another core. Such runtime updates to shared code without explicit synchronisation is
difficult problem.

14 CHAPTER 1. INTRODUCTION

Contributions

This chapter conducts a thorough evaluation of alternate call-sites and associated run-
time patching strategies that are resilient to concurrent execution and modification. The
purpose of the investigation was to determine whether there was a performance mar-
gin between the different approaches that would favour a particular implementation.
The performance analysis conducted was based on timed benchmark experiments, and
analysis of performance monitoring unit (PMU) event counts collected using perf dur-
ing the course of the executions. Some further program level profiling was done using
a JVMTI agent and bytecode instrumentation. These measurements enabled us to not
only differentiate between the relative performance of the different approaches but also
understand the scope of the experiments and to elicit some behaviour of MaxineVM
when executing the different workloads. An early version of the work described in
chapter 3 was also trialled for collecting PMU events.

A prior version of this work has been published [HZKL19]; the version presented
in chapter 2 has been submitted to the Transactions on Architecture and Code Op-
timization journal. All of the implementation, experiments, analysis and text were
completed by the author. Co-authors provided useful suggestions, editing and alterna-
tive implementation ideas some of which were trialled but not preserved or presented
in the paper. Foivos Zakkak produced figure 2.1.

Chapter 3

This work is concerned with investigating and improving the performance understand-
ing of managed runtimes. The contributions comprise two studies into the performance
of OpenJDK 11: firstly the Top-Down Microarchitecture Analysis [Yas14] methodol-
ogy is extended, and secondly the current understanding of warm-up and steady-state
behaviour of managed runtimes is investigated and improved.

Top-down microarchitecture analysis (TMA) [Yas14] is a well established method-
ology for identifying performance issues in modern processors supporting out-of-order
execution, and so help identify optimisation opportunities. Current tools such as perf

and toplev [Kle22] typically perform such analysis and measurement over timed in-
tervals, at full system, process, and processor core granularity. In this study a finer-
grained analysis is performed, in which individual threads are investigated to determine
whether they are efficiently using a processors microarchitecture, using measurements
taken at operating system thread scheduling quantum granularity.

1.1. THESIS OUTLINE 15

In the second study, warm-up and steady-behaviour of managed runtimes is in-
vestigated. MRE vendors and developers frequently use benchmark experiments, two
common use cases include: verifying the performance of new optimisations, or in re-
gression tests to identify any unwanted side effects that may have been inadvertently
introduced. Such assessments frequently rely on identifying a phase of peak, steady-
state performance, when the performance of the MRE and workload has been opti-
mised and stabilised, and has been the subject of a number of studies [KJ13, GBE07,
BBTK+17, CR16]. Some have questioned the conventional wisdom that MREs ex-
hibit a defined warm-up phase with subsequent steady-state execution [BBTK+17];
and drawn attention to the pitfalls of using elapsed wall-clock time as a reliable mea-
sure [CR16]. In this work, the utility of microarchitecture performance counters is
investigated, to help identify program execution phases that indicate if warm-up has
occurred and steady-state execution behaviour has been achieved.

Contributions — TMA Analysis

A detailed analysis of the performance of individual managed runtime threads using
top-down metrics derived from performance counters at OS scheduling quantum gran-
ularity. Results are shown that demonstrate the different top-down behaviours of VM
and application threads executing the Renaissance benchmark suite using OpenJDK.
Dynamic behaviours are shown in both violin plots and traces visualised in the Chrome
profiler, enabling identification of threads suffering from overheads related to a specific
microarchitectural characteristic, and revealing features that would otherwise go unre-
solved using the conventional current techniques.

Contributions — Warm-up and Steady-state Analysis

This study investigates the applicability of using microarchitectural performance counter
measurements to investigate warm-up and steady-state behaviour in MREs and work-
loads. Based on the experimental method of [BBTK+17], changepoint analysis is used
across benchmark iterations comparing wall clock execution time and accumulated
retired micro-operations. This work argues that such quantities are a more reliable
measure of effective work done than elapsed time and less susceptible to measurement
error in a typical system, where resource contention and microarchitectural and OS
interaction can affect timed experiments.

16 CHAPTER 1. INTRODUCTION

Contributions — BPFxVM

To achieve these objectives BPFxVM is developed and described: a suite of low-
overhead, flexible tools for investigating performance using the BPF Compiler Col-
lection (BCC) toolkit [IOV22]. BCC provides a python based frontend to the extended

Berkeley Packet Filter (eBPF) subsystem in the Linux kernel. BPFxVM leverages the
features of eBPF along with sampling microarchitectural PMU event counters to pro-
duce execution profiles and traces. This approach is both MRE and platform agnostic
and is demonstrated on both x86 and ARMv8 machines and can be used to investigate
any application that executes on a Linux platform.

Chapter 2

Just In Time Compilation on Arm – A
Closer look at Call Site Code
Consistency

2.1 Abstract

The increase in computational capability of low-power Arm architectures has seen
them diversify from their more traditional domain of portable battery powered devices
into data center servers, personal computers, and even Supercomputers. Thus, man-
aged languages (Java, Javascript, etc.) that require a managed runtime environment
(MRE) need to be ported to the Arm architecture, requiring an understanding of dif-
ferent design trade-offs. This paper studies how the lack of strong hardware support
for Self Modifying Code (SMC) in low-power architectures (e.g. absence of cache
coherence between instruction cache and data caches), affects Just-In-Time (JIT) com-
pilation and runtime behavior in MREs. Specifically, we focus on the implementation
and treatment of call-sites, that must maintain code consistency in the face of concur-
rent execution and modification to redirect control (patching) by the MRE. The lack
of coherence, is compounded with the maximum distance (reach of) a call-site can
jump to as the reach is more constrained (smaller distance) in Arm when compared
with Intel/AMD. We present four different robust implementations for call-sites and
discuss their advantages and disadvantages in the absence of strong hardware support
for SMC. Finally, we evaluate each approach using a microbenchmark, further evalu-
ating the best three techniques using three JVM benchmark suites and the open source

17

18 CHAPTER 2. ARM JIT COMPILATION: CALL SITE CODE CONSISTENCY

MaxineVM showcasing performance differences up to 12%. Based on these observa-
tions, we propose extending code-cache partitioning strategies for JIT compiled code
to encourage more efficient local branching for architectures with limited direct branch
ranges.

2.2 Introduction

The onset of sustained increases in computational capability and market share of low
power processors can be traced back to the early days of mobile computing, in par-
ticular smartphones. Subsequent innovation in architecture and process node have
enabled low power designs to achieve ever higher performance and so enter new mar-
kets. Low power processors can now be found, amongst others, in Internet of Things
(IoT) devices, autonomous vehicles, edge nodes of distributed systems, data center
servers [ARM19c], and personal computers. This trajectory of processor capability
has enabled a shift in the languages used to program them. In addition to traditional
languages such as C and C++, many applications are nowadays developed in managed
languages. Although managed languages have their own well known benefits such as
higher developer productivity, better memory safety and application portability, they
in turn rely on a managed runtime environment (MRE) to efficiently execute them
[Mic19, Jam19, Azu19]. The MRE itself inevitably adds to the computational work-
load and the possibility arises when porting such a system to a new architecture, to
introduce unforeseen overheads and design trade-offs.

From our experience of porting MaxineVM to ARMv7 and ARMv8, one such ex-
ample arises from the variance of hardware support for self modifying code (SMC)
across different architectures. For example, the x86 family of processors provide
strong hardware support for SMC offering a total store order memory consistency
model [SSO+10], and instruction/data cache coherence, based upon techniques such as
snooping, cache invalidation and processor pipeline flushing. On the other hand, lower
power processors typically employ weaker memory consistency models, and provide
less hardware support for SMC, instead requiring programmers and compilers to en-
sure that the appropriate combinations of memory barriers and other synchronization
measures required by the architectures are used correctly [RO16, SFP+20].

Managed runtime environments (MRE) typically rely on a phase of interpreted
execution of platform agnostic bytecode during which profiling information is col-
lected. These data profiles are used to guide the runtime to perform the most profitable

2.2. INTRODUCTION 19

Just-in-Time (JIT) compilations and dynamic optimizations, generating native code to
where control must be directed. Typically, code is optimized at the method or block
granularity and execution is redirected to the optimized code by calling, i.e. branch-
ing between the interpreted code and the compiled methods or blocks. Furthermore,
there are cases where MREs may need to re-compile some code segments. Such cases
include: de-optimization [HCU92], where a speculative assumption made during com-
pilation is found to be invalid; and tiered compilation [PVC01], where code that is on
the “hottest” path is selected to be further optimized using more aggressive compiler
optimizations.

In order to include newly JIT compiled code onto the execution path, MREs employ
runtime code patching: i.e. they modify existing code on the fly in order to redirect
control to the new compilations. Two possible strategies include: either eagerly patch
all currently compiled call-sites to the affected target, or patch the entry points of the
old target such that it will lazily patch referring call-sites the next time it is executed.

The implementation of call-sites and the associated strategies for their runtime code
patching have not been thoroughly studied, in part because the most commonly tar-
geted execution platforms for managed languages feature strong hardware support for
SMC. On such platforms simply overwriting the target address of a call instruction
is sufficient in most cases to redirect a call-site to a different target without further
concern.

In this work, which extends our previous study [HZKL19], we examine how the
absence of hardware support for SMC, typical of some low-power architectures, af-
fects the implementation and performance of MREs. More specifically this paper con-
tributes the following:

• It discusses and examines the constraints imposed by different architectures,
such as x86-64 and AArch64 that affect their support for SMC in the context
of JIT compiled code and MREs (see §2.4).

• It presents (see §2.5) and evaluates (see §2.7) four different safe call-site im-
plementations for MREs and architectures without hardware support for SMC,
showing their performance and corresponding patching overheads. The evalua-
tion is performed on three diverse 64–bit ARMv8 platforms against microbench-
marks and three standard JVM benchmark suites (for the best three call-site im-
plementations) using MaxineVM [KCR+17, WHVDV+13].

20 CHAPTER 2. ARM JIT COMPILATION: CALL SITE CODE CONSISTENCY

D-CACHE

I-CACHE
Main Memory
001010101010110
010101010100101
011001001100111
100010101010100
100010101010111
100010101010100
011001001100111
010101010101010
111110101010100
010100100010101
100110010000011
100110010000011
110001001110010
101010100100101
101011100100111
101010100100101
110010100100101
111110101010100

CPU

1

2

3

4

5

6

7
8

Figure 2.1: Code-patching illustration.

• It shows that different call-site implementations exhibit not only different capa-
bilities and implementation complexity, but also reveals performance variations
of up to 12%.

2.3 Background

Self-modifying code is a natural consequence of JIT compilation in MREs. During
the course of executing its workload the runtime compiles new native code, replaces
existing code and re-steers execution as required. Together, the MRE and its workload
operate as a single operating system process that generates and modifies its own code.

2.3.1 Harvard Architectures and SMC

Contemporary processors are typically based on modified Harvard architectures [HP12]
where separate instruction and data caches are used to optimize performance by reduc-
ing the latency required to access main memory, both for data and instructions. In such
architectures, the instruction cache and pre-fetch unit are utilised to try and fetch ahead
of time the instructions that are likely to be executed in the near future.

Figure 2.1 illustrates the data-flow of a modified Harvard architecture in the context
of code patching. Solid green arrows indicate the typical data-flow, whilst dashed red
arrows indicate SMC data-flow. Main memory contains both code and data. Code

2.3. BACKGROUND 21

from main memory is placed in the instruction cache (I-Cache) after a fetch by the I-
Cache pre-fetcher or on resolution of I-Cache misses 1 . Similarly the data cache (D-
Cache) caches data from main memory 2 . Based on the current value of the Program
Counter (PC), the processor reads instructions from the I-Cache and executes them 3 .
Some of these instructions might modify data, resulting in writes to the D-Cache 4
that are written-back to main memory 5 at a point in time that is determined by the
processor’s memory consistency model [Gha96]. With SMC, read/write accesses for
code modifications may require the processor to fetch code into the data cache first 6 .
Consequently, the modified code is written to the data cache 7 that is then written-
back to the main memory 8 and re-fetched to the instruction cache 1 in order to
become visible to the processor, and eventually be executed.

The involvement of two kinds of caches (I-Cache and D-Cache), means that main-
taining code coherency across the system is more complicated than maintaining data
coherency. As a result, different architectures provide different hardware support for
SMC [Int15] in a similar manner as they implement different memory models. Con-
sequently, self-modifying-code must comply with the underlying architecture’s co-
herency constraints to ensure that the code updates become visible for execution.

2.3.2 Categorization of Processors

The hardware support that an architecture provides for SMC includes elements of the
ISA, memory consistency model and the cache coherence protocol. The stronger the
guarantees the architecture provides, the more intuitive it is to program, but it also be-
comes more complex to implement and scale to a high number of cores. Contemporary
processors that provide strong guarantees regarding both data and code coherence typ-
ically belong to the x86 family and target high performance. Conversely, architectures
that are designed to prioritize a low power envelope, tend to offer weaker guarantees
regarding data and code coherence and provide a reduced instruction set. Examples
of such architectures are ARMv7, ARMv8 (AArch32/AArch64) and RISC-V. For the
discussion in the remainder of this paper we categorize processors with the terms high-
end and low-power.

In the next section we examine how the architectural features that have been out-
lined so far, affect SMC on both high-end and low-power processors. We focus the dis-
cussion on the implementation details of call-sites that enable them to be safe to both
concurrently execute and patch in MREs such as the Java Virtual Machine (JVM).

22 CHAPTER 2. ARM JIT COMPILATION: CALL SITE CODE CONSISTENCY

2.4 Architectural Constraints on SMC

General purpose MREs were initially/primarily designed and optimized for high-end
architectures with sufficient hardware resources to support the extra overheads of MREs
whilst still meeting acceptable performance criteria. As a result, the implementation
of some design decisions on low-power architectures may introduce unexpected per-
formance overheads when compared to corresponding high-end architecture imple-
mentations. However, we note that there are examples of runtimes such as JavaME
and Android that have been developed specifically to target resource constrained de-
vices. Each type of architecture or processor design has different performance targets
in a predefined power envelope. This includes different versions of ARM and x86 ar-
chitecture families and asymmetric multicore processors [CBGM12] such as ARM’s
big.LITTLE. By properly sizing the different hardware units of a chip (e.g., caches,
branch predictors, etc.) along with additional implemented hardware features (e.g.,
vector instructions, specific hardware accelerators, etc.) microprocessors can scale up
or down depending upon their targeted performance and power.

In addition to these design decisions there are other factors that influence the per-
formance and behavior of different architectures when considering the implementation
of SMC. These include: i) limitations imposed by the instruction set architecture (ISA),
ii) explicit synchronization required by both the memory model and cache coherency
protocol, iii) limits to the class of instructions that can be safely executed and modified
concurrently.

In the remainder of this section we elaborate these points further.

2.4.1 Call-Site Size, Patch Size, and Atomicity — ISA

Call-sites comprise an instruction, or sequence of instructions, that perform a pro-
cedure call by directing control from the current PC to a new target address. ISAs
with fixed length instruction encoding have a hard limit to the size of their operands,
and this leads to constraints on the maximum range of PC-relative single instruction
calls. The A64 ISA for AArch64 defines a branch with link instruction, BL <target>,
that branches to a ±128MiB PC-relative target, setting the link register to the return
address. Consequently, we can see that for fixed length ISAs it is necessary to use a
sequence of instructions to reach targets that are beyond the range of the single instruc-
tion common case. For example in AArch64 it is possible to use three instructions (for

2.4. ARCHITECTURAL CONSTRAINTS ON SMC 23

1 ADRP X16, CALL_TARGET
2 ADD X16, X16, :lo12:CALL_TARGET
3 BLR X16

Listing 2.1: AArch64 call-site example for a long-range target.

long-range targets up to ±4GiB) as shown in Listing 2.1. The code in Listing 2.1 es-
sentially initializes a register (X16) with the 4KiB memory page containing the target
address (line 1), adds the low 12 bits to form the address (line 2) and branches to it
(line 3).

In comparison, the x86-64 ISA [Int19] has a variable length encoding that supports
wider operands, an example of which is the CALL <target> instruction. One variant:
CALL rel32 is 5 bytes wide and supports a 32-bit displacement operand that is added
to the program counter (PC) to form a ±2GiB PC relative target address, sufficient for
the majority of calls. For calls required to go further than ±2GiB from the program
counter, CALL r/m64 can be used to load the absolute 64-bit target address from
r/m64 into the program counter.

The ISA therefore defines the sizes of both the call-site and its potential patch. The
patch-site can be as small as a part of an instruction (patching an operand) or up to a few
instructions. Additionally, specific attention must be given to ensure that the patching
operation appears to be atomic to the executing application code. Specifically, if the
ISA does not provide a wide enough atomic write instruction to ensure the patching is
atomic, then it is up to the managed runtime system to provide that guarantee.

2.4.2 Visibility and Timeliness — Memory Consistency and Co-
herence

Having discussed the implications imposed by the ISA, we now consider those related
to the memory model of the architecture. In order to modify instructions, a managed
runtime system will write to the affected memory addresses via the data caches of the
processor, as outlined in section 2.3.1. If the coherency protocol of the processor does
not include the instruction caches, then it becomes the responsibility of the managed
runtime to ensure that any modified instructions written to the data caches are visible to
the instruction fetch stream, at the appropriate time. Furthermore, in a multiprocessor
system, any shared memory locations containing instructions currently being modified
could be in-flight along the execution path on another core.

For AArch64 both of these conditions require mitigating action in order to fully

24 CHAPTER 2. ARM JIT COMPILATION: CALL SITE CODE CONSISTENCY

1 DC CVAU, Xn ; Clean data cache by VA to point of unification (PoU
)

2 DSB ISH ; Ensure visibility of the data cleaned from cache
3 IC IVAU, Xn ; Invalidate instruction cache by VA to PoU
4 DSB ISH ; Ensure completion of the invalidations
5 ISB ; Sync. fetched instr. stream

Listing 2.2: AArch64 JIT compiler side synchronisation [ARM19a].

1 ISB ; Sync. fetched instr. stream

Listing 2.3: AArch64 call-site side synchronisation [ARM19a].

synchronize the instruction and data streams. Listing 2.2 presents the instruction se-
quence that should be executed by the processor that has performed any code modifi-
cations; and listing 2.3 shows the code that should be executed by all cores that could
observe the same set of modified addresses. Line 1, listing 2.2 cleans the data cache
line containing the modified code address to the point of unification (PoU) [ARM19a].
Line 3 then invalidates the cache line in the instruction cache. Data synchronization
barriers at Lines 2 and 4 are used to ensure that any prior data read/write instruc-
tions have completed before the barrier completes. Finally, at line 5 is an instruction
synchronization barrier that causes the executing processor core to discard any instruc-
tions from its pipeline and prefetch buffers, ensuring subsequent instructions will then
be fetched from cache or memory. The same ISB instruction must then be executed by
the remaining cores running the current process if they may subsequently execute the
modified instructions.

The programmer/compiler inserted synchronization inevitably incurs a performance
overhead. Consequently, the placement of such barriers creates a trade-off between the
time-delay for patched code to become accessible, and how much overhead we pay per
call-site patching. Skewing the time that the patched code becomes visible may result
in different cores running different versions of the code having a potential impact on
both application performance and its correctness. In the case of tiered compilation,
performance could be negatively affected by failing to invoke the latest and highest-
performing version of a compiled method. In the case of de-optimization, correctness
may be affected by invoking an optimized version of the code that was based on an
assumption that is no longer true.

In contrast to AArch64, the x86-64 architecture provides hardware coherency be-
tween the instruction and data caches, and differentiates between self and

2.4. ARCHITECTURAL CONSTRAINTS ON SMC 25

cross-modifying code [Int16]. Self-modifying code, where instructions are modified
and executed by the same processor core, are handled transparently to the runtime, and
are automatically flushed from the processor’s pipeline. Although cross-modifying
code does not provide this guarantee, the 4-byte displacement operand of a CALL in-
struction can be safely patched provided it is suitably aligned [Dev20, Ros01].

Although ARMv8 processors typically rely on software to maintain coherency be-
tween instruction and data caches, as just described, version 8.5-A of the architecture
introduced the option for implementations to include instruction caches in the hard-
ware cache coherency. The capability is reported in the cache type register CTR EL0,
where the bit fields DIC and IDC indicate whether explicit cache maintenance instruc-
tions are required. Specifically, if the DIC flag is set, then instruction cache invalidation
is not required (line 3, listing 2.2). If the IDC flag is set, then the data cache clean to
PoU is not required (line 1, listing 2.2). We will return to this feature which is relevant
to our evaluation platforms in section 2.7.1.

2.4.3 Patchable Instructions — SMC Support

The previous two measures ensure that patching operations are both atomic, and any
subsequently altered code is available to the instruction fetch stages of all processors.
There is a further dimension, namely, any restrictions imposed by the architecture as to
the set of instructions that can be concurrently modified and executed. Some architec-
tures impose no restrictions including x86-64, SPARC, and RISC-V. POWER permits
only two instructions to be concurrently modified and executed (B and ORI 0,0,0 –
direct branches and no-op). ARMv8 limits the instructions to eight (B, BL, BRK, HVC,
ISB, NOP, SMC, and SVC [ARM19a]). In any other case, “Concurrent modification and

execution of instructions can lead to the resulting instruction performing any behavior

that can be achieved by executing any sequence of instructions that can be executed

from the same Exception level” [ARM19a].

In order to modify any other instructions outside of this set, the MRE needs to
ensure exclusive access to the corresponding addresses by suspending execution of
concurrent threads, for example by performing a “Stop-the-World” (StW) operation.
StW is essentially a pause of all application threads in order to allow for the managed
runtime to perform operations that cannot be safely performed while the application is
running. StW pauses are mainly used by garbage collection algorithms to ensure that
while collection happens, the state of the heap does not change by the action of mutator
(application) threads. In the case of call-site patching, a StW pause ensures that the

26 CHAPTER 2. ARM JIT COMPILATION: CALL SITE CODE CONSISTENCY

application is not running the code being patched, making the patching operation safe
(no matter the instructions used in the call-site implementation).

2.5 Call-Site Implementations

Having outlined the design constraints that must be considered for SMC, we present
four different viable call-site implementations. Each scheme can be safely patched and
executed concurrently. For each case we present the implications for both hardware
and software. We show implementations that target AArch64, however the strategy
and discussion are also relevant to other architectures.

Together with the constraints outlined in the previous section, the specification for
AArch64 limits the implementation of patchable call-sites by:

1. Limiting the range of direct calls. The range of a BL instruction is limited to
±128MiB PC relative displacements.

2. Supporting up to 128–bit atomic writes. Stores must be naturally aligned in
order to be atomic. Note that 128-bit atomic writes are supported using Load-
Exclusive Pair (LDXP) and Store-Exclusive Pair (STXP) instructions.

3. Requiring explicit cache maintenance operations and memory barriers. The
memory model and cache coherency protocol require software to schedule all
appropriate cache maintenance operations and memory barriers to ensure that
any patched instructions are available to the instruction fetch stage.

4. Limiting the set of instructions that can be concurrently patched and executed.

2.5.1 Direct Calls

In common with other ISAs, A64 provides a single instruction to facilitate procedure
calls to a PC-relative literal offset. The branch with link instruction enables calls within
±128MiB of the branch instruction. As the instruction resides in the set that is safe to
concurrently modify and execute, the old branch instruction can simply be overwritten
with another without exclusive access. The new branch can be made visible to instruc-
tion fetch stages by the cache maintenance sequence, if necessary. The benefits of this
approach are simplicity and performance and its disadvantage is the limited range of
the call.

2.5. CALL-SITE IMPLEMENTATIONS 27

Although the ±128MiB range would enable a code cache large enough for many
applications, it is nonetheless a hard limit. Some techniques employed by managed
runtimes may increase the expected amount of code, or decrease the effective uti-
lization of the code cache. For example, tiered compilation may result in multiple
cached versions of the same code compiled at different optimization levels, or with
different speculative assumptions. In addition, managing partitions of the code cache
using techniques common to GC algorithms, for example, mark-sweep or a semis-

pace scheme, creates temporary empty space within the addressable range of the code
cache. Both OpenJDK and MaxineVM make use of these two approaches respectively
for managing the more expendable profiled (OpenJDK) [HNG14] and baseline (Max-
ineVM) [WHVDV+13] code.

We also note that other contemporary RISC ISAs have more constrained direct
calls. For example RISC-V supports only ±1 MiB PC-relative displacements (JAL),
and POWER ±32 MiB. For these reasons we explore alternatives that avoid the limited
range of immediate branches.

2.5.2 Absolute-load Indirect Calls

The Absolute-load Indirect scheme loads the address of a call target from a fixed
address and branches to it. Listing 2.4 shows an example where lines 1–3 initialize
register X16 with the location that holds the target address, line 4 loads the address,
and line 5 performs the call. Note that the example in listing 2.4 assumes the standard
AArch64 48–bit address space.

With this approach the managed runtime can maintain the mapping of call target
addresses anywhere in the address space. In order to patch a call, the target address is
simply overwritten, and since no code is patched there is no need for synchronization
or cache maintenance. In order to ensure atomic updates, the address holding the
target must be 64-bit aligned. When using this scheme, any location within the virtual
address space of the runtime can be reached from the call-site. The other advantage of
this approach is the patching simplicity, since each callable procedure has the address
of its entry point stored at a single location, it needs only to be updated once, rather
than at each call-site. The downside is that all call-sites comprise five instructions, and
are on the fast-path.

28 CHAPTER 2. ARM JIT COMPILATION: CALL SITE CODE CONSISTENCY

1 MOVZ X16, #0xABCD ;Craft the address
2 MOVK X16, #0xEF89 , lsl #16 ; holding
3 MOVK X16, #0x7650 , lsl #32 ; the target
4 LDR X16, [X16]
5 BLR X16

Listing 2.4: AArch64 absolute-load indirect branching. Note that this code assumes
the common 48-bit address space, implementations with a 52-bit address space will
require an additional movk instruction to set the uppermost 16-bits

1 LDR X16, CALLEE_1
2 BLR X16
3 ...
4 RET
5 CALLEE_1: .quad 0x0123456789ABCDEF
6 ...
7 CALLEE_N: .quad 0x01234ABCDEF56789

Listing 2.5: AArch64 relative-load indirect branching.

2.5.3 Relative-load Indirect Calls

Making use of PC-relative addressing we can improve on the
Absolute-load Indirect scheme and store the target address of the call close by,
for example, after the callers compiled code. In order to perform the call, shown in
listing 2.5, the target address is simply loaded and then branched to. As in the previous
example, no code is altered, and so no explicit synchronization or cache maintenance
is required; however, the location holding the target addresses must be 64-bit aligned
in order for updates to be atomic. This approach improves on the previous example by
only requiring two instructions to perform the call, although a further 64-bit quantity
is required to accommodate the target address. This approach is limited by the range
of the PC-relative load, ±1MiB for AArch64, so in order to be feasible the compiled
method and storage for its call target addresses must be within this range.

Non-AArch64 compatible variation: We note that for architectures that do not
restrict the set of instructions that can be concurrently modified and executed, it would
be possible to combine this technique with the direct PC-literal call as follows. To
transition from a Relative-load Indirect call to Direct, the branch register in
listing 2.5 could be replaced with a direct branch and the load instruction, now redun-
dant, replaced with a no-op. Reversing these steps would facilitate the transition from
Direct to Relative-load indirect.

2.5. CALL-SITE IMPLEMENTATIONS 29

1 BL SHORT_TARGET ; or TRAMPOLINE
2 ...
3 RET
4 TRAMPOLINE:
5 LDR X16, CALLEE1
6 BR X16 ; Don’t link
7 CALLEE1: .quad 0x0123456789ABCDEF

Listing 2.6: Trampoline implementation with Relative-load Indirect call-sites.

2.5.4 Trampolines

Another approach for safe patching of call-sites is to use trampolines. A trampoline
is a bimodal call scheme that completes a call in one or two legs. At the call-site,
the scheme is implemented using a single BL instruction, that can be safely patched
without exclusive access. The BL instruction can either branch directly to the target
method (if it is within the range of a direct branch), or to an out-of-line trampoline
which is a long-range call-site, see Listing 2.6. Note that at the trampoline there is
a plain branch without linking (line 6), this way when the callee returns it does not
return to the out-of-line trampoline but right after initial BL (line 1). This approach is
currently being used by the OpenJDK AArch64 port. A limitation of this approach is
that the out-of-line trampoline still needs to be within the range of the direct branch
at the call-site. This can be achieved by reserving space for a trampoline per callee
after the compiled code, in a similar manner to the way we allocate space for target
addresses for Relative-load Indirect branching.

2.5.5 Patching only at Safe-points

Managed runtimes are able to suspend their hosted applications at safe-points in order
to perform critical operations, for example, elements of garbage collection or deop-
timization. Safe-points are usually implemented as a poll to an address on a special
memory page and are injected by JIT compilers at or just after calls, or other points
where application thread state is well known. At a safe-point the stack and heap can be
safely manipulated whilst ensuring that a thread’s view of the world remains consis-
tent when it leaves the safe-point. To enable the safe-point, the runtime will protect the
memory page causing application threads to trap and cooperatively suspend execution
until resumed by the runtime.

This mechanism could also be employed for runtime code patching, thereby avoid-
ing the complexities of concurrent modification and execution of code. Under such a

30 CHAPTER 2. ARM JIT COMPILATION: CALL SITE CODE CONSISTENCY

mechanism, a thread patching a call would have exclusive access to the code and would
therefore be able to use any instructions to generate the patch. One example would be
to use the scheme in listing 2.1. This approach requires three instructions and the ad-
dress generation sequence ADRP, ADD is typically optimised by the microarchitecture
[ARM20a, ARM17a, ARM17b, ARM20b]. Note also that the otherwise incompatible
approach described in section 2.5.3 would also be permissible at a safepoint . Applica-
tion threads upon resumption would synchronise their instruction streams, for example
with the barrier in listing 2.3. An early version of the AArch64 OpenJDK port [HD14]
employed this technique to avoid the complexities of call-site patching imposed by
the architecture. The benefit of this approach is the ability of the managed runtime to
use any instruction sequence to both implement and patch a call-site. The drawback
is the penalty of bringing the application to a standstill during patching which may be
prohibitive, particularly for latency sensitive applications.

2.6 Comparison of Call-Site Implementations

In this section we show a comparison of the different call-site implementations that
we presented in § 2.5. Table 2.1 presents a summary of this comparison based on the
following criteria:

• Whether code-patching or data-patching is required.

• Whether SMC support is required.

• The code size of the call-site implementation.

• The complexity of the patching code.

• The supported target range.

• Whether patching requires a “Stop-the-World” pause.

2.6.1 Code vs Data Patching and SMC Support

We characterize each implementation based on whether patching needs to alter code,
data or both. Implementations that require code patching, e.g. Direct (§ 2.5.1), and
Trampolines (§ 2.5.4) cannot be implemented in the absence of SMC support whether
by hardware of software. On the other hand, implementations requiring only data

2.6. COMPARISON OF CALL-SITE IMPLEMENTATIONS 31

patching, e.g. Absolute-load Indirect (§ 2.5.2), and Relative-load Indirect (§ 2.5.3)
do not require SMC support since they do not alter the code itself, rather a memory
address containing the actual target address.

2.6.2 Code Size

Code size is an important metric not only because larger code size is associated with
more instructions and thus more cycles, but also because it impacts cache performance,
especially in embedded systems. For each implementation we report the number of 32-
bit instructions. In addition to the instructions required for a call, both Relative-load

Indirect and Trampolines require a further 64-bit quantity that specifies the target
address of each unique call target in a compiled method. These 64-bits reside with the
code and contribute to the overall code size and may impact code cache performance.
For Relative-load Indirect this is marked as +2 in Table 2.1. Trampolines, de-
pending on the call-range, require execution of a single instruction (for short-range
calls) or up to three instructions (for long-range calls). For short-range, the reserved
space is four instructions wide, while for long-range the reserved space is two instruc-
tions wide (marked as +4 and +2 respectively in Table 2.1)

2.6.3 Patching Complexity

The complexity of the patching code, although not on the common path, is another
interesting metric when it comes to call-site implementations. The patching com-
plexity relies heavily on whether the call-site requires code or data patching. When
data-patching, an overwrite of the old address is sufficient to make future calls jump
to the new target. However, different implementations have different complexity. In
the Absolute-load Indirect branching (§ 2.5.2) case where we keep a single cen-
tral 64-bit value for each compiled method, a single 64-bit write is enough to effec-
tively patch all the call-sites targeting the corresponding method. On the contrary,
in the Relative-load Indirect (§ 2.5.3) case we need to visit each caller method
and overwrite the corresponding 64-bit inline segment, increasing the complexity from
O(1) to O(n), where n is the number of methods that invoke the corresponding method
at least once.

In implementations requiring code-patching, the complexity increases even more.
In code-patching we need to patch each call-site separately, even if multiple call-sites
with the same target reside in the same method, resulting in a complexity of O(m),

32 CHAPTER 2. ARM JIT COMPILATION: CALL SITE CODE CONSISTENCY

Table 2.1: Comparison of call-site implementation approaches.
Absolute-load Relative-load Any

Direct Indirect Indirect Trampolines Safe-point
Characterization Code Data Data Code + Data Any

Requires SMC support Yes No No Yes Maybe
Size (in instructions) 1 5 2 +2 1 +4 to 3 +2 Any (≥ 1)
Patching Complexity Medium Low Medium High Any

Supported Call Range Limited Any Any Any Any
Stop-the-world pause No No No No Yes

where m is the number of call-sites that invoke the corresponding method and m ≥ n.
To effectively patch all call-sites invoking a method, we need to either go over all the
compiled methods and eagerly patch the corresponding call-sites, or patch the current
compiled version of the callee such that it lazily patches call-sites when next executed.
The latter allows patching to run in constant time, but penalizes the first execution of
each unpatched call-site.

2.7 Evaluation

The evaluation consists of two parts: firstly we use our own microbenchmark, and
secondly three well known JVM benchmark suites that we run with the open source
MaxineVM [WHVDV+13]. The microbenchmark experiments enable us to perform a
fine grained microarchitectural and performance analysis of implementations of each
of the four call site schemes outlined in section 2.5, on three diverse 64-bit ARMv8
platforms. Based on the observations from the microbenchmark results we then imple-
ment three call-site schemes in MaxineVM, and evaluate the performance using results
from the Renaissance, DaCapo and SPECjvm2008 benchmark suites. In the follow-
ing sections we describe the experimental platforms followed by the experiments and
results.

2.7.1 Experimental Platforms

We used three hardware platforms for our experiments: AppliedMicro X-Gene 1,
Graviton2, and Odroid C2. All three platforms were used for the microbenchmark
experiments. However, only the first two were used for the JVM benchmarks, and the
third platform (Odroid C2) was omitted because it has insufficient memory to run all
benchmarks.

2.7. EVALUATION 33

APM X-Gene 1: The Applied Micro X-Gene X-C1 Evaluation Kit is equipped
with a APM883208-X1 8 core processor [Wik18], clocked at 2.4GHz and 32GiB
of DRAM. The processor has a 4-wide out-of-order superscalar microarchitecture
[GSF12]. Each core has 64KiB L1 cache (32KiB instruction + 32KiB data), each
pair of cores shares 256KiB L2 cache and all cores share 8MiB of L3 cache. The X-
Gene has Debian 9u5 installed and runs Linux 4.9.0-8-arm64. The X-Gene 1 was one
of the first ARMv8 system-on-chips to be manufactured, and the first server on chip of
that architecture.

Graviton2: The second system, an Amazon AWS Graviton2, is based on the ARM
Neoverse N1 processor [ARM19b]. The processor is clocked at 2.5GHz, has a 4-
wide front end, an 11 stage accordion pipeline and can dispatch and commit up to 8
instructions per cycle. Each core has 128KiB L1 cache (64KiB instruction + 64KiB
data), 1MiB L2 cache, and all cores share 32MiB of L3 cache (the die comprises 64
cores). We used two separate instances of the Graviton2: m6g.2xlarge and m6g.metal.
The m6g.2xlarge has 8 cores and 32GiB of DRAM and the m6g.metal has 64 cores
and 256GiB of DRAM. The Graviton2 has Ubuntu 18.04 LTS installed and runs Linux
5.3.0-135-aws. On virtualized instances such as the m6g.2xlarge, the performance
monitor unit (PMU) registers cannot be accessed directly from userspace programs.
As our microbenchmark experiments require access to the PMU registers, discussed
further in the next section, we used the m6g.metal instance for the microbenchmarks
and m6g.2xlarge instance for the JVM benchmarks. The Neoverse N1 has an option
for the instruction cache to be coherent with other caches within the coherency domain
including the data cache [ARM20c], as discussed briefly in section 2.4.2. We found
that the Graviton2 is susceptible to errata #1542419 [ARM20d], and the CPU reports
itself as not instruction cache coherent via the cache type register (CTR EL0.DIC ==
0). Instruction cache maintenance instructions are therefore required at EL0, following
stores to addresses that contain instructions. The N1 platform represents the current
state of the art of ARMv8 server processors.

Odroid C2: To complement the two out–of–order CPUs we also ran the mi-
crobenchmarks on a dual issue, in–order, quad–core Cortex–A53 Odroid C2. Each
core has 64KiB L1 cache (32KiB instruction + 32KiB data), all cores share a unified
L2 cache of 512KiB. The processor is clocked at 1.54GHz and the board has 2GiB of
DDR3 DRAM. Due to memory constraints it is not possible to run all Java benchmarks
on the Odroid and only the microbenchmarks results are presented. The Odroid has
Ubuntu 18.04.6 installed with Linux kernel version 3.16.72-46. The Cortex–A53 is the

34 CHAPTER 2. ARM JIT COMPILATION: CALL SITE CODE CONSISTENCY

most widely deployed ARMv8 CPU [Ltd20].

2.7.2 Microbenchmark

The microbenchmark performs a fixed number of invocations of a target callee func-
tion using each of the four schemes. We used a total of two callees: one was used as
the default target and the other as the patching target. For each call–site implementa-
tion we generated the corresponding sequence of assembly instructions. We timed the
experimental runs, and collected event counter values from the PMU of each platform,
enabling us to measure the performance in a cycle accurate manner. Furthermore, we
were also able to estimate the cost of the patching code per call-site implementation
by isolating its execution.

In order to avoid introducing front–end stalls, we separated each inline call–site
from its neighbor with a fixed integer computation comprising 7 instructions. This
formula was determined empirically by observing the effect of the padding on the
front end stall count. The number of instructions is also inline with our observations
from categorizing the benchmark workloads discussed in section 2.7.5.1, that show
approximately 10% distribution of branch instructions in code, also observed by oth-
ers [LTCC+16]. We aligned all branch targets to 8 byte boundaries. The Neoverse
N1 software optimization guide [ARM20b] recommends aligning branch targets to
16 byte boundaries, however we found that there was no measurable difference in the
microbenchmark results when compared to 8 byte alignment.

2.7.2.1 Methodology

We configured the microbenchmark to perform 1000 calls to a target function for each
call–site scheme on each platform. For the Trampoline scheme we used the long
range variant only, since at short range it is the same as Direct. On the Odroid-
C2 we employed the userspace CPUfreq scaling governor and set the frequency to
maximum to avoid perturbations arising from dynamic voltage and frequency scaling.
On all platforms the process affinity was set using using the taskset command to
pin the process to a single core, and we used a kernel module to enable access to the
PMU registers by userspace programs running at exception level 0 (EL0). We ran
four iterations of the experiment to populate the memory system, before timing and
counting events around the critical section of code.

2.7. EVALUATION 35

Relative-load
Indirect

Absolute-load
Indirect

Trampolines
(long-range)

0

1

2

3
Ca

ll
Sc
he
m
e
Cy

cl
es

Re
la
tiv

e
to

D
ire

ct
Platform
Graviton2
Odroid C2
X-Gene 1

Figure 2.2: Microbenchmark results showing the ratio of cycles of the alternate
schemes from section 2.5 when compared to Direct. Error bars show the 95% confi-
dence interval.

2.7.3 Microbenchmark Results

Figure 2.2 shows the relative performance of a call for each scheme when compared to
the Direct scheme on the same platform. The y–axis shows the number of cycles per
call for each scheme divided by the number of cycles taken for the Direct scheme;
the error bars show the 95% confidence interval. Table 2.2 contains the following
statistics collected from the PMU during the experiment: the instruction throughput
measured in instructions retired per cycle (IPC), the L1 instruction cache refill rate,
and the branch mispredicton rate for each microbenchmark. The L1 instruction cache
refill rate is shown as the percentage of L1 instruction cache accesses that cause a
refill. The branch misprediction rate is the percentage of predictable branches that
were mispredicted or not predicted.

The Direct scheme, being one instruction long, always consumes the fewest cy-
cles. Furthermore, since the branch target is encoded in the instruction, it can be dis-
covered earlier in the pipeline and subsequently used to generate the next fetch ad-
dresses by the prefetch unit. This shorter loop, when compared to the other schemes
that require input from a register to determine the call target, ensures that the Direct

scheme also obtains the highest instruction throughput, and the branch misprediction
rate is 0% for all platforms. As expected, the Graviton2 achieves the highest instruc-
tion throughput for all schemes and also sustains a higher throughput relative to the
Direct scheme. The microprocessor has a well provisioned prefetch unit containing

36 CHAPTER 2. ARM JIT COMPILATION: CALL SITE CODE CONSISTENCY

Table 2.2: Statistics collected from the performance monitoring units whilst executing
the microbenchmark. Note that the abbreviations G2, C2 and XG refer to the Gravi-
ton2, Odroid-C2 and X-Gene 1 respectively. IPC is instructions retired per cycle.

L1 I-Cache Branch
IPC Refill Rate % Mispredict %

G2 C2 XG G2 C2 XG G2 C2 XG
Direct 3.2 1.1 1.4 0.8 1.9 10.1 0.0 0.0 0.0

Relative-load Indirect 3.2 0.8 0.9 1.3 3.6 10.2 0.3 0.2 7.1
Absolute-load Indirect 3.1 0.8 0.8 4.0 8.6 19.6 0.3 0.2 8.9

Trampolines (long-range) 2.2 0.8 0.6 10.3 4.7 9.2 0.2 0.2 17.6

a decoupled branch predictor able to run independently from, and ahead of the in-
struction fetch stage [PSB+20], and is possibly a variant of Fetch Directed Prefetching

[RCA99].

The Relative-load Indirect scheme is the most efficient of the register indirect
schemes presented on all platforms. The scheme incurs an overhead of approximately
1.4x per call for the Odroid and 1.6x for the X-Gene when compared to Direct. The
observed overhead for the Graviton2 is almost negligible.

Absolute-load Indirect shows a 2.2x overhead compared to Direct for the
X-Gene, 2x for the Odroid-C2, and 1.3x for the Graviton2. All platforms record a
significantly higher L1 instruction cache miss rate with this scheme when compared to
Relative-load Indirect, shown in table 2.2.

With the long–range variant of Trampolines, the Graviton2 and the Odroid C2
show a similar 1.6x penalty, and the X-Gene 2.7x. The Graviton2 shows the highest
L1 instruction cache misprediction rate for this benchmark.

The X-Gene shows a low IPC relative to its four instruction issue width in com-
parison to the Graviton2 (quad-issue) and Odroid C2 (dual-issue). The high branch
misprediction rates and high L1 instruction cache refill rate coupled to low IPC for
all of the indirect schemes suggest that part of the reason is due to a failure to fetch
instructions from the correct execution path. These results most be viewed historically
as the X-Gene was an early implementation of the 64–bit ARMv8 architecture.

2.7.3.1 Patching

In addition to the execution of calls we also present the patching overheads. The major-
ity of patching in a JVM takes place during the warm-up phase when newly compiled
methods are linked. As such the patching overheads do not contribute significantly

2.7. EVALUATION 37

Table 2.3: Number of cycles per patch operation.
Absolute-load Relative-load Trampolines

Direct Indirect Indirect (long-range)
Graviton2 65 12 13 79
X-Gene 1 129 14 14 144

Odroid-C2 77 20 18 96

to peak performance. Table 2.3 presents the number of cycles for each platform and
benchmark for a single call–site patch including all required cache maintenance for
the target platform. For Trampolines we evaluate the case where we patch in a tram-
poline, as would be the case when going from a short-range single branch call to an
otherwise out-of-range target. The schemes that modify instructions incur much higher
overheads than those that store addresses for indirect-calls as a direct result of the cache
maintenance operations and associated barriers and pipeling flushing. The cost of the
barriers is smaller on the Graviton2 which has some hardware synchronization between
the data and instruction caches, and does not require the modified data cache lines to
be cleaned to the PoU unlike the other two platforms.

2.7.3.2 Limitations of the Microbenchmark

The microbenchmark is implemented as a linear sequence of unconditional branches
to a target function. As such each call-site is executed once with no prior execution
history in the branch prediction resources of the processor. The microbenchmark re-
sults represent the worst case, as might be expected when a call is encountered for the
first time. The integer performance of the CPU will also affect the IPC due to the inte-
ger computation padding discussed in 2.7.2. The Graviton2 has four integer execution
units, the X-Gene 1 has two and the Odroid C2 has one.

2.7.4 JVM Benchmarks

Based on the results of the microbenchmark we implement three viable schemes in
MaxineVM: Direct, Trampolines and a version of Relative-load Indirect, dis-
cussed further in section 2.7.4.2. We evaluate the relative performance of the schemes
using three well known JVM benchmark suites: Renaissance 0.11.0, DaCapo 9.12-
MR1-bach and SPECjvm2008. We also conduct a further analysis using the DaCapo
benchmarks in section 2.7.5.1 in order to extract further insights into some of the points
that arose during experiments, as discussed below.

38 CHAPTER 2. ARM JIT COMPILATION: CALL SITE CODE CONSISTENCY

2.7.4.1 MaxineVM

MaxineVM is based on version 2.9 and also includes some bug-fixes not yet avail-
able upstream, the image is built using OpenJDK 1.8.0 265. MaxineVM’s code cache
is partitioned into three adjacent regions: boot, baseline and optimized (figure 2.8).
The boot cache is populated during the image build phase and is a fixed size. The
baseline and optimized code caches are configured and populated at runtime. The
baseline cache occupies a managed semi-space heap scheme and the optimized cache
is unmanaged, i.e. newly compiled optimized code can only be allocated into the
optimized cache until it is full. If this condition is met MaxineVM will currently ter-
minate. The default sizes for baseline and optimized caches are 256MB and 16MB
respectively. In order to run MaxineVM using the Direct scheme it is necessary to
constrain the size of the baseline code cache in order to remain within the 128MiB
limit of a single BL instruction across the entire code cache. Typically the boot re-
gion is around 14MB for an AArch64 MaxineVM image, so a baseline code region of
98MB allows for the default 16MB optimized cache. This option is specified on the
command line when running MaxineVM for all benchmarks using the Direct scheme
with the option: -XX:ReservedBaselineCodeCacheSize=98MB. The option is also
used for the Relative-load Indirect scheme discussed in section 2.7.4.2. Note
that using the same setting for the Trampoline scheme would reduce it to the Direct
scheme, since anywhere in the code cache would be reachable from the branch and
link at the Trampoline call-site. For the Trampoline scheme we therefore use the
default 256MB baseline code cache size to ensure that a fraction of calls require the
long-range variant of the Trampoline to be utilized. All schemes therefore use single
instruction direct calls within ahead-of-time (AOT) compiled boot image code, and at
runtime the two alternate schemes transition to their implementation specific form for
JIT compiled code. An implication arising from this constraint is that some bench-
marks generate too much baseline code for the restricted code cache size and so fail to
run. The benchmarks that can be run are enumerated in the sections that describe the
suites below.

2.7.4.2 Relative-load Indirect, MaxineVM

In MaxineVM, the boot code cache contains position independent code only, since at
the time the image is built, absolute addresses of locations within the code are not
known. Calls in this region rely on relative addressing using the PC only. In order

2.7. EVALUATION 39

to implement this scheme in MaxineVM without significant re-engineering we em-
ploy the Direct scheme in boot image code and transition to the Relative-load

Indirect scheme at runtime. Effectively the core components necessary to start run-
ning MaxineVM will employ the Direct scheme, however new workload code com-
piled at runtime will use the Relative-load Indirect call scheme. This also means
that calls from the boot code region need to be able to reach the entire code cache
so it is necessary to constrain the code cache size as discussed in section 2.7.4.1. To
distinguish this implementation of the scheme in MaxineVM, we will refer to it as
Indirect-Maxine for the remainder of this chapter.

2.7.4.3 Affected calls

Maxine uses a conventional virtual dispatch scheme for all virtual and interface method
calls. Hence for the experiments, the three alternate call-site schemes affect only calls
to targets that can be resolved at JIT compilation time and can therefore be statically
bound. This includes both static calls (those originating at an INVOKE STATIC byte-
code), and calls that can be devirtualized either speculatively, or calls to target methods
with final or private attributes. The remaining virtual and interface invokes that are not
devirtualized use the conventional virtual dispatch scheme and are unaffected in the
experiments. We investigate this further in section 2.7.5.1.

2.7.4.4 Methodology

For all benchmarks a heap size of 16GB was set (-Xms16G -Xmx16G). The heap size
was chosen to accommodate the largest working set of the benchmarks (Renaissance
reactors) and to minimize any interference in the measurements due to garbage collec-
tion.

For both Renaissance and DaCapo we omit the early runs where the time is greater
than 3 standard deviations of the mean of the remainder of the set. For SPECjvm2008
we used the default of one iteration running for 240s after an initial warmup of 120s.
All of the SPECjvm2008 benchmarks were run except xml.transform which Max-
ineVM fails. From DaCapo we run: avrora, fop, h2, jython, luindex, lusearch, lusearch-

fix, pmd, sunflow, xalan. Of the remaining DaCapo benchmarks, some are problem-
atical on both MaxineVM and OpenJDK AArch64: batik (fails due to missing JPEG
library), eclipse (fails due to raised Exceptions), tomcat (fails validation); or fail to
start on Maxine: tradebeans and tradesoap (which are also now problematical on some

40 CHAPTER 2. ARM JIT COMPILATION: CALL SITE CODE CONSISTENCY

OpenJDK versions). From the Renaissance benchmark suite we run: fj-kmeans, future-

genetic, mnemonics, par-mnemonics, philosophers, reactors, rx-scrabble, scala-doku,

scala-kmeans, scala-stm-bench7. Of the remainder, five require further work to run
reliably under MaxineVM: finagle-chirper, finagle-http, db-shootout, neo4j-analytics;
scrabble exhibits non-deterministic behavior, and the rest generate too much baseline
code to run given the constrained baseline code cache size: akka-uct, als, chi-square,

dec-tree, gauss-mix, log-regression, movie-lens, naive-bayes, page-rank, dotty. For
the Renaissance benchmarks, the default number of iterations of each benchmark was
used. For DaCapo we run 30 iterations of each benchmark except fop, luindex and
lusearch-fix where we run 100. Since these three benchmarks have short runtimes we
used the larger number of iterations to reduce uncertainty in the plots.

2.7.5 Benchmark Results

The plots for the benchmarks are shown in figures 2.3, 2.4, 2.5 and 2.6. As the Direct
scheme is the optimal solution, in the plots we show the results of Indirect-Maxine
and Trampolines relative to Direct, where a y-axis value greater than one indicates
a slowdown (higher is worse). For both Renaissance and DaCapo the error bars show
the 95% confidence interval according to Fieller’s theorem for the quotient of two
means [Fie54]. The SPECjvm2008 results are for a single iteration and so there is
no confidence interval. All of the plots include a geomean bar showing the geometric
mean of all the benchmarks run from each suite.

From the plots we make two general observations. Firstly, for each benchmark
the slowdown introduced by both Trampolines and Indirect-Maxine schemes is less on
the Graviton2, where the bars tend more towards parity with the Direct scheme, than is
observed for the X-Gene 1. Secondly, whilst the difference in performance between the
two schemes is almost negligible for the Graviton2: a fraction of 1% in the geomean;
for the X-Gene 1 there is 2% difference in the geomean for DaCapo and Renaissance,
slightly less for SPECjvm2008, varying up to 5% (SPECJVM2008 xml.validation).
Both of these observations are inline with the microbenchmark results.

Looking more specifically at the individual benchmark suites, the difference in
performance between the two schemes is more significant with DaCapo, less so for
Renaissance and some of the SPECjvm2008 benchmarks. From the SPECjvm2008
benchmarks the scimark [PM20] and crypto families reveal little difference in the per-
formance between the two schemes. These two benchmark groups feature loop-based
numerical computations and a small code footprint and are not revealing in this work.

2.7. EVALUATION 41

avr
ora fop h2

jyt
ho
n

lui
nd
ex

lus
ear
ch-
fix pm

d

sun
flo
w

xal
an

geo
me
an

1.0

0.98

1.02

1.04

1.06

Ex
ec
ut
io
n
tim

e
re
la
tiv

e
to

D
ire

ct
lo
w
er

is
be
tte

r

X-Gene 1

avr
ora fop h2

jyt
ho
n

lui
nd
ex

lus
ear
ch-
fix pm

d

sun
flo
w

xal
an

geo
me
an

Graviton2

Indirect-Maxine
Trampoline

Figure 2.3: DaCapo benchmark results showing the performance of the call-site
schemes, relative to the Direct scheme implemented on MaxineVM.

fj-k
me
an
s

fut
ure
-ge
ne
tic

mn
em
on
ics

par
-m
ne
mo
nic
s

ph
ilo
sop
he
rs

rea
cto
rs

rx-
scr
abb

le

sca
la-
do
ku

sca
la-
km
ean

s

sca
la-
stm

-be
nch

7

geo
me
an

1.0

1.1

0.94
0.96
0.98

1.02
1.04
1.06
1.08

1.12

Ex
ec
ut
io
n
tim

e
re
la
tiv

e
to

D
ire

ct
lo
w
er

is
be
tte

r

X-Gene 1

fj-k
me
an
s

fut
ure
-ge
ne
tic

mn
em
on
ics

par
-m
ne
mo
nic
s

ph
ilo
sop
he
rs

rea
cto
rs

rx-
scr
abb

le

sca
la-
do
ku

sca
la-
km
ean

s

sca
la-
stm

-be
nch

7

geo
me
an

Graviton2

Indirect-Maxine
Trampoline

Figure 2.4: Renaissance benchmark results showing the performance of the call-site
schemes, relative to the Direct scheme implemented on MaxineVM.

42 CHAPTER 2. ARM JIT COMPILATION: CALL SITE CODE CONSISTENCY

com
pil
er.
com

pil
er

com
pil
er.
sun

flo
w

com
pre
ss

cry
pto
.ae
s

cry
pto
.rs
a

cry
pto
.sig
nv
eri
fy

der
by

sci
ma
rk.
fft.
lar
ge

sci
ma
rk.
fft.
sm
all

sci
ma
rk.
lu.
lar
ge

sci
ma
rk.
lu.
sm
all

sci
ma
rk.
mo
nte
_ca
rlo

sci
ma
rk.
sor
.lar
ge

sci
ma
rk.
sor
.sm
all

sci
ma
rk.
spa
rse
.lar
ge

sci
ma
rk.
spa
rse
.sm
all

ser
ial

sun
flo
w

xm
l.v
ali
dat
ion

geo
me
an

0.98

0.99

1.00

1.01

1.02

1.03

1.04

1.05

Pe
rfo

rm
an
ce

re
la
tiv

e
to

D
ire

ct
Lo

w
er

is
Be

tte
r

Indirect-Maxine
Trampoline

Figure 2.5: SPECjvm2008 benchmark results showing the performance of the alter-
nate call-sites relative to the Direct scheme implemented in MaxineVM and run on
Graviton2.

com
pil
er.
com

pil
er

com
pil
er.
sun

flo
w

com
pre
ss

cry
pto
.ae
s

cry
pto
.rs
a

cry
pto
.sig
nv
eri
fy

der
by

sci
ma
rk.
fft.
lar
ge

sci
ma
rk.
fft.
sm
all

sci
ma
rk.
lu.
lar
ge

sci
ma
rk.
lu.
sm
all

sci
ma
rk.
mo
nte
_ca
rlo

sci
ma
rk.
sor
.lar
ge

sci
ma
rk.
sor
.sm
all

sci
ma
rk.
spa
rse
.lar
ge

sci
ma
rk.
spa
rse
.sm
all

ser
ial

sun
flo
w

xm
l.v
ali
dat
ion

geo
me
an

1.00

1.02

1.04

1.06

1.08

1.10

Pe
rfo

rm
an
ce

re
la
tiv

e
to

D
ire

ct
Lo

w
er

is
Be

tte
r

Indirect-Maxine
Trampoline

Figure 2.6: SPECjvm2008 benchmark results showing the performance of the alternate
call-sites relative to the Direct scheme implemented in MaxineVM and run on X-
Gene 1.

2.7. EVALUATION 43

Other studies have shown that these benchmarks incur orders of magnitudes fewer
procedure calls than the other benchmarks in the suite [PRL+19b] and are resistant to
program-flow optimizations [HM11].

A number of the results (e.g. lusearch-fix / Graviton2 in figure 2.3) appear to sug-
gest a better performance than Direct for one of the alternate schemes, indicated by
a bar height of less than one. Some noise in timed benchmark experiments is to be
expected with managed runtimes [BBTK+17], where execution includes VM compo-
nents, such as JIT compilation and garbage collection, as well as the workload. Given
that the results presented are for a single run of the experiment, multiple independent
runs would help to eliminate some of the measurement uncertainty and allow a better
confidence in the mean to be produced.

2.7.5.1 DaCapo, Further Analysis

In order to gain a further understanding of the variation in the results, we conduct and
present a further analysis of the DaCapo benchmark workloads. Part of the motivation
for this work is to understand how the distribution of calls in the workload might affect
the results.

JVMTI agent: Firstly we implement a JVM Tool Interface (JVMTI) agent to in-
strument all call-sites from each benchmark that collects the properties of calls and
their targets during a sequenced run. The results are shown in figure 2.7(a) and indi-
cate the percentage of static calls, and calls to final or private targets. Collectively, this
group defines the set of calls that can be statically bound by a JIT compiler with no
side-effects. In practice, compiler optimizations such as inlining will reduce this set;
and speculative devirtualization may add to it.

Perf Analysis: Secondly, during a run of DaCapo we collect PMU event coun-
ters by hooking into the callback mechanism of the benchmark suite and attaching to
the process with the Linux perf utility. From the counts of register indirect, return
and immediate branches we can estimate the percentage of calls from statically bound
call–sites: this is shown by the total combined height of the bars in figure 2.7(b). This
quantity identifies the percentage of calls affected in the experiment for the differing
schemes. Furthermore, for the Trampoline scheme we can also estimate the percent-
age of statically bound calls that are out of range of an immediate branch and hence
take the trampoline to reach their target, also shown in figure 2.7(b). We say a trampo-
line is taken if the indirect leg of the Trampoline has been used to reach the target. If
the target is reached directly from the BL instruction at the Trampoline call-site, then

44 CHAPTER 2. ARM JIT COMPILATION: CALL SITE CODE CONSISTENCY

av
ro

ra fo
p h2

jy
th

on

lu
in

de
x

lu
se

ar
ch

lu
se

ar
ch

-fi
x

pm
d

su
nfl

ow
xa

la
n

0

10

20

30

40

50

60

P
er

ce
n
ta

g
e

o
f

C
a
ll

s

a). Java Call Profile

Java Calls

static

final/private

av
ro

ra fo
p h2

jy
th

on

lu
in

de
x

lu
se

ar
ch

lu
se

ar
ch

-fi
x

pm
d

su
nfl

ow
xa

la
n

b). MaxineVM Statically Bound Calls

Trampolines

Taken

Not Taken

Figure 2.7: Showing the DaCapo call profile for Java and MaxineVM. For the DaCapo
benchmarks we show: a). the profile of Java calls in the benchmarks; and b). the
percentage of calls in the MaxineVM that are statically bound by the runtime (total bar
height), as well as taken/not taken trampolines. We include lusearch in the results, this
is the same workload as lusearch-fix albeit without a bug fix and it serves as validation.

we say that the trampoline is not taken.

Figure 2.7b shows that overall the number of trampolines taken as a percentage of
all calls is fairly small, varying from about 1.5% for avrora and up to 20% for jython.
One further observation from figure 2.7(b), shows that for pmd only 5% of all invokes
were affected by the experiment. This observation is consistent with the results of the
DaCapo benchmarks in figure 2.3 that show little statistically significant variation for
pmd with the three alternate schemes.

The MaxineVM code cache has been described briefly in section 2.7.4.1. As a
consequence of its organization, optimized code is located in a small partition, only
16MB by default. Intuitively, it would seem that as execution proceeds and hot code
is optimized and hence co-located, then procedure calls ought to cluster more in the
optimized region, where displacements are small, illustrated in figure 2.8. If so, calls
made using the Trampoline scheme reduce to a single instruction branch and link, the
same as the Direct scheme.

We were curious to find out if it were possible to observe an increasing bias towards
calls taking only the direct leg in the Trampoline scheme as execution proceeds along
the iterations. Figure 2.9 shows a plot of the percentage of statically bound calls, where
the trampoline leg is taken per benchmark iteration. Most of the benchmarks show a

2.7. EVALUATION 45

boot baseline optimized

Figure 2.8: An illustration of the partitioned code cache in MaxineVM. The arrows
indicate calls revealing the short-range displacements in the optimized partition.

general downward trend of trampolines taken, with fop showing the greatest reduction.
The main exception is pmd that shows no clear trend – as already noted, there are very
few statically-bound calls observed when running this benchmark. Although the per-
centage change is in general small for several of the benchmarks, there are reasons that
might prevent a larger reduction. MaxineVM boot code cache contains many ahead-of-
time compiled artefacts from the image build phase, such as intrinsic implementations,
and other essential compiler stubs. Any calls from the optimized code cache to these
compilations in the boot code cache region will be out of range of a single branch,
and so would require the long-range leg with the Trampoline scheme. Organizing the
code cache so that the boot and optimized regions are adjacent and so still within range
of a single BL for AArch64 may yield a larger reduction in the number of trampolines
taken, however we have not yet verified this.

2.7.6 Impact on Code Size

Table 2.4 shows the effects on code size contributed by the three schemes used in
the benchmark results. We report the size of the code compiled by both baseline and
optimizing compiler for the Direct scheme and the percentage increase for each of
Indirect-Maxine and Trampolines. We use the same nine benchmarks from the
DaCapo suite we used for the results in section 2.7.5, each run for one iteration only.
We observe a fairly consistent additional code footprint for each scheme and compiler
between 10% - 20%, with the exception of fop and jython. These two anomalies are
caused in each case by methods that the baseline compiler generates more than 1MB
of code for. This exceeds the range limit of a PC-relative load instruction making the

46 CHAPTER 2. ARM JIT COMPILATION: CALL SITE CODE CONSISTENCY

7.0

7.5

8.0

8.5

9.0

9.5

avrora

40

45

50

55

60

65
fop

22.4

22.6

22.8

23.0

h2

70

71

72

73

jython

26

28

30

32

luindex

19.5

20.0

20.5

21.0

21.5

lusearch-fix

0 20
10

20

30

40

50

60

pmd

0 20

5

6

7

8

sunflow

0 20

38

40

42

44

46

xalan

Benchmark iteration number

P
er

ce
n
ta

g
e

o
f

st
a
ti

ca
ll

y
b

o
u

n
d

ca
ll

s
w

h
er

e
th

e
tr

a
m

p
o
li

n
e

le
g

is
ta

k
en

Figure 2.9: The change in trampolines taken as a percentage of statically bound calls,
when using the Trampoline scheme for the DaCapo benchmarks.

2.8. SUMMARY 47

Table 2.4: The impact on code size of Indirect-Maxine and Trampolines compared
to Direct.

Baseline Code Size Optimized Code Size
Indirect Indirect

Direct (kB) Maxine Trampolines Direct (kB) Maxine Trampolines
avrora 5,306 +11% +14% 134 +13% +18%

fop 19,950 -3% +16% 332 +320% +19%
h2 7,187 +10% +13% 514 +14% +19%

jython 28,707 +4% +13% 1,880 +26% +9%
luindex 5,416 +11% +14% 103 +13% +18%

lusearch 3,824 +11% +14% 170 +15% +20%
lusearch-fix 3,826 +11% +14% 170 +15% +20%

pmd 8,477 +10% +13% 458 +13% +17%
sunflow 6,335 +11% +14% 158 +11% +15%

xalan 7,813 +10% +13% 470 +14% +19%

Indirect-Maxine scheme non-viable for these compilations. In each case the base-
line compilation for these methods fails over to the optimizing compiler which gener-
ates better, more compact code that is within the range of a load instruction. Conse-
quently both fop and jython generate less code than the trend for the baseline compiler
and the Indirect-Maxine scheme combination; and more code than expected for the
optimizing compiler / Indirect-Maxine combination. This illustrates the limitation
of this scheme which we introduced in section 2.5.3. (For the timed benchmarks exper-
iments in section 2.7.4 we explicitly compiled the three methods with the optimizing
compiler for each scheme and platform to rule out any potential interference.)

2.8 Summary

Following our experiences of porting a managed runtime system, MaxineVM, to
ARMv7 and ARMv8, we have discussed in this work the implementation of call-sites
and associated safe code patching in JIT compiled code. We have discussed how the
constraints imposed by the ISA, memory consistency model, cache coherence and an
architectures direct support for SMC affect the implementation scope. To support our
investigation, we have implemented and analyzed four different call-site schemes us-
ing a microbenchmark on three diverse ARMv8 processors. We have further evaluated
three of those schemes using three well known JVM benchmark suites and the open
source MaxineVM.

Our analysis has shown a variation of up to 12% in performance between the dif-
ferent strategies and highlighted different trends between different implementations

48 CHAPTER 2. ARM JIT COMPILATION: CALL SITE CODE CONSISTENCY

of the ARMv8 architecture. In particular, for advanced CPUs such as the Neoverse
N1, with sophisticated branch prediction resources the difference in performance be-
tween the alternate schemes is small. Given the optimal Direct call scheme has a
limited range, this highlights the virtue of optimizing code for size, and attempt to
keep the code-cache size within the range of single branch of the ISA. Where this is
not possible, we have shown that the Trampoline scheme decays to a direct call for
managed runtimes that employ a partitioned code cache, where optimized code resides
in a partition that can be spanned by a single branch instruction of the target ISA.
From this observation we propose that for other architectures with fixed size ISAs and
limited range procedure call instructions there is potential scope for for exploring opti-
mizations for managed runtimes in terms of code cache organization. Specifically, by
employing a Trampoline style procedure call scheme and partitioning the code cache
such that code from the hottest paths with the highest level of compiler optimizations
is co-located in an appropriately sized partition for the target ISA.

2.9 Related Work

The majority of prior studies have focused on detecting [DDZ18],
modelling [AMDB07a], analysing [AMDB07b], and verifying [CSV07, Myr10] SMC.
SMC is of particular interest in the area of security where it can be employed to either
improve the security of systems [VCMKS12, AMN+11, HBLF13], or to obfuscate
code in order to trick malware detectors [PVA+14, DCN+19] or to prevent reverse-
engineering [MKP11]. In managed languages, SMC occurs as a consequence of tiered
JIT compilation and runtime patching of call-sites to re-steer execution between the
different compiled versions. Call-site implementations and the implications for replac-
ing old methods with newly compiled ones, have not been thoroughly studied mainly
because the dominant execution platforms of managed languages provide strong hard-
ware support for SMC. Hence, implementations of call-sites were resulting in memory
coherent results completely transparently to the users.

In architectures without hardware support for SMC, such as the AArch64, al-
though studies have been conducted analysing their performance on various work-
loads [LTZ+15, RVV+13, TT13], to the best of our knowledge, no prior work exists
on characterising the performance implications of SMC in the context of MREs. Our
work aims at providing the first in-depth characterisation of alternative memory-safe
call-site implementations.

2.9. RELATED WORK 49

Code-cache partitioning has been implemented in OpenJDK from version 9 on-
wards [HNG14], locating profiled, non-profiled and non-method code in three separate
partitions. The motivation for this work was to improve iTLB and instruction cache
performance, and reduce GC overheads.

Chapter 3

Managed Runtime Performance
Understanding based on eBPF

3.1 Abstract

The extended Berkeley Packet Filter (eBPF) is a Linux subsystem that allows for flex-
ible and dynamic full-stack instrumentation at user, library, and kernel levels without
the need to change and recompile source code, and without changing kernel modules.
We present BPF-xVM, an eBPF-based collection of tools that can be used to anal-
yse the performance and execution behaviour of managed language runtimes. In this
paper, we focus on the OpenJDK11 Java Virtual Machine with concurrent garbage col-
lectors using G1 and Shenandoah with the Renaissance benchmarks. Our techniques
are general and can also be applied to non-managed runtime executables.

BPF-xVM can capture, for the first time at operating system scheduling quantum
granularity, the performance counters necessary to calculate top-down microarchitec-
tural performance analysis that can help to identify processor bound performance bot-
tlenecks attributed to the execution of threads. Offline python scripted analyses calcu-
late and visualize statistical change-point, and timeline based views of top-down and
execution time for display within the Chrome Profiler.

The main contributions of this paper are the production of a tool that can mea-
sure top-down performance of individual threads within a process at operating sys-
tem scheduling granularity, with the ability to align these measurements against traced
events. We demonstrate for the first time, the different dynamic and aggregate micro-
architectural top-down behaviours of compiler, garbage collection and application
threads in OpenJDK. We present an investigation into determining the steady-state

50

3.2. INTRODUCTION 51

behaviour of applications that goes beyond using execution time, to include per-thread
performance counter measurements. The geomean overhead of our tool for the Re-
naissance benchmarks using warmed up execution and a fixed processor frequency on
a 4-core Intel Xeon workstation and using 4-cores on an AArch64 Ampere server is
less than 2%.

3.2 Introduction

In this work we introduce a set of eBPF and python based tools, BPFxVM, that provide
accurate performance analysis for managed language runtimes such as Java, Javascript
and Python. We provide for the first time, a mechanism to identify which threads are
inefficiently using a processor’s microarchitecture at operating system thread schedul-
ing quantum granularity. Top-down microarchitecture analysis is a well established
methodology for identifying potential issues in modern processors supporting out-of-
order execution, but current tools such as Perf and toplev are typically only able to
perform such analysis and measurement over timed intervals, at full system, process,
and processor core granularity. Such analysis is complicated by the very nature of man-
aged runtimes where multithreaded execution encompasses not only the application,
but also virtual machine (VM) services associated with just-in-time(JIT) compilation,
and garbage collection (GC). In this work, we demonstrate the use of offline statistical
analysis and Chrome profiler visualizations of trace files that capture dynamic varia-
tion in top-down behaviour across all VM and application threads for the Renaissance
benchmarks executed with OpenJDK11. Offline statistical analysis is focused on de-
termining which data should be used to identify program execution phases that indicate
if steady-state execution behaviour is achieved.

The research contributions presented in this work are:–

• RC1 the production of an eBPF tool to trace performance counter measurements
for top-down analysis at thread-level for both X86 and ARMv8 instruction set
architectures. We believe that we provide the first tool that can perform such fine
grained measurements. This provides greater accuracy, and fidelity for a single
application than is possible using measurements with perf and toplev from pmu-
tools that perform process, core or system wide measurements. The tool will
work for any executable, but it does not currently follow or trace threads that are
created following additional process address space forks. We provide a set of
python scripts to analyze and visualize the logs of performance counter traces,

52 CHAPTER 3. MRE PERFORMANCE UNDERSTANDING BASED ON EBPF

making it possible to distinguish between different application and VM threads,
whilst providing aggregated statistical and dynamic time-line views of logged
information and top-down behaviors using the Chrome Profiler trace format.

• RC2 the ability to correlate and align top-down performance of threads with
traced events from the OS, managed runtime, and application threads. Function
hooking can record the event/operation type, argument values, start/stop time,
and thread-id performing the event. This enables performance counter changes
to be attributed to the traced events under investigation. For example, we pro-
vide functionality to trace DVFS changes that can be aligned with our top-down
measurements. However, correlation and alignment is especially important for
managed runtimes such as Node.js where the virtual machine threads do not
have specific roles, and they are merely named node, in contrast to many Java
virtual machines where thread roles are clearly identifiable. For runtimes such
as Node.js, it is important to be able correlate measurements that identify the
start/stop of managed runtime activities such as GC, deoptimization, and com-
pilation against the top-down information. Node.js currently provides tracepoint
support for instrumenting activities such as GC start/finish, and http client/server
requests and responses.

• RC3 We investigate how to determine if an application demonstrates steady-state
behaviour, rather than steady-state execution time [BBTK+17] for its perfor-
mance. We apply statistical change point analysis to identify program execution
phases and regions of interest for an application. We consider using i), univari-
ate signals for changepoint analysis across applications iterations, firstly with
wall clock execution time measurement, and secondly with the accumulated re-
tired micro-operations attributed to all threads, and ii), multivariate signals where
the accumulated retired micro-operations of threads are associated with specific
thread roles such as application, compiler and GC. We use this to demonstrate
the ability to find program phases that are significant for the behaviour of an ap-
plication, and also for the behaviour of specific services within an application.
We argue that using these techniques provides a better measure of whether an
application has reached a steady state, than using measured execution time that
is a function of the behaviour of non-deterministic out-of-order execution from
the operating system and whatever other applications are running.

3.2. INTRODUCTION 53

Figure 3.1: BPFxVM instrumentation tooling concepts. A Java process PID can be
identified by scanning the filesystem for /proc/PID/java, or be passed as a command
line argument to filter the process to be investigated. The unique 64-bit id of a thread
is composed of the PID (upper 32 bits) and a Thread-ID TID in the lower 32 bits.
Fine granularity per-thread, per OS scheduling quantum measurements are related to
individual application and JVM service threads beyond what is possible with Perf and
toplev. The Linux kernel maintains a 15 character comm string for each and every
thread that we exploit to infer the roles of JVM service and application threads.

54 CHAPTER 3. MRE PERFORMANCE UNDERSTANDING BASED ON EBPF

Figure 3.1 presents the high-level instrumentation concepts that provide the basic foun-
dations for the tools and analysis presented in this work. Fundamentally the ability to
record, for a specific process of interest, information such as the time instants when a
thread executes on-cpu, and the accumulated changes in a set of performance counters
for each OS scheduling quantum. This information can be stored along with the thread
name and its unique Thread ID (TID) making it feasible to relate measurements to dif-
ferent threads that have specific roles with the Java Virtual Machine, for example those
related to application processing, the main Java thread, JIT compilation, GC, and VM
housekeeping. Additionally, it is feasible to record when a thread transitions between
runnable and sleeping states, and to align measurements in time across different cores
using the system time since boot. This makes it feasible to observe not only which
threads are executing on-cpu and when, but also the thread sleep/wake dependences
that have occurred. Here, we focus on initial attempts to exploit these fundamental
instrumentation concepts and capabilities for problems and use-cases related to perfor-
mance analysis and understanding for OpenJDK11 using the Renaissance benchmark
suite [PRL+19a], and selected benchmarks from the Computer Language Benchmark
Game [Gou04] for our experiments relating to steady-state behavior. Section 3.3 dis-
cusses related prior work concerning profiling and tracing tools, program phase detec-
tion in native applications, and also in managed runtimes with virtual machines. Sec-
tion 3.4 discusses the concepts behind the top-down microarchitectural performance
analysis methodology. Section 3.5 introduces the extended Berkeley Packet Filter and
the Berkeley Compiler Collection that allow easier development with python front-
ends to eBPF. Section 3.6 describes the design and capabilities of the BPFxVM tool.
Section 3.7 presents the experiments. Section 3.8 presents conclusions and opportuni-
ties for future work.

3.3 Background and Motivation

Here we describe related work concerning program execution phase detection, and
the analysis of virtual machine performance for managed runtime systems that has
motivated this work. Table 3.1 present a summary of the main features of selected
related work that we describe in this section. It is important to understand the differ-
ence between counting or tracing and sampling based analysis. Counting/tracing based
analysis accurately records the changes in a quantity such as a performance monitoring
unit (PMU) register assigned to count an observable effect such as the total L3 cache

3.3. BACKGROUND AND MOTIVATION 55

Tool Name Target Functionality PMU counters Overheads/granularity
POP Online execution phase analysis Yes (tracing) 1.35% @10M instruction window
ScarPhase Online execution phase analysis Yes (tracing) 16.12% @10M instruction window
[BBTK+17] Offline warmup analysis No Minimal (highly constrained

via PELT changepoints target machine used for experiments)
Java Flight JVM event based No Typically < 2%
Recorder instrumentation (events < 20ms not recorded)
SHIM Jikes/JVM instrumentation Yes (sampling) 1.02x @1213cycle sample period
Perf/toplev Performance Yes (tracing) System/core/process

+ Topdown analysis per-core 100ms granularity 2.5%, 10ms 7%
BPFxVM Performance analysis Yes (tracing) OS thread quantum granularity (Renaissance geomean

Full-stack event based instrumentation all benchmarks < 3%, max for single benchmark < 15%)

Table 3.1: Selected related background work summary of capabilities and overheads.

misses, whereas sampling seeks to statistically relate periodic changes in a quantity to
a specific thread or a call-stack. Sampling can suffer from many issues due to impre-
cision in determining the actual PC (for example due to skid and shadowing effects)
related to a change in a measured quantity, and selection/sampling bias.

3.3.1 Managed Runtime Performance Understanding

[EDE12, SBEE17] introduced techniques to analyze the scalability of managed lan-
guage applications using speedup stack based visualizations. Speedup stacks are com-
prehensive bar graphs that break down an application’s execution to explain the main
causes of sublinear speedup, where the overheads associated with parallel execution
do not allow perfect scaling, for example due to synchronization between threads for
correct operation of application and VM services. [SBEE17] implemented OS kernel
modules to monitor the application and service threads’ scheduling behavior with less
than 1% overhead, and without requiring modifications to Java code. Speedup stacks
compare the achieved speedup of a multi-threaded application to ideal speedup and
attribute the gap in performance due to a set of performance delimiters. The OS mod-
ules collected information concerning the number and IDs of active threads belonging
to a JVM process. They accumulate the execution time, and five performance coun-
ters for the JikesRVM MainThread, garbage collection, and any application threads.
Their experiments evaluated two garbage collection implementations: a concurrent,
and a stop-the-world, garbage collector. During a stop-the-world collection applica-
tion threads must yield the CPU and cease execution. The concurrent collector allows
application and GC threads execution to proceed in parallel apart from brief stop-the-
world pauses in application thread execution to identify a consistent root set, and later
to actually free memory. The performance counters track L1/LLC loads and misses,
and the count of retired instructions. Their approach did not relate time intervals in an

56 CHAPTER 3. MRE PERFORMANCE UNDERSTANDING BASED ON EBPF

application’s execution to the recorded measurements from kernel modules.

Figure 3.2: Renaissance reactors benchmark, zoomed in on-cpu flamegraph

Flamegraphs have been popularised as a means to visualise performance analysis
data where it is appropriate to relate measured quantities to call stacks. Typically the
call-stacks are ordered lexicographically, and the width of a specific call-stack is pro-
portionally related to the measurement attributed or related to the specific call stack
divided by the total measurements over all call-stacks. It is important to understand
that the call-stack ordering in the flamegraph does not indicate a time-line. For a sam-
pling profiler without any selection bias [MDHS10a], where call-stacks are measured
repeatedly to determine which code is executing on-cpu, the width of each call-stack in
the visualised flamegraph is expected to be proportional to the on-cpu time. Note that
the on-cpu flamegraph cannot determine to what degree computation by different call-
stacks is overlapped, or proceeding fully in parallel on different CPU cores, but it can
determine where the majority of CPU time is spent. Figure 3.2 illustrates a zoomed in
on-cpu flamegraph for a short snapshot of the Renaissance reactors benchmark. Colors
are typically attributed to the call-stacks based on the contents of their text strings, and
using any annotations that may have been provided by the profiler that was used to
collect the stacks, for example to indicate if the stack refers to OS kernel code. For
the flamegraph in this figure, where we used perf to collect the samples, we used red
for system (includes library code), yellow for C++, green for Java and orange for OS
kernel code.

[GNL18] described a performance analysis methodology based on flame-graphs
for guest languages hosted on a JVM using the Truffle framework. They used the
Linux perf tool and the JVM agent perf-map-agent and enhancements to the Graal JIT
compiler to map perf sampled call-stack code addresses onto guest language source

3.3. BACKGROUND AND MOTIVATION 57

code. In their work, they focused on evaluating the warmed-up steady state execu-
tion behavior of the Computer Language Benchmarks Game [Gou04] when using Su-
long [RSM+18] that enables the execution of C/C++ programs compiled to LLVM-IR
to be guest hosted on a JVM. Warmed-up execution expects that all hot-code has been
JIT compiled and stable steady-state performance has been achieved. Non-JVM pro-
filers such as perf suffer from the disadvantage that they must determine the mapping
between JIT compiled methods and their code addresses, for example by using perf-

map-agent, and also OS based stack walking for call-stack capture requires the frame
pointer to be available which incurs some overhead (typically less than 3% [Gre])
when using -XX:+PreserveFramePointer. Flame-graphs were used to evaluate polyglot
applications composed of multiple guest languages hosted by a single JVM, where the
contributions of different guest languages to CPU time was highlighted using different
colors.

[NNRL19] presents an overview into current profiling and tracing tools for identi-
fying performance issues in Java applications. It reiterates the problems with safepoint
bias [MDHS10b] in call-stack sampling present in some Java-based profiling tools,
and illustrates the benefits of flamegraph based approaches for visualizing sampled
call-stacks using Perf and async-profiler. Sampling techniques based on perf can
see the entire stack whereas async-profiler fails to see certain JVM assembler stubs
and compiler optimised intrinsics such as System.arraycopy due to OpenJDK issues
with stack-walking such as [Pan, Maj]. Note however, async-profiler has the ability
to identify which methods are interpreted and hence executing as unoptimized meth-
ods. An eBPF based profiling tool, bcc-java, was presented with similar capabilities to
[SBEE17], but without the need to exploit custom kernel modules. The bcc-java tool
accumulates PMU counter values for threads of a JVM process of interest, specifically:
cycles, instructions and counts of calls to the futex system call over the lifetime of the
thread, or the duration of profiling. Our BPFxVM tool, leverages the same eBPF/BCC
infastructure as bcc-java, but is designed to capture the dynamic behaviour of indi-
vidual threads, derived from changes in PMU counters during individual scheduling
quanta, rather than cumulative aggregate behaviour.

3.3.2 Execution Phase/Behaviour Analysis

[CA20] contains a moderately recent survey on phase classification techniques for
characterising variable application behaviour. One of the potential use-cases for on-
line phase behaviour analysis is to enable system optimisation through the adaptation

58 CHAPTER 3. MRE PERFORMANCE UNDERSTANDING BASED ON EBPF

of computation scheduling to better exploit heterogeneous processors, and/or to dy-
namically control the characteristics of system resources such as to optimise cache
allocation technology [XWH+18], dynamic voltage and frequency scaling [HM21] or
other parameters relating to compute, I/O and memory. Program execution behaviour
is classified into application phases that specify the execution intervals delineated by
time or the number of instructions executed where similar execution behaviour is ex-
hibited. A phase typically represents stable execution or application characteristics.
The problem of phase classification groups time or execution cycle based windows
into intervals with similar characteristics to form phases.

The ScarPhase [SEH11] and the Precise Online Phase (POP) detector [TGB19]
provide online techniques to perform phase classification for single-threaded applica-
tions. POP, like ScarPhase, uses a sampling performance counter approach using the
Linux perf subsystem in a userspace program that builds signatures for the behaviour
of the code executed over an instruction window. POP aims for its phase detection
to remain invariant to any performance knobs that may be applied to adapt the sys-
tem. Statistical and machine learning techniques are used to select a core set of eight
performance counters that can be accurately used without any multiplexing on their
experimental platform when the non-maskable interrupt is disabled. A lightweight
online leader-follower approach is used to perform phase classification based on the
signature of the counter values that are read after the sampling window of instructions
has executed. Their paper claims an overhead of 1.35% and 0.09% at 10M and 100M
instruction window sampling intervals for the single-threaded SpecSpeed 2017 bench-
marks with a clustering similarity threshold of 20%, this is a 10x overhead reduction in
comparison to ScarPhase that has overheads of 16.12% and 3.19% respectively. POP
proposed a new metric Statistical Time Analyzing Baseline (STAB) to examine the bal-
ance between the number of phases, their stability, and the phase interval length. POP
and ScarPhase were then evaluated using the STAB and a related prior-art metric con-
cerning a corrected coefficient of variation described in [SEH11]. The POP detector
performed well in comparison to ScarPhase across these metrics on their experiments.

Steady state warmup analysis described in [BBTK+17] presents a measurement
methodology and results that analyse the execution of applications across a variety of
common virtual machines on three different machines. The paper’s results strongly
suggest that developers should not rely on the commonly held hypothesis that ap-
plication execution performance/behaviour on VMs can be viewed as consisting of

3.3. BACKGROUND AND MOTIVATION 59

a warmup phase that determines which parts of a program can benefit most from dy-
namic compilation followed by a period of steady-state execution behaviour. In their
experiments only 30-43.5% of their highly constrained physical machine and OS exe-
cution environment combinations used to evaluate their <VM,benchmark> pairs con-
sistently reached a steady-state of peak performance. They deliberately chose to eval-
uate small deterministic (microbenchmark) programs under highly idealised settings
where a heavily controlled execution environment was used to minimise measurement
noise over 2000 in-process iterations and repeated across 30 fresh process executions.
They applied changepoint analysis [EFK11] to automatically analyse shifts in the na-
ture of time-series data concerning the execution times of iterations. Changepoint anal-
ysis was used to automatically classify if each process execution led to no steady state,
flat (no detectable change in peformance over the benchmark’s iterations), warmup, or
slowdown (leading to a decrease in performance with increasing iterations or time).
These simple classifications were used to categorise and highlight unexpected perfor-
mance patterns. They additionally investigated the effect of GC and JIT compilation to
see if these two factors could explain some of the effects highlighted by changepoint
analysis. However, in their work the chosen benchmarks were small deterministic pro-
grams [Gou04] written in a number of different languages to facilitate investigation
and comparison across multiple virtual machines and language implementations. In
their changepoint analysis they elected to use the PELT algorithm [KFE12] to reduce
the computational complexity of finding an unknown number of changepoints in their
measurements of iteration execution time for 2000 iterations. The R changepoint

package was used with the cpt.meanvar function with a minimum size of interval set
to be 2 adjacent time-series measurements, a penalty argument that needed to exceed
15logn (where n is the time-series length of 2000 minus iteration executions that were
excluded for being outliers). In section 3.7.3 we discuss issues concerning the change-
point analysis deployed in our experimental evaluation that goes beyond using wall
clock execution time.

3.3.3 Instrumentation Approaches

SHIM [YBM15] is a continuous profiler that samples performance counters and mem-
ory locations that store software state at fine-grained cycle resolutions. SHIM has
geomean execution time overheads of approximately 1.60x and 1.43x respectively at
sample periods of 15 and 1505 cycles when observing method and loop identifiers us-
ing an observer thread executing on an unutilised core with symmetric multithreading;

60 CHAPTER 3. MRE PERFORMANCE UNDERSTANDING BASED ON EBPF

and for remote observer threads in a chip multiprocessor, 2.1x and 1.02x overheads
for 30 cycle and 1213 cycle sample periods. Time-varying software and hardware
events are regarded as signals that are to be sampled by SHIM. The events are con-
figured using a compiler or other tools and the mechanisms for reading/sampling are
then communicated to SHIM. Offline and online analysis is used to address threats
to measurement fidelity, such as from skew in the measurement of rate based met-
rics, observer effects related to the Heisenberg uncertainty principle, and low sample
rates. The motivation for the development of SHIM was to identify program execution
hotspots (such as frequently executed methods in Java applications), revealing high
frequency behaviours of metrics such as instructions per cycle. SHIM is similar to our
work in that they observe software and hardware events for a managed Java runtime.
In their case, it is the Jikes RVM, and the period of sampling or tracing exhibits large
variations in order to remove potential bias from measurements. SHIM inserts extra
yield points into JVM code in order to identify methods and loops as a fine-grain soft-
ware signal. The number of instructions between any two yield points is application
dependent. Yield points are typically used by JVMs to allow for the coordination of
threads for activities such as garbage collection and locking. BPFxVM tools do not
require any modifications to the managed runtime or the compiler to perform their
instrumentation other than the inclusion of debug symbols to allow for easy function
hooking. This means that SHIM requires modification to the original JVM whereas
our technique does not suffer from this restriction. SHIM attempted to show the diag-
nostic power of fine-grained program observations and comparisons to average results.
JikesRVM is now a relatively old JVM technology compared to the features present
in OpenJDK, consequently it is not clear if the techniques and the results provided by
JikesRVM are representative of the behaviour of modern JIT compilers and GC algo-
rithms. The current JikesRVM released version does not support Java 8, and the last
issue was opened in Jun14th 2020 according to [jik].

3.3.4 Discussion Concerning Background Work

Although SHIM has low-overhead it is important to note that its low-overhead and
fine-granularity (15 cycles) is for one software signal, and SHIM requires modification
of, and is explicitly designed for the JikesRVM. BPFxVM in contrast, is designed to be
independent from the JVM as far as possible, although it is necessary to have access
to debug symbols in the libjvm.so library to be able to perform function hooking of
key VM events. For example, in OpenDJK11 it is possible to trace deoptimization

3.3. BACKGROUND AND MOTIVATION 61

events that can then be correlated and aligned with top-down information by function
hooking symbols in libjvm.so. The ability to use separate tools to extend our tracing is
a key aspect of our system that makes it extensible and adaptable to the performance
understanding needs of an application. The overheads reported in figures 3.11 and
3.13 relate to BPFxVM when configured to record a total of 5 performance counters,
and in addition it records the duration, quantum end time, cpu core and the thread
name plus its associated numeric thread-id for each and every OS scheduling quantum
belonging to the process under scrutiny. In BPFxVM, the JVM, or VM dependency
relates to defining the events of interest to be traced and hooked.

In the context of our work we have sought to develop tools to perform offline phase
classification for complex multithreaded workloads. We aim to perform phase classi-
fication to identify areas where managed runtimes can benefit from optimization, and
also to begin to better understand the impact of different garbage collection algorithms
on performance more deeply than just execution time, using an approach that requires
minimal or no modification to source code. In this way we seek to avoid perturb-
ing the execution behavior that we seek to measure. Such problems can occur when
bytecode based instrumentation is applied, and JIT compilation optimization decisions
may be altered [ZBB15], for example concerning method inlining, that can result in
large performance variations from the uninstrumented code. We seek to marry ap-
proaches to program phase classification and warmup-analysis in order to understand
virtual machine performance under different GC algorithms. In contrast to the work
of [BBTK+17] and more closely related to the work of ScarPhase and POP we seek
to measure the execution behaviours of threads, rather than just application execution
time to determine if behaviour has reached a steady state. In particular we focus our
analysis on the well-known top-down approach [Yas14] that attributes the percentage
of execution cycles utilised or spent to different aspects of processor microarchitecture.

The benchmarks we have chosen, and the machine configuration on which we
run experiments are more closely related to a normal execution environment than in
[BBTK+17], as in our experiments we do not use clean boots of the OS in between
execution time measurements.

62 CHAPTER 3. MRE PERFORMANCE UNDERSTANDING BASED ON EBPF

3.4 Top-Down Performance Analysis

Top-down performance analysis as originally presented in [Yas14], and depicted in
figure 3.3 helps to analyse the relative overheads of different microarchitectural bot-
tlenecks in an abstract model of out-of-order (OOO) processors. Traditional methods
based on the calculation of stall overheads associated with a specific event are not suit-
able for OOO processors, because stalls can overlap, speculative execution occurs, and
it is difficult to predict the instruction issue slot utilization associated with superscalar
execution. Abstracted top-down metrics provide a way to standardize performance
analysis across different microarchitectures and PMU capabilities. Potentially, even
to analyse how well a given application has been optimised for two different architec-
tures. We do not seek to compare or evaluate the relative merits of X86 and AArch64
microarchitectures, and this is not a goal of our work. The top level of the abstracted
OOO architecture model consists of:–

• The Frontend bound category: this refers to issues when the frontend of the CPU
under supplies its backend with uops for execution.

• The Bad speculation category: this reflects the case where micro-operation µop

issue slots are wasted due to incorrect speculation, including slots issued to µops
that do not eventually retire, as well as slots in which the issue pipeline was
blocked due to recovery from earlier mis-speculations. Bad speculation deter-
mines the fraction of the workload under analysis that is affected by a processor
following incorrect execution paths.

• The Retiring category: this reflects the percentage of µop slots, utilized by µops
that eventually get retired and complete useful work. However, a high retiring
value can signify that there are issues associated with microcode sequencing that
merit further investigation (such as for non-vectorized code).

• The Backend bound category: this reflects the percentage of issue slots wasted
due to no µops being delivered at the issue pipeline due to a lack of required
resources for acceptance by the backend which is further subdivided into level
2 categories of memory bound and core bound. The Memory bound category
computes the percentage of execution stalls related to the memory subsystem.
The Core bound category captures issues representing the usage of the core’s
functional units. Consequently, it can highlight issues that can often be miti-
gated by improved code generation, for example by the usage of vectorization,

3.4. TOP-DOWN PERFORMANCE ANALYSIS 63

and/or relieving the dependencies between arithmetic operations with long exe-
cution latency (for example divide operations) via the exploitation of improved
instruction scheduling.

The top-down method uses designated performance counters in a structured hierarchi-
cal approach to quickly identify the dominant performance bottlenecks by estimating
the percentage of time/cycles attributed to a specific abstract overhead. The method
has been adopted by multiple in-production and research usage tools for Intel such as
VTune, pmu-tools/toplev [Kle22] and for ARM architectures using Forge (formerly
Allinea DDT/MAP). Processor specific metrics/formulas and performance monitoring
counters are used to determine if an abstracted overhead is significant.1 The specific
metrics, and their thresholds are provided for Intel architectures within the pmu-tools
repository and in the online spreadsheet [Yas]. The top-down approach seeks to cate-

Figure 3.3: Simplified top-down analysis hierarchy for X86 (modified image based
on [Yas14]).The top-down classification of an overhead can be refined and mapped
onto poor utilisation of specific functional in the microarchitecture. For example, a
backend bound computation is typically limited by some combination of the memory
system (data cache and main memory bandwidth/latency) and the core itself, such as
concerning the utilisation of µop execution ports. Normally the goal is to maximise the
percentage of cycles related to retiring µops as this typically indicates good utilisation
of the microarchitecture.

gorise CPU execution time at the highest level first, consisting of frontend bound, bad
speculation, retiring and backend bound. If the fraction of execution time exceeds a
microarchitecture specific threshold, then investigation at lower and more detailed lev-
els is flagged. As one moves down the hierarchy, the overhead classification becomes
more directly related to the specific microarchitecture on which measurements were

1Closely related work in [AR19] seeks to provide a microbenchmark based methodology to charac-
terize the latency, throughput, and port usage of instructions on all Intel Core microarchitectures.

64 CHAPTER 3. MRE PERFORMANCE UNDERSTANDING BASED ON EBPF

made. For example, to determine if the causes of a high percentage of backend bound
cycles are mostly attributed to poor utilisation of the memory subsystem, or to µop
execution port utilisation. A specific class of metrics in the hierarchy should only be
investigated if its threshold and all its parent thresholds (at higher levels in the hierar-
chy) are flagged as exceeded. Further, only the metric values of sibling nodes (children
of the same parent node) in the hierarchy should be considered to be directly compara-
ble. This means that it is not appropriate to directly compare the percentages produced
by uops Ports and DRAM as they do not share the same parent node, but it is appro-
priate to compare L1/L3 Cache and DRAM. In this work we restrict top-down analysis
to the four top-level metric classifications using the metrics depicted in Tables 3.2 and
3.3 for Intel and ARMv8 architectures respectively.

Metric Name Formula
SlotsIssued uops issued.any
SlotsRetired uops retired.retire slots
RecoveryBubbles 4 * int misc.recovery cycles
FetchBubbles idq uops not delivered.core
TotalSlots (4 * cpu clk unhalted.thread)
FrontendBound FetchBubbles / TotalSlots
BadSpeculation (SlotsIssued - SlotsRetired + RecoveryBubbles)

TotalSlots
Retiring SlotsRetired/TotalSlots
BackendBound 1 - (FrontendBound + BadSpeculation + Retiring)

Table 3.2: Level 1 Top-down metrics Intel (hyper-threading disabled) – 5 PMU coun-
ters required

Metric Name Formula
FrontendBound stall frontend / cpu cycles
Allocated (cpu cycles - (stalled frontend + stalled backend))

cpu cycles
RetiringBound (inst retired/inst spec) * Allocated
BackendBound stall backend / cpu cycles
BadSpeculation 1-(FrontEndBound+BackEndBound+FrontEndBound)

Table 3.3: Level 1 top-down metrics (from [arm]) for Armv8-A architecture – 5 PMU
counters required. Note that stall frontend and stall backend require at least Armv8.1
PMU.

3.5. EBPF AND BCC 65

3.5 eBPF and BCC

The extended Berkeley Packet Filter (eBPF) is a feature that was first added to the
Linux kernel version 3.15 (around 2014). It provides an instruction set and an execu-
tion environment for modification, and interaction with user and kernel programma-
bility at runtime. eBPF was originally developed to assist the development of efficient
network processing code, this has resulted in eBPF providing programming support
for the eXpress Data Path (XDP), a kernel network layer that enables network packets
to be processed closer to network interface chips/cards. However, since the introduc-
tion of eBPF in 2014 it has been adopted by companies such as Facebook, Cloudflare,
Netflix, Sysdig, and Isovalent/Cilium. eBPF use-cases have subsequently extended to
include network/security monitoring, network traffic manipulation, load-balancing and
application/system profiling and performance analysis. In figure 3.4 we illustrate the
main principles of operation and interactions between the BPF Compiler Collection

(BCC) and eBPF that we have used to support implementation of BPVxVM. It is im-
portant to note that other front-ends and tools are provided for eBPF beyond BCC, and
in this work we do not advocate or discuss their relative merits; more information can
be found at the home pages of the IOVisor Project2, eBPF3 and associated github repos-
itories4. BCC provides a set of tools and examples for creating efficient kernel tracing
and manipulation programs using a combination of Python and C. Python is used to
simplify compilation, loading, and IO-based interactions with eBPF programs that are
written in a subset of C and JIT compiled using LLVM. Before an eBPF program can
be executed, it must be compiled to BPF bytecode, and then verified to ensure that
its operation is safe, meaning that the program will not crash the OS, such as by per-
forming an invalid access to memory. The bytecode verification performs static code
analysis and multiple passes are used to ensure that the program is a directed acyclic
graph, and it rejects any programs where the total instructions are larger than a set
maximum, have unreachable instructions, out of bounds or malformed jumps, or loops
present. Once verified, a program can be loaded and executed by the eBPF virtual
machine. eBPF uses an event driven programming model, and data can be shared be-
tween instrumentation programs and userspace front-ends to eBPF via BPF maps and
arrays that provide associative data structures. One of the strong advantages of eBPF

2https://www.iovisor.org
3eBPF.io
4https://github.com/iovisor

66 CHAPTER 3. MRE PERFORMANCE UNDERSTANDING BASED ON EBPF

over perf, is its ability to selectively perform processing and aggregation of informa-
tion directly at the point of instrumentation, without the need to dump all information
to file. However, eBPF has strong support for the perf events subsystem in Linux,
consequently it is possible to read performance counters, and to add instrumentation
to method entry/return and even to arbitrary code addresses using function hooking
implemented with software breakpoints (probes) and using jumps (tracepoints). Tra-
cepoints are advertised stable instrumentation points within application, library and
kernel code. The ability to efficiently attach code to tracepoints, and to more arbitrary
code locations with probes gives eBPF the capability to be a general purpose tracing
tool. Function call arguments can be introspected and traced, and stack traces can be
sampled or collected under eBPF program control. Tail-calls are provided to allow a
eBPF program to jump into another - this provides a work-around mechanism to avoid
issues related to maximum instruction limits, although this was not necessary for our
tooling.

eBPF maps enable programs to gather and store information to share with other
eBPF programs, and also any userspace programs (for example the Python program
used by BCC to compile, load, and execute an eBPF program written in a subset of
C) that are granted access to the map data. In the context of our tool we use eBPF
hash maps, to store per-thread data concerning the elapsed time and changes in perfor-
mance counters attributed to individual threads, using the thread identification from the
process-id as a hash key in a BPF MAP. Special per-cpu arrays are used to read and ac-
cess performance counters. After loading an eBPF program, the Python program must
initialize each per-cpu array to be associated with a specific PMU counter event. Data
can be read from userspace, or pushed to userspace using a variety of mechanisms,
but since kernel version 5.8 the preferred mechanism for pushing event data is to use
eBPF’s ring buffer. The ringbuffer is designed to preserve the ordering of events that
happen sequentially in time, even across multiple CPUs and has lower latency than
using the standard perf output buffer.

3.6 The Design of BPF-xVM

In order to measure and attribute the changes in performance counters to threads at OS
CPU scheduling quantum granularity, we must first identify the process-id of interest to
be traced. We follow the mechanisms used in the BCC tool ustat that scans the /proc
directories such as /proc/2000/java to determine that a Java process-id of 2000 is

3.6. THE DESIGN OF BPF-XVM 67

Figure 3.4: (BPF Compiler Collection) for eBPF (extended Berkeley Packet Filter)
basic principles of operations

in execution. Alternatively, we also enable a process-id command line argument to
be used. An additional command line argument is used to determine how many OS
scheduling quanta must elapse for a thread, or if a signal must be delivered before
information is pushed to userspace and logged using CSV formats such as: a timestamp
(ns), thread name and id, duration (ns), CTR1, CTR2, ... CTRN, CPU.

Figure 3.5 outlines how BPFxVM exploits eBPF tracing capabilites using trace-
points and uprobes, and Figure 3.6 outlines the operation of the sched switch trace-
point instrumentation. BPF PERF ARRAY variables for each CPU core are used to
access PMU performance counters. The variables are initialised in python code using
a call to open perf event that configures the counter arrays to be related to a specific
PMU event. An info BPF PERCPU ARRAY variable is used to store the set of per-
formance counters and time in ns since boot of the last sched switch invocation on each
CPU. In this way we are able to measure the change in performance counter values and
time that is accumulated for each on-cpu quantum of a thread. Note that it would be
unfeasible to record this information for each and every process and thread currently in
execution. We currently limit what is traced to a single process, the TRACED PID, that
is identified by scanning /proc or by using a command line argument. Python string
replacement of the TRACED PID with its actual integer value is performed prior to
loading the BCC/eBPF program. The runtime BPF HASH is used to provide a single
store of the accumulated information on a per-thread basis.

68 CHAPTER 3. MRE PERFORMANCE UNDERSTANDING BASED ON EBPF

Monotonic clock timestamps enable measurements to be aligned in (ns) of sys-
tem time since boot. The OS command string name of a thread has its OS thread-id
appended, the duration of time that the thread was executing on-cpu (ns), and the ac-
cumulated counter values associated with the thread’s execution. The cpu/core id that
pushed the information is also recorded. For N=1, this means we can record each and
every thread scheduling quantum, and the CPU that was used, whereas for N=0 we
accumulate information for each and every thread until the instrumentation tool re-
ceives a SIGUSR1 signal. On receipt of the signal, all accumulated information is
outputted. The linux OS sched switch tracepoint is instrumented to achieve this func-
tionality. We include support for Linux kernel versions to use BPF PERF OUTPUT
when the more efficient BPF RINGBUF OUTPUT is not supported. BPFxVM also
instruments the sched process exit tracepoint ensure information logging for threads
where the modulo division of their total scheduling quanta by N (quantum logging
granularity) is non-zero. The key aspects of Figure 3.5 are the use of BPF maps and
arrays to store information, and the use of a BPF PERF/RINGBUF OUTPUT maps
to enable data to be pushed to user-space. A BPF HASH map is used to store per-
thread information hashed against the full process-id (including task and thread-id),
concerning the accumulated counter values, time on CPU in ns, and the number of
quanta. Per-cpu BPF PERCPU ARRAYs enable the elapsed on-cpu time, and accu-
mulated changes to performance counter values to be determined from the previous
operation of sched switch. Table 3.4 outlines sample CSV file output measurements at
per-thread, per OS scheduling quantum granularity and also for DVFS event tracing.

3.6.1 OpenJDK Tracing

The thread names used by OpenJDK11 can be used to identify JVM thread roles.
The 15 character command string that is stored by the OS and visible to eBPF instru-
mentation can easily identify JIT and GC related threads; such as C1 Compiler Thre,
C2 Compiler Thre whereas GC (G1) related threads include those named:
GC Thread#N. The main thread used to start the JVM is named as java and there
are various application and other VM service threads created. We can also perform
uprobe based function hooking of function call and return. This can be used to investi-
gate the overhead attributed to specific JVM activity by tracing function activity using
code based on the BCC funclatency tool. We used this approach to perform some
initial investigations related to the Deoptimization class in libjvm.so, but we did not
find any significant sources of such overhead in the Renaissance benchmarks. We use

3.6. THE DESIGN OF BPF-XVM 69

a Renaissance Plugin to output the start/stop times of iterations using the monotonic
clock. We have also investigated the use of a Plugin to send a SIGUSR1 signal to the
python eBPF process at the end of each iteration, to output aggregated information for:
thread quanta performance counters, Deoptimization function latency and any execu-
tion count information collected via uprobe instrumentation as outlined in figure 3.5.
It is possible to obtain an indicator of total deoptimization latency and activity per it-
eration using this approach, although it is important to ensure that the Plugin pauses
application processing for sufficient time to allow for signal delivery and any IO to
complete. Note, that due to the operation of the eBPF techniques used to calculate
function latency, we do not account for recursive execution (only leaf calls will be
timed), and it is not possible to time a small number (4) of Deoptimization related
methods because of issues related to the operation of uretprobes where the return ad-
dress on the stack is modified to be a trampoline. This can lead to JVM crashes when
stack manipulation of the return address is performed by deoptimization, and is related
to issues reported in [fun]. We can accurately determine the changes in performance
counter values attributed to threads on a per iteration, per quantum basis for the Re-
naissance benchmarks. We perform offline processing of the logged information using
a set of python scripts that can load/analyse and visualise the data.

3.6.2 DVFS Tracing

A command line switch is used to determine if dvfs tracing is enabled, and the
cpu frequency tracepoint is instrumented as outlined in Figure 3.5. The arguments
to a specific TRACEPOINT can be inspected by examining the appropriate TRACE-

POINT/format entries contained under /sys/kernel/debug/tracing/events/.
For the power:cpu frequency tracepoint we can see that it takes two unsigned long
arguments, that specify i), the new state (operating frequency) and ii), the given cpu.
Note that DVFS tracing using this tracepoint is largely only appropriate if hardware
support for, and the collaborative processor performance driver is not enabled.

3.6.3 Chrome Profiler Visualizations

Figure 3.7 depicts chrome profiler visualisation of a trace file from BPFxVM. It demon-
strates that potential stop-the-world application pauses can be easily identified by de-
termining the intervals where GC related thread names are active, yet no application

70 CHAPTER 3. MRE PERFORMANCE UNDERSTANDING BASED ON EBPF

Figure 3.5: Outline of BPFxVM tracing exploitation capabilities for eBPF tracepoints
and uprobes in Linux and OpenJDK. BPFxVM only collects event data for the traced
process(es).

threads gain access to the available CPUs. Figure 3.8 shows a timeline view of top-
down microarchitecture utilisation statistics for the Renaissance akka-uct benchmark.

3.7 Evaluation

In this section we describe the evaluation of BPFxVM. Firstly we outline the experi-
mental environments, then quantify the overheads of tracing compared to untraced ex-
ecution, followed by our early experiments using the tool to examine the performance
of the OpenJDK JVM.

3.7.1 Experimental Environment

We use OpenJDK11 version 11.0.12 running on a Linux desktop machine running
Ubuntu Focal Fossa 20.04.2 LTS with kernel 5.10.0-1052-oem and BCC release ver-
sion v0.18.0 installed. The desktop machine comprised an Intel(R) W-2123 CPU with
four physical cores (hyper threading, collaborative processor performance, and turbo-
boost were disabled). A userspace governor was used to fixed core clock frequency to
3.3GHz, 32GB main memory, and all disk accesses for the execution of experiments
were to a local hard disk drive. Our tool targets both Armv8-A and Intel architectures

3.7. EVALUATION 71

Figure 3.6: BPFxVM sched switch tracepoint shows a simplified high-level outline
of tracing functionality and BPF structures exploited in BCC. Error handling and
details of BPF PERF OUTPUT and BPF RINGBUF OUTPUT omitted for clarity.
The set of specific PMU performance counters to be accessed via ctr1, ... , ctrN
BPF PERF ARRAY variables, are configured using Python after instrumentation is
loaded.

using command line switches. We also tested our tool on an 80 ARM core Ampere
Altra running CentOS 8.0.1905 and Linux kernel 4.18.0-80 with BCC release version
v0.16.0. The less advanced functionality of the 4.18 kernel means that the higher la-
tency perf output buffer must be used instead of a ring buffer that is advocated for 5.8.x
kernels and above.

3.7.1.1 The Renaissance Benchmarks

The Renaissance benchmark suite contains a range of modern workloads to investigate
JVM behaviour and performance across a range of programming paradigms including
concurrent, parallel, functional, and object-oriented programming. We use Renais-
sance version renaissance-gpl-0.12.0.jar with plugins to collection iteration execution
times using a monotonic clock, and also to provide an option to send a SIGUSR1 sig-
nal to our tool. This enables the output of per-iteration summary information of events
per thread, rather than as traced events occur. We exclusively use BPFxVM to dy-
namically trace the changes in hardware performance counters to specific threads. All
of the Renaissance benchmarks are run within a single JVM process and only rely on
the JDK as an external dependency. Some benchmarks use network communication

72 CHAPTER 3. MRE PERFORMANCE UNDERSTANDING BASED ON EBPF

ENDTIME THREADNAME-TID DURATION PMU C1 . . . PMU C5 CPU
7390012629 C2 CompilerThre-13360 10604957 42819126 79
7760014633 java-13351 19795714 75677512 77
8269277193 C1 CompilerThre-13361 3841159 15517694 76
8590009772 java-13351 829981419 31194070 77
9410017915 java-13351 23474033 92790170 78
9450012383 java-13351 22363022 71143586 78
9590008502 Shenandoah GC T-13367 10763517 30651032 76
9694505740 Shenandoah GC T-13367 4452398 14766818 76
9703387476 C2 CompilerThre-13360 4199319 18660175 76
9792896669 VM Thread-13355 86000 513896 79

TIMESTAMP TEXT CORE FREQUENCY
17484411810185464 DVFS 76 1000000
17484411910181312 DVFS 77 1020000

Table 3.4: Sample CSV snippet from ARM Ampere system - timestamps simplified
to fit pagewidth, taskset used to constrain usage to processor core 76-79. Topdown
(multiple counters) and DVFS measurements outlined.

via multiple threads within a single process address space that exercise the network
stack using the loopback interface, as described in [PRL+19a]. All garbage collection
algorithms were run with -Xms12G -Xmx12G. We experimented with runs designed to
investigate program execution phases - running for up to 400 iterations, and also timed
duration runs: running for 600s, and timing the warmed-up execution for all complete
iterations in the last 300s of execution.

3.7.1.2 OpenJDK GC Algorithms

OpenJDK11 provides two parallel and concurrent GC algorithms, the Garbage First:

(G1) and Shenandoah. Both collectors are designed to achieve lower application thread
pause times, whilst also maintaining a consistent application throughput, but at the cost
of increased GC computation. Shenandoah’s key advance over G1 is that it aims to do
more of its GC work concurrently with application threads. G1 can only evacuate its
heap regions (move objects) when the application is paused, whilst Shenandoah can re-
locate objects concurrently with the application. To achieve this concurrent relocation,
Shenandoah uses what is known as a Brook’s pointer. Essentially, this is an additional
field that each object in the Shenadoah heap has, that points back to the object itself.
When Shenandoah moves an object, it needs to fix up all the objects in the heap that
have references to that object. On moving an object to a new location it leaves the
old Brook’s pointer in place, forwarding all references to the new location of the ob-
ject. When an object is referenced, the application follows the forwarding pointer to

3.7. EVALUATION 73

Figure 3.7: Visualising potential GC stop-the-world issues, using trace files. The
chrome profiler can be used to visually determine time-intervals where only GC
threads are running, potentially identifying stop-the-world-pauses where no applica-
tion threads can run.

the new location. Eventually, the old object with the forwarding pointer needs to be
cleaned up, but by decoupling the cleanup operation from the step of moving the object
itself, Shenandoah can achieve greater levels of concurrency than G1.

3.7.2 Tracing Overheads

The relative slowdown of our tool when measuring topdown behaviours of each thread
on a per quanta basis was evaluated on runs using a 12GByte heap, with a forced GC
between each iteration, and where the iteration time measurements were taken from
the last 300s of a 600s duration run. On the X86 machine we fixed the frequency to
3.3GHz and on the Ampere to 2GHz. We used four cores on each machine, and on the
X86 we turned off cooperative power management, hyperthreading and turbo boost
in the BIOS. The slowdown experiments did not instrument Deoptimization functions
from libjvm.so or DVFS activity. The slowdown is calculated in comparison to the ge-
omean of the measured iterations for the uninstrumented application benchmark. The
sched switch instrumentation restricted its attention to on-cpu using thread scheduling
states that were identified as TASK RUNNING. Figure 3.10 demonstrates the rela-
tive slowdown of our tool on the X86 machine for the Renaissance benchmarks us-
ing Shenandoah GC. Note that both reactors and db-shootout benchmarks exhibited

74 CHAPTER 3. MRE PERFORMANCE UNDERSTANDING BASED ON EBPF

Figure 3.8: Timeline view of top-down microarchitecture utilisation statistics for the
Renaissance akka-uct benchmark.

wide variations in their execution time leading to some relatively large geomean slow-
downs being present in the violin plot representation of the distribution. Figure 3.13
demonstrates the relative slowdown of our tool for the Ampere machine with G1 GC.
Geomean slowdowns for Renaissance benchmarks on X86 and ARM (Shenandoah &
G1) are presented in figure 3.9.

The overhead analysis in figures 3.10, 3.11, 3.13 & 3.14 only compare the last
300s of complete warmed up execution iterations for a single timed duration run of
600s of BPFxVM instrumented and uninstrumented (normal execution). The results
can therefore be viewed as indicative rather than as complete, as a rigorous analysis
would run both versions multiple times to create a confidence interval for the mean.
The ARM machine is running an earlier kernel, and an earlier release of the BCC/eBPF
tooling framework. The results presented in the paper make use of a BPF HASH map
to update information about performance counter values that have been accumulated
for each thread. Optimisation opportunities yet to be exploited include i), the use of
BPF PERCPU HASH maps (not available on the ARM machine due to a lower kernel
and BCC versions), that will remove contention for access to a BPF HASH map that
is shared between all cpus, ii), omitting storing information in BPF maps at all if data
is pushed to user space every quantum, and iii), investigating optimisation of how to
push information to user space.

We draw attention to several benchmarks that exhibit a speed up for traced execu-
tion compared to untraced, e.g. finagle-chirper, future-genetic, reactors and scala-stm-
bench7 shown in figure 3.11 for X86 / G1 GC. These benchmarks show a significant

3.7. EVALUATION 75

Figure 3.9: Effect of Tracing: slowdown on Intel using both G1 and Shenandoah GC
for Renaissance benchmarks.

10% speedup when traced with well clustered results, except for reactors which has
wide variation for all platforms/GC’s. Our initial investigation suggests that these re-
sults are repeatable, however, as already mentioned further experiments are required
in order to establish the statistical significance. Other similar speedups, although of
lesser magnitude, can be seen in figure 3.9 which shows the slowdown effects for both
platforms and GC algorithms. We intend to investigate these behaviours further and
try to understand the causes behind these observations.

76 CHAPTER 3. MRE PERFORMANCE UNDERSTANDING BASED ON EBPF

Figure 3.10: Customized violin plot [doc] of Renaissance benchmark slowdown us-
ing Shenandoah, calculated against the geomean of uninstrumented execution with
Shenandoah for each benchmark. 600s duration run, X86 machine, measurements
used from the last 300s, frequency fixed to 3.3GHz with a userspace governor, turbo
boost and cooperative power management disabled. The 25,50 (clear circle) and 75
percentiles are displayed within each benchmark’s violin plot. Mnemonics has very
little variation in execution time or overhead, making it difficult to visualize the violin
plot in the figure.

3.7. EVALUATION 77

Figure 3.11: Customized violin plot [doc] of Renaissance benchmark slowdown using
G1, calculated against the geomean of uninstrumented execution with G1 for each
benchmark. 600s duration run, X86 machine, measurements used from the last 300s,
frequency fixed to 3.3GHz with a userspace governor, turbo boost and cooperative
power management disabled. The 25,50 (clear circle) and 75 percentiles are displayed
within each benchmark’s violin plot. Mnemonics has very little variation in execution
time or overhead, making it difficult to visualize the violin plot in the figure.

78 CHAPTER 3. MRE PERFORMANCE UNDERSTANDING BASED ON EBPF

Figure 3.12: Customized violin plot of finagle-http slowdowns using BPFxVM on an
X86 machine. Violin plot markings as in figure 3.11. The geomean slowdowns are
annotated on the figure to give an indication of overhead.

3.7. EVALUATION 79

Figure 3.13: Customized violin plot of Renaissance benchmark slowdown using G1,
(4 cores controlled using taskset), calculated against the geomean of uninstrumented
execution with G1 for each benchmark. 600s duration run, ARM machine, measure-
ments used from the last 300s, frequency 2GHz with a performance governor. Violin
plot markings as in figure 3.11. db-shootout omitted as it failed to run correctly.

80 CHAPTER 3. MRE PERFORMANCE UNDERSTANDING BASED ON EBPF

Figure 3.14: Customized violin plot of Renaissance benchmark slowdown using
Shenandoah, (4 cores controlled using taskset), calculated against the geomean of
uninstrumented execution with Shenandoah for each benchmark. 600s duration run,
ARM machine, measurements used from the last 300s, frequency 2GHz with a per-
formance governor. Violin plot markings as in figure 3.11. db-shootout omitted as it
failed to run correctly.

3.7. EVALUATION 81

3.7.3 Phase Classification based on Changepoint Analysis

In our initial experiments we investigated the use of elapsed wall-clock time, the mea-
sured on-cpu execution time of threads, and the number of retired micro-ops (µops) by
threads. We used the measured quantities to perform changepoint analysis, with the
expectation that deterministic applications would have a repeatable amount of work
per iteration unless significant operation of VM service threads was present in an it-
eration. We hypothesise that there is merit investigating using counts of retired µops
for phase classification rather than the more traditional elapsed wall clock time, as the
latter is potentially sensitive to delays resulting, for example, from OS scheduling such
as task migration and context switching, or from the hardware such as cache effects.
For particularly short running benchmarks these delays have the potential to perturb
iteration times.

Initially, we found unusual results when investigating small variations in the exe-
cution time of the deterministic programs used by [BBTK+17] to investigate warmup
and steady state. For example, the results indicated that sometimes the total on-cpu
cycles decreased when the execution time went up. We investigated turning off all un-
necessary processor and ACPI sleep/power managements states but this did not remove
the issue. We inserted error checks to ensure that we had not lost any measurements
of thread quanta. Then we turned our attention to the filtering used by BCC tools
that instrument sched switch to investigate on-cpu issues. Some tools were filtering
on the TASK RUNNING state to determine if measurements should be attributed to a
thread. We found that it was necessary to include Linux (kernel) thread scheduler states
other than TASK RUNNING to accurately measure the time and retired µops associ-
ated with each iteration, particularly the sleep states: TASK INTERRUPTIBLE and
TASK UNINTERRUPTIBLE. This is because threads that voluntarily yield the OS
scheduler quantum do so by setting their task state to the appropriate sleep state be-
fore calling into the linux schedule function. These tasks, when subsequently switched
out, leave the run queue with the sleep task state, despite having done useful work
and retired a significant number of µops. This is to be contrasted with tasks that are
involuntarily scheduled off by the kernel, as a result of them using up their schedul-
ing quantum. Such tasks leave the run queue with the TASK RUNNING state. For
short running benchmark iterations, the accumulated statistics of tasks leaving the run
queue with the additional sleep states can add up to a significant part of the execution,
distorting the results if omitted. Further, threads awaiting conditional synchronization
may be periodically scheduled by the kernel to check if they can make progress, and

82 CHAPTER 3. MRE PERFORMANCE UNDERSTANDING BASED ON EBPF

these events can begin to consume a small but significant number of retired µops and
hence execution time.

In order to test our hypothesis of the suitability of using counts of retired µops
to determine steady state in benchmark experiments, rather than the more traditional
wall clock time, we base our experiments on the comprehensive work in [BBTK+17].
We use the same approach where practical, outlined below, including the same bench-
marks, software and settings although we do not use a heavily controlled execution
environment apart from fixing the CPU frequency. We do not believe that diminishes
the veracity of our experiments since we are not trying to determine the same goal, i.e.
of verifying whether or not steady state, warmup or any other state is achieved. We
are simply comparing the use of alternate signals for the changepoint analysis; further-
more all data required for our results are collected concurrently during the same run
i.e. under the exact same conditions.

We had some problem getting reliable performance out of the Richards benchmark,
which tended to slow down execution and was omitted and so we use Java versions of:
binarytrees, fannkuchredux, fasta, nbody and spectralnorm. The benchmarks take a
seed parameter that affects the amount of work done in the iteration and hence the iter-
ation time. The values we used gave iterations in the range of 1s - 3s depending on the
benchmark, approximately 10 times the duration than used in [BBTK+17]. In our anal-
ysis we also use the R changepoint package meanvar routine which implements the
PELT algorithm [KFE12]. For the penalty value we use Schwarz information criterion
(SIC) β = plogn. Here p is the number of additional parameters introduced by adding
a changepoint (set to p = 15 as in [BBTK+17]), and n is the number of observations
which is 2000 iterations minus the number of outliers. Note that choosing an incorrect
penalty value can lead to over or underfitting the time-series data of execution times for
different iterations, leading to too many, or too few changepoints being detected. We
use a minimum interval size of 2, and default values for all other arguments. We use
10 process executions of 2000 iterations, based on recommendations in [BBTK+17]
which suggests that 10 process iterations are sufficient for statistically reliable results.
We exclude outliers using the same algorithm described in [BBTK+17] and we fix the
CPU frequency to avoid perturbation from DVFS.

3.7.3.1 Discriminating Section Trends

The results from the changepoint meanvar function returns the changepoints as itera-
tion indices, and the section means and variances. We now must use this information to

3.7. EVALUATION 83

classify any trends behaviour between the sections. In [BBTK+17] to discriminate the
difference between the adjacent sections they compare the section means ±d, where
d is the maximum of the variance, or 0.001 (based on their observation that iteration
times within the same section are typically within 0.001s of each other). We note that
for the short running benchmarks, measured in fractions of a second, the difference
between individual points and the mean is a small fraction, and so the variance ap-
proaches zero. Under these conditions, d, most often becomes the 0.001 term. For our
experiments we encountered three problems using the variance in this way.

• Variance is not scale invariant. For large numbered values such as retired µops
the difference between the individual benchmark iteration counts and their sec-
tion mean is a large value and the variance then typically becomes huge, often
eclipsing the measured values. (Similarly, also if using nanosecond units for the
iteration times rather than sub 1s decimal fractions to perform the same compu-
tation)

• A quantity must somehow be chosen to compare with the variance in order to
apply the discrimination function that is calibrated for the benchmark and the
values used in the changepoint input calculation. This is possibly error prone,
and risks fitting the analysis to the experimental results.

• The units of variance are not the same as the mean, and so it is questionable
whether a meaningful value can be inferred from mean ± variance.

To avoid these problem areas, for the statistical dispersion term used for the dis-
crimination function, we also experiment with using the standard deviation and com-
pare segments using the mean ±sd. This approach requires no extra parameters and
the units are the same.

3.7.3.2 Results

The results of our phase classification benchmark experiments are summarised in ta-
ble 3.5 and examples of executions in figures 3.15 & 3.16. We show results using
both retired µops and elapsed wall clock time for the changepoint signal. Foreach
benchmark, GC algorithm and changepoint signal, table 3.5 shows the median in-
dex that steady state was achieved (SSi), and the median time (SS time) and num-
ber of µops (SS µops) in the steady state phase. We also show the classifications,

84 CHAPTER 3. MRE PERFORMANCE UNDERSTANDING BASED ON EBPF

whether flat (F), warmup (W) or slowdown (S) was attributed according to the algo-
rithm in [BBTK+17]. When applying the classification/steady state algorithm we use
both standard deviation and variance in the case of wall-clock time, however we use
only standard deviation for the retired µops signal, for the reasons discussed in sec-
tion 3.7.3.1.

Firstly we note that all executions achieve a steady state, whereas this was not the
case in [BBTK+17]. The absence of steady state is declared when there are two non
equivalent sections after iteration 1500. Possibly our use of longer iteration times en-
sured that our measurements showed less variation from induced delays. We leave an
analysis using shorter iterations for future work. Looking down the SSi column, we
see that there is broad agreement when steady state was achieved foreach signal and
analysis. Where there is an obvious discrepancy (nbody g1) where the variance calcu-
lated steady state was noted at iteration 102, in contrast to the 0,1 in the other cases,
there was no significant difference in the steady state time (see also figure 3.16). We
note that when discriminating between flat and warmup the margin in the calculation
is sometimes small with there being no significant observable change in the execution
times (also figure 3.16).

In summary, our results show that using total µops as a univariate signal offers
some promise as a measure of work done for a JVM application in execution. This
preliminary experimental result, on a much less heavily constrained execution envi-
ronment than the original work (albeit with less experimental rigour) of [BBTK+17]
suggests further investigation is warranted.

3.7.4 Top Down Analysis

BPFxVM allows us to collect PMU event counts at OS scheduling quantum and thread
granularity. We can use these data to investigate variations in the top-down behaviours
of different threads during the course of execution. We show here our early work
investigating this approach to gaining performance understanding in MREs.

Figure 3.17 captures such behaviour during a run of the Renaissance scrabble
benchmark on an X86 machine with the G1 collector using violin plots. Mis-speculation
overhead is typically low across all thread-groups. Threads attributed to GC demon-
strate a wide and relatively evenly distributed variation of backend and retiring bound
microarchitecture utilization, without any significant bulges in the violin plot that in-
dicate frequently occurring values. Our technique reveals that some threads show a
multimodal distribution of behaviours, for example ForkJoinPool.co and java.

3.7. EVALUATION 85

Figure 3.15: R Changepoint meanvar analysis of the Java fannkuchredux benchmark
using the total number of µops retired each iteration (top) and the elapsed wall clock
time for each iteration, showing both warmup and slowdown behaviour. The steady
state/classification algorithm works backwards from the last changepoint and stops
when it encounters the slowdown transition around iteration 783. This places the
steady state after the second changepoint in the top plot (slowdown, 2) and the fourth
changepoint (slowdown, 4) in the bottom plot when using both the standard deviation
analysis (SD) and the variance analysis. The two terms in the lower title (σ2 and δ)
show that the section variance (σ2) was small and so the dominant term (δ) used in the
classification analysis was 0.001 (section 3.7.3.1). This was almost always the case.

86 CHAPTER 3. MRE PERFORMANCE UNDERSTANDING BASED ON EBPF

Figure 3.16: Showing an execution of the nbody benchmark using G1 GC. Where there
is no clear trend in the signal, the discrepancy causing a flat or warmup classification
is sometimes neither obvious nor particularly significant. According to the top signal
(µops) warmup was attributed to be at the first changepoint at iteration 1. According to
the wall clock time signal and comparing the mean ±sd the first section is considered
to be equivalent to the second (last) and so the execution is given to be flat starting
from iteration 0. Using the mean ±0.001 shown in the second classification in the
lower plot title, a difference is detected between the two sections and the execution is
assigned warmup at iteration 102 without there being a clear downward trend in the
execution times. See also nbody g1 in table 3.5.

3.7. EVALUATION 87

W
al

lC
lo

ck
Ti

m
e

R
et

ir
ed

µo
ps

St
d

D
ev

ia
tio

n
Va

ri
an

ce
B

en
ch

m
ar

k
G

C
C

la
ss

ifi
ca

tio
n

SS
i

SS
µo

ps
C

la
ss

ifi
ca

tio
n

SS
i

SS
tim

e(
s)

C
la

ss
ifi

ca
tio

n
SS

i
SS

tim
e(

s)
bi

na
ry

tr
ee

s
g1

F[
10

]
0

1.
90

e+
10

±
1.

79
e+

08
F[

9]
,W

[1
]

0
1.

73
6
±

0.
00

9
W

[1
0]

1
1.

93
8
±

0.
20

65
bi

na
ry

tr
ee

s
sh

en
F[

10
]

0
1.

82
e+

10
±

1.
61

e+
09

F[
7]

,W
[3

]
0

1.
66

3
±

0.
00

8
W

[1
0]

1
1.

99
5
±

0.
33

05
fa

nn
ku

ch
re

du
x

g1
S[

10
]

78
3

2.
08

e+
10

±
9.

40
e+

06
S[

10
]

78
3

3.
28

85
±

0.
00

1
S[

10
]

78
3

3.
28

85
±

0.
00

1
fa

nn
ku

ch
re

du
x

sh
en

F[
8]

,S
[1

],W
[1

]
0

2.
20

e+
10

±
3.

33
e+

09
F[

3]
,S

[3
],W

[4
]

2
3.

47
3
±

0.
00

15
F[

2]
,S

[3
],W

[5
]

3.
5

3.
48

±
0.

00
1

fa
st

a
g1

F[
1]

,W
[9

]
1

6.
57

e+
09

±
7.

17
e+

07
F[

2]
,W

[8
]

1
1.

96
8

W
[1

0]
1

1.
97

fa
st

a
sh

en
W

[1
0]

1
6.

63
e+

09
±

8.
14

e+
07

W
[1

0]
1

1.
85

W
[1

0]
1

1.
85

nb
od

y
g1

F[
3]

,W
[7

]
1

1.
14

e+
10

±
6.

37
e+

07
F[

10
]

0
1.

49
9
±

0.
00

3
F[

1]
,W

[9
]

10
2

1.
5
±

0.
00

55
nb

od
y

sh
en

F[
2]

,W
[8

]
1

1.
41

e+
10

±
9.

72
e+

06
F[

5]
,W

[5
]

0.
5

1.
89

55
±

0.
01

F[
3]

,W
[7

]
1

1.
89

55
±

0.
01

sp
ec

tr
al

no
rm

g1
S[

10
]

25
9

1.
82

e+
10

±
5.

00
e+

07
S[

10
]

25
9

5.
15

9
S[

10
]

26
1

5.
07

6
±

0.
08

2
sp

ec
tr

al
no

rm
sh

en
S[

10
]

25
8.

5
1.

82
e+

10
±

4.
87

e+
08

S[
10

]
25

9
5.

14
1

S[
10

]
26

1
5.

05
9
±

0.
08

2

Ta
bl

e
3.

5:
T

he
re

su
lts

of
th

e
ph

as
e

cl
as

si
fic

at
io

n
be

nc
hm

ar
k

ex
pe

ri
m

en
tu

si
ng

bo
th

re
tir

ed
µo

ps
an

d
el

ap
se

d
w

al
lc

lo
ck

tim
es

.F
or

th
e

w
al

lc
lo

ck
tim

es
w

e
sh

ow
ph

as
e

cl
as

si
fic

at
io

n/
st

ea
dy

st
at

e
an

al
ys

is
us

in
g

bo
th

st
an

da
rd

de
vi

at
io

n
an

d
th

e
va

ri
an

ce
ba

se
d

ca
lc

ul
at

io
n

(s
ec

tio
n

3.
7.

3.
1)

.T
he

ex
pe

ri
m

en
tc

om
pr

is
ed

10
in

de
pe

nd
en

te
xe

cu
tio

ns
of

20
00

ite
ra

tio
ns

fo
re

ac
h

be
nc

hm
ar

k
an

d
G

C
(S

he
na

nd
oa

h
an

d
G

1)
.

O
f

th
e

10
ru

ns
,t

he
SS

ic
ol

um
n

sh
ow

s
th

e
m

ed
ia

n
ite

ra
tio

n
nu

m
be

r
th

at
st

ea
dy

st
at

e
w

as
ac

hi
ev

ed
.

Si
m

ila
rl

y,
SS

µo
ps

,a
nd

SS
tim

e(
s)

,s
ho

w
s

th
e

m
ed

ia
n

co
un

ts
/ti

m
es

fr
om

th
e

st
ea

dy
st

at
e

ex
ec

ut
io

n
w

ith
th

ei
rs

ta
nd

ar
d

de
vi

at
io

ns
.T

he
C

la
ss

ifi
ca

tio
n

in
di

ca
te

s
w

he
th

er
th

e
ru

n
w

as
de

te
rm

in
ed

to
be

fla
t(

F)
,w

ar
m

up
(W

)o
rs

lo
w

do
w

n
(S

)w
ith

th
e

co
un

ti
n

[]
ov

er
th

e
10

ex
ec

ut
io

ns
.

88 CHAPTER 3. MRE PERFORMANCE UNDERSTANDING BASED ON EBPF

Figure 3.17: Top-down statistical analysis over all thread groups during a run of 200
iterations of the scrabble benchmark with the G1 garbage collector with a 12GByte
heap.

3.8. CONCLUSIONS 89

Figure 3.18 shows top down statistics for GC threads only using the G1, Shenan-
doah and Parallelold garbage collectors during a run of the Renaissance reactors bench-
mark. Mis-speculation by the microprocessor is again low in all cases. The back end
bound category is high for all GC algorithms, over the threshold of 20% that justi-
fies further investigation according to [Yas] and particularly high for Parallelold with
significant distributions centered on 60% and 75%. The commonly held belief is that
GC threads are typically memory bound, but further investigation would be required
to confirm that suspicion based on these results. It is possible to sample alternative
performance counters, to determine whether backend bound stalls are contributed by
memory bound or core bound behaviour, but we leave a comprehensive survey for fu-
ture work. We do see some variation in microarchitecture utilisation across the GC, in
particular for parallelold in the front end bound and backend bound categories.

We will continue this early work investigating trends in microarchitecture utili-
sation across different threads and workloads. We will extend the analysis to other
architectures and MREs.

3.8 Conclusions

We have presented techniques that demonstrate how we can collect extremely detailed
information concerning the top-down behaviour of each thread execution quantum at
relatively low-overhead for both ARM and Intel processor microarchitectures. The use
of system time in nanosesonds since boot provides a means to align measurements
from the kernel, and from function hooked events concerning the execution and oc-
currence of specific events of interest related to the application, and to the managed
language runtime itself. We have investigated previous approaches for determining if
a managed language application reaches a state of warm-up, where steady state ex-
ecution time is demonstrated. We argue for a different measure, namely whether an
application reaches a steady-state of behaviour that is described by the number of µops
or instructions retired that are attributed to not only application threads, but also to the
many threads associated with supporting the managed language runtime environment.

In future work, we plan to use our tools to investigate criticality analysis and offline
causal profiling using information traces that capture all on-cpu quanta and all thread-
state transitions between runnable and sleeping/blocked states. For managed runtimes
such as Node.js/V8 where threads do not have specific roles, it is necessary to trace
the start/stop of specific operations related to virtual machine activities, for example

90 CHAPTER 3. MRE PERFORMANCE UNDERSTANDING BASED ON EBPF

Figure 3.18: Showing the top-level top-down microarchitecture utilisation statistics
over a run of the Renaissance reactors benchmark.

3.8. CONCLUSIONS 91

due to garbage collection, deoptimization and compilation. Although specific user
statically defined tracepoints exist in Node.js for GC, there are no such tracepoints
for deoptimization. It is possible for dynamically compiled application code to add
statically defined tracepoints to JIT compiled dynamic languages such as Javascript,
Python and Go by defining the tracepoints in a small shared-library that is linked at
runtime5. Node.js/V8 will require special treatment as its event-loop based architecture
where threads do not have specific roles requires the tracing of the start/stop of events
in the managed runtime and the application itself.

5Such an approach is used here: https://github.com/sthima/libstapsdt.

Chapter 4

Conclusions

This thesis presents firstly an investigation into performance implications arising from
choices encountered when porting the JIT compilation system of a managed runtime to
target a new architecture, ARMv8. Secondly, it presents two fine-grained, thread-level
studies of the microarchitectural behaviour of a managed runtime using our own tool,
BPFxVM, a framework based on the eBPF subsystem in the Linux kernel.

4.1 CallSites: ARM JIT Compilation

The work presented in Chapter 2 considered the aspects of the ARMv8 architecture
that constrain the implementation of call-sites for JIT compiled code: namely the ISA,
memory consistency model, the cache coherency protocol and the limit to the class
of instructions that are safe to modify and execute concurrently. An investigation was
conducted into the performance of alternate strategies using benchmark experiments,
and profiles derived from microarchitecture performance events and bytecode instru-
mentation.

The results have shown variation in the performance of the different call-site
schemes of up to 12% in the JVM benchmark suite experiments and also variation
across different implementations of the architecture. We have shown that for the ad-
vanced Neoverse N1 platform there is little difference in the performance of the al-
ternate schemes. We have also demonstrated that code management and code cache
organisation affects the behaviour of the Trampoline scheme which degenerates to the
optimum scheme of a single instruction direct branch below 128MB displacements.
This finding is relevant to other ISAs with limited direct branch displacements.

92

4.2. MRE PERFORMANCE UNDERSTANDING USING BPFXVM 93

Concerning the Experiments The JVM benchmark experiments in 2.7.4 were de-
signed in order to report a confidence interval, when comparing the performance of the
alternate implementations for the iteration based experiments (DaCapo and Renais-
sance). The multiple warmed up iteration times were used to calculate a mean with
a confidence interval, that could then be normalised to the optimum Direct scheme
to form a ratio with its own confidence interval according to Fieller’s theorem [Fie54].
Given the magnitude of the variation in the relative performance of the callsite schemes
in MaxineVM was small, the experiments could have been better designed. Using mul-
tiple independent executions would have enabled the calculation of an independent
confidence interval in the mean for each scheme and a more robust statistical analysis
including testing the null hypothesis, i.e. that the alternate strategies show no signif-
icant variation in performance. This would have also provided a mean result with a
confidence interval for the SPECjvm2008 benchmark results. Rather than timed itera-
tions, the SPECjvm2008 benchmark suite runs for a fixed interval and reports a single
result in operations per unit time for each benchmark, and so must be run multiple
times to form a mean and a confidence interval.

4.1.1 Future Work

Experiments with the Trampoline scheme suggest that there is potential for managing
code and the code cache, in order to localise code on the critical path, to gain a higher
percentage of direct branches, and so a more optimised execution profile. We plan to
experiment with reorganising the code cache partitions in MaxineVM in order to study
the potential benefit that may be achievable.

4.2 MRE Performance Understanding using BPFxVM

This chapter has presented two studies of managed runtime performance using
BPFxVM, a low overhead, extensible tool that enables fine-grained investigation into
the behaviour and performance MREs running on Linux. We have shown the geomean
overhead of BPFxVM is less than 2% and we have noted that some of the benchmarks
exhibit speedups when traced, which we will investigate further in order to establish
the statistical significance and causes.

94 CHAPTER 4. CONCLUSIONS

Top Down Microarchitecture Analysis This study reveals for the first time we be-
lieve, top-down microarchitecture utilisation statistics at individual thread, and schedul-
ing quantum granularity for a MRE and its application, running on both x86 and
ARMv8 architectures. We have shown the dynamic behaviour of threads utilisation of
the microarchitecture in both violin plots and traces that can be viewed in the Chrome
profiler. This approach builds on previous studies [Yas14] and tools [Kle22] that pro-
duce a single mean value for top down stats, whether for the application as a whole,
or specific CPU cores. The results reveal multimodal distributions offering the poten-
tial for greater understanding of optimisation opportunities that would otherwise be
obscured by mean values. We have demonstrated that GC threads have a high back-
end bound behaviour that may confirm the conventional wisdom that such threads are
typically memory bound.

Warm-up and Steady-State Analysis This study has compared using microarchi-
tecture performance counters against the more traditional elapsed wall-clock time to
determine warm-up and steady-state behaviours. The work is based on the methodol-
ogy of [BBTK+17] and has also been influenced by [CR16] that questions the reliabil-
ity of timed measurements. The results show that there is promise in using counts of
retired µops per benchmark iteration rather than elapsed time, supporting the hypothe-
sis that warmed-up iterations should comprise a consistent amount of measurable work
done. We note however that there are limitations to this approach, in particular for
parallel programs, where variation in synchronisation operations e.g. due to resource
contention may skew retired µop counts. A phenomenon that also similarly affects
timed experiments.

4.2.1 Future Work

Although the experiments have focused mainly on the x86 platform, some preliminary
experiments have been run on ARMv8 and the work will be extended to fully include
the architecture, and also include other MREs such as Node.js/V8.

Phase and Steady State Analysis

This study has shown the utility of retired µops as a measure of work done for phase
and steady-state classification using changepoint analysis. We intend to continue this

4.2. MRE PERFORMANCE UNDERSTANDING USING BPFXVM 95

study to investigate the work contributed by specific thread groups such as VM compo-
nents including JIT compilation or GC. We will also look at examining changes across
top-down statistics both application wide and using specific thread groups. Whereas
this thesis has shown the use of univariate signals for changepoint analysis, it is also
possible to perform multivariate analysis using a number of signals. We believe that
top-down statistics are potentially interesting candidates for this investigation. We will
include the popular mainstream benchmark suites in our characterisation.

Top-Down Analysis

This preliminary work on top-down analysis has focused on demonstrating the top-
level statistics for individual threads, or thread groups. We will continue with this work
in order to produce detailed characterisation of workload and VM service components
under different conditions in order to better understand variation in microarchitecture
utilisation. These early results show statistics that are over the threshold warranting
further investigation [Yas], such as the GC threads in figure 3.18 and we will look
further into the sub categories [Yas14] in order to gain an understanding of the root
causes of the stalls and to seek out optimisation opportunities.

Other Tracepoints

The use of BPFxVM in this thesis has demonstrated the performance aspects of threads
derived from changes in microarchitecture performance event counts. We can extend
the tool with additional features by hooking specific VM operations or other kernel
tracepoints. In addition to the comprehensive set of tracepoints exposed by the kernel,
eBPF enables tracing dynamic shared library functions by inserting uprobes. We have
experimented using this approach to trace deoptimization [HCU92] in the OpenJDK
JVM in order to understand the contribution of adaptive optimisation on performance.
These techniques will particularly useful for our investigations of other MREs such as
Node.js/V8 where threads expose no clearly identifiable role to the OS.

Bibliography

[AMDB07a] Bertrand Anckaert, Matias Madou, and Koen De Bosschere. A model
for self-modifying code. In Jan L. Camenisch, Christian S. Collberg,
Neil F. Johnson, and Phil Sallee, editors, Information Hiding, pages
232–248, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

[AMDB07b] Bertrand Anckaert, Matias Madou, and Koen De Bosschere. A model
for self-modifying code. In Proceedings of the 8th International Con-

ference on Information Hiding, IH’06, pages 232–248, Berlin, Hei-
delberg, 2007. Springer-Verlag.

[AMN+11] Antoine Amarilli, Sascha Müller, David Naccache, Daniel Page, Pablo
Rauzy, and Michael Tunstall. Can code polymorphism limit informa-
tion leakage? In Claudio A. Ardagna and Jianying Zhou, editors,
Information Security Theory and Practice. Security and Privacy of

Mobile Devices in Wireless Communication, pages 1–21, Berlin, Hei-
delberg, 2011. Springer Berlin Heidelberg.

[AR19] Andreas Abel and Jan Reineke. Uops.info: Characterizing latency,
throughput, and port usage of instructions on intel microarchitectures.
In Proceedings of the Twenty-Fourth International Conference on Ar-

chitectural Support for Programming Languages and Operating Sys-

tems, ASPLOS ’19, page 673–686, New York, NY, USA, 2019. Asso-
ciation for Computing Machinery.

[arm] Arm v8-a, topdown metrics source. https:

//www.brighttalk.com/webcast/17792/384060/

top-down-performance-analysis, note=Accessed: 2020-0-
03.

96

BIBLIOGRAPHY 97

[ARM17a] ARM. Arm cortex-a57 software optimization guide. Technical report,
2017.

[ARM17b] ARM. Arm cortex-a72 software optimization guide. Technical report,
2017.

[ARM19a] ARM. Arm Architecture Reference Manual Armv8, 2019.

[ARM19b] ARM. Arm neoverse n1 cpu. Technical report, 2019.

[ARM19c] ARM. Neoverse E1, 2019.

[ARM20a] ARM. Arm cortex-a55 software optimization guide. Technical report,
2020.

[ARM20b] ARM. Arm neoverse n1 core software optimization guide. Technical
report, 2020.

[ARM20c] ARM. Arm neoverse n1 core technical reference manual. Technical
report, 2020.

[ARM20d] ARM. Arm neoverse n1 (mp050) software developer errata notice.
Technical report, 2020.

[Azu19] Azul Systems. Zulu Embedded Open Source Java for Embedded Sys-
tems, 2019.

[BBTK+17] Edd Barrett, Carl Friedrich Bolz-Tereick, Rebecca Killick, Sarah
Mount, and Laurence Tratt. Virtual machine warmup blows hot and
cold. Proc. ACM Program. Lang., 1(OOPSLA), October 2017.

[CA20] K. Criswell and T. Adegbija. A survey of phase classification tech-
niques for characterizing variable application behavior. IEEE Trans-

actions on Parallel and Distributed Systems, 31(1):224–236, 2020.

[CBGM12] Ting Cao, Stephen M Blackburn, Tiejun Gao, and Kathryn S McKin-
ley. The yin and yang of power and performance for asymmetric
hardware and managed software. SIGARCH Comput. Archit. News,
40(3):225–236, June 2012.

[CR16] Jiahao Chen and Jarrett Revels. Robust benchmarking in noisy envi-
ronments, 2016.

98 BIBLIOGRAPHY

[CSV07] Hongxu Cai, Zhong Shao, and Alexander Vaynberg. Certified self-
modifying code. In Proceedings of the 28th ACM SIGPLAN Confer-

ence on Programming Language Design and Implementation, PLDI
’07, pages 66–77, New York, NY, USA, 2007. ACM.

[DCN+19] Daniele Cono D’Elia, Emilio Coppa, Simone Nicchi, Federico Pal-
maro, and Lorenzo Cavallaro. Sok: Using dynamic binary instrumen-
tation for security (and how you may get caught red handed). In Pro-

ceedings of the 2019 ACM Asia Conference on Computer and Com-

munications Security, Asia CCS ’19, pages 15–27, New York, NY,
USA, 2019. ACM.

[DDZ18] Shi Dawei, Lv Delong, and Ye Zhibin. Dynamic self-modifying code
detection based on backward analysis. In Proceedings of the 2018 10th

International Conference on Computer and Automation Engineering,
ICCAE 2018, pages 199–204, New York, NY, USA, 2018. ACM.

[Dev20] Advanced Micro Devices. AMD64 Architecture Programmer’s Man-

ual, Volume 1: Application Programming, 2020.

[doc] Matplotlib documentation. Violin plot cusotmization.
https://matplotlib.org/stable/gallery/statistics/

customized_violin.html, not=Accessed: 2021-09-03.

[EDE12] S. Eyerman, K. Du Bois, and L. Eeckhout. Speedup stacks: Identify-
ing scaling bottlenecks in multi-threaded applications. In 2012 IEEE

International Symposium on Performance Analysis of Systems Soft-

ware, pages 145–155, 2012.

[EFK11] I. A. Eckley, P. Fearnhead, and R. Killick. Analysis of changepoint
models. In Bayesian Time Series Models. Cambridge University Press,
2011.

[Fie54] Edgar Fieller. Some problems in interval estimation. Journal of the

Royal Statistical Society. Series B (Methodological), 16(2):175–185,
1954.

[fun] Sigill issue with uretprobes. https://github.com/iovisor/bcc/

issues/3034, note=accessed: 2021-09-03.

BIBLIOGRAPHY 99

[GBE07] Andy Georges, Dries Buytaert, and Lieven Eeckhout. Statistically rig-
orous java performance evaluation. In Proceedings of the 22nd Annual

ACM SIGPLAN Conference on Object-Oriented Programming Sys-

tems, Languages and Applications, OOPSLA ’07, page 57–76, New
York, NY, USA, 2007. Association for Computing Machinery.

[Gha96] Kourosh Gharachorloo. Memory consistency models for shared-

memory multiprocessors. PhD thesis, Stanford University, 1996.

[GNL18] Swapnil Gaikwad, Andy Nisbet, and Mikel Luján. Performance anal-
ysis for languages hosted on the truffle framework. In Proceedings of

the 15th International Conference on Managed Languages & Run-

times, ManLang ’18, New York, NY, USA, 2018. Association for
Computing Machinery.

[Gou04] Isaac Gouy. The computer language benchmarks game. https://

benchmarksgame-team.pages.debian.net/benchmarksgame/,
2004. Accessed: 2021-3-1.

[Gre] Brendan Gregg. Java performance analysis on linux with flame
graphs, javaone 2016 presentation. https://www.brendangregg.

com/Slides/JavaOne2016_JavaFlameGraphs.pdf. Accessed:
2021-09-03.

[GSF12] P. Gopi, G. Singh, and G. Favor. X-gene™: 64-bit arm cpu and soc.
In 2012 IEEE Hot Chips 24 Symposium (HCS), pages 1–19, 2012.

[HBLF13] Andrei Homescu, Stefan Brunthaler, Per Larsen, and Michael Franz.
Librando: transparent code randomization for just-in-time compilers.
In Proceedings of the 2013 ACM SIGSAC conference on Computer

& communications security, CCS ’13, pages 993–1004, New
York, NY, USA, 2013. ACM.

[HCU92] Urs Hölzle, Craig Chambers, and David Ungar. Debugging optimized
code with dynamic deoptimization. In Proceedings of the ACM SIG-

PLAN 1992 Conference on Programming Language Design and Im-

plementation, PLDI ’92, pages 32–43, New York, NY, USA, 1992.
ACM.

100 BIBLIOGRAPHY

[HD14] Andrew Haley and Andrew Dinn. Openjdk on aarch64 up-
date. https://aph.fedorapeople.org/Aarch64-fosdem-2014.

pdf, FOSDEM 2014.

[HM11] Christian Häubl and Hanspeter Mössenböck. Trace-based compila-
tion for the java hotspot virtual machine. In Proceedings of the 9th

International Conference on Principles and Practice of Programming

in Java, PPPJ ’11, page 129–138, New York, NY, USA, 2011. Asso-
ciation for Computing Machinery.

[HM21] Ranjan Hebbar and Aleksandar Milenković. An experimental evalu-
ation of workload driven dvfs. In Companion of the ACM/SPEC In-

ternational Conference on Performance Engineering, ICPE ’21, page
95–102, New York, NY, USA, 2021. Association for Computing Ma-
chinery.

[HNG14] Tobias Hartmann, Albert Noll, and Thomas Gross. Efficient code
management for dynamic multi-tiered compilation systems. In Pro-

ceedings of the 2014 International Conference on Principles and

Practices of Programming on the Java Platform: Virtual Machines,

Languages, and Tools, PPPJ ’14, page 51–62, New York, NY, USA,
2014. Association for Computing Machinery.

[HP12] John L. Hennessy and David A. Patterson. Computer Architecture:

A Quantitative Approach. Morgan Kaufmann, Amsterdam, 5 edition,
2012.

[HZKL19] Tim Hartley, Foivos S. Zakkak, Christos Kotselidis, and Mikel Luján.
An analysis of call-site patching without strong hardware support for
self-modifying-code. In Proceedings of the 16th ACM SIGPLAN In-

ternational Conference on Managed Programming Languages and

Runtimes, MPLR 2019, page 131–143, New York, NY, USA, 2019.
Association for Computing Machinery.

[Int15] Intel. Method and apparatus for providing hardware support for self-
modifying code, PCT/US2015/030411, 2015.

[Int16] Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual,

Volume 3A: System Programming Guide, Part 1, 2016.

BIBLIOGRAPHY 101

[Int19] Intelm. Intel 64 and IA-32 Architectures Software Developer’s Man-
ual, Volume 2, 2019.

[IOV22] IOVisor. BPF Compiler Collection (BCC), accessed 2022. https:

//github.com/iovisor/bcc.

[Jam19] JamaicaVM. A hard realtime Java bytecode-based Virtual Machine,
2019.

[jik] Jikervm project issues dashboard. https://xtenlang.atlassian.

net/jira/software/c/projects/RVM/issues/?filter=

updatedrecently. accessed: 2021-11-05.

[KCR+17] Christos Kotselidis, James Clarkson, Andrey Rodchenko, Andy Nis-
bet, John Mawer, and Mikel Luján. Heterogeneous managed runtime
systems: A computer vision case study. In Proceedings of the 13th

ACM SIGPLAN/SIGOPS International Conference on Virtual Exe-

cution Environments, VEE ’17, pages 74–82, New York, NY, USA,
2017. ACM.

[KFE12] R. Killick, P. Fearnhead, and I. A. Eckley. Optimal detection of
changepoints with a linear computational cost. Journal of the Ameri-

can Statistical Association, 107(500):1590–1598, 2012.

[KJ13] Tomas Kalibera and Richard Jones. Rigorous benchmarking in rea-
sonable time. In Proceedings of the 2013 international symposium on

memory management, pages 63–74, 2013.

[Kle22] Andi Kleen. Intel pmu profiling tools: Github repository. https:

//github.com/andikleen/pmu-tools, 2022. Accessed: 2022-12-
04.

[LTCC+16] Michael A Laurenzano, Ananta Tiwari, Allyson Cauble-Chantrenne,
Adam Jundt, William A Ward, Roy Campbell, and Laura Carrington.
Characterization and bottleneck analysis of a 64-bit armv8 platform.
In 2016 IEEE International Symposium on Performance Analysis of

Systems and Software (ISPASS), pages 36–45. IEEE, 2016.

102 BIBLIOGRAPHY

[Ltd20] Arm Ltd. Cortex-a53 – arm, (accessed November 2020).
https://www.arm.com/products/silicon-ip-cpu/cortex-a/

cortex-a53.

[LTZ+15] Dumitrel Loghin, Bogdan Marius Tudor, Hao Zhang, Beng Chin Ooi,
and Yong Meng Teo. A performance study of big data on small nodes.
Proc. VLDB Endow., 8(7):762–773, February 2015.

[Maj] Zoltan Majo. Allow stack walking pass through method han-
dle intrinsic frames. https://bugs.openjdk.java.net/browse/

JDK-8153167. Accessed: 2021-09-03.

[MDHS10a] Todd Mytkowicz, Amer Diwan, Matthias Hauswirth, and Peter F.
Sweeney. Evaluating the accuracy of java profilers. In Proceedings of

the 31st ACM SIGPLAN Conference on Programming Language De-

sign and Implementation, PLDI ’10, page 187–197, New York, NY,
USA, 2010. Association for Computing Machinery.

[MDHS10b] Todd Mytkowicz, Amer Diwan, Matthias Hauswirth, and Peter F.
Sweeney. Evaluating the accuracy of java profilers. SIGPLAN Not.,
45(6):187–197, June 2010.

[Mic19] MicroPython. Python for microcontrollers, 2019.

[MKP11] Nikos Mavrogiannopoulos, Nessim Kisserli, and Bart Preneel. A tax-
onomy of self-modifying code for obfuscation. Computers & Security,
30(8):679 – 691, 2011.

[Myr10] Magnus O. Myreen. Verified just-in-time compiler on x86. In Pro-

ceedings of the 37th Annual ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, POPL ’10, pages 107–118,
New York, NY, USA, 2010. ACM.

[NNRL19] Andy Nisbet, Nuno Miguel Nobre, Graham Riley, and Mikel Luján.
Profiling and tracing support for java applications. In Proceedings of

the 2019 ACM/SPEC International Conference on Performance Engi-

neering, ICPE ’19, page 119–126, New York, NY, USA, 2019. Asso-
ciation for Computing Machinery.

BIBLIOGRAPHY 103

[Pan] Andrei Pangin. Asyncgetcalltrace fails to traverse valid java stacks.
https://bugs.openjdk.java.net/browse/JDK-8178287. Ac-
cessed: 2021-09-03.

[PM20] Roldan Pozo and Bruce Miller. Java scimark 2.0, 2004 (accessed
November 2020). https://math.nist.gov/scimark2/index.

html.

[PRL+19a] Aleksandar Prokopec, Andrea Rosà, David Leopoldseder, Gilles Du-
boscq, Petr Tůma, Martin Studener, Lubomı́r Bulej, Yudi Zheng, Alex
Villazón, Doug Simon, Thomas Würthinger, and Walter Binder. Re-
naissance: Benchmarking suite for parallel applications on the jvm. In
Proceedings of the 40th ACM SIGPLAN Conference on Programming

Language Design and Implementation, PLDI 2019, page 31–47, New
York, NY, USA, 2019. Association for Computing Machinery.

[PRL+19b] Aleksandar Prokopec, Andrea Rosà, David Leopoldseder, Gilles Du-
boscq, Petr Tůma, Martin Studener, Lubomı́r Bulej, Yudi Zheng, Alex
Villazón, Doug Simon, Thomas Wuerthinger, and Walter Binder. On
evaluating the renaissance benchmarking suite: Variety, performance,
and complexity, 2019.

[PSB+20] Andrea Pellegrini, Nigel Stephens, Magnus Bruce, Yasuo Ishii, Joseph
Pusdesris, Abhishek Raja, Chris Abernathy, Jinson Koppanalil,
Tushar Ringe, Ashok Tummala, Jamshed Jalal, Mark Werkheiser, and
Anitha Kona. The arm neoverse n1 platform: Building blocks for the
next-gen cloud-to-edge infrastructure soc. IEEE Micro, 40(2):53–62,
2020.

[PVA+14] Thanasis Petsas, Giannis Voyatzis, Elias Athanasopoulos, Michalis
Polychronakis, and Sotiris Ioannidis. Rage against the virtual ma-
chine: Hindering dynamic analysis of android malware. In Proceed-

ings of the Seventh European Workshop on System Security, EuroSec
’14, pages 5:1–5:6, New York, NY, USA, 2014. ACM.

[PVC01] Michael Paleczny, Christopher Vick, and Cliff Click. The java
hotspottm server compiler. In Proceedings of the Java Virtual Ma-

chine Research and Technology Symposium, volume 1, pages 1–12,
2001.

104 BIBLIOGRAPHY

[RCA99] Glenn Reinman, Brad Calder, and Todd Austin. Fetch directed in-
struction prefetching. In MICRO-32. Proceedings of the 32nd Annual

ACM/IEEE International Symposium on Microarchitecture, pages 16–
27. IEEE, 1999.

[RO16] Carl G. Ritson and Scott Owens. Benchmarking weak memory mod-
els. SIGPLAN Not., 51(8), February 2016.

[Ros01] John Rose. Jdk-4506997, 2001.

[RSM+18] Manuel Rigger, Roland Schatz, René Mayrhofer, Matthias Grimmer,
and Hanspeter Mössenböck. Sulong, and thanks for all the bugs:
Finding errors in c programs by abstracting from the native execution
model. SIGPLAN Not., 53(2):377–391, March 2018.

[RVV+13] Nikola Rajovic, Lluis Vilanova, Carlos Villavieja, Nikola Puzovic,
and Alex Ramirez. The low power architecture approach towards
exascale computing. Journal of Computational Science, 4(6):439 –
443, 2013. Scalable Algorithms for Large-Scale Systems Workshop
(ScalA2011), Supercomputing 2011.

[SBEE17] J. B. Sartor, K. D. Bois, S. Eyerman, and L. Eeckhout. Analyzing
the scalability of managed language applications with speedup stacks.
In 2017 IEEE International Symposium on Performance Analysis of

Systems and Software (ISPASS), pages 23–32, 2017.

[SEH11] A. Sembrant, D. Eklov, and E. Hagersten. Efficient software-based
online phase classification. In 2011 IEEE International Symposium

on Workload Characterization (IISWC), pages 104–115, 2011.

[SFP+20] Ben Simner, Shaked Flur, Christopher Pulte, Alasdair Armstrong,
Jean Pichon-Pharabod, Luc Maranget, and Peter Sewell. Armv8-a
system semantics: instruction fetch in relaxed architectures. In ESOP

2020-29th European Symposium on Programming, 2020.

[SSO+10] Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Zappa Nardelli,
and Magnus O. Myreen. X86-tso: A rigorous and usable program-
mer’s model for x86 multiprocessors. Commun. ACM, 53(7):89–97,
July 2010.

BIBLIOGRAPHY 105

[TGB19] K. Taht, J. Greensky, and R. Balasubramonian. The pop detector:
A lightweight online program phase detection framework. In 2019

IEEE International Symposium on Performance Analysis of Systems

and Software (ISPASS), pages 48–57, 2019.

[TT13] Bogdan Marius Tudor and Yong Meng Teo. On understanding the
energy consumption of arm-based multicore servers. In Proceedings

of the ACM SIGMETRICS/International Conference on Measurement

and Modeling of Computer Systems, SIGMETRICS ’13, pages 267–
278, New York, NY, USA, 2013. ACM.

[VCMKS12] Nicolas Veyrat-Charvillon, Marcel Medwed, Stéphanie Kerckhof, and
François-Xavier Standaert. Shuffling against side-channel attacks: A
comprehensive study with cautionary note. In Xiaoyun Wang and
Kazue Sako, editors, Advances in Cryptology – ASIACRYPT 2012,
pages 740–757, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[WHVDV+13] Christian Wimmer, Michael Haupt, Michael L. Van De Vanter, Mick
Jordan, Laurent Daynès, and Douglas Simon. Maxine: An approach-
able virtual machine for, and in, java. ACM Trans. Archit. Code Op-

tim., 9(4):30:1–30:24, January 2013.

[Wik18] WikiChip. X-gene 1 apm883408-x1 - appliedmicro, 2018.

[XWH+18] Yaocheng Xiang, Xiaolin Wang, Zihui Huang, Zeyu Wang, Yingwei
Luo, and Zhenlin Wang. DCAPS: dynamic cache allocation with
partial sharing. In Rui Oliveira, Pascal Felber, and Y. Charlie Hu,
editors, Proceedings of the Thirteenth EuroSys Conference, EuroSys

2018, Porto, Portugal, April 23-26, 2018, pages 13:1–13:15. ACM,
2018.

[Yas] Ahmad Yasin. Intel tma metrics. https://download.01.org/

perfmon/TMA_Metrics.xlsx. Accessed: 2021-09-03.

[Yas14] A. Yasin. A top-down method for performance analysis and counters
architecture. In 2014 IEEE International Symposium on Performance

Analysis of Systems and Software (ISPASS), pages 35–44, 2014.

106 BIBLIOGRAPHY

[YBM15] Xi Yang, Stephen M. Blackburn, and Kathryn S. McKinley. Computer
performance microscopy with shim. In Proceedings of the 42nd An-

nual International Symposium on Computer Architecture, ISCA ’15,
page 170–184, New York, NY, USA, 2015. Association for Comput-
ing Machinery.

[ZBB15] Yudi Zheng, Lubomı́r Bulej, and Walter Binder. Accurate profiling in
the presence of dynamic compilation. In Proceedings of the 2015

ACM SIGPLAN International Conference on Object-Oriented Pro-

gramming, Systems, Languages, and Applications, OOPSLA 2015,
page 433–450, New York, NY, USA, 2015. Association for Comput-
ing Machinery.

