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Abstract 
Background. Paediatric studies examining cardio-metabolic risk indicators use small 
for gestational age (SGA) as a surrogate marker for fetal growth restriction (FGR). 
However, FGR can exist without SGA. Hypothesis. Antenatal markers of higher FGR 
risk can identify fetuses at greatest risk of long-term cardio-metabolic disease. 
Methods. i) Children aged three to six years attended for measurements indicating 
glucose metabolism, lipid metabolism and vascular health status. The majority were 
born following pregnancies with higher FGR risk identified. Alongside traditional 
statistical methods, Random Forest Classification (RFC) was used to test the 
hypothesis. ii) Following pregnancies with higher FGR risk, infants had auxological 
measurements at birth, three, six and 12 months. Infant weight and adiposity 
trajectories were determined, to examine relationships with fetal weight trajectory. iii) 
‘Omic data from a subset of children were used to determine differentially expressed 
genes and metabolites between quartiles of weight trajectory. Pathways analysis was 
undertaken. K-means clustering was also adopted, as an unsupervised method. Rank 
regression with fetal, and then childhood weight trajectory as the dependent variable, 
enabled construction of hypernetworks. Selecting highly correlated genes within the 
hypernetworks, RFC models were created to predict the highest quartile of SBP. 
Results. i) Significant correlations linking antenatal, fetal and childhood 
measurements were established. A triad of correlations was found between fetal, 
childhood weight trajectory and systolic blood pressure (SBP). Regression analyses 
supported the role of childhood weight trajectory as a potential mediator. RFC 
demonstrated that antenatal markers could predict highest quartile of childhood 
indicators. ii) Negative correlations were established between fetal weight trajectory 
and birth to six-month adiposity trajectories, but not with infant weight trajectory. iii) 
Ornithine was differentially expressed across all supervised analyses, implicating the 
urea cycle. Elucidation of ARG1, encoding arginase (which catalyses the hydrolysis of 
arginine to ornithine) supported this. Unsupervised analysis revealed two participant 
clusters exhibiting SBP differences. We discovered that this separation can be largely 
accounted for by expression of 47 birthweight-related genes from a GWAS meta-
analysis. Hypernetworks including significant genes from rank regression, allowed 
identification of sets of functionally related genes. Both predicted the highest quartile 
of SBP in RFC models. Conclusions.  Fetal weight trajectory can be used to identify 
fetuses who may develop higher SBP. This could be driven through childhood weight 
trajectory. Infant adiposity trajectories may aid early-life detection of at-risk individuals. 
Longer-term follow up of both cohorts is required to establish impact on disease risk. 
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Chapter 1. Introduction 

1.1 The national and global burden of type 2 diabetes and cardiovascular 

disease 

 

Cardiovascular disease (CVD), a group of disorders of the heart and blood vessels, is 

the leading cause of deaths globally. In 2016, deaths from CVD were estimated at 

17.9 million [1]. In the United Kingdom, over 7 million people are affected by CVD, 

resulting in  ̴160,000 deaths per year [2]. Table 1.1 outlines the World Health 

Organization (WHO) definitions for CVD [1]. 

 

Table 1. 1 World Health Organization definitions for cardiovascular events 

Cardiovascular event Definition 
Coronary heart disease/ Coronary artery 

disease 
Disease of the blood vessels supplying the 

heart muscle, including angina, myocardial 

infarction and resulting heart failure. 

Cerebrovascular disease Disease of the blood vessels supplying the 
brain 

Peripheral arterial disease Disease of blood vessels supplying the arms 
and legs 

Deep vein thrombosis and pulmonary 
embolism 

Blood clots in the leg veins, which can 
dislodge and move to the heart and lungs 

Table 1.1. Definitions of the different types of cardiovascular event, which collectively account for 
approximately 160, 000 deaths per year in the United Kingdom. 
 

Type two diabetes (T2D), a chronic condition characterised by insulin resistance and 

hyperglycaemia [3] and CVD may co-exist. Data from the National Diabetes Audit 

(2011-12) show people with diabetes are more likely to experience angina (75.7% 

greater risk), myocardial infarction (55.1%), cardiac failure (73%) and stroke (34.1%) 

[4]. Adults with T2D, whilst comprising 5% of the general population, account for up to 

70% of the amputation and renal replacement therapy (dialysis or transplantation) 

admissions [5]. Consequently, the cost of T2D to the UK National Health Service is as 

high as £8.8 billion, with 80% spent on complications [4]. The current coronavirus 

disease 2019 (COVID-19) pandemic has further highlighted the susceptibility of 

individuals with T2D and CVD to severe illnesses. Factors that increase morbidity and 

mortality in patients with COVID-19 include risk factors for T2D and CVD; severe 
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obesity and hypertension, as well as the existence of these co-morbidities themselves 

[6]. 

Therefore, focusing on early life prevention of T2D and CVD (which will henceforth be 

referred to as “cardio-metabolic disease”) could have a significant impact on both the 

individual and society.  

1.2 The Developmental Origins of Health and Disease 

The fetal origins hypothesis was first proposed by Barker et al. [7]. Epidemiological 

observations showed low birthweight (LBW) was linearly associated with later-life 

disease including higher blood pressure (BP) [8] and deaths from coronary heart 

disease [9]. The suggested explanation was that fetal undernutrition leads to metabolic 

adaptations that persist throughout life. In the presence of plentiful resources 

postnatally, these adaptations then confer a disadvantage to the exposed individual. 

Whilst the original focus was on long-term consequences of LBW, recent work covers 

a broader aim of understanding programming of health and disease. The 

Developmental Origins of Health and Disease (DOHaD) has developed as a 

continually evolving field, encompassing epigenetic, nutritional, hormonal and 

metabolic factors. A number of animal model have demonstrated proof of principle. 

Nutrient and protein restriction [10, 11], and uterine ligation in both rats [12] and guinea 

pigs [13] not only restricted fetal growth but resulted in raised offspring BP. In humans, 

maternal pollution exposure in relation to offspring asthma and allergies, maternal 

obesogenic diet impacting on placental glucose and amino acid transfer potentially 

programming offspring disease and chromatin remodelling and β-cell gene 

transcription suppression in utero, possibly linked to offspring T2D have been studied.  

As an alternative notion to DOHaD, Hattersley et al. [14] suggested that an insulin-

resistant phenotype in the fetus is genetically pre-determined. This could account for 

both impairment of insulin-mediated fetal growth, and insulin resistance during 

childhood and adulthood. Furthermore, they postulated that in these individuals, 

insulin resistance plays a key role in abnormal vascular development in the fetus [14]. 

Insulin is one of many compounds that causes vasodilation through a mechanism 

mediated by nitric oxide (NO); the resultant increase in blood flow and endothelial 

shear rate stimulates angiogenesis [15]. In the absence of these stimuli, the insulin-
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resistant neonate will be born with an impaired capillary circulation, which could lead 

to susceptibility to systemic vascular disease [14]. Additionally, some studies have 

focused on vascular development abnormalities in major arteries, using arterial wall 

stiffness and compliance as measures of impaired circulation [16, 17]. The resultant 

microvascular damage to distal vasculature such as the glomerulus from high pulsatile 

stress is recognised [18]. This may provide another explanation for impaired capillary 

circulation.  

 

Gluckman et al. [19] have also recognised the limitations of DoHaD hypothesis, 

emphasising that it does not explain how intrauterine events can result in long term 

physiological adaptations without affecting birthweight, nor can it explain the 

relationship between birthweight and disease risk that occurs at the higher end of the 

birthweight range. As an example, individuals born to women who underwent severe 

calorie restriction in early gestation during the Dutch Hunger Winter had greater rates 

of obesity in later life [20]. However, these offspring did not have low birthweights 

(mean birthweight 3390g (standard deviation (SD) 602), 3312 (621) in controls not 

exposed to famine)) [21]. A limitation of analyses from the Dutch Hunger Winter are 

difficulties in determining the exact timing of famine exposure and overlap between 

those exposed during the first, second and third trimesters [22]. Nevertheless, this 

demonstrates the potential role of prenatal factors in determining later life phenotype, 

irrespective of birthweight. Whilst Gluckman et al. recognise the impact of 

developmental plasticity and an inappropriate predictive adaptive response on later 

life disease risk, the role of genetic factors in determining the extent of this is also 

acknowledged [23]. Therefore, an individual’s risk of later life cardio-metabolic ill-

health may be the result of genetic factors, combined with exposures during fetal life. 

 

Observational research can determine correlations between exposures and 

outcomes, but drawing causal inference is more challenging. Mendelian 

randomisation is a method that is becoming increasingly popular to define causal links 

[24]. It can be particularly useful in cases where a randomised controlled trial is not 

possible or ethical. In this approach, genetic variants that are known to cause a 

particular disease or outcome are used as instrumental variables. Therefore, the 

method may be considered as a natural randomised controlled trial. It overcomes the 

problem of confounding and also of reverse causality. As an example, a correlation 
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between alcohol and risk of hospitalisation may exist, but people who drink heavily 

may be more likely to smoke, highlighting a potential confounder. A randomised 

controlled trial comparing people who drink heavily versus those who do not would be 

unethical. Therefore, genetic variants linked with how much alcohol an individual is 

likely to drink may be used to design a Mendelian randomisation study. There are 

several key assumptions which need to be made and considered plausible before 

conducting such analyses [24, 25]. Firstly, the instrumental variable must be 

associated with the exposure (e.g. alcohol intake). Secondly, the instrumental variable 

must not influence the outcome (e.g. hospitalisation) in any way other than through 

the exposure. Lastly, it must not be associated with any confounders. 

 

Warrington et al. [26] used a mendelian randomisation approach to investigate 

whether an adverse intrauterine environment is causally related to later cardio-

metabolic outcomes in offspring. Maternal and fetal genetic variants were separated 

to examine whether they had a causal effect on birthweight and on later-life cardio-

metabolic outcomes. Single nucleotide polymorphisms (SNPs) known to be 

associated with maternal glycaemic status, height and BP (all factors which affect 

offspring birthweight through their effect on the intrauterine environment) were 

selected. An association between these SNPs and birthweight, after adjusting for 

offspring genotype, would have been considered a causal relationship.  

 

When assessing maternal BP, a BP higher by 1 SD (10mmHg) was causally linked to 

birthweight lower by 0.15 SD (95%CI: -0.19, -0.11) [26]. Furthermore, a causal link 

between maternal SNPs associated with higher BP and lower offspring birthweight 

was established. However, there was no link between maternal SNPs linked with lower 

birthweight (representing variants associated with adverse intrauterine environment) 

and higher offspring BP. The negative association between lower birthweight and 

higher later-life SBP was driven by a combination of the following. Firstly, higher 

maternal SBP was causally linked to lower birthweight. Secondly, inheritance of 

maternal SBP-raising genes to offspring resulted in higher offspring SBP. Together, 

these findings support a genetic basis for the link between lower birthweight and higher 

SBP, thereby challenging the Barker hypothesis. 
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“Epigenetic” means “in addition to changes in genetic sequence.” Epigenetic 

processes are mitotically heritable deoxyribonucleic acid (DNA) changes that affect 

DNA function without affecting its sequence. The study of these processes has been 

evolving rapidly over the last decade. As shown in Figure 1.1, examples include 

histone modification, DNA methylation and micro-ribonucleic acid (RNA) influences 

[27]. These may be linked with both activation and repression of gene transcription, 

and could therefore play an important role in associating prenatal factors to persistent 

changes in an individual’s phenotype [28].  

 

Figure 1. 1 Genetic and epigenetic changes affecting phenotype  

 

 
Figure 1.1. This figure illustrates the process by which both genetic and epigenetic changes can result 
in changes to an individual’s phenotype. DNA= deoxyribonucleic acid, RNA= ribonucleic acid. 
 

DNA methylation involves the binding of a methyl group to a DNA base. This can occur 

in a region where a cytosine nucleotide is located next to a guanine nucleotide in the 

DNA molecule, known as a CpG site. This can result in the inhibition of transcription 

factor binding, thereby inhibiting gene expression. Lin et al. [29] performed an interim 

analysis on an ongoing mother-offspring cohort study, the Growing Up in Singapore 

Towards Healthy Outcomes (GUSTO) study, to understand effects of maternal 

exposures, neonatal methylome and genotype on birth and early childhood weight and 

adiposity. Of seven gene loci (ANK3, CDKN2B, CACNA1G, IGDCC4, P4HA3, ZNF423 

and MIRLET7BHG) where eight neonatal methylation markers were significantly 
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associated with birthweight, three (in CACNA1G, IGDCC4, MIRLET7BHG) were also 

associated with adverse environment features. These were maternal pre-pregnancy 

smoking, body mass index (BMI), fasting serum glucose and n-6 polyunsaturated fatty 

acid concentrations. As an example, a positive association between maternal pre-

pregnancy smoking and methylation levels at cg25685359 (MIRLET7BHG) (p= 

2.3x10-4) was found. Furthermore, links were established between neonatal 

methylation levels at six of the loci with offspring size and adiposity at 48 months 

(p<0.05 after correction for multiple testing). Therefore, this study highlighted that 

methylation levels may serve as a useful marker to study developmental pathways, 

linking potentially adverse features of the prenatal environment and postnatal 

adiposity.  

 

The RXRA gene promoter has also been implicated; work by Hansen and colleagues 

[30] has shown that methylation changes in this promoter may account for 25% of the 

variation in fat mass in children aged six to nine. In addition, ANRIL (non-coding RNA) 

promoter methylation has also been identified as a potential perinatal marker for later 

adiposity [31], further demonstrating the links between early epigenetic changes and 

later life health. In summary, epigenetic findings may support the DOHaD hypothesis, 

with fetal adaptations occurring during developmental programming and epigenetic 

markers representing these changes. Whilst these do not affect the sequence of a 

gene, it is possible that an individual’s later-life risk is predetermined by a combination 

of genetics and epigenetics. 

 

1.3 Definitions of fetal growth restriction and consequences of an 

adverse intrauterine environment 

 
Fetal growth restriction (FGR) is the failure of the fetus to meet its growth potential. 

FGR will not necessarily result in small for gestational age (SGA) at birth, since the 

definition of SGA is based on birthweight alone (see Section 1.5.1). For example, a 

fetus previously growing along the 70th centile who has experienced growth restriction 

resulting in a birthweight on 9th centile would not be classified as SGA at birth by 

Paediatricians.  
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In utero the diagnosis of early (<32 weeks) or late FGR (≥32 weeks) can be inferred 

by using the Delphi consensus definitions [32]. For early FGR, these include three 

solitary parameters of abdominal circumference (AC) <3rd centile, estimated fetal 

weight (EFW) <3rd centile and absent umbilical artery Doppler (UAD) end diastolic 

flow, and also contributory parameters of AC or EFW <10th centile alongside uterine 

artery Doppler (UtAD) or UAD pulsatility index (PI)>95th centile. For late FGR, solitary 

parameters are the same but contributory parameters differ from those used to define 

early FGR. They are AC or EFW <10th centile, AC or EFW crossing centiles by more 

than two quartiles on customised growth charts and cerebroplacental ratio <5th centile 

or umbilical artery PI> 95th centile. Through their association with risk of growth 

restriction, Doppler waveforms suggestive of an abnormal resistance pattern on UAD 

[33], UtAD [34] and middle cerebral artery [35] could provide clear, quantifiable 

measures indicating an unfavourable intrauterine environment.  

 

Placental dysfunction, the aetiology of which is often unknown, is the primary cause 

for FGR [36]. Impedance to arterial flow, an indicator of placental dysfunction is 

assessed by the Doppler waveform and usually quantified by PI and resistance index 

(RI), which are highly related. PI, a measure of variability of velocity, is calculated as 

the difference between the peak systolic and minimum diastolic velocities, divided by 

the mean velocity during the cardiac cycle. RI is calculated as the difference between 

the peak systolic and minimum diastolic velocities, divided by the peak systolic 

velocity. Traditionally blood flow through an artery is described as high resistance 

when the PI or RI is >95
th centile for gestation [37]. 

As well as consensus guidelines which have limited use in improving outcomes 

through intervention, guidelines for management provide key criteria to consider for 

diagnosing FGR. The Saving Babies’ Lives Care Bundle (version 2) [38] emphasises 

that staff should recognise that SGA and FGR are distinct entities. Definitions of FGR 

(where previous FGR is not a factor) are EFW or AC <3rd centile, or EFW or AC <10th 

with evidence of placental dysfunction. The latter can be inferred from abnormal UtAD 

PI (>95th centile) between 20 and 24 weeks or an abnormal umbilical artery Doppler.  

An important additional criterion for FGR diagnosis after 34 weeks gestation is 

suboptimal fetal growth, defined as increase in <280g over 2 weeks [39, 40]. This 
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highlights the importance of monitoring fetal growth trajectory through serial 

ultrasound scans.  

A number of large cohort studies have attempted to follow subjects from fetus 

onwards, examining the early origins of health and disease. These are summarised in 

Table 1.2. 

Table 1. 2 Large cohort studies following individuals from fetus onwards 

Table 1.2. Characteristics of large cohort studies that have followed subjects from fetus onwards to 
study the origins of cardio-metabolic disease and/or growth. CVD= cardiovascular disease, SGA= 
small for gestational age. 
 

1.3.1 Areas where knowledge is deficient 

Based on the evidence available, it is reasonable to postulate that maternal and 

intrauterine risk factors for FGR could potentially play a role in later cardio-metabolic 

Study name Location Cohort Size Main aim Follow up age 
Growing Up in 

Singapore 
Towards 
Healthy 

Outcomes 
(GUSTO) [41] 

Singapore 1,247 To study the role of 
environmental 

factors in pathways 
to metabolic 
adversities 

Mothers in the first 
trimester, throughout 
pregnancy until child 

reached 3 years of age 

Generation R 
Study [42] 

 

Rotterdam 9,778 mothers 
enrolled 

1,232 followed in 
childhood 

To identify early 
genetic and 

environmental 
causal pathways 

leading to abnormal 
growth and 

development 

Early pregnancy (<18 
weeks) to age 13-16 

years 

The Helsinki 
Birth Cohort 
Study [43] 

Helsinki, 
Finland 

15,846 
(epidemiological) 

2,500 for the 
clinical study 

Early origins of 
health and disease. 

CVD and its risk 
factors 

Birth onwards, with 
prenatal growth data 

available 

The Avon 
Longitudinal 

Study of 
Parents and 
their Children 

(ALSPAC)  
[44] 

Avon, 
England 

14,541 Data has been used 
for multiple studies. 
e.g. Wu YY et al. 

[45], to establish the 
role of exclusive 
breastfeeding on 

adiposity trajectories 
 

Early pregnancy 
onwards. “Children of 

the children of the 90s” 
is now studying three 

generations of 
individuals involved 
with this study [46] 

The Cambridge 
Baby Growth 

Study [47] 
 

Cambridge, 
England 

1,658 Data used in 
multiple studies e.g. 
Cole TJ et al. [48] to 
determine whether 

weight centile 
crossing tracks over 

time 

Early pregnancy to age 
2 years, with plans to 
follow up to age 5-10 

years 
Cambridge Baby 

Growth Study II will be 
recruiting SGA babies 
and infant of diabetic 

mothers 
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risk development in the offspring. This could be modulated through fetal, neonatal and 

child growth.  

 

The Generation R Study [49] is a large, prospective cohort study that follows subjects 

from fetal life into adulthood. Detailed data are collected from pregnancy 

questionnaires, antenatal ultrasound measurements and, for a randomly selected 

subgroup, at multiple visits during childhood. Genetic, epigenetic and microbiome data 

are also available. However, Generation R has not specifically recruited pregnancies 

at increased risk of FGR. Therefore, the detail and spread of antenatal ultrasound data 

available, that could indicate an adverse intrauterine environment may be limited. 

 

The Helsinki Study of Very Low Birthweight Adults (HSVLBA) [50] examines the 

outcomes of individuals born <1500g. Therefore, using main outcome measures of 

carotid intima media thickness (cIMT), carotid artery stiffness and brachial artery flow 

mediated dilatation, comparisons were made between individuals born with very low 

birthweight (VLBW, <1500g), who had an earlier gestational age (mean (SD) 28.7 

weeks (1.9)) than those with birthweight ≥1500g (40.1(1.2)). One major limitation of 

this study is the challenge in discriminating between the effects of FGR and 

prematurity itself, which is independently linked with later-life adversities, such as pre-

hypertension [51]. A study selecting only those individuals born at term would have 

value in limiting the effect of prematurity, a potential confounder. Furthermore, 

standardisation of variables to incorporate gestational age at birth would need to be 

performed, wherever possible. 

 

Overall, from these large cohort studies, there is paucity of data on the links between 

measures of cardio-metabolic health in childhood or adulthood with specific prenatal 

factors representative of the in utero environment. To date, there are no studies that 

have specifically recruited pregnancies particularly at risk of FGR, that result in term 

livebirths, and where detailed ultrasound data are available (to describe in utero 

growth, placental size and function), as well as childhood growth and/or cardio-

metabolic risk measurements. 
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1.4 The first 1000 days of life: antenatal and postnatal determinants of 

fetal and infant growth 

The first 1000 days encompasses the time from conception to a child’s second 

birthday [52]. Several factors within this period, or earlier during the periconceptional 

period (starting with gamete formation), impact on both pre- and postnatal growth.  

1.4.1 Antenatal  

Antenatal factors influencing growth can be categorised as pre-placental, intra-

placental and post-placental.  

1.4.1.1 Pre-placental 
Maternal body mass index (BMI) is a major determinant of birthweight. In a meta-

analysis, low maternal BMI was associated with higher risk of offspring LBW (<2500g, 

OR 1.66, 95% CI 1.50 to 1.84) [53]. At the other extreme, maternal obesity is linked to 

higher birthweight and to a higher body fat at birth [54]. In both scenarios, separating 

the impact of genetic (and epigenetic) influences on maternal and/or offspring weight 

and that of maternal nutrition is challenging. To explore this, some studies have 

examined maternal gestational weight gain (GWG). An Italian study [55], (using the 

Institute of Medicine guidelines for GWG) [56] found that in the presence of adequate 

GWG (12.8±3.9kg for pre-pregnancy BMI <18.5, 12.3 ± 6.7 for BMI 18.5-25), pre-

pregnancy underweight is not linked to LBW (3239.2g ± 423.5 for pre-pregnancy BMI 

<18.5 versus 3264.0 ± 421.9 for BMI 18.5-25). This suggests that GWG is a greater 

influencer of offspring birthweight than pre-pregnancy weight, and that low maternal 

BMI is a potentially modifiable risk factor for LBW. Nevertheless, excessive GWG in 

normal BMI mothers has been linked to heavier birthweight and rapid postnatal one-

year infant weight gain (IWG) [57], so a cautious approach to weight gain is necessary. 

In contrast, obese mothers who lost weight in pregnancy had a two-fold greater risk of 

LBW [58] and a 63g lower mean birthweight in offspring. Together, these findings 

suggest that gestational weight changes play an important role in determining 

offspring birthweight. However, existing literature does not examine links between 

GWG and fetal growth during the prenatal period. 

In terms of diet, energy intake is related to GWG, but the role of any specific 

macronutrient is unclear [59]. Relevant nutritional factors include iron, folic acid, 
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calcium and iodine [60]. Health programmes in developing countries [60] aimed at 

improving the nutrition of women and children encourage the daily intake of these 

nutrients throughout pregnancy. However, results of studies examining their effect on 

birthweight are inconclusive [61, 62]. There is evidence that dietary fish or omega-3 

supplement intake increases blood adiponectin levels by up to 60% [63] and cord 

serum adiponectin levels have been positively associated with birthweight, birth-length 

and BMI [64]. This could suggest a role for dietary alterations or supplementation in 

those pregnancies found to be at risk of LBW. Understanding effects of maternal 

nutrition during specific trimesters may be helpful in clinical practice. Outcome 

measures of studies to date have included SGA (birthweight <10th centile) and LBW, 

but not fetal growth. 

1.4.1.2 Intra-placental 
The principal determinant of fetal growth is the placenta [65]. Placental functions 

include gas exchange, metabolic transfer, hormone secretion and fetal protection from 

immunologic attack, which are vital for fetal growth and development [66]. Therefore, 

conditions that lead to development of a small, infarcted, poorly vascularised, inflamed 

or stressed placenta carry an increased risk of FGR [65]. Delivery of oxygen and 

nutrients from mother to fetus is vital. Spiral arteries supply blood to uterine decidua. 

These dilate in pregnancy, through loss of the elastic lamina and smooth muscle from 

the vessel wall, being replaced by extravillous trophoblast cells [67]. This converts the 

previously high-pressure, pulsatile uterine circulation into a low-pressure circulation 

with lessening of shear-stress. If this process of remodelling fails then placental 

ischaemia occurs, which leads to release of toxic substances by the placenta, and is 

associated with an imbalance of pro-angiogenic and anti-angiogenic factors [68]. The 

result is widespread endothelial damage [69]. 

 

Defective spiral artery remodelling is implicated as a causal mechanism for FGR and 

pre-eclampsia (PET). PET is a pregnancy-specific condition defined as sustained BP 

>140/90 with significant proteinuria (protein/creatinine ratio ≥30 or 24h urine protein 

collection >300mg) [70]. Its worldwide prevalence is 5-8% [69]. Elevation in placental 

pro- inflammatory cytokines and chemokines e.g. tumour necrosis factor, interleukin 

6, and monocyte chemoattractant protein-1, leads to oxidative and nitrosative stress 

and subsequent decreased NO bioavailability [71]. Early-onset PET is often followed  
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by FGR; both PET and FGR are compounded by the effects of premature delivery 

(often iatrogenic). 

 

Placental inflammatory response (PIR) also plays a role, and PIR secondary to 

histological chorioamnionitis is related to FGR in term and preterm infants [72]. In a 

study of 697 preterm births [73], PIR was classified into maternal inflammatory 

response, comprising births with subchorionitis, chorioamnionitis, deciduitis, or free 

membranitis, and fetal inflammatory response with placental evidence of inflammation 

extending to the umbilical cord or chorionic plate. In appropriate for gestational age 

(AGA) infants (birthweight >10th centile), PIR was associated with poorer postnatal 

growth by day 21 (PIR mean IWG 19.1% versus 21.2%, p= 0.0003) and day 28 (32.8% 

versus 36.2%, p= 0.0007). 

 

FGR has also been linked to increased oxidative stress [74]. Low levels of oxygen 

within the placenta, resulting from placental insufficiency, may lead to generation of 

reactive oxygen species [75]. These act as secondary messengers in numerous 

cellular signalling cascades which, at high levels, can lead to oxidative damage of 

biological molecules. Mitochondrial functional adaptations may enable the fetus to 

survive this short-term threat to energy availability [76]. However, this has profound, 

potentially long-lasting effects on certain cells, leading to endothelial cell dysfunction 

and both proliferation and apoptosis of vascular smooth muscle [77].  

 

It is well established that maternal smoking is a contributor to poor fetal growth [78], 

and this may be mediated through oxidative stress [79]. One observational study (N 

>35,000) showed neonates born to non- smokers and to ex-smokers were heavier by 

 ̴ 260g (p<0.001), and  ̴ 210g (p<0.001) respectively, compared with those who had 

smoked throughout pregnancy [80]. In smokers in the general population, higher 

placental concentrations of 4-hydroxy-2-nonenal, a marker for oxidative lipid damage 

(immunohistochemistry score grade (SD) 3.4 (1.2) in smokers versus 1.1 (0.7) in non-

smokers, p= 0.0001) have been found [81, 82]. Additionally, placental concentrations 

of 8-hydroxydeoxyguanisine, a marker of DNA damage (4.9 (1.4) versus 3.1 (0.7), p= 

0.0038) were increased [81]. 
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1.4.1.3 Post-placental 
A genome wide association study (GWAS) meta-analysis [83] including >150,000 

individuals identified 60 loci linking fetal genotype to birthweight (p<5×10-8). Inverse 

genetic correlations were also demonstrated between birthweight and T2D risk (R = -

0.27, p= 1.1×10-6), systolic BP (SBP) (R = -0.22, p= 5.5×10-13) and coronary artery 

disease (CAD) (R = -0.30, p= 6.5×10-9), providing evidence of genetic and epigenetic 

contributions to the relationship between birthweight and cardio-metabolic risk. 

However, the authors suggest that this is not incompatible with the fetal origins 

hypothesis; the relationship between the maternal genome and the offspring’s risk of 

cardio-metabolic disease could be mediated by changes in the intrauterine 

environment.  

 

Epigenome-wide association studies in birth cohorts are ongoing; the Pregnancy and 

Childhood Epigenetics Consortium [84] aims to analyse differences in DNA 

methylation in relation to pregnancy exposures and health outcomes. Sample size and 

power to detect associations will be maximised, and risk of false positive minimised 

by including multiple cohort studies in a meta-analysis. However, associations do not 

imply causality and a mendelian randomisation approach to analyse these data could 

enhance the analyses [26, 85]. Furthermore, linking the epigenome and transcriptome 

may represent an alternative approach, and forms part of ongoing work by the 

Genotype Tissue Expression project [86] to support causality. 

 

In summary, pre-, intra- and post- placental factors may all play a role in fetal growth. 

It is therefore important to consider these collectively when examining links between 

fetal growth restriction and cardio-metabolic risk development. 

1.4.2 Postnatal 

In the first postnatal year, growth is primarily nutrition driven. Weight and adiposity 

gain do not follow linear patterns and adiposity peak typically occurs at nine months 

postnatal age. Important environmental factors related to infant nutrition, which may 

differ significantly between individuals, are breastfeeding duration and age at weaning. 

Timing and tempo of growth in the first year may be affected by these factors [87].  
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Additional determinants of growth in the first 1000 days include endogenous growth 

hormone and environmental influencers of diet (after weaning) and activity levels. This 

section will focus on the first postnatal year. 

1.4.2.1 Breastfeeding 
The WHO recommends early initiation of exclusive (to six months of age), and 

continued (to age two years) breastfeeding [60]. Protection against infection, lower 

mortality from necrotising enterocolitis (NEC) lower risk of sudden infant death 

syndrome and increased intelligence are all recognised benefits [88]. The Lancet 

breastfeeding series group [89], using data from 28 systematic reviews and meta-

analyses, showed that longer breastfeeding duration was associated with 26% 

reduction in odds of offspring overweight or obesity. Further analyses, based on 23 

studies (N>1,500), controlling for confounders of socioeconomic status, maternal BMI 

and perinatal morbidity, showed breastfeeding led to a pooled reduction in prevalence 

of infant overweight or obesity of 13%. One study (N= 81) [90] assessed the effect of 

breastfeeding and postnatal nutrition on cardiac remodelling in SGA (defined as 

birthweight <10th centile), with outcome measures of left ventricular sphericity index 

(LVSI), cIMT and BP. Comparison of SGA (N= 81) and AGA (N= 121) cohorts showed 

significant differences in LVSI (mean 1.36 (SD 0.15) in SGA versus 1.81 (0.21) in 

AGA), cIMT (0.39 (0.03) versus 0.37 (0.03)), SBP (106.1mmHg (7.5) versus 102.2 

(9.4)) and diastolic blood pressure (DBP) (70.3 mmHg (6.5) versus 64.2(9.5), all 

p<0.01). A multivariate regression model was fitted with LVSI and cIMT as outcome 

variables.  Selection of independent variables relied on a p<0.2 in univariate analyses. 

The main finding of this study was that SGA was the strongest predictor of cardiac 

remodelling in childhood. However, the regression models for both LVSI and cIMT 

include birthweight centile as a continuous variable which is significant (p<0.001). This 

would not translate directly into SGA being the strongest predictor, where SGA and 

AGA are dichotomous. Nevertheless, this work demonstrates that methodical 

selection of variables can help determine indicators of cardiac remodelling, despite a 

relatively small sample size. Breastfeeding greater than six months, positively 

associated with LVSI (r=0.0982, 95% CI 0.0133 to 0.0183; p= 0.02) and healthy fat 

dietary intake negatively associated with cIMT (R=−0.0128, 95% CI −0.02473 to 

−0.0011; p= 0.03). These univariate associations may suggest that the relationship 

between lower birthweight centile and unfavourable cardiovascular measures are 
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attenuated through breastfeeding and healthy dietary fat intake. Maternal diet may 

play a role by potentially altering the composition of breastmilk. For example, studies 

support a relationship between maternal fish intake and docosahexaenoic acid in 

breastmilk [91, 92]. 

A study in India [93] assessed factors affecting infant weight gain in the first six 

months, including exclusive breastfeeding (EBF) versus partial breastfeeding (PBF), 

and maternal consumption of traditional food supplements (TFS). Highest weight gain 

was amongst the TFS + PBF group (3.8kg (0.3)), compared with the TFS + EBF (2.9 

(0.3), p= 0.043) and EBF only (2.7 (0.3), p= 0.017). This highlighted a significant 

contribution of feeding type to infant weight gain, not maternal diet. Additionally, growth 

curve modelling based on data the Infant Feeding Practices Study (N= 1,291) 

suggested high intensity bottle feeding, particularly in infants less than six months of 

age, was related to greater weight gain (p<0.001) [94]. “High-intensity” was defined as 

either exclusive bottle feeding from birth, or <30% bottle feeds at birth increasing to 

100% at 6 months. Of note, mothers of infants in this group were younger, had higher 

pre-pregnancy BMIs, lower self-reported education levels and a greater proportion 

were primiparous. 

To further explore the role of breastmilk in infancy weight, Prentice et al. [95] examined 

the composition of hindmilk from 614 mothers, 77% of which were exclusively 

breastfeeding at eight weeks. Hindmilk of exclusively breastfeeding mothers had more 

calories (median 62.6 versus 58.7 kcal/100ml, p<0.05) and fat (37.6 versus 35%, 

p<0.05), but lower protein (7.3 versus 8.3%, p<0.05) and carbohydrate (54.7 versus 

57.5%, p<0.05). Furthermore, fat percentage was negatively, and carbohydrate 

percentage positively, associated with change in (Δ) weight standard deviation score 

(SDS) (fat p= 0.007, carbohydrate p= 0.008), skinfold thickness SDS (p= 0.007 and 

p= 0.008 respectively) and ΔBMI SDS at three to 12 months (p= 0.01 and p= 0.01 

respectively). These findings support that breastfeeding is linked with a slower 

accumulation of weight, BMI and adiposity during the first postnatal year. Another 

small (N= 25) study of breastmilk fructose found an association with infant body 

composition; for each 1μg/mL higher fructose, body weight was higher by 257g (p= 

0.02), lean mass by 170g (p= 0.01), fat mass by 131g (p= 0.05), and bone mineral 

content by 5g (p= 0.03) at age six months [96]. Potential confounders that were 
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controlled for in the analyses were sex, baseline weight and maternal pre-pregnancy 

BMI. “Baseline” weight correlated with other measures at one month including length 

(R= 0.71) and adiposity (R= 0.68) as measured by dual energy x-ray absorptiometry 

(DEXA), although the appropriateness of this given the strength of the correlation is 

questionable.  

1.4.2.2 Timing of weaning 
In line with current WHO guidance, many studies have suggested a negative 

relationship between age at introduction of solids and adiposity gain [97-99]. However, 

the Euro-growth study and others provide contradictory evidence [100-102]. The Euro-

growth Study [103] was a longitudinal, multi-centre observational study of 2,245 

children from 22 sites, with the aim of establishing Europe-specific growth reference 

data. Using data from this study, 319 infants who were exclusively breastfed for four 

months (based on WHO recommendations at the time), 185 who were breastfed but 

received solids before four months and a control group who met neither of these 

criteria (N= 1509) were examined. Exclusively breastfed infants were heavier and 

longer than the control group for the first two to three months. However, from three 

months onwards, they were lighter and shorter and remained so at age 24 months (all 

p<0.05). In multiple regression analysis, where ages at breastfeeding cessation and 

weaning were independent variables, longer breastfeeding duration was a significant 

predictor of lower weight gain. Additionally, late introduction of solids was a predictor 

of greater weight and BMI gain between one and 12 months, but not at 24 or 36 

months. This suggests a transient effect of the timing of introduction of solids on weight 

and adiposity gain.  

A Dutch longitudinal birth cohort study based on the Generation R study [104], found 

no difference in weight-for-length between 12-month-old infants who had been 

introduced to solids very early (<3 months), early (3-6 months) or timely (>6 months). 

Furthermore, the Cambridge Baby Growth Study [105] reported an inverse association 

of weaning age with weight as well as with length (p<0.01), but not with BMI. 

Interestingly, in both studies [104, 105], an inverse association was observed between 

weaning age and growth prior to weaning, suggesting possible reverse causality. This 

could highlight the need to consider parental overfeeding behaviours, particularly in 

LBW infants, where maternal overfeeding in infancy is a recognised occurrence [101].  



 42 

1.4.3 Summary of evidence  

There are vast amounts of data on factors influencing infantile/early childhood growth 

and some evidence for their effect on long-term cardio-metabolic health, such as 

obesity [106]. However, there is paucity of data bridging the antenatal and postnatal 

course; the first 1000 days. Whilst the Cambridge Baby Growth Study [105] attempts 

this, the lack of ethnic diversity and socioeconomic status is a significant limitation. 

Previous and ongoing cohort studies are particularly limited by the level of detail 

prospectively collected antenatally for studying the impact on postnatal growth and 

childhood indicators of later cardio-metabolic health [42]. Therefore, collection of 

comprehensive maternal and antenatal ultrasound data on factors related to fetal 

growth restriction risk in a highly characterised, multi-ethnic, socioeconomically 

diverse prospective cohort would be a significant advantage and allow links with 

postnatal and childhood data to be established.  

1.5 Clinical definitions for measures of fetal growth  

1.5.1 Small for gestational age  

In Paediatrics, SGA is commonly defined as birthweight less than two standard 

deviation scores below the population mean (<2SDS) for gestation at birth and sex 

[107]. Postnatally, close observation aims to prevent hypothermia, feeding difficulties, 

jaundice and hypoglycaemia. However, antenatally, the capacity to monitor the fetus 

is limited and the only intervention available is delivery, but the consequences of failing 

to act are severe, including stillbirth. Therefore, a less stringent cut-off of EFW <10th 

percentile is used in Obstetrics, giving a higher false positive, but lower false negative 

rate. Regardless of cut-off, SGA is a static (biometric) term rather than a biophysical 

term and may therefore introduce limitations to studies which use it as a surrogate 

marker of FGR. 

Review of the literature in this chapter focuses on postnatal health of the offspring, not 

stillbirth risk. Henceforth, SGA will refer to a birthweight <2SDS unless otherwise 

stated. 

1.5.2 Fetal growth restriction 

FGR has been previously defined (see section 1.3). Importantly, it is distinct from SGA. 
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1.5.3 Low birthweight 

Earlier literature uses the terminology, “LBW” which refers to birthweight less than 

2500g and has been applied to term and preterm, singleton and multiple births. 

However, unlike “SGA”, LBW does not incorporate standardisation for gestational age 

and sex and is therefore not the preferred term. Thus, studies using LBW as a 

surrogate for FGR are frequently confounded by these factors. 

1.5.4 Assessing the adequacy of fetal growth in utero  

In addition to the differences in centile cut offs (section 1.5.2), the likelihood of an FGR 

fetus not being defined as SGA at birth may be further compounded by controversies 

surrounding the use of customised versus standardised growth charts. Customised 

charts have become commonplace in Obstetrics, due to their reported increased 

sensitivity for detecting greater risk of perinatal death among fetuses smaller than the 

10th centile [108]. They are customised for maternal height, BMI, ethnicity, parity, sex 

and gestation. Conversely, standardised growth charts, which are widely used in 

Paediatrics, allow standardisation for age, sex and gestation at birth according to 

population data (Figure 1.2). WHO growth charts provide a single international 

standard representing optimal physiological growth for healthy, breastfed children. 

UK-WHO growth charts [109] have been adapted specifically for UK children.  

 

  



 44 

Figure 1. 2 The detection of small for gestational age at birth 

 
Figure 1.2. Detection of small for gestational age by Obstetricians is based on a birthweight below the 
10th centile (blue line on left), based on a growth chart which is customised for maternal height, body 
mass index, ethnicity, parity and also the sex and gestation of the fetus. Paediatricians use birthweight 
below 2nd centile for gestation and sex, based on standardised charts (blue line on right). In both cases 
a fetus can undergo growth restriction and not be classified as small for gestational age at birth (black 
lines in both). FGR= fetal growth restriction, SGA= small for gestational age. 
 

A systematic review and meta-analysis found that Obstetric-SGA, when defined as 

birthweight less than 10th centile on both customised and standardised charts, had 

higher odds ratios (OR) of fetal (OR 7.8, 95% confidence interval (CI) 4.2,12.3, OR 

3.3, 95% CI 1.9 to 5 respectively) neonatal (OR 3.5, 95% CI 1.1 to 8, OR 2.9, 95% CI 

1.2 to 4.5) and perinatal death (OR 5.8, 95% CI 3.8 to 7.8 , OR 4, 95% CI 2.8 to 5.1) 

and also Neonatal Intensive Care Unit admission (OR 3.6, 95% CI 2 to 5.5, OR 2.4, 

95% CI 1.7 to 3.2) than non-SGA (by either chart). This illustrated the usefulness of 

both charts, although overlapping CIs meant that conclusions could not be drawn 

about the superiority of one chart over the other [110]. 

 

In a study by Gardosi et al. [111], using data from the Swedish birth registry 1992-5, 

data from 1,799 pregnancies compared differences in perinatal mortality risk between 

Obstetric SGA (birthweight <10th centile) diagnosed using standardised centiles based 

on population data [112], and customised charts, with customised SGA reflecting 

perinatal mortality risk more closely than standardised SGA. Parity, maternal BMI, and 

maternal height (with normal BMI) were important factors associated with risk. In 

contrast, another study comparing use of customised versus non-customised growth 

charts for predicting perinatal mortality [112], including data from stillbirths (fetal death 

in utero >28 weeks) and early neonatal mortalities (death of a liveborn < day 7), 
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demonstrated that customised and non-customised charts performed similarly. 

Furthermore, in a Scottish cohort study [113] of 979,912 term singletons, partial 

customisation (for maternal height and parity alone) did not improve prediction for 

stillbirth or infant death. This could suggest a greater contribution to pathological fetal 

growth from maternal weight and ethnicity than height or parity.  

 

In 2008, the INTERGROWTH-21st study [114] was launched to develop international 

in utero growth and size standards for fetuses, including birthweight, length and head 

circumference (HC). It was a multicentre, multi-ethnic population-based project. Using 

data from 20,486 pregnancies, standardised centile curves were created. 

Standardised and observed centiles were almost identical between sites, with average 

differences in absolute values as small as 45.2 g in boys and 39.8 g in girls for 

birthweight, 0.22 cm and 0.18 cm for length and 0.13 cm and 0.12 cm for HC. Creating 

standardised centiles would eliminate the need for customised charts, which may be 

adjusting for pathology within populations. However, the charts have limited use in 

predicting adverse perinatal outcome as compared with customised charts. Also, a 

large proportion of fetuses (for example, those with South Asian mothers) would be 

classified as <10th centile, potentially resulting in unnecessary intervention. This 

demonstrates a major limitation in their use. A WHO study [115] that included 1,439 

women developed gestation-based reference curves for EFW. A greater diversity 

between countries was observed for the 90th centiles for EFW and AC, a major 

determinant of EFW, as compared with the 10th centile. Also, the WHO study included 

a comparison to the INTERGROWTH-21st Project, and the authors commented that 

the WHO 10th centile line was higher. This may be accounted for by potential 

differences in ethnic diversity between the two populations; the WHO study recruited 

from 10 and the INTERGROWTH-21st Project from 18 countries worldwide. 

 

Whilst there is controversial evidence for the preferential use of standardised or 

customised charts at birth, differences between the charts should be acknowledged 

and carefully considered when selecting which to use. This may be of particular 

relevance when examining changes in pre- and postnatal weight and growth 

trajectories. 
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1.6 Identification of pregnancies at increased risk of fetal growth 

restriction  

Some high risk pregnancies may be detectable from conception e.g. if there is a pre-

existing maternal medical condition such as hypertension or diabetes. For others, with 

insufficient resources to monitor all pregnancies with frequent ultrasound scans, 

evidence-based selection of those at risk of fetal compromise is essential. This 

highlights a clear clinical need for markers of adverse intrauterine environment. 

1.6.1 Pre-existing maternal disease, maternal infection and exposures 

Risk factors for FGR can be divided into fetal, maternal, environmental and placental 

[59]. Maternal factors include chronic disease, (e.g. diabetes [116], hypertension [117], 

renal disease, lung disease, chronic anaemia [118]), infections [119] (such as rubella, 

cytomegalovirus, toxoplasmosis and syphilis) and psychological stress [120], as well 

as smoking, alcohol and drug abuse. In addition, the contribution of fetal genetic 

factors, as well as recognition that features of the maternal environment which 

predispose to FGR often remain consistent between pregnancies [121] justifies the 

monitoring of pregnant women with a history of previous FGR pregnancy [122]. 

   

Several studies have examined modifiable maternal exposures in relation to FGR risk 

[123, 124]. In particular, maternal diet has been studied in relation to PET, a risk factor 

for FGR [29]. 

 

1.6.1.1 Maternal diet 

Evidence from the Dutch Hunger Winter showed a significantly lower SBP in pregnant 

women exposed to famine in the late pregnancy, compared with non-exposed controls 

[125]. In contrast, diets high in refined or processed foods have been associated with 

PET [126]. In the Norwegian Mother and Child Cohort Study, including >23,000 

nulliparous pregnant women who self-reported high intake of sweet drinks, salty 

snacks and processed meat (via a questionnaire) were at increased risk of pre-

eclampsia (OR for upper versus lower tertile 1.21, 95% CI 0.62 to 0.85). This study 

adjusted their findings for maternal pre-pregnancy BMI, height, smoking status, 

education level, pre-pregnancy hypertension, dietary supplementation and total 
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energy intake. Evidence from animal studies examining the effect of high fat/high 

sugar feeding (leading to a small morphologically compromised placenta [127], protein 

restriction [128], vitamin D deficiency [129] and calorie restriction) show that poor 

maternal diet may be a contributory factor to placental insufficiency. Proposed 

mechanisms include upregulated placental expression of metabolic signalling 

pathways such as phosphoinositol 3 kinase and mitogen-activated protein kinase 

(MAPK). However, lack of clarity in these mechanism in humans, plus the challenges 

in accurate measurement of fat and sugar intake would make this infeasible as a 

marker of increased FGR risk.    

 

In contrast, diets suggested as protective of PET are those rich in fruit, vegetables and 

vegetable oils [126] and those containing milk-based probiotic products [130]. In 

addition, evidence suggests a link between maternal vitamin D status and the SGA 

risk (relative risk (RR) for SGA (<10th centile) in vitamin D deficient mothers (RR 6.47 

95% CI 4.30 to 9.75 versus 2.01, 95% CI 1.28 to 3.16 in insufficient, p<0.001) [131]. 

Although incidence of vitamin D deficiency is common in pregnant women globally 

[132], this study was in a Chinese population and rates of vitamin D insufficiency and 

deficiency may not represent those in the UK. Furthermore, dietary nitrate, found in 

green leafy vegetables and beetroot, has been studied. Nitrate is reduced to nitrite in 

the oral cavity, which in the circulation, is reduced to NO by nitrite reductases. Findings 

in non-pregnant adults suggests dietary nitrite supplementation significantly lowers BP 

[133, 134], improves vascular function, and improves exercise performance by 

modulating vascular control and elevating skeletal muscle oxygen delivery [135]. 

Collectively these data have provided the premise for studies assessing therapeutic 

potential of dietary nitrite in pregnancy, to improve utero-placental vascular function 

and increase fetal growth [136]. As an example, the phosphodiesterase-5 inhibitor, 

sildenafil citrate has been investigated as a potential treatment for FGR, but concerns 

have been raised around its safety and efficacy [137]. As well as diet, other 

environmental factors have been examined. These include polycyclic aromatic 

hydrocarbons and solvent exposure [138, 139]. Overall, there is paucity of data 

relating these to markers of placental insufficiency.  
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1.6.2 Biochemical markers to identify pregnancies at increased risk of 

fetal growth restriction 

Several endocrine markers of feto-placental origin have been investigated for their 

value in FGR screening. These include human placental lactogen (hPL) [140], 

Placental Growth Factor (PlGF), soluble fms-like tyrosine kinase-1 (sFlt-1), placental 

protein-13 (PP-13) and a disintegrin and metalloprotease-12  (ADAM12) [141]. Heazell 

et al. [142] examined biochemical markers of placental function and concluded that 

there was insufficient evidence to support their use in identifying SGA.  

 

The vast body of evidence in relation to biochemical screening has arisen from the 

available data from trisomy screening [143]. To use these as markers to identify 

pregnancies at greater risk of FGR would not place additional burden on the National 

Health Service (NHS). Therefore, this section will focus on the evidence related to 

markers from pregnant women who accept this screening. 

 

Predominantly two forms of serum screening, which both involve placental hormone 

measurements, are currently provided within the NHS [144]; the “combined” screening 

test i.e. maternal serum Pregnancy Associated Plasma Protein-A (PAPP-A) and free 

β-human chorionic gonadotrophin (β-hCG) alongside sonographic nuchal 

translucency thickness, and the “quad” test (total serum hCG, α-fetoprotein (AFP), 

inhibin-A and unconjugated estriol). The screening tests (quad or combined) 

performed is largely determined by the gestation at booking. 

 

A systematic review and meta-analysis of 44 studies, including 169,637 pregnant 

women concluded that the five serum markers used in Trisomy 21 screening have low 

predictive accuracy for SGA when used alone [145]. Gagnon et al. [146] reported that 

low PAPP-A or raised AFP, β-hCG and inhibin in combination with abnormal uterine 

artery Doppler identifies pregnancies at greater risk of FGR. Therefore, when planning 

clinical management protocols, considering the evidence for routine measurement of 

the five hormones, PAPP-A, β-hCG, AFP, Inhibin and unconjugated estriol is relevant 

and will now be discussed. 
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1.6.2.1 Pregnancy-associated plasma protein A 
An inverse association between PAPP-A and increased FGR risk is well described 

[147]. The Saving Babies’ Lives Care Bundle (version 2) [38] states that low first 

trimester PAPP- A (<5th centile) should be considered a high-risk factor risk of FGR. 

In a large UK series of 49,801 women at 11+0 to 13+6 weeks [148], low PAPP-A was 

inversely associated with SGA risk. Furthermore, regression analyses indicated an 

independent contribution of PAPP-A in predicting SGA and this was true regardless of 

the definition for SGA (<3rd centile OR 0.43, 95% CI 0.37 to 0.49, <5th centile 0.49, 

0.44 to 0.54, <10th centile 0.54, 0.50 to 0.57, all p<0.0001). PAPP-A cleaves insulin-

like growth factor binding protein (IGFBP)-4 and -5, releasing insulin-like growth factor-

I (IGF-I) and thereby increasing the local availability of biologically active IGF-I. 

Therefore, it is feasible that lower levels of PAPP-A lead to less biologically active IGF-

I, which may account for reduced fetal growth [148]. In fact, treatment of PAPP-A2 

deficient children with recombinant human IGF-I have led to improvements in height 

velocity, bone mineral density and insulin resistance [149]. Lack of ethnic diversity 

within the study population, with 86% AGA and 74% SGA (<10th centile) babies born 

to Caucasian women, may limit interpretability when applying these findings to 

ethnically diverse populations. Nevertheless, the finding that PAPP-A is clinically 

useful measurement to predict FGR has been replicated in the First Trimester 

Maternal Serum Biochemistry and Ultrasound Fetal Nuchal Translucency Screening 

(BUN) Study (N= 8,514). In this study, PAPP-A <1st percentile (OR 5.4, 95% CI 2.8 to 

10.3), <5th percentile (OR 2.7, 95% CI 1.9 to 3.9) and free β-hCG <1st percentile (OR 

2.7, 95% CI 1.3 to 5.9) were associated with increased FGR risk. Positive predictive 

values were 24.1%, 14.1%, and 14.3%, respectively [150]. 
 
1.6.2.2 β-human chorionic gonadotrophin  
β-hCG is a hormone secreted by the placental syncitiotrophoblast. Low first trimester 

free β-hCG and high second trimester total hCG have been linked with increased risk 

of FGR. The First and Second Trimester Evaluation of Risk for Fetal Aneuploidy trial 

clearly demonstrated a link between low β-hCG and FGR (adjusted OR: 1.55, 95% CI 

1.33 to 1.80) [96]. These findings were replicated in a study of 10,085 pregnancies 

[151], where low free β-hCG levels were associated with higher FGR and LBW risk. 

Also, findings from the BUN study [150] (see section 1.6.2.1) indicated that free β-hCG 

<1st percentile (OR 2.7, 95% CI 1.3 to 5.9) was associated with increased SGA 
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(birthweight <10th percentile) risk (positive predictive value 14.3%). Data from the 

Generation R study [152] found that first trimester total hCG, measured in the 11th or 

12th week, is associated with LBW. However, this would require timely total hCG 

measurement in pregnant women in addition to standard screening, which may not be 

feasible for clinical practice. 

 

In relation to second trimester total hCG, a meta-analysis [145] of 22 studies found 

that hCG> 2.0 multiples of the median (MoM) was the best predictor of SGA 

(birthweight <5th centile). However, it is important to recognise that the relationship 

between total hCG and risk of adverse perinatal outcomes, including FGR is a complex 

one. A number of maternal and fetal characteristics that may be independently 

associated with perinatal outcomes are also linked with hCG levels [153]. These 

include maternal BMI, parity, ethnicity, smoking, fetal sex and placental weight.  

 
1.6.2.3 α-fetoprotein  
Evidence supports that AFP is a biochemical marker for FGR. One study indicated 

that maternal AFP> 95th centile (> 2 MoM) at 16-21 weeks was present in 33/389 

(8.5%) women who delivered LBW singletons (p<0.005) [98]. However, in a 

multicentre study in Scotland [154], the OR for delivering an SGA baby following a 

high AFP in the second trimester (15-21 weeks) was 0.9 (95% CI 0.5 to 1.6) compared 

with the OR for the same following a low PAPP-A in the first trimester (10 to 14 weeks) 

which was 2.8 (95% CI 2.0 to 4.0). When the two were combined, the OR was higher 

at 8.5 (95% CI 3.6 to 20.0); however, in practice these two tests are rarely measured 

in routine care of the same pregnancy. In another study of 2,174 pregnancies with 

SGA (birthweight <10th centile, 1,222 with <3rd), median AFP was higher in both 

groups compared with controls but did not reach significance in either. 

 

1.6.2.4 Inhibin-A  
Inhibin-A is a dimeric glycoprotein that is present in the maternal circulation throughout 

pregnancy [155]. Two systematic reviews [145, 146] found that the predictive accuracy 

of Inhibin-A (≥2.0MoM) for SGA was low. An important point was that large variation 

in methodology and reporting between studies has resulted in heterogeneity, making 

determination of predictive accuracy challenging. However, in a large Thai cohort 

study including 5080 pregnant women, and primary outcomes of preterm birth, pre-
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eclampsia and SGA (birthweight <10th centile) rate [156], relative risk of FGR was 

increased in the “high Inhibin-A” (>2MoM, 3.05 95% CI 1.99 to 4.65) as compared with 

the “normal Inhibin-A” group (p<0.001). Of note, Thai growth charts were used to 

determine SGA, which may limit interpretability for a UK population. 

1.6.2.5 Unconjugated estriol  
Unconjugated estriol forms part of the “quad” test for trisomy 21 and is therefore 

routinely measured.  

One Thai study [157] reported an association between low (<5th centile) estriol levels 

in the second trimester and increased FGR, defined as <10th centile measured 

antenatally (relative risk 2.36, 95% CI 1.79 to 3.10) and LBW (1.87, 95% CI 1.45 to 

2.39). Another US study [158], that adjusted for confounders including smoking, 

concluded that women with second trimester estriol <0.75 MoM had higher odds of 

developing FGR (OR 6.73, 95% CI 2.55 to 17.74) and SGA (birthweight <10th centile, 

OR 2.89, 1.27 to 6.57). However, systematic reviews have shown that estriol has poor 

predictive ability [145, 146]. 

1.6.2.6 Other placental hormones  
Several other placental markers have been investigated as markers of LBW. These 

include a disintegrin and metalloprotease-12 (ADAM12), PP13 and PIGF [159]. Such 

markers may lead to innovation in integrated assessment of individualised FGR-risk. 

Sflt-1 and PlGF have also been evaluated as potential markers to stratify PET risk 

[160]; bedside tests for PET risk have been introduced into clinical care for the 

diagnosis of PET [161]. This will result in accumulation of information to investigate 

their potential for predicting FGR.  

A recent systematic review and meta-analysis [93] aimed to establish accuracy of first-

trimester serum biochemical markers PAPP-A, β-hCG, PlGF and PP13 in predicting 

PET, SGA and preterm delivery [162]. The best overall predictor of SGA <10th centile 

was PP13 (likelihood ratio for a positive test was 3.70, 95% CI 3.39 to 4.03). This was 

based on findings of Karagiannis et al. [159] from 1,536 SGA and 31,314 non-SGA 

pregnancies. Overall, predictive accuracy for all tests was too low to consider any as 

a potentially useful marker for SGA (birthweight <10th centile and <5th centile). 

Furthermore, low PP13 is not currently routinely measured in pregnancy and may 
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therefore prove difficult to institute as part of integrated placental screening. PAPP-A 

< 1st centile remained the best predictor of SGA < 5th centile (likelihood ratio + 4.53, 

95% CI 3.40 to 6.04) and may be more predictive of pathological small size. 

 

1.6.3 Sonographic markers to identify pregnancies at increased risk of 

fetal growth restriction 

1.6.3.1. Uterine artery impedance  
In contrast to serum screening which some women decline, ultrasound assessment is 

almost universally accepted during pregnancy and forms a major part of algorithm for 

detecting and monitoring women (see section 1.5.2) following abnormal serum 

screening.  

In a multicentre study of 8335 pregnancies [163], UtAD Doppler assessment at 23 

weeks gestation demonstrated that mean PI (>95th centile, 1.63) had a sensitivity of 

41% for pre-eclampsia irrespective of FGR, and 16% for FGR irrespective of pre-

eclampsia. Higher sensitivities (19% versus 16%) were observed if FGR was defined 

by the 5th instead of 10th centile. This illustrates that UtAD, when performed as part of 

routine screening in the second trimester, could help identify those pregnancies at 

greatest risk of pre-eclampsia and FGR.  

Since the recognition that maternal biochemistry can help identify those pregnancies 

at increased risk of FGR, studies have examined the added value of second trimester 

UtAD assessment. Yu et al. [164] examined first trimester maternal serology and 

second trimester UtAD, individually and in combination. The study included 350 who 

developed SGA (birthweight <5th centile). The authors demonstrated that the 

sensitivity for detection and prediction ability for SGA by PAPP-A alone was 26% and 

area under the curve (AUC) 0.52 (95% CI 0.52 to 0.62) respectively. For ADAM12 

alone, these were 17%, AUC 0.49 (0.40 to 0.59) and for UtAD PI alone 52%, AUC 

0.78 (0.69 to 0.86). When the three were combined, the sensitivity improved to 72% 

and AUC to 0.80 (0.73 to 0.87). Of note, PAPP-A (and β-hCG) were measured 

routinely, and immunoassays were used to determine maternal concentrations of 

ADAM12 (and PP13). It may therefore be more useful, for clinical practice, to 

determine the predictive ability of PAPP-A and UtAD PI without the inclusion of 
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ADAM12, or to include another routinely measured maternal serum analyte. Spencer 

et al. [165] have addressed this for an outcome of PET and found that combining 

PAPP-A MoM and UtAD mean PI, detection for pre-eclampsia was 62.1% with a 5% 

false positive rate, AUC of 0.853. Although 16% of these were complicated by SGA 

(birthweight <5th centile), the findings are not directly relevant for FGR uncomplicated 

by pre-eclampsia.  

In addition to UtAD, UAD, middle cerebral artery and liquor volume are clinically useful 

indicators of fetal compromise. In particular, use of antenatal umbilical Doppler in high 

risk pregnancies is linked with fewer perinatal deaths (Risk ratio 0.71, 95% CI 0.52 to 

0.98) [166]. Changes in EFW may also identify trajectories that are unfavourable, and 

fetuses at greater immediate risk. 

1.6.3.2 Placental morphology 
Placental morphology, predominantly measured to date in two-dimensional 

ultrasound, may also play a role in monitoring of FGR. A study of 24,152 term 

singletons from the children of the Collaborative Perinatal Project found placental 

measures (placental disc shape, umbilical cord length, distance from cord insertion to 

nearest margin, large diameter, small diameter, placental thickness) and placental 

weight accounted for 39.1% of birthweight variation. Smoking was shown to reduce 

placental size, as well as vascularisation [36]. In contrast, a smaller study found no 

difference in placental volume according to maternal smoking status [167]. Currently, 

three-dimensional ultrasound techniques are being explored as tools to predict FGR 

risk [168]. A recent study [169] used three-dimensional ultrasound at 18-24 weeks 

gestation (N= 373) to measure placental volume, “placental quotient” (placental 

volume/gestational age), mean placental diameter and chorionic diameter (measuring 

the fetal, not maternal surface of the placenta), “placental morphological index” (mean 

placental diameter/placental quotient), “placental chorionic index” (mean chorionic 

diameter/placental quotient), and placental growth (volume per week). They found 

that, using these measures, sensitivity for detection of SGA was 32.5 - 45.0%. Whilst 

intra- and inter- examiner variability is a limitation [170], inclusion of placental 

morphology in a routine anomaly scan would be widely acceptable and could be 

considered for future. 
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Overall, these data suggest that the most reliable method for detecting high FGR risk 

is a combination of serum markers and measures of placental function (UAD and UtAD 

impedance assessment, including PI, RI and notching), size and morphometry, as well 

as EFW. 

 

1.7 Priorities in management of growth restricted fetuses and infants  

Short-term health risks associated with FGR include increased stillbirth and neonatal 

death, preterm delivery, NEC, respiratory distress, neonatal hypoglycaemia, 

polycythaemia and intraventricular haemorrhage [34], which can lead to significant 

long-term morbidity [171]. Importantly, a wealth of evidence also links FGR with long-

term cardio-metabolic disease risk [172-174].  

1.7.1 Antenatal management to avoid immediate risks 

Antenatally, priorities are establishing optimal delivery timing, balancing fetal growth 

and development against offspring morbidity and mortality risks associated with both 

remaining in utero and being delivered prematurely [175]. To achieve this balance, the 

Saving Babies’ Lives Care Bundle (version 2) provides a risk assessment pathway for 

surveillance of pregnancies at increased risk of FGR [38]. 

1.7.2 Long-term cardio-metabolic disease risks in the offspring  

The long-term consequences of FGR deserve careful consideration. Cardio-metabolic 

disease risks begin to manifest in childhood. These can be classified as those relating 

to glucose metabolism, lipid metabolism and vascular health.  

In the absence of detailed prenatal data, many Paediatric studies use SGA as a 

surrogate marker for FGR. As previously discussed (see section 1.5.1) definitions and 

cut-offs for SGA vary, with many Obstetricians selecting <10th centile [176], and 

Paediatricians <2nd centile as the cut-off [107]. Regardless of the definition, SGA has 

limitations in its use for detecting FGR, as previously explained (section 1.5.1). 

Therefore, it is possible that a cohort of individuals exist who had experienced FGR in 

fetal life, have not been followed up in childhood, nor in later-life and may exhibit 

greater risks for cardio-metabolic disease than the general population.  
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Catch-up (CU) growth is seen after a period of growth restriction and consists of 

increased height velocity followed by progressive deceleration [177]. Exact definitions 

of CU growth vary between studies, and also examine CU in weight (often defined as 

weight gain >0.67 SDS over a given time period). Approximately 90% of babies born 

SGA demonstrate CU in height by age two years and have a greater risk of cardio-

metabolic disease in later-life compared with non-catch-up (NCU) [178-181]. 

 

Markers of glucose metabolism, lipid metabolism and vascular health can serve as 

surrogate measures of cardio-metabolic risk development [182]. Many of these are 

modifiable but are not routinely monitored in childhood. Here, the literature exploring 

links between SGA (as a representative indicator of FGR) and glucose metabolism, 

lipid metabolism and vascular health will be summarised, with particular reference to 

how SGA has been defined. 

 

1.7.2.1 Fetal growth restriction and glucose metabolism  
Many studies have demonstrated a link between small birth size and T2D. One study 

recruited 107 VLBW infants from the HSVLBA (with birthweight <1500g, mean 

gestational age at birth 29 weeks, 37% SGA) and 100 AGA term control participants 

[183]. At age 25 years, individuals born preterm displayed 12% lower insulin sensitivity 

and 20% higher insulin secretion than  controls. Both measures were calculated using 

the MinMod Millennium® 6.02 (MINMOD Inc.) program, following an intravenous 

glucose tolerance test. However, the difference in insulin sensitivity was no longer 

significant after correcting for parental history of diabetes, lifestyle and socioeconomic 

group. As further evidence, a study of 2,510 Colombian schoolchildren (aged nine to 

17.9 years) [184] found those born following preterm SGA were more likely to have 

higher fasting glucose (OR = 1.84, CI 95% 1.05 to 3.23; p<0.001) and metabolic 

syndrome (OR = 1.58, CI 95% 1.04 to 2.41; p<0.001) than preterm AGA, with the 

metabolic syndrome definition based on fasting triglycerides, high density lipoprotein 

(HDL), fasting glucose, waist circumference and SBP [185]. 

 

In both studies, disentangling the impact of prematurity, a known independent risk 

factor for T2D development, from the effect of small birth size (which may or may not 

have followed a period of growth restriction) is challenging. Therefore, literature 

comparing term SGA and AGA controls is helpful. In a small longitudinal study of 29 
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SGA and 22 AGA children [173], insulin sensitivity was measured at age two, three 

and four years. At two years, term SGA children had lower fasting insulin compared 

with term AGA age-matched children (mean 2.5 (standard error 0.2) in SGA versus 

3.2 (0.3) in AGA, p= 0.01) but this reversed at age four (5.6mU/l (0.6) in SGA versus 

3.2 (0.3), p= 0.004). A similar pattern was observed with neutrophils, a potential 

marker of insulin insensitivity.  Neutrophil count at two years was  2.9 x 1000/mm3 (0.2) 

in SGA and 3.8 (0.2) in AGA, p= 0.001. At 4 years, this had reversed (SGA 4.8 (0.2) 

and AGA 3.6 (0.2), p= 0.0001). Raised neutrophils have also been observed in female 

adolescents with hyperinsulinaemic hyperandrogenism [186] but a study in obese 

individuals [187] suggests that neutrophil/lymphocyte ratio may be a better marker of 

insulin resistance. However, the additional benefit of measuring either, when insulin 

levels are already available may be questionable. In multiple regression analyses, 

birth to two-year weight gain was the strongest independent predictor of total body fat 

(p= 0.0007) and abdominal fat mass (p= 0.0005) at four years. Method of feeding may 

be a factor influencing CU weight gain in infancy [188]. Another possible explanation 

is excessive appetite-driven CU weight gain in children born SGA, although this may 

be challenging to demonstrate. This could also explain the shift from an insulin-

sensitive to resistant phenotype during this early period in an individual’s life course. 

Furthermore, the association between body size at birth and food intake during 

adulthood may also play a role in increasing adulthood risk of cardio-metabolic ill 

health [189]. This further emphasizes the challenge of separating multiple 

predetermined (e.g. genetic, epigenetic) and environmental factors that may relate to 

cardio-metabolic risk development. 

 

In terms of mechanism, catecholamines have been studied. Studies in pregnant sheep 

[190] with small, defective placentas (restricting oxygen and nutrient delivery to the 

fetus, thereby mimicking adverse environment in FGR) demonstrated high fetal 

catecholamine concentrations. Insulin may also play an important role in linking FGR 

and T2D. Firstly, FGR infants are more likely to experience hypoglycaemia in the 

neonatal period, secondary to transient hyperinsulinaemia [191], as well as lack of fat 

and muscle stores for glycogenolysis and gluconeogenesis [192]. Secondly, a period 

of hyperinsulinaemia often precedes glucose intolerance and T2D onset [193]. 

Therefore, it has been suggested that chronic exposure to elevated catecholamines 
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leads to enhancement of the β cell responsiveness to secretagogues, which continues 

and eventually leads to T2D development. As supporting evidence of this, both FGR 

and normally grown sheep fetuses demonstrate continued release of insulin from β 

cells, despite cessation of catecholamine signalling [190]. However, contradictory 

evidence is provided by experiments on de-medullated sheep adrenals [194], which 

suggest that hypoxia lowers insulin concentrations independently of raised 

catecholamine concentrations under euglycaemic conditions.  

 

1.7.2.2 Timing and tempo of catch-up growth and glucose metabolism 
There is strong evidence that faster CU growth following SGA leads to even greater 

risks of cardio-metabolic risk development, and this has been extensively studied, 

albeit with SGA representing FGR. Table 1.3 outlines studies that have examined CU 

growth in relation to glucose metabolism in childhood.
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Table 1. 3 Studies that have examined catch-up growth and glucose metabolism in 
children 

Study/reference Main findings 
The ALSPAC “Before-breakfast study” (N= 

885) [172] 
o At age eight, LBW was not a major 

determinant of insulin resistance. 
o Rapid CU weight gain in the first 

postnatal year was associated with 
insulin resistance (%HOMA: mean 157 

(SD range 720-289) in CU, 189 (95-
310) in no change, 204 (100-341) in 

CD, p<0.0005). 
Milovanovic et al. [195] (N= 85) o At age four in SGA children with early 

CU growth (mean weight gain 1.1±0.6 
SD during the first postnatal years) 

compared with AGA children: 
o 120-minute plasma glucose was higher 

(6.2±1.1 versus 5.6±0.9 mmol/l, 
p= 0.006) 

o Insulinogenic index was lower 
(0.28±0.15 versus 0.40±2.4, p= 0.02) 

Liu et al. [196] (N= 145) Showed a relationship between: 
o Δ Height SD and HOMA-IR (R=0.49, 

p=0.03) between birth and five months 
o Six-to-12-month Δ weight SD and 

%HOMA (R= 0.57, p= 0.01). 
Newcastle Preterm Birth Growth Study [197] 

(N= 153) 
All participants ≤34 weeks gestation 

Strong associations demonstrated between 
o Rapid childhood weight gain (one year 

to childhood) and higher fasting insulin 
concentrations (regression coefficient 

+0.23, p= 0.002) 
o Rapid childhood weight gain and lower 

insulin sensitivity (-0.25, p<0.001) at 
age 9-12 years. 

Table 1.3. This table provides a summary of studies that have examined markers of glucose 
metabolism in childhood, in relation to postnatal catch-up growth. ALSPAC= Avon Longitudinal Study 
of Pregnancy and Childhood CU= catch-up, defined as 0–2-year weight gain standard deviation 
scores >0.67 CD= catch down, defined as weight loss SDS >0.67 SDS=standard deviation score 
LBW=low birthweight (<2.5kg), %HOMA= Homeostatic Model Assessment % insulin sensitivity, 
SGA=small for gestational age, AGA= appropriate for gestational age, Δ= change in. Insulinogenic 
index is a marker of beta cell function derived from oral glucose tolerance test results. SD= standard 
deviation HOMA-IR= Homeostatic Model Assessment of Insulin Resistance 



 59 

  

Whilst it is possible that lower birthweight and faster CU growth could represent 

severity of preceding FGR, there is currently a paucity of prenatal growth data in the 

majority of Paediatric studies, preventing the study of fetal growth in relation to 

postnatal growth trajectories and cardio-metabolic risk. Therefore, studies are required 

to determine patterns of pre- and postnatal growth. Moreover, specific growth patterns 

may relate to development of glucose and insulin profiles during childhood which in 

turn, may be linked with cardio-metabolic disease in adulthood. 

 

1.7.2.3 Fetal growth restriction and obesity/lipid metabolism   
There is strong evidence suggesting a link between factors representative of an 

adverse intrauterine environment and childhood adiposity [198-200]. Maternal 

hyperglycaemia (both with and without diabetes) [201] and raised BMI have both been 

associated with raised offspring BMI. Challenges also arise when attempting to 

separate the contribution of intrauterine exposure to offspring outcomes and genetic 

factors. One study [202], based on participants from the Exploring Perinatal Outcomes 

in Children Study used BMI and waist circumference as child adiposity measures. 

Through multivariable linear and logistic regression models, they found that genetic 

variants related to obesity only partly explain the association between maternal 

glycaemic status in pregnancy and childhood adiposity. This may also be true for an 

association between maternal and/or antenatal factors linked to FGR and childhood 

adiposity.  

 
Anthropometric measurements in the Cambridge Baby Growth Study [137, 203], 

included weight, length, skinfold thickness (triceps, subscapular, flank and 

quadriceps), visceral and subcutaneous abdominal fat depth, waist circumference and 

bone mineral density at three, 12, 18 and 24 months. Results indicated a positive 

correlation between infant adiposity at birth and both maternal glycaemia and pre- 

pregnancy BMI (both p<0.05), and a negative association between offspring skinfolds 

at birth and maternal insulin sensitivity (β= -0.13, p= 0.01) and secretion (disposition 

index, β= -0.14, p= 0.02). Therefore, this study demonstrates potential value in 

examining associations between maternal factors and offspring adiposity. The main 

limitation of this cohort is that is consists of almost exclusively White Caucasians 
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(95.3%), which may affect transferability of findings to multi-ethnic populations. Also, 

adiposity was assessed by skinfold thicknesses and was therefore limited to 

subcutaneous fat mass assessment, and not estimation of visceral fat or fat free 

percentage. However, later studies assessing the same cohort included assessment 

of body composition by DEXA [204], and concluded that length and skinfold 

thicknesses contribute to childhood adiposity prediction. 

 

To study whether a causal relationship exists between maternal BMI and offspring 

adiposity, Richmond et al. performed a mendelian randomisation study, using data 

from over 6,000 mother - child pairs from ALSPAC and Generation R [205]. Maternal 

BMI-related variants were instrumental variables and a weighted allele score of 32 

variants was generated. Offspring BMI and fat mass index, measured by DEXA, were 

the outcome measures. As in other studies [205], the importance of adjusting for fetal 

genotype was recognised, as genetic transmission from mother to child may result in 

another independent pathway between the maternal BMI-related SNPs and offspring 

outcome. Mendelian randomisation analyses did not support a causal link. Although 

measurements were taken at different ages in Generation R as compared with the 

ALSPAC Study, the finding of no causal link was confirmed. Therefore, it is reasonable 

to explore other maternal and antenatal factors that could affect offspring adiposity. 

 
A link between infancy or early childhood weight gain and later-life obesity has been 

consistently demonstrated by systematic reviews [206-208]. Increasing adiposity 

before six months is also a major risk factor for other long-term morbidities including 

T2D and CVD [209-213], which may be mediated through overweight and obesity in 

adulthood. To study early infant adiposity, whole body composition of 203 healthy term 

infants measured by air displacement plethysmography (using PEA POD®, infant body 

composition system, Cosmed, USA), as well as visceral and abdominal subcutaneous 

fat thickness using ultrasound were undertaken. Measurements revealed a significant 

increment in percent fat mass during the first three months of life (p<0.001), with no Δ 

percent fat mass or visceral fat thickness between three and six months. These data 

suggest there may be a critical window for adiposity development in the first three 

months of life [214]. To assess body composition in FGR (defined as Δ mid-gestation 

EFW to birthweight centile ≥ -20) a French study performed DEXA measurements at 

postnatal day 3, in offspring of 248 women considered at risk of delivering an SGA 
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neonate. This was based on presence of pre-existing or pregnancy induced 

hypertension, smoking, history of FGR or maternal height < -2SDS for French women. 

51% of SGA and 38% of AGA infants were also FGR. Compared with AGA non-FGR, 

AGA-FGR infants had lower lean mass (2503g (306) versus 2747 (370) in AGA non-

FGR, p<0.0001), fat mass (500g (209) versus 741 (314), p<0.0001) and bone mineral 

density (0.329g/cm2 (0.05) versus 0.355(0.07), p<0.03). Of those born SGA, bone 

mineral density was lower in the SGA-FGR group (0.30g/cm2 (0.08)) than SGA non-

FGR (0.33 (0.09), p= 0.04). Furthermore, day 3 fat mass percentage was positively 

correlated with Δ mid-gestation Δ EFW to birthweight centile (R= 0.25, p= 0.001). 

Despite these important findings on postnatal day 3, lack of follow up data in the first 

postnatal year limits assessment of postnatal anthropometry and body composition 

trajectories. 

 

Lean versus fat mass composition has also been studied beyond infancy, during 

childhood. The EarlyBird study [215] showed birthweight positively correlated with lean 

mass at age six years, particularly in boys (R= 0.41, p<0.001), where lean mass 

negatively correlated with triglycerides (R= -0.41, p<0.01). Therefore, a possible 

explanation linking low birthweight to later-life obesity is that a lower birthweight is 

associated with lower lean mass in childhood and consequently a lower basal 

metabolic rate [216]. As a result, there would be a tendency towards obesity, in 

childhood and throughout life [217]. 

 

Other studies have also examined serum markers of lipid metabolism. Arends et al. 

found that 21% of short (< -2SD) pre-pubertal SGA children had free fatty acids levels 

above the normal range [218], providing support for an association between SGA and 

unfavourable biochemical lipid profiles. In the Generation R study, <5th centile of first 

trimester fetal crown to rump length was used as a measure of first trimester FGR. 

School-aged children born following FGR had higher BP, adverse body fat 

distributions, higher total cholesterol (-0.05, -0.10 to 0, mmol/L, p<0.05) and low-

density lipoprotein (LDL -0.04 mmol/L, -0.09 to 0, p<0.05) [219]. Since crown-rump 

length is used to date pregnancies, it is a recognised measure of pre-placental growth, 

not of adverse intrauterine environment. Therefore, these findings could demonstrate 

that first trimester development is a critical window for fetal adaptations that may lead 

to cardio-metabolic risk development in later life. This further emphasises the 
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challenges in disentangling the pre-, intra- and post- placental influencers of fetal 

growth and potentially related fetal adaptations.  

 

Ascertaining which specific in utero factors linked with FGR, may lead to greater risk 

of unfavourable lipid profiles and/or body fat distributions in childhood could help early 

identification of those individuals.  

 

1.7.2.4 Timing and tempo of catch-up growth and obesity/lipid metabolism  
A link between infancy or early childhood weight gain and later obesity has been 

consistently demonstrated [206-208]. Increasing adiposity before six months is also a 

major risk factor for other long-term morbidities including T2D and CVD [209-213].  

A number of studies have illustrated that CU growth plays a role in the development 

of obesity following SGA. Table 1.4 summarises these.



 63 

Table 1. 4 Studies that have examined catch-up growth and obesity/body 
composition in children 

Study/reference Main findings 
The ALSPAC “Before-breakfast study” (N= 

885) [172] 
o Rapid CU weight gain in the first 

postnatal year was associated with 
higher BMI at eight years (mean 
17.5kg/m2 (SD 15-20) in CU, 16.5 
(15-19) in no change and 16.0 (14-
18) in CD, p<0.0005)  

 
Ong et al. [220], using data from the 

ALSPAC cohort 
o SGA children with greater CU weight 

were heavier at five years (mean 
weight SDS 0.87 (SD 0.93) versus 
0.22 (0.87) in no change, or versus -
0.29 (0.93) in catch-down, p value for 
trend <0.0005) 

Breij et al. [214] (N= 203) Healthy term infants demonstrated: 
o A significant increment in fat mass 

%* between one and three months 
(mean (SD) 16.8(4.8) % at one 
month, 22.8(5.3) % at three months 
p<0.001) 

o No Δ fat mass % or visceral fat 
thickness (measured by US) at 3-6 
months (p= 0.098) 

Newcastle Preterm Birth Growth Study 
[197] 

Body composition measured by DEXA and 
bio-impedance analysis.  
Strong association demonstrated between:  

o rapid childhood weight gain (after 
one year) and higher fat mass%, 
regression coefficient +5.03, 
p<0.001)  

o fat mass index (+1.74, p< 0.001) and 
waist circumference (+5.89, 
p<0.001)  

Table 1.4. Studies that have examined BMI and body composition in relation to catch-up growth are 
summarised in this table. *measured by air displacement plethysmography using PEA POD®, infant 
body composition system, Cosmed, USA. CU= catch-up BMI= body mass index CD= catch down 
SGA=small for gestational age fat mass%= fat mass percentage Δ= change in, US= ultrasound 
DEXA= dual energy X-ray absorptiometry 
 

None of these studies have made specific links between antenatal markers of the 

adverse intrauterine environment, pre- and postnatal growth and assessment of 

obesity or lipid metabolism. The Cambridge Baby Growth Study [47] provided data 

linking antenatal characteristics (including PAPP-A levels) to postnatal anthropometric 

data and body composition. However, detailed Doppler measurements or placental 

measurements were not available. 
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1.7.2.5 Fetal growth restriction and vascular health  
SGA is related to higher BP; for each kilogram lower birthweight, mean SBP is higher 

by 1.7mmHg in adolescence [221]. Putting this in context, in adulthood, a mean SBP 

lower by 2mmHg is associated with an 8% reduction in stroke risk [222, 223]. 

Research in short pre-pubertal children born SGA has shown that risk factors for T2D 

development and CVD are evident in childhood [218]. Hokken-Koelega and 

colleagues found that these children had higher BP compared with age- and height-

matched children [218]. These data supported a previous study (N= 79) [224] showing 

that short untreated SGA children aged three to 11 years, have higher SBP (mean 

SDS 0.5 (SD 1.2) versus 0.3 (1.1), p<0.01) than age-matched reference data. 

However, findings from this study should be interpreted with caution; SGA children 

with and without growth hormone deficiency were included, aiming to assess cardio-

metabolic parameters before and during treatment with recombinant human growth 

hormone (rhGH).  

 

Increased sympathetic nervous system activity has been explored as a relevant 

mechanism. A small study of 19 children (aged six to 14 years) who were born SGA 

and 17 age- and gender matched AGA controls demonstrated greater increases in 

heart rate and longer periods of tachycardia following exposure to stress in SGA (a 

mathematical test and venepuncture), implying differences in physiological 

sympathetic response [225]. Although all had been born above 37 weeks, the authors 

did not report or test for differences between groups in gestational age. This may be 

relevant because cardiovascular changes, including abnormal fetal heart rate pattern 

have been observed in post-term fetuses, although the long-term impact of this is 

unclear [226]. 

 

The impact of low birthweight on aortic intima media thickness (aIMT) has also been 

studied. For example, a case control study found that, at 34 weeks gestation, aIMT 

(by antenatal ultrasound) was higher in fetuses with FGR (fetal weight <10th centile 

and umbilical artery PI >95th centile) compared with SGA and AGA fetuses (median 

aIMT 0.504mm (95% CI 0.477 to 0.530 mm) in FGR, 0.466 (0.447 to 0.485) in SGA, 

and 0.471 mm (0.454 to 0.488) in AGA, p= 0.023) [174].  
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1.7.2.6 Timing and tempo of catch-up growth and vascular health 
Whilst there is a clear link between LBW and higher adulthood BP [221], studies [227-

231] have suggested that speed of postnatal growth and adult BMI play a greater role. 

Nevertheless, all these increases in SBP remain small, making comparisons 

challenging.  

 

BMI gains have also been examined, taking into account linear growth as well as 

weight gain. A cohort study of 957 children aged eight years showed each additional 

z score gain in BMI from birth to six months and at two to three years was associated 

with 0.81 (95% CI 0.15 to 1.46, p<0.05) and 1.61 (95% CI 0.33 to 2.89, p<0.05) mmHg 

higher SBP at age 6-10 years, respectively [232]. The ALSPAC study also suggested 

a positive link between infancy linear growth and mid-childhood BP [228]. Gain in 

weight, weight-for-height, and height during infancy were positively associated with 

SBP (0.90, 0.41, and 0.82mmHg respectively, all p<0.001), but notably these children 

were older (̴ 10 years) than other cohorts.  

Importantly, BP is a modifiable factor for adult CVD. Based on data from the Childhood 

Determinants of Health Study [233], Kelly et al. aimed to determine factors that cause 

resolution of high BP in ~ 800 participants who underwent BP measurements at nine, 

12 (or 15) and 20 years. These factors were lower BMI, lower alcohol consumption 

and greater vegetable intake. Therefore, BMI reduction, limitation of or abstinence 

from alcohol and increased vegetable intake may represent potential interventions 

(applicable from an early age) that could have an impact on future cardio-metabolic 

health.  

Table 1.5 summarises studies that have linked catch-up growth with BP in childhood.
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Table 1. 5 Studies that have examined catch-up growth and blood pressure in 
childhood 

Table 1.5. This table summarises studies that have examined associations between postnatal catch-
up growth and blood pressure. BP= blood pressure, AC-abdominal circumference, BMI= body mass 
index, GUSTO= Growing up in Singapore Towards Healthy Outcomes, SBP= systolic blood pressure, 
DBP= diastolic blood pressure. CU= catch-up CD= catch down LBW= low birthweight (<2.5kg), 
%HOMA = model assessment % insulin sensitivity, SGA= small for gestational age, AGA= 
appropriate for gestational age, Δ= change in. Insulinogenic index is a marker of beta cell function 
derived from oral glucose tolerance test results. 

Study/reference Main findings 
Lurbe et al. [229] (N=139, of which N=37 

(26.6%) were SGA [<10th centile]). 
Weight gain at 0-24 months correlated at five 
years with:  

o SBP (R= 0.21, p<0.01)  
o DBP (R= 0.28, p<0.01)  

The GUSTO study [234] (N=719) o Between 3 and 12 months, each unit 
z score gain in height velocity was 
associated with higher risk of 
hypertension (OR 1.24, 95% CI 1.12 
- 1.88).  

o Faster gains in BMI and AC velocities 
were associated with higher 
hypertension risk 

The Southampton Women’s’ study [230] 
(N= 761) 

Weight gain  
o at 12-24 months and  
o at 24-36 months  
was positively associated with BP at age 
three years.  

Tilling et al. [231] (N= 10,495) o Weight gain at 3-12 months and at 
12-60 months was associated with 
BP at 66 months. The ΔSBP per z 
score increase in weight gain was 
0.69 mmHg (95% CI 0.47 to 0.92) at 
3-12 months, and 0.82 mmHg (95% 
CI 0.58 to 1.06) at 12-60 months. 

Perng et al. [232] (N= 957) o Each additional z score gain in BMI 
during 0-6 months was associated 
with 0.81mmHg (95% CI 0.15 to 1.46, 
p<0.05) higher SBP at age 6-10 
years 

o Each additional z score gain in BMI 
during 2-3 years was associated with 
1.61mmHg (95% CI 0.33 to 2.89, 
p<0.05) higher SBP at age 6-10 
years 

The ALSPAC study [228] Showed a positive link between infancy 
linear growth and mid-childhood (̴10 years) 
BP  

o Gain in weight, weight-for-height, 
and height during infancy were 
positively associated with SBP (0.90, 
0.41, and 0.82 mmHg respectively, 
all p<0.001),  
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1.7.2.7 Summary of areas where knowledge is deficient 
In summary, there is evidence that CU growth in infancy is related to adverse glucose 

metabolism, lipid metabolism and vascular health measures in childhood. However, 

despite numerous studies examining growth trajectories and cardio-metabolic risk 

development from birth onwards, detailed antenatal data are not available in the 

existing literature. Examining postnatal growth trajectories in relation to third trimester 

ultrasound data could help to further our knowledge of antenatal factors associated 

with faster CU growth, and therefore, potentially higher cardio-metabolic risk from 

childhood onwards. Possible interventions could include exclusive breast feeding, 

maintenance of healthy BMI throughout life, avoidance of smoking, alcohol avoidance 

and potential pharmacological manipulation of the metabolic profile.  

 

1.8 Mechanisms underlying the greater risk of later-life disease, that 

begin to present in childhood  

 

Classically, Endocrinologists have used single serum analytes to uncover 

mechanisms [235]. ‘Omic technologies are more current approaches used for 

unravelling mechanism [236, 237]. These are aimed at the universal detection of 

genes (genomics) [238], epigenetic modifications (epigenomics) [239], mRNA 

following gene transcription (transcriptomics) [73], proteins (proteomics) [240] and 

metabolites (metabolomics) [241]. These methods can help reveal pathways and 

understand biological functions and processes that may drive disease. Unsupervised 

techniques such as k-nearest neighbour [242] and k-means clustering [243]  have the 

potential to determine clusters of participants who differ in their underlying ‘omics. 

Determining differences in childhood measures between these groups could provide 

justification for exploring differentially expressed genes (for transcriptomics) or 

metabolites (for metabolomics). As an alternative approach, supervised analyses may 

involve establishing groups based on available data. Figure 1.3 is an example of a 

supervised analytical approach to identify genes and pathways.  
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Figure 1. 3 An example of a supervised approach to identify pathways linking 
prenatal markers of a potentially adverse intrauterine environment with childhood 
indicators of cardio-metabolic risk 

   
Figure 1.3. An example of a supervised method that can be used to identify functional profiles and 
pathways. The pathways identified could link specific antenatal measures of a potentially adverse 
intrauterine environment to childhood indicators of cardio-metabolic risk.  GSEA= gene set 
enrichment analysis 
 

Determining ‘omic differences between groups of children, where differences in 

cardio-metabolic risk indicators are identified could potentially define an ‘omic 

signature. Furthermore, pathways analysis can be performed [244]. As an example, 

gene set enrichment analysis (GSEA) [245] is a technique whereby genes that are 

overrepresented in a dataset are identified. This allows the functional profile of that 

gene set to be identified.  
 

1.8.1 Approaches to understanding complex interactions  

Some diseases follow a Mendelian pattern of inheritance, where a mutation in a single 

gene causes a disease [246]. Examples include sickle cell disease and cystic fibrosis 

(both autosomal recessive). A reason for early criticism of Mendel’s proposed laws 

was that many traits are complex, and do not follow these laws. Detailed 

understanding of complex genetic traits has been largely driven by large GWAS and 

by exome sequencing. For example, a GWAS study has identified 697 variants 

associated with adult height [247]. The 100,000 genomes project has resulted in 

availability of exome sequencing data for NHS patients, to understand more about 

DNA interactions that drive disease, particularly rare disease and cancers [248]. 
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One criticism of genome studies is that they identify a very large number of genetic 

variants that have only tiny effects on disease [249]. Many of the polymorphisms 

identified are in non-coding regions, or the genes are not protein-coding. Whilst Wood 

et al. [247] identified 697 variants in the height GWAS, these only accounted for 16% 

of the heritability of human height, a trait which is known to be highly heritable.  

1.8.2 Network Analysis 

Network analysis is a term that defines a range of approaches that construct network 

models on interactions between ‘omic data and assesses the importance of a data 

point in relation to its position within the network. Genes, proteins, transcription factors, 

metabolites and small molecules are components involved in mechanism (that can 

exist within regulatory networks), and systems biology can be used to identify and 

interrogate the functional relationships between these.  

 

Within a network, a core gene is a gene with the greatest number of connections. 

Using adult height GWAS data, Boyle et al. [250] have proposed an “omnigenic model” 

of complex traits. This takes into account core genes (which make up only a small 

fraction of all genes), and spatial distance of other highly connected expressed genes 

from these. 

1.8.3 Network analysis in endocrine disorders 

A network analytical approach has been applied to a range of endocrine disorders. 

For example, congenital hyperinsulinism (CHI) is an endocrine condition that causes 

persistent hypoglycaemia in the neonatal period [251]. There are several CHI 

associated genes (e.g. ABCC8, KCNJ11). However, in most cases, a single gene 

mutation is not the cause for CHI. Risk factors for CHI are FGR, fetal distress and 

maternal diabetes. In other neonates, these risk factors and genetic causes are absent 

and the cause is unknown.  

 

Therefore, the pathophysiology of CHI may be complex, and may involve alterations 

in multiple networks that link cellular processes [252]. Using nine CHI-related genes 

(GLUD1, SLC16A1, HADH, UCP2, KCNJ11, ABCC8, HNF1A, GCK, HNF4A), and 

analysing related transcription factors and proteins, it has been possible to formulate 
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a CHI-Disease network [252]. This allowed identification of biological pathways related 

to five network modules; cellular signalling, nuclear signalling, growth factor signalling, 

development and function. 

 

Network biology has also been applied to human growth and short stature. Despite 35 

years’ experience in the use of rhGH (before which pituitary-derived GH was used), 

questions still remain about how to predict treatment efficacy in individual children. 

Genetic data may have provided some clues towards an answer. For example, in 

2004, Dos Santos et al. [253] suggested that the exon 3 deletion (d3) polymorphism 

of the growth hormone receptor gene (GHR) may lead to better rhGH response in 

children with GHD. However, subsequent studies did not consistently demonstrate this 

[254, 255]. A meta-analysis [256] conducted by our group concluded that, whilst the 

d3 polymorphism accounts for modest increases, unexplained variability in growth 

response still exists. This led to the development of the PREDICT study, aiming to 

integrate genetic and transcriptomic profiles to provide further mechanistic insights. 

This work identified the MAPK pathway as integral to the variability in response [257]. 

Firstly, within this pathway, SNPs in genes that were associated with response to 

treatment with rhGH were identified. Furthermore, gene expression changes that were 

linked to response to rhGH were found. Importantly, these were co-located in the same 

network cluster. A key concept highlighted by this is the potential to use 

transcriptomics within a network analysis, as a step towards individualisation of 

therapy. This concept has also been applied in the context of T2D [258]. 

 

A number of studies in obesity and T2D have used a network analysis approach. 

Whilst some studies have focused on mechanism [258], other work examining 

response to treatment have demonstrated the role of a network analysis approach in 

individualisation of therapy. For example, Cao et al. [259] identified palmitoleate as a 

potential biomarker for the response of adipose tissue to treatment. This also acts as 

another example of the potential use of network analysis in individualisation of 

management. 

1.8.4 Network analysis in small for gestational age 

In a previous study [260], integration of metabolomic and transcriptomic profiles 

identified differences in metabolism and gene expression in peripheral blood 
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mononuclear cells between SGA children who displayed CU growth (N= 8), and SGA 

children who did not (N= 8). In this study, three network analysis approaches were 

used. Firstly, specialised analysis software mapped metabolic profiles to pathways 

that are associated with gene expression changes. In the SGA CU group, a negative 

correlation was observed between myoinositol and concentrations of 1-phosphatidyl-

1D-myo-inositol 3-phosphate and phosphatidylinositol metabolites (p<0.05). 

Secondly, the same software was used to map gene expression data onto networks 

that had been generated using metabolomic profiles. Myoinositol was linked to 17 

changes that were linked to the Wnt/Notch signalling pathway, a growth pathway that 

is linked to the Hedgehog signalling pathway (responsible for cell proliferation) [261]. 

Thirdly, the Metscape plugin for Cytoscape software enabled integration of both 

metabolic and transcriptomic profiles. This revealed a network cluster surrounding 

myoinositol and allowed potential differences between SGA CU and NCU to be 

postulated (see Figure 1.4).
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Figure 1. 4 Myoinositol and pathways 

 

Figure 1.4. Predicted differences in activity of phosphatidyl inositol signalling in catch-up compared 
with non-catch-up small for gestational age, based on integrated transcriptomic and metabolomic data 

 
Therefore, it is feasible that a network analysis approach could help to uncover 

pathways leading to the development of cardio-metabolic risk in individuals born 

following pregnancies at increased risk of FGR. 

 

  



 73 

1.9 Hypothesis and Aims 

Antenatal markers of a potentially abnormal intrauterine environment can be used to 

identify fetuses at highest risk of long-term cardio-metabolic disease. 

This hypothesis will be tested through the following aims: 

 

1. To determine whether relationships exist between antenatal markers of higher 

FGR risk, fetal weight trajectory, childhood weight trajectory and childhood 

markers of cardio-metabolic risk, irrespective of birthweight, in a cohort of 

children aged three to six years where the majority of mothers had antenatal 

serology indicating higher FGR risk. 

 

2. To determine which, if any, measures of weight and/or adiposity change in the 

first postnatal year are linked with degree of FGR, in a prospective cohort of 

infants born following pregnancies with abnormal serology indicating higher 

FGR risk.  

 

3. To identify pathways linking FGR to the development of cardio-metabolic risk, 

using a network analysis approach including transcriptomic and metabolomic 

data in the following way: 

 

a. To define groups of participants based on their transcriptomic or 

metabolomic data, using an unsupervised approach 

b. To define groups based on antenatal markers of the intrauterine 

environment or growth trajectories, as a supervised approach 

c. To determine whether differences exist in childhood indicators of cardio-

metabolic risk, between the groups 

d. To identify differences in metabolites and/or gene expression between 

groups 

e. To understand which genes and pathways may be relevant to the 

development of childhood cardio-metabolic risk indicator
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Chapter 2. Materials and Methods  

2.1 Approvals 

 
All documents relating to the ethics submission were created by myself and are 

included in the Appendix section. These include the study protocol, participant 

information sheets and consent forms (for both prospective and retrospective cohorts). 

Ethics submission also involved the completion and submission of a form via the 

Integrated Research Application System (IRAS) website. At a Regional Ethics 

Committee (REC) meeting which I attended, the study was reviewed in detail and 

queries made by committee members. I responded both verbally and in writing 

following the meeting. Ethical approval was obtained from North West – Greater 

Manchester East REC (REC reference 17/NW/0153 IRAS ID 187679) on 20th April 

2017.   

 

Health Research Authority (HRA) approval was obtained on 26th April 2017. Following 

REC, HRA and Manchester Foundation Trust (MFT) Research & Development (R&D) 

approval, the sponsor confirmed that the study could commence on 9th May 2017. 

 

The study proposal was also reviewed by two external academics as part of an 

application for inclusion on the National Institute for Health Research Clinical 

Research Network (NIHR CRN) Portfolio. Subsequently, The Manchester BabyGRO 

Study was considered eligible for NIHR CRN support.  

 

In addition to managing submission of all necessary documents to obtain these 

approvals, I was responsible for assembling and maintaining a site file for the study. 

This included an internal audit of all documents contained in the file.  I was responsible 

for writing and submitting any necessary amendments, for providing regular updates 

to the REC and the HRA and liaising with the University sponsor and MFT R&D 

department.  

2.2 Recruitment 

 
Participants were recruited into two cohorts, both prospectively and retrospectively. I 
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conducted all recruitment for the prospective cohort and the majority of recruitment for 

the retrospective cohort (see section 2.2.2). I reported numbers to the designated 

Research Practitioner responsible for uploading these to “R-Peak”, the NIHR system 

for recording recruitment into all Portfolio studies. 

2.2.1 Recruitment for the prospective cohort  

Women with abnormal serum markers of placental function (low PAPP-A or raised 

Inhibin/AFP) indicating greater risk of FGR were recruited from the Manchester 

Placenta Clinic (MPC) at St. Mary’s Hospital, MFT. This is a tertiary clinical service 

established in April 2009 to provide midwifery and Obstetric care to women who are 

pregnant with, or are at risk of, a growth restricted fetus. Indications for referral to MPC 

are abnormal maternal serology (following optional trisomy screening, see section 

1.6.2), indicating greater risk of FGR or a previous pregnancy complicated by FGR. 

For these women, at 23 weeks gestation, measurements of placental size and UtAD 

impedance measurements are taken to classify pregnancies into higher or lower risk 

for severe FGR. Measurements indicative of placental blood flow impedance and 

subsequent higher risk of FGR are UtAD PI >1.3 (>95th centile) ± RI >0.7 (95th centile) 

± presence of notching. Small placenta, defined as diameter (longest diameter) or 

width (shortest perpendicular diameter) <10cm (25th centile based on MPC data), and 

greater placental depth are also considered factors contributing to higher FGR risk.  

Clinic lists were screened weekly between 10th May 2017 and 23rd May 2018. Those 

with low PAPP-A (<0.415 MoM), high AFP (>2.2 MoM) or raised inhibin (>2 MoM) 

were potential participants. During this period, unlike for the retrospective cohort 

recruitment (see Section 2.2.2), abnormal hCG or serum unconjugated estriol were 

not indications for referral to the MPC. Women were approached and informed of the 

study at 23 weeks. Women considered as having higher risk for FGR are followed up 

in the MPC with subsequent ultrasound scans. They were re-approached and invited 

to take part in the study at a subsequent clinic visit. A proportion of women who are 

seen in the MPC due to abnormal serology but who have normal UtAD and normal-

sized placenta at their initial visit are classed as having lower risk and are discharged 

from clinic. These women were invited to take part in the New Ultrasound Parameters 

Study (NUPS) 2; a study investigating the predictive value of three-dimensional 

sonographic fetal thigh volume and its relation to two-dimensional sonographic 

fetoplacental biometry. They attended a different clinic for subsequent scans. This 
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presented an opportunity to approach for consent those women who had been 

informed about the study, following discharge from the MPC after one attendance at 

23 weeks.  

Results of the recruitment process are outlined in Chapter 3, Characteristics of the 

Study Cohorts. 

2.2.2 Recruitment for the retrospective cohort 

226 women were identified who had been followed up in the MPC due to abnormal 

serology, where the pregnancy resulted in a livebirth above 34 weeks, and whose 

children were aged between three and six years in May 2017 (when all approvals for 

the Manchester BabyGRO study were obtained). From this cohort we aimed to 

retrospectively recruit participants whose mothers had been followed up in the MPC 

during pregnancy, due to abnormal serology indicating greater FGR risk. At the time 

these women were seen in MPC, in addition to low PAPP-A, raised inhibin and raised 

AFP (see section 2.2.1), an abnormal hCG or serum unconjugated estriol were 

indications for referral. 

Additionally, healthy children from healthy pregnancies were recruited. Data from 

women who took part in the original NUPS study, a cohort study examining the validity 

of a wide range of three-dimensional sonographic fetoplacental biometry in prediction 

of birthweight, were available. Between June 2011 and June 2013, 254 women who 

took part delivered healthy babies above 34 weeks gestation. Those with a birthweight 

>10th and <90th centile, without antenatal complications, and whose age was equal to 

that of the median age of those already recruited for the retrospective cohort +/- one 

year, were approached for recruitment.  

I identified potential participants, checked the NHS Spine for updated contact details 

and conducted the majority of recruitment for the retrospective cohort. Results of the 

recruitment process are included in Chapter 3, section 3.4.1. 

2.2.3 Exclusion criteria 

Exclusion criteria for both prospective and retrospective cohorts included situations 

where the mother did not understand the study, despite the offer of an interpreter 

where language was a barrier.  Maternal age below 16 years, as well as antenatal or 

postnatal detection of a fetal anomaly were also criteria for exclusion.  
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Any child (retrospective cohort) with a medical condition that may have affected growth 

was not approached for consent. Examples of such conditions are any significant 

chronic gastrointestinal (e.g. coeliac disease), cardiac (e.g. congenital heart disease), 

pulmonary (e.g. cystic fibrosis), endocrine (e.g. autoimmune hyperthyroidism) or 

metabolic disease. The frequent or regular use of medications that may affect growth 

were also criteria for exclusion. For example, any child with poorly controlled asthma, 

requiring three or more courses of oral steroids per year was excluded. However, a 

child with well controlled asthma could be included. 

Additionally, any child with a condition that may affect their risk of developing cardio-

metabolic conditions in later-life was excluded. Examples include diabetes mellitus, 

any disorder causing hypertension in childhood e.g. chronic renal disease, or any 

condition that causes a hypercoagulable state e.g. thrombophilia, sickle cell disease. 

2.3 Measurements 

 

A number of measurements were collected antenatally and could be linked to 

development of cardio-metabolic risk, which begins to present in childhood.  

2.3.1 Antenatal data collection  

Detailed pregnancy and antenatal ultrasound data are available for all women who 

have attended the MPC. Table 2.1 lists antenatal markers that may be related to FGR 

risk.
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Table 2. 1 Antenatal markers relating to risk of fetal growth restriction 

Marker Definition/Explanation How/when it was measured 
Maternal first trimester 

PAPP-A* 
Low first trimester PAPP-A 

(<0.415MoM) is associated with 
increased risk of fetal growth 

restriction [147] 

Maternal serology during first 
trimester 

Maternal second trimester 
inhibin* 

Raised second trimester inhibin is 
associated with abnormal 

placentation and increased risk of 
fetal growth restriction [156] 

Maternal serology during 
second trimester 

Maternal second trimester 
AFP * 

Raised second trimester AFP is 
associated with increased risk of low 

birthweight [262] 

Maternal serology during 
second trimester 

UAD PI 
 

The difference between maximum 
and minimum blood flow velocity 

normalised to the average velocity 
(systolic velocity-diastolic 

velocity)/mean velocity. PI>1.6 (95th 
centile) is considered as high [263] 

Antenatal ultrasound scan, 22-
24 weeks 

 
 

UAD RI  (Systolic velocity – diastolic velocity) 
/systolic velocity 

Antenatal ultrasound scan, 22-
24 weeks 

UtAD PI* The difference between maximum 
and minimum blood flow velocity 

normalised to the average velocity 
(systolic velocity-diastolic 

velocity)/mean velocity. UtAD PI>1.3 
(95th centile) is considered  high [264]  

Antenatal ultrasound scan, 22-
24 weeks 

UtAD RI*  (Systolic velocity – diastolic velocity) 
/systolic velocity 

Antenatal ultrasound scan, 22-
24 weeks 

Unilateral/bilateral/no 
notching on UtAD* 

An indicator of increased vascular 
resistance and impaired uterine 

circulation 

Antenatal ultrasound scan, 22-
24 weeks 

Placental diameter* Placental measures may be linked to 
birthweight variation [36] 

Antenatal ultrasound scan, 22-
24 weeks 

Placenta width* Placental measures may be linked to 
birthweight variation [36] 

Antenatal ultrasound scan, 22-
24 weeks 

Placental depth* Placental measures may be linked to 
birthweight variation [36] 

Antenatal ultrasound scan, 22-
24 weeks 

Centile change (Δ weight 
centile) in EFW at 23 

weeks and birthweight* 

Based on customised centiles 
calculated for all EFWs at 23 weeks 
and birthweight, using the Perinatal 

Institute calculator (2016) 

EFW measured at antenatal 
ultrasound scan, 22-24 weeks* 
and actual weight measured at 

birth 
Table 2.1. This table shows antenatal measures that are linked with risk of fetal growth restriction and 
could potentially act as indicators of cardio-metabolic risk development in childhood. PAPP-A= 
pregnancy associated plasma protein A, AFP= α-fetoprotein, UAD= Umbilical artery Doppler, UtAD= 
uterine artery Doppler, PI= pulsatility index, RI= resistance index, EFW= estimated fetal weight, Δ= 
change in. *Measurements that are readily available (or calculable) from MPC attendance at 23 weeks 
gestation. 
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The presence or absence of these markers may imply a higher risk for FGR, which 

may potentially be linked to later-life cardio-metabolic health. Measurements that were 

indications for referral to MPC or were used to classify pregnancies into higher or lower 

risk for FGR at the MPC visit at 23 weeks gestation were retained for further analyses. 

2.3.2 Prospective cohort  

Participating infants had auxological measurements at birth, three, six and 12 months 

of age. These are shown in Table 2.2.  
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Table 2. 2 Growth measurements collected in the prospectively recruited cohort 

Measurement Definition How it was measured 
Crown-rump length (cm) Distance from the top of the head 

to the bottom of the buttocks 
Seca 417 measuring board 

(nearest 0.1cm) 
Crown-heel length (cm) Distance from the top of the head 

to top of the head to the heel 
Seca 417 measuring board 

(nearest 0.1cm) 
Weight (kg) - Birthweight measured with 

portable digital scales in 
clinical areas 

3,6,12m weights measured 
with Weylux (BMI 200) digital 

scale (nearest gram) 
BMI (kg/m2) Weight(kg)/height(m2) Calculated using weight and 

crown-heel length 
measurements 

HC (cm) The distance from above the 
eyebrows and ears around the 

back of the head 

Standard tape measure 
(nearest 0.1cm) 

AC (cm) Circumference at the mid-point of 
the line between the costal 

margin and the iliac crest in the 
mid-axillary line 

Standard tape measure 
(nearest 0.1cm) 

MUAC (cm) Circumference measured at the 
mid-point between the olecranon 

process and acromium 

Standard tape measure 
(nearest 0.1cm) 

TC (cm) Circumference measured 15cm 
proximal to superior pole of the 

patella 

Standard tape measure 
(nearest 0.1cm) 

SF biceps (mm) A measure of subcutaneous fat, 
halfway between the acromion 

process and olecranon process, 
on the midline of the anterior 

surface of the upper arm 

Holtain skinfold calipers 
(nearest 0.2mm) 

SF triceps (mm) A measure of subcutaneous fat, 
halfway between the acromion 

process and olecranon process, 
on the midline of the posterior 

surface of the upper arm 

Holtain skinfold calipers 
(nearest 0.2mm) 

SF subscapular (mm) A measure of subcutaneous fat, 
below the tip of the scapula, at 

an angle of 45˚ to the lateral side 
of the body 

Holtain skinfold calipers 
(nearest 0.2mm) 

Table 2.2. This table includes the measurements performed on the infants in the prospective cohort. 
Measurements were taken at birth and when they returned at three, six and 12 months. BMI= body 
mass index, HC= head circumference, AC= abdominal circumference, MUAC= mid-upper arm 
circumference, TC= thigh circumference, SF= skinfold thickness
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Standardisation for age, sex and gestation has been applied where possible, based 

on the WHO data. This will be described in further detail below (section 2.4.1.2). 

2.3.3 Retrospective cohort  

All visits were undertaken at the NIHR/Wellcome Trust Clinical Research Facility 

(NIHR/WT CRF). Parental heights and weights were measured with consent, to the 

nearest 0.1cm (for height) and 0.1kg (for weight). For any biological parents who were 

not present, reported heights and weights were recorded. 

 

2.3.3.1 Clinical measurements in children 
Height was measured using a Harpenden stadiometer, and recorded to the nearest 

0.1cm. Using the height and total body mass, BMI was also calculated. MUAC, TC, 

HC and AC were measured using a standard tape measure and recorded to the 

nearest 0.1cm. Biceps, triceps, subscapular, suprailiac and abdominal skinfold 

thicknesses were measured using Holtain calipers and recorded to the nearest 

0.2mm. 

Body composition was measured by air displacement plethysmography (BODPOD, 

Cosmed®, USA). Standard calibration procedures for the BODPOD were followed 

before each clinic, and between participants. An additional calibration was performed 

on the scales fortnightly, as per the manufacturer’s recommendations. Additionally, 

the BODPOD underwent regular servicing to ensure it maintained accuracy. 

The participant emptied his/her bladder, and was asked to wear skin-tight swimwear 

and a swimming cap. All jewellery and metal were removed. The participant stood on 

scales linked to the BODPOD and total body mass (in kg, to the nearest 0.001kg) was 

reported. Next, the participant entered the BODPOD and was asked to sit still when 

the door was closed. Following the measurement, the door was opened and then re-

closed. This action was repeated three times. The BODPOD is an air displacement 

plethysmograph [265] and follows a similar principle to hydrostatic weighing, the gold 

standard for body composition assessment. It is comprised of two chambers; a test 

chamber and a reference chamber. A diaphragm between the chambers oscillates 

and creates small pressure changes between the chambers. These are monitored by 

pressure sensors and on the basis of Boyle’s Law, P1V1= P2V2 (where P is pressure 

and V is volume), the total body volume of the subject is calculated. Reference data 
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for the child’s height [266] to estimate thoracic gas volume allowed fat mass to be 

calculated. Fat mass (in grams), fat mass percentage (in %), fat free mass (grams) 

and fat free mass percentage (%) were reported. 

Aortic pulse wave velocity (aPWV) measurement was performed using the 

Tensiomed® Arteriograph (Tensiomed®, Budapest, Hungary). aPWV is a non-invasive 

measure of aortic wall stiffness [267], which increases with age (starting at 2.3 years 

[268]) due to age-related loss of elastin in the vessel wall. The “jug-sym” measurement 

was taken with the participant lying supine. This is a measurement from the sternal 

notch to the proximal end of the pubic bone and was recorded to the nearest 

centimetre.  A child-sized cuff was placed on the participant’s right arm. They were 

asked to relax, to remain silent, and to expect the cuff to inflate and deflate multiple 

times. The process was repeated a second time. SBP, DBP, pulse pressure (PP), 

mean arterial pressure (MAP, all mmHg) and heart rate were recorded. In addition, 

brachial augmentation index (brachial AI), a measure of the strength of wave 

reflection, calculated as the ratio of the amplitude of the reflected wave and aortic 

pulse pressure [269], was also recorded. Table 2.3 outlines how each measurement 

was taken for participants in this retrospective cohort.
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Table 2. 3 Measurements performed in children aged three to six years 

Marker Definition and how it was measured 
Height (cm) Stadiometer 

Weight (kg) Weighing scales, confirmed by BODPOD (Cosmed, USA) 

BMI (kg/m2) Calculated from height and weight 

HC (cm) The distance from above the eyebrows and ears around the back of the head, 

standard tape measure 

AC (cm) Circumference measured at the mid-point of the line between the costal margin 

and the iliac crest in the mid-axillary line, Standard tape measure 

MUAC (cm) Circumference measured at the mid-point between the olecranon process and 
acromium, standard tape measure 

TC (cm) Circumference measured 15cm proximal to superior pole of the patella, 

Standard tape measure 

Biceps skinfold 

thickness (mm) 

A measure of subcutaneous fat, halfway between the acromion process and 

olecranon process, on the midline of the anterior surface of the upper arm, 

Holtain skinfold calipers 

Triceps skinfold 

thickness (mm) 

A measure of subcutaneous fat, halfway between the acromion process and 

olecranon process, on the midline of the posterior surface of the upper arm, 

Holtain skinfold calipers 

Subscapular 
skinfold 

thickness (mm) 

A measure of subcutaneous fat, approximately 2cm below the tip of the scapula, 
at an angle of 45˚ to the lateral side of the body, Holtain skinfold calipers 

Suprailiac 

skinfold 

thickness (mm) 

A measure of subcutaneous fat, approximately one inch above the iliac crest at 

the mid-axillary line, Holtain skinfold calipers 

Abdominal 

skinfold 

thickness (mm) 

A measure of subcutaneous fat, a horizontal fold, approximately 3cm lateral to 

and 1cm below the umbilicus, Holtain skinfold calipers 

%fat Total fat mass/total body mass x100, BODPOD (Cosmed, USA) 

%fat free mass Total fat free mass/total body mass x100, BODPOD (Cosmed, USA) 

SBP* Automatic measurement during arteriography using a child’s cuff 

DBP* Automatic measurement during arteriography using a child’s cuff 

MAP* SBP + 2 (DBP) 

Pulse pressure* SBP-DBP 

Heart rate 

*(beats/min) 

Automatic measurement during arteriography using a child’s cuff 
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Aortic PWV* A measure of arterial stiffness. The rate at which pressure waves move down 

the aorta 

Brachial AI* A measure of systemic arterial stiffness derived from the pulse waveform,  

Aortic AI* A measure of systemic arterial stiffness derived from the pulse waveform. Aortic 

augmentation index is significantly correlated with cardiovascular risk [270] 

Return time of 

aortic pulse 
wave* 

The time difference between the forward and backward pressure waves 

Central SBP* An estimate of the SBP in the ascending aorta, just outside the left ventricle 

Central DBP* An estimate of the DBP in the ascending aorta, just outside the left ventricle 

Table 2.3. These are measurements that were taken in children in the retrospective cohort, prior to 
performing venepuncture. BMI= body mass index, HC= head circumference, AC= abdominal 
circumference, MUAC= mid-upper arm circumference, TC= thigh circumference, % fat= fat mass 
percentage, % fat free mass= fat free mass percentage, SBP= systolic blood pressure, DBP= diastolic 
blood pressure, MAP= mean arterial pressure, brachial AI= brachial augmentation index, PWV= pulse 
wave velocity. *measured using the Tensiomed® ® arteriograph 
 

2.3.3.2 Cardio-metabolic serum measurements 
Prior to the visit, the participant was asked to fast from midnight and to only drink sips 

of water in the morning. This was confirmed by the parent and the child at the visit. 

Where the child had not fasted, or the blood test had been refused, venepuncture was 

not performed. A peripheral blood sample was collected using a 24-gauge cannula 

and syringe. Local anaesthetic spray was used to numb the area beforehand. Where 

possible, a total of 15mls was collected. The blood was aliquoted into Starstedt 

Monovette specimen tubes (two lithium heparin, one serum and one fluoride oxalate) 

and sent to the MFT laboratory for measurements of glucose, insulin, cholesterol, high-

density lipoprotein (HDL), low density lipoprotein (LDL), triglycerides, IGF-I, 

cholesterol, total cholesterol: HDL ratio and non-HDL cholesterol.  These were 

measured using clinical-grade assays. 2.5mls was stored at -80 ˚C in a PAXgene® 

collection tube, for immediate stabilisation of RNA. Where sufficient blood was 

obtained, the remaining 7.5mls was divided into two (4ml) serum vacuette tubes and 

taken to the NIHR/WT CRF laboratory. The NIHR/WT CRF laboratory staff centrifuged 

the samples at 3000rpm for 10mins, at 4˚C. The serum was split into aliquots of 0.5mls 

and then stored at -80 ˚C.  

 

A 0.5ml aliquot from each participant (where obtained) was exported to an external 

laboratory (see Appendix) for metabolomic analysis. 
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2.3.3.3 Laboratory methods. RNA Extractions 
RNA extractions were carried out according to instructions in the PAXgene® Blood 

RNA Kit Handbook, using the protocol for “Manual Purification of Total RNA from 

Human Blood Collected into PAXgene® Blood RNA Tubes” [271]. Before starting the 

procedure, PAXgene® RNA tubes stored at -80°C were incubated at room temperature 

for two hours, to ensure complete lysis of the cells. Buffer BR2 was checked to ensure 

it had not formed a precipitate on storage and buffer BR4 was prepared by adding four 

volumes of 100% ethanol. DNase I stock solution was prepared by dissolving DNase 

I in 550µl RNase free water and this was stored in a refrigerator at 2-8°C.   

 

The PAXgene® Blood RNA collection tube was centrifuged at 3000 x g. Then, the 

supernatant was removed by decanting, and 4mls RNase free water was added to the 

pellet. A fresh Hemoguard closure lid was used to close the tube and vortexed to 

ensure the pellet was dissolved. Centrifugation was carried out at 3000 x g for ten 

minutes and the entire supernatant was removed. Next, 350µl Buffer BR1 

(resuspension buffer) was added and the pellet was dissolved in this by vortexing. 

This sample was pipetted into a 1.5ml microcentrifuge tube. 300µl Buffer BR2 (binding 

buffer), as well as 40µl proteinase K was added to each sample to enable protein 

digestion. This was mixed by vortexing for 5 seconds, and then incubated for 10 

minutes at 55°C. Following this, the lysate was pipetted directly onto a PAXgene® 

shredder spin column placed in a 2ml processing tube and centrifuged at maximum 

speed for 3 minutes.  

 

Next, the entire flow-through was transferred to a 1.5ml microcentrifuge tube. 350µl of 

100% ethanol was added to each sample, mixed by vortexing and briefly centrifuged 

to remove drops from the inside of the tube lid. 700µl of this sample was transferred 

to a PAXgene® RNA spin column placed in a 2ml processing tube, and centrifuged for 

1 minute at 13,000 x g. This would allow RNA to selectively bind to the membrane of 

the spin column and contaminants to pass through. The spin column was placed in a 

new 2ml collecting tube. Next, the remaining sample was pipetted onto the PAXgene® 

RNA spin column and centrifuged for one minute at 13,000 x g, allowing the remaining 

RNA to bind to the membrane. Again, the spin column was placed in a new 2ml 

processing tube. 
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To remove contaminating DNA, samples were treated with RNase free DNase; this 

set comprised DNase I stock solution and Buffer RDD. For each sample, 10µl of 

DNase I stock solution was added to 70µl Buffer RDD in a 1.5ml microcentrifuge tube. 

For example, for a run of eight samples, 80µl of DNase I stock solution was added to 

560µl Buffer RDD. Mixing involved gently flicking the tube and brief centrifugation 

allowed residual drops to be collected.  

 

80µl of this DNase I incubation mix was pipetted directly onto the PAXgene® RNA spin 

column membrane and incubated at room temperature (on the benchtop) for 15 

minutes. Following this, 350µl Buffer BR3 (wash buffer) was pipetted onto the 

PAXgene® RNA spin column and centrifuged at 13,000 x g for one minute. The spin 

column was placed in a new 2ml processing tube. Next 500µl Buffer BR4 (another 

wash buffer) was pipetted onto the spin column and this was centrifuged at 13,000 x 

g for one minute. The spin column was placed in a new 2ml processing tube. This step 

was repeated with the addition of a further 500µl Buffer BR4, but centrifugation at 

13,000 x g for three minutes.  

 

As a final step prior to elution, the spin column was placed in a new 2ml processing 

tube and centrifuged at 13,000 x g for one minute. Then, two steps were performed to 

elute the RNA. First, the spin column was placed in a 1.5ml microcentrifuge tube with 

the lid removed, 40µl Buffer BR5 (elution buffer) was pipetted directly onto the 

membrane of the spin column and centrifuged at 13,000 x g for one minute. Second, 

the spin column was placed in a new 1.5ml microcentrifuge tube and a further 40µl 

Buffer BR5 was pipetted directly onto the membrane. The RNA samples were labelled 

as the participant ID followed by “a” (first elution) or “b” (second), and for each 

participant, the “b” sample was expected to contain a lower RNA yield than “a”. 

Nanodrop was used to establish the concentrations of RNA in each sample and to 

assess the quality of each sample. 31 out of 35 samples where RNA yield was above 

25 nanograms/µl (i.e. above one µg in total) and where the A260/280nm ratio was 

above 1.6 were transferred to the University of Manchester Core Facility for 

transcriptomic analysis. RNA stability was maintained by storage at -80°C prior to 

analysis at the Core Facility. On arrival, quality and integrity of the RNA samples were 

assessed using a 4200 TapeStation (Agilent Technologies®). The methods 

undertaken for RNA sequencing are included in the Appendix. 
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2.4 Statistical analyses 

 

Data proformas used at the time of clinical data collection were referred to and 

checked against electronic records, to identify and correct any transcription errors. 

Prior to statistical analyses, assessment for selection bias was undertaken in both 

prospective and retrospective cohorts. Results of these analyses are included in 

Chapter 3, Description of the Study Cohorts. 

 

Statistical analyses were performed in R version 4.0.2. The overall analysis approach 

is outlined in Figure 2.1. 
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Figure 2. 1 Overall statistical analysis flowchart 

 
Figure 2.1. This flowchart demonstrates the steps undertaken to analyse the data from the 
Manchester BabyGRO Study. Step 1. Data curation methods were conducted to arrive at a 
representative list of childhood variables i.e. indicators of cardio-metabolic risk (retrospective cohort), 
and also auxological measures in the first postnatal year (prospective cohort). Step 2. Analysis of the 
retrospective cohort focused on determining which antenatal/fetal measure, potentially representing 
an adverse intrauterine environment, was linked with childhood indicators of cardio-metabolic risk. 
Step 3. Relationships between the single antenatal/fetal measure determined in step 2 and first year 
changes in postnatal auxology were assessed. Step 4. Omics analysis were undertaken to identify 
pathways that could explain relationships between antenatal/fetal measures and childhood indicators 
of cardio-metabolic risk determined in step 2.

Step 1. Data curation to arrive at 
a) a list of childhood indicators of cardio-metabolic risk (retrospective cohort) 
b) a list auxological measures in the first postnatal year (prospective cohort)

Step 2. Retrospective cohort analyses, assessing relationships between 
antenatal/fetal measures and childhood indicators of cardio-metabolic risk, as 

defined in Step 1a

Step 3. Prospective cohort analyses, including the single antenatal/fetal variable 
identified in step 2 to assess correlations with auxology in the first postnatal 

year (step 1b) 

Step 4. Omics analyses, using samples obtained from participants in the 
retrospective cohort, to define pathways  that could be involved in relationships 

defined in step 2
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Firstly, data curation methods were undertaken to arrive at a list of childhood indicators 

of cardio-metabolic risk. These formed the outcome variables for statistical analyses 

of the retrospective cohort. Secondly, analyses of the retrospective cohort data led to 

identification of a single antenatal/fetal variable that was correlated with a childhood 

marker of cardio-metabolic health. Thirdly, to understand whether this antenatal/fetal 

variable was related to particular patterns of postnatal weight and adiposity gain, 

correlations with auxology in the first postnatal year were examined, using antenatal 

and postnatal data from the prospective cohort. Lastly, ‘omics data from the 

retrospective cohort were analysed to define relevant pathways that could link the 

single antenatal/fetal variable to childhood indicators of cardio-metabolic risk. 

 

2.4.1 Data curation 

The data collection methods in both cohorts resulted in the establishment of rich 

datasets. However, the potential to generate a type one error following multiple tests 

was acknowledged. Therefore, a rigorous process was undertaken to curate the data, 

and establish concise lists of variables for further study prior to analyses. These data 

curation methods are described in this section and the approaches are outlined in 

Figure 2.2. 
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Figure 2. 2 Approaches undertaken to arrive at a list of variables for further study 

 

 
 
Figure 2.2. These approaches were used separately for data generated from prospective and 
retrospective cohorts.  Firstly, groups were defined e.g. markers of glucose metabolism in the 
retrospective cohort. These groups helped to inform which representative variables to retain 
downstream in the curation process. Secondly, standard deviation scores (based on World Health 
Organization data) were calculated, allowing assessment against population data. Thirdly, a correlation 
matrix established which variables were highly correlated and thereby aided selection of representative 
variables. Fourthly, for each variable, data distribution was assessed to examine whether 
transformation may be required in further analyses, or if any variables should be excluded on this basis. 
Next, data were examined for missingness and those variables where less data were missing were 
selected in preference over those with a high proportion of missing data. Lastly, the biological plausibility 
of potential associations with long-term cardio-metabolic health was assessed. SDS= standard 
deviation score 
 
2.4.1.1 Definition of groups 
Table 2.4 describes the categories formed to stratify variables, which enabled 

selection of representative variables from each group. 
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Table 2. 4 Groups that guided decisions about which variables to retain and exclude 

List to be rationalised Groups to structure decisions around 
variable selection 

Childhood indicators of later-life 

cardio-metabolic health 

Marker of glucose metabolism 

Clinical marker of lipid metabolism 

Biochemical marker of lipid metabolism 

Marker of vascular health 

Antenatal markers relating to 

retrospective cohort - Potential 

predictors of childhood indicators 

Marker of resistance to placental blood flow 

Marker of placental biometry 

Infant growth trajectory* 

measurements from prospective 

cohort 

Weight trajectory marker  

Growth trajectory marker of central 

adiposity 

Growth trajectory marker of peripheral 

adiposity 

Table 2.4. This table demonstrates the groups that aided decisions on how to rationalise variables. 
*Growth trajectory markers relate to changes between timepoints e.g. change in body mass index 
between birth and 12 months.  
 
 
2.4.1.2 Comparison of the distributions of collected data versus population 
data and standardisation of data 
Data were converted to SD scores or centiles prior to analysis. Where both were 

available, SD scores were preferentially used due to their improved accuracy 

compared with centiles at the extremes of measurements.  

 

For data from the prospective cohort, the R package, “anthro” was used to calculate 

SD scores for weight, length, BMI, weight-for-length, HC, MUAC, triceps and 

subscapular skinfold thicknesses at three, six and 12 months. This allowed 

standardisation for both age and sex. For birth data, SD scores were calculated using 

an anthropometry calculator, Growth XP® (based on WHO reference data [272]), 

which also allowed gestation to be incorporated into the standardisation. This was only 

possible for length, weight and HC at birth. Following this, change in birth to three, 
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birth to six, birth to 12, three to six, three to 12, and six-to-12-month SD scores were 

calculated.  

 

For retrospective cohort data, SD scores were calculated for weight, height, HC and 

BMI using Growth XP® [272]. Again, retained variables were not restricted to only 

those where it was possible to calculate SD score, as this would have considerably 

limited the analyses.  

 

For antenatal data relating to both cohorts, customised centiles were calculated using 

the Perinatal Institute bulk centile calculator (2016) [273], based on maternal ethnicity, 

parity, BMI and fetal sex and gestation. This was performed at 23 weeks and repeated 

for birthweight, allowing for calculation of Δ 23 week EFW to BW centile (birthweight 

centile minus EFW centile). Next, Δ 23 week EFW to BW centile was divided by the 

number of days between the ultrasound scan date and date of birth to determine fetal 

weight trajectory. This allowed standardisation for weight change of fetuses with an 

antenatal ultrasound between 22- and 24- weeks gestation and born over a range of 

34 to 42 weeks gestation. This will henceforth be referred to as fetal weight trajectory. 

 

For the prospective cohort, standard deviation scores based on WHO data were 

calculated for birth weight using an auxology calculator, Growth XP®. Changes in birth 

to three, birth to six and birth to 12-month measurements were calculated for the 

following markers of adiposity; weight SDS, BMI (kg/m2), sum SF (mm), AC, MUAC 

and TC (cm). These were divided by the child’s age in days, which allowed 

standardisation of Δ weight or adiposity measure at birth to three, six and 12 months. 

These will henceforth be referred to as infant weight trajectory or infant adiposity 

trajectory. When referring to a particular measure and change between specific 

timepoints, these will be stated e.g. Δ BMI birth to 12 months/age is the change in BMI 

between birth and 12 months, divided by the infant’s age in days.  

 

For the retrospective cohort, Δ weight SDS birth to childhood (calculated as childhood 

weight SDS minus birthweight SDS) was divided by the child’s age in years (Δ weight 

SDS birth to childhood/age), which allowed standardisation of weight change for 
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children measured over a range of ages (3.8 to 7.0 years). This will henceforth be 

referred to as childhood weight trajectory. 

 

Assessment of distributions of collected data (section 2.4.1.4) and comparison with 

population data were considered. Where these distributions differed, the relevant 

literature was examined to ensure a sensible approach to retaining/excluding 

variables. No additional variables were excluded on the basis of this comparison. 

 

2.4.1.3 Exclusion of redundant variables for retrospective cohort data 

Correlations between antenatal variables relating to prospective and retrospective 

cohorts were assessed. Any correlation where p<0.05 was considered significant, and 

the R value was reported to describe the strength and direction of association. 

Notching rank was treated as an ordinal categorical variable and was assigned “0” if 

there was no notching, “1” is unilateral and “2” is there was bilateral notching.  

 

Due to the large number of variables in the prospective and retrospective cohorts, 

measured on infants and children respectively, correlation matrices were created to 

assist decisions on which variables to retain. The purpose was to determine variables 

which correlated highly with each other and therefore identify situations where one 

variable could be used to represent two or more.  

 

The correlation matrix including childhood measurement data from the retrospective 

cohort is shown in Figure 2.3. Firstly, glucose and insulin were positively correlated. 

Since hyperinsulinaemia precedes raised glucose levels in the development of a pre-

diabetic state [274], both in susceptible children and in adults, the decision was made 

to retain insulin as the representative marker of glucose metabolism.  
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Figure 2. 3 Correlation matrix for all childhood measurements from the retrospective cohort 

 
 

Figure 2.3. This heatmap shows 
correlations between childhood 
measurements from the retrospective 
cohort. White boxes represent the 
strongest positive correlations. 
Yellow boxes and red boxes 
represent positive and negative 
correlations respectively. Clusters of 
closely correlated variables appear 
as larger lighter yellow or darker red 
areas. Examples of these are shown 
within black boxes. HDL= high 
density lipoprotein, RT= return time, 
ED =ejection duration, Ppao= aortic 
pulse pressure, Aix brachial= brachial 
augmentation index, Aix aortic= aortic 
augmentation index, SBP= systolic 
blood pressure, SBPao= aortic 
systolic blood pressure,  DBP = 
diastolic blood pressure,  MAP= 
mean arterial pressure, HR= heart 
rate, PWVao= aortic pulse wave 
velocity, PWV SD= pulse wave 
velocity standard deviation score, 
total chol= total cholesterol, LDL= low 
density lipoprotein, thigh circ= thigh 
circumference,  HC= head 
circumference,  PP= pulse pressure,  
IGF-I= insulin-like growth factor I, 
BMI= body mass index,  AC= 
abdominal circumference, arm circ 
=arm circumference,  SF =skinfold 
thickness
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When assessing possible clinical markers of lipid metabolism, fat mass percentage, 

as measured by the BODPOD (Cosmed®, USA) showed a strong positive correlation 

with fat mass (in grams) and a strong negative correlation with fat free mass 

percentage. Therefore, fat mass percentage (% fat) was selected to represent these 

variables. 

 

Biceps, triceps, subscapular, suprailiac and abdominal skinfold thicknesses appeared 

in the same cluster, suggesting that a composite marker of adiposity may be suitable 

to take forward into further analyses. This was supported by the use of sum of skinfolds 

(sum SF) as a marker of adiposity in children by previous studies [275]. Markers of 

statural growth and lean mass in the same cluster were height, HC, fat free mass and 

TC, suggesting that it may be appropriate to select one of these for further analyses.  

 

As for biochemical markers of lipid metabolism, another group of variables which 

correlated closely were LDL, non-HDL cholesterol, triglycerides, total cholesterol and 

total cholesterol: HDL ratio.  As a result, it was concluded that total cholesterol: HDL 

ratio and non-HDL cholesterol were redundant variables derived from measured 

values; total cholesterol and HDL (for total cholesterol: HDL ratio), and HDL (for non-

HDL cholesterol).  

 

From the Tensiomed® arteriograph measurements, potential markers of vascular 

health, aortic augmentation index (aortic AI), a derived variable correlated positively 

with brachial AI, which was measured. Therefore, aortic AI was considered a 

redundant variable. Similarly, correlations were observed between aortic SBP and 

pulse pressure (PP), derived from brachial SBP and PP respectively, which suggested 

that the inclusion of brachial measurements alone was adequate. The decision to 

include brachial AI instead of aPWV will be explained further in section 2.4.1.7, 

Biological plausibility of relationships.  

 

aPWV SD was a measure of the quality of each PWV assessment and therefore not 

appropriate to take further in the analyses of the potential markers of later-life cardio-

metabolic disease. Also, jug-sym measurement was required at the time of 

assessment but of no further value in the assessment of markers for later-life disease. 
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Furthermore, since SBP, DBP and MAP featured in the same cluster of closely 

correlated variables, the decision was made to use SBP as the single representative 

variable. This was supported by evidence in the literature that the association between 

child and adulthood SBP (R= 0.31, p<0.001) is stronger than that for DBP (R= 0.16, 

p<0.001) [233].  

 

For the antenatal data relating to the retrospective cohort, a correlation matrix was not 

created because there were fewer variables. Selection of which variables to retain was 

based on largely on availability of data collected during MPC visits.   

 

For UtAD measurements, there was a positive correlation between right and left PI 

(p= 5.18 x 10-7) and between right and left RI (p= 4.24 x 10-5). Mean PI and mean RI 

also correlated significantly (p= 2.2 x10-16). Therefore, mean PI was retained as a 

representative variable in correlations and regression analyses for the retrospective 

cohort data. 

 

2.4.1.4 Exclusion of redundant variables for prospective cohort data 
Before creating a correlation matrix for the prospective cohort data, SD scores based 

on WHO data were calculated wherever possible.   

 

A correlation matrix based on changes in measures of weight and adiposity at different 

timepoints during the first postnatal year was created. Since it was possible to 

calculate a number of SDS scores for these data at three months onwards, these were 

calculated.  

 

Figure 2.4 shows a correlation matrix for all changes in prospective measurements, 

where it was possible to calculate SD scores. All infants recruited in the prospective 

cohort had a weight recorded immediately following delivery (BW1). Many also had a 

weight recorded as part of the first set of growth measurements following birth (BW2). 

From this correlation matrix, it was clear that there were positive correlations between 

BW1 to 3m weight SDS and BW2 to 3m weight SDS (R= 0.77), BW1 to 6m weight 

SDS and BW2 to 6m weight SDS (R= 0.70) and BW1 to 12m weight SDS and BW2 to 



 97 

12m weight SDS (R= 0.71). Since BW1 was available for every infant in the study 

(80/80), but BW2 was only available for 66% (53/80), the decision was made to retain 

BW1, not BW2.  
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Figure 2. 4 Correlation matrix for all infant measurements from the prospective cohort 

Figure 2.4. This heatmap shows 
changes in prospective cohort 
variables where it was possible to 
calculate standard deviation scores. 
White boxes represent the strongest 
positive correlations. Yellow and red 
boxes represent positive and negative 
correlations respectively. Clusters of 
correlated variables are represented 
by larger lighter yellow or darker red 
coloured areas.  0m= birth, 3m= 3 
months, 6m= 6 months, 12m= 12 
months, delta, Δ = change in, SDS= 
standard deviation score, BMI= body 
mass index, BW1 =birthweight 
measured at delivery, BW2 =weight 
at the time of first set of postnatal 
measurements,  HC= head 
circumference, arm circ= arm 
circumference, wt for length= weight 
for length,  SF= skinfold thickness.
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Further decisions based on this correlation matrix were to exclude weight-for-length 

but retain BMI at three to six months (because three-to-six-month weight-for-length 

and three-to-six-month BMI correlated, R= 0.91) and this was also true at six to 12 

months (R= 0.98).  

 

Since sum of triceps and subscapular skinfold thickness (as well as weight/height 

ratio) have been proposed for the detection of central obesity, the sum of triceps and 

subscapular skinfold thickness were considered for further analyses. However, 

changes in these variables at timepoints during infancy did not correlate strongly with 

each other, perhaps suggesting that triceps and subscapular skinfold thicknesses 

should be examined independently. An alternative was to include sum of biceps 

(where SDS was not calculable), triceps and subscapular SF as a measure of overall 

subcutaneous adiposity.  

 

In summary, although this correlation matrix was based on only those measurements 

where SDSs were calculable, it supported the selection of only one of the two available 

birthweight SDS measurements for the assessment of infant weight trajectory. For 

infant adiposity trajectory, the decision was made to exclude weight-for-length, and to 

retain BMI. Also, it led to the suggestion that sum SF as a measure of overall 

subcutaneous adiposity could be a reasonable alternative to assessment of central or 

peripheral adiposity separately. Furthermore, differences in correlations observed at 

various timepoints may highlight important limitations of this cohort, relating to missing 

data at various timepoints. This will be discussed further in section 2.4.1.6, Missing 

data. 

 

2.4.1.5 Data distributions 
Tests for normality were performed to examine the distributions of the collected data. 

Where appropriate, skewed data were logarithm transformed for further analyses in 

examining correlations and regression models [276]. Overall, the aim was to minimise 

floor and ceiling effects, which can be calculated as the relative frequencies of lowest 

or highest measurements for each variable [277].  
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Density plots were created to examine skewness. This allowed identification of 

variables where logarithm transformation may be appropriate prior to inclusion in 

regression models. 

 

2.4.1.5.1 Tests for normality 
Distributions of all childhood variables were assessed for normality using Shapiro-Wilk 

tests to determine whether parametric or non-parametric tests should be performed. 

 

2.4.1.5.2 Density plots for childhood outcome variables from the retrospective 
cohort 
Figures 2.5 & 2.6 show density plots for data collected from the retrospective cohort. 

Those with normal (Figure 2.5, all with Shapiro Wilk p>0.05) and non-normal (Figure 

2.6, all p<0.05) distributions are shown. Three variables; ejection duration, central 

pulse pressure and total cholesterol/HDL ratio did not fit either normal or skewed 

distributions, providing additional support for the decision to exclude them from further 

analyses. 
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Figure 2. 5 Density plots for retrospective cohort childhood variables that were normally distributed 

 

Figure 2.5. The density plots for all 
variables that were normally distributed, 
based on a Shapiro Wilk p > 0.05, are 
shown. Assessment of the density plot for 
cholesterol/HDL ratio suggests that it was 
not normally distributed. SDS= standard 
deviation score, head circ= head 
circumference, thigh circ= thigh 
circumference, PP= pulse pressure, HR= 
heart rate, Aix brachial= brachial 
augmentation index, Aix aortic= aortic 
augmentation index, SBPao= aortic 
systolic blood pressure, total chol HDL 
ratio= total cholesterol: high density 
lipoprotein ratio, Total chol= total 
cholesterol, HDL= high density 
lipoprotein, LDL= low density lipoprotein 
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Figure 2. 6 Density plots for retrospective cohort childhood variables that were not normally distributed 

Figure 2.6. The distribution 
plots for all variables that 
were not normally 
distributed, based on a 
Shapiro Wilk p <0.05, are 
shown. Some exhibited a 
skewed distribution 
suggesting that 
transformation may be 
appropriate. However, 
others did not; these were 
ejection duration (ED) and 
aortic pulse pressure (PP). 
They were excluded from 
further analyses. SF= 
skinfold thickness, subscap 
= subscapular, BMI= body 
mass index, AC= abdominal 
circumference, MUAC= 
mid-upper arm 
circumference, SBP= 
systolic blood pressure, 
DBP= diastolic blood 
pressure, MAP= mean 
arterial pressure, ED= 
ejection duration, PWVao= 
aortic pulse velocity, aortic 
PP= aortic pulse pressure, 
IGF-I= insulin like growth 
factor-I
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It was noted that all skinfold thicknesses displayed skewed distributions, as shown in 

Figure 2.6. In addition, the correlation matrix (Figure 2.3) had demonstrated that 

biceps, triceps, subscapular, suprailiac and abdominal skinfold thicknesses were 

closely correlated. Therefore, the decision was made to use sum SF, a composite 

measure of subcutaneous (as opposed to visceral) adiposity. 

 

2.4.1.5.4 Density plots for antenatal variables relating to the retrospective 
cohort 
For maternal antenatal data of retrospective cohort participants, density plots were 

created for the following continuous variables; mean UtAD PI, mean UtAD RI, 

placental diameter, width and depth, fetal weight trajectory. Figures 2.7 & 2.8 show 

density plots for these antenatal variables. 

 

Figure 2. 7 Density plots for retrospective cohort antenatal variables that were 
normally distributed 

 

 
Figure 2.7. The density plots for antenatal variables related to the retrospective cohort that displayed 
normal distributions (Shapiro Wilk p>0.05) are shown. UtAD RI= uterine artery Doppler resistance index 
(mean of right and left), fetal weight trajectory= birthweight centile minus 23 week estimated fetal weight 
centile, divided by number of days between the scan and birth. 
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Figure 2. 8 Density plots for retrospective cohort antenatal variables that were not 
normally distributed 

 

 
Figure 2.8. The density plots for antenatal variables related to the retrospective cohort that exhibited 
non- normal distributions (Shapiro Wilk p<0.05) are shown. UtAD PI= uterine artery Doppler pulsatility 
index (mean of right and left) 
 

Figures 2.7 and 2.8 show that UtAD RI, placental diameter and fetal weight trajectory 

were normally distributed. In contrast, UtAD PI, placental width and depth were not.  

 

UtAD RI and PI, whilst closely correlated (see section 2.4.1.3), displayed different 

distributions. Mean UtAD PI but not RI followed a skewed distribution, suggesting a 

possible need for data transformation prior to analyses. Alternatively, differences in 

distributions may have provided justification for retaining both these variables for 

further analyses. 

 

For placental measurements, diameter and width may have been expected to follow 

similar distributions, since they are both measurements along the same plane. 

However, this was not the case. This could potentially reflect inter- and intraindividual 

variability in measurements and thereby highlight a limitation in using either.  

The decision to include maternal serology as a categorical variable grouped as 

“normal,’ “abnormal” or “unknown” rather than continuous, was based on variation in 



 105 

both the timing of measurements (depending on whether first trimester or second 

trimester serological testing had been performed; this is largely determined by the 

gestational age at commencing antenatal care) and which serological marker, if any, 

had been detected as abnormal. 

2.4.1.5.5 Density plots for prospective cohort variables  
Density plots were also created for variables in the prospective cohort. Plots for 

variables displaying normal and non-normal distributions are shown in Figures 2.9 and 

2.10 respectively. 
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Figure 2. 9 Density plots for normally distributed variables from the prospective cohort 

 
Figure 2.9. Density plots 

for normally distributed 

variables for the 

prospective cohort 

(Shapiro Wilk p>0.05) 

are shown. All density 

plots relate to changes 

in standard deviation 

scores at birth to three, 

birth to six, birth to 12, 

three to six, three to 12 

and six to 12 months. 

Delta= change in, SDS= 

standard deviation 

score, BW1= birthweight 

measured at delivery, 

HC= head 

circumference, wt for 

length= weight for 

length, BMI= body mass 

index, MUAC= mid-

upper arm 

circumference, SF= 

skinfold thickness, 

subscap= subscapular 
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Figure 2. 10 Density plots for non-normally distributed variables from the prospective cohort 

 
Figure 2.10. Density plots for 

non- normally distributed 

variables for the prospective 

cohort (Shapiro Wilk p<0.05) are 

shown. All density plots relate to 

changes in standard deviation 

scores at birth to three, birth to 

six, birth to 12, three to six, three 

to 12 and six to 12 months. 

Delta= change in, SDS= 

standard deviation score, BW1= 

birthweight measured at 

delivery, HC= head 

circumference, wt for length= 

weight for length, BMI= body 

mass index, MUAC= mid-upper 

arm circumference, SF= skinfold 

thickness, subscap= 

subscapular 
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On the basis of these plots, it was not considered necessary to exclude any particular 

variables for the prospective cohort analyses. However, this process did further 

highlight the limitations in restricting analyses to trajectories where SD scores were 

available, thereby limiting the capacity to examine changes from birth to three, six and 

12-months. 

 

2.4.1.5.6 Density plot for the single antenatal variable selected to examine 

correlations in the prospective cohort 

For antenatal variables relating to the prospective cohort, data curation was not 

conducted because a single antenatal marker was selected following the results from 

the retrospective cohort data analyses. 

 

The density plot for fetal weight trajectory in the prospective cohort is shown in Figure 

2.11. Shapiro-Wilk confirmed that this followed a normal distribution. 

 

Figure 2. 11 Density plot for fetal weight trajectory in the prospective cohort  

 

  
Figure 2.11. Fetal weight trajectory (birthweight centile minus 23 week estimated fetal weight centile, 
divided by number of days between the scan and birth) displayed a normal distribution in the prospective 
cohort. 

 
 



 109 

2.4.1.6 Missing data  
The number of missing values for each variable were reported. Where possible, 

reasons for missing data were reported. 

 

In general, if >80% data were available for a particular variable, that variable was 

retained, as in other research [278]. Missing data may lead to imprecision and bias in 

follow up studies [278]. Nevertheless, retention or exclusion of variables depended on 

a number of factors and a variable may have been retained despite >80% missing 

data if it was considered the best representative marker for a specific grouping (as 

defined in section 2.4.1.1). 

 

All necessary steps were taken to avoid imputation where it may have negatively 

affected the validity of the outputs. As an example, maternal serology has been treated 

as a categorical variable and grouped as “normal”, “abnormal” or “unknown”.  

However, imputation approaches have the potential to improve the validity of medical 

research [279] and have been used where appropriate. Where data have been 

imputed, this has been stated and the reasons have been justified.  

 

For the prospective cohort analysis, assessment of missing data formed a vital part of 

which variables to take forward into analyses. Limitation of birth SD scores to weight 

and length, coupled with the high proportion of data that were missing at various 

timepoints (see Chapter 3, Figure 3.1) meant that assessment of Δ measurements 

from three to six, three to 12 and six to 12 months was very limited. As a result, the 

decision was made to restrict analyses to Δ birth to three, six and 12 months, thereby 

optimising numbers. Although the priority had been to analyse variables where it was 

possible to calculate SD scores, analyses were not limited to those variables. Instead, 

unstandardised measurements were used. Where correlations were established, 

partial correlations controlling for gestation at birth, birthweight (grams), and 

birthweight SDS (incorporating age, sex and gestation at birth) were performed to 

assess their influence. 
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2.4.1.7 Biological plausibility of relationships 
The selection of which variables to retain or exclude was also informed by literature 

review. For childhood surrogate markers of long-term cardio-metabolic health, 

literature review focused on their prior demonstrated predictive value for long-term 

cardio-metabolic health outcomes in other study populations. 

 

Since the relationship between childhood weight trajectory and childhood indicators of 

later-life cardio-metabolic health forms a large part of the literature in this field, it was 

deemed important to assess for correlations between childhood weight trajectory and 

childhood indicators in the retrospective cohort. This aided selection of relevant 

variables in participants of the retrospective cohort, although selection was not limited 

to those variables. The decision to include brachial AI and not aPWV as the 

representative marker of vascular health was based on the fact that, within this 

dataset, brachial AI correlated with childhood weight trajectory (tau= 0.23 p= 0.006) 

but aPWV did not (tau= 0.05, p= 0.538). 

 

For the prospective cohort, literature review informed choices on which infant 

measurements to retain as markers of adverse growth trajectory, in terms of weight, 

central adiposity gain and peripheral adiposity gain between birth and three, birth and 

six and birth and 12 months. Table 2.5 includes the variables selected for further study, 

based on results of data curation. 
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Table 2. 5 Variables selected following the data curation process 

List rationalised Groups defined Variables selected 
 

 

 

 

Childhood surrogate 

markers of later-life 
cardio-metabolic health 

Marker of glucose metabolism Insulin 

Clinical markers of lipid metabolism: 

overall adiposity 

% fat, BMI SDS 

skeletal & adipose tissue MUAC, TC 

Peripheral subcutaneous fat Sum SF 

visceral fat & organs AC 

Biochemical marker of lipid metabolism HDL 

Biochemical markers of vascular health SBP, Brachial AI 

 

 

Antenatal markers 
relating to retrospective 

cohort 

Markers of resistance to placental blood 

flow 

UtAD PI, UtAD RI 

Notching rank 

Measures of placental size Placental diameter 

Placental width 

Placental depth 

 

 

 

 

Infant growth trajectory 
measurements from 

prospective cohort 

Weight trajectory marker Δ weight SDS 0-3m*  

Δ weight SDS 0-6m * 

Δ weight SDS 0-12m * 

Growth trajectory markers: 

overall adiposity 

Δ BMI 0-3m*  

Δ BMI 0-6m * 
Δ BMI 0-12m * 

skeletal & adipose tissue Δ MUAC 0-3m*  

Δ MUAC 0-6m * 

Δ MUAC 0-12m  

Δ TC 0-3m*  

Δ TC0-6m * 

Δ TC 0-12m*  

central adiposity (visceral fat & organs) Δ AC 0-3m*  

Δ AC0-6m * 
Δ AC 0-12m* 

peripheral adiposity Δ sum SF 0-3m*  

Δ sum SF 0-6m * 

Δ sum SF 0-12m * 
Table 2.5. This table shows the variables that were selected following the data curation process. 
*divided by days to standardise. %fat= percent fat mass, BMI SDS= body mass index standard deviation 
score, MUAC= mid-upper arm circumference, TC= thigh circumference, sum SF= sum of biceps, 
triceps, subscapular, suprailiac and abdominal skinfold thicknesses, AC= abdominal circumference, 
HDL= high density lipoprotein, SBP= systolic blood pressure, brachial AI= brachial augmentation index, 
UtAD= uterine artery Doppler, PI= pulsatility index, RI= resistance index, Δ= change in, BMI= body 
mass index 
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2.4.2 Analyses of data from the retrospective cohort 
 
Childhood indicators of cardio-metabolic risk defined following data curation methods 

(section 2.4.1) were retained for analyses. Figure 2.12 is a flowchart demonstrating 

the statistical analysis methods used to analyse these data.
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Figure 2. 12 Flowchart demonstrating the statistical analyses for the retrospective 
cohort data 

 
Figure 2.12. This flowchart demonstrates the steps undertaken to perform statistical analyses for the 
retrospective cohort. Steps 1 & 2. Pearson product moment correlation coefficient (parametric, for 
normally distributed data with Shapiro Wilk p>0.05) and Kendall’s tau (non-parametric) methods were 
used to examine correlations. Steps 3 & 4. Directed acyclic graphs were produced, initially based on 
literature and then refined after testing correlations, to identify potential mediators. Step 5. Linear 
regression models were created to further explore associations determined in step 2, including 
potential mediators from the refined DAG and potential covariates of age, sex & ethnicity. Step 6. 
Random Forest Classification, a machine learning approach was adopted. Each model included a 
binary outcome variable of highest versus lowest three quartiles of childhood indicator of cardio-
metabolic risk. Maternal, antenatal, fetal growth measures and birthweight SDS were included within 
each model. 

Step 1. Examine correlations between
a) antenatal markers of higher FGR risk & fetal weight trajectory

b) fetal weight trajectory & childhood weight trajectory
c) childhood weight trajectory & childhood indicators of cardio-metabolic risk

Step 2. Examine correlations between
a) antenatal markers & childhood indicators

b) fetal weight trajectory & childhood indicators
c) antenatal markers & childhood weight trajectory   

Step 3. DAGs to identify potential mediators of correlations identifed in step 2

Step 4. Test correlations between 
a) exposure variable and potential mediator and

b) potential mediator and outcome variable
to refine DAGS

Step 5. Linear regression analyses including potential mediators identified in refined 
DAGS (step 4) & potential covariates of age, sex and ethnicity

Select the antenatal/fetal growth variable to use in analyses for the prospective cohort

Step 6. Random Forest Classification, with the highest quartile of each childhood 
indicator as the outcome in each model. Identify VIPs



 114 

2.4.2.1 Testing of correlations  
Pearson product moment correlation coefficient (parametric, for normally distributed 

data with Shapiro Wilk p>0.05) and Kendall’s tau (non-parametric, where Shapiro Wilk 

p<0.05) methods were used to examine correlations between fetal and childhood 

weight trajectories, childhood markers of cardio-metabolic risk and antenatal markers 

related to higher FGR risk, as shown in Figure 2.12 (Steps 1 & 2). R (parametric) or 

tau (non-parametric) values were reported to indicate strength and direction of 

association. A cut off p<0.05 was considered significant and p<0.1 as potentially 

significant. 

 

2.4.2.2 Directed acyclic graphs 
Directed acyclic graphs (DAGs) have been used [280] by previous studies to identify 

mediators, with the ultimate aim of making causal inferences from observational data. 

The main advantage of using this method, rather than literature review alone is that 

by limiting the variables to a subset that are associated with both exposure and 

outcome, the analysis becomes more statistically efficient i.e. there is greater power 

to reject a false null hypothesis. DAGs are also useful to visually represent mediators 

of a relationship between exposure and outcome variables. One approach would be 

to exclude these from further analyses, to avoid possible overadjustment that would 

weaken an association between exposure and outcome. However, deliberately 

adjusting for mediators can be useful to disentangle pathways linking an exposure to 

an outcome [281, 282]. Therefore, DAGs were created to determine mediators for 

further analysis.  

 

Where a correlation was identified between an antenatal or fetal marker, and a 

childhood indicator of cardio-metabolic risk, potential mediators were identified from 

literature search. Directed acyclic graphs (DAGs) were used to identify mediators from 

this list, retaining only those which correlated (p<0.1) with both the exposure and 

outcome variable. DAGitty version 3.0  [283] was used to draw all DAGs. 

 

Figure 2.13 summarises the potential relationships between exposure and outcome 

variables that have been discussed in this section. In addition to a mediator and 

covariate, confounders and moderators can also be considered when constructing 

DAGs. 
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Figure 2. 13 Summary of relationships between exposure and outcome variables 

 
Figure 2.13. A mediator is on the path between the exposure and outcome variable. A moderator affects 
the exposure alone and a covariate affects the outcome alone. A confounder affects both exposure and 
outcome variables. 

 

 

2.4.2.2.1 Directed acyclic graphs for the relationship between fetal weight 

trajectory and systolic blood pressure 

Figure 2.14 illustrates a DAG with fetal weight trajectory as the exposure and 

childhood SBP as the outcome variable. For this initial DAG, directed paths were 

based on literature review alone. 
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Figure 2. 14 Directed acyclic graph showing potential relationships between fetal 
weight trajectory and systolic blood pressure 

 

Figure 2.14. The relationship between fetal weight trajectory and systolic blood pressure may be 
mediated through birthweight SDS, childhood weight trajectory, height SDS or %fat. Child SDS= 
standard deviation score, %fat= percentage fat mass, SBP= systolic blood pressure.
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Following this, all “paths” or possible relationships identified from this DAG were 

tested to examine whether correlations existed. Figure 2.15 shows a refined version 

of the DAG in Figure 2.14, including only those relationships where significant 

correlations were identified. 
 
Figure 2. 15 Directed acyclic graph illustrating paths where significant correlations 
were found relating fetal weight trajectory to childhood systolic blood pressure 

 

 
Figure 2.15. This figure shows that birthweight SDS and childhood weight trajectory are mediators in 
the relationship between fetal weight trajectory and SBP. Lines represent significant correlations 
between variables and arrows show the direct of relationships SDS= standard deviation score, SBP= 
systolic blood pressure  

 

R= 0.66 
p= 2.76 x 10-11 

tau= -0.28 
p= 4.39 x 10-4 
 

tau= -0.35 
p= 3.67 x 10-6 

tau= -0.50 
p= 3.41 x 10-11 

tau= 0.37 
p= 2.90 x 10-6 
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2.4.2.2.2 Directed acyclic graphs for the correlation between fetal weight 

trajectory and brachial AI 

The potential relationships included in the DAG with brachial AI as the outcome 

variable were the same as that for SBP as the outcome (Figure 2.14). This DAG is 

shown in Figure 2.16. 
 
Figure 2. 16 Directed acyclic graph showing potential relationships between fetal 
weight trajectory and systolic blood pressure 

 

 
Figure 2.16. The relationship between fetal weight trajectory and brachial augmentation index may be 
mediated through a number of variables either alone (e.g. childhood weight trajectory) or in 
combination. For example, fetal weight trajectory may affect birthweight SDS, which may be related to 
childhood weight trajectory which may in turn, affect brachial augmentation index. SDS= standard 
deviation score, %fat mass= percentage fat mass, AI= augmentation index
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After testing these potential relationships, the DAG shown in Figure 2.17 was 

created, identifying childhood weight trajectory as the only mediator from the 

potential mediators included in Figure 2.16. 

 

Figure 2. 17 Directed acyclic graph illustrating paths where significant correlations 
were found relating fetal weight trajectory to brachial augmentation index 

 

 
Figure 2.17. This figure shows the correlations that exist between fetal weight trajectory and childhood 
weight trajectory, as well as between childhood weight trajectory and brachial AI. Lines represent 
significant correlations between variables and arrows show the direct of relationships. This 
demonstrates that childhood weight SDS is a potential confounder. AI= augmentation index

tau= -0.35 
p= 3.67 x 10-6 
 

tau= 0.23 
p= 6.40 x 10-3 
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2.4.2.2.3 Directed acyclic graphs for the correlation between uterine artery 

Doppler pulsatility index and sum of skinfold thicknesses 

Figure 2.18 shows a DAG including potential paths linking UtAD PI to sum SF. 

 

Figure 2. 18 Directed acyclic graph showing potential relationships between uterine 
artery Doppler pulsatility index and sum of skinfold thicknesses 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.18. The relationship between uterine artery Doppler pulsatility index and sum of skinfolds 
may be mediated by birthweight SDS (possibly via fetal weight trajectory) or by childhood weight 
trajectory. UtAD PI= uterine artery Doppler pulsatility index, SDS= standard deviation score, sum SF= 
sum of biceps, triceps, subscapular, suprailiac and abdominal skinfold thicknesses. 
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When correlations were tested between the variables show in Figure 2.18, there were 

no variables which correlated significantly with both UtAD PI and sum SF. No potential 

mediators were identified.  

 

2.4.2.3 Linear regression analyses 
Following the results of correlations (Figure 2.12, Step 2) and resultant DAGs (Step 

4), linear regression models were constructed (Step 5). In addition to the continuous 

variables defined from the DAGs, age, sex and ethnicity were included in each 

regression model. These are shown in Table 2.6. 

 

Table 2. 6 Linear regression models to investigate associations between antenatal 
markers of fetal growth measures and childhood indicators of cardio-metabolic risk 

Dependent variable (childhood) Independent variables 

Log10 (SBP) Fetal weight trajectory 

Birthweight SDS 

Childhood weight trajectory 

Age 

Sex 

Ethnicity 

Brachial AI Fetal weight trajectory 

Childhood weight trajectory 

Age 

Sex 

Ethnicity 

Log10 (sum SF) Log10 (UtAD PI) 

Age 

Sex 

Ethnicity 
Table 2.6. This table shows the dependent and independent variables included in the three linear 
regression models. Logarithm transformation was performed on skewed variables (SBP, sum of 
skinfolds and uterine artery Doppler pulsatility index). Some variables included negative values, so it 
was not possible to transform these data. These were birthweight SDS, fetal weight trajectory and 
childhood weight trajectory. SBP= systolic blood pressure, SDS= standard deviation score, AI= 
augmentation index, sum SF= sum of skinfold thicknesses, UtAD= uterine artery Doppler, PI= pulsatility 
index. 

 

The first model assessed the influence of fetal weight trajectory, birthweight SDS, 

childhood weight trajectory, age, sex and ethnicity on Log10 (SBP).  The second model 
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included brachial AI as the dependent variable, with fetal weight trajectory, childhood 

weight trajectory, age, sex and ethnicity as independent variables. The third 

regression model included Log10(sum SF) as the dependent and Log10 (UtAD PI), age, 

sex and ethnicity as independent variables. 

 

Regression coefficients and p values were reported. A p value <0.05 was considered 

significant and p<0.1 were reported as potentially significant, to minimise type two 

errors. The β coefficient was reported for each significant indicator of the outcome 

variable. The overall model fit (R2) was also reported. 

 

Following these regression analyses, a single variable was selected to test 

correlations with auxological changes in the first postnatal year (in the prospective 

cohort). This variable was fetal weight trajectory. 

 

2.4.2.4 Random forest classification 
Random forest classification (RFC) is a prediction method based on decision trees 

[284]. It relies on the principle that decision by consensus (i.e. by taking the average 

decision from a large number of decision trees) is more reliable than decision by any 

single tree in isolation. The algorithm uses “bagging” i.e. bootstrap aggregation which 

involves sampling with replacement. By resampling in this way, the chances of 

overfitting are reduced. A key element is that each tree can only select from a random 

subset of features, thereby forcing variation amongst the trees in the model.  

 

For each childhood outcome variable retained following data curation, a random forest 

model involving 1000 decision trees was created, to assess whether maternal and 

antenatal variables, as well as birthweight can be used to predict the highest quartile 

for each childhood indicator (Table 2.5), and to rank their importance within each 

model (Figure 2.12, Step 6). For each model, the maternal and antenatal measures 

included were maternal BMI, parity (0, 1, 2 or 3), ethnicity (black, white, Asian or 

mixed), SBP, DBP, serology relating to FGR risk (normal/abnormal/unknown), UtAD 

PI, RI, notching rank (where bilateral= 2, unilateral= 1, none= 0), placental diameter, 

width and depth, 23 week EFW centile, fetal weight trajectory and birthweight SDS. 

Synthetic Minority Oversampling Technique (SMOTE), an established technique for 
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achieving more even sample sizes in machine learning [285], was applied prior to each 

RFC model.  

 

The R package, “Rattle” was used. For each RFC, a confusion matrix was produced, 

allowing the generation of a receiver operating characteristic (ROC) curve (based on 

true positive and false positive rates), with an associated area under the curve (AUC). 

Also, an out of bag (OOB) error rate was estimated. This is the error rate based on the 

remaining data i.e. data which is not subsampled to produce the random forest model. 

This acts as a test set for the model. Boruta plots illustrating the ranking of the 

variables of importance (VIPs) were also generated. These also illustrated which 

maternal and antenatal predictors were confirmed as important, deemed tentative or 

rejected. In each RFC, the highest five ranked variables of importance (VIP) were 

considered the most important indicators of the highest quartile of the childhood 

outcome measure. 

 

2.4.3 Analyses of data from the prospective cohort 
The methods used to analyse data from the prospective cohort are outlined in Figure 

2.19.  

 

 

  



 124 

Figure 2. 19 Statistical methods for the prospective cohort data 

 

Figure 2.19. This flowchart shows the process followed to analyse data from the prospective cohort. 
Step 1. Correlations between fetal weight trajectory and infant weight trajectory were tested by 
Pearson’s product moment correlation co-efficient (parametric) or Kendall’s tau (non-parametric). 
Step 2. Correlations between fetal weight trajectory and infant adiposity trajectories were examined. 
Step 3. Where a significant correlation was found, partial correlations were performed to control for 
possible mediators. Linear regression models were used to assess the influence of length of 
breastfeeding and age at weaning on significant correlations (from Steps 1 and/or 2). 

 
 

2.4.3.1 Testing of correlations 
Pearson product moment correlation coefficient (parametric, for normally distributed 

data with Shapiro Wilk p>0.05) and Kendall’s tau (non-parametric, where Shapiro Wilk 

p<0.05) methods were used to examine correlations. For all correlations, R or tau 

values were reported to indicate strength and direction of associations. A p value 

<0.05 was considered significant and p<0.1 was reported as potentially significant. 

The correlations tested are shown in Table 2.7. 

 

Step 1. Examine correlations between
fetal weight trajectory and Δ weight SDS 0-3m, 0-6 & 0-12m

Step 2. Examine correlations between
fetal weight trajectory and markers of 

adiposity at 0-3m, 0-6m & 0-12m

Step 3. Partial correlations controlling for gestation at birth, 
birthweight (grams) and birthweight SDS 

Step 4. Regression models to assess the influence of 
breastfeeding and age at weaning 
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Table 2. 7 Correlations tested in the prospective cohort 

 
Variable 1 Variable 2 

Fetal weight trajectory Δ weight SDS birth to three months/age 

Δ weight SDS birth to six months/age 

Δ weight SDS birth to 12 months/age 

Δ BMI birth to three months/age 

Δ BMI birth to six months/age 

Δ BMI birth to 12 months/age 

Δ AC birth to three months/age 

Δ AC birth to six months/age 

Δ AC birth to 12 months/age 

Δ TC birth to three months/age 

Δ TC birth to six months/age 

Δ TC birth to 12 months/age 

Δ MUAC birth to three months/age 

Δ MUAC birth to six months/age 

Δ MUAC birth to 12 months/age 

Δ sum SF birth to three months/age 

Δ sum SF birth to six months/age 

Δ sum SF birth to 12 months/age 
Table 2.7. This table shows the correlations that were tested between fetal weight trajectory (change 
in centile between 23 week estimated fetal weight and birthweight, divided by days in between the two 
timepoints) and changes in infant measures of weight and adiposity. SDS= standard deviation score, 
BMI= body mass index, AC= abdominal circumference, TC= thigh circumference, MUAC= mid-upper 
arm circumference, sum SF= sum of biceps, triceps and subscapular skinfold thicknesses, 

 

 

Partial correlations tested whether significant correlations remained when controlling 

for birthweight in grams, birthweight SDS (incorporating gestation at delivery and sex) 

and gestation at delivery alone.  

 

2.4.3.2 Linear regression analyses 
Linear regression analyses were conducted. Within each model, the Δ adiposity 

measure where a significant correlation with fetal weight trajectory had been found, 

was the dependent variable. Independent variables included were fetal weight 

trajectory, method of feeding (categorised as breastfed; 1, mixed fed; 2 and formula 
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fed; 3) and age at weaning (four, five or six months). Both method of feeding and 

age at weaning were included as ordinal variables. Where the dependent variable 

was Δ adiposity measure at birth to three months, age at weaning was not included. 

A p value <0.05 was considered significant and p<0.1 was considered potentially 

significant.  

 

2.4.4 Omics analyses on serum samples (retrospective cohort) 
Metabolomic nuclear magnetic resonance (NMR) data were received as Excel files, 

and transcriptomic data as DAT and CEL files. NMR is a technique whereby atomic 

nuclei in a strong constant magnetic field are affected by a weak oscillating magnetic 

field. As a result, they respond by creating an electromagnetic signal and this is 

dependent on the specific magnetic properties of certain nuclei, thereby allowing 

identification.  A number of approaches were adopted to analyse these data, which 

are described in this section. The methods followed to analyse metabolomic and 

transcriptomic data are outlined in Figure 2.20.
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 Figure 2. 20 Flowchart demonstrating the statistical analyses for the ‘omic data 

Figure 2.20. Firstly, quality control measures, including data scaling, were applied. Unsupervised analysis included principal component analysis and k means 
clustering. If differences in childhood indicators of cardio-metabolic status were identified, then groups were compared to identify differences in ‘omic data. 
Pathways analysis was performed on the resultant genes/metabolites. This process was repeated using a supervised approach based on fetal weight 
trajectory, including three different methods and working with metabolomic and transcriptomic data separately. Firstly, rank regression was performed with 
fetal weight trajectory as the dependent variable and ‘omic data as independent variables. Secondly, using quartiles established based on the entire cohort, 
the lowest (most negative, Q1) versus highest quartiles (Q4) were compared for differences in childhood indicators. Where differences were present, 
differentially expressed genes and metabolites were identified. Thirdly, this process was repeated using a different set of groups; the lowest versus highest 
three quartiles for fetal weight trajectory. ‘Omic data resulting from all three analyses were assessed for commonality. The genes or metabolites that were 
common to all were then used for pathways analysis. These supervised methods were repeated for postnatal weight trajectory, where groups were highest 
(most positive) versus lowest, and also highest versus lowest three. PCA= principal component analysis, CM= cardio-metabolic, Q= quartile, DEGs= 
differentially expressed genes, DEMs= differentially expressed metabolites.
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2.4.4.1 Quality control  
 
2.4.4.1.1 Metabolomics 

“Noise” was determined by establishing the maximum value for each variable across 

all of the serum data and setting a threshold, based on regions known to only contain 

noise. Variables labelled as “noise”, as well as three internal standards were removed 

from the dataset prior to analyses. The remaining variables comprised those with 

assigned metabolite names, as well as variables classed as “unknown.” The decision 

was made to include all these, then to liaise with the NMR data analysts at the external 

laboratory following statistical analyses, to identify specific metabolites. 

 

Data were scaled to allow comparisons. Principal component analysis (PCA) was 

performed on metabolites before and after data scaling to assess for outliers. PCA is 

a dimensional scaling technique used to assess the variance in a dataset. Each 

principal component is constructed as a linear combination of the initial variables and 

describes the maximum amount of variance within a dataset. Therefore, it is possible 

to visually evaluate data on a PCA plot and identify clusters of participants and/or 

variables. PCA plots of all variables allowed assessment of “noise” within the datasets, 

with the aim of identifying any variable (or group of variables) that deviated from the 

distribution of values expected within a dataset.  

 

2.4.4.1.2 Transcriptomics 

The R package, edgeR® was used to process data and produce counts per million 

(cpm, a measure for the expression level of a gene) values. PCA plots and 

histograms of unscaled and scaled cpm values were compared to establish whether 

edgeR® processing had included scaling. This aided the decision on whether 

additional scaling was necessary prior to further analyses.  

 

2.4.4.2 Principal component analysis by participants and k means 
K means clustering is a method of vector quantization [286] which aims to separate 

observations into clusters. Each observation is partitioned into a cluster with the 

nearest mean, the cluster centroid; this can be considered the multidimensional 

average of the cluster. This minimises the cluster variance. The steps involved in this 

process will now be described. 
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Firstly, the number of clusters (“k”) to be identified in the data are defined. Within our 

data, this was selected using silhouette plots [287]. This will be explained further in 

Chapter 6, section 6.3.3.5.6. 

Then, k data points are randomly selected and the distance between each data point 

and those randomly selected points (separate clusters) determined. These points may 

be on a number line. Alternatively, they may be visualised on a PCA plot, in which 

case the Euclidean distance (based on Pythagorean theorem) is calculated. Based on 

these distances, every point is assigned to the cluster which is nearest to it. Next, the 

mean of each cluster is calculated and the process of calculating distances for every 

data point and assigning it to a cluster is repeated, using the cluster mean instead of 

the randomly selected data point. If the clustering does not change at all when the 

process is undertaken (using the cluster mean), then those clusters may be 

acceptable. However, the quality of the clustering can be assessed further by totalling 

the variation within each cluster and comparing these. The whole process is repeated 

until the clusters which result in approximately equal variation within each cluster are 

produced.  

In an alternative classifier, “k nearest neighbour” it is possible to assign weights for the 

contributions of neighbours. However, this may be more challenging to implement. 

Therefore, k means clustering was applied alongside PCA, to enable unsupervised 

separation of clusters based on the variance within the metabolomic and 

transcriptomic data, from 26 and 31 participants respectively. Differences in childhood 

measures of cardio-metabolic risk were compared between the two clusters of 

participants generated. This was performed for metabolomic data and then repeated 

for transcriptomics. Clusters were visualised with PCA, and also using Qlucore® Omics 

Explorer version 3.6, which allowed three-dimensional visualisation. 

 

2.4.4.3 Rank regression 
Rank regression with fetal weight trajectory as the dependent and all metabolites as 

independent variables was performed. This was repeated with childhood weight 

trajectory as the dependent variable. Both steps were repeated with all gene cpm 

values as independent variables in the regression. 
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2.4.4.4 Establishment of groups based on quartiles and differences in 

childhood measures of cardio-metabolic risk between groups  
 
2.4.4.4.1 Fetal weight trajectory 

Quartile boundaries were established for fetal weight trajectory, for 80 participants 

where data were available to calculate these. These were used to create groups of 

lowest (most negative), highest and highest three quartiles. Differences in childhood 

measures of cardiometabolic risk between groups were established with t tests 

(parametric) or Mann Whitney U tests (non-parametric). These groups were lowest 

(most negative) versus highest and lowest versus highest three quartiles for fetal 

weight trajectory. The cardio-metabolic measures had been established by the data 

curation process, described in Chapter 2 (section 2.4.1) and were the same measures 

of glucose metabolism, lipid metabolism and vascular health examined in Chapter 4. 

A cut off of p<0.05 was considered significant. 

 

2.4.4.4.2 Childhood weight trajectory 

The process described in section 2.4.4.4.1 was repeated for childhood weight 

trajectory. Quartile boundaries were established for childhood weight trajectory, 

including data from the entire cohort of 81 participants. Childhood measures were 

compared between highest (most positive) versus lowest and also for the highest 

versus lowest three quartiles. Where any difference in childhood cardio-metabolic 

measure was established between groups (p<0.05), that grouping set was taken 

forward to determine differentially expressed metabolites (DEMs) and genes (DEGs). 

 

2.4.4.5 Establishing differentially expressed metabolites and genes between 

groups  
For metabolomic data, t tests were performed to establish DEMs, using scaled, 

normalised data (section 2.4.4.1.1). For transcriptomic data, edgeR® was used to 

establish DEGs.  

 

For all methods applied, a cut-off of p<0.05 was considered significant. For 

transcriptomic data, where a larger number of tests were performed in comparison to 

metabolomics, Benjamini Hochberg (BH) corrected p values were also reported. 
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However, for assessment of commonality, all results with unadjusted p<0.05 were 

included, to minimise type 2 errors i.e. reduce the risk of excluding a potentially 

significant DEG.  

 

2.4.4.6 Assessment for commonality and pathways analysis 
For fetal weight trajectory, DEMs identified by all sets of analyses were assessed for 

commonality. This process was repeated for childhood weight trajectory.  

 

This was repeated for DEGs, for fetal weight trajectory and then for childhood weight 

trajectory. Where sufficient DEMs and DEGs were identified, the web-based tool, 

WEB-based GEne SeT AnaLysis Toolkit (WebGestalt®) was used to perform GSEA, 

with the aim of uncovering potential pathways. 

 

2.4.4.7 Hypernetworks and random forests predicting the highest quartile of 

childhood systolic blood pressure 

To fully explain the next step in the analysis, a hypernetwork will be described.  

 

A node is the term used for an element within a network. These nodes, for example, 

may be genes or metabolites. An edge defines a relationship between two nodes. 

Hypernetworks are network structures in which an edge is not restricted to defining a 

relationship between two nodes. Instead, an edge may be shared between many 

nodes. Consequently, these structures can be used to model complex relationships 

linking multiple elements [288, 289]. Another feature of a hypernetwork is that two 

nodes can be connected by multiple edges. This allows ranking of relationships 

between nodes by the number of edges that connect them. The more edges that are 

shared between two nodes, the more similar they are.  

 

Hypernetworks can be useful for processing large ‘omic datasets. Formation of 

clusters from these datasets enables refinement of data into highly associated nodes 

[288, 289]. Furthermore, integration can be performed by correlating nodes from 

multiple ‘omic datasets. For example, gene expression data from transcriptomic and 

metabolites from metabolomic datasets can be correlated to assess similarities 

between all elements (genes and metabolites) from both datasets. Following 



 132 

integration, clustering allows refinement of two or more large ‘omic datasets to highly 

associated elements. 

 

Two hypernetworks were created using integrated metabolomic and transcriptomic 

data from the retrospective cohort of the Manchester BabyGRO Study. The process 

was undertaken for significant genes and metabolites identified from rank regression 

with fetal weight trajectory as the dependent variable. This was repeated using 

significant genes and metabolites identified from rank regression with childhood 

weight trajectory as the dependent variable (all p<0.05). These methods will be 

outlined here. 

 

Firstly, a correlation matrix of significant genes and metabolites (nodes) against non-

significant genes and metabolites (edges) was generated. Then, the correlation matrix 

was binarised. 1.5 SD of the R value distribution was used as the cut-off and only 

correlations that fell above 1.5 SD and below -1.5 SD were retained for the incidence 

matrix. For both fetal and childhood weight trajectory data, this equated to R>0.4 and 

R<-0.4. Next, the hypernetwork adjacency matrix was created by matrix multiplication. 

The adjacency matrix represented the number of shared edges between any pair of 

nodes. Finally, hierarchical clustering of the incidence matrix was undertaken to 

produce a list of genes and metabolites with a large number of shared edges. In a 

heatmap of nodes against nodes (i.e. the same genes and metabolites on the x and y 

axes), this was represented by a central cluster, where genes and metabolites 

exhibited a large number of shared edges. One heatmap was created for the 

hypernetwork based on fetal weight trajectory and another for the hypernetwork based 

on childhood weight trajectory. 

 

RFC to predict the highest quartile of childhood SBP was undertaken. RFC has been 

previously described (section 2.4.2.4) and the same methods were applied, using 

SMOTE to achieve more even group sizes and 1000 decision trees. The first RFC 

model included genes and metabolites from the central cluster of the hypernetwork for 

fetal weight trajectory. The second RFC included nodes from the central cluster for 

childhood weight trajectory. Boruta plots including ranked VIPs (genes and 

metabolites) were produced. ROC curves were generated and the AUC and OOB error 

rates reported. 
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2.4.5 Statistical power  
This study involved exploratory analyses investigating links that have not been 

examined previously. Studies that have assessed childhood cardio-metabolic 

indicators between SGA and AGA [184] or in relation to CU growth [172] included 

large sample sizes. In contrast, Ibanez et al. conducted a small study of 29 SGA and 

22 AGA children, involving longitudinal assessment from birth to age four years [173]. 

They reported higher fasting insulin at age four years in SGA compared with AGA, 

with a standardised effect size of 0.72. Based on these findings, for a study comparing 

SGA and AGA children, group sizes of 40 would give 90% power to detect this effect 

size (2-sided t-test at the 5% level). However, our specific selection criteria relating to 

higher FGR risk instead of SGA made calculating effect size from these studies 

inappropriate. Therefore, no formal power calculations have been performed. 

 

In our previous study comparing SGA CU and NCU, sample sizes of 8 and 10 were 

sufficient to identify differences in metabolism and gene expression [260]. This 

indicated that in our study of 81, where transcriptomic and metabolomic data were 

available on 31 and 26 respectively, sample size would be sufficient to identify 

differences in pathways [251, 252, 260, 290-292]. Furthermore, this supported our 

decision to allow participation in the study for those children wishing to undergo all 

clinical measurements, with the exception of venepuncture.
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Chapter 3. Description of the Study Cohorts 

3.1 Introduction 
 

In this chapter, the outcomes of recruitment into both cohorts for the Manchester 

BabyGRO Study will be described.  The analyses undertaken to address the potential 

for selection bias will also be explained. 

3.2 Methods 
 

Recruitment methods for both cohorts have been previously described in Chapter 2, 

section 2.2.  

 

To assess for selection bias within the prospective cohort, antenatal data were 

compared between pregnancies where the infant was retained in the study following 

birth and those pregnancies where the infant was not retained (see Figure 3.1). For 

both groups, consent to use these data had been obtained antenatally and no 

participants had given notification of withdrawal from the study.  For the retrospectively 

recruited cohort, antenatal data were compared between children who were brought 

for the measurements and children whose parents agreed but failed to attend the 

appointment.  

 

The decision to undertake these specific comparisons was based on the availability of 

consent for data use. In all these cases, pregnant women (prospective cohort) and 

parents of children approached for participation (retrospective cohort) had provided 

written or verbal consent.  

 

Δ 23 week EFW to BW centile was the measure of fetal weight trajectory used for 

these comparisons, not Δ 23 week EFW to BW centile divided by days, as reported in 

later chapters. This was considered acceptable because there was a strong positive 

correlation between Δ 23 week EFW to BW centile and Δ 23 week EFW to BW centile 

divided by days. This was true in both prospective and retrospective cohorts (R= 0.98, 

p= 2.2 x 10-16 in both cohorts).  
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For continuous data, t tests (parametric) or Mann Whitney U (non-parametric) tests 

were conducted for normally distributed (Shapiro Wilk p value >0.05) and non-normally 

distributed data respectively. For categorical data, Chi squared (where N≥5) and 

Fisher’s exact tests (where N<5) were performed. A p value <0.05 was considered 

significant. 

 

3.3 Prospective cohort 

3.3.1. Recruitment of participants for the prospective cohort 
The prospectively recruited cohort involved antenatal recruitment from the MPC. As 

outlined in Figure 3.1, of 155 pregnant women who were approached for consent 

between May 2017 and October 2018, 104 agreed to take part in the study and signed 

a consent form. 77 babies had measurements taken at birth. In total, 60 infants were 

measured at three months, 47 at six months and 45 at twelve months. 34 infants had 

measurements at all four timepoints. The most common reason given for non-

attendance was the inconvenience of travelling with small children. Two families 

relocated within the first three months, so did not attend any follow up visits. 

 

Data on method of feeding and age at weaning were available for 58/80 and 45/80 

participants respectively. 26 infants were breastfed for at least six months, 19 received 

a combination of breastmilk and formula and 13 were formula fed. In relation to age at 

weaning, complementary foods were introduced to three infants at four months, four 

at five months and 38 at six months.
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Figure 3. 1 CONSORT flow diagram outlining the recruitment and follow up process 
for the prospective cohort, including how many returned for follow up when invited at 
specific timepoints in the first postnatal year 

 
Figure 3.1. Of 60 infants measured at three months postnatal age, 57 had also had birth 

measurements (additional to birthweight). Of 47 measured at six months, 45 had been measured at 

birth, and of 45 measured at twelve months, 43 had been measured at birth.  

 

3.3.2 Comparison of those measured and those not measured at birth  
Tables 3.1, 3.2 and 3.3 show the antenatal characteristics of 80 participants who 

remained in the study following birth (including three who did not have birth 

measurements) and 24 who did not.
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Table 3. 1 Comparison of maternal abnormal serology between participants who 
remained in the study following birth and those who did not 

 In the study Not in the 

study 

Overall 

N 80 24 104 

Percentage with low 

PAPP-A (<0.415MoM) 

 

78% (63/80) 

 

 

75% (18/24) 

 

78% (81/104) 

Percentage with 

raised Inhibin A 

(>2MoM) 

 

18% (14/80) 

 

21% (5/24) * 

 

18% (19/104) 

Percentage with 

raised AFP (>2.2MoM) 

 

3% (2/80) 

 

8% (2/24) * 

 

4% (4/104) 

Percentage with 

raised hCG 

 

1% (1/80) ** 

 

0% (0/24) 

 

1% (1/104) 

Table 3.1. The percentages of mothers with low pregnancy associated plasma protein A, raised 

Inhibin A and raised alpha fetoprotein are shown for both groups; those participants who were 

measured at birth or whose mothers contacted us to remain in the study (N= 80) and those who were 

not measured at birth (N= 24). There were no significant differences between the two groups. The 

overall percentages are also shown. *One mother had a raised inhibin A and a raised α-fetoprotein. 

**Another participant (recruited from the NUPS2 cohort) had a raised hCG but no other abnormal 

serology. PAPP-A= Pregnancy associated plasma protein A, AFP= α-fetoprotein, hCG= human 

chorionic gonadotrophin.  
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Table 3. 2 Comparison of antenatal ultrasound markers relating to fetal growth 
restriction between participants who remained in the study following birth and those 
who did not 

  

p 

 

Mean difference 

[CI] 

 

In the study 

Mean (SD)/median 

[range] 

 

Not in the study 

Mean (SD)/median 

[range] 

N= 80 N= 24 

UtAD PI 0.98 - 0.99 [0.50-2.0] 0.97 [0.55-2.10] 

UtAD RI 0.55 -0.14 [-0.06, 0.03] 0.59 (0.09) 0.60 (0.11) 

23w EFW 

centile 

0.88 -0.95 [-13.9,12.0] 54.2 (25.6) 55.2 (27.1) 

BW centile 

(customised) 

0.27 - 22.6 [0.04-97.0] 27.4 [0.02-77.8] 

Δ 23 week 

EFW to BW 

centile 

0.55 -3.9 [-17.0, 9.3] -25.6 (25.0) -21.7 (27.1) 

Table 3.2. Results of independent samples t tests and Mann Whitney U tests are shown. There were 

no significant differences in these measures between the 80 participants in the study and the 24 who 

did not remain in the study following birth. UtAD= uterine artery Doppler, PI= pulsatility index, RI= 

resistance index, BW= birthweight, Δ= change in, 23w EFW= estimated fetal weight at 23 weeks 

gestation 
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Table 3. 3 Comparison of notching status between mothers of participants who 
remained in the study following birth and those who did not 

 In the study Not in the 

study 

Overall 

N 80 24 104 

Percentage with no 

notching 

68% (54/80) 

 

67% (16/24) 

 

67% (70/104) 

 

Percentage with 

unilateral notching 

24% (19/80) 

 

17% (4/24) 

 

22% (23/104) 

 

Percentage with 

bilateral notching 

9% (7/80) 17% (4/24) 11% (11/104) 

Table 3.3. The percentages of participants’ mothers with different degrees of notching are shown 

here. There was no difference found between those in the study and those not in the study (chi 

squared= 1.52, p= 0.47). The proportion with no notching were similar between those who remained 

in the study following birth and those who did not.  
 

Table 3.1 shows that the most common abnormal serological marker resulting in 

referral to the MPC was a low PAPP-A and the percentage of mothers with low PAPP-

A was similar between those who remained in the study (78%) and those who did not 

(75%). Table 3.2 demonstrates that there were no significant differences between 

UtAD PI, UtAD RI, 23 week EFW centile, birthweight centile, or Δ 23 week EFW to BW 

centile (all p>0.05). Table 3.3 shows that proportions of mothers with no notching on 

antenatal ultrasound at 23 weeks were similar between those who remained in the 

study following birth (68%) and those who did not (67%).  

 

Whilst these comparisons have focused on antenatal characteristics, it is also 

noteworthy that two out of 80 participants in the prospective cohort developed medical 

conditions that were detected postnatally. This will be discussed in further detail in 

Chapter 5, Results from analyses of the prospective cohort data.   
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3.4 Retrospective cohort 

3.4.1 Recruitment of participants for the retrospective cohort 
Mothers of all 226 eligible children (as outlined in Chapter 2, section 2.2.2), who had 

been seen in the MPC following abnormal serology indicating higher FGR risk were 

approached for recruitment. Of these, 58 attended for a clinic visit giving a recruitment 

rate of 26%. Subsequent attempts to contact mothers of 71 eligible children, who had 

participated in the NUPS yielded a recruitment rate of 32% (23 out of 71). Whilst these 

children were not age-matched individually, the median age of children who had 

attended from the MPC cohort was established prior to contacting mothers who had 

participated in NUPS. This allowed targeted recruitment of children with a median age 

of 5.7 +/- one year and with birthweight >10th and <90th centiles. 

 

Of the total 297 approached, 103 had agreed to attend and 69 attended the first 

appointment arranged. When re-contacted, 12 out of 34 who failed to attend the 

original appointment agreed to re-arrange. 9 attended the second appointment made, 

two attended a third and one participant attended a fourth appointment. In total, of 297 

potential participants approached for the study, 81 (27%) attended and 41 out of 81 

participants (51%) also agreed to venepuncture. 

 

Of the 103 who had initially agreed to attend, 22 did not attend at all. The majority of 

these were uncontactable after the first failure to attend. Of those who requested a re-

appointment, six failed to attend one and two failed to attend two further appointments 

arranged for them.
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Figure 3. 2 CONSORT flow diagram outlining the recruitment for the retrospective 
cohort, including how many attended from the two recruitment sources 

 

  
Figure 3.2. 226 eligible mothers who had been seen in the Manchester Placenta Clinic due to 

abnormal serology antenatally, where both mother and child were alive and the child was aged >3.0 

and <7.0 years, were approached for recruitment. Targeted recruitment of children born following 

pregnancies in the New Ultrasound Parameters Study involved approaching those aged 5.7 years 

(the median age of Manchester Placenta clinic recruits) +/- one year, whose birthweight was >10th 

and <90th centiles. Following this process, a recruitment pool of 71 was established.  In total, 81 

children were seen and 41 also had a fasting blood test.  NUPS= New Ultrasound Parameters Study. 

 

3.4.2 Comparison of those who did and did not attend (retrospective 

cohort) 
Antenatal data and birthweights were compared for participants who attended and 

those who did not attend the appointment after reading the information posted to them 

and providing informed verbal consent via telephone. Table 3.4 shows the 

percentages within each group of participants with low PAPP-A, raised Inhibin A and 

raised serum AFP.  
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Table 3. 4 Percentages of participants with abnormal serology, which acted as 
indications for referral to the Manchester Placenta Clinic 

Abnormal serological 

marker 

Attended Did not attend Overall 

N= 81 N= 22 N= 103 

Percentage with low PAPP-A 

(<0.415MoM) 

 

37% (30/81) 

 

23% (5/22) 

 

34% (35/103) 

Percentage with raised 

Inhibin A (>2MoM) 

 

26% (21/81) 

 

46% (10/22) 

 

30% (31/103) 

Percentage with raised AFP 

(>2.2MoM) 

 

5% (4/81) 

 

 

14% (3/22) 

 

7% (7/103) 

Table 3.4. For the three most prevalent abnormal serological indicators for referral to the Manchester 

Placenta Clinic, percentages of participants who displayed these are shown for the 81 who attended 

and 22 who did not. There were no significant differences between the two groups. Overall 

percentages combining both groups are also shown. Recruitment was from two pools and included 

healthy participants following healthy pregnancies. Therefore, columns do not total 100%; only 55 out 

of 81 (who attended) and 18 out of 22 (who did not attend) had abnormal serology.  Some participants 

had more than one abnormal serological marker (not shown).  Due to the low numbers of participants 

with raised hCG, comparisons were not made between those who attended and those who did not. 

There were no participants recruited on the basis of abnormal estriol. PAPP-A= Pregnancy 

associated plasma protein A, AFP= α-fetoprotein.   

 

No statistically significant differences were established. Table 3.4 does not address 

participants where more than one serological marker was abnormal. This was not 

considered necessary due to the groupings of “normal” “abnormal” or “unknown,” 

irrespective of which marker was abnormal, how many were abnormal and whether 

serology was measured in the first or second trimester. 

 

Tables 3.5 and 3.6 show comparisons of antenatal markers and notching status 

between mothers of 81 children who attended and 22 who did not.
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Table 3. 5 Comparison of antenatal markers relating to fetal growth restriction 
between those participants who attended for clinical measurements and those who 
did not 

  

P 

 

Mean difference 

[CI] 

 

81 who attended 

Mean (SD)/median 

[range] 

 

22 who did not 

attend 

Mean (SD)/median 

[range] 

UtAD PI 0.17 - 0.85 [0.42-1.87] 0.94 [0.51-2.32] 

UtAD RI 0.11 -0.04 [-0.10, 0.01] 0.54 (0.10) 0.58 (0.11) 

23w EFW 

centile 

0.81 -5.2 [-16.4, 6.0] 57.1 (22.4) 62.3 (23.0) 

BW centile  0.15 - 36.4 [0.4-99] 33.9 [0.3-74.6] 

Δ 23 week 

EFW to BW 

centile 

0.06 - -13.6 [-75.0, 46.7] -23.1 [-89.2, 13.8] 

Table 3.5. Results of independent samples t tests and Mann Whitney U tests are shown. Using a cut 

off of p<0.05, there were no significant differences in these measures between the 81 participants in 

retrospective cohort and the 22 who did not attend the visit(s). UtAD= uterine artery Doppler, PI= 

pulsatility index, RI= resistance index, BW= birthweight, Δ= change in, 23w EFW= estimated fetal 

weight at 23 weeks gestation
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Whilst antenatal variables did not differ between children who participated, and those 

who had agreed but did not attend, the Δ 23 week EFW to BW centile approached 

significance (p= 0.06), with a median Δ 23 week EFW to BW centile -13.6 for those 

who attended compared with -23.1 for those who did not. One likely explanation for 

this is that the proportions of MPC and NUPS recruits differed within the two groups 

i.e. 28% (23/81) of those who attended but only 14% (3/22) of those who did not attend 

had participated in NUPS. These mothers had not been followed up in the MPC due 

to increased risk of FGR, but instead were healthy mothers who had uncomplicated 

pregnancies, which could account for the less severe decrease in weight centile 

between 23 weeks gestation and birth in those who attended.  

 

 

Similar proportions of women in each group had exhibited no notching, unilateral and 

bilateral notching on UtAD at 23 weeks gestation (Table 3.6).
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Table 3. 6 Percentages of participants with unilateral, bilateral and no notching in 
uterine artery Doppler waveforms between groups 

 
 Attended Did not 

attend 

Overall 

N 81, Notching data 

available in 78 

22 100 

Percentage with no 

notching 

85% (66/78) 82% (18/22) 84% (84/100) 

Percentage with unilateral 

notching 

12% (9/78) 14% (3/22) 12% (12/100) 

Percentage with bilateral 

notching 

4% (3/78) 5% (1/22) 4% (4/100) 

Table 3.6. The percentages of participants with different degrees of notching are shown here. There 

was no significant difference in percentage of participants with no notching, unilateral and bilateral 

notching between children who attended and those who did not (chi squared= 0.10, p= 0.95). 

 

3.4.3 Characteristics of those who did and did not agree to bloods 
32 out of 58 (55%) children retrospectively recruited from the MPC, and 9 out of 23 

(39%) from NUPS agreed to fasting venepuncture. Table 3.7 shows the percentages 

of children from the MPC and from NUPS, who had samples for transcriptomic and 

metabolomic analyses.
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Table 3. 7 Proportions of participants from the Manchester Placenta Clinic and the 
New Ultrasound Parameters Study 

 Overall N % from MPC  % from NUPS 

Entire cohort 81 72 (58/81) 28 (23/81) 

Had venepuncture 41 78 (32/41) 22 (9/41) 

Transcriptomics 31 81 (25/31) 19 (6/31) 

Metabolomics 26 73 (19/26) 27 (7/26) 

Table 3.7. This table demonstrates the composition of subsets of participants who had venepuncture, 

and samples for transcriptomic and metabolomic analyses. These subsets were made up of participants 

from the two recruitment sources. MPC= Manchester Placenta Clinic, NUPS= New Ultrasound 

Parameters Study (of healthy, uncomplicated pregnancies). Proportions of participants from each 

recruitment source who had venepuncture were similar to the proportions in the overall cohort. For 

example, 28% of the entire cohort and 27% of the participants who had metabolomics samples were 

from NUPS. 

 

As shown in Table 3.8, proportions of males to females, gestational age at birth and 

age at visit were similar between the participants who agreed to venepuncture and 

those who did not. 

 

Table 3. 8 A summary of the characteristics of children who agreed and those who 
did not agree to venepuncture 

 
Characteristic Mean (SD) or Median [range] 

 Overall Venepuncture No venepuncture 

N 81 41 40 

Gestational age 

(days) 

279 [241, 297] 278 [241, 294] 280 [245, 297] 

Age at visit (years) 5.8 [3.2, 7.0] 5.95 [3.2, 7.0] 5.67 [3.4, 7.0] 

Sex M: F 44: 37 23: 18 21: 19 

Table 3.8. Demographics of children have been compared because they were involved in decision 

making, as well as the parents. Children who agreed were slightly older, but proportions of males and 

females were similar between those who did and did not agree. No statistically significant differences 

were found. M= male, F= female
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3.5 Summary 
 

3.5.1 Prospective cohort 
 

• There were no differences in maternal serology (Table 3.1) or antenatal 

markers relating to higher FGR risk (Tables 3.2 & 3.3) between participants in 

the study and those not in the study (where mothers had signed a consent 

form antenatally). 

 

3.5.2 Retrospective cohort 
 

• There were no differences in maternal serology (Table 3.4) between 

participants who attended and those who had agreed to attend and did not.  

• When assessing antenatal markers relating to higher FGR risk (Table 3.5), 

there was a tendency towards a more negative fetal weight trajectory for those 

who did not attend. 

• This may reflect differences in proportions of participants from MPC and NUPS 

in those who attended versus those who did not. 

• Despite this, overall, comparisons have not identified any significant differences 

in antenatal measures for either cohort.  

 
 

• For both cohorts, the most common reason given for non-attendance was 

difficulty in travelling with small children. Therefore other factors such as 

distance to the hospital, socio-economic group, method of transport available 

and parity may be factors to consider when further exploring the potential for 

selection bias. 
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Chapter 4. Analyses of Data from the Retrospective Cohort 

4.1 Introduction 
 

Exposures in fetal life could play a crucial role in determining an individual’s risk for 

later-life cardio-metabolic disease [9, 293-295]. Previous studies examining these 

links have treated SGA as a surrogate marker for FGR, using these terms 

synonymously [90, 296]. However, using SGA to detect FGR would fail to detect 

neonates who had been exposed to FGR antenatally but with a birthweight >2nd centile 

(See Chapter 1, section 1.3). In other studies, reliance on SGA to represent an 

adverse intrauterine environment may be necessary due to limitations in antenatal 

data available. However, antenatal factors that are associated with greater FGR risk 

may be better representors. 

 

Studies in children born SGA show that differences in indicators of cardio-metabolic 

risk can start to present in childhood, with evidence of changes in glucose metabolism 

[195], lipid metabolism [212] and vascular health [297] measures. This could suggest 

that, following exposure to FGR or an intrauterine environment linked with greater FGR 

risk, changes in these indicators may be detectable in childhood. Using data from the 

retrospective cohort, these potential relationships have been investigated. 

 

4.2 Methods 
 

Details of the recruitment process have been described in Chapter 2, sections 2.2.2 & 

2.2.3.  

Details of clinical measurements have been described in Chapter 2, sections 2.3.3.1 

& 2.3.3.2.  

Statistical analysis methods have been described in Chapter 2, section 2.4.2. 

4.3 Results  

4.3.1 Recruitment  
The numbers of participants recruited have been previously reported in Chapter 3, 

section 3.4.1. These are also summarised in Chapter 3, Figure 3.2. The overall 
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recruitment rate was 27% (81/297). Of these, 51% (41/81) had fasting serum samples 

collected. 

 

4.3.2 Baseline characteristics 
The baseline characteristics of participants in the retrospective cohort are shown in 

Table 4.1. Participants from the two recruitment pools had similar mean gestational 

ages. Recruitment methods resulted in similar median ages at visit. The MPC group 

comprised a greater proportion of males compared with the NUPS group. Birthweight 

centile was also lower for the MPC group compared with NUPS.
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Table 4. 1 Baseline characteristics of participants in the retrospective cohort of the 
Manchester BabyGRO Study from two recruitment sources 

 
Characteristic Mean (SD) or Median [range] 

 Overall     MPC NUPS 

N 81 58 23 
Gestational age at 

birth (days) 

277 (12) 

 

276 (13) 

 

280 (10) 

 

Birthweight centile 

(customised) 

37 (28) 

 

33 (29) 

 

48 (22) 

 

Age at visit (years) 5.8 [3.2-7.0] 

 

5.7 [3.8-7.0] 

 

5.9 [3.2-7.0] 

 
Sex M: 44 F: 37 M: 34 F: 24 M: 10 F: 13 

Ethnicity W: 55 B: 10 
A: 13 M: 3 

W: 36 B: 7 
A: 12 M: 3 

W: 19 B: 3  
A: 1 M: 0 

SGA (BW <2nd centile) 10 10 0 

Table 4.1. The baseline characteristics of participants recruited overall and from the two recruitment 

sources are shown. Gestational age at birth and median age at visit between participants recruited 

from MPC and NUPS were similar. Birthweight centile lower in children recruited from the MPC 

compared with NUPS. Overall, there were more males than females recruited, and this was also true 

for the MPC cohort, whereas the NUPS group comprised a greater proportion of females. Ethnicity 

descriptors were grouped broadly to allow comparisons (e.g. South Asian and East Asian were both 

categorised as “Asian”). MPC= Manchester Placenta Clinic, NUPS= New Ultrasound Parameters 

Study. M (sex) = male, F= female, W= white, B= black, A= Asian, M(ethnicity)=mixed, BW= 

birthweight.  

 

Whilst the proportion of White participants from the MPC (62%) was similar to that in 

the entire cohort (68%), the NUPS group comprised a greater proportion (83%). 

4.3.3 Associations between antenatal measures of FGR risk and fetal 

weight trajectory 
Fetal weight trajectory correlated negatively with UtAD RI, PI and notching, but not 

with placental diameter, width or depth (all p>0.05). The results from these 

correlations are shown in Table 4.2.
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Table 4. 2 Correlations between antenatal measures related to greater risk of fetal 
growth restriction and fetal weight trajectory 

Variable N R or tau p 

UtAD PI 79 -0.19 0.016 

Notching (ranked) 78 -0.22 0.017 

UtAD RI 79 -0.19 0.018 

Placental width 80 0.13 0.088 

Placental diameter 80 -0.10 0.370 

Placental depth 80 0.05 0.492 

Table 4.2. Fetal weight trajectory (change in centile between 23 week estimated fetal weight and 

birthweight, divided by days in between the two timepoints) was normally distributed. Parametric 

(Pearson’s product moment correlation coefficient) tests were performed where the antenatal measure 

was normally distributed and non-parametric (Kendall’s tau) where it was not. Results are presented in 

ascending order of p value, with significant values (p<0.05) in bold. Notching was ranked as 2 if bilateral 

notching was present, 1 if unilateral and 0 if there was no notching. Fetal weight trajectory correlated 

with mean (of right and left) UtAD PI, mean UtAD RI and notching rank. Notching status was not 

available for three participants. Of these, UtAD RI and PI were not available for two participants. Of 

these two, placental size measurements were not available for one participant, UtAD PI= uterine artery 

Doppler pulsatility index, UtAD RI= uterine artery Doppler resistance index.  

 

 
Correlations were also determined between UtAD PI and RI (tau= 0.87, p= 2.2 x 10-

16) and between UtAD PI and notching rank (tau= 0.41, p= 9.88 x 10-6). Therefore, 

UtAD PI was taken as a representative marker of these variables for further 

correlations and regression analyses (See Chapter 2, section 2.4.1.3). Figure 4.1. is 

a scatterplot of fetal weight trajectory against UtAD PI.
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Figure 4. 1 Scatterplot demonstrating the correlation between uterine artery Doppler 
pulsatility index and fetal weight trajectory 

 

  
Figure 4.1. This scatterplot demonstrates a negative correlation between 23 week uterine artery 

Doppler pulsatility index (x axis) and fetal weight trajectory (change in centile between 23 week 

estimated fetal weight and birthweight, divided by days in between the two timepoints, y axis). Whilst 

a statistically significant association exists, biological significance may be questionable within this 

small cohort. In pregnancies with higher impedance to Uterine artery blood flow, there is a greater 

drop in centiles between mid-gestation and birth. UtAD PI= uterine artery Doppler pulsatility index 

(mean of right and left), SDS= standard deviation score  

 

4.3.4 Associations between fetal weight trajectory and childhood weight 

trajectory 
There was a strong negative correlation between fetal weight trajectory and 

childhood weight trajectory (tau= -0.35, p= 3.687 x 10-6). Figure 4.2 is a scatterplot 

illustrating the clear relationship between a greater drop in centiles for fetal weight 

between mid-gestation and birth and greater childhood weight gain.
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Figure 4. 2 Scatterplot demonstrating the correlation between fetal weight trajectory 
and childhood weight trajectory 

 

  
 
Figure 4.2. This scatterplot demonstrates a negative association between fetal weight trajectory 

(change in centile from 23 week estimated fetal weight to birthweight, divided by days in between the 

two timepoints, x axis) and childhood weight trajectory (change in weight standard deviation score 

between birth and childhood, divided by the age in years, y axis). In individuals who had 

demonstrated a greater centile loss as fetuses, greater SDS gain was seen in early childhood. 

 
 
 

Figure 4.3 illustrates that fetuses who underwent the greatest reduction in centiles 

between mid-gestation and birth, had the greatest increase in weight SDS between 

birth and childhood.  
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Figure 4. 3 Illustrative figure to demonstrate that individuals who had a greater 
decrease in centiles as fetuses showed greater gain in weight between birth and 
childhood 

 

 

Figure 4.3. In this figure, the blue line represents individuals with the lowest quartile (most negative) of 

fetal weight trajectory (change in centile from 23 week estimated fetal weight to birthweight divided by 

days). The green line represents individuals in the highest quartile for fetal weight trajectory. 

Individuals who had a more negative fetal weight trajectory displayed a greater childhood weight 

trajectory. Although the medians of both groups have been plotted for 23 week estimated fetal weight 

centile, birthweight SDS and child weight SDS, this figure is illustrative only. Scales cannot be 

compared directly because 23 week estimated fetal weight centile is a customised centile. Birthweight 

SDS and child weight SDS are standardised centiles based on World Health Organization data. 

EFW= estimated fetal weight, SDS= standard deviation score. 

 

4.3.5. Associations between childhood weight trajectory and childhood 

measures of cardio-metabolic risk 
Childhood weight trajectory correlated with childhood biochemical and clinical markers 

of lipid metabolism (p<0.05) and markers of vascular health (SBP and brachial AI, both 

p<0.01). These are shown in Table 4.3. Childhood weight trajectory and fasting serum 

insulin were not significantly correlated (p= 0.051), but a trend towards a positive 

relationship was observed.
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Table 4. 3 Correlations between childhood weight trajectory and childhood indicators 
of cardio-metabolic risk 

Childhood measure tau  P 

SBP  0.37 2.896 x 10-6 

BMI SDS  0.23 0.002 

AC 0.22 0.003 

Brachial AI 0.23 0.006 

MUAC  0.21 0.006 

 % fat 0.20 0.011 

Sum SF 0.17 0.030 

HDL -0.22 0.046 

Insulin 0.23 0.051 

TC 0.15 0.055 

Table 4.3. Shapiro-Wilk test indicated that childhood weight trajectory (change in weight standard 

deviation score between birth and childhood, divided by the age in years) was not normally distributed 

(p=0.003). Therefore, results of Kendall’s tau (non-parametric) tests are shown. Results are 

presented in ascending order of p value, with significant values (p<0.05) in bold. Childhood weight 

trajectory correlated with clinical measures of lipid metabolism (BMI SDS, abdominal circumference, 

MUAC, %fat) but not with thigh circumference. Childhood weight trajectory also correlated with a 

biochemical measure of lipid metabolism (HDL) and markers of vascular health (SBP and brachial AI). 

SBP= systolic blood pressure, BMI SDS= body mass index standard deviation score, AC= abdominal 

circumference, brachial AI= brachial augmentation index, %fat= percentage fat, sum SF= sum of 

biceps, triceps, subscapular, suprailiac and abdominal skinfold thicknesses, HDL= high density 

lipoprotein, TC= thigh circumference 
 

Of all childhood measurements tested, SBP displayed the strongest correlation with 

childhood weight trajectory (tau= 0.37, p= 2.896 x 10-6). Figure 4.4 is a scatterplot 

demonstrating this link.
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Figure 4. 4 Scatterplot demonstrating the correlation between childhood weight 
trajectory and childhood systolic blood pressure 

 
Figure 4.4. This scatterplot demonstrates a positive correlation between childhood weight trajectory 

(change in weight standard deviation score between birth and childhood, divided by the age in years, x 

axis) and childhood systolic blood pressure (in mmHg, y axis). SBP= systolic blood pressure.
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This strong association remained when controlling for height SDS (tau= 0.37, p= 2.427 

x 10-6), which is known to influence childhood SBP [298-300].  

 

Further partial correlations between childhood weight trajectory and childhood 

measures of cardio-metabolic risk, controlling for birthweight SDS confirmed the 

presence of associations between childhood weight trajectory and childhood markers 

of lipid metabolism (excluding HDL, R= -0.16, p= 0.147) and vascular health, but not 

glucose metabolism (insulin, R= 0.20, p= 0.086). These are shown in Table 4.4. 

 

Table 4. 4 Correlations between childhood weight trajectory and childhood measures 
of cardio-metabolic risk, controlling for birthweight SDS 

Childhood measure tau  P 

BMI SDS  0.38 8.020 x 10-7 

MUAC  0.34 5.991 x 10-6 

AC 0.34 8.975 x 10-6 

SBP  0.28 2.94 x 10-4 

TC 0.25 9.336 x 10-4 

 % fat 0.26 0.001 

Sum SF 0.21 0.006 

Brachial AI 0.20 0.017 

Insulin 0.20 0.086 

HDL -0.16 0.147 

Table 4.4. Childhood weight trajectory (change in weight standard deviation score between birth and 

childhood, divided by the age in years) was not normally distributed. Therefore, non-parametric 

(Kendall’s tau) tests were performed. Results are presented in ascending order of p value, with 

significant values (p<0.05) in bold. When controlling for birthweight SDS, childhood weight trajectory 

correlated with clinical measures of lipid metabolism (BMI SDS, MUAC, AC, TC, %fat, sum of skinfolds), 

but not HDL (a biochemical measure of lipid metabolism). When controlling for birthweight SDS, 

childhood weight trajectory also correlated with markers of vascular health (SBP and brachial AI). BMI= 

body mass index, SDS= standard deviation score, MUAC= mid-upper arm circumference SBP= systolic 

blood pressure, TC= thigh circumference, % fat= percentage fat, sum SF= sum of biceps, triceps, 

subscapular, suprailiac and abdominal skinfold thicknesses, brachial AI= brachial augmentation index, 

HDL= high density lipoprotein.
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4.3.6 Associations between uterine artery Doppler pulsatility index or 

fetal weight trajectory and childhood indicators of cardio-metabolic risk 
 
4.3.6.1 Associations between uterine artery Doppler pulsatility index and 

childhood indicators of cardio-metabolic risk 
When associations were examined between UtAD PI (an antenatal marker of higher 

FGR risk) and childhood indicators, a weak negative correlation with sum SF was 

observed. This is shown in Table 4.5, which also demonstrates that no other 

childhood measures correlated with UtAD PI (p>0.05). 

 

Table 4. 5 Correlations between uterine artery Doppler pulsatility index and 
childhood indicators of cardio-metabolic risk 

Variable N Tau P 

Sum SF 78 -0.16 0.043 

BMI SDS 79 -0.13 0.094 

Insulin 36 0.15 0.215 

HDL 39 0.14 0.221 

AC 79 -0.09 0.239 

MUAC 79 -0.07 0.389 

%fat 73 0.06 0.478 

Brachial AI 64 0.06 0.498 

SBP 76 0.04 0.587 

TC 79 0.01 0.936 

Table 4.5. Correlations between uterine artery Doppler pulsatility index, the selected representative 

antenatal marker related to higher FGR risk and childhood measures of cardio-metabolic risk were 

examined. Shapiro-Wilk test indicated that UtAD PI was not normally distributed (p= 0.003), so results 

of Kendall’s rank (non-parametric) tests are shown. Results are presented in ascending order of p 

value, with significant values (p<0.05) in bold. UtAD PI was weakly and negatively correlated with 

childhood sum of skinfold thicknesses (p<0.05); children who had experienced the greatest 

impedance to uterine blood flow in pregnancy may demonstrate lower subcutaneous adiposity in 

childhood. Also, there was a potentially significant association between UtAD PI and BMI SDS. Sum 

SF= sum of biceps, triceps, subscapular, suprailiac and abdominal skinfold thicknesses, BMI= body 

mass index, SDS= standard deviation score, HDL= high density lipoprotein, AC= abdominal 

circumference, MUAC= mid-upper arm circumference, %fat= percentage fat, brachial AI= brachial 

augmentation index, SBP= systolic blood pressure, TC= thigh circumference.
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4.3.6.2 Associations between fetal weight trajectory and childhood measures 

of cardio-metabolic risk 
When examining links between fetal weight trajectory and childhood measures of 

cardio-metabolic risk, negative correlations were found between fetal weight trajectory 

and SBP (R= -0.18, p= 0.02) and brachial AI (R= -0.26, p= 0.04), the two markers of 

vascular health included in these analyses. 

 

Results of correlations between fetal weight trajectory and childhood measures are 

shown in Table 4.6. Figures 4.5 & 4.6 are scatterplots demonstrating the significant 

associations with markers of vascular health. 

 

Table 4. 6 Correlations between fetal weight trajectory, and childhood measures of 
cardio-metabolic risk 

Variable N R or tau P 
SBP  77 -0.18 0.023 

Brachial AI  65 -0.26 0.037 
HDL  39 0.30 0.066 

MUAC  80 0.12 0.112 
Sum SF  79 -0.08 0.288 

TC  80 0.12 0.300 
AC  80 0.07 0.335 

BMI SDS  80 0.05 0.480 
Insulin  36 -0.12 0.483 
 % fat  74 -0.05 0.541 

Table 4.6. Fetal weight trajectory (change in centile between 23 week estimated fetal weight and 

birthweight, divided by days in between the two timepoints) was normally distributed. Parametric 

(Pearson’s product moment correlation coefficient) tests were performed where the childhood indicator 

was normally distributed and non-parametric (Kendall’s tau) where it was not. Results are presented in 

ascending order of p value, with significant values (p<0.05) in bold. Fetal weight trajectory correlated 

with both childhood indicators of vascular health; systolic blood pressure and brachial augmentation 

index. Individuals with the greater decrease in centiles for fetal weight trajectory had higher systolic 

blood pressures and augmentation indices. SBP= systolic blood pressure, brachial AI= brachial 

augmentation index, HDL= high density lipoprotein, MUAC= mid-upper arm circumference, sum SF= 

sum of biceps, triceps, subscapular, suprailiac and abdominal skinfold thicknesses, TC= thigh 

circumference, AC= abdominal circumference, BMI SDS= body mass index standard deviation score, 

%fat= percentage fat.
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Figure 4. 5 Scatterplot demonstrating the correlation between fetal weight trajectory 
and childhood systolic blood pressure 

 

Figure 4.5. This scatterplot demonstrates a negative correlation between fetal weight trajectory 

(change in centile from 23 week estimated fetal weight to birthweight, divided by days in between the 

two timepoints, x axis) and childhood systolic blood pressure (y axis). Kendall’s tau, tau= -0.18, p= 

0.023. Individuals who had experienced a greater decrease in fetal weight trajectory had higher 

systolic blood pressure in childhood. SBP= systolic blood pressure.
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Figure 4. 6 Scatterplot demonstrating the correlation between fetal weight trajectory 
and childhood brachial augmentation index 

 

 
Figure 4.6. This scatterplot demonstrates a negative correlation between fetal weight trajectory 

(change in centile from 23 week estimated fetal weight to birthweight, divided by days in between the 

two timepoints, x axis) and childhood brachial augmentation index (y axis). Pearson’s product 

moment correlation coefficient, R= -0.26, p= 0.037. Individuals who had experienced a greater drop in 

fetal weight trajectory had higher (less negative) brachial augmentation indices in childhood.  Brachial 

AI= brachial augmentation index.
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4.3.6.3 Antenatal measures related to greater FGR risk and childhood weight 

trajectory 
There were no significant associations between UtAD PI, UtAD RI, notching or 

placental measurements and childhood weight trajectory (all p>0.05; Table 4.7).  

 

Table 4. 7 Correlations between antenatal measures related to greater risk of fetal 
growth restriction and childhood weight trajectory 

Variable N tau P 

Notching  78 0.16 0.078 

Placental depth 80 -0.12 0.135 

Placental diameter 80 -0.11 0.142 

Placental width 80 -0.10 0.184 

UtAD PI 79 0.09 0.226 

UtAD RI 79 0.09 0.244 

Table 4.7. Shapiro-Wilk test indicated that childhood weight trajectory (change in weight standard 

deviation score between birth and childhood, divided by the age in years) was not normally distributed 

(p= 0.003). Therefore, results of Kendall’s tau (non-parametric) tests are shown. Results are presented 

in ascending order of p value, with significant values (p<0.05) in bold. Childhood weight trajectory did 

not correlate with any antenatal measures linked to higher FGR risk. Notching was ranked as 2 if 

bilateral notching was present, 1 if unilateral and 0 if there was no notching. UtAD PI= uterine artery 

Doppler pulsatility index, UtAD RI= uterine artery Doppler resistance index 

 

 

Table 4.8 summarises the significant associations found between antenatal measures 

or fetal weight trajectory and childhood indicators of cardio-metabolic risk. 
 

Table 4. 8 Summary of associations between antenatal measures or fetal weight 
trajectory and childhood indicators of cardio-metabolic risk 

Antenatal/Fetal 
variable 

Childhood 
measure 

R or tau p 

Fetal weight 
trajectory 

SBP -0.18 0.023 

Fetal weight 
trajectory 

Brachial AI -0.26 0.037 

UtAD PI Sum SF -0.16 0.043 

Table 4.8. This table summarises the significant associations that were found between antenatal 

measures or fetal weight trajectory and childhood indicators. Results are presented in ascending 

order of p value. All p values were <0.05 and are shown in bold. Fetal weight trajectory= change in 

centile from 23 week estimated fetal weight to birthweight, divided by days in between the two 

timepoints, SBP= systolic blood pressure, brachial AI= brachial augmentation index, UtAD PI= uterine 

artery Doppler pulsatility index, sum SF= sum of biceps, triceps, subscapular, suprailiac and 

abdominal skinfold thicknesses 
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Since SBP in children may be influenced by height as well and age and sex, a partial 

correlation to test the association between fetal weight trajectory and SBP, controlling 

for height was performed. This was significant (R= -0.21, p= 0.009). As described 

previously, height was not included in regression models, following the results of DAGs 

(Chapter 2, section 2.4.2.2). 

 

Figure 4.7 is a circos plot, which summarises the correlations established.
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Figure 4. 7 Circos plot demonstrating correlations between uterine markers related to higher FGR risk, fetal weight trajectory, 
childhood weight trajectory and childhood measures of cardiometabolic risk 

Figure 4.7. Positive (blue) and negative (black) correlations are shown (p≤0.05). Line weight reflects strength of the association. The following were 
established; negative correlations between antenatal variables and fetal weight trajectory, negative correlation between fetal weight trajectory and childhood 
weight trajectory, positive correlation between childhood weight trajectory and cardio-metabolic risk indicators. UtAD RI= uterine artery Doppler resistance 
index, UtAD PI= uterine artery Doppler pulsatility index, fetal weight trajectory= change in centile between 23 week estimated fetal weight and birthweight 
(divided by days in between the two timepoints), childhood weight trajectory= change in weight standard deviation score between birth and childhood (divided 
by the age in days), SBP= systolic blood pressure, BMI SDS= body mass index standard deviation score, AC= abdominal circumference, brachial AI= 
brachial augmentation index, MUAC= mid-upper arm circumference, %fat= percent fat, sum SF= sum of biceps, triceps, subscapular, suprailiac and 
abdominal skinfold thicknesses, HDL= high density lipoprotein 
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4.3.7 Linear regression analyses for childhood measurements of systolic 
blood pressure, brachial augmentation index and sum of skinfold 
thicknesses 
 

4.3.7.1 Linear regression model with childhood log10 (systolic blood pressure) 
as the dependent variable  
Log10 (SBP) was the dependent variable and fetal weight trajectory, birthweight SDS, 

childhood weight trajectory, age, sex and ethnicity were independent variables. 

Childhood weight trajectory was a significant predictor of log10(SBP) (β= 0.083, 95% 

CI 0.036 to 0.131, p= 0.001, overall model R2= 0.32), whereas fetal weight trajectory 

(p= 0.39), birthweight SDS (p= 0.45), age (p= 0.16), sex (p= 0.98) and ethnicity (p= 

0.31) were not.  

 

4.3.7.2 Linear regression model with childhood brachial augmentation index as 
the dependent variable 
Brachial AI was the dependent variable and fetal weight trajectory, childhood weight 

trajectory, age, sex and ethnicity were independent variables. Age was a significant 

indicator of brachial AI (β= -6.01, 95% CI -9.741 to -2.268, p= 0.002, overall model 

R2= 0.30), whereas fetal weight trajectory (p= 0.28), childhood weight trajectory (p= 

0.25), sex (p= 0.96) and ethnicity (p= 0.24) were not. 

 

4.3.7.3 Linear regression model with childhood log10 (sum of skinfold 
thicknesses) as the dependent variable 
When correlations from a literature-based DAG linking UtAD PI to childhood sum SF 

were tested, no continuous variables correlated with both UtAD PI and childhood sum 

SF (Chapter 2, Section 2.4.2.2.3). Although childhood weight trajectory correlated with 

childhood sum SF (tau= 0.17, p= 0.03), there was no significant correlation with UtAD 

PI (tau= 0.09, p= 0.23). 

 

The correlation between Log10(sum SF) and log10(UtAD PI) was potentially significant 

(R= -0.2, p= 0.09). Therefore, a linear regression model with Log10(sum SF) as the 

dependent variable and independent variables of log10(UtAD PI), age, sex and 

ethnicity was constructed. Sex was a significant indicator of log10(sum SF) (β= -0.079, 
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95% CI -0.145 to -0.013, p= 0.02, overall model R2= 0.14). Log10 (UtAD PI) was a 

potentially significant indicator of log10(sum SF) (β= -0.228, 95% CI -0.458 to 0.001, 

p= 0.051), whereas age (p= 0.244) and ethnicity (p= 0.395) were not. 

 

4.3.7.4 Summary of regression models and assessment of magnitude 
In summary, results from regression models demonstrated that age and sex were the 

most significant contributors to variation in brachial AI and sum SF respectively. For 

log10(SBP), childhood weight trajectory was a significant indicator of log10(SBP).  

 

Table 4. 9 Summary of findings from regression models 

Dependent variable in 
regression model 

Overall 
model fit, R2 

Significant/potentially 
significant indicator 

P value of 
indicator 

Log10 (SBP) 0.32 Childhood weight 
trajectory 

0.001 

Brachial AI 0.30 Age 0.002 

Log10 (Sum SF) 0.14 Sex 
Log10 (UtAD PI) 

0.020 
0.051 

Table 4.9. This table summarises the significant contributors to variation in childhood indicators of 
cardio-metabolic risk, for each regression model. Systolic blood pressure and sum of skinfolds were 
not normally distributed. Logarithm transformation was undertaken prior to their inclusion in 
regression analyses.  SBP= systolic blood pressure, sum SF= sum of skinfolds. 
 

To aid interpretability of magnitude of the correlation, simple linear regression 

models with SBP as the dependent variable were constructed.  A regression model 

with SBP (not transformed) as the dependent and childhood weight trajectory (not 

divided by age) resulted in a β coefficient of 3.94, suggesting that for every 1 SD 

higher the childhood weight trajectory (not divided by days), SBP was higher by 

3.9mmHg. Where fetal weight trajectory (not divided by days) was the dependent 

variable, β coefficient was -0.09. Therefore, for every decrease of ten centiles 

between mid-gestation and birth, childhood SBP was higher by 0.9mmHg. Due to the 

existence of studies associating birthweight with childhood SBP and to aid 

comparisons, this was repeated with birthweight SDS, and then with birthweight (kg) 

as the independent variable. β coefficients were -2.76 and -5.47 respectively.  

 
Based on findings in Table 4.9, and the significant negative association between fetal 

and childhood weight trajectories (see section 4.3.4), we postulated that childhood 

weight trajectory could link fetal weight trajectory to childhood SBP (see section 
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4.3.6.2). Table 4.10 illustrates these correlations within the 58 participants from the 

MPC, which are all significant.  

 

Table 4. 10 Triad of correlations in participants recruited from the Manchester 
Placenta Clinic 

Variables Tau P value 
Fetal weight trajectory, 

childhood weight trajectory 

-0.31 6.39 x 10-4 

Childhood weight trajectory, 

SBP 

0.35 2.25 x 10-4 

Fetal weight trajectory, SBP -0.20 0.033 
Table 4.10. This table shows that the triad of correlations between fetal weight trajectory, childhood 
weight trajectory and childhood SBP that were present in the entire cohort, were also present in the 
subgroup of 58 participants recruited from the Manchester Placenta Clinic. Results are presented in 
ascending order of p value, with significant values (p<0.05) in bold. Fetal weight trajectory= change in 
23 week EFW to BW centile, divided by days, Childhood weight trajectory= change in weight standard 
deviation score between birth and childhood, divided by the age in years, SBP= systolic blood 
pressure. 
 

4.3.8 Random Forest Classification  
RFC demonstrated that maternal and antenatal variables combined with 23 week 

EFW, fetal weight trajectory and birthweight SDS can predict the highest quartiles of 

childhood indicators of cardio-metabolic risk (Table 4.11).  
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Table 4. 11 Receiver operating characteristic area under the curve and out of bag 
error rate generated by random forest models for each childhood outcome variable 

Outcome measure AUC OOB error rate (%) 
HDL 0.98 8.2 

MUAC 0.98 11.3 

TC 0.98 10.5 

SBP 0.97 13.5 

BMI SDS 0.97 11.3 

Sum SF 0.96 8.3 

AC 0.96 8.0 

Brachial AI 0.95 10.5 

%fat 0.95 14.5 

Insulin 0.92 17.5 
Table 4.11. Area under the curve and out of bag error rate are shown for each random forest model, 
predicting the highest quartile of each childhood measure of cardio-metabolic risk listed. The random 
forest models are listed in descending order by area under the curve. All models demonstrated that 
maternal and antenatal markers in combination with measures of fetal growth and birthweight SDS can 
predict childhood indicators with AUC≥ 0.92.  AUC= area under the curve, OOB error rate= out of bag 
error rate (performed on the data which was not subsampled to generate each random forest)  
 

Boruta plots and ROC curves were produced for each RFC model. As examples, the 

plots for SBP are shown in figures 4.8 & 4.9. Whilst these illustrate the variables which 

were confirmed as important within the model, they cannot be used to assess relative 

magnitude of importance for each variable. Instead, in addition to the AUCs and OOB 

error rates shown (Table 4.11), Figure 4.10 summarises the highest five ranking VIPs 

for each childhood outcome measure. These are illustrated as pentagons in Figures 

4.11 to 4.15 to enable comparisons. 
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Figure 4. 8 Boruta Plot for childhood systolic blood pressure 

  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.8. This Boruta plot illustrates the importance of all attributes i.e. variables included as potential predictors. The blue boxes illustrate the noise present 
within the model. All variables that were confirmed as important are shown in green. One variable, maternal ethnicity (shown in red) was rejected, indicating 
that within this model, the other variables were more important. Variables (right to left): 1= maternal diastolic blood pressure, 2= birthweight standard 
deviation score, 3= parity  4= notching (ranked as bilateral, unilateral or none) 5= change in centile between 23 weeks and birth, divided by days 6= placental 
diameter 7= placental depth 8= placental width 9= 23 week estimated fetal weight centile 10= uterine artery Doppler pulsatility index 11= maternal body mass 
index 12= uterine artery Doppler resistance index 13= maternal systolic blood pressure 14= maternal serology 15= lower limit of noise, 16= maternal ethnicity 
17= noise 18= upper limit of noise. VIP= variable of importance 

VIP 
score 

 

Variable 
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Figure 4. 9 Receiver operating characteristic curve for childhood systolic blood pressure 

 

 

 

 
Figure 4.9. This receiver operating characteristic curve based on data that has not been randomly sampled for the construction of the random forest model, 
demonstrates a high area under the curve of 0.972. False positive rate is on the x axis and true positive rate on the y axis. 
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Figure 4. 10 Summary of all random forest models 

Figure 4.10. This figure shows the top five variables of importance (yellow) for each of the ten random forest models created. For each predictor variable, the 
total number of times that variable features in the top five ranked variables of importance is shown. These are variables that represent maternal, antenatal, 
and fetal growth measures. BMI SDS= body mass index standard deviation score, SBP= systolic blood pressure, DBP= diastolic blood pressure, UtAD RI= 
uterine artery Doppler resistance index,  UtAD PI= uterine artery Doppler pulsatility index, fetal weight trajectory= change in centile between 23 week 
estimated fetal weight and birthweight, divided by days in between the two timepoints,  EFW=  estimated fetal weight (at 23 weeks gestation), BW SDS= 
birthweight standard deviation score, MUAC= mid-upper arm circumference, TC= thigh circumference, BMI SDS= body mass index standard deviation score, 
% fat= percentage fat, Sum SF= sum of biceps, triceps, subscapular, suprailiac and abdominal skinfold thicknesses, AC= abdominal circumference, HDL= 
high-density lipoprotein 
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Figure 4. 11 Top five ranked variables of importance for serum insulin, a biochemical marker of glucose metabolism 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.11. The top five ranked variables of importance from the random forest model to predict the highest quartile of child serum insulin concentration were 
all antenatal variables linked with higher FGR risk in pregnancy. UtAD PI= uterine artery Doppler pulsatility index (mean of right and left), UtAD RI= uterine 
artery Doppler resistance index (mean of right and left). Notching was ranked as 2 if bilateral, 1 if unilateral and 0 if there was no notching.
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Figure 4. 12 Top five ranked variables of importance for mid-upper arm circumference and thigh circumference, markers of 
peripheral adiposity 

 

 

 
 

Figure 4.12. The top five ranked variables of importance from random forest models to predict the highest quartile of child mid-upper arm circumference and 
thigh circumference are shown. Placental depth and notching, both antenatal markers linked to higher fetal growth restriction risk, were common to both sets 
of top ranked VIPs.  For both outcome measures, a combination of maternal and antenatal measures were in the top five VIPs. Antenatal markers, UtAD 
pulsatility index and resistance index, as well as notching and placental depth were important predictors of the highest quartile of mid-upper arm 
circumference. UtAD PI= uterine artery Doppler pulsatility index (mean of right and left), UtAD RI= uterine artery Doppler resistance index (mean of right and 
left), BMI= body mass index, SBP= systolic blood pressure, DBP= diastolic blood pressure. Notching was ranked as 2 if bilateral, 1 if unilateral and 0 if there 
was no notching.
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Figure 4. 13 Top five ranked variables of importance for percentage fat and body mass index standard deviation score, markers of 
total adiposity and sum of skinfold thicknesses, a marker of peripheral adiposity  

 
Figure 4.13. The top five ranked variables of importance (VIPs) from random forest models to predict the highest quartile of child percentage fat, body mass 
index, sum of skinfold thicknesses are shown. For both percentage fat and BMI SDS, antenatal markers linked with greater fetal growth restriction risk; uterine 
artery pulsatility index and resistance index were in the top ranked. For sum of skinfold thicknesses, the top five ranked VIPs comprised all three placental 
measurements, as well as 23 week estimated fetal weight centile. Maternal blood pressure (systolic or diastolic) were present in all three. %fat= percentage 
fat, Fetal weight trajectory= change in centile between 23 week estimated weight and birthweight, divided by days between the two timepoints, EFW centile= 
estimated fetal weight centile at 23 weeks gestation, UtAD PI= uterine artery Doppler pulsatility index (mean of right and left), UtAD RI= uterine artery Doppler 
resistance index (mean of right and left), BMI SDS= body mass index standard deviation score, SBP= systolic blood pressure, DBP= diastolic blood pressure 
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Figure 4. 14 Top five ranked variables of importance for abdominal circumference, a marker of central adiposity and high-density 
lipoprotein, a biochemical marker of lipid metabolism  
 

 
 

Figure 4.14. The top five ranked variables of importance from random forest models to predict the highest quartile of child abdominal circumference and high-
density lipoprotein are shown. Maternal systolic blood pressure was the maternal variable common to both. Placental width was the placental measurement 
which was common to both. AC= abdominal circumference, HDL= high-density lipoprotein, SBP= systolic blood pressure, DBP= diastolic blood pressure, 
BMI= body mass index, SDS= standard deviation score, UtAD PI= uterine artery Doppler pulsatility index (mean of right and left)
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Figure 4. 15 Top five ranked variables of importance for systolic blood pressure and augmentation index, markers of vascular 
health 

 

 
Figure 4.15. The top five ranked variables of importance from random forest models to predict the highest quartile of childhood systolic blood pressure and 
augmentation index are shown. Birthweight SDS was common to both. Change in centile between 23 week estimated weight and birthweight was ranked 
within the top five VIPs for systolic blood pressure, whereas estimated fetal weight centile at 23 weeks gestation was within the top five ranked for childhood 
augmentation index. SBP= systolic blood pressure, brachial AI= brachial augmentation index, SDS= standard deviation score, DBP= diastolic blood pressure, 
Fetal weight trajectory= change in centile between 23 week estimated weight and birthweight, divided by days between the two timepoints, EFW centile= 
estimated fetal weight centile at 23 weeks gestation, UtAD PI= uterine artery Doppler pulsatility index (mean of right and left), UtAD RI= uterine artery Doppler 
resistance index (mean of right and left).  Notching was ranked as 2 if bilateral, 1 if unilateral and 0 if there was no notching.
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4.4 Discussion 

4.4.1 Main findings 
In this unique cohort of 81 children recruited from both MPC and NUPS, we have 

shown correlations that have been previously demonstrated in children born SGA 

(section 4.3.5) in relation to glucose metabolism [301], lipid metabolism [172] and 

vascular health [229]. Over two thirds were recruited following identification of greater 

FGR risk antenatally. The remaining participants were born following pregnancies 

uncomplicated by greater FGR risk, or any other maternal or pregnancy condition. 

Only 12% (10/81) were born SGA (defined as birthweight <2nd centile or <-2 SDS). As 

shown in Figure 4.7, we identified relationships between uterine markers of higher 

FGR risk, fetal weight trajectory, childhood weight trajectory and childhood measures 

of cardio-metabolic risk. In our relatively small cohort, these correlations were present 

irrespective of birthweight. This emphasises the value in detecting a decrease in 

centiles for fetal weight instead of relying on SGA as a surrogate marker. 

 

Novel associations were identified between fetal weight trajectory and SBP, fetal 

weight trajectory and brachial AI and between UtAD PI and sum SF. For the latter two, 

regression models showed that age and sex were the most significant contributors to 

brachial AI and log10(sum SF) respectively. Age and sex were included in regression 

models because it had not been possible to derive centiles or SD scores for SBP, 

brachial AI or sum SF. Ethnicity is an established risk factor for cardio-metabolic 

disease and consequently, was included in regression models. Despite the inclusion 

of these variables, childhood weight trajectory was the most significant contributor to 

variation in SBP. Height did not correlate with SBP (see Chapter 2, section 2.4.2.2.1, 

Figure 2.14 & 2.15). Therefore, it was not included in the regression model. 

 

The purpose of the RFC was to assess whether maternal and antenatal variables, 

alongside measures of fetal growth and birthweight SDS could predict the highest 

quartile of each childhood indicator. This was found to true for all indicators, including 

SBP (Table 4.11). Whilst the RFC model for SBP did not include childhood weight 

trajectory, fetal weight trajectory was found to be within the top five ranked VIPs for 

the model (Figure 4.15). Coupled with the finding of a negative correlation between 
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fetal and childhood weight trajectories (section 4.3.4), this may suggest a plausible 

link between fetal weight trajectory and childhood SBP that is mediated through 

childhood weight trajectory.    

 

Based on these findings, fetal weight trajectory was selected as the antenatal/fetal 

growth marker to explore associations in the prospective cohort (Chapter 5). Also, the 

triad of correlations between fetal weight trajectory, childhood weight trajectory and 

SBP will be explored further in Chapter 6 to identify biological pathways. 
 

4.4.2 Correlations and linear regression to explore associations 
4.4.2.1 Childhood weight trajectory and indicators of cardio-metabolic risk 
Previous studies, using SGA as a surrogate marker for FGR have linked greater CU 

growth in children born SGA to childhood indicators of cardio-metabolic health [90, 

196, 296]. In relation to glucose metabolism, we observed a tendency towards higher 

serum insulin concentration with greater childhood weight trajectory. The ALSPAC 

“Before-breakfast study”  [172] of 885 children found that greater CU growth (gain in 

weight SDS> 0.67) between birth and three years was linked with (and potentially led 

to) greater insulin resistance (measured by a Homeostasis model [302], p<0.0005). In 

our study of 81, including only 36 participants with fasting insulin concentrations, we 

may have lacked sufficient power to determine a significant link. In a study of a similar 

size (N=85) to our cohort, Milovanovic  et al. [195] showed that children aged four 

years who were born SGA, who exhibited early CU growth (mean weight gain 1.1 ± 

0.6 SD during the first year) displayed higher plasma glucose two hours following a 

glucose load (6.2 ± 1.1 versus 5.6 ± 0.9 mmol/l in AGA, p =  0.006) and lower 

insulinogenic index (0.28 ± 0.15 versus 0.40 ± 2.4, p =  0.02). Therefore, performing 

oral glucose tolerance tests (OGTT) in our cohort which is of a similar size, may have 

increased the power to detect an association. Instead, we chose to maximise the 

breadth of measurements collected during a single clinic visit, with each visit lasting 

approximately one hour. The Newcastle Preterm Birth Growth Study [197] (N= 153), 

included children following births <34 weeks gestation, at a median age of 11.5 years 

(range nine to 12 years). Associations were demonstrated between rapid childhood 

weight gain (from age one year to childhood) and higher fasting insulin concentrations 

(regression coefficient 0.23, p= 0.002), as well as lower insulin sensitivity (-0.25, 
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p<0.001). Whilst our study specifically examined links in individuals born above 34 

weeks, to exclude confounding effects of extreme prematurity, the participants were 

also younger, with a median age of 5.7 years. Therefore, the time to develop changes 

in insulin resistance may have been limited compared with studies in older children. 

 

In relation to lipid metabolism, childhood weight trajectory was positively associated 

with BMI SDS, AC, MUAC, sum SF, %fat and negatively with HDL. Correlation with 

TC did not meet the threshold for significance (R= 0.15, p= 0.055). One possible 

explanation is that a larger thigh circumference represents a greater proportion of 

lean mass, compared with other measures of fat mass [303]. A number of studies 

link SGA CU with higher weight and adiposity in childhood. As examples, two studies 

[172, 220] based on data from the ALSPAC cohort (N~850) found significantly higher 

BMI in association with SGA CU weight gain at age five years (mean BMI SDS 0.44 

(SD 1.01) in CU versus 0.31(1.0) in no change, 0.23 (0.88) in CD, p<0.05, with CU 

defined as weight SDS >0.67 between zero to two years) [220] and eight years 

(median 17.5 kg/m2 (range 15-20) in CU, 16.5 (15-19) in no change, 16.0 (14.0-18.0) 

in CD, p<0.0005) with CU defined as weight SDS> 0.67 between zero to three years) 

[172]. However, no studies have previously reported these findings in a cohort of 

healthy children, where the majority had been detected as having higher FGR risk in 

utero. 

 

In relation to vascular health, childhood weight trajectory was positively linked with 

SBP and brachial AI. The strength of the relationship with SBP was particularly 

striking. Although, this finding is in line with previous studies in SGA [229], the 

strength of association was higher than what might be expected given our limited 

sample size. This may highlight the advantage of our selection criteria over using 

SGA as a marker for FGR. Other studies performed in the general population have 

assessed the magnitude of this association. In a study of six-year-old (N= 10,495) 

children by Tilling et al. [231], all with birthweight above 2500g, SBP and DBP were 

quantified for boys and girls respectively. For boys, the change in SBP per z score 

increase in weight gain was 0.41mmHg (95% CI 0.19 to 0.64) at birth to three 

months, 0.69 mmHg (95% CI 0.47 to 0.92) at three to 12 months, and 0.82 mmHg 

(95% CI 0.58 to 1.06) at 12-60 months. The Southampton Women’s’ study [230] 

included 761 children with a mean birthweight of 3.42kg, although data on 
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gestational age at delivery were not reported.  Weight gain at 12-24 months and at 

24-36 months were positively associated with BP at age three years. For each SD 

increase in weight between 12 and 24 months, SBP was higher by 1-2mmHg (and 

DBP by 1mmHg). In our much smaller study, with over two thirds selected on the 

basis of higher FGR risk detected antenatally, where we assessed change in SDS 

from birth to childhood (ranging from 3.2 to seven years i.e. 38 to 84 months), SBP 

was higher by 3.9mmHg for each SD increase in childhood weight. Whilst our 

findings should be interpreted cautiously (see Section 4.4.5.2), this could support the 

value in early detection and monitoring of individuals born following pregnancies 

where higher FGR risk was detected. 

 

4.4.2.2 Fetal weight trajectory is negatively correlated with childhood weight 

trajectory 
There was a negative correlation between fetal weight trajectory and childhood 

weight trajectory. To our knowledge, this has not been previously reported in a 

cohort potentially exposed to adverse intrauterine environment, represented by 

greater risk of FGR. To investigate this further, we examined this association in the 

58 children who had been recruited from MPC, only 10 of whom had been born 

SGA. A negative correlation was found.  

 

It is recognised that approximately 90% of children born SGA exhibit CU weight gain 

[304]. It is possible that these studies in SGA would find a negative link between fetal 

weight trajectory and childhood weight trajectory, if sufficient antenatal data were 

available to examine this. However, they would still fail to detect AGA neonates 

where a negative correlation exists (see Chapter 1, section 1.3). 

 

4.4.2.3 Fetal weight trajectory is negatively correlated with childhood SBP 
A negative correlation was established between fetal weight trajectory and childhood 

SBP in the entire cohort, and also in 58 participants from the MPC. Fetal and 

postnatal growth characteristics have been previously studied in relation to childhood 

BP at age two years [305]. A study embedded in the Dutch Generation R Study (N= 

566) examined changes in femur length and EFW during mid and late pregnancy 

and whilst all displayed inverse tendencies in relation to childhood BP, only femur 

length in late pregnancy reached statistical significance (regression coefficient -1.22, 
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95% CI -2.09 to -0.34, p<0.01). Within a regression model, adjustments were made 

for current weight and length, as well as age, sex and the number of BP 

measurements. The authors also reported BP differences per weight SDS change 

and found the largest increase in SBP from birth to two years (0.75mmHg, 95% CI 

0.00 to 1.50), not late pregnancy or birth to six weeks. We found that SBP was 

higher by 3.9mmHg per SD increase in childhood weight and by 0.9mmHg for each 

decrease of ten centiles in fetal weight. Direct comparisons cannot be made between 

these because fetal weight depends on customised, not standardised centiles. 

However, regression analysis showing childhood, not fetal weight trajectory as the 

significant contributor to SBP (section 4.3.7.1) implies that our findings are in line 

with those from Generation R [305]. Whilst our results assessing magnitude must be 

interpreted with caution, it is plausible that we have detected a greater increase in 

SBP per SD increase in childhood weight due to the unique selection criteria of the 

Manchester BabyGRO Study. 

 

A study based on data from the Western Australian Pregnancy Cohort [306] 

demonstrated an inverse relationship between femur length and SBP in childhood. 

They were of similar ages (six years) to children in our study. Adjustments were 

made for children’s heights and SBP was higher by 1-2mmHg per SD decrease in 

femur length at 24 weeks gestation. Although we have not examined associations 

with femur length, our results support an existing suggestion in the literature that 

fetal growth and childhood blood pressure are inversely related. 

 

Our study has investigated relationships irrespective of birthweight. However, we 

assessed the magnitude of change in SBP in relation to birthweight to interpret these 

findings in the context of current literature. Huxley et al. [221], performed a 

systematic review including children, adolescents and adults up to age 84. They 

found that a one-kilogram lower birthweight was associated with a 1-2mmHg rise in 

SBP. In our study, for each one kilogram decrease in birthweight, SBP was higher by 

5.8mmHg.  This is much higher than that observed by Huxley et al. despite a smaller 

sample size and younger age range (3.2 to seven years). Again, this may be 

attributable to our unique selection criteria.  
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4.4.2.4 Fetal weight trajectory is negatively correlated with brachial 

augmentation index 
Within our small study of 81 children (66 of whom had arteriography measurements), 

a weak correlation was established. This finding has not been previously reported. 

Carotid-femoral pulse wave velocity was collected in a Dutch cohort for the 

Generation R study [307]. However, there are no reports to suggest that this has 

been examined in relation to fetal weight trajectory. 

 

Regression analyses demonstrated that age was the most significant predictor of 

brachial AI in childhood. To provide further support to the findings of the regression 

model, we examined the relationship between age and brachial AI and confirmed a 

negative correlation (R= -0.23, p= 0.006). Age positively correlated with brachial AI in 

a small study of 65 normotensive individuals [308]. The effects of both age and blood 

pressure on radial AI have also been shown in a larger study of 10,190 subjects, 

grouped into hypertensive and normotensive young adults and elderly, with 

increases in radial AI observed with both increasing age and increasing SBP [309]. 

In our cohort, there was no association between SBP and brachial AI (R= 0.03, p= 

0.73). 

4.4.3 Random Forest Classification  
RFC showed that maternal variables and antenatal markers linked with FGR (at 23 

weeks gestation) can be used in combination with fetal weight trajectory and 

birthweight SDS to predict childhood markers of cardio-metabolic risk, with AUCs 

ranging from 0.92 to 0.98. Although a larger study would be required to explore 

magnitude of associations using traditional statistical methods, identifying the top 

ranked VIPs for each childhood indicator has allowed identification of which 

maternal, antenatal or fetal growth markers are of most relevance for further studies. 

Therefore, it is useful to assess patterns between maternal, antenatal and fetal 

growth markers and childhood indicators of glucose metabolism, lipid metabolism 

and vascular health, as shown in Figure 4.10. 

 

Assessment of the top five ranked VIPs in each model led to identification of whether 

maternal, antenatal or fetal growth markers featured the most. Altogether, 15 

maternal and 28 antenatal variables were present (Figure 4.10). Therefore, antenatal 
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variables were overrepresented, which adds supports to the hypothesis for this work 

(Chapter 1, section 1.9).  

 

Three markers of fetal growth had been included in the model, compared with six 

maternal and six antenatal (first two rows of Figure 4.10). Therefore, direct 

comparisons of numbers that featured within the top five VIPs were not made. 

However, fetal growth markers (including birthweight SDS) featured seven times. Of 

these, four were within models to predict highest quartile for vascular health markers; 

SBP and brachial AI. The remaining three were in models for % fat (representing 

overall adiposity), sum SF (representing subcutaneous adiposity) and HDL (a 

biochemical marker of lipid metabolism). Patterns arising from Figure 4.10 will now 

be discussed. 

 

4.4.3.1 Maternal cardio-metabolic measurements and childhood visceral 

adiposity 
The RFC to predict the highest quartile of AC (a marker of both visceral adiposity 

and organ size) identified maternal SBP, DBP and BMI within the top five ranked 

VIPs. Visceral adiposity is a useful representor of cardio-metabolic health. Gishti et 

al. (Generation R Study) [310] used DEXA to study abdominal fat mass percentage 

in 6,523 children aged six years. They found, after adjustment for height and BMI in 

linear regression models, abdominal fat mass percentage was correlated with higher 

total cholesterol, LDL, triglycerides, insulin and C- peptide levels (all p<0.05). 

Although we were limited to AC as a measure of central adiposity, this study 

provides evidence of the value of assessing abdominal adiposity measures. This is 

supported by findings in adult studies, where visceral fat has been related to 

increased odds of hypertension, impaired glucose tolerance, T2D and metabolic 

syndrome (OR 4.7 in women, 4.2 in men) [311].  

 

In adulthood, BMI is associated with BP [312]. Therefore, the findings of maternal 

SBP and DBP as top ranked VIPs for childhood AC may be related to mothers with 

higher BMI also having higher BP in our cohort. Evidence supports a link between 

maternal and offspring BMI [313]. Furthermore, maternal BMI has been associated 

with neonatal abdominal adipose tissue in a study by Modi et al. (N= 105) [314], with 

an increase in abdominal adiposity by 2ml (95% CI 0.7 to 4, p= 0.005) and 
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intrahepatocellular lipid by 8.6% (95% CI 1.1 to 16.8, p= 0.03) for each unit increase 

in maternal BMI. 

 

Importantly, in our cohort, maternal BMI was calculated based on measurements 

taken at the time of visit for the child, not during pregnancy. Therefore, the finding of 

maternal BMI amongst the highest five ranking VIPs for childhood AC may represent 

the effects of a common environment. Challenges exist in separating genetic, 

developmental and environmental factors such as sedentary lifestyle. A mendelian 

randomisation study [315] including measures of BMI and fat mass index (fat mass 

in kilograms divided by height squared) in children, highlighted that bidirectional 

causality may exist between adiposity and physical activity levels, which adds further 

complexity to this challenge. 

 

4.4.3.2 Antenatal UtAD measurements and markers of vascular health 
For both SBP and AI, birthweight SDS was within the highest five ranked VIPs. One 

explanation is that birthweight per se is linked with childhood indicators of vascular 

health. This would be in line with previous studies linking SGA with higher SBP in 

childhood (Chapter 1, section 1.7.2.5). However, evidence from studies in SGA also 

demonstrate that SGA CU children exhibit higher SBP than NCU (Chapter 1, section 

1.7.2.6). Based on our findings from the linear regression for SBP (following the 

observation of a negative correlation between fetal weight trajectory and SBP), and 

the negative correlation between fetal and childhood weight trajectories, we 

postulate that this link is mediated through childhood weight trajectory. As additional 

support for this, fetal weight trajectory was within the top five ranked VIPs for the 

RFC predicting the highest quartile of childhood SBP. 

 

4.4.3.3 Antenatal UtAD measurements and insulin, a marker of glucose 

metabolism 
The RFC for the highest quartile of fasting insulin concentration identified UtAD RI, 

UtAD PI and notching. Small size at birth has been associated with higher insulin 

secretion [183] (see Chapter 1, section 1.7.2.1). In this cohort, we found that 

antenatal UtAD measurements were negatively correlated with fetal weight 

trajectory, which was negatively linked with childhood weight trajectory. A potentially 

significant (p= 0.051) positive trend was observed between childhood weight 
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trajectory and insulin.  Together, these findings suggest that an indirect link between 

antenatal UtAD measurements and childhood insulin is plausible. 

 

In terms of biological plausibility, early developmental changes in fetal glucose 

metabolism have been demonstrated in FGR animal models. These include 

decreased pancreatic insulin secretion, increased hepatic glucose production and 

increased expression of genes related to hepatic gluconeogenesis [316-320]. In 

combination with the findings from our cohort, this could justify recruiting more 

participants and potentially link fetal weight trajectory to insulin concentration.  

 

4.4.3.4 Antenatal UtAD measurements and markers of i) overall adiposity and 

ii) skeletal mass and peripheral adiposity  
UtAD RI and PI were within the top five VIPs for % fat and BMI, both markers of overall 

adiposity. Links between these markers have not been previously reported. However, 

it is feasible that antenatal markers linked with lower (more negative) fetal weight 

trajectory, which is linked with greater childhood weight trajectory (see Figure 4.7) 

leads to greater BMI and %fat in childhood. These links will be further explored in 

relation to early life adiposity development, using data from the prospective cohort 

(see Chapter 5). 

 

Maternal ethnicity was a VIP for prediction of % fat and for TC. This is in line with 

previous findings. The Manchester Heart and Growth Study was a prospective cohort 

study which recruited healthy children aged between five and 12.2 years. Of 100 

participants, 54 were White European and 46 South Asian [321]. Percentage fat 

measured by bio-impedance was significantly higher in South Asian (median 29.4% 

(interquartile range 17-46)) compared with White European children (22.9 (14-35), p≤ 

0.001). Another UK study including 1345 White European, 1523 South Asian and 1570 

Black African-Caribbean children aged between nine and ten years also measured % 

fat with a bioimpedance monitor. In this larger study, % fat was higher in South Asians 

compared with White Europeans (difference in z score 0.19, 95% CI 0.12 to 0.27, 

p<0.0001) and also compared with Black African-Caribbeans (0.22, 0.15 to 0.29, 

p<0.0001). In relation to TC, literature also exists on ethnic variation in body shape 

[322]. Therefore, although we did not make specific comparisons to identify ethnic 
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differences within our cohort, current literature supports that ethnicity is likely to play 

a role in variation in these measures of total and peripheral adiposity. 

 

RFCs for MUAC and TC, which represent a combination of skeletal mass and 

peripheral adiposity, also identified UtAD measures. All three (UtAD PI, RI and 

notching) were identified in the RFC for MUAC and notching alone for TC. The 

challenge in differentiating skeletal mass and fat mass effects from TC is recognised 

[323]. It is possible that MUAC is more representative of peripheral adiposity than TC. 

In support of this, data from adults suggests that a low TC,  potentially representing a 

low muscle mass is related to greater risk of heart disease [324]. Therefore. a larger 

study may help to define whether UtAD measurements are related to these childhood 

indicators as well as directionality, which may differ for MUAC and TC. 

 
4.4.3.5 Placental measurements and subcutaneous adiposity, visceral 

adiposity and biochemical marker of lipid metabolism 

For the RFC predicting highest quartile of sum SF (representing subcutaneous 

adiposity), placental diameter, width and depth were within the highest ranked VIPs. 

RFC predicting highest quartile of AC (representing visceral adiposity) found 

placental width and depth in the highest ranked. Lastly, for HDL, placental width and 

diameter were within the top five. 

 

There is no current literature to support findings that relate placental measurements 

to offspring indicators of adiposity or biochemical measures of lipid metabolism. In 

this small study of 81, we did not find correlations between placental measurements 

and fetal weight trajectory. Therefore, in our cohort we lack sufficient data to support 

the feasibility of these potential relationships.  

 

There is evidence that maternal pre-pregnancy BMI is related to a three-fold higher 

risk of childhood obesity (95% CI 2.09 to 4.34) [325]. Further understanding of 

whether maternal BMI (which is associated with offspring BMI in childhood [313]) 

influences placental size measurements may be step towards a potential hypothesis 

linking these measurements to childhood cardio-metabolic indicators.  
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4.4.4 Main strengths of the study 
 
4.4.4.1 Strengths of the study cohort 
The unique selection criteria for our cohort and availability of data allowed 

identification of novel links between antenatal parameters linked to fetal growth 

restriction and childhood markers of cardio-metabolic risk. Furthermore, the inclusion 

of children from two recruitment sources; children born following higher FGR risk 

pregnancies (in the MPC) and healthy pregnancies (following participation in NUPS) 

allowed a sufficient spread of data for examining associations. 

 

The strong correlations between antenatal markers of higher FGR risk and fetal 

weight trajectory (see Chapter 1, section 1.6.3), as well as between childhood weight 

trajectory and childhood measures are well established in the literature, although the 

studies examining the latter are largely limited to SGA children. This added 

confidence to the suitability of our cohort for establishing further associations.  

 

Selection bias was assessed by drawing comparisons between children who 

attended and those who did not attend appointments made (see Chapter 3, section 

3.4.2). Whilst a greater proportion of those who failed to attend were from the MPC, 

potentially accounting for a tendency towards lower fetal weight trajectory in those 

who did not attend, no significant differences were seen. 

 

4.4.4.2 Strengths of the methodology 
DAGs were used to determine mediators for regression models. This made the 

analyses more statistically efficient by restricting variables included in regression 

models to a subset clearly associated with exposure and outcome [280]. This 

method also allowed identification of a significance mediator in the regression model 

for log10(SBP); childhood weight trajectory. 

 

One possible criticism is that height and maternal SBP, which are associated with 

offspring SBP in other studies [326], were not adjusted for within the regression 

model for log10(SBP). Maternal SBP would have been included in the DAG (see 

Figure 2.13) as a moderator. However, the regression model included mediators and 

covariates, not moderators (Figure 2.13). Height was included in the literature-based 
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DAG (Figure 2.14) but in this cohort, height did not correlate with childhood SBP. 

Therefore, it was not included in the regression model. 

 

Random forest classification established that collectively, maternal and antenatal 

variables can predict the highest quartile of childhood markers of glucose 

metabolism, lipid metabolism and vascular health. ROC AUCs of >0.92 indicated 

high true positive and low false negative rates when tested on data not randomly 

sampled for generation of the model. The use of this machine learning approach 

allowed the combinatory effects of maternal and antenatal variables, alongside fetal 

weight trajectory and birthweight SDS to be examined. This may not have been 

possible with traditional regression techniques, given the limited sample size. 

 

4.4.5 Limitations 
4.4.5.1 Limitations of the study cohort 
Whilst a large amount of data were available for each participant, sample size was 

small compared with other studies examining cardio-metabolic risk development 

following SGA [172, 219]. This limited subgroup analyses of the data (e.g. by sex), 

due to subsequent limitations in power. Our significant findings are likely to have 

resulted from unique selection criteria to recruit those at higher risk of FGR 

antenatally. This may highlight a limitation of studies which use SGA as a surrogate 

marker, thereby excluding a substantial proportion of FGR-exposed individuals.  

 

Potential overfitting of the RFC model is an important consideration.. Our cohort 

included two sets of siblings. Data from each pregnancy were available and included 

in the analyses. However, two maternal variables (ethnicity and BMI, measured at 

the time of visit) were consistent between pregnancies. Furthermore, maternal 

environmental factors such as diet and activity levels may remain similar between 

pregnancies. This could affect other variables, such as maternal BP. As a 

consequence, a degree of caution should be applied when assessing the 

transferability of these findings. 
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4.4.5.2 Limitations of the methodology 
All standard tape measurements and skinfold thicknesses were performed three 

times, and blood pressure measurements were performed twice to allow calculation 

of the mean. However, inaccuracies may still exist and limitations of the equipment, 

as well as the potential for human error is recognised. 

 

When assessing for commonality between sum SF (see Figure 4.13) and HDL 

(Figure 4.14), maternal SBP, placental width and placental diameter were identified 

in the top five VIPs for both. Of note, hypertensive women were followed up in a 

different clinic and were not included in this study cohort. Maternal factors that have 

been implicated (in studies based on HAPO, ALSPAC and Generation R data) as 

influencers of child adiposity are BMI, glycaemic status, age, social class, education, 

maternal smoking in pregnancy and paternal BMI [201, 205]. We did not include all 

these due to large proportions of missing data. In particular, smoking which is linked 

with maternal SBP [327], placental morphological changes [328] and more rapid BMI 

gain between birth and three years in children exposed to passive smoke [329], may 

be a potential confounder. Furthermore, in the Southampton Women’s Study, 

smoking in late pregnancy was associated with higher systolic (p= 0.067) and 

diastolic pressures (p= 0.005) in children. Therefore, this may be relevant and 

important to include for further studies. 

 

Notching, a categorical variable was ranked and treated as a continuous variable to 

assess for a correlation with fetal weight trajectory. Therefore, this finding should be 

interpreted with caution. For this reason, UtAD PI was selected over notching rank 

as a representative variable of higher FGR risk for correlations, DAGs and 

regression models. Another important limitation in the assessment of correlations is 

that causal inference cannot be made through these alone. Mendelian randomisation 

studies [26] have attempted to address this and such an approach may be useful for 

further studies. 

 

For statistical analyses, the only childhood indicator where it was possible to 

standardise for age and sex was BMI SDS. We accounted for this by including both 

age and sex in regression models where a significant correlation was identified. BMI 

SDS and sum SF were both considered representors of overall adiposity and both 
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showed similar results when assessing correlations and also in terms of top five 

ranked VIPs RFC. This could suggest a limited effect of age and sex on overall 

adiposity within the age range included in this cohort. 

 

For assessment of magnitude of SBP differences (section 4.3.7.4), SBP was not 

logarithm transformed for ease of interpretation and comparison with other studies. 

For the same reason, fetal and childhood weight changes were not divided by days. 

Therefore, our findings have been discussed in the context of these limitations.   
 
Some RFC models generated OOB error rates which were high. The highest OOB 

error rates were for those models created for insulin (17.5%). This could represent a 

limitation in sample size. Whilst samples had been taken from 38 participants for 

measurement of insulin, sample processing errors once these reached the laboratory 

had resulted in measurements for 36. However, contradictory evidence is provided 

by the lower OOB error rate generated by the RFC for HDL (8.16%, N= 39). Another 

option to investigate effects of maternal and antenatal measures on glucose 

metabolism would be to use HOMA-IR (see Section 1.7.2.2 & Table 1.3). This would 

incorporate both insulin and glucose measurements, potentially allowing more 

reliable assessment of glucose metabolism without the need for OGTT. 
 

4.5 Chapter summary 
 

• For the first time, we have demonstrated links between childhood weight 

trajectory and childhood indicators of cardio-metabolic risk, in a cohort where 

the majority were recruited on the basis of greater FGR risk antenatally. Only 

12% (10/81) were born SGA; the remainder were AGA at birth. 

• A potential triad of associations exists between fetal weight trajectory, 

childhood weight trajectory and childhood SBP. Childhood weight trajectory 

could mediate a link between fetal weight trajectory and SBP.  

• Therefore, fetal weight trajectory was selected as the antenatal/fetal growth 

marker to explore associations in the prospective cohort (Chapter 5), to further 

understand relationships with infant growth trajectories.  

• Biological pathways linking the variables in this triad will be explored further in 

Chapter 6. 
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• RFC has demonstrated that maternal and antenatal variables related to FGR 

risk, alongside fetal growth markers can be used to predict the highest quartile 

of childhood measures of cardio-metabolic risk, supporting the overall 

hypothesis. This has also highlighted specific areas for further work (see 

Chapter 7).



 
 

 192 

Chapter 5. Analyses of Data from the Prospective Cohort 

5.1 Introduction 
 
The DOHaD hypothesis postulates that fetal adaptations which occur in response to 

environmental factors [330] may persist following birth. In the presence of plentiful 

resources, these physiological changes may confer a disadvantage to that individual. 

For example, they may result in increased susceptibility to T2D and CVD [330, 331]. 

This raises the possibility that early life detection of individuals beginning to develop 

risks for cardio-metabolic disease may be feasible and could potentially help target 

prevention strategies. This chapter focuses on the analyses of auxology 

measurements from the prospectively recruited cohort, in the first postnatal year.  

 

5.2 Methods 
 
Recruitment of participants has been previously described in Chapter 2, section 2.2.1. 

Methods for clinical data collection have been previously described in Chapter 2, 

section 2.3.2. 

Statistical analysis methods have been described in Chapter 2, section 2.4.3 (& Figure 

2.19).  

 

Calculation of SD scores at birth (based on WHO data) were limited to weight. These 

were also calculable for length and HC, but no other auxological measures. Therefore, 

infant weight SDS trajectories have been examined but for measures of adiposity, non-

standardised values have been used.  

 

As previously shown (Chapter 2, Figure 2.11) fetal weight trajectory followed a normal 

distribution. The distributions of infant variables presented in Chapter 2 relate to only 

those measures where it was possible to calculate SD scores. Therefore, distributions 

for infant variables used in the analyses for this chapter are shown in Figures 5.1 & 

5.2.



 
 

 193 

Figure 5. 1 Density plots for infant measures of weight and adiposity change that were normally distributed 

 
Figure 5.1. Density plots for 
normally distributed variables for 
the prospective cohort (Shapiro 
Wilk p>0.05) are shown. Delta= 
change in, SDS= standard deviation 
score, /age= divided by age in days, 
sum_SF= sum of biceps, triceps 
and subscapular skinfold 
thicknesses, AC= abdominal 
circumference, MUAC= mid-upper 
arm circumference, TC= thigh 
circumference  
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Figure 5. 2 Density plots for infant measures of weight and adiposity change that were not normally distributed 

 
Figure 5.2. Density plots for non-
normally distributed variables for the 
prospective cohort (Shapiro Wilk 
p<0.05) are shown. Delta= change in, 
SDS= standard deviation score, /age= 
divided by age in days, BMI= body 
mass index, sum_SF= sum of biceps, 
triceps and subscapular skinfold 
thicknesses, AC= abdominal 
circumference, MUAC= mid-upper arm 
circumference 
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5.3 Results 
 

Results of recruitment have been shown in Chapter 3, section 3.3.1. 

5.3.1 Baseline characteristics 
The mean (SD) gestational age at birth was 270 (12) days. The mean birthweight SDS 

of offspring was -0.94. 45 infants were male and 35 were female. 

 

10% (8/80) were born SGA, defined as birthweight <2nd centile on standardised WHO 

charts. Using alternative definitions of SGA, birthweight <5th and <10th standardised 

WHO centiles, SGA rates were 21% and 36% respectively. These were similar for 

definitions based on centiles from Perinatal Institute customised fetal growth charts; 

9% had birthweight <2nd, 19% <5th and 33% <10th centile. Table 5.1 shows differences 

in numbers of SGA (birthweight <2nd centile) between pregnancies where fetal weight 

trajectory was zero or positive and those where it was negative. 
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Table 5. 1 Number of infants born small for gestational age, divided according to 
whether fetal weight trajectory was negative or positive 

 Fetal weight trajectory 0/+ Fetal weight trajectory -ve 
Birthweight ≥ 2nd centile 9 62 

Birthweight < 2nd centile 0 8 
 
Table 5.1. This table demonstrates the proportions of participants born small for gestational age, 
defined as birthweight centile < 2nd centile on a standardised World Health Organization growth chart, 
or appropriate for gestational age. Nine participants were born appropriate for gestational age and 
had a static or positive fetal weight trajectory (change in centile between 23 week estimated fetal 
weight and birthweight, divided by days in between the two timepoints, top left). No participants were 
born small for gestational age and had a static or positive fetal weight trajectory (bottom left). 62 
participants were born appropriate for gestational age and had a negative fetal weight trajectory (top 
right). Eight participants were born small for gestational age and had a negative fetal weight trajectory 
(bottom right). Following recruitment, one participant was found to have had a 23 week scan at a 
different hospital and estimated fetal weight was not available. Therefore, fetal weight trajectory was 
not calculable and data from this participant have been omitted here.  
 

One infant was found to have a large ventricular septal defect at postnatal age 15 

weeks. Cardiac surgery was undertaken between the ages of six and 12 months, 

following sufficient weight gain. For another participant, a diagnosis of 

neurofibromatosis was suspected by the Neonatologist; she was referred for specialist 

opinion at 11 months. For both infants, parents were keen to remain in the study and 

attended for measurements at all timepoints. Analyses have been undertaken using 

all these, but the key correlations have been re-examined with these participants 

excluded. 

 

Following data collection, it was discovered that one woman had undergone her 23 

week scan at her local hospital and was reviewed in the MPC from 27 weeks gestation. 

Thus, EFW at 23 weeks was not available so fetal weight trajectory was not calculable. 

Also, UtAD measurements from the 23 week scan were incorrect (mean PI 1.44, mean 

RI 3.19). Therefore, data from this participant were omitted prior to testing correlations 

and performing linear regressions models. 
 

5.3.2 Correlations between fetal weight trajectory and infant weight 
trajectories at birth to three months, six months and 12 months 
Weight was the only measure where it was possible to calculate SDS at birth. There 

were no significant correlations between fetal weight trajectory and Δ weight SDS at 



 
 

 197 

birth to three months/age (R= -0.15, p= 0.272, N= 58), birth to six months/age (R= -

0.11, p= 0.484, N= 46) or birth to 12 months/age (tau= -0.10, p= 0.398, N= 44). 

 

5.3.3 Correlations between fetal weight trajectory and Δ BMI birth to 
three months/age, birth to six months/age and birth to 12 months/age 
Fetal weight trajectory was negatively correlated with Δ BMI birth to three months/age 

(R= -0.40, p= 0.004, N= 52) and birth to six months/age (R= -0.38, p= 0.012, N= 42), 

but not with birth to 12 months/age (tau= -0.10, p= 0.38, N= 38). 

 

Figures 5.3a & b demonstrate the negative correlations between fetal weight trajectory 

and Δ BMI birth to three months/age (Figure 5.3a) and birth to six months/age (Figure 

5.3b). Figure 5.3c illustrates that there was no correlation between fetal weight 

trajectory and Δ BMI birth to 12 months/age.
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Figure 5. 3 Scatterplots of fetal weight trajectory and Δ body mass index at birth to three, six and 12 months/age 

 

 
Figure 5.3. Plots a-c are scatterplots of the change in body mass index at birth to three months (divided by age in days, plot a), birth to three six months (divided 
by age in days, plot b) and birth to 12 months (divided by age in days, plot c) against fetal weight trajectory (x axes). Plots a & b demonstrate negative 
correlations. A Pearson’s product moment correlation coefficient test was performed where the variable was normally distributed (plots a & b), and Kendall’s 
tau where it was not (plot c).  Fetal weight trajectory= change in centile between 23 week estimated fetal weight and birthweight, divided by days in between 
the two timepoints, delta (Δ)= change in, BMI= body mass index.
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Table 5.2 shows the results of partial correlations between fetal weight trajectory and 

Δ BMI birth to three months/age, and also between fetal weight trajectory and Δ BMI 

birth to six months/age, controlling for birthweight SDS, gestation at delivery and sex. 

 

Table 5. 2 Partial correlations between fetal weight trajectory and Δ body mass index 
at birth to three months/age and birth to six months/age 

Variable 1 Variable 2 Controlling 
variable 

N R  p value 

fetal weight 

trajectory 

 

Δ BMI birth to 

three 

months/age 

 

birthweight 

SDS 

52 -0.34 0.015 

birthweight 

(grams) 

52 -0.34 0.013 

gestation at 

delivery 

52 -0.37 0.008 

Δ BMI birth to 

six 

months/age 

 

birthweight 

SDS 

42 -0.28 0.073 

birthweight 

(grams) 

42 -0.26 0.105 

gestation at 

delivery 

42 -0.29 0.064 

Table 5.2. Results of partial correlations between fetal weight trajectory and change in body mass index 
at birth to three months (divided by age in days), and between fetal weight trajectory and change in 
body mass index at birth to six months (divided by age in days), controlling for birthweight SDS, 
birthweight in grams and gestation at delivery are shown. Results of Pearson’s product moment 
correlation coefficient are shown. Significant p values (<0.05) are shown in bold.  Fetal weight 
trajectory= change in centile between 23 week estimated fetal weight and birthweight, divided by days 
in between the two timepoints, delta (Δ)= change in, BMI= body mass index, SDS= standard deviation 
score, based on World Health Organization data 
 

All partial correlations between fetal weight trajectory and Δ BMI birth to three 

months/age (N= 52) were significant. Trends towards significance were observed 

when controlling for birthweight SDS and gestation at delivery for Δ BMI birth to six 

months/age (N= 42). 

 

Since correlations were found between fetal weight trajectory and changes in BMI, but 

not with changes in weight SDS, it was considered necessary to test correlations 

between fetal weight trajectory and length SDS. No associations were found at birth 

to three (R= 0.23, p= 0.104, N= 52), birth to six (R= 0.015, p= 0.926, N= 42) or birth to 
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12 months (tau= 0.06, p= 0.635, N= 38). In addition, no correlations were found 

between fetal weight trajectory and Δ weight birth to three months/age (R= -0.18, p= 

0.186, N= 58), Δ weight birth to six months/age (R= -0.16, p= 0.277, N= 46) nor Δ 

weight birth to 12 months/age (tau= -0.12, p= 0.252, N= 44, all unstandardised values 

for weight). 

 

5.3.4 Correlations between fetal weight trajectory and Δ sum SF birth to 
three months/age, birth to six months/age and birth to 12 months/age 
Fetal weight trajectory correlated negatively with Δ sum SF birth to six months/age 

(R= -0.36, p= 0.016, N= 43), but not with Δ sum SF birth to three months/age (R= 0.01, 

p= 0.974, N= 55) nor with Δ sum SF birth to 12 months/age (tau= 0.06, p= 0.630, N= 

39). 

 
Figure 5.4b demonstrates the negative correlation between fetal weight trajectory and 

Δ sum SF birth to six months/age. Figures 5.4 a & c illustrate that there was no 

correlation between fetal weight trajectory and Δ sum SF birth to 3 months/age, nor 

with Δ sum SF birth to 12 months/age.  
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Figure 5. 4 Scatterplots of fetal weight trajectory and Δ sum of skinfold thicknesses at birth to three, six and 12 months/age 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4 Plots a-c are scatterplots of the change in sum of skinfold thicknesses at birth to three months (divided by age in days, plot a), birth to three six 
months (divided by age in days, plot b) and birth to 12 months (divided by age in days, plot c) against fetal weight trajectory (x axes). Plot b demonstrates a 
negative correlation. A Pearson’s product moment correlation coefficient test was performed where the variable was normally distributed (plots a & b), and 
Kendall’s tau where it was not (plot c).  Fetal weight trajectory= change in centile between 23 week estimated fetal weight and birthweight, divided by days in 
between the two timepoints. Delta (Δ)= change in, Sum SF= sum of biceps, triceps and subscapular skinfold thicknesses
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Partial correlations between fetal weight trajectory and Δ sum SF birth to six 

months/age, controlling for birthweight SDS, birthweight (grams) and gestation at 

delivery were also significant. These are shown in Table 5.3. 

 
Table 5. 3 Partial correlations between fetal weight trajectory and Δ sum of skinfold 
thicknesses at birth to six months/age 

Variable 1 Variable 2 Controlling 
variable 

N R  p value 

fetal weight 

trajectory 

 

Δ sum SF birth 

to six 

months/age 

 

birthweight 

SDS 

43 -0.33 0.034 

birthweight 

(grams) 

43 -0.31 0.044 

gestation at 

delivery 

43 -0.33 0.036 

Table 5.3. Results of partial correlations between fetal weight trajectory and change in sum of skinfold 
thicknesses at birth to six months (divided by age in days), controlling for birthweight SDS, birthweight 
in grams and gestation at delivery are shown. Results of Pearson’s product moment correlation 
coefficient are shown. All tests reached statistical significance (p<0.05) and these are shown in bold.  
Fetal weight trajectory= change in centile between 23 week estimated fetal weight and birthweight, 
divided by days in between the two timepoints, delta (Δ)= change in, sum SF= sum of biceps, triceps 
and subscapular skinfold thicknesses, SDS= standard deviation score, based on World Health 
Organization data 
 

5.3.5 Correlations between fetal weight trajectory and Δ abdominal 
circumference birth to three months/age, birth to six months/age and 
birth to 12 months/age 
Fetal weight trajectory correlated negatively with Δ AC birth to six months/age (R= -

0.30, p= 0.045, N= 44) but not at birth to three months/age (R= -0.16, p= 0.245, N= 

55), nor at birth to 12 months/age (tau= -0.04, p= 0.74, N= 40). These are shown in 

Figure 5.5.  
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Figure 5. 5 Scatterplots of fetal weight trajectory and Δ abdominal circumference at birth to three, six and 12 months/age 

 
Figure 5.5. Plots a-c are scatterplots of the change in abdominal circumference at birth to three months (divided by age in days, plot a), birth to three six months 
(divided by age in days, plot b) and birth to 12 months (divided by age in days, plot c) against fetal weight trajectory (x axes). Pearson’s product moment 
correlation coefficient test was performed where the variable was normally distributed (plots a & b), and Kendall’s tau where it was not (plot c). Plot b 
demonstrates a negative correlation.  Fetal weight trajectory= change in centile between 23 week estimated fetal weight and birthweight, divided by days in 
between the two timepoints, delta (Δ)= change in, AC= abdominal circumference.
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Partial correlations between fetal weight trajectory and Δ AC birth to six months/age, 

controlling for birthweight SDS (R= -0.22, p= 0.04 N= 44), gestation at delivery (R= -

0.22, p= 0.04, N= 44) and sex (R= -0.24, p= 0.02, N= 44) were also significant. These 

are shown in Table 5.4. 
 
Table 5. 4 Partial correlations between fetal weight trajectory and Δ abdominal 
circumference at birth to six months/age 

Variable 1 Variable 2 Controlling 
variable 

N R  p value 

fetal weight 

trajectory 

 

Δ AC birth to 

six 

months/age 

 

birthweight 

SDS 

44 -0.32 0.038 

birthweight 

(grams) 

44 -0.32 0.042 

gestation at 

delivery 

44 -0.33 0.034 

Table 5.4. Results of partial correlations between fetal weight trajectory and change in abdominal 
circumference at birth to six months (divided by age in days), controlling for birthweight SDS, birthweight 
in grams and gestation at delivery are shown. Results of Pearson’s product moment correlation 
coefficient are shown. All tests reached statistical significance (p<0.05) and these are shown in bold. 
Fetal weight trajectory= change in centile between 23 week estimated fetal weight and birthweight, 
divided by days in between the two timepoints, delta (Δ)= change in, AC= abdominal circumference, 
SDS= standard deviation score, based on World Health Organization data 
 

 

5.3.6 Correlations between fetal weight trajectory and Δ mid-upper arm 
circumference birth to three months/age, birth to six months/age and 
birth to 12 months/age 
Fetal weight trajectory correlated negatively with Δ MUAC birth to six months/age (R= 

-0.32, p= 0.034, N= 44), but not with Δ MUAC birth to three months/age (R= -0.21, 

p=0.13, N= 56) nor with Δ MUAC birth to 12 months/age (tau= -0.18, p= 0.105, N= 

40). Figure 5.6 demonstrates these.
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Figure 5. 6 Scatterplots of fetal weight trajectory and Δ mid-upper arm circumference at birth to three, six and 12 months/age 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6. Plots a-c are scatterplots of change in mid-upper arm circumference at birth to three months (divided by age in days, plot a), birth to three six months 
(divided by age in days, plot b) and birth to 12 months (divided by age in days, plot c) against fetal weight trajectory (x axes). Pearson’s product moment 
correlation coefficient test was performed where the variable was normally distributed (plots a & b), and Kendall’s tau where it was not (plot c).   Plot b 
demonstrates a negative correlation. Fetal weight trajectory= change in centile between 23 week estimated fetal weight and birthweight, divided by days in 
between the two timepoints, delta (Δ)= change in, MUAC= mid-upper arm circumference.
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Partial correlations between fetal weight trajectory and Δ MUAC birth to six 

months/age controlling for birthweight SDS and gestation at delivery were significant. 

When controlling for birthweight (grams), a trend towards significance was observed, 

as shown in Table 5.5. 

 

Table 5. 5 Partial correlations between fetal weight trajectory and Δ mid-upper arm 
circumference at birth to six months/age 

Variable 1 Variable 2 Controlling 

variable 

N R  p value 

fetal weight 

trajectory 

 

Δ MUAC birth 

to six 

months/age 

 

birthweight 

SDS 

44 -0.31 0.046 

birthweight 

(grams) 

44 -0.29 0.058 

gestation at 

delivery 

44 -0.32 0.039 

Table 5.5. Results of partial correlations between fetal weight trajectory and change in mid-upper arm 
circumference at birth to six months (divided by age in days), controlling for birthweight SDS, birthweight 
in grams and gestation at delivery are shown. Results of Pearson’s product moment correlation 
coefficient are shown. Significant p values (<0.05) are shown in bold.  Fetal weight trajectory= change 
in centile between 23 week estimated fetal weight and birthweight, divided by days in between the two 
timepoints, delta (Δ)= change in, MUAC= mid-upper arm circumference, SDS= standard deviation 
score, based on World Health Organization data 
 

5.3.7 Correlations between fetal weight trajectory and Δ thigh 

circumference birth to three months/age, birth to six months/age and 

birth to 12 months/age 
Pearson product moment correlation coefficient tests did not establish any correlations 

between fetal weight trajectory and Δ TC birth to three months/age (R= -0.04, p= 

0.771, N= 56), Δ TC birth to six months/age (R= -0.28, p= 0.058, N= 44), or Δ TC birth 

to 12 months/age (R= -0.09, p= 0.594, N= 39). Although a trend towards significance 

was seen at birth to six months/age, this did not reach statistical significance.  

 

Correlations were repeated with the two participants who developed medical 

conditions (see section 5.3.1) excluded. Table 5.6 summarises all significant 

correlations between fetal weight trajectory and changes in adiposity measures. 
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Table 5. 6 Significant correlations between fetal weight trajectory and changes in 
infant measures of adiposity  

Measure of adiposity 

change 

N R  p 

Δ BMI birth to three 

months/age  

52 

50 

-0.40 

-0.42 

0.004 

0.003 

Δ BMI birth to six 

months/age  

42 

40 

-0.38 

-0.40 

0.012 

0.010 

Δ sum SF birth to six 

months/age  

43 

41 

-0.36 

-0.36 

0.016 

0.020 

Δ MUAC birth to six 

months/age  

44 

42 

-0.32 

-0.35 

0.034 

0.025 

Δ AC birth to six months/age  44 

42 

-0.30 

-0.32 

0.045 

0.040 

Table 5.6. This table shows the significant correlations that were established between fetal weight 
trajectory (change in centile between 23 week estimated fetal weight and birthweight, divided by days 
in between the two timepoints) and changes in infant measures of adiposity. These are shown for all 
participants (top) and following exclusion of two participants with medical conditions (bottom). All 
variables included were normally distributed. Therefore, results of Pearson’s product moment 
correlation coefficient are shown. Results are presented in ascending order of p value, with significant 
values (p<0.05) in bold. For clarity, statistically non-significant associations are not shown. BMI= body 
mass index, sum SF= sum of biceps, triceps and subscapular skinfold thicknesses, AC= abdominal 
circumference MUAC= mid-upper arm circumference 
 

 

5.3.8 Linear regression models to assess the influence of method of 

feeding and age at weaning on correlations between fetal weight 

trajectory and Δ postnatal measures of adiposity 
Restricting analysis to only those variables demonstrating statistically significant 

correlations in the preceding analysis (Tables 5.6 & 5.7), these relationships were 

explored. Linear regression models were constructed to understand the relative 

contribution of fetal weight trajectory to variation in childhood indicators of cardio-

metabolic health, when method of feeding and age at weaning were included in the 

model. Where the dependent variable was Δ BMI birth to three months/age, age at 

weaning was not included in the model because the earliest age at introduction of 

solid foods was four months. As previously described (Chapter 2, section 2.4.3.2), 

p<0.05 was considered significant whereas p<0.1 was considered potentially 

significant.  
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5.3.8.1 Linear regression models with childhood Δ BMI birth to three 

months/age and Δ BMI birth to six months/age as dependent variables 
The first regression model included Δ BMI birth to three months/age as the dependent 

variable. Fetal weight trajectory and method of feeding were independent variables. 

Fetal weight trajectory was a significant indicator of Δ BMI birth to three months/age 

(β= -0.042, 95% CI -0.070 to -0.013, p= 0.005, overall model R2= 0.25). 

 

In another regression model with Δ BMI birth to six months/age as the dependent 

variable, independent variables were fetal weight trajectory, method of feeding and 

age at weaning. Fetal weight trajectory was a significant indicator of Δ BMI birth to six 

months/age (β= -0.016, 95% CI -0.031 to -0.001, p= 0.005, overall model R2= 0.30). 

 

5.3.8.2 Linear regression model with Δ sum SF birth to six months/age as the 

dependent variable 

The dependent variable was Δ sum SF birth to six months/age, and independent 

variables were fetal weight trajectory, method of feeding and age at weaning. Fetal 

weight trajectory was a significant indicator of Δ sum SF birth to six months/age (β= -

0.078, 95% CI -0.144 to -0.012, p= 0.022, overall model R2= 0.30). 

 

5.5.8.3 Linear regression model with Δ abdominal circumference birth to six 

months/age as the dependent variable 

The dependent variable was Δ AC birth to six months/age and independent variables 

were fetal weight trajectory, method of feeding and age at weaning. Fetal weight 

trajectory was a significant indicator of Δ AC birth to six months/age (β= -0.032, 95% 

CI -0.061 to -0.003, p= 0.033, overall model R2= 0.20). 

 

5.5.8.4 Linear regression model with Δ mid-upper arm circumference birth to 

six months/age as the dependent variable 

The dependent variable was Δ MUAC birth to six months/age and independent 

variables were fetal weight trajectory, method of feeding and age at weaning. Fetal 

weight trajectory was a potentially significant indicator of Δ MUAC birth to six 

months/age (β= -0.010, 95% CI -0.022 to 0.001, p= 0.077, overall model R2= 0.24). 
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5.4 Discussion 

5.4.1 Main findings 
In this prospectively recruited cohort of infants, born following pregnancies identified 

antenatally as being at higher risk of FGR, there were no correlations between fetal 

weight trajectory and infant weight trajectory at birth to three months, six months or 12 

months. However, negative associations were established between fetal weight 

trajectory and Δ BMI birth to three months/age as well as Δ BMI, sum SF, AC and 

MUAC at birth to six months/age. Regression models showed that fetal weight 

trajectory was a significant indicator of Δ BMI birth to three months/age, Δ BMI birth to 

six months/age, Δ sum SF birth to six months/age, Δ AC birth to six months/age and 

a potentially significant indicator of Δ MUAC birth to six months/age. 

 

No significant associations were established between fetal weight trajectory and any 

Δ adiposity measures at birth to twelve months, nor with Δ TC at any time interval, 

although a negative trend was present at birth to six months. The latter finding may be 

due to the relative proportions of skeletal mass and fat mass represented by TC; other 

adiposity measures may represent greater proportions of fat mass (see Chapter 4, 

section 4.6.3.2, Markers of lipid metabolism [323, 332, 333]).  

 
5.4.2 Fetal weight trajectory is not correlated with infant weight trajectory  

Analyses of data from the retrospective cohort had revealed a negative association 

between fetal weight trajectory and childhood weight trajectory (see Chapter 4, section 

4.3.4). In contrast, in this prospective cohort of, there were no associations between 

fetal and infant weight trajectories at birth to three, six or 12 months. There are a 

number of possible explanations. First, the inclusion of older children in the 

retrospective cohort (median age 5.7 years), would have allowed more time for 

development of excessive weight.  This may have been too small to detect in the 

prospective cohort, during the first postnatal year. Second, we postulated that a larger 

spread of data was present in the retrospective cohort, which comprised offspring of 

healthy pregnancies as well as those from higher-risk pregnancies. However, when 

data ranges were compared, this was not true. The range of childhood weight 

trajectory in the retrospective cohort was -1.45 to 4.09 SDS (reported here without 

dividing by days for clarity), and in the prospective cohort, the ranges for Δ weight SDS 
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birth to three, birth to six and birth to 12 months were -2.12 to 3.49, -2.19 to 4.80 and 

-2.13 to 5.28 respectively. Third, the smaller sample sizes in the prospective cohort 

may have limited the power to detect an association. As previously stated (in Chapter 

2, section 2.4.5), a power calculation was not performed for this small, exploratory 

study. However, our findings could aid sample size calculation for further studies to 

understand relationships between fetal and infant weight or adiposity trajectories 

following pregnancies identified as being at higher risk of FGR. Finally, the absence 

of a negative correlation may highlight the inadequacy of Δ weight SDS as an early 

marker of adverse adiposity development, emphasising the need for other postnatal 

indicators such as Δ BMI SDS. This was further supported by the finding of no 

correlations between fetal weight trajectory and Δ weight birth to three months/age, Δ 

weight birth to six months/age or Δ weight birth to 12 months/age, based on 

unstandardised values for weight. 

 

Previous neonatal studies have demonstrated that weight SDS does not represent 

other adiposity changes. In a study of 203 healthy, term infants, Breij et al. [334] 

found that variation in % fat (measured by air-displacement plethysmography) was 

high in infants with similar weight. At one-month postnatal age, for infants with weight 

SDS of one, % fat ranged from 10% to 25%. This may explain the inconsistencies 

between results of testing correlations with infant weight trajectories and adiposity 

trajectories observed in our study. Results from the Born in Bradford study [335] also 

indicate that lower birthweight does not equate to lower adiposity. This study 

involved recruitment of pregnant women from a deprived, multi-ethnic population 

between 2007 and 2010. For 8704 participants, 4649 of whom were of Pakistani 

origin and 4055 White British, birthweight, subscapular and triceps skinfold 

thicknesses were compared. Cord leptin concentrations were available on a 

subgroup (775 Pakistani and 612 White British infants). As in our study, very preterm 

births were excluded although at cut-off gestation of 37, not 34 weeks was applied. 

Neonates of Pakistani origin had lower birthweights (mean difference -234g, 95% CI 

-258 to -210). However, after adjustment for birthweight, cord leptin was 30% higher 

and there was no difference in skinfold thicknesses. These results indicated 

proportionately greater adiposity in Pakistani neonates compared with White British 

neonates. This further emphasises the value in assessing specific markers of 
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adiposity, not only weight SDS, for early detection of potential cardio-metabolic risk 

development. 

 

5.4.3 Specific measures of infant adiposity trajectory that are linked with fetal 

weight trajectory 

Adiposity measures that displayed the strongest correlations with fetal weight 

trajectory were Δ BMI birth to three months/age, Δ BMI birth to six months/age and Δ 

sum SF birth to six months/age (as indicated by the R values in Tables 5.6 & 5.7).  

 
Potential mediators of an association between fetal weight trajectory and Δ infant 

adiposity measure are shown in Figure 5.7.  



 
 

 212 

Figure 5. 7 A graphical representation of potential mediators of the relationship 
between fetal weight trajectory and Δ infant adiposity measure 

 

 
Figure 5.7. This is a graphical representation including variables that potentially act as mediators in 
the relationship between fetal weight trajectory and Δ infant adiposity measures. Δ= change in, SDS= 
standard deviation score 
 

Partial correlations tested whether a relationship was still present when controlling 

for birthweight (grams), gestation at delivery or birthweight SDS. Each of these 

controlled for a single variable. For age at weaning and method of feeding, linear 

regression was used to test whether a relationship between fetal weight trajectory 

and Δ infant adiposity measure was present, despite introduction of these potential 

postnatal influencers of infant adiposity.  

 

5.4.3.1 Body mass index 

The absence of significant correlations detected between fetal and infant weight 

trajectories, in the presence of significant correlations with Δ BMI birth to three 
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months/age and Δ BMI birth to six months/age led us to investigate correlations with 

Δ length SDS at birth to three months/age, birth to six months/age and birth to 12 

months/age (section 5.3.3). We did not detect any significant correlations. This 

suggests that the associations observed relating to changes in BMI are not exclusively 

due to weight SDS or length SDS changes in the first postnatal year, but due to 

changes in overall adiposity. An alternative explanation relates to the limitations 

encountered when calculating SD scores at birth for adiposity measures. These were 

not calculable at birth based on WHO data. Therefore, our findings may represent CU 

adiposity gain in neonates born at smaller gestations or with lower birthweights. Whilst 

infants born at <34 weeks gestation were not included in the study, gestation at birth 

of participants recruited ranged from 239 to 295 days (34 to 42 weeks). To account for 

this, we performed partial correlations between fetal weight trajectory and Δ BMI birth 

to three months/age and also Δ BMI birth to six months/age, controlling for gestational 

age at birth, birthweight in grams and birthweight SDS (section 5.3.3). Overall, 

correlations were attenuated when controlling for these potential mediators. 

Nevertheless, they were still significant for Δ BMI birth to three months/age and 

tendencies towards significance were observed for Δ BMI birth to six months/age. 

 

Tracking of BMI from infancy to childhood has been reported. In the Generation R 

study, a BMI increase by 1 SD at age one and half months was associated with a 0.16 

(95% CI 0.09 to 0.24) increase in BMI SDS at age six years [275].  Infant BMI trajectory 

has also been studied in relation to BP in adulthood. Using data from 3154 ALSPAC 

study participants, Howe et al. [336] assessed BMI trajectory from birth to age two 

years. Notably, the majority of children (96%) enrolled into the ALSPAC study were 

White British [44]. Infants within the lowest third of birthweight but who had become 

overweight or obese by the age of two years and remained so at seventeen years 

displayed the highest BP (mean 104.2mmHg (SD 11.0) compared with 100.7 (10.5) in 

those with normal birthweight and overweight or obese at ages two and 17 years) 

[336]. Evidence for a relationship between childhood BMI and adult BP also exists 

[337]. In a systematic review and meta-analysis of longitudinal cohort studies 

assessing childhood obesity and adult cardio-metabolic risk indicators, childhood 

obesity was positively associated with adult SBP (Fisher’s R to z score 0.11, 95% CI 

0.07 to 0.14), DBP (0.11, 95% CI 0.07 to 0.14) and triglycerides (0.08, 95% CI 0.03 to 

0.13) and negatively with HDL (-0.06, 95% CI -0.10 to -0.02). Therefore, our finding of 
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a negative association between fetal weight trajectory and Δ BMI birth to six 

months/age could identify a group of individuals at risk of higher BP in later life. 

Furthermore, findings from the retrospective cohort (Chapter 4) support that these BP 

differences are detectable from mid-childhood, providing another window of 

opportunity to detect those individuals at risk of developing higher BP in adulthood. 

 

5.4.3.2 Sum of skinfold thicknesses 

Although we did not have the resources available to measure total adiposity (visceral 

and subcutaneous) in our cohort of infants, sum SF, a measure of subcutaneous 

adiposity may be a reasonable representor of overall adiposity. As supporting 

evidence of this, Breij et al. [334] showed that % fat was highly correlated with sum of 

central and sum of peripheral skinfold thicknesses in both boys (R= 0.40 and R= 0.47 

respectively, both p<0.001) and girls (R= 0.63, p<0.001 and R= 0.33, p<0.01). In a 

study of 821 infants by Santos et al. [275], skinfold thickness measurements in infancy 

were related to those in childhood. At one and a half months and again at two years, 

biceps, triceps, subscapular and suprailiac skinfold thicknesses were measured. At 

age six years, children underwent a DEXA scan as well as abdominal ultrasound to 

calculate pre-peritoneal fat mass area. In girls, a 1 SD increase in central-to-total 

subcutaneous fat mass (measured as the sum of suprailiac and subscapular skinfold 

thickness/total subcutaneous fat) was associated with higher risk of overweight at age 

six (OR 1.61, 95% CI 1.09 to 2.38). However, stronger associations were observed 

between BMI at two years and six years; a 1 SD higher BMI at two years was 

associated with an increase of 0.48 (0.42, 0.54) in BMI SDS at six years [275]. A 

longitudinal US study (N= 1042) assessing children at the higher end of the BMI range 

also supported that a relationship between BMI in early and mid-childhood exists [338]. 

Therefore, it is important to understand how the timing and tempo of weight and 

adiposity gain might influence relationships between adiposity at specific timepoints in 

infancy and adiposity in childhood. This is particularly relevant because we did not find 

associations between fetal weight trajectory and adiposity measures from birth to 12 

months, and participants were not followed up beyond 12 months.  
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5.4.4 Timing and tempo of postnatal adiposity 

A limitation in sample size, coupled with the fact that only 35 out of 47 infants 

measured at six months were also measured at 12 months, may explain the absence 

of negative correlations between fetal weight trajectory and birth to 12-month adiposity 

trajectories. The discrepancy may also represent changes in infant adiposity that occur 

up to the age at weaning, since all participants were weaned between four and six 

months. Alternatively, this may be a consequence of the non-linearity of adiposity gain 

in the first postnatal year of life. BMI rises sharply from birth, reaching an adiposity 

peak at approximately nine months [339] before it decreases, reaches a nadir and 

then rebounds in childhood (adiposity rebound) [340, 341]. The negative associations 

between fetal weight trajectory and infant BMI trajectories up to age six months 

established in our cohort represent a steeper rise in BMI prior to adiposity peak, in 

those individuals exposed to more severe degrees of FGR. This is relevant because 

a sharp, rather than gradual rise in BMI in early postnatal life may be more likely to 

lead to a higher BMI at adiposity peak. This is positively associated with BMI, waist to 

height ratio, % fat and BP at age six years [342].  

 

Breij et al. [334] identified the first three postnatal months as a critical window of 

adiposity development. A significant increase in % fat (p<0.001) was observed, which 

was not present between the ages of three and six months (p= 0.098). Furthermore, 

another study of 401 healthy term infants showed that % fat (measured by air 

displacement plethysmography) from one to six months was linked with adiposity at 

age two years [343]. Notably, no associations were found with changes in % fat 

between six and twelve months. Our findings are in line with these, and further support 

that the first six months of life may be a window of opportunity to manage adiposity 

gains that could persist beyond this period.  

 

BMI at adiposity peak has been positively associated with BMI at age 31 years [344], 

further supporting that early life adiposity development may influence later life health 

(see section 5.4.3.1 on tracking of BMI). In relation to prenatal growth, positive links 

between second trimester EFW and both BMI at adiposity peak and infant peak weight 

velocity have been demonstrated [345]. Although we did not examine EFW per se. in 

association with postnatal adiposity, it is plausible that a higher EFW at 23 weeks 

gestation allows more potential for a decline in fetal weight trajectory. Following this, 
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in our cohort, an infant may exhibit greater Δ BMI birth to three months/age and Δ BMI, 

sum SF, abdominal circumference and MUAC birth to six months/age.  

 

Whilst these factors may be relevant to our findings where associations with fetal 

weight trajectory were observed at birth to six months but not at birth to 12 months, 

this discrepancy may also be due to most infants being weaned onto solid foods at six 

months.  

 
5.4.5 Postnatal determinants of infant adiposity gains 
In the first six months of life, method of feeding [346] and age at weaning [347] may 

contribute to infant adiposity. The WHO recommends exclusive breastfeeding for the 

first six months of life [348], based on evidence that it provides protection against 

gastrointestinal infections [349] and chronic illness including cardio-metabolic disease 

[350] for the neonate, and also confers maternal health benefits [348]. 

 

Controversies exist around the benefits of breastmilk over formula in preventing 

excessive fat mass accumulation at birth to six months [351].  To fully explore this, 

subgroup analysis would be required. However, this was not undertaken due to 

considerable limitations in sample size. To assess directionality, we observed that Δ 

sum SF birth to six months/age was lower in formula fed (mean 0.061, SD 0.042) as 

compared with breastfed (0.080, 0.030) infants. In line with this, a systematic review 

and meta-analysis examining differences in body composition in infants fed breastmilk 

versus formula showed that formula fed infants had lower fat mass at age six months 

(mean difference -0.18 kg, 95% CI -0.34 to -0.01). However, the reverse was seen at 

12 months, with formula fed infants displaying a higher fat mass [346].  

 

The WHO recommendation to wean at 6 months is based on the finding that breastfed 

infants self-regulate their calorie intake when complementary foods are introduced, 

providing no advantage of solids prior to six months [352]. In relation to infant adiposity 

(N= 1013), earlier introduction of complementary feeding has been associated with 

higher waist circumference, truncal fat mass and sum of subscapular and triceps 

skinfolds in both breastfed and formula fed infants [347]. Again, our sample size was 

insufficient to explore this in our cohort.  
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5.4.6 Strengths  

In this cohort of prospectively recruited infants who had higher risk of FGR antenatally, 

79% (62/79) had a negative fetal weight trajectory but had birthweight above 2nd 

centile. These individuals would not have been detected as SGA at birth, on the basis 

of Paediatric definitions (see Chapter 1, section 1.5.1). Other studies, using SGA as a 

surrogate marker for FGR would exclude a large proportion of individuals included in 

this study, thereby highlighting an important difference in our selection criteria. This, 

combined with the availability of detailed antenatal ultrasound data from the MPC, 

enabling analyses of data spanning pre- and postnatal life make the Manchester 

BabyGRO Study unique. 

 

We demonstrated associations with fetal weight trajectory consistently across 

changes in four markers of adiposity (BMI, sum SF, abdominal circumference and 

MUAC) at the same postnatal age interval (birth to six months), in addition to Δ BMI 

birth to three months/age. This adds confidence to our findings and suggests that 

future studies where longitudinal follow up beyond 12 months is not feasible, should 

focus on measurements at birth, up to and including six months. 

 
5.4.7 Limitations 

Sample size was a substantial limitation of this study. A number of participants 

recruited antenatally failed to attend for follow up and many attended some, but not all 

visits. This resulted in different participants being included in analyses of birth to three, 

birth to six and birth to 12-month measures of weight and adiposity.  

 
It was possible to calculate SD scores for weight, length, BMI, AC, MUAC, triceps and 

subscapular SF at three, six and 12 months. However, WHO SD scores at birth, 

incorporating gestational age, were only calculable for birthweight (as well as birth 

length and HC, which were not relevant to our study aims). Assessment of weight and 

adiposity changes from three to six, three to 12, and six to 12 months was not 

appropriate due to considerable limitations in sample size. This led to the decision to 

include unstandardised data.  

 

Whilst regression models confirmed that fetal weight trajectory was a significant 

indicator of a number of Δ infant adiposity measures, interpretation of the influence of 
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method of feeding and age at weaning was limited by sample size. This was not the 

primary aim of the study and further work is required to uncover the degree to which 

these postnatal variables affect Δ adiposity measures, relative to the influence of fetal 

weight trajectory. A larger study, alongside the use of directed acyclic graphs to 

determine mediators of this association may be valuable.  

 

Air displacement plethysmography was not possible due to lack of equipment. This is 

a likely reason for paucity of literature relating to % fat measured by air displacement 

plethysmography in infants. Additionally, our study may have been enriched by more 

frequent visits within the first postnatal year, that may have captured the BMI and age 

at adiposity peak for each individual participant.  

 

5.5 Chapter summary 
 

• Fetal and infant weight trajectories are not correlated. This suggests a need to 

measure other adiposity markers in early life, to detect adverse growth 

trajectories. 

• Negative relationships exist between fetal weight trajectory and changes in 

adiposity measures in the first six months of postnatal life  

• In particular, fetal weight trajectory is a potential indicator of Δ BMI and Δ sum 

SF at birth to six months/age. This may represent an early opportunity to detect 

infants beginning to follow adverse growth trajectories.  

• In Chapter 4, we identified that childhood weight trajectory was a potential 

mediator of the relationship between fetal weight trajectory and childhood SBP. 

Establishing a link between Δ BMI and/or Δ sum SF at birth to six months/age 

and childhood weight trajectory in the same cohort would add further support 

for conducting these adiposity measurements in early life. This is an area for 

future work (see Chapter 7).
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Chapter 6. Analyses of Metabolomic and Transcriptomic Data 

6.1 Introduction 
 

In Chapter 4, we described a triad of associations between fetal weight trajectory, 

childhood weight trajectory and childhood SBP. In addition, positive correlations 

between childhood weight trajectory and measures of glucose metabolism, lipid 

metabolism and vascular health were demonstrated in the retrospective cohort.  

 

‘Omic analyses could detect genes or metabolites to help elucidate biological 

pathways. Firstly, this may have the potential to link both fetal and childhood weight 

trajectories to childhood SBP. Secondly, pathways linking postnatal weight trajectory 

to childhood indicators of cardio-metabolic risk may further our understanding of 

biological mechanisms involved. Where cardio-metabolic differences are identified, 

examining differences in both gene transcripts and metabolites may lead us towards 

unravelling these mechanisms.  

 

An unsupervised approach (see Chapter 1, section 1.8) may help define clusters of 

participants that differ in their metabolomics or transcriptomics. Additionally, 

supervised approaches, incorporating fetal growth trajectory or childhood weight 

trajectory to define quartiles, could reveal genes and pathways that differ between 

specific quartiles of growth trajectory. Alongside these methods, regression analyses 

with fetal or postnatal weight trajectory as continuous dependent variables would allow 

ranking of metabolites or genes, highlighting those that are significant. Lastly, 

assessing for commonality [353] between genes and metabolites resulting from all 

these supervised analyses may uncover those of most relevance to take forward into 

pathways analysis. 

 
We aimed to identify differentially expressed genes (DEGs) and metabolites (DEMs) 

that could elucidate pathways linking i) fetal weight trajectory to childhood SBP and 

ii) postnatal weight trajectory to childhood indicators of cardio-metabolic risk. 
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6.2 Methods 
 

The methods for ‘omics analyses, performed on serum samples from children in the 

retrospective cohort are described in Chapter 2, section 2.4.4 and are outlined in 

Figure 2.20. 

 

Of note, where quartiles of fetal weight trajectory have been constructed, Q1, the 

lowest quartile refers to the most negative fetal weight trajectory. Comparisons have 

been made between Q1 and Q4 (lowest versus highest quartile) as well as between 

Q1 and Q2 to 4. Where quartiles of childhood weight trajectory have been 

constructed, Q4, the highest quartile refers to the most positive childhood weight 

trajectory. Comparisons have been made between Q4 and Q1 (highest versus 

lowest quartile) as well as between Q4 and Q1 to 3.  

 

The decision to perform the quartile comparisons in this way was based on the 

association between most negative fetal weight trajectory and most positive 

childhood weight trajectory, plus the links between both these and higher childhood 

SBP (Chapter 4). Comparing Q1 versus Q2 to Q4 (fetal weight trajectory) or Q4 

versus Q1 to Q3 (childhood weight trajectory) may allow differences that exist at one 

end of a spectrum of phenotypes to be revealed. In doing so, this could distinguish 

differences that may be applicable in a clinical setting. 

6.3 Results 
 

Results from establishing quartiles for fetal and childhood weight trajectories applies 

to both metabolomic and transcriptomic analyses. Therefore, these will be presented 

first. Next, the results from metabolomic analyses followed by transcriptomic 

analyses will be shown. Finally, results following integration of metabolomic and 

transcriptomic datasets will be described.  

6.3.1 Determining groups for supervised analysis 
For both transcriptomics and metabolomics, defining quartile cut offs for both fetal and 

childhood weight trajectories was an important step in determining groups for the 

supervised analyses.  
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6.3.1.1 Establishing cut-offs to define groups based on fetal weight trajectory 

and childhood weight trajectory 
The boundaries for quartiles of fetal weight trajectory and childhood weight trajectory 

are shown in Tables 6.1 and 6.2 respectively. These boundaries were based on the 

entire cohort. Of 21 children in Q1 for fetal weight trajectory, nine were in Q4 for 

childhood weight trajectory. Metabolomic data were available for 26 participants and 

transcriptomic data for 31. The numbers included within each group are also shown in 

these tables.
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Table 6. 1 Numbers included in groups defined by quartiles of fetal weight trajectory 

Quartile boundary for fetal weight 

trajectory 

Metabolomics N Transcriptomics N 

Q1 

(≤ -0.345) 

5 7 

Q4 

(> 0.023) 

8 8 

Q2 to Q4 

(> -0.345) 

21 24 

Table 6.1. Numbers of participants included in the lowest (most negative), highest and highest three 
quartiles for fetal weight trajectory are shown. Boundaries were based on the entire cohort of 80, 
where estimated fetal weights were available. Fetal weight trajectory= change in centile from 23 week 
estimated fetal weight to birthweight, divided by days in between the two timepoints, Q1= lowest 
quartile, Q4= highest quartile, Q2 to Q4= highest three quartiles. 
 

 

Table 6. 2 Numbers included in groups defined by quartiles of childhood weight 
trajectory 

Quartile boundary for childhood 

weight trajectory 

Transcriptomics 

N 

Metabolomics N 

Q4 
(≥0.282) 

11 9 

Q1 
(<0.032) 

7 7 

Q1 to Q3 
(<0.282) 

20 17 

Table 6.2. The numbers of participants included in the highest (most positive), lowest and lowest 
three quartiles for childhood weight trajectory are shown. Boundaries were based on the entire cohort 
of 81. Childhood weight trajectory= change in weight standard deviation score between birth and 
childhood, divided by the age in years, Q4= highest quartile, Q1= lowest quartile, Q1 to Q3= lowest 
three quartiles 
 

6.3.1.2 Differences in childhood measures of cardio-metabolic risk, between 

groups based on quartiles of fetal weight trajectory 
As shown in Table 6.3, SBP and HDL differed significantly between Q1 and Q4 of 

fetal weight trajectory. Therefore, the decision was made to retain this set of 

groupings and examine for DEMs (section 6.3.2.4.2) and DEGs (section 6.3.3.4.2) 

between Q1 and Q4.
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Table 6. 3 Differences in childhood indicators of cardio-metabolic risk between 
lowest and highest quartile of fetal weight trajectory 

Childhood measure p Mean (SD)/median [range] 

Q1 (N=21) Q4 (N=19) 

HDL  0.016 1.40 (0.25) 1.63 (0.12) 

SBP 0.040 106 [93-128] 101 [95-110] 

MUAC 0.054 17.1 [15.1-21.8] 18.0 [15.7-20] 

Brachial AI  0.102 -40.2 (15.0) -49.8 (17.4) 

TC 0.247 32.3 (3.5) 33.5 (2.90) 

AC 0.250 51 [48.2-64] 54.7 [47.7-60.0] 

BMI SDS 0.428 0.06 (0.86) 0.29 (0.89) 

% Fat 0.630 12.3 [1.1-33.2] 11.1 [4.6-18.3] 

Insulin  0.788 26.5 (15.3) 24.6 (15.8) 

Sum SF 0.888 33.5 [25.3-91.1] 34.7 [18.6-54.2] 
Table 6.3. This table includes the results of t tests (parametric) and Mann Whitney U tests (non-
parametric), to examine differences in childhood indicators of cardio-metabolic risk between lowest 
(most negative, Q1) and highest quartile (Q4) of fetal weight trajectory (change in centile from 23 
week estimated fetal weight to birthweight, divided by days in between the two timepoints). Results 
are presented in ascending order of p value, with significant values (p<0.05) in bold. There was a 
significant difference in high density lipoprotein and in systolic blood pressure, with a tendency 
towards significance for mid-upper arm circumference. The mean and standard deviation of fetal 
weight trajectory was -0.48 (0.11) for Q1 and 0.15 (0.13) for Q4. HDL= high density lipoprotein, SBP= 
systolic blood pressure, MUAC= mid-upper arm circumference, brachial AI= brachial augmentation 
index, TC= thigh circumference, AC= abdominal circumference, BMI SDS= body mass index standard 
deviation score (based on World Health Organization data), % fat= fat percentage, sum SF= sum of 
biceps, triceps, subscapular, suprailiac and abdominal skinfold thicknesses.  
 

No significant differences were found between Q1 and Q2 to Q4 of fetal weight 

trajectory (Table 6.4). Although SBP and MUAC tended towards significance, they 

did not meet the cut-off (p<0.05), so this set of groupings were not taken further in 

the analyses (for assessment of DEMs and DEGs).  
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Table 6. 4 Differences in childhood indicators of cardio-metabolic risk between 
lowest and highest three quartiles of fetal weight trajectory 

Childhood measure p Mean (SD)/median [range] 

Q1 (N=21) 

 

Q2 to Q4 (N=59) 

SBP 0.064 106 [93-128] 103 [89-134] 

MUAC 0.085 17.1 [15.1-21.8] 17.8 [14.8-23.0] 

HDL  0.108 1.40 (0.25) 1.55 (0.26) 

BMI SDS 0.322 0.03 [-1.4 to 2.37] 0.16 [-2.13 to 4.1] 

AC 0.371 51 [48.2-64] 52.6 [46.2-68.3] 

TC 0.391 32.3 (3.5) 33.0 (3.0) 

Sum SF 0.527 33.5 [25.3-91.1] 38.1 [18.6-91.1] 

Brachial AI  0.587 -40.2 (15.0) -43.1 (15.1) 

% Fat 0.976 12.3 [1.1-33.2] 11.6 [0.4-38] 
Insulin  0.980 26.5 (15.3) 26.3 (13.4) 

Table 6.4. This table includes the results of t tests (parametric) and Mann Whitney U tests (non-
parametric), to examine differences in childhood indicators of cardio-metabolic risk between lowest 
(most negative) and highest three quartiles of fetal weight trajectory (change in centile from 23 week 
estimated fetal weight to birthweight, divided by days in between the two timepoints). Results are 
presented in ascending order of p value. No significant differences were found, although there was a 
tendency towards significance for systolic blood pressure and mid-upper arm circumference. The 
mean and standard deviation of fetal weight trajectory was -0.48 (0.11) for Q1 and -0.03 (0.18) for Q2 
to Q4. SBP= systolic blood pressure, MUAC= mid-upper arm circumference, HDL= high density 
lipoprotein, BMI SDS= body mass index standard deviation score (based on World Health 
Organization data), AC= abdominal circumference, TC= thigh circumference, sum SF= sum of biceps, 
triceps, subscapular, suprailiac and abdominal skinfold thicknesses, brachial AI= brachial 
augmentation index, % fat= fat percentage 
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6.3.1.3 Differences in childhood measures of cardio-metabolic risk, between 

groups based on quartiles of childhood weight trajectory 

When comparing groups based on Q4 and Q1 of childhood weight trajectory, 

differences in SBP, BMI SDS, AC, MUAC, brachial AI and % fat (Table 6.5) were 

found. When examining Q4 versus Q1 to Q3 of childhood weight trajectory, 

differences in BMI SDS, SBP, % fat, MUAC, HDL, brachial AI and AC were 

established (Table 6.6).  

 
Table 6. 5 Differences in childhood indicators of cardio-metabolic risk between 
highest and lowest quartile of childhood weight trajectory 

Childhood measure P Mean (SD)/median [range] 

Q4 (N=22) Q1 (N=20) 

SBP 0.002 107 [95-134] 99 [89-117] 

BMI SDS 0.005 0.61 [-0.38-4.1] 0.11 [-2.13-1.22] 

AC 0.020 54.2 [46.2-68.3] 50.8 [46.5-57.0] 

MUAC 0.023 18.0 [16.0-23.0] 17.4 [14.8-19.0] 

Brachial AI  0.028 -34.9 (13.4) -48.4 (17.1) 

% Fat 0.030 16.6 [5.8-38.0] 10.2 [0.4-21.7] 

HDL  0.063 1.37 (0.18) 1.53 (0.18) 

Insulin  0.085 29.9 (13.1) 20.5 (10.5) 

TC 0.117 33.9 (4.0) 32.1 (3.1) 

Sum SF 0.167 38.5 [28.5-91.1] 36.1 [18.6-54.2] 
Table 6.5. This table includes the results of t tests (parametric) and Mann Whitney U tests (non-
parametric), to examine differences in childhood indicators of cardio-metabolic risk between the 
highest and lowest quartile of childhood weight trajectory (change in weight standard deviation score 
between birth and childhood, divided by the age in years). Results are presented in ascending order 
of p value, with significant values (p<0.05) in bold. In addition, a tendency towards significance was 
observed for high density lipoprotein and insulin. The median and range of childhood weight trajectory 
was 0.43 [0.28 to 0.80] for Q4 and -0.06 [-0.29 to 0.02] for Q1. SBP= systolic blood pressure, BMI 
SDS= body mass index standard deviation score (based on World Health Organization data), AC= 
abdominal circumference, MUAC= mid-upper arm circumference, brachial AI= brachial augmentation 
index, % fat= fat percentage, HDL= high density lipoprotein, TC= thigh circumference, sum SF= sum 
of biceps, triceps, subscapular, suprailiac and abdominal skinfold thicknesses. 
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Table 6. 6 Differences in childhood indicators of cardio-metabolic risk between 
highest and lowest three quartiles of childhood weight trajectory 

Childhood measure P Mean (SD)/median [range] 

Q4 (N=22) Q1 to Q3 (N=59) 

BMI SDS 3.90 x 10-4 0.61 [-0.38-4.1] 0.01 [-2.13-1.36] 

SBP 0.006 107 [95-134] 103 [89-124] 

% Fat 0.007 16.6 [5.8-38.0] 10.8 [0.4-29.7] 

MUAC 0.008 18.0 [16.0-23.0] 17.5 [14.8-20.5] 

HDL  0.008 1.37 (0.18) 1.58 (0.28) 

Brachial AI  0.019 -34.9 (13.4) -44.4 (15.4) 

AC 0.035 54.2 [46.2-68.3] 52.0 [46.5-58.8] 

TC 0.170 33.9 (4.0) 32.5 (2.8) 

Sum SF 0.179 38.5 [28.5-91.1] 37.1 [18.6-73.8] 

Insulin  0.224 29.9 (13.1) 24.1 (14.0) 
Table 6.6. This table includes the results of t tests (parametric) and Mann Whitney U tests (non-
parametric), to examine differences in childhood indicators of cardio-metabolic risk between highest 
and lowest three quartiles of childhood weight trajectory (change in weight standard deviation score 
between birth and childhood, divided by the age in years). Results are presented in ascending order 
of p value, with significant values (p<0.05) in bold. The median and range of childhood weight 
trajectory was 0.43 [0.28 to 0.80] for Q4 and 0.07 [-0.29 to 0.28] for Q1 to Q3. BMI SDS= body mass 
index standard deviation score (based on World Health Organization data), SBP= systolic blood 
pressure, % fat= fat percentage, MUAC= mid-upper arm circumference, HDL= high density 
lipoprotein, brachial AI= brachial augmentation index, AC= abdominal circumference, TC= thigh 
circumference, sum SF= sum of biceps, triceps, subscapular, suprailiac and abdominal skinfold 
thicknesses. 
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6.3.2 Metabolomics 

6.3.2.1 Quality control for metabolomics 
The initial NMR spectroscopy dataset contained 2186 variables. The process 

described in  Chapter 2, Section 2.4.4.1.1 resulted in removal of 1730 classed as 

“noise” and  three internal standards.118 variables had assigned metabolite names 

(14 different metabolite names in total). A further 335 variables were unnamed, 

which the NMR analyst would be able to specify on request, following statistical 

analyses. Therefore, both named and unnamed (N= 453) variables were retained for 

further analyses.  

 

Scaling of metabolomic data showed appropriate normalisation. This is 

demonstrated by the PCA biplots in Figures 6.1 (prior to scaling) & 6.2 (after 

scaling). After scaling, no outliers were identified. This is illustrated in Figure 6.2 

where all points fall within the 95% CI, which is represented by a circle.
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 Figure 6. 1 Principal component analysis of metabolomic data prior to scaling 

 

Figure 6.1. Principal component biplot of the variables within the metabolomic dataset, prior to 
scaling. The x and y axes represent the first and second principal components respectively, which 
collectively account for the majority of variation in the data. 
 



 
 

 229 

Figure 6. 2 Principal component analysis of metabolomic data after scaling 

 

 

 

Figure 6.2. Principal component biplot of the variables within the metabolomic dataset, after data 
scaling. The x and y axes represent the first and second principal components respectively, which 
collectively account for the majority of variation in the data. The circle represents the 95% confidence 
interval and indicates the absence of outliers.
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A histogram of the scaled NMR data demonstrated a normal distribution. This is 

illustrated in Figure 6.3.  

 

Figure 6. 3 Histogram of scaled metabolomic data 

Figure 6.3. This histogram illustrates that after data scaling, the metabolomic data were normally 
distributed.  
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6.3.2.2 Establishment of groups based on PCA and k means clustering and 

differences in childhood measures of cardio-metabolic risk between groups 
The results of this unsupervised clustering approach, the methods of which have been 

previously described (Chapter 2, section 2.4.4.2) are presented in this section. It is 

noteworthy that k means clustering is independent of the PCA; the PCA biplot is one 

way of visualising the data clustered by the k means algorithm. Once groups were 

established, differences in cardio-metabolic indicators were examined between 

groups (see Figure 2.20). Results from these analyses are also included here. 

 
6.3.2.2.1 Principal component analysis and k means clustering for 

metabolomics 

26 participants clustered into groups of four and 22 on the basis of their 

metabolomics. This is shown in Figure 6.4.  
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Figure 6. 4 Metabolomics PCA and k means clustering 

 

Figure 6.4. A principal component biplot of the 26 participants on whom metabolomic data were 
available. The x and y axes represent the first and second principal components respectively, which 
collectively account for the majority of variation in the data. A mathematical algorithm (k-means 
clustering) was applied to form two separate clusters of participants, based on their metabolome. The 
number of clusters was pre-specified. The method was otherwise unsupervised. Using this method, 
each observation was partitioned into a cluster with the nearest mean, the cluster centroid. Within this 
two-dimensional biplot, k means clustering used Euclidean distances which are based on 
Pythagorean theorem. One cluster included four participants (blue) and the other included 22 
(orange), representing participants at opposite ends of a spectrum.
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6.3.2.2.2 Differences in childhood measures of cardio-metabolic risk between 

groups based on PCA and k means clustering 

As shown in Table 6.7, there were no significant differences in childhood measures 

of cardio-metabolic risk between the two groups. 

 

Table 6. 7 Comparisons of childhood measures of cardio-metabolic risk between 
groups of participants defined by metabolomics k means clustering 

Childhood measure P Mean (SD)/median [range] 

Group 1 (N=4) Group 2 (N=22) 

Sum SF 0.166 33.6 [18.6-46.4] 45.2 [25.9-91.1] 

BMI SDS 0.243 -0.16 (1.10) 0.67 (1.39) 

%Fat 0.250 9.4 [4.6-20.0] 13.3 [4.9-38.0] 

HDL 0.265 1.62 (0.14) 1.50 (0.28) 

Insulin  0.271 35.5 (14.9) 25.4 (14.0) 

TC 0.522 33.0 [31.0-34.2] 33.6 [28.3-42.3] 

SBP 0.709 102 [89-119] 103 [94-134] 

AC 0.749 52.6 [49.3-54.3] 52.3 [47.7-68.3] 

MUAC 0.831 17.9 [16.8-18.3] 17.9 [15.7-23.0] 

Brachial AI 0.980 -44.4 (23.5) -44.0 (16.4) 
Table 6.7. This table includes the results of t tests (parametric) and Mann Whitney U tests (non-
parametric), to examine differences in childhood indicators of cardio-metabolic risk between groups of 
participants who are separated by metabolomics k-means clustering. Results are presented in 
ascending order of p value. No significant differences were found. sum SF= sum of biceps, triceps, 
subscapular, suprailiac and abdominal skinfold thicknesses, BMI SDS= body mass index standard 
deviation score (based on World Health Organization data), % fat= fat percentage, HDL= high-density 
lipoprotein, TC= thigh circumference, SBP= systolic blood pressure, AC= abdominal circumference, 
MUAC= mid-upper arm circumference, brachial AI= brachial augmentation index 
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6.3.2.3 Summary of groups defined to examine differences in 

metabolites 
In summary, three sets of groups were defined where differences in childhood 

indicators of cardio-metabolic risk were found. These are outlined in Table 6.8.  

 
Table 6. 8 A summary of sets of groups and differences in childhood indicators of 
cardio-metabolic risk established  

Method Childhood indicators 

that differ 

To be taken forward to 

examine for differences in 

metabolites between 

groups 

Fetal 

weight 

trajectory 

Q1 versus Q4  SBP, HDL Yes 

Q1 versus Q2 

to Q4 

None No 

Childhood 

weight 

trajectory 

Q4 versus Q1 SBP, brachial AI, AC, 

MUAC, % fat, HDL 

Yes 

Q4 versus Q1 

to Q3 

SBP, brachial AI, AC, 

MUAC, % fat 

Yes 

Groups defined by k means 

clustering  

None No 

Table 6.8. This table summarises the group sets for metabolomics where differences in cardio-
metabolic indicators were found. Where differences were identified, those group sets were then taken 
forward to examine for differences in metabolites. SBP= systolic blood pressure, HDL= high density 
lipoprotein, brachial AI= brachial augmentation index, AC= abdominal circumference, MUAC= mid-
upper arm circumference, % fat= fat percentage, Q1= lowest quartile, Q4= highest quartile.   
 
For fetal weight trajectory, one group set (Q1 versus Q4) was taken forward to analyse 

DEMs between the groups. Rank regression was also performed, with fetal weight 

trajectory as the dependent variable. Then assessment for commonality was 

undertaken.  

 

For childhood weight trajectory, two group sets (Q4 versus Q1 and Q4 versus Q1 to 

Q3) were taken forward to analyse DEMs between the groups. Rank regression was 

performed with childhood weight trajectory as the dependent variable and assessment 

for commonality was undertaken on results from the three sets of analyses.  
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6.3.2.4 Fetal weight trajectory 

6.3.2.4.1 Rank regression  

As described in Chapter 2 (section 2.4.4.3 & Figure 2.20), rank regression was 

performed with fetal weight trajectory as the dependent and all metabolites as 

independent variables.  

 
Rank regression identified 39 significant metabolites (unadjusted p value range 3.15 

x 10-3 to 0.049).  

 

6.3.2.4.2 Differentially expressed metabolites between lowest and highest 

quartiles for fetal weight trajectory 

Examining for differentially expressed metabolites revealed 17 variables (unadjusted 

p= 8.15 x 10-3 to 0.04).  

 

6.3.2.4.2 Assessment for commonality 

Assessment for commonality was performed using unadjusted p values (see Chapter 

2, section 2.4.4.6). 10 variables were common to both sets of analyses. Of these, 

only six were identifiable following discussion with the external laboratory (see 

section 6.3.2.1). All were amino acids. Two of the variables related to the same 

metabolite, alanine. The results are shown in Table 6.9.
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Table 6. 9 Differentially expressed metabolites common to both sets of analyses 
performed for fetal weight trajectory 

Metabolite Rank regression p value Q4 versus Q1 p value 
Alanine 1 0.010 0.03 
Alanine 2 0.011 0.03 

Glutamine + Glutamate 0.038 0.02 
Methylhistidine 0.036 0.01 

3 methyl 2 oxobutanoic acid 0.049 0.02 
Ornithine 0.049 0.03 

Table 6.9. This table includes the variables that were significant in rank regression with fetal weight 
trajectory (change in centile from 23 week estimated fetal weight to birthweight, divided by days in 
between the two timepoints) as the dependent variable, and also significantly different between lowest 
(most negative, Q4) and highest (most positive, Q1) quartiles for fetal weight trajectory. Results are 
presented in ascending order of rank regression p value. For clarity, only significant results are 
presented. Each row relates to a different variable in the nuclear magnetic resonance dataset, where 
multiple variables may represent a single variable. Therefore, alanine is listed twice. 
 
6.3.2.5 Childhood weight trajectory 

These methods were applied to childhood weight trajectory. In addition, DEMs 

between Q4 and Q1 to Q3 were determined. Again, unadjusted p values are shown. 

 
6.3.2.5.1 Rank regression 

Rank regression identified three variables that were significant (unadjusted p value 

range 0.03 to 0.04).  

 

6.3.2.5.2 Differentially expressed metabolites between highest and lowest 

quartiles for childhood weight trajectory 

Eight variables were significantly different between Q4 and Q1 of childhood weight 

trajectory (unadjusted p value range 0.013 to 0.046). 

 

6.3.2.5.3 Differentially expressed metabolites between highest and lowest three 

quartiles for childhood weight trajectory 

18 variables were significantly different between Q4 and Q1 to Q3 of childhood weight 

trajectory (unadjusted p value range 7.36 x 10-3 to 0.047). 

 
6.3.2.4.2 Assessment for commonality 

Two variables were common to all three methods adopted, to identify significant 

metabolites for childhood weight trajectory. Following discussion with the external 

laboratory only of these was identifiable. This metabolite was ornithine (rank 

regression p= 0.01, highest versus lowest quartile p= 0.03, highest versus lowest 
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three quartiles p= 0.01). The other variable did not relate to a resonance and was 

consequently unidentifiable. 

 

Of note, ornithine was also identified by both methods used in relation to fetal weight 

trajectory (Table 6.9).  

 

6.3.3 Transcriptomics 
6.3.3.1 Quality control for transcriptomics 

PCA plots before and after scaling of edgeR® outputs are shown in Figures 6.5 & 6.6. 

These demonstrate similar distributions of scaled and unscaled data and illustrate that 

no further scaling was necessary for edgeR® processed data. 
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Figure 6. 5 Principal component analysis of transcriptomics data prior to scaling 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5. A principal component analysis biplot of transcriptomics data prior to scaling. 
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Figure 6. 6 Principal component analysis of transcriptomics data after scaling 

 
Figure 6.6. A principal component analysis biplot of transcriptomics data after data scaling. 
 

Histograms of scaled and unscaled data (Figure 6.7) also supported that the 

distributions were similar and that further scaling of edgeR® processed cpm values 

was not necessary. 
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Figure 6. 7 Histograms of unscaled and scaled edgeR® processed transcriptomics 
data  

 
 

 
 

  

 
 
  
Figure 6.7. Histograms of unscaled (above) and scaled (below) data demonstrated similar 
distributions, which indicated that edgeR® processed data did not require any further scaling. cpm= 
counts per million (the value assigned to gene trascripts to quantify expression levels) 
 
Furthermore, we found genes demonstrated similar levels of expression when 

participants in different groups sets were compared. Together, these analyses 

showed that outliers were absent and processing of data by edgeR to cpm did not 

affect the distribution of transcripts within subsets of individuals. 
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6.3.3.2 Establishment of groups based on PCA and k means clustering and 

differences in childhood measures of cardio-metabolic risk between groups 
 

6.3.3.2.1 Principal component analysis and k means clustering for 

transcriptomics 

Unsupervised analysis using PCA with k means clustering, showed that the 31 

participants formed two clusters of 7 and 24. This is illustrated in Figure 6.8.  

 

Figure 6. 8 Transcriptomics PCA and k means clustering 

 

Figure 6.8. A principal component biplot of the 31 participants on whom transcriptomic data were 
available. The x and y axes represent the first and second principal components respectively, which 
collectively account for the majority of variation in the data. A mathematical algorithm (k-means 
clustering) was applied to form two separate clusters of participants, based on their transcriptome. 
The number of clusters was pre-specified as two. The method was otherwise unsupervised. Using 
this method, each observation was partitioned into a cluster with the nearest mean, the cluster 
centroid. Within this two-dimensional biplot, k means clustering used Euclidean distances which are 
based on Pythagorean theorem. One cluster included seven participants (orange) and the other 
included 24 (blue), representing participants at opposite ends of a spectrum.
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6.3.3.2.2 Differences in childhood measures of cardio-metabolic risk between 

groups based on PCA and k means clustering 

SBP was significantly different between the two groups of participants established 

following PCA and k means clustering. There were no significant differences between 

any other childhood indicators of cardio-metabolic risk (Table 6.10). 

 

Table 6. 10 Comparisons of childhood measures of cardio-metabolic risk between 
groups of participants defined by transcriptomics k means clustering 

Childhood measure p Mean (SD)/median [range] 

Group 1 (N=7) Group 2 (N=24) 

SBP 0.009 111 [101-134] 102 [89-122] 

HDL  0.119 1.38 (0.29) 1.58 (0.25) 

BMI SDS 0.171 0.83 [-0.35 to 4.1] 0.09 [-1.62 to 3.17] 

Brachial AI  0.428 -37.5 (11.8) -43.5 (17.9) 

% Fat 0.437 15.4 [7.0-34.5] 12.1 [2.9-38.0] 

TC 0.637 34.4 (3.5) 33.7 (2.8) 

Insulin  0.668 28.3 (15.0) 25.5 (13.8) 

AC 0.741 53.0 [49.0-68.3] 52.0 [47.7-65.3] 

MUAC 0.906 17.6 [16.3-23.0] 18.0 [15.7-20.5] 

Sum SF 0.908 46.4 [25.9-89.5] 39.0 [18.6-91.1] 
Table 6.10. This table includes the results of t tests (parametric) and Mann Whitney U tests (non-
parametric), to examine differences in childhood indicators of cardio-metabolic risk between groups of 
participants who were separated by transcriptomics k-means clustering. Results are presented in 
ascending order of p value. There was a significant difference in systolic blood pressure between 
participants in the two clusters. SBP= systolic blood pressure, HDL= high density lipoprotein, BMI 
SDS= body mass index standard deviation score (based on World Health Organization data), brachial 
AI= brachial augmentation index, % fat= fat percentage, TC= thigh circumference, AC= abdominal 
circumference, MUAC= mid-upper arm circumference, sum SF= sum of biceps, triceps, subscapular, 
suprailiac and abdominal skinfold thicknesses. 

 

Identification of a difference in SBP led to the decision to also examine for a 

difference in DBP. A tendency towards significance was observed (median [range] in 

group 1 was 67 [51-81] compared with 55 [49-62] for group 2, p=0.082).  

 

Additionally, demographic characteristics were compared, and the results are shown 

in Tables 6.11 and 6.12. No differences were found.   
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Table 6. 11 Comparisons of demographic variables between groups of participants 
defined by transcriptomics k means clustering (continuous variables) 

Demographic measure 

 

p Mean (SD)/median [range] 

Group 1 (N=7) Group 2 (N=24) 

Age at visit (y) 0.178 5.3 [4.4-6.5] 5.9 [3.2-7.0] 

Childhood weight trajectory 0.295 0.317 [0.022-0.775] 0.087 [-0.154 to 0.709] 

Gestational age at birth (days) 0.298 269 [241-291] 281 [243-294] 

Height (cm) 0.381 113.7(6.9) 116.6 (8.2) 

Fetal weight trajectory  0.480 -0.218 (0.321) -0.120 (0.264) 

Birthweight (grams) 0.501 3105 (754) 3322 (592) 

Birthweight SDS 0.735 -0.2 (0.8) -0.1 (0.9) 

Height SDS 0.787 0.40 (0.72) 0.49 (0.85) 
Table 6.11. This table includes the results of t tests (parametric) and Mann Whitney U tests (non-
parametric), to examine differences in demographics between groups of participants who were 
separated by transcriptomics k-means clustering. Results are presented in ascending order of p 
value. No significant differences were found. Fetal weight trajectory= change in centile from 23 week 
estimated fetal weight to birthweight, divided by days in between the two timepoints, childhood weight 
trajectory= change in weight standard deviation score between birth and childhood, divided by the 
age in years, SDS= standard deviation score. 
 
 

 

Table 6. 12 Comparisons of demographic variables between groups of participants 
defined by transcriptomics k means clustering (categorical variables) 

Demographic 

measure 

 

Chi squared 
statistic 

p  Group 1 

(N=7) 

Group 2 

(N=24) 

Sex 1.00 0.32 Male= 5 

Female= 2 

Male= 12 

Female= 12 

Ethnicity 0.72 0.70 White= 4 

Black= 1 

Asian= 2 

Mixed= 0 

White= 17 

Black= 2 

Asian= 4 

Mixed= 1 

Low PAPP-A 3.2 x 10-3 0.96 N= 3 N= 10 
Table 6.12. This table includes the results of Chi squared tests to examine differences in 
demographics between groups of participants who were separated by transcriptomics k-means 
clustering. Results are presented in ascending order of p value. No significant differences were found. 
PAPP-A= pregnancy associated plasma protein A. 
 



 
 

 244 

6.3.3.3 Summary of groups defined to examine differences in gene 

expression 
In summary, four sets of groups were defined where differences in childhood indicators 

of cardio-metabolic risk were found. These are outlined in Table 6.13.  

 

Table 6. 13 A summary of sets of groups and differences in childhood indicators of 
cardio-metabolic risk established  

Method Childhood indicators 

that differ 

To be taken forward to 

examine for differences in 

expressed genes between 

groups 

Fetal 

weight 

trajectory 

Q1 versus Q4  SBP, HDL Yes 

Q1 versus Q2 

to Q4 

None No 

Childhood 

weight 

trajectory 

Q4 versus Q1 SBP, brachial AI, AC, 

MUAC, % fat, HDL 

Yes 

Q4 versus Q1 

to Q3 

SBP, brachial AI, AC, 

MUAC, % fat 

Yes 

Groups defined by k means 

clustering  

SBP Yes 

Table 6.13. This table summarises the group sets for transcriptomics where differences in cardio-
metabolic indicators were found. Where differences were identified, those group sets were then taken 
forward to examine for differentially expressed genes. SBP= systolic blood pressure, HDL= high 
density lipoprotein, brachial AI= brachial augmentation index, AC= abdominal circumference, MUAC= 
mid-upper arm circumference, % fat= fat percentage, Q1= lowest quartile, Q4= highest quartile.   
 
For fetal weight trajectory, one group set (Q1 versus Q4) was taken forward to analyse 

DEGs between the groups. Rank regression was also performed. Then assessment 

for commonality was undertaken for outputs from these two supervised sets of 

analyses.  

 

For childhood weight trajectory, DEGs were examined between the groups of 

participants defined by the unsupervised analysis of k means clustering. For 

supervised analyses, two group sets (Q4 versus Q1 and Q4 versus Q1 to Q3) were 

taken forward to analyse DEGs between the groups. Rank regression was also 

performed and assessment for commonality was undertaken on results from these 

three sets of supervised analyses.  
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6.3.3.4 Fetal weight trajectory 

6.3.3.4.1 Rank regression  

Rank regression with fetal weight trajectory as the dependent variable found 437 

significant genes (unadjusted p value range 1.57 x 10-4 to 0.049). However, no 

genes were significant after correction for multiple testing. The ten most significant 

genes are shown in Table 6.14, which also shows that none were significant 

following correction for multiple testing. 

 

Table 6. 14 Ten most significant genes from rank regression for fetal weight 
trajectory  

Gene P Corrected p value 
UMPS 1.57 x 10-4 1 

AC015660.1 3.49 x 10-4 1 
HEY1 3.63 x 10-4 1 

C19orf57 6.10 x 10-4 1 
IGHD1-1 8.66 x 10-4 1 
RAB41 8.83 x 10-4 1 

TRAV39 9.32 x 10-4 1 
RAPGEF5 1.09 x 10-3 1 
DAZAP1 1.11 x 10-3 1 
RASAL2 1.19 x 10-3 1 

Table 6.14. This table shows the ten most significant genes from rank regression with fetal weight 
trajectory (change in centile from 23 week estimated fetal weight to birthweight, divided by days in 
between the two timepoints) as the dependent variable. Expression values from 17,851 genes were 
included. Results are presented in ascending order of p value. No genes were significant following 
Benjamini Hochberg correction for multiple testing, potentially reflecting the large number included.  
 
6.3.3.4.2 Differentially expressed genes between lowest and highest quartiles 

for fetal weight trajectory 

377 DEGs were identified (unadjusted p value range 9.51 x 10-6 to 0.049) between 

the Q1 and Q4 for fetal weight trajectory. Table 6.15 shows the ten most significant 

results. Following correction for multiple testing none were significant. 
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Table 6. 15 Differentially expressed genes between lowest and highest quartile for 
fetal weight trajectory 

Gene P Corrected p value 
SLC12A1 9.51 x 10-6 0.1697744 

HEY1 3.67 x 10-5 0.3274404 
RAP1GAP 1.42 x 10-4 0.8355102 
CYP4F12 1.87 x 10-4 0.8355102 
SIGLEC11 2.97 x 10-4 1 

AC015660.1 5.71 x 10-4 1 
TMEM204 7.39 x 10-4 1 

AC023787.3 8.01 x 10-4 1 
S100B 8.39 x 10-4 1 
NRN1 8.41 x 10-4 1 

Table 6.15. This table includes the ten most significant genes that were differentially expressed 
between lowest and highest quartile for fetal weight trajectory (change in centile from 23 week 
estimated fetal weight to birthweight, divided by days in between the two timepoints). Expression 
values from 17,851 genes were included. Results are presented in ascending order of p value. No 
genes were significant following Benjamini Hochberg correction for multiple testing.  
 

6.3.3.4.3 Assessment for commonality and pathways analysis 

For fetal weight trajectory, assessment of DEGs that were common to results from 

analysing Q4 versus Q1 of fetal weight trajectory, and rank regression with fetal weight 

trajectory as the dependent variable revealed 149 genes. 

 

GSEA of the 149 DEGs from both analyses identified groups of genes that share 

common biological function, and thereby suggested five pathways. These were 

regulation of trans-synaptic signalling, axon development, neuron projection 

development, regulation of cytokine production and cellular modified amino acid 

metabolic processes, as shown in Figure 6.9. Calculation of normalised enrichment 

scores allowed quantification of the degree to which each particular set of genes is 

overrepresented within this set of 149 DEGs. 
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Figure 6. 9 Pathways identified by gene set enrichment analysis for fetal weight 
trajectory 

  

 
 
Figure 6.9. This figure shows the normalised enrichment scores for each pathway identified as 
significant following gene set enrichment analysis, using differentially expressed genes common to 
results from both analyses for fetal weight trajectory. The most significant pathway was regulation of 
trans-synaptic signalling. The enrichment score quantifies the degree to which each gene set is 
overrepresented. This is normalised to correct for multiple testing. 
 

Genes that accounted for the most significant pathway, regulation of trans-synaptic 

signalling were GGH, OSBPL5, GSTM3 and CHDH. GGH encodes gamma-glutamyl 

hydrolase, an enzyme which encodes a hydrolysis reaction of active folate 

polyglutamates. OSBPL5 encodes oxysterol-binding protein like 5, a lipid transporter. 

GSTM3 encodes glutathione S transferase Mu-3, an enzyme which catalyses the 

conjugation of reduced glutathione. CHDH encodes choline dehydrogenase, an 

oxidoreductase enzyme which catalyses the conversion of choline to betaine.  

 
6.3.3.5 Childhood weight trajectory 

6.3.3.5.1 Rank regression 

Rank regression identified 680 genes that were significant (unadjusted p value range 

1.10 x 10-4 to 0.049). None were significant after correction for multiple testing. Table 

6.16 shows the 10 most significant results. 
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Table 6. 16 Ten most significant genes from rank regression for childhood weight 
trajectory  

Gene P Corrected p value 
PRKCA 1.10 x 10-4 1 
TUNAR 4.96 x 10-4 1 

AC232271.3 5.38 x 10-4 1 
RUBCNL 5.74 x 10-4 1 
CDK14 5.95 x 10-4 1 
AAK1 6.95 x 10-4 1 

RAPGEF5 8.36 x 10-4 1 
TRAV16 9.30 x 10-4 1 

LINC02596 9.60 x 10-4 1 
MYBPC2 9.88 x 10-4 1 

Table 6.16. This table shows the ten most significant genes from rank regression with childhood 
weight trajectory (change in weight standard deviation score between birth and childhood, divided by 
the age in years) as the dependent variable. Expression values from 17,851 genes were included. 
Results are presented in ascending order of p value. No genes were significant following Benjamini 
Hochberg correction for multiple testing.  
 
6.3.3.5.2 Differentially expressed genes between highest and lowest quartiles 

for childhood weight trajectory 

775 DEGs were significantly different (unadjusted p value range 6.05 x 10-6 to 0.049) 

between Q4 and Q1 for childhood weight trajectory. Table 6.17 shows the 10 most 

significant results. Following BH correction, a trend towards significance was 

observed for four genes.  

 

Table 6. 17 Differentially expressed genes between highest and lowest quartile for 
childhood weight trajectory 

Gene P Corrected p value 
AC232271.3 6.05 x 10-6 0.087 

RUBCNL 1.14 x 10-5 0.087 
GABARAPL1 1.52 x 10-5 0.087 

IGLV3-12 1.94 x 10-5 0.087 
NAP1L2 7.94 x 10-5 0.249 

CACNA1I 8.30 x 10-5 0.249 
IGFBP2 1.30 x 10-5 0.314 

PLA2G4C 1.39 x 10-4 0.314 
ALG1L13P 1.77 x 10-4 0.354 
COL5A2 1.97 x 10-4 0.355 

Table 6.17. This table includes the ten most significant genes that were differentially expressed 
between highest and lowest quartile for childhood weight trajectory (change in weight standard 
deviation score between birth and childhood, divided by the age in years). Expression values from 
17,851 genes were included. Results are presented in ascending order of p value. No genes were 
significant following Benjamini Hochberg correction for multiple testing.  
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6.3.3.5.3 Differentially expressed genes between highest and lowest three 

quartiles for childhood weight trajectory 

Expression of 741 genes were significantly different between Q4 and Q1 to Q3 for 

childhood weight trajectory (unadjusted p value range 8.26 x 10-6 to 0.049). Four were 

significant after BH correction (corrected p<0.05), and one further gene was potentially 

significant (corrected p= 0.069). 

 

Table 6. 18 Differentially expressed genes between highest and lowest three 
quartiles for childhood weight trajectory 

Gene P Corrected p value 
TUNAR 8.29 x 10-6 0.044 
MAJIN 8.58 x 10-6 0.045 

MCEMP1 8.75 x 10-6 0.045 
IGHV2-70 9.75 x 10-6 0.045 

AC124248.1 1.88 x 10-5 0.069 
IGKV6-21 3.98 x 10-5 0.119 

ITLN1 4.62 x 10-5 0.119 
INSC 5.92 x 10-5 0.119 

AC232271.3 5.93 x 10-5 0.119 
AC131392.2 6.54 x 10-5 0.119 

Table 6.18. This table includes the ten most significant genes that were differentially expressed 
between highest and lowest three quartiles for childhood weight trajectory (change in weight standard 
deviation score between birth and childhood, divided by the age in years). Expression values from 
17,851 genes were included. Results are presented in ascending order of p value with significant 
results (corrected p<0.05) shown in bold. Four genes were significant following Benjamini Hochberg 
correction for multiple testing, and one was potentially significant.  
 
6.3.3.5.4 Assessment for commonality and pathways 

193 DEGs were common across all supervised analyses for childhood weight 

trajectory. Following GSEA for childhood weight trajectory, genes involved in the 

response to steroid hormone were implicated, as well as a further ten pathways. These 

are shown in Figure 6.10. 
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Figure 6. 10 Pathways identified by gene set enrichment analysis for childhood 
weight trajectory 

 

 
Figure 6.10. This figure shows the normalised enrichment scores for each pathway identified as 
significant following gene set enrichment analysis, using differentially expressed genes common to 
results from three supervised analyses for childhood weight trajectory. The enrichment score 
quantifies the degree to which each gene set is overrepresented. This is normalised to correct for 
multiple testing. For the cell to cell signalling by wnt (orange bar), expression of genes was 
underrepresented.  
 
 

Genes that accounted for the most significant pathway, response to steroid hormone 

were ANXA3, DUSP1, RBFOX2, ARG1, NR4A1 and FOS. ANXA3 (encoding annexin 

A3) and ARG1 (encoding arginase 1) may be particularly relevant and will be 

discussed in section 6.4.2.1. In addition, DUSP1 encodes dual specificity phosphatase 

1, a negative regulator of the MAPK pathway.  RBFOX2 encodes RNA binding fox-1 

homolog 2, an RNA binding protein. NR4A1 encodes nuclear receptor subfamily 4 

group A member 1, a nuclear transcription factor. Lastly, FOS encodes Fos proto-

oncogene, AP-1 transcription factor subunit which is thought to play a role in signal 

transduction, cell proliferation and differentiation. 

 
 
6.3.3.5.5 Differentially expressed genes between groups defined by k means 

clustering 

10,606 DEGs were identified between the groups defined by k means clustering 

(unadjusted p value range 3.90 x 10-19 to 0.049). Table 6.19 shows the 10 most 

significant results. Following BH correction for multiple testing, 9587 were significant 

(corrected p= 7.45 x 10-15 to 0.049).  
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Table 6. 19 Differentially expressed genes between groups defined by k means 
clustering  

Gene Unadjusted p value Corrected p value 
LATS1 3.90 x 10-19 7.45 x 10-15 
ZNF770 2.49E x 10-18 1.71 x 10-14 
NPAT 2.67 x 10-18 1.71 x 10-14 
IL6ST 7.10 x 10-18 3.40 x 10-14 

ANKRD10-IT1 2.70 x 10-17 8.72 x 10-14 
Z83843.1 2.74 x 10-17 8.72 x 10-14 
RSBN1 4.86 x 10-17 1.25 x 10-13 
AKAP11 5.22 x 10-17 1.25 x 10-13 

RIF1 6.49 x 10-17 1.38 x 10-13 
PREPL 1.02 x 10-16 1.95 x 10-13 

Table 6.19. This table includes the ten most significant genes that were differentially expressed 
between groups defined by k means clustering of transcriptomic data. Unadjusted and adjusted p 
values are shown.  
 
Pathways analysis including DEGs between groups arising from unsupervised 

analysis (where a difference in SBP was observed between groups) revealed a 

number of pathways. Enrichment for genes involved in response to electrical stimulus 

were highlighted. These are shown in Figure 6.11. 

 

Figure 6. 11 Pathways identified by gene set enrichment analysis including 
differentially expressed genes between groups defined by PCA and k means 
clustering 

 

 
Figure 6.11. This figure shows the normalised enrichment scores for each pathway identified as 
significant following gene set enrichment analysis, using differentially expressed genes between 
groups defined by PCA and k means clustering (unsupervised approach). The enrichment score 
quantifies the degree to which each gene set is overrepresented. This is normalised to correct for 
multiple testing. 
 
 
Genes that accounted for response to electrical stimulus were GHRL which encodes 

ghrelin and obestatin prepropeptide (see section 6.4.2.2.1), AIF1, encoding allograft 
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inflammatory factor 1 and PALM encoding paralemmin, a protein involved in plasma 

membrane dynamics. 

 

6.3.3.5.6 Further exploration of groups defined by k means clustering 

On determining the groups formed by transcriptomics and k means clustering, and 

demonstrating a difference in SBP between those groups, a silhouette plot was 

constructed to assess whether three or more groups may have been a more 

appropriate way to separate the data. Other than specifying the number of groups, k 

means clustering is an entirely unsupervised technique so the difference in SBP was 

of particular interest. 

 

A silhouette plot allows assessment of similarity and gives a score which represents 

how similar a point within a cluster is to its own, compared with other clusters. If most 

points have positive values, then the number of clusters is likely to be appropriate. If 

not, then there may be too many or too few clusters specified.  

 

A silhouette plot confirmed that two was the likely correct number of groups to 

specify. When three, four or five were specified, some data points had negative 

silhouette scores. When two groupings were specified, all scores were positive. This 

is shown in Figure 6.12.
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Figure 6. 12 A silhouette plot of transcriptomic data separated into two clusters by k 
means clustering 

 

 
 

Figure 6.12. This is a silhouette plot showing that when participants separate into two cluster by k 
means clustering based on their transcriptomics, all silhouette scores (shown on the vertical axis) are 
positive. Negative scores would be shown as bars to the left of this vertical axis and none are present. 
The cluster of 26 participants is shown in blue, and the cluster of seven participants in yellow. 
 

To further understand the relevance of these clusters, 60 gene loci related to 

birthweight at genome wide significance (p<5 x 10-8) were extracted from a GWAS 

meta-analysis [83], analysing birthweight in association with adult cardio-metabolic 

disease. Of these 60 genes, 47 were present within our transcriptomic dataset of 

17,851. Next, we compared these 47 genes to the DEGs between the two groups 
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formed by k means clustering. Strikingly, 25 of the 47 were present in the list of 

DEGs. 

 

Three-dimensional PCA visualisation of these clusters was undertaken. This allowed 

comparison of the data structure using expression data of 17,851 genes, and then 

again using only the 47 birthweight-related genes. Figure 6.13 illustrates that the two 

were strikingly similar. Both demonstrated separation of the two clusters.
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Figure 6. 13 Three-dimensional principal component analysis plots  

 
Figure 6.13. These are three-dimensional principal component analysis plots of the participants after k means clustering. The blue and yellow spheres 
represent the participants that fall into the two clusters, on the basis of their transcriptomic data. The plot on the left uses the entire transcriptomic dataset 
whereas the plot on the right is based on expression data from only 47 genes that were related to birthweight in a meta-analysis of genome wide association 
studies. The two are strikingly similar and both demonstrate that seven participants (yellow spheres) are at an extreme end. 
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6.3.4 Hypernetworks and random forest classification 
A description of hypernetworks and the rationale for using this approach has been 

explained in Chapter 2, section 2.4.4.7. 

 

There were 25 participants where both metabolomic and transcriptomic data were 

available. For these 25, the potential triad of associations (discussed in Chapter 4) 

was present. Fetal weight trajectory was negatively correlated with childhood weight 

trajectory (tau= -0.34, p= 0.017). Childhood weight trajectory was positively correlated 

with childhood SBP (tau= 0.37, p= 0.013). A negative tendency was observed between 

fetal weight trajectory and childhood SBP (tau= -0.27, p= 0.076).  

 

Rank regression with fetal weight trajectory as the dependent, and all genes and 

metabolites from the 25 participants as independent variables was performed. This 

was repeated with childhood weight trajectory as the dependent variable. The 

significant genes (p<0.05) from these were used to create hypernetworks (as 

explained in Chapter 2, section 2.4.4.7). 

 
A hypernetwork heatmap (see Chapter 2, section 2.4.4.7) was created based on fetal 

weight trajectory genes and metabolites. This heatmap is shown in Figure 6.14 and 

illustrates the central cluster of nodes (genes and metabolites) which shared a large 

number of edges. This central cluster contained 159 genes and a single metabolite, 

glucose. 
 
 



 
 

 257 

Figure 6. 14 Hypernetwork heatmap for fetal weight trajectory  

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.14. This is a hypernetwork heatmap based on significant genes and metabolites (p<0.05, N= 
476) from rank regression, with fetal weight trajectory (change in centile from 23 week estimated fetal 
weight to birthweight, divided by days in between the two timepoints) as the dependent variable. The 
x and y axes contain all the nodes i.e. genes and metabolites within the hypernetwork. The square 
similarity matrix is shown, with the dendrogram representing similarities based on Euclidean 
distances. Areas which represent a high number of edges shared between nodes are shown in 
yellow. The top right-hand corner represents this central cluster i.e. a group of nodes that share a 
large number of edges within the hypernetwork. This suggests that they are functionally related with 
each other and could therefore be of biological relevance. 
 

Using the same methods, a hypernetwork heatmap for childhood weight trajectory was 

created. This heatmap is shown in Figure 6.15 and illustrates the central cluster of 

nodes which shared a large number of edges. This central cluster contained 180 

genes and no metabolites, indicating that that metabolome and transcriptome did not 

integrate well.  

 

nodes 

nodes 
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Figure 6. 15 Hypernetwork heatmap for childhood weight trajectory  

 

  
 
 

Figure 6.15. This is a hypernetwork heatmap based on significant genes and metabolites (p<0.05, N= 
683) from rank regression, with childhood weight trajectory (change in weight standard deviation 
score between birth and childhood, divided by the age in years) as the dependent variable. The x and 
y axes contain all the nodes i.e. genes and metabolites within the hypernetwork. The square similarity 
matrix is shown, with the dendrogram representing similarities based on Euclidean distances. Areas 
which represent a high number of edges shared between nodes are shown in yellow.  The top right-
hand corner represents a central cluster i.e. group of genes that share a large number of edges within 
the hypernetwork. This suggests that they are functionally related with each other and could therefore 
be of biological relevance. No metabolites were present within the central cluster. 
 

For both fetal and childhood weight trajectories, lack of integration suggested that 

within these data, the transcriptome and metabolome were poorly related. However, 

by identifying these central clusters, this process allowed identification of groups of 

genes (and one metabolite) that are functionally related and are also significant 

following rank regression. In doing so, genes and metabolites were refined down to 

those that are more likely to be of biological relevance in relation to fetal weight 

trajectory or childhood weight trajectory.  

 

nodes 

nodes 
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To explore the predictive ability of these genes in relation to childhood SBP, RFC 

was applied with a binary outcome of Q4 versus Q1 to Q3 for childhood SBP. The 

variables included were all nodes within the central cluster of the relevant 

hypernetwork heatmap. This was done for fetal weight trajectory and then repeated 

for childhood weight trajectory. ROC curves are shown in Figures 6.16 and 6.17. For 

the RFC including genes and one metabolite from the hypernetwork central cluster 

for fetal weight trajectory, AUC was 0.993 and OOB error rate was 8.57%.  

 

Figure 6. 16 Receiver operating characteristic curve for random forest based on 
hypernetwork for fetal weight trajectory 

 
 
Figure 6.16. This receiver operating characteristic curve based on data that has not been randomly 
sampled for the construction of the random forest model, demonstrates a high area under the curve of 
0.993. Error rate was 8.57%. Therefore, within this dataset, genes and one metabolite, present in the 
central cluster of the hypernetwork for fetal weight trajectory (change in centile from 23 week 
estimated fetal weight to birthweight, divided by days in between the two timepoints) can predict the 
highest quartile for childhood systolic blood pressure. False positive rate is on the x axis and true 
positive rate on the y axis. 
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For the RFC including genes from the hypernetwork central cluster for childhood 

weight trajectory, AUC was 1.000 and OOB error rate was 2.86%.  

 

Figure 6. 17 Receiver operating characteristic curve for random forest based on 
hypernetwork for childhood weight trajectory 

 

Figure 6.17. This receiver operating characteristic curve based on data that has not been randomly 
sampled for the construction of the random forest model, demonstrates a high area under the curve of 
1.000. Error rate was 2.86%. Therefore, within this dataset, genes present in the central cluster of the 
hypernetwork for childhood weight trajectory (change in weight standard deviation score between 
birth and childhood, divided by the age in years) can reliably predict the highest quartile for childhood 
systolic blood pressure. False positive rate is on the x axis and true positive rate on the y axis.
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6.4 Discussion 
 

In this cohort of children aged three to six years, recruited following higher risk FGR 

and healthy pregnancies, ornithine was identified as a DEM by all five (two fetal and 

three childhood) supervised analyses. Differences in childhood indicators of cardio-

metabolic risk were identified when assessing both fetal (HDL and SBP) and childhood 

(SBP, HDL, BMI SDS, brachial AI, AC, MUAC and %fat) weight trajectories. Therefore, 

ornithine may help identify a pathway linking fetal and childhood weight trajectories to 

childhood SBP. This was supported by identification of ARG1 from pathways analysis 

of transcriptomic data, in relation to childhood weight trajectory. ARG1 encodes 

arginase, the enzyme which catalyses the hydrolysis of arginine to ornithine and urea 

[354]. 

 

A trend towards higher serum insulin concentration was also observed in individuals 

in the highest quartile for childhood weight trajectory compared with the lowest (see 

Table 6.5), although this did not reach statistical significance. Alongside ARG1, 

ANXA3 was also highlighted. This may implicate the phosphatidyl-inositol pathway. 

 

A key finding is that of a difference in SBP between groups defined by an unsupervised 

approach, k-means clustering. Moreover, the structure of the data which allows 

separation into two clusters of participants who differ in SBP can be largely accounted 

for by expression of 47 birthweight-related genes. 

 

Findings from metabolomic and transcriptomic analyses will be discussed separately, 

with particular attention to the common pathway elucidated; the urea cycle which 

synthesizes arginine, an intermediate for the biosynthesis of NO. Then, the relevance 

of the transcriptomics k-means clustering will be discussed. Lastly, the findings from 

integration (using hypernetworks) and the RFC models will be discussed.  

 

Arginine, citrulline and ornithine will be henceforth referred to as l-arginine, l-citrulline 

and l-ornithine, their physiologically active isoforms.  
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6.4.1 Findings from metabolomic analyses 
6.4.1.1 L-ornithine 
L-ornithine was the single DEM, common to all sets of analyses relating to both fetal 

and childhood weight trajectories. It was differentially expressed between lowest and 

highest quartiles of fetal weight trajectory, where differences in SBP and HDL were 

found. L-ornithine was also significant following rank regression with fetal weight 

trajectory as the dependent variable. For childhood weight trajectory, l-ornithine was 

differentially expressed between highest and lowest quartiles, highest and lowest 

three quartiles and was significant following rank regression. 

 

Differences in SBP and HDL were identified by assessment of highest versus lowest 

quartiles of both fetal and postnatal weight trajectories. This may suggest a potential 

role for l-ornithine or its associated pathway in linking both growth trajectories to 

childhood SBP and HDL. Whilst these were not significant following BH correction, 

necessitating a cautious approach to interpretation, the consistency of this finding 

across a range of analyses adds a degree of confidence. Therefore, the role of l-

ornithine will now be discussed. 

 

L-ornithine is an amino acid involved in the urea cycle [355]. The urea cycle occurs in 

the liver and it converts ammonia, a toxic waste into urea for excretion (see Figure 

6.18). The first step in this process is conversion of ammonia to the metabolite, 

carbamoyl phosphate. Carbamoyl phosphate reacts with l-ornithine, which is 

catalysed by the enzyme, l-ornithine transcarbamylase. This reaction forms l-citrulline 

and phosphate. Then, the carbonyl group from l-citrulline and aspartate are involved 

in a condensation reaction, forming the amino acid, argininosuccinate. This is cleaved 

by the enzyme, argininosuccinase, forming both l-arginine and fumarate. l-arginine is 

cleaved by arginase to form both urea and l-ornithine, which is transported back into 

the mitochondria, at the start of the urea cycle [355].  
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Figure 6. 18 The Urea cycle 

 

 
 

Figure 6.18. This figure shows the processes involved in the urea cycle. Carbamoyl phosphate is 
formed from ammonia. It reacts with l-ornithine to form l-citrulline and phosphate. The carbonyl group 
from l-citrulline and aspartate are involved in a condensation reaction, forming the amino acid, 
argininosuccinate. After cleavage, this forms l-arginine and fumarate. L-arginine is then cleaved to 
form urea and l-ornithine, which re-enters the urea cycle in the mitochondria. 
 

Alanine and glutamine are the major transporters of nitrogen in the blood. These were 

both identified as DEMs common to both analyses for fetal weight trajectory. Alanine 

was a DEM between highest and lowest quartile for postnatal weight trajectory. 

Furthermore, four variables identified as glutamate + glutamine were differentially 

expressed between highest and lowest three quartiles of postnatal weight trajectory. 

Therefore, whilst they were not identified by rank regression, the presence of these 

metabolites in outputs of all other analyses may further implicate the urea cycle. 

 

6.4.1.2 L-arginine, nitric oxide and the regulation of blood pressure 
L-arginine, a product of the urea cycle, is an immediate precursor of NO. NO synthesis 

is catalysed by endothelial nitric oxide synthase (eNOS) enzymes [356], which are 

expressed in vascular endothelial cells. NO plays an important role as a signalling 

molecule in multiple processes, including angiogenesis, peristalsis and insulin 

signalling. As examples of mechanisms, NO potentiates glucose-stimulated insulin 

release (mediated by calcium release from endoplasmic reticula and mitochondria), 

and increases dissociation of glucokinase from insulin secretory granules, thereby 

augmenting insulin secretion [357]. In particular, its role as a powerful vasodilator is 

well recognised [358, 359]. 

Carbamoyl 
phosphate

Mitochondria

Urea

Argininosuccinate
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NO has value as an early marker for human hypertension; impaired NO release acts 

as a marker of endothelial dysfunction, which is observed early in hypertension 

development. Studies have also investigated the role of NO as a neurotransmitter 

[360], modulating BP through sympathetic nervous system activity. This may also 

have relevance [361]  since sympathetic overactivity has been implicated in the early 

stages of human hypertension [362]. Additionally, although central nervous system 

manifestations (altered level of consciousness, seizures) resulting from 

hyperammonaemia are the major consequences of urea cycle disorders, hypertension 

has also been reported [363].  

 

Direct relationships between plasma concentration of l-arginine and measures of 

vasodilation have been demonstrated [364]. In a small study, eight healthy adult male 

participants who received 30g IV l-arginine, exhibited lower BP (mean 4.4 +/- SE 1.4%) 

and peripheral vascular resistance (10.4 +/- 3.6). Peripheral vascular resistance was 

calculated as 80 x (mean BP)/cardiac output. Furthermore, urinary nitrate excretion 

rates were measured. This is considered an acceptable measure of NO formation in 

humans [365, 366]. A close linear relationship with l-arginine level was found, 

replicating previous findings [367]. Collectively, these results indicated that exogenous 

l-arginine could induce vasodilation through increased production of endogenous NO.  

 

6.4.1.3 The L-arginine-NO biosynthetic pathway and pregnancy 
During pregnancy, NO is involved in trophoblast invasion, development of the 

placental vasculature and is the main mediator of vasodilation in the placenta [368]. 

Impaired vasculogenesis and angiogenesis in pregnancy may be a consequence of 

altered NO and l-arginine bioavailability. In turn, these may have a negative impact on 

fetal growth and survival [369].  

 

Placental and fetal growth increase the demand for l-arginine, and it has been 

suggested that this can outweigh the supply resulting from endogenous synthesis from 

l-citrulline [370]. Recent research has focused on enhancing NO bioactivity and 

therapeutic interventions to improve uteroplacental vascular function, with the ultimate 

aim of improving fetal growth [136]. As an example, the effects of dietary nitrate 

supplementation from beetroot juice on blood pressure in hypertensive pregnant 
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women were investigated [136]. Green leafy vegetables and beetroot have abundant 

supplies of nitrite, which is converted to nitrite in vivo and subsequently to nitric oxide 

(termed the “alternative NO pathway”) [356]. This feasibility study confirmed 

acceptability of this supplement in pregnancy, but larger studies are required to reliably 

assess efficacy. 

 

Administration of exogenous l-arginine has also been explored in pregnancy. A 

systematic review of the role of l-arginine in the prevention and treatment of pre-

eclampsia [371] included seven randomised controlled trials, with a combined sample 

size of 884. Compared with placebo, l-arginine was associated with a reduction in pre-

eclampsia in women at risk (RR 0.34, 95% CI 0.21 to 0.55), as well as those with 

established hypertension (0.21, 0.05-0.98). Whilst some data on safety and efficacy 

of dosing are available [372], this review highlighted the paucity of studies on safety 

of l-arginine. As well as safety, tolerability should be considered for potential drug 

therapies and gastro-intestinal intolerance has been reported with large single doses 

[373]. This has justified the investigation of therapeutic alternatives. 

 

Evidence from pregnant ewes suggests that IV administration of l-citrulline is more 

effective in achieving high concentrations of l-arginine in both maternal circulation, with 

greater area under the concentration-time curve (70.8 +/- 13.3 versus 29.0 +/- 6.3, p= 

0.017) and a longer half-life (mean 89.2 minutes +/- SE 11.6 with l-citrulline versus 

45.3 +/- 7.0, p= 0.009) [374]. Furthermore, a study in adult males showed that a 

combination of l-citrulline and l-arginine increased plasma l-arginine levels more than 

l-citrulline or l-arginine alone [375]. Also, a recently completed randomised controlled 

trial, entitled the CHronic HypERtension and L-citRuliine studY (CHERRY) undertaken 

at the Manchester Antenatal Vascular Service has tested the effectiveness of l-

citrulline for reducing BP in pregnancy. 

 

In relation to l-ornithine, renal medullary infusion in rats reduced NO concentrations, 

thereby increasing MAP, although this was not observed with IV infusion of the same 

dose [376, 377]. This may suggest a role for cationic amino acid transport systems in 

the renal medulla in the regulation of local NO concentrations. In humans, there are 

no studies to suggest that l-ornithine has an effect on BP.  
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6.4.1.4 Metabolites involved in the urea cycle and high-density lipoprotein 
Differences in HDL were observed between groups defined for both fetal and postnatal 

weight trajectories. L-ornithine has been shown to have an anti-fatigue effect by 

increasing efficiency of energy consumption. It is included in supplements marketed 

to body builders, based on claims that it increases GH levels and thereby increases 

muscle mass and strength. However, as with l-arginine, the dose required may induce 

gastrointestinal symptoms [378]. To explore this in our cohort, we compared IGF-I 

levels between highest and lowest quartiles of prenatal weight trajectory but found no 

difference (p= 0.71). 
 
L-arginine has been found to be cardioprotective in ischaemia/reperfusion injury. In 

patients with acute myocardial infarction, l-arginine administered orally at 3g/day was 

shown to improve lipid profiles including elevation of HDL cholesterol [379]. A potential 

mechanism relates to NO, and its role as an antioxidant. NO scavenges oxygen free 

radicals, thereby reducing formation of reactive oxygen species [380]. This leads to 

the attenuation of lipid oxidation. However, to our knowledge, there are no data 

available on links between l-ornithine, l-citrulline or l-arginine and serum concentration 

of lipids, including HDL. We postulate that in our cohort, the observed lower HDL in 

individuals who underwent the most negative fetal weight trajectory, and greater 

degree of childhood weight gain is driven by diet or appetite related factors. However, 

the scope to examine this within this cohort is limited by paucity of environmental data. 

 

In summary, the findings of l-ornithine as a key metabolite linking fetal and childhood 

weight trajectories to SBP could suggest a role for L-arginine-NO biosynthetic pathway 

and NO availability in the early development of higher BP. For our cohort, this may be 

true in individuals who have undergone severe growth restriction in utero and greater 

weight gain postnatally. Review of the literature confirms a biologically plausible link 

with BP, with exogenous administration of l-arginine and l-citrulline currently being 

investigated. In our cohort, it was not possible to identify l-arginine in the NMR dataset. 

One explanation may relate to the source of the metabolites; the major site of l-arginine 

synthesis is the kidneys, involving the intestinal-renal axis [381]. Furthermore, 

fluctuations in plasma l-arginine concentrations occur depending on consumption of 

dietary arginine, which may suggest potential value in assessing 24-hour arginine 

profiles [382]. Alternatively, inability to detect l-arginine from NMR data may 
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emphasise a limitation of this technique, and the potential need to adopt a more 

sensitive method for metabolomics. 

 

6.4.1.5 Nuclear magnetic resonance for metabolomic analysis 
Previously, metabolic profiles of SGA CU versus NCU children have been compared 

[260]. In a study by Stevens et al., both liquid chromatography mass spectrometry 

(LCMS) and gas chromatography mass spectrometry (GCMS) were used to generate 

metabolomic data from serum samples in SGA CU and NCU children. Serum decanoic 

acid was 1.6 times higher in SGA CU compared with NCU. Additionally, GCMS data 

from urine samples showed a fourfold increased myoinositol concentration in SGA 

CU. In contrast, we used NMR for metabolomic analyses. NMR has advantages in 

term of cost-effectiveness, as a high throughput technique for large cohort studies 

[383]. It requires minimal sample preparation [384], which reduces the number of steps 

that could potentially influence the sample metabolome. However, its lower sensitivity 

compared with LCMS or GCMS has been reported [385]. Although we emphasized 

differences in ornithine across all supervised analyses, our study may have failed to 

detect differences in other serum metabolites between groups (based on quartiles of 

fetal and childhood weight trajectories). 

 

Another study [386] used NMR to compare urinary metabolic profiles from 26 infants 

born following FGR (birthweight below 10th centile) (N= 26) and 30 AGA infants. 

Differences in myo-inositol, sarcosine, creatine and creatinine were found. Together 

with the findings of Stevens et al. [260], this raises the possibility that, using NMR, 

urinary metabolomics may have supported our findings in serum. This may be 

considered for future studies. Differences in ornithine were not found. However, this 

could reflect the differences in inclusion criteria between this study and the 

Manchester BabyGRO Study, where participants were recruited based on FGR risk, 

and not limited to those with birthweight below 10th centile.  

 

Factors such as age and sex may have influenced metabolites identified in our NMR 

dataset. Focusing on childhood origins of adult disease, the Child Health Checkpoint 

Study [383], (nested within the Longitudinal Study of Australian Children [387]) 

analysed serum NMR data from 1180 children aged 11 to 12 years and their parents 

(1148 mothers, 177 fathers). Most metabolite concentrations were higher in adults 
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than in children. However, there were some exceptions. Metabolites related to 

glycolysis (lactate, pyruvate, citrate and glycerol), 3-hydroxybutyrate and glutamine 

were higher in children. In our dataset, detection may have been limited by the NMR 

sensitivity and many variables were initially unidentifiable (see section 6.3.2.1). 

However, of those metabolites that had been detected and assigned to a variable, 

lactate, 3-hydroxybutyrate and glutamine featured six, 14 and 16 times respectively. 

In the Child Health Checkpoint Study, sex differences in serum metabolite 

concentrations were also demonstrated. These were more pronounced in adulthood 

(+/- 0.8SD compared with 0.2 SD in children). In our study, we accounted for this by 

examining differences in metabolite concentrations based on weight trajectories that 

were calculated from centiles (for fetal) and SD scores (for childhood). Both 

incorporate the sex of the individual within the standardisation.  

 

Irrespective of sex, the Child Health Checkpoint Study also established positive 

correlations of lipid markers between mothers and children. These included 

isoleucine (R= 0.33, 95% CI 0.27 to 0.38), total cholesterol (R= 0.30, 95% CI 0.24 to 

0.35) and omega 6 fatty acids (R= 0.28, 95% CI 0.23 to 0.34). This supported 

findings from previous studies [388, 389], that have assessed parent-child 

correlations of NMR metabolites, particularly lipids (as markers of cardio-metabolic 

risk). In our study, availability of maternal serum may have enabled validation of our 

findings. In terms of causality, the relative contributions of genetic, developmental 

and environmental influencers may remain challenging to separate. 

 

In relation to atherosclerosis development, a large study of 10,000 adults, using an 

integrated GWAS and targeted metabolomics (LCMS) approach, identified the urea 

cycle and glycine metabolism as potential mechanisms [390]. From GWAS, a 

genetic variant (rs715) in the carbamoyl phosphate synthase 1 gene was identified in 

relation to plasma betaine levels, which has been related to atherosclerosis risk 

[391]. Therefore, our finding of CHDH (which encodes an enzyme that catalyses the 

conversion of choline to betaine) accounting for the most significant pathway from 

GSEA of fetal weight trajectory genes, may be relevant (see section 6.3.3.4.3). Next, 

relationships between rs715 and urea cycle metabolites were examined. Using an 

additive model with adjustment for age and sex, a BH corrected cut-off p<4.2 x 10-3 

was set. rs715 was associated with lower levels of l-citrulline (p= 1.3 x 10-4) and 
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betaine (p= 1.0 x 10-8) and with higher levels of plasma glycine (p= 1.0 x 10-9). 

Although l-arginine (p= 0.01) and l-ornithine (p= 9.3 x 10-3) were not significant, 

ornithine was close to the threshold. The role of carbamoyl phosphate in the urea 

cycle has already been described (see section 6.4.1.1). Although our sample size is 

much smaller, drawing on existing literature suggests that our finding in relation to 

the urea cycle metabolite, ornithine is plausible. 
 

6.4.2 Findings from transcriptomic analyses 
6.4.2.1 Findings from pathways analysis, following identification of commonly 

expressed genes after assessing highest versus lowest, highest versus lowest 

three (childhood weight trajectory only) and rank regression 

A number of pathways were identified from GSEA based on fetal weight trajectory. 

The significance of this pathway may be challenging to interpret in the context of 

cardio-metabolic risk development.  However, the most likely pathway implicated, 

regulation of trans-synaptic signalling, implicated CHDH, a gene which encodes 

choline dehydrogenase. As already discussed, this may be related to atherosclerosis 

development (see section 6.4.1.5). To our knowledge, the other genes involved in 

this pathway were not related to growth nor to cardiovascular development. 

Consequently, these have not been explored further. No pathways were significant 

following BH correction. Therefore, all these findings (for both fetal and childhood 

weight trajectories) should be cautiously interpreted. Nevertheless, the key pathway 

identified for childhood weight trajectory highlighted some potentially relevant genes 

which will now be discussed. 

 

Following assessment for commonality between supervised analyses for childhood 

weight trajectory and subsequent GSEA, the most significant pathway identified was 

response to steroid hormones. Of note, one of the six significant genes involved in 

this pathway was ARG1. ARG1 encodes arginase, the enzyme which catalyses the 

hydrolysis of l-arginine to l-ornithine and urea. Furthermore, there is evidence that 

upregulation of arginase inhibits eNOS mediated NO synthesis [392]. This 

upregulation has been implicated in the pathogenesis (endothelial dysfunction) seen 

in hypertension, diabetes and ageing. Therefore, this finding may provide a link 

between results of metabolomic and transcriptomic analyses.  
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ANXA3 was also implicated in this pathway. This gene encodes Annexin A3, an 

enzyme which cleaves inositol 1,2-cyclic phosphate, a derivative of 1-D myoinositol. 

This results in the formation of inositol 1-phosphate (L-1 phosphatidyl-inositol, see 

Chapter 1, Figure 1.4) [393]. Phospholipids have been shown to have potential value 

for detection of the SGA neonate in early pregnancy. Furthermore, differences in 

urinary myoinositol have been detected between SGA and AGA neonates at birth 

[386], as well as between SGA CU and NCU [260]. Importantly, inositol derivatives 

are associated with insulin resistance [394]. In this cohort, where a higher serum 

insulin concentration was selected as the representative marker of insulin resistance 

(i.e. adverse glucose metabolism), we did not find differences in insulin between 

groups. However, there was a trend towards higher insulin for children in the highest 

quartile of childhood weight trajectory compared with the lowest (Table 6.5). It is 

possible that a difference exists, but our sample size was insufficient to detect this.  

 

6.4.2.2 Differentially expressed genes between groups of participants 

identified following PCA and k-means clustering, and subsequent pathways 

analysis 

6.4.2.2.1 Differentially expressed genes 

A key result from transcriptomic analysis is that which arose from k means 

clustering, the methods of which have been described previously (See Chapter 2, 

section 2.4.4.2). This is an established method for clustering large datasets. As an 

example, in Chinese a study of 10,913 singleton pregnancies [395], k means was 

applied to longitudinal data to form clusters of fetal weight trajectories. Trajectories 

were based on EFW from antenatal ultrasound at 28 weeks onwards, with a median 

of 2 (range 2 to 5) measurements of EFW from each pregnancy. As another example 

[396], visit-to-visit BP variability in 9227 participants was classified using five 

difference machine learning approaches, as well as classification into quartiles. 

Similarities within clusters were quantified using three approaches, including 

silhouette (as explained in section 6.3.3.5.6). The authors concluded that overall, 

comparison between quartiles was the most stable method. Of the machine learning 

approaches, k means clustering was the most stable.  
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In our study, this unsupervised approach resulted in the formation of two clusters, 

which significantly differed in SBP. Therefore, the variance within the transcriptome 

was such that it allowed identification of a set of participants who exhibit higher SBP. 

Further analysis of these groups revealed no difference in gestation at birth, age, 

sex, fetal or postnatal weight trajectory, birthweight (grams), birthweight SDS, 

serology or ethnicity. Height SDS was also assessed as this is known to influence 

SBP. No difference was found. 

 

The most significant DEG identified was LATS1. LATS1 encodes large tumour 

suppressor kinase 1, an enzyme involved in the Hippo signalling pathway, and 

regulation of cell proliferation. As a tumour suppressor gene, it also has also been 

shown to be downregulated in some cancers, such as lung cancer [397].  

The GWAS catalogue identified two SNPs in LATS1 (rs17080102, rs62434129) that 

are associated with SBP. Additionally, rs62434129 has been linked with DBP and 

MAP [398]. We found a trend towards higher DBP in the group with higher SBP, but 

this did not reach significance.  
 
A large number of DEGs were identified between groups. This was also true after 

correction for multiple testing. Pathways analysis included all DEGs with unadjusted 

p<0.05 to detect pathways that may be important in differentiating children with 

higher blood pressure in this unique cohort. 

 

For the most significant pathway identified by GSEA, the GHRL gene was involved. 

GHRL encodes the ghrelin-obestatin preprotein. This results in two peptides after 

cleavage; ghrelin and obestatin. Ghrelin is a pleiotropic hormone, produced by 

enteroendocrine cells in the gastrointestinal tract. Of its many actions, its role as an 

appetite hormone is well recognised [399, 400] and this is achieved through 

activation of neuropeptide Y neurons in the anterior pituitary gland and 

hypothalamus [401]. In excess, ghrelin may cause hyperphagia and obesity. In 

contrast, obestatin is an appetite suppressor [402]. Studies have consistently shown 

lower circulating levels of obestatin in patients with impaired glucose control, 

metabolic syndrome, T2D and obesity [403-408].  Therefore, our findings may 

suggest a potential role for hormone-mediated appetite regulation in the 

development of higher SBP in childhood. It is plausible that changes in gene 
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expression are causally linked with differences in childhood weight trajectory, which 

also relate to SBP (as shown in Chapter 3). However, we did not identify a difference 

in childhood weight trajectory between groups defined by k means clustering. In this 

cohort, we lacked sufficient auxological data at birth to assess for differences in 

adiposity trajectories e.g. Δ birth to childhood BMI SDS, between groups defined by 

k means clustering. 

 

6.4.2.3 Fetal genotype as a potential driver of both lower birthweight and 

higher SBP 

As an alternative notion to DoHaD, Hattersley et al. [14] proposed that a genetically 

predetermined phenotype accounts for both impaired insulin-mediated fetal growth 

and insulin resistance in later life (Chapter 1, section 1.2). Similarly, it is plausible 

that lower birthweight and higher SBP in later-life may not be causally linked but 

instead, may be the result of a shared genotype.  

 

Horikoshi et al. [83] combined birthweight GWAS data from UK Biobank data and an 

additional 36 studies to perform a meta-analysis on a total of 153,781 individuals.  

This provided evidence for variation in fetal genotype being the main driver of 

birthweight. Firstly, a maternal Genome-wide Complex Trait Analysis model was 

used to assess the contributions of maternal and fetal genotype to birthweight 

variation. 4383 mother-child pairs were included for this analysis. Child genotype 

was a greater contributor to birthweight (σC2= 0.24, SE= 0.11) than maternal 

genotype (σM2= 0.04, SE=0.10) or the covariance between the two (σCM= 0.04, 

SE=0.08). The second line of evidence arose from the relative birthweight effect size 

dependent on maternal compared with fetal genotype. This comparison was made 

using the point estimates of birthweight effect size from the 60 birthweight-related 

loci. Fetal variation had greater impact than maternal at 55 out of 60 of these loci 

(binomial p= 1 x 10-11). These were the 60 gene loci examined in relation to data 

from our study (see section 6.3.3.5.6), where 47 were present in our transcriptomic 

dataset. These 47 genes largely accounted for the PCA data structure which 

resulted in formation of two clusters that differ in SBP. Therefore, expression of 

those genes in children that result in lower birthweight could also result in higher 

SBP. To test this, we compared birthweight SDS and also birthweight (grams) 
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between the two clusters of participants (See section 6.3.3.2.2, Table 6.11). 

However, no differences were found.  

 

In the same study [83], strong inverse correlations were established between 

birthweight and SBP (R= 0.22, p= 5.5 x 10-13), T2D (R= 0.27, p= 1.1 x 10-6) and CAD 

(R= -0.30, p= 6.5 x 10-9). Shared genetic associations accounted for approximately 

85% (95% CI 70 to 99) of the negative relationship between birthweight and SBP 

(N= 57,581). Horikoshi et al. also examined another 45 loci associated with CAD. 

They found that the inverse association between birthweight and CAD was 

concentrated amongst five of these loci. All primarily had associations with BP, 

implying that genetic determinants of BP could be the main driver of a negative 

relationship between birthweight and CAD in later-life.  

 

As previously stated (chapter 1, section 1.4.1.3), these findings may not be completely 

incompatible with the fetal origins hypothesis; the relationship between the maternal 

genome and the offspring’s risk of cardio-metabolic disease could be mediated by 

changes in the intrauterine environment. Epigenetic modifications may play a role and 

is an important area for further work. 

 

6.4.3 Hypernetworks and random forest classification 
Multi-omics is a recognised analysis approach in which multiple layers of ‘omics data 

are combined. Further to establishing a difference in urinary myoinositol and serum 

decanoic acid concentrations between SGA CU and NCU [260], Stevens et al. used 

a network analysis approach. Firstly, metabolite profiles were mapped to pathways 

associated with DEGs (between CU and NCU). Secondly, the DEMs were used to 

generate networks and DEGs were mapped to these. Lastly, both DEGs and DEMs 

were combined in a logistic regression model. This enabled the construction of a 

network cluster surrounding the myo-inositol metabolite. In our study, DEGs and 

DEMs have not been mapped to each other in the same way. In fact, lower 

sensitivity of NMR data resulted in insufficient DEMs to take forward into pathways 

analysis, so a similar approach would not have been possible. Instead, we 

constructed two hypernetworks from rank regression combining both genes and 

metabolites.  
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Hypernetworks have been used previously to determine connectivity between 

differentially regulated genes involved in the oncogenesis of acute myeloid leukemia 

[289]. As another example, hypernetworks have successfully quantified shared 

correlations in genes (identified following unsupervised analysis) in Grb10 

knockdown zebrafish, to investigate early changes in Grb10 on later-life cardio-

metabolic health. Connectivity was higher in Grb10 knockdown zebrafish than in 

standard controls, and using hypernetwork heatmaps, clusters of highly connected 

genes were identified [288]. In our study, we found that the transcriptome and 

metabolome did not integrate well. For fetal weight trajectory, the hypernetwork 

central cluster contained multiple genes but only one metabolite. This metabolite was 

glucose, which is involved in cellular respiration and is consequently important in 

numerous biological processes [409, 410]. For childhood weight trajectory, the 

hypernetwork central cluster contained only genes and no metabolites.  One 

possible explanation is the lower sensitivity of the NMR technique, which may have 

accounted for the limited number of metabolites (453 variables with many variables 

representing the same metabolite) as compared with 17,851 gene transcripts. 

Another explanation is that the NMR dataset comprised metabolites that arose from 

tissues other than PMBCs, which were circulating in the blood. These reasons may 

also explain the presence of a SBP differences between groups defined by k means 

clustering of transcriptomic, but not metabolomic data.  

 

RFC demonstrated that genes and metabolites from the central clusters of both 

hypernetworks can predict the highest quartile for childhood SBP. Importantly, the 

RFC based on genes that may be functionally related to postnatal weight trajectory 

(as indicated by their presence in the hypernetwork central cluster) predicted 

childhood SBP with a greater AUC and lower OOB error rate than the RFC based on 

fetal weight trajectory genes (and a single metabolite). This is in line with the findings 

from Chapter 4, that the relationship between childhood weight trajectory and 

childhood SBP is stronger than that between fetal weight trajectory and SBP. 

Furthermore, it suggests that the relationship may be driven by the influence of 

expressed genes. This may be related to the genotype of participants or could 

potentially be a consequence of epigenetic modifications. 
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6.4.4 Strengths  
A major strength of the methodology was that differences in cardio-metabolic risk 

measures were determined between group sets, before those sets were taken 

forward to analyse for DEGs and DEMs. This method ensured that potentially 

relevant DEGs and DEMs could be discussed in the context of the cardio-metabolic 

risk measures. For childhood weight trajectory, differences were determined for a 

larger number of variables than for fetal weight trajectory. This is in keeping with 

findings from correlations within this cohort.  
 
The main strength of this work relates to the consistency in findings implicating a 

common pathway. All five supervised analyses identified ornithine as a DEM. 

Transcriptomics analyses and GSEA identified CHDH (for fetal weight trajectory) and 

ARG1 (for childhood weight trajectory), further supporting a potential role for the urea 

cycle and providing a link with atherosclerosis development when GWAS data were 

evaluated (section 6.4.1.5). 

 

 

6.4.5 Limitations  
The practicalities of a Paediatric study involving venepuncture resulted in available 

‘omics samples for a subset, not the entire cohort. Despite this, our sample sizes of 

26 (metabolomics) and 31 (transcriptomics) were greater than in previous studies 

that have established ‘omic differences [260].  

 

As discussed (section 6.4.1.5), a limitation was the sensitivity of the NMR technique 

[385]. The detection of arginine would have added confidence to our findings, but 

this was not possible within the NMR dataset. Therefore, LCMS or GCMS will be 

considered for further analyses and possible validation of our findings. 

 

As already highlighted, GSEA results did not meet the significance threshold 

following correction for multiple testing. It is possible that the use of peripheral blood 

mononuclear cells may have limited our ability to detect pathways of relevance. 

However, the use of other cell lines from our Paediatric cohort would have ethical 

implications and may not be feasible. Lastly, it is important to emphasise that it is the 
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combination of small effects from multiple genes which overall, may contribute to 

cardio-metabolic risk development. This could explain the lack of statistical 

significance following correction for multiple testing, for each individual gene. 

 

6.5 Chapter summary  
 

• L-ornithine, which was identified in all five supervised analyses has highlighted 

the urea cycle and L-arginine-NO biosynthetic pathway. This has links with SBP 

and hypertension in adulthood, and with placental vasculature adaptations 

necessary for adequate fetal growth. 

 
• Pathways identified from GSEA of analyses based on postnatal weight 

trajectory elucidated ARG1, supporting findings from metabolomic analyses. 

ANXA3 was identified as a potentially important gene.  Therefore, the 

phosphatidyl-inositol pathway may play a role in linking postnatal weight 

trajectory to insulin resistance. This is in line with our previous study in SGA CU 

versus NCU [260], further supporting the suitability of the retrospective cohort 

selection criteria. Larger studies including individuals born following FGR higher 

risk pregnancies, as well as uncomplicated pregnancies, may identify 

differences in markers of glucose metabolism. 

 

• A key finding from k means (unsupervised) analysis is that participants are 

separable based on transcriptomics, and this allows identification of a subset 

with higher SBP. Furthermore, the structure of the data which allows this 

separation can largely be accounted for by 47 birthweight-related genes. This 

could suggest a role for shared genetics driving both lower birthweight and 

higher SBP. However, within our limited sample size, we did not identify 

difference in birthweight or fetal weight trajectory between groups. 

 

• Construction of hypernetworks and RFC supports that expressed genes related 

to childhood weight trajectory can be used to predict the highest quartile of SBP. 

This demonstrated a better AUC and OOB error rate than that for RFC based 
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on genes relating to fetal weight trajectory. This may further support a role for 

genetics or epigenetics in linking childhood weight trajectory to SBP. 
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Chapter 7. Conclusions and Further Work 

7.1 Conclusions from chapter 4 to address aim one 

• In a cohort of children aged 3-6 years, where the majority of mothers had 

abnormal serum markers indicating higher FGR risk during pregnancy, we 

demonstrated the following: 

 

i. the higher the UtAD impedance, the greater the degree of FGR. 

ii. the greater the degree of FGR, the greater the CU growth between birth 

and childhood (in terms of weight gain), irrespective of birthweight. 

iii. The greater the degree of CU growth, the higher the SBP, BMI SDS, AC, 

brachial AI, MUAC, %fat, sum SF and insulin, and the lower the HDL. 

iv. The greater the degree of FGR, the higher the SBP in childhood. This 

finding led to the identification of a potential triad of associations linking 

lower fetal and higher childhood weight trajectories to each other, and to 

higher SBP. 

 

• The Manchester BabyGRO Study focused on recruitment following antenatal 

detection of FGR risk, as well as individuals born following healthy 

uncomplicated pregnancies. We used higher FGR risk to represent an 

abnormal intrauterine environment. 12% were SGA at birth. However, no 

children were recruited due to being born SGA. This makes our study unique. 

• Within this small cohort, we have provided evidence that greater childhood 

weight trajectory is linked with childhood indicators of cardio-metabolic risk, 

irrespective of birthweight. This could indicate potential to identify and target 

education and prevention in individuals born following higher FGR risk detected 

antenatally, regardless of their birthweight. 

• RFC provided some support for the overall hypothesis that antenatal markers 

of a potentially abnormal intrauterine environment can be used to identify 

fetuses at highest risk of long-term cardio-metabolic disease. RFC also 

highlighted which maternal, antenatal and fetal growth markers should be 

investigated in larger studies. 
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7.2 Further work arising from chapter 4 

• We recruited children from two different sources to ensure an adequate spread 

of data for analyses. Validation of the main findings within the 58 participants 

recruited from the MPC suggests that a further study could focus on recruiting 

children born following pregnancies where mothers were seen in the MPC.  

 
• RFC suggested that the following links should be explored in larger cohorts: 

 
i. Fetal weight trajectory and childhood markers of vascular health 

including SBP and brachial AI.  

ii. Maternal cardio-metabolic measures and childhood AC. 

iii. UtAD impedance measures (RI, PI, notching status) and childhood 

serum insulin concentration. Oral glucose tolerance test could also be 

performed. In a larger study, a significant link between childhood weight 

trajectory and insulin (which was on the threshold of significance in this 

study) may also be validated. 

iv. UtAD impedance measures (RI, PI) and childhood % fat and BMI. 

v. Placental size measurements and childhood sum SF. 

 
• Accurate data on maternal smoking status and ethnicity would be important 

for any further study. 

 
• Long-term follow-up to adolescence and adulthood would help determine the 

longer-term impact of these cardio-metabolic risk indicators that have been 

detected in childhood. 

7.3 Conclusions from chapter 5 to address aim two 

• In a prospective cohort of infants born following pregnancies with abnormal 

serum markers indicating greater FGR risk, we did not replicate findings from 

the retrospective cohort linking lower fetal and higher childhood weight 

trajectories. We postulate that this is due to the younger ages and smaller 

sample sizes at each individual timepoint.  

• Negative associations were established between fetal weight trajectory and Δ 

BMI, sum SF, AC and MUAC between birth and six months. The strongest of 
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these associations were with BMI and sum SF, potentially representing an early 

opportunity to detect infants beginning to follow adverse growth trajectories.  

• These relationships remained when correcting for method of feeding and age 

at weaning. However, our small sample size limits conclusions that can be 

drawn from this.   

7.4 Further work arising from chapter 5 

• To provide supporting evidence for a recommendation to routinely measure 

birth length and calculate BMI, we would require a larger study prospectively 

recruiting women seen in the MPC. 

• Our findings suggest that associations may not be observed between fetal 

weight trajectory and Δ adiposity measures between birth and 12 months, 

which could support the need to focus resources on birth, three and six 

months measurements.  

• Ensuring reliable data collection on method of feeding and length of 

breastfeeding (if breastfed) as well as age at weaning, could help understand 

more about the influence of these. There may be potential to explore parental 

overfeeding behaviours for infants born following pregnancies where there 

was antenatal detection of higher FGR risk. Furthermore, these could 

represent modifiable mediators of a relationship between fetal weight 

trajectory and infant adiposity trajectory. Our sample size was too small to 

explore this. 

• To confirm that links between fetal weight trajectory and infant adiposity 

trajectories represent the beginnings of adverse growth trajectories, 

understanding these in relationship with childhood indicators of cardio-

metabolic risk in the same cohort is important. 

• A further clinical visit during mid-childhood for participants in the prospective 

cohort could validate findings established in the retrospective cohort (Chapter 

4). If true, these findings would add weight to the suggestion that early 

detection of adverse adiposity trajectories is essential to detect those 

individuals at higher risk of developing potentially adverse indicators of cardio-

metabolic risk. 
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• Lastly, later-life risks associated with these findings may be confirmed or 

refuted in a long-term follow up study. 

 

7.5 Conclusions from chapter 6 to address aim three 

• The potential triad of associations discovered in Chapter 4 suggested that 

higher childhood weight trajectory could mediate a relationship between lower 

fetal weight trajectory and higher childhood SBP. 

• To further support the overall hypothesis, that antenatal markers of a potentially 

abnormal intrauterine environment can be used to identify fetuses at highest 

risk of long-term cardio-metabolic disease, we investigated pathways linking 

fetal weight trajectory to childhood indicators of greater cardio-metabolic risk. 

• Supervised analyses allowed definition of groups based on quartiles of fetal 

weight trajectory and childhood weight trajectory. Differences in cardio-

metabolic risk indicators were determined between groups, which justified 

assessments of DEGs and DEMs between groups. 

• For metabolomics, assessment of commonality revealed a pathway that may 

link fetal and childhood weight trajectories to higher SBP; the arginine-NO 

biosynthetic pathway was implicated by the finding of l-ornithine in all five 

supervised analyses. 

• Identification of ARG1 (which encodes arginase) following assessment of 

commonality and GSEA for transcriptomic data added further support to the 

involvement of the arginine-NO biosynthetic pathway. 

• Supervised transcriptomic analysis and GSEA (revealing ANXA3) implicated 

the phosphatidyl-inositol pathway, which may play a role in linking postnatal 

weight trajectory to insulin resistance. This is in line with our previous study in 

SGA CU versus NCU. 

• Unsupervised analysis indicated that transcriptomic data were separable into 

clusters of participants with significantly different SBP. The structure of the data 

that allowed this separation was largely accounted for by 47 birthweight-related 

genes. This could indicate a role for genetics in linking fetal weight trajectories 

or birthweight to childhood SBP. However, we could not confirm this in our small 

cohort where groups did not differ in birthweight nor fetal weight trajectory. 
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• In addition to the suggestion from chapter 4, that childhood weight trajectory 

may play a greater role than fetal weight trajectory in the development of higher 

SBP, hypernetworks and RFC in chapter 6 supported that this may result from 

expression of a set of functionally related genes. This could reflect that 

underlying genotypes which are related to higher childhood weight trajectory 

could also be linked to higher childhood SBP. Alternatively, epigenetic 

modifications affecting patterns of gene expression may be responsible for this 

observation.  

 

7.6 Further work arising from chapter 6 

• It was not possible to identify l-arginine or l-citrulline in the NMR dataset. 

Analysis of metabolites involved in the urea cycle or the conversion of arginine 

to NO (eNOS) could validate the finding that this pathway is involved.  

• Sensitivity of the NMR technique was a limitation. This could account for the 

poor integration between metabolomic and transcriptomic data. Obtaining 

LCMS or GCMS data may validate our findings, alongside potentially 

elucidating further pathways that are involved. 

• DNA sequencing data from participants and parents could help determine 

whether findings from hypernetworks are a result of specific genes driving lower 

fetal weight trajectory and higher SBP. Other genes may drive both higher 

childhood weight trajectory and higher SBP. Alternatively, specific genotypes 

may relate to all three. If true, the results of our small study could provide some 

evidence against the DOHaD hypothesis. 

• Acquisition and analysis of other ‘omics datasets was beyond the scope of this 

PhD. However, stored serum samples are available for future studies. Further 

work could involve multi-omics analyses and integration, to validate and further 

explore pathways that may link fetal weight trajectory to childhood indicators of 

cardio-metabolic risk. Specifically, epigenomic data may allow identification of 

modifications that have altered the expression of specific genes within these 

hypernetworks. This could provide support for the DOHaD hypothesis. 
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7.7 A final note on the Developmental Origins of Health and Disease 

This work has suggested that fetal weight trajectory can be used to identify fetuses at 

highest risk of long-term cardio-metabolic disease. Proving a causal link remains more 

challenging. Our findings could support that developmental origins underscore the link 

between indicators of a potentially adverse intrauterine environment and childhood 

cardio-metabolic risk indicators. However, it is also possible that these links are 

genetic in origin. 

 

Irrespective of the cause, this work has highlighted the need for a longitudinal study in 

this specific population, with unique selection criteria. This would determine the cardio-

metabolic disease consequences following antenatal detection of higher FGR risk. If 

a relationship is proven, the value in early life detection of at-risk individuals would be 

confirmed. 
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Appendix 
 

Saint Mary’s Hospital for Women & Children 
 

 
Patient Information Sheet v1.2 (04/04/2017) for Pregnant Women/New mothers 

 
The Manchester BabyGRO study 

 
The Manchester BabyGRO study is a project examining which pregnancy factors are 
related to long-term health risks that begin to show in childhood. We are recruiting 
women and their unborn/newborn babies, where the mother has been seen and 
followed up in one of specialist antenatal clinics or research studies. All the information 
we collect will help us understand how the placental (afterbirth) function relates to 
infant growth, which will help us to develop better ways of improving health and well-
being. 
 
You are being invited to take part in a research study. Before you decide it is important 
for you to understand why the research is being done and what it will involve. Please 
take time to read that following information carefully and discuss it with others if you 
wish. Ask us if there is anything that is not clear or if you would like more information. 
Take time to decide whether or not you wish to take part.   
 
Why have I been chosen and what is the purpose of the study? 
We are inviting you to take part in this study because you have been seen in one of the 
specialist antenatal clinics at St. Mary’s Hospital Manchester or were part of a study 
which used ultrasound to measure your baby’s growth.  
We are keen to see how your child’s growth and development relate to their growth in 
the womb and would therefore like to perform measurements to assess this now and at 
3, 6 and 12 months. This will enable us to determine if there is any relationship with 
measurements before birth and in infancy and give us valuable information to help 
management of future pregnancies. 
 
Do I have to take part? 
No you do not have to take part in the study. Participation is completely voluntary. 
Whatever your decision the standard of care you receive will be the same. 
 
If you do decide to take part you will be given this information sheet to keep and be 
asked to sign a consent form. 
 
 
What will happen if I take part?   
 
As part of the research you will be asked to  

• Sign a consent form 
• Complete a questionnaire with the help of someone from the project if 
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necessary, which takes approximately 30 minutes. You do not have to answer 
all the questions.   

• Allow us to access your medical records so we can collect data about your 
health in pregnancy 

• Donate a sample of your blood (equivalent to two teaspoons, before delivery). 
• At delivery, after the cord has been cut and you and your baby have separated 

from the cord and placenta, we will;  
• Take a small amount of blood from the umbilical cord and cord tissue.  
• Take a sample of placenta.  
 

None of these procedures or tests will hurt or harm your baby. The samples will 
be stored and may be used for DNA (genetic material) analysis as part of a larger 
study. This may help us learn more about genetic profiles in relation to growth, but this 
would not be directly fed back to you. 
 
In addition, we will invite you to appointments at 3, 6 and 12 months to records growth 
measurements on your baby; length, weight, head circumference, skinfold thickness 
and body composition using a PEA POD. Again, none of these will hurt your baby. 
The PEA POD is a specialist instrument that tells us how much fat there is beneath 
the skin. 
At these appointments, we will ask you how long you continued breastfeeding for (if 
relevant) and the age at which you started to wean your baby. If we find that your 
baby’s growth is less than normal, then your baby would receive the standard care for 
any baby with less than normal growth.  
 
 
What are the disadvantages and risks of taking part?   
You may be inconvenienced by attending the growth measurement clinics when your 
baby reaches 3 months, 6 months and 12 months. You have the choice to opt out of 
the study at any point, and we will try out best to choose times that suit you and your 
baby. 
 
 
What are the possible benefits of taking part? 
The main advantage of taking part is that you will be helping us in our efforts to 
understand more about factors that influence long-term health, and how this might be 
improved for future generations. However, once we have taken measurements we will 
inform you of our findings. We do not expect to find any problems, but if your child’s 
growth is less than expected we will arrange appropriate medical follow up.  
 
 
Will my taking part in the study be kept confidential? 
Any information that is collected about you and your baby will be kept strictly 
confidential. When the results are analyzed your name will be removed so that you 
cannot be recognized. 
 
Anonymized data from the study will be kept secure on encrypted files, on a secure 
University server. Samples and data may be shared with other researchers with the 
European Union who are involved in a larger study examining the effect of maternal 
environment on childhood health and disease. After the study, we will store the secure 
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data for a minimum of ten years, and we may wish to contact you about further studies. 
However, you are under no obligation to take part in future research. 
 
Individuals from the University of Manchester, NHS Trust or regulatory authorities 
may need to look at the data collected for this study to make sure the project is being 
carried out as planned. This may involve looking at identifiable data but all 
individuals involved in auditing and monitoring the study, will have a strict duty of 
confidentiality to you and your baby as research participants. 
 
 
What will happen to the results of the research study? 
The results will be presented at clinical and scientific meetings and will be published 
in journals read by healthcare professionals who care for women during pregnancy 
and children. The study is being carried out as part of a PhD and the data will be 
published in a thesis. You will not be identified in any of our results. 
 
If I agree to take part, can I withdraw from the study at anytime? 
You can decide to withdraw from the study at any stage without affecting your 
treatment now or in future and without giving any reason.  Any samples and/or 
identifiable information collected or stored for the study will be destroyed, but 
anonymised information combined with other data may be retained. 
 
Who is organizing the research? 
The research is being organized by the Faculty of Biology, Medicine and Health at 
the University of Manchester and will be carried out with Central Manchester NHS 
Foundation Trust.  
 
 
Who has reviewed the study? 
The study has been reviewed and given a favourable ethical opinion by North West - 
Greater Manchester East Research Ethics Committee 17/NW/0153. 
 
Will I get the results of the research? 
The results will be used for research purposes only and will NOT affect your treatment 
in anyway. If you are interested in finding out the scientific results of the study, please 
indicate this on the consent form or contact Dr. R. Perchard (contact details at bottom 
of sheet) and we can contact you with information at the end of the study. The results 
will be published on a website, but no identifiable data will be published. Please note 
that this may take a long time after you have taken part. 
 
What if there is a problem? 
 
Minor complaints 
If you have a minor complaint then you need to contact the researcher(s) in the first 
instance.   
 
Dr. R. PERCHARD MBChB MRCPCH 
CLINICAL RESEARCH FELLOW IN PAEDIATRIC ENDOCRINOLOGY 
5TH FLOOR (RESEARCH), ROYAL MANCHESTER CHILDREN’S HOSPITAL, 
OXFORD ROAD, MANCHESTER, M13 9WL. 
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TEL NO: +44 (0)161 701 7563 
 
 
Formal Complaints 
If you wish to make a formal complaint or if you are not satisfied with the 
response you have gained from the researchers in the first instance then 
please contact the Research Governance and Integrity Manager, Research Office, 
Christie Building, University of Manchester, Oxford Road, Manchester, M13 9PL, by 
emailing: research.complaints@manchester.ac.uk  or by telephoning 0161 275 2674 
or 275 2046. 
 
Patients Advice and Liason Service (PALS) 
PALS are also able to provide independent advice on any queries or complaints you 
may have. Please contact 0161 276 8686 or pals@cmft.nhs.uk for the office at the 
Central Manchester University Hospitals NHS Foundation Trust.  

 
Harm  
In the event that something does go wrong and you are harmed during the research 
you may have grounds for a legal action for compensation against the University of 
Manchester or Central Manchester University hospitals NHS Foundations Trust but 
you may have to pay your legal costs. The normal National Health Service complaints 
mechanisms will still be available to you.   
 
Travel Expenses 
Please note that we are not able to cover the cost of any travel expenses incurred 
through participating in the study.  
 
Contact for further information 
Thank you for reading this information sheet and for taking the time to consider our 
study. If you have any questions or concerns please contact Dr. R Perchard (contact 
details above).
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Prospective Group: Consent Form Version 1.2 (04/04/2017) 
IRAS REFERENCE 187679 

 

The Manchester BabyGRO Study 

  
 
To give us your consent, please can you confirm ‘yes’ to the questions below by 
placing your initials in the box provided. Please then sign your name in the box and 
have this witnessed at the same time as you sign it. 

 
Please initial box 

 
1.  I confirm that I have read and understand the information sheet 

version 1.2 (04/04/2017) and have had the opportunity to ask questions. 
2. I understand that giving samples (i.e. blood; umbilical cord blood; 

placental tissue) for research is voluntary and that I am free to withdraw 
my consent at any time. I do not have to give a reason and my medical 
treatment or legal rights will not be affected by withdrawal of my consent. 

3. I understand that the samples I give may be used for DNA (genetic) 
analysis 

4. I understand that my and my baby’s participation in this study is 
voluntary and that I am free to withdraw consent for me and my baby at any 
time. I do not have to give a reason and my and my baby’s medical treatment 
or legal rights will not be affected by withdrawal of my consent. 
5.  I give permission for my samples to be stored by, and distributed to 

researchers within, The Maternal & Fetal Health Research Centre and 
other approved researchers connected to the unit within the European 
Union. 

6.  I understand that responsible individuals from the Maternal & Fetal 
Health Research Centre may look at sections of my medical notes, and 
my baby’s medical notes where it is relevant to our taking part in research. 
I give permission for these individuals to access our records to collate this 
personal medical data. 

7.  I understand that stored information will be kept confidential at all 
times; data will only pass to researchers in an anonymous way that 
protects my identity, and that my personal data will be stored beyond the 
current study so that I may be contacted in the future about possible 
involvement in further studies. 

8.  I understand that my baby and I will not personally benefit, financially 
or otherwise, from my gift of samples. This includes where my samples 
are involved in research resulting in the development of a new treatment 
or medical test. 
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Prospective Group: Consent Form Version 1.1 (03/01/2017) 

IRAS REFERENCE 187679 
 

The Manchester BabyGRO Study 
 

9.  I give permission for my samples, on the completion of The 
Manchester BabyGRO Study, to be transferred to, and stored by, The 
Maternal and Fetal Health Research Centre Biobank with non-identifiable 
associated data. 

 
10.   I understand that relevant sections of my medical notes and data 

collected during the study may be looked at by individuals from the 
University of Manchester, from regulatory authorities or from the NHS 
Trust, where it is relevant to my taking part in this research. I give 
permission for these individuals to have access to my records 

 
11.  I give permission for Doppler ultrasound scans to be performed on my 

baby and me and for this data to be accessed for research purposes. 
 
12.  I give permission for growth measurements (length, weight, head 

circumference, skinfold thickness and body composition) to be taken on 
my baby at birth, and then at 3, 6 and 12 months, to be used for this 
research.  

 
13.  I agree to take part in the study 

 
 

   

Name of Patient Date Signature 
 
   
 

   

Name of Person taking 
consent 

Date Signature 

 
Please keep 1 copy of this form for the study file (original), give the second copy to the participant 
and file the third copy in the mother’s medical notes.
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Patient Information Sheet v1.3 (11/01/18) for Parents of 3-6 Year Olds 
The Manchester BabyGRO study 

 
The Manchester BabyGRO study is a project examining which pregnancy factors are 
related to long-term health risks that begin to show in childhood. We are recruiting 
children between the ages of 3 and 6, whose mothers were followed up at St. Mary’s, 
Manchester during pregnancy. All the information we collect will help us understand 
the how placental (afterbirth) function relates to infant growth, which will help us to 
develop better ways of improving health and well-being.  
 
You are being invited to take part in a research study. Before you decide it is important for you to 
understand why the research is being done and what it will involve. Please take time to read that 
following information carefully and discuss it with others if you wish. Ask us if there is anything that is 
not clear or if you would like more information. Take time to decide whether or not you wish to take part.   
 
 
 
Why have I been chosen and what is the purpose of the study? 
We are inviting you to take part in this study because during pregnancy either you were 
seen in one of the specialist antenatal clinics at St. Mary’s Hospital Manchester or were 
part of a study which used ultrasound to measure your baby’s growth.  
During your pregnancy you may remember we were interested in how your baby was 
growing in the womb and how this related to the placenta (afterbirth). We are now keen 
to see how your child has grown and developed since that time and would therefore like 
to perform measurements to assess this. This will enable us to determine if there is any 
relationship with measurements before birth and in infancy and give us valuable 
information to help management of future pregnancies. 
 
 
Do I have to take part? 
No you do not have to take part in the study. Participation is completely voluntary. If 
you do decide to take part you will be given this information sheet to keep and be 
asked to sign a consent form. 
 
 
What will happen if my child and I take part?   
If you agree to take part in this study you will be asked to 

•Sign a consent form at the time of your visit (see below) 
•Complete a questionnaire, which takes approximately 30 minutes at the time of 
your visit. We can help with this if necessary. You do not have to answer all the 
questions.   

 
We will then contact you to arrange a visit to for you and your child to St. Mary’s 
hospital where will perform as many as possible of the following measurements.  
Prior to performing your child’s examination we will go over what each measurement 
involves and ask you to sign the consent form detailing exactly which measurements 
you are happy for us to take of your child. Your child does not need to participate in all 
measurements to take part. 
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Measurements taken of your child 
 
• Height and weight 
• Blood pressure measurements (similar to those you had in pregnancy)  
• A skinfold thickness of the upper arm (this doesn’t hurt).   
• A measure of body composition using a “BODPOD.” The BODPOD is a 

specialist instrument that tells us how much fat there is beneath the skin. 
• Rate of vessel pressure wave measurement (measured by ultrasound i.e. 

jelly scan) 
• A saliva sample 
• A blood sample (equivalent to three teaspoons) after using a special cream 

to numb the skin. We recognise that some parents do not like the idea of this 
and may not wish to this to be performed so it is optional. However, we are 
still very keen to get as many of your child’s other measurement as possible 
and would still like you to join so we can record as many measurable things 
as possible. 

 
We are interested in gaining as much information as possible about your child’s growth 
and development, however we know how busy being a parent of young children is. 
Therefore if you do not feel that you can come for an appointment, but can give us 
information over the phone e.g. height and weight, please send back the consent form 
stating this and we will contact you. If we find that your child’s growth is less than 
normal, then your child would receive the standard care for any child with less than 
normal growth.  
 
 
We will also be asking for consent to access your medical records so we can obtain 
information about your health whilst you were pregnant.  
 
 
 
What are the disadvantages and risks of taking part?   
This is an observational study so your child is at no risk from taking part. Some children 
may not like the examination, but the study is being carried out by doctors and nurses 
specifically trained in children’s medicine who are used to dealing with children and 
will put them at ease. Of course, you and your child can ask for a break, or to stop at 
any point. 
 
 
What are the possible benefits of taking part? 
The main advantage of taking part is that you will be helping us in our efforts to 
understand more about factors that influence long-term health, and how this might be 
improved for future generations. However, once we have taken measurements we will 
inform you of our findings. We do not expect to find any problems, but if your child’s 
growth is less than expected we will arrange appropriate medical follow up.  
 
Many children enjoy taking part in research studies, and we will explain what is 
happening to them and teach them every step of the way 
 
If I agree to take part, can I withdraw from the study at anytime? 
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You can decide to withdraw from the study at any stage without affecting your 
treatment now or in future and without giving any reason.  Any samples and/or 
identifiable information collected or stored for the study will be destroyed, but 
anonymised information combined with other data may be retained. 
 
 
Will my taking part in the study be kept confidential? 
Any information that is collected about you and your baby will be kept strictly 
confidential. When the results are analyzed you and your child’s names will be 
removed so that you cannot be recognized. 
Anonymized data from the study will be kept secure on encrypted files, on a secure 
University server. Samples and data may be shared with other researchers with the 
European Union who are involved in a larger study examining the effect of maternal 
environment on childhood health and disease. After the study, we will store the secure 
data for a minimum of ten years, and we may wish to contact you about further studies. 
However, you are under no obligation to take part in future research. 
 
Individuals from the University of Manchester, NHS Trust or regulatory authorities 
may need to look at the data collected for this study to make sure the project is being 
carried out as planned. This may involve looking at identifiable data but all 
individuals involved in auditing and monitoring the study, will have a strict duty of 
confidentiality to you and your child as research participants. 
 
 
What will happen to the results of the research study? 
The results will inform us about how placental (afterbirth) function affects infant growth. 
This will allow us to plan improvements in pregnancy care. They will be presented at 
clinical and scientific meetings and will be published in journals read by healthcare 
professionals who care for women during pregnancy and children. The study is being 
carried out as part of a PhD and the data will be published in a thesis. You will not be 
identified in any of our results. 
 
Who is organizing the research? 
The research is being organized by the Faculty of Biology, Medicine and Health at 
the University of Manchester and will be carried out with Central Manchester NHS 
Foundation Trust.  
 
Who has reviewed the study? 
The study has been reviewed and given a favourable ethical opinion by North West- 
Greater Manchester East Research Ethics Committee 17/NW/0153. 
 
Will I get the results of the research? 
The results will be used for research purposes only and will NOT affect your treatment 
in anyway. If you are interested in finding out the scientific results of the study, please 
indicate this on the consent form or contact Dr. R Perchard (contact details at bottom 
of sheet) and we can contact you with information at the end of the study. The results 
will be published on a website, but no identifiable data will be published. Please note 
that this may take a long time after you have taken part. 
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What if there is a problem? 
Minor complaints 
If you have a minor complaint then you need to contact the researcher(s) in the first 
instance.   
 
Dr. R. PERCHARD MBChB MRCPCH 
CLINICAL RESEARCH FELLOW IN PAEDIATRIC ENDOCRINOLOGY 
5TH FLOOR (RESEARCH), ROYAL MANCHESTER CHILDREN’S HOSPITAL, 
OXFORD ROAD, MANCHESTER, M13 9WL. 
TEL NO: +44 (0)161 701 7563 
 
 
Formal Complaints 
If you wish to make a formal complaint or if you are not satisfied with the 
response you have gained from the researchers in the first instance then 
please contact the Research Governance and Integrity Manager, Research Office, 
Christie Building, University of Manchester, Oxford Road, Manchester, M13 9PL, by 
emailing: research.complaints@manchester.ac.uk  or by telephoning 0161 275 2674 or 
275 2046. 
 
Patients Advice and Liason Service (PALS) 
PALS are also able to provide independent advice on any queries or complaints you 
may have. Please contact 0161 276 8686 or pals@cmft.nhs.uk for the office at the 
Central Manchester University Hospitals NHS Foundation Trust.  

 
Harm  
In the event that something does go wrong and you are harmed during the research 
you may have grounds for a legal action for compensation against the University of 
Manchester or Central Manchester University hospitals NHS Foundations Trust but 
you may have to pay your legal costs. The normal National Health Service complaints 
mechanisms will still be available to you.   
 
Travel Expenses 
Please note that we are not able to cover the cost of any travel expenses incurred 
through participating in the study.  
 
Contact for further information 
Thank you for reading this information sheet and for taking the time to consider our 
study. If you have any questions or concerns please contact Dr. R Perchard (contact 
details above)
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Retrospective Group: Consent Form Version 1.2 

(04/04/2017) 
IRAS REFERENCE 187679 

 

The Manchester BabyGRO Study 

  
 
To give us your consent, please can you confirm ‘yes’ to the questions below by 
placing your initials in the box provided. Please then sign your name in the box and 
have this witnessed at the same time as you sign it. 

 
Please initial box 

 
4.  I confirm that I have read and understand the information sheet 

version 1.1 (04/04/2017) and have had the opportunity to ask questions. 
 
2.  I give permission for the following measurements to be taken from my 

child during a clinic visit; height, weight, blood pressure, skinfold 
thickness, rate of vessel pressure wave measurement (measured by 
ultrasound i.e. jelly scan), and BODPOD measurement to measure the 
fat underneath the skin. 

3.   I understand that my and my child’s participation in this study is 
voluntary and that I am free to withdraw consent for me and my child at 
any time. I do not have to give a reason and my and my child’s medical 
treatment or legal rights will not be affected by withdrawal of my consent. 

4.  I give permission for my samples to be stored by, and distributed to 
researchers within, The Maternal & Fetal Health Research Centre and 
other approved researchers connected to the unit within the European 
Union. Optional 

5.  I understand that responsible individuals from the Maternal & Fetal 
Health Research Centre may look at sections of my medical notes, and 
my child’s medical notes where it is relevant to our taking part in research. 
I give permission for these individuals to access our records to collate this 
personal medical data. 

6.  I understand that stored information will be kept confidential at all 
times; data will only pass to researchers in an anonymous way that 
protects my child’s identity, and that my personal data will be stored 
beyond the current study so that I may be contacted in the future about 
possible involvement in further studies. 

7.  I understand that my child and I will not personally benefit, financially 
or otherwise, from my gift of samples. This includes where my samples 
are involved in research resulting in the development of a new treatment 
or medical test. 
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Retrospective Group: Consent Form Version 1.2 
(04/04/2017) 

IRAS REFERENCE 187679 
 

The Manchester BabyGRO Study 
 

8.  I give permission for my child’s samples, on the completion of The 
Manchester BabyGRO Study, to be transferred to, and stored by, The 
Maternal and Fetal Health Research Centre Biobank with non-identifiable 
associated data. Optional 

 
9.   I understand that relevant sections of my medical notes, and my 

child’s medical notes and data collected during the study may be 
looked at by individuals from the University of Manchester, from 
regulatory authorities or from the NHS Trust, where it is relevant to my 
taking part in this research. I give permission for these individuals to 
have access to my records 

 
10.  I give permission for Doppler ultrasound scan data to be accessed 

from my medical notes, for research purposes. 
 
11.  I agree to take part in the study  

 
 
 
 

   

Name of Patient Date Signature 
 
   
 

   

Name of Person taking 
consent 

Date Signature 

 
Please keep 1 copy of this form for the study file (original), give the second copy to the participant 
and file the third copy in the mother’s medical notes. 
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Measurements conducted at birth, three, six and twelve months  

This table demonstrates the relative proportions of visits conducted by myself and by a research 
practitioner. I was responsible for 259 sets of measurements (blue) and the research practitioner for 
61 (orange). Successfully completed visits are indicated by dark blue (N=203; 76 at birth, 127 follow 
ups) and dark orange boxes (N=22; one at birth, 21 follow ups) respectively.   
 

 

 

Birth 3 months 6 months 12 months 
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Processing of metabolomic samples by an external laboratory 
 
Methodology: c) Nuclear Magnetic Resonance Spectroscopy conditions 

NMR experiments were carried out using a Bruker Avance 500 MHz NMR 

spectrometer equipped with a TCI cryoprobe. Samples were analysed in a random 

order generated from www.random.org. Data acquisition and processing was 

performed with the use of the software package Topspin v 1.3 (Bruker, Germany). 

Spectra were acquired at a central frequency of 500.1323505 MHz, using on-

resonance pre-saturation to suppress the intensity of the water signal, followed by a 

1D NOESY pulse sequence with irradiation of the residual water signal during the 

mixing time (200 ms). An observation pulse length of 10.0 μs and a delay between 

transients of 3 s were used. 65536 complex data points were acquired with a spectral 

width of 10400 Hz (corresponding to a chemical shift range of 14.0019 parts per 

million, ppm), giving an acquisition time of 4.679 s. Eight unrecorded (dummy) 

transients and 512 acquisition transients (scans) were used, giving a total experiment 

time of approximately 67 minutes. 
 

Methodology: Data handling and processing conditions LC-HRMS 

Xcalibur software (Thermo Fisher Scientific) and Progenesis QI (Waters Corporation), 

were used to initially assess all data. Progenesis QI was used to assess the data in a 

non-targeted manner. The software performed peak picking (m/z 80 – 1000) and 

retention time alignment across all files before deconvolution (data reduction) of 

compounds according to peak width as well as any potential ionisation adducts and / 

or isotopic peaks found.  Accurate masses were screened against the Human 

Metabolome Database (HMDB) for initial tentative annotation. Principal Components 

Analysis (PCA) was undertaken to assess all data for outliers or any batch bias 

influence. A CSV export of all peaks detected (potential metabolites) and their intensity 

(peak area) for every sample was created and uploaded to AUTH FTP server for 

further statistical analysis by the investigators. 
 

Methodology: Data handling and processing conditions NMR 

One-dimensional (1D) 1H NMR spectroscopic data were processed using FELIX 

software (Accelrys, San Diego). A sine-bell shaped window function phase shifted by 

90° was applied over all data points before Fourier transformation, phase and baseline 

correction. The chemical shift of all data was referenced to the TSP resonance at 0 



 
 

 321 

ppm. 1H NMR spectroscopic data were binned using Metabolab, an in-house written 

GUI for the statistical software package MATLAB (Mathworks), using an adaptive 

binning algorithm based on the undecimated wavelet transform (3) [411] [411] [411] 

[411] [411] [410] [409] [408] [407] [406] [405] [404] [403] [402] [401] [400] [399] [399] 

[398] [398] [398] [398] [399] [399] [399] [399] [399] [398] [397] [396] [395] [394] [393]. 

This algorithm corrected minor variations in the chemical shift, performed feature 

selection, removed regions of the NMR spectra that only contain noise and performed 

data reduction. Binned data was exported as a.csv and uploaded to AUTH FTP server 

for further statistical analysis by the investigators.  
 

Results: Nuclear Magnetic Resonance Spectroscopy 

After binning, data was initially scrutinised by PCA. The data did not show obvious 

outliers and all QC were satisfactorily clustered in the centre of the PCA. Bins and 

corresponding responses were exported as a .csv file.
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Processing of transcriptomic samples by the Genomics Technologies Core 

Facility at the University of Manchester: RNA sequencing  

 
Total RNA was submitted to the Genomic Technologies Core Facility (GTCF). Quality 

and integrity of the RNA samples were assessed using a 4200 TapeStation (Agilent 

Technologies) and then libraries generated using the TruSeq® Stranded mRNA assay 

(Illumina, Inc.) according to the manufacturer’s protocol. Briefly, total RNA (0.1-4ug) 

was used as input material from which polyadenylated mRNA was purified using poly-

T, oligo-attached, magnetic beads. The mRNA was then fragmented using divalent 

cations under elevated temperature and then reverse transcribed into first strand 

cDNA using random primers. Second strand cDNA was then synthesised using DNA 

Polymerase I and RNase H. Following a single 'A' base addition, adapters were ligated 

to the cDNA fragments, and the products then purified and enriched by PCR to create 

the final cDNA library. Adapter indices were used to multiplex libraries, which were 

pooled prior to cluster generation using a cBot instrument. The loaded flow-cell was 

then paired-end sequenced (76 + 76 cycles, plus indices) on an Illumina HiSeq4000 

instrument. Finally, the output data was demultiplexed (allowing one mismatch) and 

BCL-to-Fastq conversion performed using Illumina’s bcl2fastq software, version 

2.17.1.14. 
 

 
 


