
 

 

 

The Reinforcement of 

Nanocomposites by Boron Nitride 

Nanosheets and Nanotubes 

 

 

A thesis submitted to 

The University of Manchester 

for the degree of 

Doctor of Philosophy 

in the 

Faculty of Science and Engineering 

 

 

2021 

 

Weimiao Wang 

 

Department of Materials 



Contents 

1 

 

Contents 

List of Tables .............................................................................................. 6 

List of Figures ............................................................................................ 7 

Abstract .................................................................................................... 19 

List of Symbols ........................................................................................ 20 

List of Abbreviations............................................................................... 23 

Declaration ............................................................................................... 27 

Copyright Statement ............................................................................... 28 

Acknowledgement ................................................................................... 29 

Chapter 1 BNNSs & BNNTs-Structure, Preparation, Properties ... 30 

1.1 Introduction ................................................................................................ 30 

1.2 Structure ..................................................................................................... 30 

1.2.1 Structure of hexagonal boron nitride (hBN) .................................... 30 

1.2.2 Structure of BNNSs ......................................................................... 33 

1.2.3 Structure of BNNTs ......................................................................... 36 

1.3 Preparation .................................................................................................. 38 

1.3.1 Preparation of bulk hBN .................................................................. 38 

1.3.2 Preparation of BNNSs...................................................................... 40 

1.3.3 Preparation of BNNTs ...................................................................... 45 

1.4 Properties .................................................................................................... 50 

1.4.1 Physical properties of hBN, BNNSs and BNNTs ............................ 50 

1.4.2 Optical properties ............................................................................. 53 

1.4.3 Mechanical properties ...................................................................... 57 

1.5 Conclusions ................................................................................................ 65 



Contents 

2 

 

References ............................................................................................................ 66 

Chapter 2 BNNS and BNNT-based Nanocomposites ....................... 80 

2.1 Introduction ................................................................................................ 80 

2.2 Composite reinforcement micromechanics ................................................ 80 

2.2.1 Rule of mixtures ............................................................................... 80 

2.2.2 Shear-lag model ............................................................................... 82 

2.2.3 Other issues ...................................................................................... 86 

2.3 BNNS & BNNT-based Nanocomposites .................................................... 88 

2.3.1 Mechanical properties of BNNS nanocomposites ........................... 89 

2.3.2 Mechanical properties of BNNT nanocomposites ........................... 92 

2.4 Conclusions ................................................................................................ 94 

References ............................................................................................................ 95 

Chapter 3 Raman Spectra of BNNSs and BNNTs ............................ 99 

3.1 Introduction ................................................................................................ 99 

3.2 Principles of Raman scattering ................................................................. 100 

3.2.1 Classical theory .............................................................................. 100 

3.2.2 Quantum theory ............................................................................. 101 

3.3 Instrumentation ......................................................................................... 103 

3.3.1 Raman spectrometer....................................................................... 103 

3.3.2 Raman spectra fitting ..................................................................... 104 

3.3.3 In-situ Raman deformation test ...................................................... 105 

3.4 Raman spectra of BNNSs ......................................................................... 106 

3.5 Raman spectra of BNNTs ......................................................................... 111 

3.6 Strain-induced Raman band shifts in BNNSs and BNNTs ...................... 114 

3.6.1 Pressure-induced Raman band shifts ............................................. 114 

3.6.2 Thermally-induced Raman band shifts .......................................... 115 

3.6.3 Mechanical deformation-induced Raman band shifts.................... 119 

3.7 Raman spectra of 1D materials, 2D materials/polymer nanocomposites . 122 



Contents 

3 

 

3.7.1 Raman spectra of 2D graphene/polymer nanocomposites ............. 122 

3.7.2 Raman spectra of 1D nanotube/polymer nanocomposites ............. 127 

3.8 Aims of this project .................................................................................. 132 

References .......................................................................................................... 134 

Chapter 4 Stress Transfer in hBN Nanosheets ................................ 140 

4.1 Introduction .............................................................................................. 140 

4.2 Experimental ............................................................................................ 141 

4.2.1 Materials ........................................................................................ 141 

4.2.2 Characterization ............................................................................. 142 

4.2.3 In situ Raman Deformation Studies ............................................... 142 

4.3 Results and Discussion ............................................................................. 143 

4.3.1 Strain-induced Raman band shifts ................................................. 143 

4.3.2 Interlayer stress transfer ................................................................. 145 

4.3.3 Strain mapping ............................................................................... 148 

4.4 Conclusions .............................................................................................. 153 

References .......................................................................................................... 154 

Chapter 5 Mechanisms of Reinforcement of Polymer-Based 

Nanocomposites by hBN Nanosheets .................................................. 156 

5.1 Introduction .............................................................................................. 156 

5.2 Experimental ............................................................................................ 157 

5.2.1 Materials ........................................................................................ 157 

5.2.2 Liquid-Phase Exfoliation ............................................................... 158 

5.2.3 Preparation of the BNNS/PVA Nanocomposite Films ................... 159 

5.2.4 Characterization of the Liquid-phase Exfoliated BNNSs and 

BNNS/PVA Nanocomposite Films ............................................................ 160 

5.2.5 Mechanical Testing ........................................................................ 160 

5.2.6 In situ Raman Deformation Studies ............................................... 161 



Contents 

4 

 

5.3 Results and Discussion ............................................................................. 161 

5.3.1 Characterization of the individual BNNSs .................................... 161 

5.3.2  Dispersion of the BNNTs in the Nanocomposites- Raman mapping

..................................................................................................................  166 

5.3.3 Mechanical Properties of the Nanocomposites .............................. 168 

5.3.4 Stress-induced Raman band shifts for 1 wt% BNNSs/PVA 

nanocomposites .......................................................................................... 169 

5.3.5 Modelling of the Mechanical Properties of the Nanocomposites .. 171 

5.4 Conclusions .............................................................................................. 176 

References .......................................................................................................... 177 

Chapter 6 Reinforcement of Polymer-based Nanocomposites by 

Boron Nitride Nanotubes ..................................................................... 180 

6.1 Introduction .............................................................................................. 180 

6.2 Experimental ............................................................................................ 181 

6.2.1 Materials ........................................................................................ 181 

6.2.2 Functionalization of the BNNTs .................................................... 182 

6.2.3 Preparation of BNNTs/PVA Nanocomposites................................ 182 

6.2.4 Characterization of the BNNTs and OH-BNNTs ........................... 183 

6.2.5 Mechanical Testing ........................................................................ 184 

6.2.6 Raman Spectroscopy ...................................................................... 184 

6.3 Results and Discussion ............................................................................. 185 

6.3.1 As-Purified BNNTs ........................................................................ 185 

6.3.2 Functionalized BNNTs ................................................................... 187 

6.3.3 Raman Spectroscopy ...................................................................... 190 

6.3.4 Mechanical Properties .................................................................... 195 

6.3.5 Micromechanics of Deformation ................................................... 199 

6.4 Conclusions .............................................................................................. 201 

References .......................................................................................................... 203 



Contents 

5 

 

Chapter 7 Raman Spectroscopy of BNNTs in Electrospun 

BNNTs/PVA Nanofibres ........................................................................ 206 

7.1 Introduction .............................................................................................. 206 

7.2 Experimental ............................................................................................ 208 

7.2.1 Materials ........................................................................................ 208 

7.2.2 Electrospinning of BNNTs/PVA nanofibre nonwoven fabric ........ 208 

7.2.3 Characterization ............................................................................. 209 

7.3 Results and discussion .............................................................................. 210 

7.3.1 Nanofibre surfaces and diameter ................................................... 210 

7.3.2 Uniaxially-aligned nanofibres ........................................................ 213 

7.3.3 Orientation of BNNTs in the nanofibre nonwoven fabric ............. 215 

7.4 Conclusions .............................................................................................. 217 

References .......................................................................................................... 219 

Chapter 8 Conclusions and Suggestions for Future Work............. 221 

8.1 Conclusions .............................................................................................. 221 

8.1.1 In-situ Raman deformation of few-layer BNNSs .......................... 221 

8.1.2 Liquid-exfoliated BNNSs/polymer nanocomposites ..................... 222 

8.1.3 BNNTs/polymer nanocomposites .................................................. 223 

8.1.4 Electrospun BNNTs/polymer nanofibres ....................................... 225 

8.2 Suggestions for future work ..................................................................... 225 

8.2.1 Deformation of a 1-4L BNNSs/polymer model composite ........... 225 

8.2.2 Deformation of wrinkled BNNSs .................................................. 227 

8.2.3 Deformation of functionalized BNNSs .......................................... 228 

8.2.4 Deformation of a SW-BNNT/PVA nanocomposite film ................ 229 

8.2.5 Deformation of an oriented BNNTs/PVA nanocomposite film ..... 230 

References .......................................................................................................... 232 

Word Count: 57508 



List of Tables 

6 

 

List of Tables 

Table 1.1 [5] Crystallographic parameters of hBN and graphite. ................................ 32 

Table 1.2 Properties of bulk hBN and graphite (based on a summary in [22]). .......... 50 

Table 1.3 Properties of BNNSs and graphene ............................................................. 51 

Table 1.4 Properties of BNNTs and CNTs (based on a summary in [111]). ................ 52 

Table 1.5 Mechanical properties of BNNSs and graphene with different number of 

layers measured in Ref 84. ................................................................................... 60 

Table 3.1 In-plane Raman E2g shear mode band positions of BNNSs in different work.

............................................................................................................................ 107 

Table 4.1 Raman G band shift rate of exfoliated BNNSs with lengths > 10 m and 

different thickness .............................................................................................. 146 

Table 5.1 Properties of three types of LE-BNNSs ..................................................... 164 

Table 5.2 DSC results of neat PVA and 3 kinds of 1 wt% BNNSs/PVA films. ......... 169 

Table 5.3 Mechanical properties of three types of nanocomposite films................... 173 

Table 6.1 Elemental composition of BNNTs and OH-BNNTs measured by XPS..... 188 

Table 6.2 Tensile test results of neat PVA and BNNTs/PVA films. ........................... 196 

 

  



List of Figures 

7 

 

List of Figures 

Figure 1.1 Boron nitride with different crystal structures [5]. ..................................... 31 

Figure 1.2 Structure of hBN [8] and highly-crystallized hBN with a typical AA’ 

stacking order and graphite with an AB Bernal stacking sequence [15]. ............ 33 

Figure 1.3 Schematic diagram of a monolayer BNNS and hexagonal boron nitride 

nanoribbons (BNNR) with different edge structures [8]. .................................... 34 

Figure 1.4 (a) Planar hBN single sheet with possible wrapping types and 

corresponding (n, m) indices. (b) SW-BNNTs with zigzag helicity. (c) 

SW-BNNTs with armchair helicity. (d) A chiral tube with a 0°<θ<30° [64]. ...... 37 

Figure 1.5 (a) Optical graph of recrystallized hBN on solidified Ni-Mo solvent. (b) 

Optical graph of highly-pure hBN crystals after acid treatment [37]. ................. 40 

Figure 1.6 Two general routes for the synthesis of boron nitride nanosheets [80]. ..... 40 

Figure 1.7 (a) a. Photograph of organic dispersions of BNNSs prepared from simple 

bath sonication. b. Tyndall effect graph of relevant dispersion right after 

preparation. c. Pictures taken after 1 week [8]. (b) Preparation of organic 

dispersions of exfoliated hBN using guidance from the Hansen solubility 

parameter theory (a-c), d. Optical micrographs e. Absorbance spectra and f. 

Lambert-Beer plots for the dispersions of nanosheets of MoS2 in NMP, WS2 in 

NMP, hBN in IPA [89]. (c) Water-based liquid exfoliation of BNNSs with ~ 100 

nm small lateral sizes [45]. .................................................................................. 42 

Figure 1.8 Summary of chemical functionalization of BNNSs and BNNTs [6]. ........ 44 

Figure 1.9 Schematic diagram of the CNT substitution reaction for BNNT 

preparation [116]. ................................................................................................. 46 

Figure 1.10 (a) Schematic diagram of the BOCVD preparation of highly pure BNNTs. 

(b-e) Morphologies of as-prepared snow-white BNNTs [131]. ........................... 48 

Figure 1.11 (a) Schematic diagram of HABS process for BNNTs preparation. (b-g) 

Morphologies of BNNTs prepared by the HABS process [138]. ........................ 50 



List of Figures 

8 

 

Figure 1.12 Optical band gap analysis of monolayer CVD BNNSs [174] and 

few-layered CVD BNNSs [41]. ........................................................................... 54 

Figure 1.13 UV-vis spectrum [175] and CL spectrum [176] of BNNSs produced by 

vapor deposition. .................................................................................................. 54 

Figure 1.14 Color plot of the contrast as a function of wavelength and SiO2 thickness 

(BNNSs (a) and graphene (b)) and hBN on top of a 90 nm SiO2/Si wafer (the 

lower part is a monolayer) [42, 178]. ................................................................... 55 

Figure 1.15 Optical absorption spectra of: (a) bulk hBN crystals for SW-BNNTs 

preparation. (b) SW-BNNTs (inset is the absorption of SW-CNTs as a 

contrast) [170]. ..................................................................................................... 56 

Figure 1.16 (a) Schematic diagram of the AFM nanoidentation method for Young’s 

modulus measurement. (b) SEM image of a ~15nm CVD BNNSs on SiO2/Si 

wafer with micro-wells of 1-1.5 nm diameters. (c) AFM image of suspended 

~15nm BNNS film, solid line is the height profile. (d) Mechanical response of 

the BNNS film by nanoidentation [191]. ............................................................. 58 

Figure 1.17 (a) Optical micrograph and (b) zoom-in AFM image of exfoliated 

monolayer on 90 nm SiO2/Si wafer with micro-wells; (c) height profile along a 

dashed line in (b) which indicates monolayer BNNSs with ~6 μm lateral sizes. (d) 

Raman spectra of suspended monolayer BNNSs (the E2g peak position is at 

1366.5 cm-1) [84]. ................................................................................................ 59 

Figure 1.18 (a) 2D Young’s modulus; (b) volumetric Young’s modulus; (c) fracture 

load; (d) breaking strength of graphene and BNNSs of different thickness [84]. 60 

Figure 1.19 Raman 2D band shifts (fitted as one peak) of (a) Bilayer graphene coated 

and uncoated with a thin layer of polymer, indicating poor interlayer binding 

force; (b) mono-, bi-. tri-, many-layered graphene deformed on a polymer 

beam [193]. .......................................................................................................... 61 

Figure 1.20 Elastic modulus of MW-BNNTs measured usinga high-order resonance 

technique in a HRTEM, and nanotube modulus reduction with electron radiation 



List of Figures 

9 

 

time [207]. ............................................................................................................ 63 

Figure 1.21 Consecutive HR-TEM images of a single BNNT during deformation 

process: as shown in (a-c), when a force was loaded, severe distortion can be 

observed on hBN tubular layers, while the original shape is fully restored after 

unloading (d) [198]. ............................................................................................. 64 

Figure 1.22 Schematic of tensile test for MW-CNTs and MW-BNNTs in a SEM and 

measured frequency shift change during the test [200]. ...................................... 64 

Figure 2.1 Schematic of 2D nanosheets (nanoplatelets) and 1D nanotubes 

nanocomposites with different nanofiller orientations [4]. .................................. 81 

Figure 2.2 Schematic for the deformation of filler in composite [6]. .......................... 82 

Figure 2.3 Kelly-Tyson model: (a) Stress-strain curve of the plastic matrix. (b) Shear 

stress and (c) Axial stress along the filler [6]. ...................................................... 83 

Figure 2.4 Shear-lag model: (a) Stress-strain curve of the elastic matrix. (b) Shear 

stress and (c) Axial stress along the filler [6]. ...................................................... 83 

Figure 2.5 Strain distribution along the axial strain direction in a filler with (a) length 

much higher than lc, (b) size comparable to lc, (c) sufficient length but has 

fragmented into small pieces [1]. ......................................................................... 85 

Figure 2.6 X-ray CT images showing the taxonomy of (a) a flat GNP flake, (b) two 

curved GNP flakes, (c) a curved GNP flake which fractured partially in the 

middle [14]. .......................................................................................................... 86 

Figure 2.7 Optical photographs of (a) a pure poly(vinyl formal) (PVF) film; (b) a 1 wt% 

MW-BNNTs PVF nanocomposite film; (c) a 10 wt% MW-BNNTs PVF 

nanocomposite film. [28] ..................................................................................... 89 

Figure 2.8 (a) Elastic modulus, (b) Breaking strength and (c) DSC curves of pure 

PMMA and 0.3 wt% BNNS/PMMA nanocomposites [3]. .................................. 90 

Figure 2.9 (a) Mechanical properties of PVC/BNNSs (with three different lateral sizes) 

nanocomposite films before and after 300% unaxial drawing [36]. (b, c) DMTA 

results of pure epoxy, BNNSs/epoxy, ODA-functionalized BNNSs/epoxy, 



List of Figures 

10 

 

HBP-functionalized BNNSs/epoxy nanocomposites [38]. .................................. 91 

Figure 2.10 (a) Schematic diagram of the hydroxylation and esterification of BNNTs; 

(b) Optical photograph of aqueous dispersion of BNNTs-OH (left) and pristine 

BNNTs (right); (c) Elastic modulus of PC, 1 wt% BNNTs/PC, 1 wt% 

BNNTs-OH/PC and PVB, 1 wt% BNNTs/PVB, 1 wt% BNNTs-OH/PC [47]. ... 94 

Figure 3.1 Schematic diagram of Rayleigh scattering and Raman scattering (Stokes 

mode, anti-Stokes mode, resonance Raman scattering) [2, 15]. ........................ 101 

Figure 3.2 Schematic diagram of a Raman spectrometer. Red line: incident radiation; 

Blue line: scattered radiation [12, 15]. ............................................................... 103 

Figure 3.3 Schematic diagrams of (a) PMMA beam with a specimen and strain gauge 

on its top. (b) Four-point bending rig [14]. (c) In-situ Raman deformation test.

............................................................................................................................ 105 

Figure 3.4 Raman spectrum of a NIMS bulk hBN single crystal [17]. ..................... 106 

Figure 3.5 Raman spectra of 1-4L BNNSs in different studies [23-24]. ................... 108 

Figure 3.6 (a-b) Optical and (d-e) AFM images of supported and suspended mono-, 

bi-, tri- and many-layered BNNSs on 90 nm SiO2/Si wafers. (c, f) Raman band 

positions of supported and suspended BNNSs [27]. .......................................... 110 

Figure 3.7 Raman spectra of mechanically-exfoliated BNNSs with different number 

of layers in (a) high frequency and (b) ULF regions [17]. (c) Position of 

interlayer shear mode at ULF regions as a function of the BNNSs number of 

layers. ................................................................................................................. 111 

Figure 3.8 Theoretical calculation of the Raman spectra of BNNTs. (a) Sketch of A 

modes in a zigzag BN nanotube; (b) ab initio and model Raman spectra of a (16, 

0) zigzag BN tube and a (10, 10) armchair tube; (c) Calculated radius 

dependence of the frequency of RBM for tubes with radius between 0.5-0.25 nm; 

(d) Calculated Raman spectra of (17, 0) Zigzag, (15, 4) chiral and (10, 10) 

armchair BNNTs [40-42]. .................................................................................. 112 

Figure 3.9 Left: Raman spectra of (a) SW-BNNTs; (b) hBN particles generated during 



List of Figures 

11 

 

the preparation of SW-BNNTs and (c) highly-crystalline hBN powder. Right: 

Calculated frequencies of optical Raman A mode and E modes of SW-BNNTs as 

a function of tube diameter [20]. ........................................................................ 113 

Figure 3.10 (a) Pressure-Raman frequency shifts of the interlayer shear mode 

(so-called SRL mode in the graph) and the in-plane (intralayer) shear mode in 

bulk hBN [47]. (b-c) Pressure-Raman frequency shift of the MW-BNNT G 

band [48]. ........................................................................................................... 114 

Figure 3.11 (a-b) Optical and AFM images of mechanically-exfoliated 1L and 2L 

BNNSs and (c-e) Raman E2g band position of suspended and supported 1L-3L 

BNNSs as a function of temperature [55]. (f) Raman E2g band position of 1L 

BNNSs, few-layer BNNSs with different thickness and bulk hBN as a function 

of temperature [56]. (g) Raman E2g band position of suspended 1L 10BNNSs, 

NaturalBNNSs, 11BNNSs as a function of temperature [57]. ................................ 117 

Figure 3.12 (a) Raman spectra of bulk hBN film at 293 K and 2325 K [58]. (b) 

Dependence of Raman G band position in hBN and SW-BNNTs on the 

temperature [59]. (c) Temperature-Raman frequency shift graph of interlayer 

shear mode and in-plane (intralayer) shear mode in bulk hBN single crystals [17].

............................................................................................................................ 118 

Figure 3.13 Raman spectra of (a) bulk and (b) 1L BNNSs on SiO2/Si wafer; (c-e) 

Raman in-plane E2g band blue shift of 1L, 2L, 3L BNNSs before and after 

400 °C thermal treatment-cooling down process [27]. ...................................... 120 

Figure 3.14 (a) Raman spectra of wrinkled CVD-grown BNNSs films with different 

thickness on sapphire substrate [64]. (b) Uniaxial-strain induced Raman E2g band 

shift of 2L BNNSs. The position of Raman E2g band of (c) 2L and (d) 4L BNNSs 

as a function of the tensile strain [30]. ............................................................... 121 

Figure 3.15 Uniaxial-strain induced Raman 2D band position of (a) mechanically 

exfoliated 1L graphene sandwiched by two thin layers of polymers [51] and (b) 

wrinkled 1L graphene as a function of tensile strain [67]. Distribution of strain in 



List of Figures 

12 

 

the 1L graphene in the direction of the tensile axis at (c) 0.4% and (d) 0.6% 

strain [51]. Distribution of strain in the (e) pristine 1L graphene and (f) oxidized 

1L graphene in the direction of the tensile axis at different strain levels [68]. .. 124 

Figure 3.16 (a) Raman mappings of the intensity ratio of the graphene 2D band and an 

epoxy band at 2925 cm-1 for the GNPs/epoxy nanocomposites at different GNPs 

loadings [71]. (b) Polar plots of the normalized intensity of the graphene oxide D 

band using a VV polarization: (2) parallel to z axis, (3) parallel to the x axis in 

the schematic [72]. (c) Uniaxial tensile strain-induced Raman D band downshift 

of graphene oxide (denoted as aGO in this work) in a 0.2 wt% aGO/epoxy 

nanocomposite and (3) D band shift rates and calculated effective modulus of 

aGO in nanocomposites with different aGO loadings [74]. .............................. 127 

Figure 3.17 (a) Schematic diagram of the microstructure of a single 

SWCNTs/polymer nanofibre, in which the shaded nanotube is the only one in 

resonance with the laser spot (dashed line) [77]. (b) Schematic diagram of the 

RBM of SWCNTs. RBMs of individual electrospun 0.04% SWCNTs/PVA 

nanofibres excited by (c) 1.49 eV, (d) 1.59 eV, (e) 1.96 eV lasers [78]. ............ 128 

Figure 3.18 Raman 2D bands of (a) DWCNTs and (b) SWCNTs in CNTs/epoxy 

nanocomposites. Uniaxial tensile strain-induced Raman shift of (c) 2D1 band for 

the inner walls and (d) 2D2 band for the outer walls of the DWCNTs [79]. (e) 

Raman 2D band position of SWCNTs and MWCNTs in 0.1 wt% CNTs/epoxy 

nanocomposites as a function of strain. (f) Measured Raman 2D band position of 

MWCNTs and theoretical simulation of layer-layer stress transfer efficiency 

parameters (straight lines) as a function of strain [80]. ..................................... 130 

Figure 3.19 (a) VV polarized Raman spectra of a SWCNT/PMMA fibre at different 

angles relative to the axis of laser polarization [83]. (b) Polar plots of the BNNT 

Raman G band (~1370 cm-1) intensity as a function of rotation angle under a VV 

configuration in the BNNTs/PAN fiber without and with an extra 12× hot 

drawing [84]. ...................................................................................................... 131 



List of Figures 

13 

 

Figure 4.1 Schematic of tape exfoliation of BNNSs.................................................. 142 

Figure 4.2 (a) Optical micrograph and (b&c) AFM images of 3 marked spots on the 

two BNNS flakes. (d) Raman spectra of the 3 marked spots on the BNNSs. (e-g) 

The height profiles correspond to the three solid lines in (b&c). (h-j) Raman 

spectra of the 3 marked spots on the BNNSs before and after up to 0.24% tensile 

strain was applied. (k) The position of Raman G band as a function of tensile 

strain for the 3 marked spots on the BNNSs. ..................................................... 143 

Figure 4.3 Width of the G band as a function of strain during deformation for the band 

shifts shown for spots 1-3 in Figure 4.2. ............................................................ 145 

Figure 4.4 Raman G band shift rate of BNNSs as a function of number of layers. The 

curve is Equation (4.1) plotted using a value of (dωG/dε)reference of -11 cm-1/% 

strain. .................................................................................................................. 147 

Figure 4.5 (a) Optical micrograph and (b) AFM image of the hBN nanosheet used for 

linear Raman strain mapping (the black square in (b) marks the spectra collection 

position for (d-f)). (c) The AFM height profile corresponding to the solid red line 

in (b). (d) Raman spectrum of the hBN nanosheet. (e) Raman spectra of the 

BNNS obtained before and after a 0.2% tensile strain was applied. (f) The 

position of G band position as a function of tensile strain. Distribution of strain 

in the hBN nanosheet in the direction of the tensile axis along the solid line in (b) 

at: (g) 0.05%, 0.1% strain, (h) 0.15% strain and (i) 0.30% strain. ..................... 148 

Figure 4.6 (a) Optical micrograph and (b) AFM image of the marked spots on two 

BNNS flakes. (c&d) The height profiles corresponding to the two solid lines in 

(b). (e) Raman spectra of 2 marked spots on the BNNSs. (f&g) Raman spectra of 

the 2 marked spots on the BNNSs before and after 0.2% tensile strain was 

applied. (h) The positions of the Raman G band as a function of tensile strain for 

the 2 marked spots on the BNNSs showing a large shift rate for spot 1 from a 

thicker BNNS with larger lateral dimensions than the thinner BNNS in spot 2, 

only 4 m wide. ................................................................................................. 151 



List of Figures 

14 

 

Figure 5.1 SEM images of Sigma (a) and Momentive (b) boron nitride crystals used 

for liquid-phase exfoliation. ............................................................................... 157 

Figure 5.2 Schematic of liquid-phase preparation of Sigma, M3000, M6000 BNNSs.

............................................................................................................................ 158 

Figure 5.3 AFM images and height profiles of the line scans in the corresponding 

images (a-c), histograms of length (d-f), thickness (g-i), aspect ratio (j-l) of 

Sigma (left), M3000 (middle) and M6000 (right) BNNSs. Some 200 examples of 

each type of BNNS were measured to generate the histograms. ....................... 163 

Figure 5.4 (a) AFM image of M6000 BNNSs and corresponding height profile of 

solid line; SEM images of Sigma (b), M3000 (c), M6000 (d, e). ...................... 164 

Figure 5.5 XRD patterns of (a) Sigma hBN crystals and BNNSs and (b) Momentive 

crystals and M6000 BNNSs. Raman spectra of (c) Sigma BN crystals and 

BNNSs and (d) Momentive crystals and M6000 BNNSs. ................................. 165 

Figure 5.6 (a) Raman spectra of PVA and 1 wt% BNNSs (M6000)/PVA 

nanocomposites. (b) Raman spectra of 1 wt% BNNSs/PVA nanocomposites in 

the range 1300 – 1500 cm-1. (c) Raman spectra of 3 types of BNNSs/PVA at 1 wt% 

loading................................................................................................................ 166 

Figure 5.7 Optical micrograph and 100 μm×100 μm Raman mapping (I1366/I1447) 

intensity ratio of a 1 wt% (a&d) Sigma/PVA, (b&e) M3000/PVA, (c&f) 

M6000/PVA nanocomposites film. .................................................................... 167 

Figure 5.8 (a) Elastic region and (b) full range stress-strain curves for three types of 

BNNSs/PVA nanocomposites and PVA films at 0.1 wt% loading. (c) Young’s 

modulus, (d) Yield stress and (e) Breaking strength of the three types of 

nanocomposite films for different BNNS loadings. .......................................... 168 

Figure 5.9 (a&b) Raman G band shift of BNNSs in 1 wt% Momentive 3000/PVA film 

at 0.4% strain. (c&d) Raman G band shift of BNNSs in 1 wt% Momentive 

6000/PVA film at 0.12% strain. ......................................................................... 170 

Figure 5.10 Raman G band shift of the BNNSs in (a) 1 wt% Sigma/PVA, (b) M3000 



List of Figures 

15 

 

and (c) M6000/PVA nanocomposite films as a function of strain. .................... 171 

Figure 5.11 Raman G band shift of the BNNSs in (a) 1 wt% Sigma/PVA, (b) M3000 

and (c) M6000/PVA nanocomposite films as a function of strain. .................... 171 

Figure 5.12 Dependence of the Young’s modulus of the BNNS/PVA nanocomposites, 

Ec, upon the volume fraction of the BNNSs, VBNNSs. The dashed lines correspond 

to the different stated values of Eeff in Equation (5.1). ...................................... 172 

Figure 6.1 Schematic of resonance Raman scattering and non-resonance Raman 

scattering of boron nitride nanotubes. ................................................................ 181 

Figure 6.2 High-resolution TEM images of a BNNTs bundle containing DW-BNNTs 

(a), a three-walled BNNT (b), a four-walled BNNT (c), a six-walled BNNT (d) 

and an 11-walled BNNT (e). (f) Distribution of wall number of the MWBNNTs 

used in this work. ............................................................................................... 185 

Figure 6.3 (a-b) TEM images of BNNTs bundling and some hBN shells. ................ 186 

Figure 6.4 TGA and DTG plot of BNNTs in a nitrogen atmosphere (a) and an air 

atmosphere (b). (c) EELS spectra of BNNTs. (d) XRD pattern of BNNTs. (e) 

Raman spectra of BNNTs in the low frequency range and high frequency range 

respectively. ....................................................................................................... 187 

Figure 6.5 (a) Schematic of hydroxylation of BNNTs also showing the resultant 

change in water contact angle. (b) XPS survey spectra of as-purified BNNTs and 

OH-BNNTs. (c, e) XPS B 1s spectra of BNNTs and OH-BNNTs. (d, f) XPS N 1s 

spectra of BNNTs and OH-BNNTs. ................................................................... 188 

Figure 6.6 (a) FTIR spectra of hBN crystal, BNNTs and OH-BNNTs. Water contact 

angle of a film of BNNTs (b) and OH-BNNTs (c). (d) EELS spectra of BNNTs 

and OH-BNNTs. (e) XRD pattern of BNNTs and OH-BNNTs. (f-k) TEM EELS 

mapping of Boron, Nitrogen, Oxygen elements and few Si contaminations on 

OH-BNNTs. ....................................................................................................... 190 

Figure 6.7 (a) Raman spectra of BNNTs (b) Raman spectrum of functionalized 

BNNTs (c) Full-range Raman spectra of 1 wt% BNNTs/PVA nanocomposites. (d) 



List of Figures 

16 

 

Zoom-in Raman spectra of 1 wt% BNNTs/PVA nanocomposites. .................... 191 

Figure 6.8 Optical graph of 1 wt% BNNTs/PVA nanocomposites in-situ radiated by a 

488 nm blue laser (a) and a 633 red laser (b) with same power. (c) Raman spectra 

of 1 wt% BNNTs/PVA nanocomposites recorded using a 488 nm and a 633 nm 

laser with the same power. (d, e) Optical graph of 1 wt% BNNTs/PVA 

nanocomposites before and after radiated by a 325 nm NUV laser. (f) Raman 

spectra of 1 wt% BNNTs/PVA nanocomposites recorded after short time NUV 

radiation. ............................................................................................................ 192 

Figure 6.9 Optical micrographs, 100 μm × 100 μm Raman mapping (I1386/I1447 

intensity ratio), Raman spectra of area A, B, C in corresponding optical 

micrographs of (a) A 1 wt% BNNTs/PVA nanocomposites film prepared by 

mixing BNNTs using a 4 h sonication bath. (b) A 1 wt% BNNTs/PVA 

nanocomposites film prepared by mixing BNNTs using a 1h probe sonication. (c) 

A 1 wt% OH-BNNTs/PVA nanocomposites film prepared by mixing BNNTs 

using a 1h probe sonication................................................................................ 194 

Figure 6.10 (a) STEM-ADF image of a BNNTs agglomeration. (b) STEM-ADF 

image of several separated BNNTs bundles. (c, d) HR STEM-ADF images of 

independent BNNTs bundles in BNNTs/PVA nanocomposites. (e) HR 

STEM-ADF image of an individual MW-BNNT in a 1 wt% BNNTs/PVA 

composites film dispersed using probe sonication. ............................................ 195 

Figure 6.11 (a) Elastic region and (b) full range stress/strain curves for the as-purified 

and functionalised BNNTs/PVA nanocomposite and PVA films at 1 wt% loading. 

(c) Mechanical properties of neat PVA and BNNTs/PVA films. ........................ 196 

Figure 6.12 (a) Raman spectra of a region (area A in Figure 6.9(b)) with relatively 

homogeneous BNNTs dispersion in 1 wt% BNNTs/PVA film before and during 

tensile deformation and (b) Fitted zoom-in Raman G band shift of area A at 

different incremental strains. (c) G band shifts of three relatively homogeneous 

areas in 1 wt% BNNTs/PVA film as a function of strain. .................................. 198 



List of Figures 

17 

 

Figure 6.13 (a) Raman G band of OH-BNNTs at incremental strains. (b) Fitted 

zoom-in Raman G band shift of OH-BNNTs at incremental strains. (c) Shift of 

the G band position for OH-BNNTs in 1 wt% OH-BNNTs/PVA film as a 

function of strain. ............................................................................................... 198 

Figure 6.14 Dependence of the effective Young’s modulus of the BNNTs/PVA 

nanocomposites upon the volume fraction of the BNNTs. The curve is an 

empirical fit of the data to second order polynomial function. .......................... 200 

Figure 7.1 (a) Schematic diagram of electrospinning set-up for collecting oriented 

composite nanofibres. (b) Photograph of electrospinning set-up for collecting 

aligned BNNT/PVA nanofibre fabric. ................................................................ 208 

Figure 7.2 Schematic diagrams of the orientation of BNNTs in a composites nanofibre 

and of the nanofibre relative to the polarized Raman spectroscopy measurement 

parameters. (a) Local coordinate system of the BNNTs (x, y, z) is related to that 

of the nanofibre (X, Y, Z) by Euler angles (θ, ϕ, ξ). (b) For polarized Raman 

measurement, the incident laser propagates along the X. X’ axis while the 

polarization direction of the incident laser is changed by rotating the half-wave 

plate in the path of incident radiation. The scattered light was not polarized [21].

............................................................................................................................ 209 

Figure 7.3 SEM images of PVA electrospun fibres with (a-b) 7 wt%, (c-d) 10 wt%, 

(e-f) 14 wt% polymer concentrations (tip-collector distance: 8 cm, applied 

voltage: 20 kV). ................................................................................................. 211 

Figure 7.4 SEM images of 1 wt% BNNT/PVA electrospun fibres collected using 

different tip-collector distances: (a-b) 4 cm. (c-d) 8 cm (PVA concentration: 14 

wt%, applied voltage: 20 kV). ........................................................................... 212 

Figure 7.5 SEM images of 1 wt% BNNTs/PVA nanofibres spun at different voltage: (a) 

5 kV. (b) 15kV (PVA concentration: 14 wt%, tip-collector distance: 8 cm). ..... 213 

Figure 7.6 (a-c) SEM images of aligned electrospun 1 wt% BNNTs/PVA nanofibres 

on PMMA substrate. (d) Optical micrograph of an individual BNNTs/PVA 



List of Figures 

18 

 

nanofibre with ~1 μm width parallel to the axis of PMMA substrate. (e) AFM 

image of several BNNTs/PVA nanofibres parallel to the axis of PMMA substrate. 

(f) Height profiles across two nanofibres in (e). ................................................ 214 

Figure 7.7 Optical micrograph of a fabric consisting of aligned 1 wt% BNNTs/PVA 

nanofibres. .......................................................................................................... 214 

Figure 7.8 Schematics of (a) BNNTs randomly distributed into a nanocomposites film 

and (b) Highly-oriented BNNTs line up along the axis of electrospun nanofibres 

inside aligned nanofibres fabric. (c) Variation of MW-BNNTs G band intensity as 

a function of the angle between incident laser and horizontal axis of the 

BNNT/PVA nanocomposites film (Chapter 6). (d) Raman spectra of 1 wt% 

BNNTs/PVA nanofibre nonwoven fabric at incremental angles between 

nanofibres axis and incident laser. (e) Variation of MW-BNNTs G band intensity 

as a function of the angle between incident laser and nanofibres axis. ............. 215 

Figure 7.9 Orientation distribution function (ODF) of the BNNTs in the nanofibres 

and composite film. ............................................................................................ 217 

Figure 8.1 Dependence of the effective Young’s modulus of the BNNSs (M6000)/PVA 

and BNNTs/PVA nanocomposites upon the mass fraction of the BNNSs and 

BNNTs. .............................................................................................................. 224 

Figure 8.2 Optical images of 1L-2L BNNSs on a (a) Si/SiO2 wafer and (b) transferred 

onto a TEM grid [5]. .......................................................................................... 227 

 

  



Abstract 

19 

 

Abstract 

The project has studied the mechanical reinforcement mechanism in two-dimensional 

(2D) boron nitride nanosheets (BNNSs) and one-dimensional (1D) boron nitride 

nanotubes (BNNTs)-based nanocomposites. It has been found that despite the Raman 

scattering from insulating hexagonal boron nitride-based materials being relatively 

weak compared with that from their carbon analogues, Raman spectroscopy is still a 

powerful technique to study both the BNNSs/polymer and BNNTs/polymer 

nanocomposites. A detailed review of the relevant literature is presented first of all.  

 

Single BNNSs of different thicknesses of up to 100 nm have been deposited upon a 

polymer substrate and deformed in unixial tension. The in-plane E2g Raman mode (the 

G band) of the BNNSs has been used to evaluate the stress transfer both between the 

individual hBN layers in the nanosheets and between the nanosheets and the substrate. 

The efficiency of internal stress transfer between the different hBN layers has been 

quantified from the G band shift rate of BNNSs with different thicknesses. The stress 

transfer between the BNNSs and the polymer substrate has been monitored by 

mapping the strain along a BNNS flake using Raman spectroscopy. It has been shown 

that shear-lag theory can be used to evaluate the BNNSs/polymer interfacial stress 

transfer. 

 

Three types of BNNSs with different geometries have been prepared by liquid-phase 

exfoliation and used to reinforce poly(vinyl alcohol) (PVA) with different loadings. 

Raman spectroscopy has been used to both evaluate the distribution of the BNNSs in 

the nanocomposites and follow stress transfer from the polymer matrix to the BNNSs. 

The reinforcement of the polymer has then been modelled using a combination of the 

rule of mixtures and modified shear lag theory. It has been demonstrated that the 

BNNSs with the larger aspect ratio are needed for realizing high levels of 

reinforcement. 

 

A detailed study has also been undertaken of the mechanisms of stress transfer in a 

nanocomposite consisting of BNNTs in a PVA matrix. The structure of the BNNTs has 

been characterized using transmission electron microscopy (TEM). The dispersion of 

nanocomposites containing up to 1 wt% of both pristine and hydroxyl-functionalized 

nanotubes (OH-BNNTs) in PVA have been characterized using a combination of TEM 

and Raman mapping. Stress transfer from the PVA matrix to both the BNNTs and 

OH-BNNTs has been evaluated from stress-induced shifts of the hBN Raman G band 

and larger band shifts have been obtained for the latter. This is in agreement with the 

mechanical testing results where functionalized nanotubes exhibit better 

reinforcement. Moreover, it has been found that polarized Raman spectroscopy can be 

used to characterize of orientation of BNNTs in the nanocomposites. 
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Chapter 1  BNNSs & BNNTs-Structure, Preparation, 

Properties 

1.1 Introduction 

Since the discovery of one-dimensional (1D) carbon nanotubes (CNTs) [1] and 

two-dimensional (2D) graphene [2], low-dimensional nanomaterials have been 

regarded some of the most promising materials in 21st century and attracted 

worldwide attention. Boron nitride nanotubes (BNNTs) and boron nitride nanosheets 

(BNNSs), were synthesized only 4 years [3] and 1 year [4] after the report of their 

carbon analogues, respectively. A series of papers in the last decade reported that both 

BNNTs and BNNSs, with excellent mechanical strength, electrical insulation and 

thermal conductivity, are ideal nanofillers for polymers. 

 

This chapter reviews the structure, preparation, properties of BNNSs and BNNTs, 

some recent work on the preparation of BNNTs, measurement of intrinsic mechanical 

and thermal properties of BNNSs is introduced in detail.  

 

1.2 Structure 

1.2.1 Structure of hexagonal boron nitride (hBN) 

Typically, boron nitride (BN) is a chemical compound consisting of boron and 

nitrogen atoms. BN has three different types of crystal structures (Figure 1.1 [5]): 

cubic boron nitride (cBN), which is analogous to carbon-based diamond, wurtzite 

boron nitride (wBN) and graphite-like hexagonal BN (hBN) (note that the layered 

structure can also be stacked in a rhombohedral form). hBN is the most stable crystal 
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phase among the three structures [6].  

 

Figure 1.1 Boron nitride with different crystal structures [5]. 

 

Layered hBN can be regarded as an analogue of graphite substituting carbon atoms 

with boron and nitrogen atoms [7]. hBN has a typical layered structure like graphite, 

alternating boron and nitrogen atoms in a 2D hBN layer are linked by strong covalent 

bonds, while the neighbouring layers are held by van der Waals forces at a distance of 

0.333nm (compared to 0.337 nm for few-layered graphene and graphite) [8-9]. The 

bond length of B-N is 0.144 nm, which is very close to the value of C-C bond in 

graphene (0.142 nm) [10], the mismatch between graphite and hBN is only 

≈1.6% [11]. Relevant crystallographic information for hBN and graphite has been 

summarized in a review paper, as shown in Table 1.1 [5]. It can be observed that 

relevant parameters of hBN and graphite are nearly identical, therefore hBN inherits a 

series of common properties from graphite, such as high mechanical strength, thermal 
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conductivity and good lubrication [6]. 

 

Table 1.1 [5] Crystallographic parameters of hBN and graphite. 

Material Crystal Bond length 
Lattice 

parameters (nm) 

Interlayer 

spacing (nm) 

hBN Hexagonal 0.144 nm a: 0.250 c: 0.666 0.333 

Graphite Hexagonal 0.142 nm a: 0.246 c: 0.670 0.335 

 

However, different from the typical AB stacking of graphite in which each carbon 

atom is sitting above and below the center of a benzene ring in the neighbouring 

layers [2], hBN typically demonstrates an AA’ stacking order in which B and N atoms 

are superposed in succession along the c axis [12-14], as shown in Figure 1.2 [8, 15]. 

Due to the difference in electronegativity of B and N, B-N bonding exhibits a partially 

ionic character. This leads to the favorable electrostatic and polar-polar 

interactions [16-18]. The so-called “lip-to-lip” interactions between adjacent layers 

are deduced to be stronger than those between graphene layers, therefore it is more 

difficult to exfoliate ultrathin hBN nanosheets due to stronger interlayer binding. In 

addition, detailed DFT calculations about other possible stacking orders of hBN are 

reported elsewhere [19].  

 

Apart from different layer stacking preference, the electronegativity difference 

between boron and nitrogen atoms within hBN also leads to the localization of 

unpaired π electrons around the nitrogen atomic centres, therefore forming a 

insulating material with wide band gap [9, 20-21]. This special insulating property 

leads to potential applications of hBN, such as both insulating and thermally 

conductive fillers [22]. 
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Figure 1.2 Structure of hBN [8] and highly-crystallized hBN with a typical AA’ 

stacking order and graphite with an AB Bernal stacking sequence [15]. 

 

1.2.2 Structure of BNNSs 

BNNSs refer to the hBN nanostructure constrained to the nanometer scale, for 

example, an individual hBN layer can be named as “monolayer BNNS”, and a thin 

hBN crystal with several layers is called “few-layered BNNS” [8]. A BNNS 

monolayer is a honeycomb structure that consists of hexagonal ring units of B3N3, 

analogous to a graphene monolayer which has a carbon skeleton, so BNNSs are also 

called “white graphene” [23-25]. Similar to bulk hBN, the B-N bonds within BNNSs 

are partially ionic, and the distance between the centres of adjacent borazine rings is 

0.25nm, very close to the value of graphene (0.246 nm). The edge of BNNSs can 

either be Nitrogen-edged zigzag or Boron-edged zigzag, as well as armchair, as 

shown in Figure 1.3.  
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Figure 1.3 Schematic diagram of a monolayer BNNS and hexagonal boron nitride 

nanoribbons (BNNR) with different edge structures [8]. 

 

It has been reported the formation of multilayered BN will stabilize the structure of 

BNNSs, due to the different electronegativity between B-N atoms and consequent 

“lip-lip” interlayer interactions (i.e. B-N bonds are partially ionic and chemical bonds 

form as spot-welds between the atoms of adjacent layers) in the nanosheets [26-28]. 

In terms of multilayer structure, BNNSs normally exhibit a preference for AA’ 

stacking, but a DFT calculation indicates that it is possible for adjacent hBN layers 

freely slide from AA’ stacking order to AB stacking order along energetically 

favorable directions despite a band gap reduction of 0.6 eV [29]; experimentally, 

Warner et al. [30] reported that BNNSs can also have AB stacking. They used 

continuous electron radiation to generate defects inside a chemically exfoliated BNNS 

and detected AB stacking in the step edge between a hBN monolayer and hBN bilayer 

via high resolution transmission electron microscopy (HR-TEM). 

 

In addition to layer stacking, a DFT calculation from Alem et al. [31] suggests 

covalent B-N bonds are spontaneously formed not only between boron and nitrogen 

atoms within single layer, but also between adjacent hBN layers. This results in a 

structure analogous to a folded hBN monolayer, which massively increases the 
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difficulty for exfoliating hBN monolayer, even though the stronger interlayer 

interactions in hBN only have a negligible influence upon the interlayer distance [9].  

 

Before 2010, although atomically thin hBN had been prepared [4] and investigated by 

TEM and AFM [30, 32-34], it was still quite hard to exfoliate hBN monolayer with a 

large enough flake size due to the lack of suitable hBN crystals for exfoliation. The 

situation changed after the production of high-quality hBN single crystals [34-37], 

and it is now possible to isolate BNNSs of several nanometers thickness (even 

monolayer) with relatively large lateral size (~100 μm). It should be specially noted 

that although some workers used Momentive crystals [34], the majority of 

publications concerning mechanical exfoliation of atomically thin BNNSs used 

high-purity single crystals from Japan’s NIMS [38]. Based on AFM measurements of 

BNNS [39-41], a hBN monolayer has a thickness of ~0.4 nm (including trapped 

moisture), both for scotch tape exfoliation [42-43] and the CVD grown method [44]. 

Liquid-exfoliated monolayered hBN exhibits higher AFM-measured thicknesses due 

to residual solvents between the nanosheet and underlying silicon substrate, with a 

value of ~ 1 nm [45], similar to the thickness of a graphene oxide monolayer [40].  

 

Several important review papers [5, 8] have discussed defects in BNNSs. First of all, 

the Stone-Wales defect (pentagon-heptagon fused ring), which is a very common 

imperfection in sp2 carbon allotropes (such as graphene and carbon nanotubes), are 

not thermodynamically favorable due to the necessity to form B-B or N-N 

bonds [46-47]. Although DFT calculations predicted that this structural defect can be 

stabilized by bond rotation, distortion of the nanosheet planes or the formation of 

square-octagon (4-8 fused ring) structures [48-49], Stone-Wales defects are rarely 

observed using HR-TEM [25, 32, 50]. 
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Other two types of defect are grain boundary [51-52] and point defects [30, 32]. Point 

defects are observed in hBN monolayers and bilayers under electron radiation or ion 

etching. It is found that boron atoms are removed more easily under electron beam 

radiation [53] and the same type of vacancy (boron or nitrogen) was not only found 

within a single hBN layer, but also throughout the entire BNNS structure [8, 32].  

 

All the three types of defect will affect relevant properties of BNNSs, such as band 

gap reduction [54-56], phonon scattering and consequent thermal conductivity 

reduction [57] and chemical reactivity (for easier functionalization) [6, 58-59]. 

 

1.2.3 Structure of BNNTs 

Multi-walled hexagonal boron nitride nanotubes (MW-BNNTs) were first synthesized 

in 1995 [3] and in 1996, the synthesis of single-walled BNNTs (SW-BNNTs) was also 

realized [60]. 

 

Generally, BNNTs can be imagined as rolled BN sheets, so SW-BNNTs can be 

regarded as formed by rolling up a hBN monolayer nanosheet. Similar to 2D 

nanosheets, it is harder to prepare and study SW-BNNTs [61-62] than SW-CNTs due 

to the partially ionic nature of B-N bonding and so-called “lip-lip” interlayer 

interactions. The formation of a multiwalled structure is favourable for stabilization. 

In MW-BNNT structure, the nanotube walls are ordered with a 0.33 – 0.34 nm 

interlayer distance; this value might be slightly higher than that of bulk hBN (~0.33 

nm), resulting from inner stress in the bent walls [63]. 

 

As shown in Figure 1.4 [64], there are three types of the tube helicities: “zig-zag” type 

with a (9, 0) helical structure; “arm-chair” type with a (6, 6) helical structure; and 

many helical types with varying chiral angles (chiral type). Arenal et al. [65] referred 
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to the well-established theory of CNTs and introduced a so-called chiral vector Ch = 

na1+ ma2 which is perpendicular to the tube axis direction (where a1 and a2 are the 

lattice vectors, and n and m are two indices for defining Ch) for estimating tube 

folding direction. The chiral angle (θ), which is the angle between Ch and lattice 

vectors a1 and a2 is used for distinguishing helicity of BNNTs: θ=0° (zigzag type), 

θ=30° (armchair type), 0°<θ<30° (chiral type). Although arm-chair and chiral 

structures have been observed in BNNTs, the majority of tubes studied by researchers 

displayed a zigzag configuration, which is quite different from CNTs in which both 

helicities are equally possible [7]. 

 

Figure 1.4 (a) Planar hBN single sheet with possible wrapping types and corresponding 

(n, m) indices. (b) SW-BNNTs with zigzag helicity. (c) SW-BNNTs with armchair 

helicity. (d) A chiral tube with a 0°<θ<30° [64]. 

 

For MW-BNNTs, adjacent layers tend to have a hexagonal or rhombohedral stacking 

order, that is to say AA’ stacking is preferred (same as BNNSs). The AA’ stacking 

order within MW-BNNTs is due to the strong tendency to form atomically perfect 

B-N stacked adjacent layers. This is quite different from the case of CNTs which 

allow disordering and interlayer slippage between neighbouring layers. 

 

In consideration of the cross section of MW-BNNTs, a polygonized cross section is 

favourable rather than a cylindrical section, since the B-N-B-N stacking order across a 
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tube can be easily maintained and stabilized within a multiple-layered polygonized 

structure. This type of stacking will easily break a cylindrical MW nanotube due to 

incremental circumference from the inner BN layer to the outer BN layer [66].  

 

The tip (or end) is another important structural feature of BNNTs. CNTs contain a 

capped end with six pentagonal C-C rings and these five-membered rings are evenly 

distributed or not on the surface of the tube [65]. Heptagons can also be introduced 

with pentagons for closing the tip of CNTs and the shape of these ends should be 

hemispherical or conical (like a hemisphere of a C60 molecule). However, the 

formation of five-member ring will involve the introduction of B-B and N-N bondings, 

which are energetically unfavourable. Instead of the odd-numbered rings in CNTs, 

BNNTs prefer to close the tip by introducing even-numbered rings, especially square 

rings.  

 

1.3 Preparation 

1.3.1 Preparation of bulk hBN 

Boron nitride was first prepared by Balman [67] in the 1840’s, but the chemical 

structure was unstable. Afterwards, the synthesis of hBN was limited to the lab scale 

for a hundred years due to the expensive raw materials and lack of production routes. 

In the 1950s, boron nitride with a stable crystal structure was first produced on the 

industrial scale [68]. 

 

Recently, different methods have been employed to produce hexagonal boron nitride, 

such as “classical high-temperature route” [69], “vapor deposition” [70-71], 

“condensed-phase pyrolysis of molecular reagent” [72-73]. In industry, the most 

popular route for preparing hBN powders is by heating boric acid/boric oxide and 
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ammonia/urea/melamine mixture at 900 °C, followed by a 1500 °C annealing under a 

N2 flow to increase the crystallinity of the hBN powders [74-75]. Another commercial 

preparation route is to use calcium hexaboride, boric oxide and nitrogen gas, with a 

1500 °C reaction temperature [76]. 

 

Route 1:  

B2O3 +2 NH3→ 2 BN + 3 H2O (T= 900 °C) 

B(OH)3 + NH3→ BN + 3 H2O (T= 900 °C) 

       B2O3 + CO(NH2)2→ 2 BN + CO2 + 2 H2O (T > 1000 °C) 

Route 2:  

B2O3 + 3 CaB6 + 10 N2→ 20 BN + CaO (T > 1500 °C) 

In particular, single crystals of hBN with high purity can be prepared by using a 

so-called temperature gradient method [77]: boron nitride powder is used as raw 

material, it is heated to a very high temperature (2100 °C for 2h) to remove oxygen 

impurities, the powder is then mixed with a particular metal solvent (catalyst) and put 

into a modified high pressure-high temperature (HP-HT) apparatus for crystals growth 

under high temperature (such as 1500 – 1650 °C for Ba3B2N4 solvent) and high 

pressure (such as 4-5 GPa for Ba3B2N4 solvent) for 20 – 80 hours. Different metal 

solvent systems have been studied previously, such as: the classical Ba3B2N4 (Ba-BN) 

solvent [36, 38], a Ni-Mo solvent (atmospheric pressure preparation) [37], a Ni-Cr 

solvent (atmospheric pressure preparation) [78], and a Mg-B (boron powder) 

solvent [79]. As prepared hBN single crystals can achieve a size of several millimeter 

and high purity (Figure 1.5(b)). They have been widely used for producing 

atomically-thin BNNSs by exfoliation. 
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Figure 1.5 (a) Optical graph of recrystallized hBN on solidified Ni-Mo solvent. (b) 

Optical graph of highly-pure hBN crystals after acid treatment [37]. 

 

1.3.2 Preparation of BNNSs 

After the first successful exfoliation of BN in 2005 [4], different methods have been 

employed to prepare BNNSs with atomic thickness, which can be summarized as 

top-down approach which refers to the exfoliation of bulk hBN; and a bottom-up 

approach which relates to the synthesis of BNNSs from a boron and nitrogen 

precursor, such as chemical vapor deposition (CVD), as illustrated in Figure 1.6 [80]. 

In this review, the top-down method will be the main subject of discussion as it was 

employed in this present study. 

 

Figure 1.6 Two general routes for the synthesis of boron nitride nanosheets [80]. 

 

Mechanical cleavage The initial approach for exfoliating 2D materials, mechanical 

cleavage is also known as “scotch tape method” [4]. It has been applied for preparing 
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a series of 2D materials for fundamental studies and BNNSs with different thickness 

(from monolayer to many layers) and lateral sizes (maximum 100 microns can be 

achieved) have been successfully prepared by cleaving the adhesive tape [4, 32, 42-43, 

81-87]. In brief, a bulk crystal of hBN is placed on the middle of an adhesive tape, 

another piece of adhesive tape is then used to cleave the bulk crystal by peeling the 

top tape. The tape is attached and pressed on a substrate (such as SiO2/Si wafer), thus 

the exfoliated BNNS is transferred and identified by optical microscopy. BNNSs 

prepared by this method partially retain the original lateral size and low defect density 

of bulk hBN. However, there are two challenges for the exfoliation of hBN. First of 

all, it is hard to exfoliate BNNSs with a sufficiently large flake size, especially 

monolayer due to the lack of appropriate hBN crystals for scotch tape exfoliation [4]. 

This problem has been solved with the availability of hBN single crystals [36, 38], 

which enables the cleavage of BNNS with relatively large sizes (~100 m) and of 

atomic thickness. Secondly, the scotch tape method is less effective to exfoliate 

monolayer and few-layered hBN than graphene. This might be due to the stronger 

“lip-lip” interaction between adjacent BN planes, i.e., the formation of a multilayer 

structure can stabilize the BNNSs structure. Although it is more difficult to exfoliate 

hBN monolayer than graphene, mechanical cleavage is still the optimal method to 

prepare BNNSs with high quality and large lateral size.  

 

Liquid phase exfoliation The preparation of few-layered BNNSs by a 

sonication-assisted liquid exfoliation method was initially reported in 2008 [33]. In 

this pioneering work, 0.2 mg hBN crystals were sonicated in a 5 ml polymer/1, 

2-dichloroethane solutions for 1 hour, some few-layered BNNSs were obtained. 

Afterwards, Zhi et al. [15] successfully fabricated few-layered BNNSs on a large 

scale by sonicating 1 g hBN powder in 40 ml DMF. As-prepared BNNSs were then 

incorporated into polymer matrix and achieved a good reinforcement. Spectroscopic 

work indicated [88] a strong interaction between the oxygen atoms in organic solvent 
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and boron atoms on BNNSs, which contributed to the sufficient liquid exfoliation. It 

is also reported that a series of polar organic solvents can be used for solvent 

exfoliation, while non-polar organic solvents seems to be ineffective for BNNSs 

preparation, as illustrated on Figure 1.7(a) [8]. 

 

Figure 1.7 (a) a. Photograph of organic dispersions of BNNSs prepared from simple 

bath sonication. b. Tyndall effect graph of relevant dispersion right after preparation. c. 

Pictures taken after 1 week [8]. (b) Preparation of organic dispersions of exfoliated 

hBN using guidance from the Hansen solubility parameter theory (a-c), d. Optical 

micrographs e. Absorbance spectra and f. Lambert-Beer plots for the dispersions of 

nanosheets of MoS2 in NMP, WS2 in NMP, hBN in IPA [89]. (c) Water-based liquid 

exfoliation of BNNSs with ~ 100 nm small lateral sizes [45]. 

 

To comprehend the efficiency of different solvents used for BNNSs preparation, 

Coleman et al. [89] used Hansen solubility parameter (HST) theory to explain and 

optimize the solvents for hBN exfoliation, as well as MoS2 and WS2, as shown in 

Figure 1.7(b). Similar to relevant work of SWCNTs [90] and graphene [91] 

dispersions, HST theory study suggests that the proper solvents for successful 

exfoliation should be those that minimize the energy of exfoliation (enthalpy of 
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mixing). In other words, the solvent should have a similar surface energy to the 

nanosheets. A systematic survey of different types of organic solvent for dispersing 

BNNSs was undertaken in this work. The dispersion effect suggested that the optimal 

solvent for BNNSs exfoliation should have surface energies of around 65 mJ m-2, with 

IPA (isopropanol) among the best, which achieved a 0.06 mg/ml concentration of 

BNNSs in dispersions. A recent study [92] using the surface tension component to 

assess solvents for liquid exfoliation was published. It is suggested that a highly stable 

dispersion of BNNS is achieved when the surface tension of BNNS matches with 

solvent, in which the ratio of polar to dispersive component is ~0.45 (theoretical value 

based on the Owen, Wendt, Rabel, Kaelble theory [93] that the interfacial surface 

tension can be separated into polar and dispersive contributions) and ~0.6 

(UV-absorbance results).  

 

Additionally, some new strategies have been reported to achieve a similar surface 

tension between BNNSs and solvent. For example, Zhou et al. [94] reported a simple 

mixed solvent route. They mixed two poor solvents for BNNSs dispersion: ethanol 

and water with different volume ratios and achieved a mixed solvent with surface 

energy value close to that of BNNSs. They reported a maximum 0.075 mg/ml 

concentration of BNNSs in 55 vol% ethanol/water solvent, even higher than the 

concentration of IPA dispersion. Li et al. [40, 58] initially came up with a 

“functionalization-sonication” route to prepare thin functionalized hBN. By reacting 

hBN with octadecylamine (ODA) for 4-6 days at ~180 °C, the functionalized hBN 

was then briefly sonication and centrifuged in THF and functionalized BNNSs with 

1-7 nm thickness/~1 μm average lateral size was prepared. Different functional groups, 

such as –OH groups [45], -NH2 group [95], Alkyl group [96] etc. have been 

successfully grafted on hBN, and the funtionalized hBN can be used for preparing 

BNNSs using sonication-assisted methods, as summarized in Figure 1.8 [6]. 
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Figure 1.8 Summary of chemical functionalization of BNNSs and BNNTs [6]. 

 

In summary, scalable preparation of BNNSs can be achieved by liquid exfoliation and 

even BNNS monolayers can be prepared. However, it is still a challenge to prepare 

thin BNNSs with a large enough size using this method (typically < 1 m when the 

thickness is very small). 

 

Other approaches Apart from mechanical cleavage and liquid phase exfoliation, other 

top-down approaches, such as Ball-milling [95], Vortex fluid exfoliation [97], 

Electron irradiation [98] et al. have been used to exfoliate bulk hBN as BNNSs. 

 

For Bottom-up approaches, first Chemical vapor deposition (CVD) growth of hBN 

monolayer was reported in 1990 [99]. In this work, borazine (B3N3H6) was 

decomposed and deposited on Pt(111) and Ru(111) substrates. Later, Oshima et 

al. [100] successfully prepared hBN single-crystalline monolayer hBN on Ni(111) 
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substrate using borazine as precursor as well. Until now, hBN monolayer has been 

successfully grown on a series of transition metal substrate such as Cu(111) [101], 

Pt(111) [102] etc.. Very recently, Lee et al. [103] reported the wafer-scale preparation 

of single-crystalline BNNSs monolayer by CVD. This is a milestone work in the CVD 

preparation of BNNSs. The various CVD preparations of BNNSs have been reviewed 

in several important papers [5, 8, 80, 104]. Beyond that, Physical vapour deposition 

(PVD) [80] can also be used to prepare BNNSs with high quality. 

 

Apart from top-down and bottom-up approaches, BNNSs can be substituted from 

graphene (chemical substitution) [105-107]. Furthermore, some other methods such 

as chemical blowing [108], B,N-contained compounds prolysis [109], surface 

segregation [110] etc. were also reported. 

 

1.3.3 Preparation of BNNTs 

As summarized in relevant review papers [111], a variety of methods have been used 

to prepare BNNTs. In brief, an arc-discharge method (the first method for BNNTs 

preparation) can be used to fabricate BNNTs via an arc-discharge between a boron 

compound-packed tungsten rods and electrodes (such as copper [3] for MW-BNNTs 

or HfB2 [60] for SW-BNNTs). Arc-discharge prepared BNNTs exhibits good 

crystallinity due to high reaction temperature, but the reaction generates impurities 

(e.g. BN onions, cages etc.). 

 

The Laser ablation method was first adopted by Golberg et al. [112] to prepare 

BNNTs in 1996. Basically, a stable CO2 laser was focused onto the edge of the BN 

precursors to heat them up to 5000 °C. MW-BNNTs were prepared first by using 

cubic BN single crystals and hBN crystals [113] as a precursor. In 2007, Arenal et 

al. [61] successfully synthesized SW-BNNTs using this method, by optimizing 
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synthesis parameters such as nitrogen pressure in reaction chamber, nitrogen flow rate, 

laser power etc.. Although laser ablation can be carried out without any catalyst [114], 

the addition of Co or Ni as catalyst can elongate the tube length, meanwhile reducing 

the number of walls. However, some extra effort has to be made to improve the purity 

of the final product, such as centrifugation [115]. 

 

The hard-template method is also used and can be divided into two routes: the CNT 

substitution reaction [116] and porous alumina filter template [117]. In the case of 

CNT substitution (Figure 1.9), CNTs are reacted with B2O3 (boron source) under N2 

or NH3 atmosphere (nitrogen source). Thus a BxCyNz structure is obtained and then 

oxidized at high temperature to remove extra carbon. However, it is very difficult to 

completely remove carbon in the product, so the as-prepared BNNTs are generally 

doped with carbon. The introduction of metal oxide such as MoO3 [118] can improve 

the yield of BNNTs. The advantage of CNTs substitution is that the morphology of 

carbon nanotubes can be inherited well, in other words, SW-BNNTs [119] can be 

prepared from SW-CNTs by this method. However, it is important to control the 

reaction temperature and time as overreaction will accelerate the growth of hBN on 

the tube walls and stick the tubes together. The porous alumina route decomposes 

2,4,6-trichloroborazine as hBN at high temperature and fills the inner pores of 

alumina. The as-prepared product shows a tubular structure, but is likely to have a 

polycrystalline structure [120]. 

 

Figure 1.9 Schematic diagram of the CNT substitution reaction for BNNT 
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preparation [116]. 

 

An autoclave can be also used to prepare BNNTs with metals as catalysts (such as Mg, 

Co, Fe etc.), boron or NH4BF4 as the boron source and NH4Cl or NaN3 as the nitrogen 

source [121-122]. However, the as-prepared BNNTs demonstrate thin walls and a 

large inner space. Additionally, both the quality and yield are not satisfactory. 

 

A Ball-milling method was first reported by Chen et al. [123]. Bulk hBN powders 

were ball-milled to generate a highly-disordered nanostructure. The amorphous nano 

hBN was then annealed at 1300 °C for nanotube growth. As-prepared BNNTs may 

show a special bamboo-like structure. Despite much effort [124-126] being made, 

such as using boron as the precursor and introducing ammonia gas during ball-milling, 

the purity of BNNTs still needs to be further improved. The advantage of this method 

is high yield and no additional catalyst being needed, as the Fe and Cr species that 

come from the stainless-steel reaction chamber are effective catalysts for BNNT 

growth. 

 

After the initial reports about the chemical vapour deposition (CVD) growth of 

BNNTs [127], this technique has been widely used for BNNTs preparation. In the 

beginning, borazine (B3N3H3) was used as precursor and NiB, Ni2N, Co, Ni were used 

as catalysts for CVD growth at 1000 – 1100 °C. Later on, Wang et al. [128] reported a 

plasma-enhanced pulsed-laser deposition method at relatively low temperature 

(600 °C) and successfully prepared MW-BNNTs with high crystallinity. Other types 

of CVD precursor such as B4N3O2H [129] and a catalyst such as nickelocene [130] 

were also reported for preparing MW- and DW-BNNTs. More recently, to meet the 

demands of large-scale preparation of BNNTs with high purity, Golberg et al. [131] 

developed a new CVD method using boron powder and metal oxide as reactants 

(BOCVD). As shown in Figure 1.10(a), the mixture of boron powders and MgO was 
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placed in a BN crucible and placed at the bottom of a vertical furnace. A protecting 

argon flow and a reactive ammonia flow were introduced when the furnace was 

heated to ~1300 °C. The reaction between boron and MgO happens at this 

temperature: 2MgO (s) + 2 B (s) → B2O2 (g) + 2Mg (g), B2O2 will further react with 

ammonia flow in the low temperature zone (for separating precursor and product) in 

the furnace and generate BNNTs with high purity due to the absence of carbon 

impurities, as illustrated in Figure 1.10(b-e). For achieving larger quantities of BNNTs, 

this method has been further improved by introducing SnO and FeO as melting 

solvent for reaction [132]. The challenge of this method is how to control the diameter 

of the tube and reduce the number of walls. 

 

Figure 1.10 (a) Schematic diagram of the BOCVD preparation of highly pure BNNTs. 

(b-e) Morphologies of as-prepared snow-white BNNTs [131]. 

 

More recently, some other methods for scalable production were reported, such as 

so-called pressurized vapor/condenser (PVC) method for preparing BNNTs with 

highly crystallinity and small diameter, large length [133], as well as 

extended-pressure inductively-coupled plasma (EPIC) method [134]. Relevant work 

has been reviewed by Kim et al. [135]. 
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Inspired by previous efforts on using a thermal plasma to prepare BNNTs [136-137], 

Kim et al. [138] developed a very efficient, rapid and scalable route for synthesizing 

BNNTs at atmospheric pressure using an induction plasma process. As-prepared 

BNNTs made by this method were used in this present study. Different from a laser 

beam with a small size, a thermal plasma offers a much larger thermal treatment 

volume for vaporizing B at 4000 K. The rapid cooling rate due to the plasma jet 

expansion is also favorable for BNNTs nucleation. They used an induction plasma 

system (50 kW, 3 MHz) with much higher power, larger plasma volume and low 

plasma gas velocity compare to the old DC plasma system [136-137] (8-14 kW). 

Therefore the residence time of hBN powder precursor in the reaction zone is 

increased. In addition, 18 vol. % of hydrogen gas (H2) was injected into the reaction 

chamber as a reactant, therefore this new method was named as hydrogen-assisted 

BNNT synthesis (HABS) process. The introduction of hydrogen is deduced to 

significantly change the mechanisms of BNNT growth, thus massively improve the 

yield and quality of BNNTs, compared with the hydrogen-free plasma jet method.  

 

The morphologies of as-prepared BNNTs were shown in Figure 1.11 [138]. From 

Figure 1.11(d, f), the SEM images of BNNTs show a random orientation of BNNTs, 

but some nontubular structure can also be observed. These materials are identified to 

be hBN fragments and the byproduct should be purified for some potential 

applications. SEM observations also estimate an average length of BNNTs to be a few 

micrometers. According to TEM, the majority of nanotubes have 2 -5 walls and < 10 

nm diameter. A TEM elemental map indicates the uniform distribution of boron and 

nitrogen along the walls of tube. It is interesting that some carbon element was also 

detected. The authors attributed [138] this carbon contamination as originating from 

the adsorption of solvent during TEM sample preparation, as the whole method is a 

carbon-free process. 
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Figure 1.11 (a) Schematic diagram of HABS process for BNNTs preparation. (b-g) 

Morphologies of BNNTs prepared by the HABS process [138]. 

 

1.4 Properties 

1.4.1 Physical properties of hBN, BNNSs and BNNTs 

Due to its analogous structure but different chemical composition, bulk hBN is 

usually compared with graphite, as summarized in Table 1.2. 

 

Table 1.2 Properties of bulk hBN and graphite (based on a summary in [22]). 

Property hBN Graphite 

Color White/near-transparent Black 

Bond length (nm) 0.144 0.142 

Bond energy (eV) 4 3.7 

Interlayer spacing (nm) 0.333 0.335 

Young’s modulus (TPa) 0.8-1.3 1.1 

Band gap (eV) 5.5 – 6.0 ~0 
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Oxidation resistance (°C) ~840 ~600 

Breakdown voltage (MV/cm) ~7 Conductor 

Charge transferred between neighbours 

(e) 

~0.4 0 

In-plane thermal conductivity (W/mK) 400 2600 

 

Analogous to graphite, bulk hBN is mechanically strong, lubricative and highly 

thermally conductive due to their similar crystal structure and inner bonding. 

However, insulating, near-transparent, and chemically and thermally stable hBN 

exhibits many different optical, chemical and electrical properties compared with 

graphite due to its partially ionic B-N bonding. Both BNNSs and BNNTs inherit these 

properties from the parental bulk hBN. Relevant properties of BNNSs and BNNTs are 

summarized in Tables 1.3 and 1.4 and their carbon analogues, graphene and CNTs, are 

used for comparison.  

 

Table 1.3 Properties of BNNSs and graphene 

Property BNNSs Graphene 

Bond length (nm) 0.142 0.144 

Band gap (eV) ~6 [23, 65, 139] None [2] 

Young’s modulus 

(monolayer) (TPa) 

0.86±0.07 (measured) [84] 1.0 (measured) [140-141] 

Breaking strength 

(monolayer) (GPa) 

70.5±5.5(measured) [84] 130 (measured) [140-141] 

Thermal conductivity 

(W m-1 K-1) 

>600(Monolayer) [142]* 1800-5400 

(Monolayer) [143-144] 

Oxygen doping 

temperature (°C) 

>700(Monolayer) [43] 250 [145] 

Oxygen etching > 800(Monolayer) [43] 450 [145] 
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temperature (°C) 

Specific surface area 

(m2g-1) 

~ 2600 [6] * 2630 [146] * 

Luminescence (nm) Deep UV (217 -232) [147] No 

*Data from theoretical studies. 

 

As shown in Table 1.4, BNNSs (monolayer) exhibit similar mechanical properties to 

graphene. Meanwhile, the thermal stability of monolayer hBN is superior to graphene. 

The thermal conductivity of BNNSs was estimated theoretically to be >600W m-1 K-1 

(monolayer) and measured to be 100-270 W m-1 K-1 (few-layered BNNSs) [148-149] 

before 2019. More recently, by using an optothermal Raman technique, Cai et al. [150] 

reported the first measurement of in-plane thermal conductivity (κ) of suspended 

mechanical exfoliated 1L boron nitride. The value reaches 751 ± 340 W/mK (at room 

temperature). Moreover the experimental value of κ of 2L and 3L BNNSs were 646 ± 

242 W/mK and 602 ± 247 W/mK; A few months later, Ying et al. [151] reported a 545 

W/mK (at 315 K temperature) κ of CVD 1L boron nitride. Although the measured κ 

of BNNSs is lower than the value of graphene with same number of layers (1L 

graphene: ~ 4000 – 5300 W/mK at room temperature [143, 152]), it is still one of the 

most thermally conductive electrical insulators. Additionally, BNNSs exhibit much 

better anti-oxidation properties than graphene. They are considered to be ideal 

materials for high temperature applications. 

 

Table 1.4 Properties of BNNTs and CNTs (based on a summary in [111]). 

Property BNNTs CNTs 

Color White Black 

Bond length (nm) 0.1437-0.1454 [153-155] 0.1400–0.1463 [153-155] 

Band gap (eV) 5-6, independent of 

chiralities [156] 

Metallic or semiconducting, 

dependent on chiralities [157] 
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Young’s 

modulus (TPa) 

0.78-0.91 [158]*;  

0.71-0.83 [153]*; 0.5-0.7 [66]; 

1.22±0.24 [159] 

1.09-1.25 [158]*; 

0.84-0.99 [153]*; 

0.27-0.95 [160-161] 

Breaking 

strength (GPa) 

~33 [162] 11-63 [161] 

Thermal 

conductivity  

(W m-1 K-1) 

>CNTs [163]*; ~180-300 

(SW) [164]*; ~180-300 (MW 

with D~35 nm) [165] 

~6000 (SW) [166]*; >3000 

(MW with D~14), ~1000 

(D~10), ~300 (D~35) [165] 

Thermal stability 

(°C) 

>800-900 in air [167-168] Roughly 500-700 (MW) [169] 

Luminescence 

(nm) 

220-460 [170-171] 800-1700 [172-173] 

*Data from theoretical studies;   D - Tube diameter;   MW - Multi-walled 

nanotubes;   SW - Single-walled nanotubes 

 

In summary, BNNTs and CNTs have many similar properties such as outstanding 

mechanical strength, high thermal conductivity etc. Nevertheless, BNNTs are white 

insulating nanomaterials with high thermal stability, thus they can be explored to be 

used in some particular fields, for instance, reinforcements for insulating composites. 

 

1.4.2 Optical properties 

Optical properties of BNNSs 

As can be seen in Figure 1.12, the band gap of both CVD monolayer BNNSs [174] 

and CVD few-layered BNNSs [41] was studied by an optical absorption technique 

and estimated to be 6.07 eV and 5.92 eV, respectively. 
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Figure 1.12 Optical band gap analysis of monolayer CVD BNNSs [174] and 

few-layered CVD BNNSs [41]. 

 

Bulk hBN single crystal exhibits a dominant peak at ~215 nm (in the deep UV region) 

with a series of s-like exciton absorption peaks [36]. Similar to bulk hBN, BNNSs 

also show a very strong absorption in this DUV region, which have both been verified 

by photoluminescence (PL) and cathodoluminescence (CL) characterizations (Figure 

1.13 [175-176]). It should be noted that in the CL spectrum taken at low temperature 

(12 K) some new peaks appear (except for the main peak at 226.9 nm and shoulder 

peak at 233nm): the peaks at ~215 nm are from free excitons, the peaks at 220-240 

nm can be assigned to impurities, defects [36] and a very broad small peak between 

260-280 nm can probably be attributed to vacancies and residual stresses in the 

BNNSs [177]. 

 

Figure 1.13 UV-vis spectrum [175] and CL spectrum [176] of BNNSs produced by 

vapor deposition. 
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Figure 1.14 Color plot of the contrast as a function of wavelength and SiO2 thickness 

(BNNSs (a) and graphene (b)) and hBN on top of a 90 nm SiO2/Si wafer (the lower part 

is a monolayer) [42, 178]. 

 

Therefore, due to the high transparency (>99%) of BNNSs in the optical range of 

250-900 nm, monolayer BNNSs cannot be detected by the human eye, even with 

classical interference enhancement using an oxidized silicon wafer with 300 nm SiO2 

coatings [42, 178]. At least 2.5% contrast difference for monolayer hBN is necessary 

for optical observation, and the optical contrast of BNNSs indeed increases 

monotonically with number of layers under a green light (516 nm) illumination [179]. 

To make monolayer BNNSs clearly visible under the optical microscope, an 

appropriate filtered optical wavelength and an optimum SiO2 coating thickness on 

wafer are required, just like the case of graphene. Gorbachev et al. [42] revealed that 

thinner SiO2 (80±10 nm) and narrow optical filters (green) are helpful to improve the 

contrast of few-layered BNNSs, and even monolayer. As shown in Figure 1.14, hBN 

and graphene show evident differences in optimal SiO2 thickness and wavelength for 

good contrast (optical contrast value (0-0.15) on the graph for graphene is the real 

value, while 1 means 1% on the graph for BNNSs). A 90 nm SiO2 coating is the best 

choice for achieving good contrast of BNNSs flake over a wide range of wavelength. 
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Gorbachev suggested that 3% optical contrast for BNNSs single layer can be achieved 

by using a Si wafer with 80±10 nm SiO2 coating and green light filter. Although 3% 

contrast is much lower than 10% contrast of graphene, this value is enough for optical 

detection, which offers a hint for choosing an appropriate wavelength to make BNNS 

monolayers visible on PMMA beams, by spin coating 180 nm SU-8 on PMMA. 

 

Optical properties of BNNTs 

Due to their constant wide band gap, BNNTs possess a pure white appearance. Most 

of optical property studies about BNNTs focus on band structure calculations, band 

gap measurements and luminescence. Lauret et al. [170] studied the optical absorption 

of SW-BNNTs prepared by a laser ablation method, as illustrated in Figure 1.15. Bulk 

hBN shows an absorption peak at 6.15 eV, which is attributed to the saddle point 

transition in the band structure of bulk hBN [180]. A 5.6-5.8 eV band gap was 

estimated for bulk hBN in this work. After laser ablation, SW-BNNTs demonstrate 

two new absorption peaks at 4.45 eV, 5.5 eV. The peak at 6.15 eV originates from 

bulk hBN raw material. In the same year, Zhi et al. [181] estimated the band gap of 

MW-BNNTs using UV-vis absorption spectroscopy and CL spectroscopy. They 

reported an approximately 5.5 eV band gap for MW-BNNTs.  

 

Figure 1.15 Optical absorption spectra of: (a) bulk hBN crystals for SW-BNNTs 

preparation. (b) SW-BNNTs (inset is the absorption of SW-CNTs as a contrast) [170]. 

 

PL and CL studies showed that BNNTs are effective violet and ultra-violet emission 
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materials [171, 182-183]. Four emission peaks were reported in relevant work: at 

~230 nm which can be attributed to a near-band gap excitonic recombination [183], at 

~279 nm and ~320 nm which have been attributed in different papers [184-186] to 

impurity and defects centers and band-gap transitions, and a special ~460 nm peak 

which was typically observed in oxygen-doped or surface-oxidized BNNTs (attributed 

to oxygen-centre emission) [182]. 

 

1.4.3 Mechanical properties 

Mechanical properties of BNNSs 

Before the systematic experimental measurements of the modulus of BNNSs, Qing et 

al. [188] simulated the deformation of a BNNS monolayer using Ab initio density 

functional theory. They predicted that the BNNS monolayer will undergo a non-linear 

elastic deformation up to an ultimate strength, which is then followed by a strain 

softening to the failure. They also predicted a 279.2 N/m in-plane Young’s modulus of 

a BNNS monolayer. Another simulation study reported by Boldrin et al. [189] 

suggested that BNNSs show a similar tensile rigidity with bulk hBN. A 0.19 - 0.33 

TPa·nm rigidity was calculated in this work. Experimental measurement for the 

bending modulus (defined as 12(1-v2)·D/t3 in this work, where v, D, t are the 

Poisson’s ratio, bending rigidity, thickness of 2D materials, respectively) of BNNSs 

was reported by Li et al. [187], BNNSs with <50 nm thickness were prepared using a 

tip-sonication method. The bending test was conducted on an AFM. BNNSs were 

fixed on a designed Si/SiO2 substrate, a AFM probe tip was placed on the nanosheet 

and pushed the centre of the nanosheet down to the trench of the substrate and the 

linear-elastic force-displacement curves were recorded. The curves were then fitted 

and calculated using plate theory [190], 19 nanosheets with different thickness from 

25 – 300nm with 1.2 – 3μm flake size were measured. It was found that the bending 

modulus of BNNSs increased with decreasing sheets thickness. The 
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thickness-dependent bending modulus was attributed to the layer distribution of 

stacking faults, therefore a higher width-to-thickness ratio will be helpful to reduce 

the stacking faults and achieve a higher modulus. This paper also mentioned that the 

BNNSs with ultrathin thickness should be prepared and a much higher bending 

modulus is expected to be achieved. 

 

Figure 1.16 (a) Schematic diagram of the AFM nanoidentation method for Young’s 

modulus measurement. (b) SEM image of a ~15nm CVD BNNSs on SiO2/Si wafer 

with micro-wells of 1-1.5 nm diameters. (c) AFM image of suspended ~15nm BNNS 

film, solid line is the height profile. (d) Mechanical response of the BNNS film by 

nanoidentation [191]. 

 

Inspired by Hone’s classical AFM nanoidentation method [140-141] for measuring the 

Young’s modulus of graphene, similar work for CVD BNNSs was reported in 

2010 [24] and 2015 [191]. First of all, Song et al. [24] reported the elastic modulus of 

a CVD bilayer BNNSs is E2D=112±8 Nm-1 (that is, 0.334±0.024 TPa), which is much 

lower than theoretical predictions (0.72-0.98 TPa if the thickness of a monolayer is 
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assumed to be 0.334nm). The degraded mechanical properties of bilayer BNNSs 

reported by Song were attributed to the presence of abundant defects and grain 

boundaries [192]. Kim et al. [191] later measured the Young’s modulus of a ~15nm 

thick (~45 layer) CVD BNNS to be 1.16±0.1 TPa as illustrated in Figure 1.16. This is 

even higher than that of graphene monolayer. 

 

More recently, a very important and systematic study on measuring the mechanical 

properties of BNNSs was reported by Falin et al. [84] They exfoliated high-purity 

hBN single crystals from Japan’s NIMS and transferred BNNSs with different 

thickness onto a 90 nm SiO2/Si wafer with micro-wells and directly measured relevant 

mechanical properties of BNNSs from monolayer to 9 layers, as shown in Figure 1.17. 

The AFM nanoidentation technique was employed for measurement and graphene 

with different thickness was also exfoliated and measured as a reference in this work.  

 

Figure 1.17 (a) Optical micrograph and (b) zoom-in AFM image of exfoliated 

monolayer on 90 nm SiO2/Si wafer with micro-wells; (c) height profile along a dashed 

line in (b) which indicates monolayer BNNSs with ~6 μm lateral sizes. (d) Raman 

spectra of suspended monolayer BNNSs (the E2g peak position is at 1366.5 cm-1) [84]. 

 

The measured mechanical properties in this study are summarized in Table 1.5. In this 

work, the thickness of monolayer BNNS was assumed to be 0.334 nm and a Poisson 

ratio of 0.211 [188]; for graphene, 0.335 nm per layer and a 0.165 Poisson ratio were 

used. 
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Table 1.5 Mechanical properties of BNNSs and graphene with different number of 

layers measured in Ref 84. 

Properties 

BNNSs Graphene 

1 L 2 L 3 L 9 L 1 L 2 L 3 L 8 L 

E2D(Nm-1) 289±24 590±38 822±44 - 342±8 645±16 985±5 - 

E (TPa) 0.86±0.07 - - 0.86±0.00 1.03±0.02 - - 0.94±0.00 

Breaking 

strength 

(GPa) 

70.5±5.5 68±6.8 76.9±2.3 - 125±0 107.7±4.3 105.6±6.0 85.3±5.4 

Breaking 

strength 

(Nm-1) 

23.6±1.8 45.4±4.5 77.0±2.3 - 41.9±0 72.1±2.9 106.2±6.0 228.6±14.5 

L - Number of layers;   E2D - 2D effective Young’s modulus;   E - (Volumetric) 

Young’s modulus 

 

 

Figure 1.18 (a) 2D Young’s modulus; (b) volumetric Young’s modulus; (c) fracture load; 
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(d) breaking strength of graphene and BNNSs of different thickness [84]. 

 

As shown in Table 1.5, The Young’s modulus of monolayer BNNSs is 0.86±0.07 TPa, 

which is close to but smaller than that of monolayer graphene (~1 TPa). The breaking 

strength of monolayer hBN is 70.5±5.5 GPa, smaller than the value of monolayer 

graphene. The relevant experimental results are consistent with theoretical predictions. 

In particular, it is found that graphene’s breaking strength decrease by more than 30%, 

the Young’s modulus declines from 1.03 TPa to 0.94 TPa when number of layers 

increases from 1 to 8, while the strength and Young’s modulus of BNNSs is not 

sensitive to increasing thickness, as shown in Figure 1.18 (b-d) [84]. Specific DFT 

calculations were performed in this work and it is indicated that strong interlayer 

bonding force between adjacent BN layers (AA’ stacking and partially ionic bonding) 

will bond the whole BNNS layer-by-layer structure, especially the area under the 

AFM tip, as sketched in the middle of Figure 1.19.  

 

Figure 1.19 Raman 2D band shifts (fitted as one peak) of (a) Bilayer graphene coated 

and uncoated with a thin layer of polymer, indicating poor interlayer binding force; (b) 

mono-, bi-. tri-, many-layered graphene deformed on a polymer beam [193]. 
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Previous work on a graphene model composite [193] in Manchester has reported that 

Raman 2D band shift rate tends to decrease with increasing number of layers, 

indicating a poor stress transfer between inner layers as reinforcement. It would be 

interesting to know what relevant data for BNNSs with same number of layers would 

look like. This will be a very important and meaningful future work, although effort 

will have to be made to overcome the opacity and weak Raman signal of mono-, bi-, 

tri-layer BNNSs. 

 

Mechanical properties of BNNTs 

Before the experimental measurements of modulus, theoretical studies already 

indicated a very high mechanical strength for BNNTs, but with a value slightly 

smaller than that of CNTs [158-159, 194-195]. In theoretical simulations, BNNTs are 

predicted to possess a Young’s modulus ranging from 0.71-0.91 TPa, which is slightly 

smaller than the theoretical value (~1.22-1.25 TPa) of CNTs. Relevant studies also 

suggest that the yield strength of BNNTs was also slightly smaller than the value of 

CNTs. In addition, Dumitrica et al. [196] showed that the formation of defects in 

BNNTs required a higher formation but lower activation energy relative to CNTs. In 

other words, BNNTs should be stronger and more thermo-mechanically stable than 

CNTs at high temperatures (or after extremely long deformation times) but CNTs will 

be stronger than BNNTs at moderate temperatures [196]. 

 

The Young’s modulus of a single MW-BNNTs (prepared by arc-discharge) was 

evaluated by Chopra et al [159]. By observing the amplitude of thermal vibration of a 

cantilevered BNNT in TEM, they elucidated a 1.22±0.24 TPa axial Young’s modulus 

for MW-BNNTs. This value is even higher than theoretical results [111]. In another 

study [194], a well-established electric-field-induced resonance method was used and 

an average 0.72 TPa effective elastic modulus was obtained. In 2007, Golberg et 

al. [66] measured the Young’s modulus of BOCVD MW-BNNTs using their 
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well-established AFM-TEM technique. They obtained a Young’s modulus of 0.5-0.6 

TPa using this special technique. In 2010 [162], they used the same technique and 

evaluate a ~33 GPa breaking strength for MW-BNNTs. 

 

Very recently, Zhou et al. [197] reported the precise AFM-TEM measurement of 

intrinsic elastic modulus of MW-BNNTs, and obtained a 906.2 GPa average modulus, 

with a 9.3% standard deviation (Figure 1.20). They also studied the effect of 

long–term electron irradiation on the mechanical properties of BNNTs. It is found that 

the radiation will induce the formation of the decrease of tube diameter and an outer 

tube shell with enough defects. The modulus of BNNTs gradually decreases to ~663 

GPa with electron radiation, which is still 3x that of steel.  

 

Figure 1.20 Elastic modulus of MW-BNNTs measured usinga high-order resonance 

technique in a HRTEM, and nanotube modulus reduction with electron radiation time 

[207]. 

 

BNNTs also exhibit interesting flexibility and perfect elasticity under loading. The 

nanotubes completely recover to their original tubular shape after a loading-unloading 

process, as shown in Figure 1.21 [198]. Garel et al. [199] also reported that BNNTs 

are 1 order of magnitude torsionally stronger than CNTs due to stronger inner 

layer-layer bonding. 
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Figure 1.21 Consecutive HR-TEM images of a single BNNT during deformation 

process: as shown in (a-c), when a force was loaded, severe distortion can be observed 

on hBN tubular layers, while the original shape is fully restored after unloading 

(d) [198]. 

 

In addition to the measured mechanical properties of BNNTs, Nigues et al. [200] 

stretched the outer shell of MW-BNNTs and CNTs in a SEM and found that the 

interlayer friction within BNNTs is much stronger than that in CNTs, as illustrated in 

Figure 1.22. 

 

Figure 1.22 Schematic of tensile test for MW-CNTs and MW-BNNTs in a SEM and 

measured frequency shift change during the test [200]. 

 

BNNTs are also a very promising reinforcement due to their wide band gap, in 

particular, unique broad wide gap leads to potential applications as insulating 

ultra-strong fibrous filler for nanocomposites. 
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1.5 Conclusions 

This chapter has reviewed the structure, preparation and properties of BNNSs & 

BNNTs. BNNSs & BNNTs have been found to owe comparable mechanical stiffness 

with graphene & CNTs, which makes them some of the strongest insulators. However, 

different from their carbon analogue, BNNSs & BNNTs exhibit much stronger inner 

layer-layer bonding and better thermal stability at high temperature. Considering their 

exceptional properties and low density, both BNNSs and BNNTs show great potential 

to be used as ideal reinforcements for composites requiring excellent mechanical 

strength, thermal conductivity and electrical insulation. 
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Chapter 2  BNNS and BNNT-based Nanocomposites 

2.1 Introduction 

Mechanisms of mechanical reinforcement by 1D materials and 2D materials are first 

of all summarized in this chapter, based on a recent review paper [1]. BNNSs and 

BNNTs-based polymer nanocomposites and their properties are reviewed. Enhanced 

mechanical properties are introduced in detail. 

2.2 Composite reinforcement micromechanics 

2.2.1 Rule of mixtures 

The Young’s modulus of a composite Ec can be estimated by simple “rule of mixture” 

as: 

c f f f m(1 )E V E V E    (2.1) 

where Ef, Em are the Young’s modulus of filler and matrix, respectively. Vf represents 

the volume fraction of filler in the composite. For precisely determining the Ec using 

this equation, it is assumed that [2]: 

1. The size of the filler is infinite so the stress along the filler is uniform. 

2. The orientation of the fillers is perfect and parallel to the uniaxial load. 

3. The filler and matrix are well bonded without any interfacial failure. 

 

However, above assumptions are difficult to be satisfied as the orientation, length (or 

aspect ratio), agglomeration etc. of fillers should been taken into account in the real 

case of composites. Therefore, a modified rule of mixtures has been proposed for the 

calculation of the modulus of a composite [1]: 

o l f eff f m(1 )cE V E V E     (2.2) 



Chapter 2  BNNS and BNNT-based Nanocomposites 

81 

 

where Eeff is the effective Young’s modulus of the filler, o is the Krenchel orientation 

factor, which depends on the orientation of filler with respect to applied stress [3]. l 

is the length factor, which reflects the stress transfer efficiency from polymer matrix 

to filler. The length factor depends on the length of filler and interface between the 

filler and the matrix. 

 

Figure 2.1 Schematic of 2D nanosheets (nanoplatelets) and 1D nanotubes 

nanocomposites with different nanofiller orientations [4]. 

 

The Krenchel orientation factor can be determined experimentally, by the use of 

different techniques, such as polarized Raman spectroscopy and X-ray diffraction, 

electron microscope etc., Liu et al. [4] summarized the Krenchel orientation factor of 

1D nanotubes and 2D nanosheets (denoted as “nanoplatelets” in the paper) in 

polymers as shown Figure 2.1. In summary, the o for oriented nanosheets and 

nanotubes is 1, while for the case of 2D randomly distributed nanotubes and 

nanosheets o=3/8 and 1, respectively. For 3D randomly distributed nanotubes and 

nanosheets o=1/5 and 8/15, respectively. Since 1D and 2D nanofillers generally 
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show random distribution in polymer matrix, nanosheets exhibit higher reinforcing 

efficiency in the respect of orientation. 

 

More recently, Li et al. [5] included an agglomeration factor: a in modified rule of 

mixtures: a equals to 1 if the dispersion of the filler is perfect and 0 for major 

agglomerations which reduce the effective stress transfer from the matrix to the filler. 

The modified rule of mixtures can be given as: 

o l f a eff f m(1 )cE V E V E      (2.3) 

Vfηa can be considered as the effective volume fraction, which becomes the volume 

fraction if the dispersion of filler in the matrix is perfect. 

 

2.2.2 Shear-lag model 

The “rule of mixtures” was originally used for estimating the reinforcement of 

continuous fibres which were assumed to have infinite length. However, both 

nanotubes and nanosheets have very limited size, hence the stress transfer through 

interfacial adhesion is reduced if these nanofillers with finite length are used for 

reinforcement. Assuming the filler is aligned along the stress direction, the different 

intrinsic stiffness of filler and matrix leads to their different axial displacement 

(Figure 2.2).  

 

Figure 2.2 Schematic for the deformation of filler in composite [6]. 

 

As shown in Figure 2.2(b), it can be observed that the center of the filler deforms the 
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most under axial deformation, while the edges deform the least. Therefore, the 

interfacial shear stress at the edges of the filler is highest along the filler, due to large 

displacement between the matrix and the filler in these areas. 

 

If the filler/matrix interface fails before or after the matrix yields depends on if the 

interface is stronger than matrix: stronger-matrix yields first; weaker-interfaces 

debond first. Therefore, it is important to evaluate the interfacial shear stress τ along 

the filler. Basically, the stress distribution along the filler can be fitted by two models: 

the Kelly-Tyson model [7] and the Cox model (i.e. shear-lag model) [8]. The filler is 

assumed to be linearly elastic in both models, while the matrix is assumed to be 

plastic in the Kelly-Tyson model, but linearly elastic in the Cox model, respectively. 

 

In Kelly-Tyson model, τ is constant along the filler (Figure 2.3(b)), so there is a linear 

increase of the axial stress from edges to the center of the filler (Figure 2.3(c)). 

 

Figure 2.3 Kelly-Tyson model: (a) Stress-strain curve of the plastic matrix. (b) Shear 

stress and (c) Axial stress along the filler [6]. 

 

The shear-lag model estimates τ across the filler more accurately, in which the 

interfacial shear stress is not constant (Figure 2.4(b)).  

 

Figure 2.4 Shear-lag model: (a) Stress-strain curve of the elastic matrix. (b) Shear stress 
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and (c) Axial stress along the filler [6]. 

 

For 2D fillers such as graphene and BNNSs, the shear-lag model has been given 

as [9]: 

f eff m eff m

cosh( )
cosh( / )

1 1
cosh( / 2 ) cosh( / 2)

x
ns

nx t lE E
nl t ns

  

 
  

     
   

 

 (2.4) 

where s is the aspect ratio of the 2D filler. n, has been widely accepted as a parameter 

for evaluating the interfacial stress transfer efficiency, which is defined as 

f

2 mG t
n

E T

 
  

 
 for the 2D filler. Gm is the shear modulus of the polymer matrix. Ef is 

the Young’s modulus of the 2D filler. t is the thickness of the 2D filler and T is the 

thickness of polymer layers. If volume fraction of the filler can be considered as t/t+T, 

then t/T=Vf/(1-Vf). Therefore, τ (interfacial shear stress) of 2D filler is given by: 

2D eff m eff m

sinh( )
sinh( / )

cosh( / 2 ) cosh( / 2)

x
ns

nx t lnE nE
nl t ns

     
(2.5) 

It can be seen in Equation 2.4 that the most efficient reinforcement is achieved when 

ns is high. In another words, 2D fillers with a high aspect ratio and strong interface 

with matrix are preferable for mechanical reinforcement. Length factor l for 2D filler 

can be given by using the Cox equation: 

l

tanh( /2)
1

/2

ns
-

ns
   (2.6) 

where s is the aspect ratio of the filler. 

 

Similarly, for 1D fibres such as nanotubes, the stress on the filler σf can be modified 

as [1]: 

f eff m

cosh( / )
1

cosh( / 2 )

nx r
E

nl r
 

 
  

 
 (2.7) 

where Eeff is the effective Young’s modulus of the filler, εm is the strain applied on the 
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matrix, l is the length of the filler along the strain direction, x is the position in the 

filler. The length factor, l, for 1D filler can also be expressed as equation 2.6, where 

the parameter n is defined as: 

m

eff

2 1

ln( / )

G
n

E R r
  (2.8) 

where R and r represent the effective radius of the interface and the radius of the 1D 

filler, respectively. Based on equation 2.7, τ of 1D filler can be rewritten as: 

1D eff m

sinh( / )

2 cosh( / 2 )

n nx r
E

nl r
   (2.9) 

In addition, both Kelly-Tyson model and shear-lag model describe the stress transfer 

from matrix to the filler where the strain in the filler builds up from the edges and 

reaches the applied strain on the matrix at a distance from the filler edge, and 90% of 

this distance is defined as the critical length (lc) of the filler. It can be seen in Figure 

2.5 that the region in the critical length exhibits very poor reinforcement while the 

center of the filler reinforces the composite sufficiently (if l>lc). Our group’s previous 

work suggested the lc value of 1D fibres and 2D 1L graphene to be the order of 

several hundred microns [10] and ~3 μm [9] respectively. In order to achieve very 

sufficient reinforcement, it is usually suggested that the size of the filler needs to be 

10 times of lc. Fillers with size smaller than or this value can only provide limited 

reinforcement, especially when the filler size is of the order of lc (Figure 2.5(b)) or the 

filler has fragmented into smaller shorter pieces at high strain (Figure 2.5(c)). 

 

Figure 2.5 Strain distribution along the axial strain direction in a filler with (a) length 

much higher than lc, (b) size comparable to lc, (c) sufficient length but has fragmented 

into small pieces [1]. 
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2.2.3 Other issues 

In addition to rule of mixtures and shear-lag theory, Halpin-Tsai model [11] can also 

be used for predicting the Young’s modulus of 1D & 2D materials-based composites. 

For the composite with uniaxially-aligned fillers, the Young’s modulus E|| can be 

given by: 

L f
m

L f

1

1

sV
E E

V





 
  

 
 (2.10) 

where f m
L

f m

/ 1

/

E E

E E s






, while for the composite with randomly-distributed fillers, the 

modulus Er is modified as: 

L f T f
r

L f T f

1 1 23 5

8 1 8 1
m

sV sV
E E

V V

 

 

  
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where f m
T

f m

/ 1

/ 2

E E

E E






. It should be noted that the definition of the parameter s varies 

in different studies [12-13]. It is generally dependent on both the boundary conditions 

and the geometry of the reinforcement [1]. 

 

Figure 2.6 X-ray CT images showing the taxonomy of (a) a flat GNP flake, (b) two 

curved GNP flakes, (c) a curved GNP flake which fractured partially in the middle [14]. 

 

More recently, Li et al. [14] reported that the original lateral dimensions of 2D 
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materials are not always the same as their real effective length in composite, as the 2D 

materials tend to bend, fold, curve, break during the processing of composites (Figure 

2.6), which will massively reduce their effective aspect ratio and reinforcement of the 

polymer matrix. 

 

Interfacial adhesion between filler and matrix is another important factor on 

determining the efficiency of reinforcement. It is found that the interfacial shear stress 

between pristine graphene and a polymer is estimated to be order of 2 MPa [9], 

suggesting that the interface is dominated by van der Waals forces. Differently, the 

measured value of τ of pristine CNTs/polymer interface (around 50-90 MPa [15-16]) 

is much higher than that of graphene/polymer interface, which can be attributed to the 

nucleation effect of nanotubes which induces the polymer to form a crystalline 

coating on the shell of the nanotubes. Surface modification, by the means of both 

physical (such as interfacial roughing) and chemical (such as functionalization) way, 

is helpful on improving the adhesion between matrix and filler [17]. 

 

Apart from aspect ratio, flake size, interface and orientation, it is found that 

agglomerations and wrinkling of nanofillers also affect their reinforcing efficiency 

significantly, which has been systematically studied in relevant work on graphene and 

CNT-related nanocomposites. In brief, nanofillers with a very large surface area tend 

to agglomerated in nanocomposites, this is the key reason why the effective modulus 

of nanofillers massively drop at relatively high loading. For wrinkling on the surface 

of 2D materials, it can strengthen the interaction between 2D materials and matrix, 

thus providing better reinforcement [18]. On the other hand, the presence of wrinkles 

also reduces the aspect ratio of 2D materials.  
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2.3 BNNS & BNNT-based Nanocomposites 

hBN-based nanostructures have many potential applications due to their special 

structures and excellent insulating, mechanical properties, thermal and chemical 

stabilities etc.. For instance, one of the most promising applications of BNNSs is as 

dielectric substrates in 2D materials-based electronic devices [19-21]. The 

applications of BNNSs and BNNTs were also extended to other fields such as 

composite nanofillers, thermally robust catalyst [22], field emitters [23], protective 

barriers for metals [24] etc.. Several papers have reviewed applications of hBN-based 

nanostructure and this review will focus on relevant work upon composites, 

particularly mechanical reinforcement of BNNSs and BNNTs upon polymer 

materials. 

 

It should be noted that most of work upon BNNS/BNNT-based nanocomposites has 

focused more on the enhancement of the thermal conductivity of polymers. Taking a 

recent publication as an example, Chen et al. [25] reported the application of 

BNNSs/polymer nanocomposites in thermal management. They prepared oriented 

BNNSs-based composite films by folding and pressing electrospun composite 

nanofibres. As-prepared nanocomposites were found to be highly thermally 

conductive, and can be used as ideal thermal interface materials for heat-generating 

devices.  

 

Apart from thermal conductivity, Wu et al. [26] reported that the addition of 10% 

BNNSs massively improves the fire resistance of polymers. Zhu et al. [27] reported 

that polymer-BNNSs-polymer sandwich-structure nanocomposite films could be used 

as high energy density dielectrics with merely 0.16 vol% BNNS concentration. 

 

In contrast with graphene and CNTs, BNNSs and BNNTs have better thermal stability 
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and oxidation resistance, meanwhile have similar mechanical properties and thermal 

conductivity. Most importantly, hBN-based nanocomposites exhibit excellent 

electrical insulation, which is their key difference from graphene-based 

nanocomposites. Although more work has focused on the unique thermally 

conductive electrically insulating properties of hBN-based nanocomposites [28-32], 

the excellent mechanical properties of BNNSs and BNNTs make them suitable to be 

used as mechanical reinforcements for polymers [33]. Comparing with bulk hBN, 

BNNSs and BNNTs not only inherit its excellent thermal and insulating properties, 

but also exhibit more effective reinforcement for polymer matrix, due to their higher 

surface area and aspect ratio [34]. hBN-based materials do not absorb visible light due 

to their wide band gap, thus as-prepared composites have much higher light 

transparency than carbon-based composites, as illustrated in Figure 2.7 [28]. 

 

Figure 2.7 Optical photographs of (a) a pure poly(vinyl formal) (PVF) film; (b) a 1 wt% 

MW-BNNTs PVF nanocomposite film; (c) a 10 wt% MW-BNNTs PVF nanocomposite 

film. [28] 

 

2.3.1 Mechanical properties of BNNS nanocomposites 

In the case of BNNS-reinforced nanocomposites, initial work was reported by Zhi et 

al. [3]. They prepared liquid-exfoliated BNNSs using DMF as exfoliating reagent. 

As-prepared BNNSs were used for preparing BNNSs/PMMA nanocomposites with 
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high optical transparency. A 22% improvement in the elastic modulus and 11% 

improvement in the breaking strength of PMMA were obtained with only 0.3 wt% 

BNNSs loading. DSC results also showed a slight increase on the glass transition 

temperature (Tg) of PMMA from 69.7 °C to 72 °C, as shown in Figure 2.8. A 

BNNS/PVA system was studied by Khan et al. [35], BNNSs with a high aspect ratio 

were exfoliated in solvent and then incorporated into PVA matrix. They achieved 40% 

enhancement on the modulus and strength of PVA matrix with the addition of only 

0.12 vol% BNNSs [35]. 

 

Figure 2.8 (a) Elastic modulus, (b) Breaking strength and (c) DSC curves of pure 

PMMA and 0.3 wt% BNNS/PMMA nanocomposites [3]. 

 

More recently, Jan et al. [36] reported the work on BNNS/poly(vinyl chloride) (PVC) 

nanocomposites. They prepared BNNSs with different flake sizes using liquid 

exfoliation and found a relatively low level of mechanical reinforcements in 

corresponding PVC nanocomposites due to the non-aligned nature of their BNNSs. 

However, after 300% uniaxial drawing was applied to the nanocomposite, both the 
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modulus and strength of nanocomposites increased massively, as shown in Figure 

2.9(a). They attributed this further improvement not only to nanosheets alignment, but 

also the strain-induced exfoliation and deaggregation of the BNNSs in the 

nanocomposites. In addition, functionalized BNNSs were also prepared and found to 

achieve better mechanical reinforcements than pristine nanosheets [37]. For instance, 

Yu et al. [38] functionalized BNNSs with hyperbranched aromatic polyamide (HBP) 

and octadecylamine (ODA) molecules and used them as reinforcement for epoxy. 

BNNSs exhibit a higher level of reinforcement after the functionalization, as 

demonstrated from the storage modulus and glass transition temperature results shown 

in Figure 2.9(b, c). 

 

Figure 2.9 (a) Mechanical properties of PVC/BNNSs (with three different lateral sizes) 

nanocomposite films before and after 300% unaxial drawing [36]. (b, c) DMTA results 

of pure epoxy, BNNSs/epoxy, ODA-functionalized BNNSs/epoxy, HBP-functionalized 

BNNSs/epoxy nanocomposites [38]. 

 

Li et al. [39] reported a 6.2% enhancement on the tensile strength of polyamide (PA) 
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with the addition of 30 wt% BNNSs. Wang et al. [40] prepared BNNSs/polyimide (PI) 

nanocomposite aerogel with exceptional tensile strength and thermal conductivity. A 

very recent study from Zhu et al. [41] exhibited that the addition of 5 wt% BNNSs 

improved the tensile strength of thermoplastic polyurethane (TPU) film. Coleman et 

al. [42] reported a 53% improvement on the Young’s modulus of a poly(ethylene 

terephthalate) (PET) film with 3 vol% addition of BNNSs. The authors also found that 

the addition of only 0.017 vol% already led a 27% modulus enhancement. Wu et 

al. [43] incorporated 10.5 vol% silane-functionalized BNNSs into styrene-butadiene 

rubber (SBR) and reported a dramatic improvement on both the tensile strength from 

1.5 MPa to 18 MPa and the modulus from 0.9 MPa to 2.5 MPa of the neat SBR. In 

addition to the polymer-based nanocomposites, a BNNS/ceramic nanocomposite [44] 

was also studied and different levels of reinforcement upon mechanical performance 

were obtained. 

 

2.3.2 Mechanical properties of BNNT nanocomposites 

In 2006, Zhi et al. [45] first incorporated MW-BNNTs into polystyrene (PS) and 

measured the mechanical properties of nanocomposites. They mixed and sonicated 

BNNTs into two different solvents: chloroform and DMF for dispersion. In some 

experiments, a conjugated polymer 

poly(m-phenylenevinylene-co-2,5-dioctoxy-pphenylenevinylene) (PmPV) was mixed 

into the dispersion for functionalizing BNNTs and improve their solubility in 

solvents [46]. The PS matrix was then dissolved into a BNNT dispersion by magnetic 

stirring. The nanocomposites film was prepared by casting as-prepared BNNT/PS 

mixture onto glass slide, followed by solvent evaporation. Tensile test results 

suggested that a 1 wt% loading of pristine BNNTs improved the elastic modulus of PS 

up to 7% (DMF as solvent), which is not a high value, and the mechanical properties 

of PS became even worse when chloroform was used as solvent. This indicated a poor 
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dispersibility of pristine BNNTs into solvent, as well as the relatively-weak interfacial 

adhesion between the reinforcement and polymer matrix.  

 

In contrast, PmPV-functionalized BNNTs exhibit a much higher enhancement, a 

highest 21% enhancement on elastic modulus was achieved with the addition of 1 wt% 

functionalized BNNTs. This initial work demonstrates that the addition of a small 

amount of BNNTs can significantly improve the mechanical properties of polymer 

matrix, in the case of relatively good dispersion in the nanocomposites and stronger 

interfacial interactions with polymer matrix. Therefore, a series of studies on the 

functionalization of BNNTs were performed, such as hydroxylation of BNNTs using 

H2O2 (Figure 2.10(a)) [47]. As shown in Figure 2.10(b), the dispersion of -OH 

functionalized BNNTs (BNNTs-OH) in water is much better than pristine BNNTs. 

Both BNNTs and BNNTs-OH were added into polycarbonate (PC) and a poly(vinyl 

butyral) (PVB) matrix for nanocomposites preparation. Tensile test results suggested 

BNNTs-OH to be a more effective enhancement for polymer matrix, as shown in 

Figure 2.10(c). A 1 wt% loading of pristine BNNTs improves the elastic modulus of 

PC by up to 20%. The addition of the same amount of BNNTs-OH further increases it 

by 31%. BNNTs-OH also shows a more effective reinforcement of the yield strength 

than Pristine BNNTs. Later, other work on different polymer matrix (such as 

poly(vinyl alcohol) (PVA)) [48], poly(vinylidene fluoride) (PVDF) [49]) all suggested 

that functionalization of BNNTs is necessary for optimizing their reinforcement of 

polymers. It is still possible to have a relatively good reinforcement using pristine 

BNNTs if their dispersion in the polymer is ideal. The elastic modulus of 1 wt% 

BNNTs/PMMA was improved up to 19% when nanotubes were well-dispersed in 

DMF solvent [50]. 
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Figure 2.10 (a) Schematic diagram of the hydroxylation and esterification of BNNTs; 

(b) Optical photograph of aqueous dispersion of BNNTs-OH (left) and pristine BNNTs 

(right); (c) Elastic modulus of PC, 1 wt% BNNTs/PC, 1 wt% BNNTs-OH/PC and PVB, 

1 wt% BNNTs/PVB, 1 wt% BNNTs-OH/PC [47]. 

 

2.4 Conclusions 

This chapter has reviewed the micromechanics of nanocomposites reinforced by 2D 

and 1D nanomaterials. The properties, particularly mechanical properties of BNNSs 

and BNNTs-based nanocomposites have been covered in detail. Both BNNSs and 

BNNTs have been reported to be promising insulating reinforcements for polymers, 

but their poor interfacial adhesion with the matrix needs to be modified. More detailed 

work needs to be done to optimize the orientation, interfacial adhesion, agglomeration, 

aspect ratio, dimensions, inner layer-layer interaction of BNNSs & BNNTs in 

nanocomposites and their effect on mechanical reinforcement. 
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Chapter 3  Raman Spectra of BNNSs and BNNTs 

3.1 Introduction 

Since Sir C. V. Raman discovered Raman scattering in 1928 [1], Raman spectroscopy 

has been widely used for detecting vibrations in molecules. Different from the 

Infrared absorption which results from a change of molecular “dipole moment”, 

Raman scattering is due to the change of the polarizability [2]. 

 

In the early stage, Raman scattering was observed using sunlight and human eye as 

the light source and detector, respectively [3]. The signal of sunlight-activated Raman 

scattering is so weak that only approximately one in 106-108 photons [2] in the light 

can be scattered, which makes its detection very hard. The application of Raman 

spectroscopy was therefore limited until the 1960s, when high power laser sources 

and better detection system were introduced in the Raman systems [3]. 

 

Raman spectroscopy is now a very powerful technique to characterize the molecular 

vibrations, especially for non-polar C-C bond-constructed carbon-based materials, 

such as graphite [4], CNTs [5], graphene [6] etc.. Raman spectroscopy is 

non-destructive under low laser output power and spectra can be obtained from 

objects on the micron scale. Meanwhile it does not require complicated sample 

preparation. 

 

Raman spectroscopy has been widely used for distinguishing the diameter, number of 

walls, bundling etc. of 1D CNTs [5, 7] and the number of layers, crystal structure, 

density of defects etc. of 2D graphene [8-9]. It has also been demonstrated that Raman 

is a powerful characterization for understanding the structure and properties of new 

types of 2D materials [10-11]. This chapter will give a review on the principles of 
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Raman spectroscopy, Raman spectra of BNNSs and BNNTs and the application of 

Raman spectroscopy in 1D & 2D material-based nanocomposites. 

 

3.2 Principles of Raman scattering 

3.2.1 Classical theory 

Regarding an incident light as an oscillating electric field, the electric field strength E 

at a time t0 can be given by: 

0 0 0cos 2E E t  (3.1) 

where E0 is the vibrational amplitude and ν0 is the frequency of the light.  

 

When a molecule intercalates into the oscillating electric field, the field interacts with 

this molecule and induces the distortion of its electron distribution [12]. It alternates 

the electric dipole moment, P and induces scattering: 

P E  (3.2) 

where α is the molecular polarizability, which is a measurement of the ability of a 

molecule to respond dynamically to the electric field. For a small amplitude vibration, 

α can be given as [13]: 

0

0

...q
q


 

 
   

 
 (3.3) 

where α0 is the equilibrium molecular polarizability, q is the displacement of nucleus, 

thus (∂α/∂q)0 represents the change rate of polarizability against the nuclear 

displacement. q can be given as [3]: 

0 q 0cos 2q q v t  (3.4) 

where q0 and vq represent the amplitude of vibration and frequency of the nucleus, 

respectively. Substituting Equation 3.1, 3.3, 3.4 into Equation 3.2 gives: 
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00 0 0 0 0 0 0 0 0
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 

 
              

 (3.5) 

It can be seen in Equation 3.5 that three components v0, v0-vq, v0+vq give rise to the 

fluctuation of the electric dipole and consequent scattering. The first term corresponds 

to the “Rayleigh scattering”, for which v0 has the same frequency as the incident light. 

The second term represents the “Raman scattering”, including the “Stokes mode” and 

“anti-Stokes mode” which correspond to the scattering occurring at a frequency of 

(v0+vq) and (v0-vq), respectively. According to the second term, the Raman scattering 

only occurs if (∂α/∂q)0≠0, in other words, the change of polarizability against the 

nuclear displacement is necessary for a vibration to be Raman active [14]. 

 

3.2.2 Quantum theory 

The Raman scattering can also be understood by Quantum theory, where the incident 

light can be regarded as a beam of photons [12]. The photon energy of the incident 

light Ei can be expressed as:  

i 0E hv  (3.6) 

where h is the Planck’s constant and v0 is the vibrational frequency of incident 

photons. 

 

Figure 3.1 Schematic diagram of Rayleigh scattering and Raman scattering (Stokes 
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mode, anti-Stokes mode, resonance Raman scattering) [2, 15]. 

 

When the photons in the light interact with the electrons in the molecule, the cloud of 

electrons around the nuclei is distorted and the molecule is excited. If the photon 

energy matches the energy gap of between the excited and ground state, the molecule 

absorbs the photon energy and jumps to an “excited state” [2]. If not, the molecule 

can also be excited to a “virtual state”, as shown in Figure 3.1 [2, 15]. 

 

The energy of scattered photons Es can be expressed through the conservation of 

energy principle [12]: 

i 1 s 2+E E E E   (3.7) 

where E1 and E2 are the energy of molecule before and after scattering, respectively. 

The change of molecular energy E2 - E1 can be given by: 

2 1 i s i s 0( )E E E E h v v h v        (3.8) 

where Δv0 is the frequency change after scattering. Therefore, the Raman shift 

(Raman wavenumber)  can be given by [15]: 

0 0h v v

hc c


 
   (3.9) 

The unit of  is usually defined as cm-1, c denotes the speed of light. 

 

When =0, the molecule absorbs the energy of photon and excited to a virtual state, 

which is followed by an immediate re-radiation then back to original ground state. 

This elastic scattering process is defined as “Rayleigh scattering”, where no energy 

transfers occurs between the photons and molecules. 

 

When >0, the excited molecule in the virtual state goes back to a lower excite state 

rather than the original state, thus the molecule absorbs the energy from the photons. 

This inelastic process is the Raman “Stokes mode”. 
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When <0, the molecule is originally in the excited state before interaction with the 

photons but drops to ground state after scattering, the energy of the molecule is 

transferred to photons. This inelastic process is the Raman “anti-Stokes mode”. 

 

Typically, the Stokes mode and anti-Stokes mode have the same values of , but the 

intensity of anti-Stokes mode is usually much weaker than that of Stokes mode. This 

can be explained by the Boltzmann distribution in that the electrons tend to be in a 

lower energy state [2], that is, there are fewer molecules in the excited state than in 

the ground state at room temperature. 

 

As can be seen in Figure 3.1, the Raman scattering also occurs through a resonance 

process, where the molecule is excited to or very close to a real electronic state, rather 

than a virtual state. Resonance Raman scattering can massively enhance the intensity 

by a factor of 103 to 106, and this has been widely used in the study of 

nanocarbon-based composites [16]. 

 

3.3 Instrumentation 

3.3.1 Raman spectrometer 

 

Figure 3.2 Schematic diagram of a Raman spectrometer. Red line: incident radiation; 
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Blue line: scattered radiation [12, 15]. 

 

A Horiba LABRAM HR Evolution Raman spectrometer equipped with a Kimmon 

Koha 325 nm He-Cd NUV laser, a Coherent 488 nm sapphire laser and a CVI Melles 

Griot 633 nm He-Ne laser was used for the Raman spectra collection in this work. As 

shown in Figure 3.2, an optical microscope was used to observe and find the sample 

for characterization. The laser was focused on the surface of the sample using an 

objective lens and Raman scattering was collected and analyzed by a charge-coupled 

device (CCD). In order to avoid local laser heating and damage on the sample, the 

laser power was minimized to 1-1.5 mW. Generally, the exposure time was 20-30s 

and the signal was accumulated 5 times for denoising. 

 

3.3.2 Raman spectra fitting 

A Lorentzian function is generally used for fitting the Raman spectra to determine the 

band intensity, width and position [15-16]: 
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 (3.10) 

where I is the intensity of Raman band at any given Raman frequency ω. IP is the 

intensity of the Raman band at peak position ω0. 2Г is the full width at half maximum 

(FWHM) of the Raman band. 
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3.3.3 In-situ Raman deformation test 

 

Figure 3.3 Schematic diagrams of (a) PMMA beam with a specimen and strain gauge 

on its top. (b) Four-point bending rig [14]. (c) In-situ Raman deformation test. 

 

In-situ deformation of specimens was performed by transferring the specimens on the 

top of a 5 mm thick PMMA beam. A resistance strain gauge connected to a multimeter 

was fixed close to the specimens using super glue. The change of specimen surface 

strain can thus be monitored by reading the resistance of the gauge (Figure 3.3(a)). 

The beam was inserted into a four-point bending rig (Figure 3.3(b)), which was then 

placed on the stage of the optical microscope in the Raman spectrometer. The beam 

was stretched (or compressed) stepwise and the Raman spectra were collected in-situ 

from the centre of the specimen at each strain level [15], as shown in Figure 3.3(c).  
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3.4 Raman spectra of BNNSs 

 

Figure 3.4 Raman spectrum of a NIMS bulk hBN single crystal [17]. 

 

Crystalline hBN has a D6h
4 space group symmetry and the zone-center optical 

phonons can be given by equation [18]: 

2 1 2 12 2g g u uE B A E      (3.11) 

where A2u and E1u phonon modes are IR active, B1g phonon modes are optically 

inactive and the E2g is the only Raman-sensitive mode, which is related to the G band 

of graphene [8]. Typically, the E2g modes originate from in-plane atomic 

displacements: a high frequency mode due to B atoms and N atoms moving against 

each other within a plane. There is another low frequency mode due to interlayer 

shearing (ISM), which arises in the ultra low frequency region in the Raman spectra. 

Generally, the position of the high frequency intralayer E2g mode of different 

hBN-based materials is reported in the range of 1363-1374 cm-1 [19-20], while the 

position of interlayer shear mode is in the range of 49-52.5 cm-1 (Stokes 

scattering) [19, 21]. The ISM peaks of bulk hBN located at 52.5 cm-1 (Stokes 

scattering) and -52.5 cm-1 (anti-Stokes scattering), and it is predicted that ISM peaks 
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will shift to lower frequency as the number of layers decreases [22]. Figure 3.4 [17] 

demonstrates the typical Raman spectrum of Japan’s NIMS hBN single crystal. A 

strong peak at 1366 cm-1 (Stokes scattering, intralayer shear mode) and two weak 

interlayer shearing peaks are observed. However, it should be noted that the Raman 

signal in hBN is still quite weak in contrast to the cases of graphene, MoS2 etc. This is 

due to the lack of resonance as a result of the wide band gap of hBN compared to 

accessible excitation energies in Raman spectroscopy (excessively-high energy will 

damage the lattice or induce sample heating and a consequent Raman band shift). The 

non-resonant character of Raman scattering in hBN increases the difficulty of Raman 

measurement for the material. Additionally, Raman spectra of hBN-based structures 

do not show a D band due to the lack of a Kohn anomaly [23]. This is the reason why 

majority of previous work about the Raman spectra of BNNSs focused much more on 

the relatively-strong in-plane shear mode, as shown in Figure 3.5 [23-24]. 

 

The Raman E2g band position of BNNSs in different reports in the literature is 

different but all lie within a range between 1364-1372 cm-1 approximately. As 

summarized below the in-plane Raman E2g peak of bulk hBN is at ~1366-1366.8 cm-1 

in relevant papers in Table 3.1: 

 

Table 3.1 In-plane Raman E2g shear mode band positions of BNNSs in different work. 

Reference 
hBN 

source 

Preparation 

Method 

Intralayer Raman E2g shear mode band position (cm-1) 

1L 2L 3L 4L 

 [24] NIMS Scotch tape 1368.3-1370 1363.2-1366.9 1365.5 1365±0.5 

 [23] NIMS Scotch tape 1370.5±0.8 1370.0±0.6 1367.8±0.4 1367.2±0.4 

 [25] NIMS Scotch tape 1369.4 1368.5 - - 

 [26] NIMS Scotch tape 1370.5 1370.0 1368.1 - 

 [27] NIMS Scotch tape 1369.6±0.6 1369.0±0.5 1367.5±0.2 - 

 [27] NIMS Scotch tape 1367.3±0.3* 1367.0±0.1* 1367±0.2* - 
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 [28] NIMS Scotch tape 1366.5* - - - 

 [29] # Scotch tape 1364.7 1364.8 1364.8 1365 

 [29] # Scotch tape 1363.7* 1363.9* 1364.5* 1364.7* 

 [30] # Scotch tape 1366.5 1366.2 ~1366.4 1366.9 

 [31] - CVD ~1373 - - - 

 [32] - CVD ~1370 - - - 

 [33] - CVD ~1371 1370 - - 

 [34] - CVD ~1373 - - - 

 [35] - CVD ~1370    

 [36] - CVD - - ~1373 - 

L - Number of layers; * - the value of suspended BNNSs on wafer with micro-wells. 

# - Manchester Nanomaterials 

 

 

Figure 3.5 Raman spectra of 1-4L BNNSs in different studies [23-24]. 

 

Initially, Gorbachev et al. [24] systematically studied the Raman band position of 

mono-, bi-, trilayer BNNSs, as shown in Figure 3.5(a). It can be observed that the 

peak intensity of E2g mode increases significantly with an incremental number of 
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layers, but it should be noted that the intensity of monolayer hBN is actually 50 times 

smaller than that of 1L graphene’s G peak under the same measurement conditions. In 

addition, monolayer BNNSs show a relatively-large blue shift (2-4 cm-1) with respect 

to the original position of bulk hBN at 1366 cm-1, while the Raman band of bilayer 

BNNSs (~1365 cm-1) shifts slightly downwards. When the crystal is thicker than 5 

layers, no strong peak position variation was observed in this work.  

 

Chen et al. [23, 25] exfoliated BNNSs with different thickness and studied their 

Raman spectra, and did not find the characteristic red band shift of bilayer hBN in 

their Raman results. A uniform and stepwise blue shift from bulk hBN to monolayer 

hBN was usually observed in their work (Figure 3.5(b)). Although different band 

shifts of bilayer hBN were reported, both Gorbachev and Chen [23-25] confirmed that 

the intensity for the BNNSs Raman E2g band is proportional to the number of layers 

for the first several layers and band width gradually decreases with increasing number 

of layers. It can be confirmed that the Raman band of 1L BNNSs is rather weak but 

broad. In addition, some recent work [27-28] upon suspended BNNSs on Si wafers 

with micro-wells has revealed the effect of a strain-induced substrate upon the Raman 

band position of BNNSs, as shown in Figure 3.6. It was therefore proposed that the 

blue shift might be attributed to different flexibility and levels of strain caused by the 

substrate [27]. In addition, some other important factors should be considered when 

collecting Raman spectra and confirming the band position, such as: calibration, local 

temperature increase caused by the laser (which will induce a red shift) [17, 20, 37], 

interlayer interactions between adjacent layers which will slightly elongate B-N bonds 

and induce a phonon softening process - red shift. 
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Figure 3.6 (a-b) Optical and (d-e) AFM images of supported and suspended mono-, bi-, 

tri- and many-layered BNNSs on 90 nm SiO2/Si wafers. (c, f) Raman band positions of 

supported and suspended BNNSs [27]. 

 

More recently, inspired by work on using ultra low frequency (ULF) Raman 

spectroscopy to quantify the number of layers of graphene and other 2D materials [10, 

38], Stenger et al. [17, 37] reported that interlayer shear mode (weaker peak in ULF 

region) can also be used to identify the number of layers (except for monolayer which 

does not have adjacent layers) for BNNSs. A red shift of Stokes scattering peak and 

blue shift of anti-Stokes scattering peak were simultaneously observed when the 

number of layers decreased, as shown in Figure 3.7 [17]. However, relevant 

publications mentioned that a complicated air removal process using argon gas is 

needed before the test, and the sample temperature should be well-controlled below 

50 K to prevent a self-heating induced Raman band red shift. 

 

More recently, Ling et al. [39] found that stimulated Raman scattering (SRS) can 

massively enhance the sensitivity of Raman spectra of BNNSs, which allows the high 

resolution imaging of the BNNSs to be obtained with an exposure time 4 orders of 

magnitude shorter than conventional Raman spectra. The authors also reported that 



Chapter 3  Raman Spectra of BNNSs and BNNTs 

111 

 

the hBN E2g mode is insensitive to the stacking order and polarization of BNNSs, 

meanwhile the intensity of this mode is almost linearly related to the thickness of 

BNNSs up to ~70 nm. This modified Raman technique has great potential to be used 

for rapidly identifying the thickness of BNNSs. 

 

Figure 3.7 Raman spectra of mechanically-exfoliated BNNSs with different number of 

layers in (a) high frequency and (b) ULF regions [17]. (c) Position of interlayer shear 

mode at ULF regions as a function of the BNNSs number of layers. 

 

3.5 Raman spectra of BNNTs 

Density functional theory (DFT) studies [40] and Raman intensity calculations [41-42] 

upon SW-BNNTs predicted that the most intense peak in the spectra should be the 

transverse optical A1 mode, as illustrated in Figure 3.8(a) [40]. A1 mode can be 

constructed by folding the Raman active optical E2g mode (1365 cm-1) of bulk 

hBN [20, 43]. Theoretically [44], the radial breathing mode (RBM) of BNNTs is 

between 100-200 cm-1 (Figure 3.8(b) [42]), but this mode is usually hard to detect due 

to its low frequency. RBM modes are unique and reliable features of SW-BNNTs [20]. 

Calculations of Popov indicated that the Raman band frequency of the RBM mode 

depends highly on the radius of BNNTs, as shown in Figure 3.8(c) [41]; Relevant 
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calculation also predicted that the Raman spectra of BNNTs depend strongly on their 

chiralities (helicities). As shown in Figure 3.8(d) [41], (17, 0) Zigzag, (15, 4) chiral 

and (10, 10) armchair BNNTs exhibit different calculated phonon modes and Raman 

spectra. 

 

Figure 3.8 Theoretical calculation of the Raman spectra of BNNTs. (a) Sketch of A 

modes in a zigzag BN nanotube; (b) ab initio and model Raman spectra of a (16, 0) 

zigzag BN tube and a (10, 10) armchair tube; (c) Calculated radius dependence of the 

frequency of RBM for tubes with radius between 0.5-0.25 nm; (d) Calculated Raman 

spectra of (17, 0) Zigzag, (15, 4) chiral and (10, 10) armchair BNNTs [40-42]. 

 

Experimental measurements for the Raman spectra of BNNTs were also reported, but 

only a very few papers have investigated BNNTs due to difficulties in their 

synthesis [20, 45-46]. Zhi et al. [45] reported that the typical Raman spectrum of 

MW-BNNTs is similar to that of bulk hBN (at 1366 cm-1), which exhibits a strong 

peak at 1363.6 cm-1 (denoted as the G band in other literature). They attributed the ~4 
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cm-1 red shift to lower frequency to curvature-induced phonon softening [40] and 

perfect crystallinity, they also suggested that the FWHM of the BNNT E2g mode is 

always wider than that of bulk hBN, due to a smaller “crystal size”. Arenal et al. [20] 

studied the UV laser-excited Raman spectra of synthesized SW-BNNTs and found a 

different blue shift phenomenon of G band to 1370 cm-1. They attributed this shift to 

the absence of interaction of the neighbouring sheets. The band position is highly 

consistent with that of the 1L BNNSs E2g mode. The paper also provided another 

explanation for Ref 45, as they thought there should not be a distinct E2g band shift 

due to the interaction of neighboring sheets in multi-walled BNNTs. They attributed 

the distinct red shift to anharmonic effects (e.g. local temperature increased by the 

laser). They also attributed the 880 cm-1 peak of the MW-BNNTs in Ref 46 to residual 

boric acid. In this work, experimental studies on armchair SW-BNNTs considered the 

Raman G mode as a composite signal of Ag mode and E2g mode (A1 and Eg modes in 

the case of chiral and zigzag type). Figure 3.9 shows the typical Raman spectra (curve 

(a) in left graph, the peak at 1597 cm-1 is due to the holey carbon membrane of the 

TEM grid) and calculated frequencies of optical A mode and E mode with increasing 

tube diameter [20]. 

 

Figure 3.9 Left: Raman spectra of (a) SW-BNNTs; (b) hBN particles generated during 

the preparation of SW-BNNTs and (c) highly-crystalline hBN powder. Right: 

Calculated frequencies of optical Raman A mode and E modes of SW-BNNTs as a 

function of tube diameter [20]. 
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3.6 Strain-induced Raman band shifts in BNNSs and BNNTs 

3.6.1 Pressure-induced Raman band shifts 

 

Figure 3.10 (a) Pressure-Raman frequency shifts of the interlayer shear mode 

(so-called SRL mode in the graph) and the in-plane (intralayer) shear mode in bulk 

hBN [47]. (b-c) Pressure-Raman frequency shift of the MW-BNNT G band [48]. 

 

It is well-known that Raman bands are strain sensitive and tensile strain upon 2D 

materials causes an increase in the Dirac cone separation leading to phonon softening 

(red shift of Raman peak), while compressive strain leads to phonon hardening (blue 

shift). Our group’s previous work on carbon fibres [49], CNTs [50], graphene [51], 

MoS2 [52] and WS2 [53] has further confirmed this conclusion. Sato et al. [47] first 

reported the Raman band shift of bulk hBN under high pressure, where they 
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pressurized hBN powder in a diamond-avil cell. A 4:1 mixture of methanol/ethanol 

was used as a pressure medium in the cell. The pressure was raised from 1 bar to 110 

kbar and Raman spectra were recorded using a 488 nm laser. Figure 3.10(a) exhibits 

the pressure-Raman frequency plot of the interlayer shear mode and the in-plane 

mode of bulk hBN. The modes both shifted to higher frequencies when pressure was 

increased, and the pressure dependence of the shifts of two modes is nearly linear, 

although a relatively large quadratic effect was observed for the interlayer shear mode. 

The mean shifts of interlayer and in-plane shear mode were estimated to be 0.5 

cm-1/kbar (5 cm-1/GPa) and 0.4 cm-1/kbar (4 cm-1/GPa), respectively. This work 

confirms that the Raman modes of hBN are sensitive to pressure-induced strain. 

 

In 2006, Saha et al. [48] reported the pressure-induced Raman band shift of 

MW-BNNTs. They also used diamond anvil cell technique for the measurements. 

From Figure 3.10(b), an obvious G band blue shift of MW-BNNTs was observed 

when a pressure was applied. A well-fitted linear relationship between applied 

pressure and G band frequency shift can be seen in Figure 3.10(c) and band shift rate 

was calculated to be 4.2 cm-1/GPa, a value close to that of bulk hBN. Additionally, it 

can be deduced from Figure 3.10(b) that a phase transfer from MW-BNNTs to 

amorphous BN occurred after an applied pressure of >12 GPa, as the Raman mode 

totally disappeared even after the pressure was reduced from 12.1 GPa to ambient. 

The increasing band width with incremental pressure further verified the phase 

change during the process. In addition, this work also reported a phase change from 

bulk hBN to wurtzite BN when a high pressure was applied. 

 

3.6.2 Thermally-induced Raman band shifts 

Thermally-induced Raman band shifts of BNNSs have also been reported by a series 

of studies. Li et al. [54] reported -18 cm-1 and -12 cm-1 red shifts for the Raman 
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in-plane E2g mode of ~16.2 nm and ~36.2 nm thick BNNSs, after their temperature 

was increased from -194 °C to 200 °C, respectively. Cai et al. [55] reported the first 

measurement of the thermal conductivity of 1L-3L BNNSs, using an optothermal 

Raman technique. In this work, 1L-3L BNNSs were exfoliated and transferred on Si 

wafer with special microwells and trenches (Figure 3.11(a-b)), thus some regions of 

the BNNSs were suspended. A heating stage was used for controlling the temperature 

of BNNSs and Raman spectra was recorded at each temperature level. It can be seen 

in Figure 3.11(c-d) that both suspended and supported 1L BNNSs exhibit different 

degree of red shift with increasing temperature. As summarized in Figure 3.11(e), the 

band shift rates for 1-3L suspended BNNSs were -0.022±0.001, -0.021±0.001 and 

-0.022±0.001 cm-1/K, respectively, close to that of bulk hBN (-0.019±0.001 cm-1/K). 

They attributed the shift to the (1) thermal expansion of hBN lattice; (2) anharmonic 

phonon-phonon effects. Seremetis et al. [56] reported the temperature-induced Raman 

band shift of thicker BNNSs (Figure 3.11(f)): -0.032 (3.9 nm), -0.022 (41.9 nm), 

-0.017 (137.9 nm,), -0.015 (466.5 nm) cm-1/K, respectively when temperature < 305 

K. It is therefore found the band shift rate of BNNSs decreases with number of layers. 

Very recently, Cai et al. [57] replaced natural boron (NatrualB: 80.1 11B and 19.9% 10B) 

in hBN with pure 10B and 11B and successfully exfoliated 1L 10BN and 11BN 

nanosheets. The thermal-induced Raman band shifts rates of 1L 10BN and 11BN 

nanosheets were -0.022±0.002 and -0.022±0.002, respectively, very close to that of 1L 

NaturalBN measured by an identical method. 
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Figure 3.11 (a-b) Optical and AFM images of mechanically-exfoliated 1L and 2L 

BNNSs and (c-e) Raman E2g band position of suspended and supported 1L-3L BNNSs 

as a function of temperature [55]. (f) Raman E2g band position of 1L BNNSs, few-layer 

BNNSs with different thickness and bulk hBN as a function of temperature [56]. (g) 

Raman E2g band position of suspended 1L 10BNNSs, NaturalBNNSs, 11BNNSs as a 

function of temperature [57]. 

 

In 1991, Exarhos et al. [58] heated a polycrystalline boron nitride coatings from room 

temperature to 2340 K in a tube furnace and simultaneously recorded the in-plane 

Raman E2g band. They found a prominent red shift (< -60 cm-1) at high temperature, 

as shown in Figure 3.12(a). Stenger et al. [17] reported a -0.023 cm-1/K and -0.06 

cm-1/K temperature coefficients for in-plane and interlayer shear mode frequency 
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shifts in bulk hBN single crystals, respectively (Figure 3.12(c)). Later, Arutyunyan et 

al. [59] first reported the thermally-induced Raman band shift of SW-BNNTs. They 

heated a SW-BNNTs contained boron nitride soot from 77-600 K in a oven and 

estimated a -0.014 cm-1/°C and -0.027 cm-1/°C thermal coefficient for the G mode of 

BNNTs and in-plane E2g mode of bulk hBN, respectively (Figure 3.12(b)). Lu et 

al. [60] studied the Raman band shift of MW-BNNTs with a bamboo-like structure 

and reported a -0.01 cm-1/K temperature coefficient of the G mode in MW-BNNTs. 

 

Figure 3.12 (a) Raman spectra of bulk hBN film at 293 K and 2325 K [58]. (b) 

Dependence of Raman G band position in hBN and SW-BNNTs on the 

temperature [59]. (c) Temperature-Raman frequency shift graph of interlayer shear 

mode and in-plane (intralayer) shear mode in bulk hBN single crystals [17]. 
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3.6.3 Mechanical deformation-induced Raman band shifts 

To our knowledge, tensile and compressed strain-induced Raman band shifts of 

BNNSs has only been reported in very limited recent work, while no band shift of 

BNNTs were reported before. Cai et al. [27] exfoliated and transferred BNNSs on 

SiO2/Si wafer, then heated the BNNSs/wafer up to 400 °C under argon atmosphere for 

1 h. It should be noted particularly that the Raman measurement was preformed after 

the heated sample was cooled down to room temperature. The thermal expansion 

coefficient of SiO2 coating (0.75 × 10−6 K−1) is much higher than that of hBN (1.91 × 

10−9T − 2.96 × 10−6) °C−1 [61] and an interfacial compressive strain (the BNNSs 

expanded but the SiO2 coating shrank) will be generated during the heating-cooling 

process. This deduction was verified by the blue shift in Raman spectra before and 

after thermal treatment, as shown in Figure 3.13. The Raman E2g band blue shift rates 

for the 1L, 2L, 3L BNNSs were 3.0±0.7 cm-1, 2.7±0.8 cm-1, 2.2± 0.6 cm-1, 

respectively and no band shift was observed for bulk hBN. They also performed a 

first-order calculation and deduced the Grüneisen parameter of 1L BNNSs to be 0.64, 

which is smaller than that of 1L graphene (1.2) [62] but much higher than that of bulk 

hBN (0.1) [63]. 
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Figure 3.13 Raman spectra of (a) bulk and (b) 1L BNNSs on SiO2/Si wafer; (c-e) 

Raman in-plane E2g band blue shift of 1L, 2L, 3L BNNSs before and after 400 °C 

thermal treatment-cooling down process [27]. 

 

More recently, Bera et al. [64] reported the blue shifts of Raman E2g mode of wrinkled 

BNNSs with different number of layers (Figure 3.14(a)). It was reported that the 

Raman band position of free-standing BNNSs is independent of number of layers [17], 

thus the blue shift was attributed to the residual strain in the wrinkled BNNSs. The 

residual strain in the BNNSs was found to increase with an increasing number of 

layers as more strain was relaxed by wrinkling in thinner BNNSs. Androulidakis et 

al. [30] first studied the uniaxial strain-induced Raman band shift of 2L-4L BNNSs. 

They exfoliated and transferred 2L-4L BNNSs on a SU-8/PMMA substrate, the 

polymer substrate was then stretched uniaxially to different strain levels. Although the 

Raman signal of BNNSs on polymer substrate is very weak due to the wide band gap 



Chapter 3  Raman Spectra of BNNSs and BNNTs 

121 

 

of hBN, both obvious band splitting and a shift to lower frequency with increasing 

tensile strain was observed on the E2g band of 2L-4L BNNSs at ~1368 cm-1 (Figure 

3.14(b)). It was found that the shift of E2g band frequency showed a linear relationship 

with applied strain at the beginning but soon become irregular when the strain was 

higher than ~0.2-0.3% (Figure 3.14(c-d)), suggesting a relatively poor interfacial 

interaction between the BNNSs and polymer substrate. In addition, the E2g band shift 

rates were almost constant when number of layers increased from 2-4, demonstrating 

strong layer-layer bonding inside BNNSs. On the other hand, it must be noted that the 

curve fitting is quite difficult and a relatively large error may exist in this work. 

 

Figure 3.14 (a) Raman spectra of wrinkled CVD-grown BNNSs films with different 

thickness on sapphire substrate [64]. (b) Uniaxial-strain induced Raman E2g band shift 

of 2L BNNSs. The position of Raman E2g band of (c) 2L and (d) 4L BNNSs as a 

function of the tensile strain [30]. 
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3.7 Raman spectra of 1D materials, 2D materials/polymer 

nanocomposites 

Previous work on CNTs, graphene/polymer composites in Manchester has 

demonstrated that Raman spectroscopy is a powerful non-destructive technique for 

investigating the reinforcement of 1D and 2D materials on polymer matrix [65-66]. 

Here a brief introduction of the relevant Raman techniques will be given. 

 

3.7.1 Raman spectra of 2D graphene/polymer nanocomposites 

Interface/critical length In 2010, Gong et al. [51] reported the uniaxial tensile 

strain-induced Raman band shift of a 1L graphene sandwiched by two thin layers of 

polymers (i.e. 1L graphene model composite). The linear Raman 2D band shift rate of 

the center of the 1L graphene flake was found to be around -60 cm-1/% strain, while 

this linear shift became irregular after 0.4% strain (Figure 3.15(a)), suggesting 

graphene/polymer interfacial failure at low strain. The authors then monitored the 

Raman 2D band shifts along the tensile axis across the 1L graphene flake and 

estimated the strain distribution from the edges to the center. It was found that the 

strain builds up from the edges and kept constant across the middle of the flake. The 

strain distribution at 0.4% matrix strain (Figure 3.15(c)) could be fitted well by 

shear-lag theory with ns~20, indicating good interfacial bonding between graphene 

and polymer matrix. In this case, the interfacial shear stress was estimated to be ~2.3 

MPa, which is a relatively low value for polymer composites. In addition, the 

interfacial shear stress further decreases to only around ~0.3 MPa after matrix strain 

increases to 0.6% and interfacial failed (Figure 3.15(d)). The above results 

demonstrate that the interfacial adhesion between polymer matrix and pristine 

graphene is weak as stress can only be transferred through van der Waals bonding 

from the matrix to the graphene. Furthermore, it can be seen in Figure 3.15(c) that 1.5 
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μm is needed for the strain to rise from zero at the edges to around 90% of the middle 

plateau value, making the critical length (lc) of the graphene reinforcement of ~3 μm. 

Therefore, it is suggested that 1L graphene flakes of ~30 μm (~10lc) are needed for 

sufficient reinforcement on polymers.  

 

Later, Li et al. [67] studied the deformation of wrinkled 1L graphene and found that 

the downshift rate of its 2D band (-12.5 cm-1/% strain) decreases to less than 25% of 

that of mechanically exfoliated 1L graphene (Figure 3.15(b)). It was deduced that the 

delaminated wrinkles separate the flat flake into many ~1 μm (<lc of 1L graphene) 

long isolated islands that slow down the shift rate. 

 

To prove the enhanced interface of functionalized graphene/polymer, Zhang et al. [68] 

oxidized 1L graphene and studied its adhesion with polymer substrate using in-situ 

Raman deformation test. As shown in Figure 3.15(e), interfacial sliding happened at 

the edges of pristine 1L graphene at relatively high matrix strain and strain in the flake 

could no longer be well fitted by shear-lag theory. In contrast, interfacial stress 

transfer at high matrix strain is more effective in the case of oxidized monolayer and 

the interfacial shear stress after interfacial sliding was calculated to be ~1.7 MPa, four 

times higher than that of pristine 1L graphene. 

 

In summary in-situ Raman deformation tests can be used for investigating the 

interfacial adhesion between 2D reinforcement and polymer matrix. Moreover, strain 

mapping can estimate the lc of 2D materials and detect the deformation-induced 

fragmentation inside the nanocomposites [69]. 
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Figure 3.15 Uniaxial-strain induced Raman 2D band position of (a) mechanically 

exfoliated 1L graphene sandwiched by two thin layers of polymers [51] and (b) 

wrinkled 1L graphene as a function of tensile strain [67]. Distribution of strain in the 1L 

graphene in the direction of the tensile axis at (c) 0.4% and (d) 0.6% strain [51]. 

Distribution of strain in the (e) pristine 1L graphene and (f) oxidized 1L graphene in the 

direction of the tensile axis at different strain levels [68]. 

 

Layer-layer stress transfer efficiency Gong et al. [70] further studied the effect of 

number of layers on the effective Young’s modulus of graphene in the model 

nanocomposites, by comparing the 2D band shift rate of 1L-3L graphene with and 
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without polymer top coating. It was found that the band shift rate of 1L graphene is 

independent of the existence of top coating, while that of 2L graphene obviously 

decreases if stress can only be transferred from bottom polymer substrate. This 

suggests the relatively poor stress transfer between the graphene layers, as the shift 

rate of uncoated 3L and few-layer graphene further decreases (see Figure 1.21(b)). 

The authors came up with a layer-layer stress transfer efficiency of ~0.6 for coated 

graphene, i.e. the effective Young’s modulus of 3L graphene drops to 85% of that of 

1L graphene, while the reinforcing efficiency of >7L graphene further drops to lower 

than half. 

 

Bulk nanocomposites Raman spectroscopy can also be used for evaluating the 

morphology and reinforcement of graphene-based materials nondestructively in a 

polymer matrix. First of all, the dispersion of the graphene-based 2D materials can be 

estimated by mapping the intensity ratio of the graphene band relative to that of the 

band of matrix. Figure 3.16(a) [71] depicts the dispersion of graphite nanoplatelets 

(GNPs) in epoxy evaluated by mapping the intensity ratio of graphene 2D band and 

an epoxy band. The red coloured areas in the mapping graph represent the 

agglomeration of GNPs. It can be seen that the density of red areas increases with the 

GNPs concentration, suggesting that 2D materials tend to agglomerate in the 

composites at high loading.  

 

Secondly, the orientation of graphene-based 2D materials in the polymer matrix can 

be characterized by polarized Raman spectroscopy. Figure 3.16(b) [72] demonstrates 

the polarized Raman study (VV polarization) of a graphene oxide (GO)/polymer 

nanocomposites film where GO flakes are randomly oriented in-plane in the matrix. 

The incident laser is parallel to the z axis (perpendicular to the GO flakes) in the 

schematic diagram and the Raman D band intensity of GO (ID) keeps almost constant 

as the film is rotated (Figure 3.16(b)-2). In contrast, when the incident is parallel to 
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the x axis, the intensity of D band maximizes when the laser is parallel to the 

specimen edge plane but minimizes when it is perpendicular to the edge (Figure 

3.16(b)-3). It is found that Figure 3.16(b)-3 can be fitted well by the equation: ID= 

0.56cos4θx+0.44 (where θx is the rotate angle of the film relative to y axis in the 

schematic), indicating that VV polarized Raman spectroscopy can precisely reflect the 

orientation of 2D materials in the composites.  

 

Finally, the effective Young’s modulus of graphene-based 2D materials can be 

evaluated from the slope of the plot of 2D or D band position against applied uniaxial 

strain [65]. For example, Li et al. [72] reported the uniaxial tensile strain-induced 

linear Raman D band downshifts of graphene oxide in GO/epoxy nanocomposites 

with different GO loadings (Figure 3.16(c)-1, 2). The authors found the D band shift 

rate decreases with GO loading, which is highly consistent with the change of 

effective modulus of GO calculated from modified rule of mixtures as illustrated in 

Figure 3.16(c)-3. For graphene based 2D materials, the effective Young’s modulus Eeff 

can be estimated by 

D 2D
eff

1050 1050
(GPa)

30 60
E

 

 

 
 

 
 (3.12) 

where ∂ωD/∂ε and ∂ω2D/∂ε are the band shift rate of D band and 2D band, respectively. 

1050 (GPa), 30, 60 are the intrinsic Young’s modulus, D band shift per unit strain [73], 

2D band shift per unit strain of 1L graphene, respectively. 
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Figure 3.16 (a) Raman mappings of the intensity ratio of the graphene 2D band and an 

epoxy band at 2925 cm-1 for the GNPs/epoxy nanocomposites at different GNPs 

loadings [71]. (b) Polar plots of the normalized intensity of the graphene oxide D band 

using a VV polarization: (2) parallel to z axis, (3) parallel to the x axis in the 

schematic [72]. (c) Uniaxial tensile strain-induced Raman D band downshift of 

graphene oxide (denoted as aGO in this work) in a 0.2 wt% aGO/epoxy nanocomposite 

and (3) D band shift rates and calculated effective modulus of aGO in nanocomposites 

with different aGO loadings [74]. 

3.7.2 Raman spectra of 1D nanotube/polymer nanocomposites 

Identifying individual SWCNTs in nanofibers It is well known that the band gap of 

SWCNTs depends on their chirality [75] and in any batch of SWCNTs prepared by 

classical methods (such as HiPco) there are both metallic and semiconducting 
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SWCNTs with totally different chiral vectors and band gaps. Hence, when the 

SWCNTs are excited by a laser with particular energy, only very limited number of 

nanotubes whose band gaps are close to the laser energy undergo resonance Raman 

scattering (Figure 3.17(a)) in which there is a 103-106 enhancement on their Raman 

band intensities. Additionally, the radial breathing mode (RBM, illustrated in Figure 

3.17(b)) frequency (ωRBM) of SWCNTs is independent of the chirality but sensitive to 

the nanotube diameter d [76], which can be expressed as 

RBM

A
B

d
    (3.13) 

where A and B are constants affected by the nanotubes preparation method and 

surrounding environment. Therefore, when one has some SWCNTs that are resonant 

with the exciting frequency of the laser then one obtains a series of RBMs in the range 

of 180-320 cm-1 [77-78]. When one has only one isolated nanotube in resonance with 

the laser then one obtains an individual RBM. Therefore, resonant Raman 

spectroscopy can be used to detect individual SWCNTs in the nanocomposites. Figure 

3.17(c-e) exhibits the Raman RBMs of individual electrospun 0.04% SWCNTs/PVA 

nanofibres excited by 1.49 eV, 1.59 eV, 1.96 eV lasers and some single RBMs can be 

seen in the three graphs, indicating the existence of isolated SWCNTs in the 

nanofibres. 

 

Figure 3.17 (a) Schematic diagram of the microstructure of a single SWCNTs/polymer 
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nanofibre, in which the shaded nanotube is the only one in resonance with the laser spot 

(dashed line) [77]. (b) Schematic diagram of the RBM of SWCNTs. RBMs of 

individual electrospun 0.04% SWCNTs/PVA nanofibres excited by (c) 1.49 eV, (d) 1.59 

eV, (e) 1.96 eV lasers [78]. 

 

Stress transfer between adjacent layers within double-walled (DW) and MWCNTs 

Similar to the case of graphene, the layer-layer bonding within DWCNTs and 

MWCNTs can be evaluated by understanding their Raman bands shift rate. Cui et 

al. [79] characterized the Raman 2D (denoted as G’ in Ref 79) band shifts of both 

DWCNTs and SWCNTs in CNTs/epoxy nanocomposite. Different from the 2D band 

of SWCNTs (Figure 3.18(b)) which is a typical single band, the Raman 2D band of 

DWCNTs (Figure 3.18(a)) can be fitted as two sub-bands 2D1 and 2D2 corresponding 

to the spectra of inner walls and outer walls of the DWCNTs. It is found that the band 

shifts of 2D1 band (-1.1 cm-1/% strain, Figure 3.18(c)) is much lower than that of 2D2 

band (-9.2 cm-1/% strain, Figure 3.18(d)), indicating a very poor stress transfer from 

outer shell to inner shell.  

 

Deng et al. [80] found that the 2D band shift rate of MWCNTs (-3.4 cm-1/% strain) in 

0.1 wt% CNTs/epoxy nanocomposite is over four times lower than that of SWCNTs 

(-14.1 cm-1/% strain) (Figure 3.18(e)). On the other hand, CNTs/epoxy interfacial 

slippage occurred for the SWCNTs at 0.5% strain while the inner-wall slippage 

delayed the outer shell/epoxy interfacial failure in the case of DWCNTs (i.e. better 

interfacial stress transfer). The authors modelled the deformation of MWCNTs and 

reported a ~0.7 interlayer stress transfer efficiency for the MWCNTs/epoxy 

nanocomposites (Figure 3.18(f)). This work also suggested that the outer shell of the 

MWCNTs takes the majority of the load in the nanocomposites and increasing 

number of inner layers decreases both the layer-layer stress transfer efficiency and the 

reinforcement efficiency of the nanotubes. 
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Figure 3.18 Raman 2D bands of (a) DWCNTs and (b) SWCNTs in CNTs/epoxy 

nanocomposites. Uniaxial tensile strain-induced Raman shift of (c) 2D1 band for the 

inner walls and (d) 2D2 band for the outer walls of the DWCNTs [79]. (e) Raman 2D 

band position of SWCNTs and MWCNTs in 0.1 wt% CNTs/epoxy nanocomposites as a 

function of strain. (f) Measured Raman 2D band position of MWCNTs and theoretical 

simulation of layer-layer stress transfer efficiency parameters (straight lines) as a 

function of strain [80]. 

 

Orientation and reinforcement of CNTs in nanocomposites CNTs demonstrate 

highly anisotropic mechanical properties, their longitudinal modulus (~1000 GPa) is 

almost 70 times the transverse modulus (~15 GPa) [81-82], the mechanical properties 

of corresponding nanocomposites are thus highly determined by the orientation of 1D 

nanotubes. Polarized Raman spectroscopy is a powerful technique in evaluating the 

orientation of CNTs (particularly individual SWCNTs) in the nanocomposites. This is 

based on the antenna effect where the Raman band intensity of 1D nanotubes is a 

maximum when the nanotube axis is parallel to the incident and scattered laser and a 

minimum when the nanotube axis is perpendicular to the laser polarization [16], as 

illustrated in Figure 3.19(a) [83]. Generally, a VV configuration, where both the 

incident and scattered laser are parallel to the axis of the spectrometer, and a VH 

configuration, where incident light is parallel and the scattered laser is perpendicular 

to the axis, are used for polarized Raman characterization. For the VV configuration, 

the Raman band intensity IVV for perfectly-aligned CNTs is proportional to cos4α, 
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where α is the angle between the nanotube axis and laser polarization [83].  

 

Very recently, Chang et al. [84] reported the polarized Raman study of the orientation 

of BNNTs in nanocomposites fibres, Figure 3.19(b) and Figure 3.19(c) demonstrate 

the intensity change of BNNTs Raman G band (~1370 cm-1) with fibre axis/laser 

angle under a VV configuration in a BNNTs/polyacrylonitrile (PAN) fibre without and 

with an extra 12× hot drawing step, respectively. It is very clear that the BNNTs in 

drawn fibres have higher orientation, which is reflected by more obvious change on 

the intensity of the Raman band with polarization angle in Figure 3.19(c). 

 

Figure 3.19 (a) VV polarized Raman spectra of a SWCNT/PMMA fibre at different 

angles relative to the axis of laser polarization [83]. (b) Polar plots of the BNNT Raman 

G band (~1370 cm-1) intensity as a function of rotation angle under a VV configuration 

in the BNNTs/PAN fiber without and with an extra 12× hot drawing [84]. 

 

Based on the polarized Raman study and in-situ deformation of oriented 

SWCNTs/PVA electrospun nanofibre and randomly distributed composite film, Deng 

et al. [85] suggested that the effective Young’s modulus of SWCNTs (Eeff) in the 

nanocomposites can be given by 

0
eff

0.05

S
E    (3.14) 

where S0 is the Raman 2D band shift rate, -0.05 represents the -5 cm-1/% universal 

calibration 2D band shift rate for 1D carbon fibres [14]. For perfectly-aligned 

SWCNTs in the nanocomposites, S0=Saligned(0), while for randomly-oriented system, 
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S0=1.3SVV(0)=3.3SVH(0). 

 

3.8 Aims of this project 

Chapter 1, 2 have suggested that both BNNSs and BNNTs are very promising 

reinforcements for polymer materials, but their morphology and structure in the 

nanocomposites have not been studied systematically unlike graphene and CNTs. 

Chapter 3 has shown that (1) Raman spectra of BNNSs and BNNTs are strain 

sensitive and (2) Raman spectroscopy has been widely used on investigating the 

deformation of carbon-based 1D and 2D materials and their reinforcement on polymer 

matrix. However, different from the much stronger resonant Raman scattering of 

graphene and CNTs, the activation of resonant Raman scattering in BNNSs and 

BNNTs is far more difficult due to their wide band gap. This is the reason why 

BNNSs and BNNTs in nanocomposites have been only rarely studied using Raman 

spectroscopy. Nonetheless, it is still possible to excite the electrons of BNNSs and 

BNNTs to a virtual state and obtain non-resonant Raman scattering, although this 

signal is significantly weaker than would be achieved with resonance Raman 

scattering. 

 

This project will look at the application of non-resonance Raman spectroscopy for the 

study of BNNSs & BNNTs-reinforced nanocomposites in the following areas: 

 

For 2D BNNSs: 

1. To study the critical length of few-layer BNNSs by linear Raman mapping across 

single BNNS flake. 

2. To estimate the layer-layer stress transfer efficiency in BNNSs by comparing the 

Raman band shift of BNNSs with different thickness. 

3. To investigate the effect of dispersion, thickness, aspect ratio, interface of BNNSs 
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on their reinforcement on PVA matrix nanocomposites, by the use of Raman 

spectroscopy and mechanical testing. 

 

For 1D BNNTs: 

1. To study the dispersion, bundling, orientation, interface, effective modulus of 

BNNTs in nanocomposites using non-resonance Raman spectroscopy. 

2. To investigate the effect of functionalization of BNNTs with –OH groups, upon 

both their dispersion and stress transfer in the nanocomposites. 

3. To prepare electrospun BNNTs/PVA nanofibres and study the orientation of BNNTs 

using polarized Raman spectroscopy. 
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Chapter 4  Stress Transfer in hBN Nanosheets* 

4.1 Introduction 

As reviewed in Chapter 1, two-dimensional (2D) hexagonal boron nitride (hBN) 

nanosheets (BNNSs) exhibit extraordinary oxidation resistance [1] and chemical and 

thermal stability [2-3]. In addition, the reduced electron-delocalization in the B-N π 

bonds leads to a large ~6 eV indirect band gap [4], making BNNSs both electrically 

insulating and optically transparent [5]. The exceptional thermal and electrical 

properties of BNNSs suggest that they have potential to be used as nanofillers for 

polymer nanocomposites [6-7] and researchers on BNNS/polymer composites have 

concentrated principally upon the modification of the thermal conductivity and 

insulating properties by the addition of BNNSs [8-12]. Mechanical reinforcement has, 

in contrast, been less well studied (see Chapter 2). 

 

Although BNNSs have been investigated for mechanical reinforcement for a number 

of years, it is only recently that their fundamental mechanical properties have been 

studied systematically [13]. By using AFM nanoindentation [14], the Young’s 

modulus of exfoliated single-crystalline monolayer (1L) BNNSs was measured to be 

0.87 ± 0.07 TPa with a breaking strengths of 70.5±5.5 GPa. Such impressive 

mechanical properties make BNNSs amongst the strongest insulators. More 

importantly, this work also revealed that interlayer bonding within BNNSs appears to 

be much stronger than in the case of multi-layer graphene. The Young’s modulus and 

strength of graphene decrease rapidly with increasing thickness. Both properties 

remain almost constant for BNNSs when the number of layers increases from 1 to 9. 

This conclusion was further confirmed by the Raman spectroscopy study from 

                                                 

*This chapter is based on a paper, “Interlayer and Interfacial Stress Transfer in hBN 

Nanosheets”, 2D Materials, 2021. 
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Androulidakis et al. [15], where the uniaxial strain-induced in-plane E2g Raman mode 

(normally denoted as the “G band”) shift rates of BNNSs was almost constant when 

the number of layers increased from two to four. However, the level of layer-layer 

stress transfer efficiency of BNNSs during deformation is, to our knowledge, yet to be 

quantified. 

 

In the present chapter, Raman spectroscopy is used to study the effect of both the 

BNNS thickness and lateral dimensions upon stress transfer from a polymer substrate. 

The uniaxial strain-induced G band shift rates of BNNSs with different thickness from 

6.5 nm to ~100 nm are measured and the layer-layer stress transfer efficiency of 

BNNSs is determined. Both the BNNS/polymer interfacial adhesion and the BNNSs 

lateral length for realizing efficient interfacial stress transfer are evaluated by mapping 

the strain along a hBN nanosheet of 11 μm length and 17 nm in thickness at 

incremental substrate strain. This work will provide guidance on optimizing the 

reinforcement of polymer-based nanocomposites by few-layer BNNSs. 

 

4.2 Experimental 

4.2.1 Materials 

 



Chapter 4  Stress Transfer in hBN Nanosheets 

142 

 

Figure 4.1 Schematic of tape exfoliation of BNNSs. 

For mechanical exfoliation, large commercial hexagonal boron nitride (hBN) single 

crystals were purchased from HQ Graphene and used as received. The single crystals 

were exfoliated mechanically and the flakes transferred using the standard tape 

cleavage technique [16]. The BNNSs were exfoliated using blue adhesive tape (Nitto 

Denko Corporation) and deposited directly on the centre of a rectangular PMMA 

beam with no top coat applied, as illustrated in Figure 4.1. 

 

4.2.2 Characterization 

The BNNSs on the PMMA beams were identified and characterised using the Zeiss 

optical microscope on a Horiba LabRAM Evolution HR spectrometer with a 50 lens. 

The thickness of the BNNSs on the beams was measured using a Nanowizard atomic 

force microscope (AFM) (JPK Instruments) operated in the QI mode. 

 

4.2.3 In situ Raman Deformation Studies 

The Horiba LabRAM Evolution HR spectrometer equipped with a 488 nm sapphire 

laser was used for the analysis of the mechanically-exfoliated BNNSs. The in-situ 

Raman deformation analysis was conducted by inserting the BNNS-loaded PMMA 

beams into a four-point-bending rig fixed on the Raman microscope stage. A 

resistance strain gauge was used on the PMMA beam surface to monitor the strain 

applied on the PMMA substrate. The beams were deformed up to 0.4% strain in ~0.04% 

intervals and Raman spectra were collected and peak fitted at each strain level. The 

exposure time for each Raman scan was 20 s with a power output ~1.3 mW and a 

laser spot size of ~2 μm using a 50 objective lens. The most prominent Raman band 

of hBN is the E2g mode which originates from in-plane atomic displacement and is 
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equivalent to the G band of graphene [17]. Raman line mapping was undertaken using 

a 100 objective lens. 

 

4.3 Results and Discussion 

4.3.1 Strain-induced Raman band shifts 

Figure 4.2 gives the result of in-situ Raman deformation studies of two BNNSs 

transferred onto a PMMA beam. An incremental strain up to 0.4% was applied 

parallel to the long axis of the BNNSs as shown in Figure 4.2(a). The Raman spectra 

obtained at three different spots (marked and denoted as spots 1 (red), 2 (black), 3 

(Green) in Figure 4.2(b&c)) were recorded simultaneously at each strain level. As 

shown in Figure 4.2(e-g), the measured thickness of the BNNSs at each spot 1-3 is 

10.0 nm, 8.8 nm and 20.0 nm, respectively. The corresponding spectra obtained under 

similar conditions at each spot are shown in Figure 4.2(d) and it can be seen that spot 

3, from the thickest BNNS, exhibits the strongest hBN G band (the very intense peak 

at ~1450 cm-1 is C-H band of PMMA). 

 

Figure 4.2 (a) Optical micrograph and (b&c) AFM images of 3 marked spots on the two 
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BNNS flakes. (d) Raman spectra of the 3 marked spots on the BNNSs. (e-g) The height 

profiles correspond to the three solid lines in (b&c). (h-j) Raman spectra of the 3 

marked spots on the BNNSs before and after up to 0.24% tensile strain was applied. (k) 

The position of Raman G band as a function of tensile strain for the 3 marked spots on 

the BNNSs. 

 

It can be seen in Figures 4.2(h-j) that the G bands of the Raman spectra collected at 

the three spots all shifted to lower wavenumber under the application of tensile strain. 

Figure 4.2(k) shows that there was a linear downshift to lower frequency up to ~0.2% 

strain and the derived shift rates in the low strain region for spots 1-3 are -8.1 ±1.6 

cm-1/%, -9.4 ± 0.6 cm-1/%, -7.7 ± 0.9 cm-1/%, respectively. These measurements show 

that the shift rate drops slightly as the thickness of the BNNSs increases from 8.8 nm 

to 20 nm. This suggests that, unlike few-layer graphene, where there is a significant 

decrease in shift rate (per % stain) with increasing flake thickness due to easy 

inter-layer sliding [18], the layer-layer interaction inside the BNNSs is relatively 

strong [13, 15]. These rates of G-band shift are similar to those reported in an earlier 

study upon the deformation of exfoliated BNNSs on a PMMA substrate [15]. Some 

broadening G-band was sometimes observed as shown in Figure 4.3 but we did not, 

however, see any band splitting, possibly as the result of the low levels of applied 

strain used in our study.  

 

It can also be observed in Figure 4.2(k) that the downshift of the three spots reduces 

when the strain exceeds ~0.2%, indicating possible BNNS slippage on the substrate at 

a relatively low strain. This implies that surface modification of pristine BNNSs may 

be necessary ensure their interfacial adhesion with a polymer matrix in order to 

realize good reinforcement, as we have reported in a study upon hBN nanotubes in 

nanocomposites [19], and will be demonstrated in Chapter 6. 
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Figure 4.3 Width of the G band as a function of strain during deformation for the band 

shifts shown for spots 1-3 in Figure 4.2. 

 

4.3.2 Interlayer stress transfer 

To investigate further the effect of the number of layers, we exfoliated more BNNSs 

and studied their Raman G band shift rates as a function of thickness (see Table 4.1). 

The highest downshift rate (-11.9 cm-1/%) was found for a hBN nanosheet of 9.4 nm 

thickness (28 layers, assuming an individual layer thickness of 0.333 nm [20]), and 

the shift rate was found to gradually decrease with an increasing number of layers 

eventually dropping to ~ -2cm-1/% when the thickness increased to ~100 nm (300 

layers). The data in Table 4.1 are plotted in Figure 4.4. They are fitted to the equation 

for the effect of the number of layers upon the Raman band shift rate (d/d) derived 

in a previous study upon few-layer graphene [18] 

 
G reference

G

(d / d )
(d / d )

( 1)N k N

 
  

 
 (4.1) 

where N is the number of layers and k is the interlayer transfer efficiency. The 

parameter (dωG/dε)reference is the reference G band shift rate and taking this to be 
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-11cm-1/%, gives interlayer transfer efficiency k of ~0.99 (i.e. 99% efficient). This is 

much higher than the stress transfer efficiency determined for few-layer graphene (0.6 

– 0.8) [18]. Most of the measurements in Figure 4.4 were taken during deformation 

from a region approximately the middle of the BNNS. It will be shown below that the 

strain will vary with position on the flake which might account for some of the scatter 

of the data in Figure 4.4. 

 

The Grüneisen parameter can be determined using the relationship 

G
G 0

G

 = 
(1 )




  
 (4.2) 

where the Raman frequency of the G band (𝜔G
0) can be fixed at 1366 cm-1 and the 

Poissons ratio of the PMMA matrix v=0.35 [15, 21]. Setting G/ = (dωG/dε)reference, 

the G of the BNNS is calculated to be 1.23, a value close to the measured G for 

BNNS with a >10 number of layers (1.04) reported by Androulidakis et al. [15]. 

 

Table 4.1 Raman G band shift rate of exfoliated BNNSs with lengths > 10 m and 

different thickness 

Thickness 

(nm) 

Distance to edge 

(μm) 

Raman shift rate (cm-1/%) Flake length (μm) 

6.5  5.9 -6.6±0.1 19.3 

8.8 12.7 -9.4±0.6 27.3 

9.4  13.7 -11.9±0.9 29.3 

10 11.2 -8.1±1.6 27.3 

17 6.5 -5.4±0.6 11.1 

20 7.4 -7.7±0.9 23.5 

25 9 -6.2±0.4 45.5 

43 26.6 -4.0±0.4 59 

54 7 -4.6±0.6 19.2 



Chapter 4  Stress Transfer in hBN Nanosheets 

147 

 

68 9.6 -2.8±0.1 25 

94 6.1 -2.9±0.2 > 100 
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Figure 4.4 Raman G band shift rate of BNNSs as a function of number of layers. The 

curve is Equation (4.1) plotted using a value of (dωG/dε)reference of -11 cm-1/% strain. 

 

The evaluation of the parameter k can also be used to predict the dependence of the 

Young’s modulus of a 2D material in a nanocomposite upon the number of layers, N. 

In the case of 2D materials laid on the surface of the polymer beam without any top 

coating, such as in this present study, the effective modulus Eeff is given by [18] 

 
2D material

eff

( 1)

E
E

N k N


 
 (4.3) 

where E2D material is the Young’s modulus of the 2D material monolayer. A value of k = 

0.99 means that Eeff will only fall to half of the monolayer value for 100-layer BNNS 

(N = 100). This can be contrasted with the behaviour of multilayer graphene for which 

k is in the range of 0.6-0.8. The modulus falls rapidly to half the monolayer value for 

N = 5 when k0.7. Hence it appears that it is less important to achieve a high degree 

of exfoliation to very thin nanosheets, when using hBN in nanocomposites, than in the 

case of graphite and graphene. 
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4.3.3 Strain mapping 

Previous work on 1L graphene [22] has demonstrated that it is possible to monitor 

stress transfer from a substrate to the flake of a 2D material by mapping the strain 

along the flake.  

 

Figure 4.5 (a) Optical micrograph and (b) AFM image of the hBN nanosheet used for 

linear Raman strain mapping (the black square in (b) marks the spectra collection 

position for (d-f)). (c) The AFM height profile corresponding to the solid red line in (b). 

(d) Raman spectrum of the hBN nanosheet. (e) Raman spectra of the BNNS obtained 

before and after a 0.2% tensile strain was applied. (f) The position of G band position as 

a function of tensile strain. Distribution of strain in the hBN nanosheet in the direction 

of the tensile axis along the solid line in (b) at: (g) 0.05%, 0.1% strain, (h) 0.15% strain 

and (i) 0.30% strain. 
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Figure 4.5(a&b) shows a hBN nanosheet of 11 μm length and 17 nm (Figure 4.2(c)) in 

thickness deformed in tension parallel to its axis. To improve the spatial resolution of 

the linear strain mapping, an objective lens with the highest resolution (×100) was 

used to minimize the laser spot size to ~1.5 μm. Thus an intense G band for the BN 

nanosheet can be seen in Figure 4.5(d). Figure 4.5(e) shows the Raman spectra 

obtained from the middle of the nanosheet (marked by a black square in Figure 4.5(b)) 

before and after 0.2% strain was applied. It can be seen that the G band clearly shifts 

to lower frequency and broadens after deformation. The broadening is a result of band 

splitting [15] but the band has for simplicity been fitted to a single peak in this present 

study. As shown in Figure 4.5(f), there is a linear red shift of the G band with stepwise 

straining up to 0.15%. The shift stops at 0.2% strain and eventually became irregular 

when a higher tensile strain was applied. 

 

The Raman G band position was monitored along the solid line in Figure 4.5(b) in 1 

μm steps. Figure 4.5(g) shows the variation of axial strain across the BNNSs flake 

when a low strain (0.1%) was applied to PMMA substrate. It can be seen that the 

strain builds up from the two edges and becomes constant along the middle of the 

nanosheet where the strain in the flake equals to the applied matrix strain. This is 

exactly analogous to what was observed for the strain distribution of a 

polymer-sandwiched graphene monolayer under relatively low strain (<0.4%) [22] for 

which there was good bonding between 2D material and polymer matrix. This 

behaviour can be analyzed by the well-established shear-lag theory [23-24] where it is 

assumed that the elastic stress is transferred from the matrix to the reinforcement 

through a shear stress at 2D material/polymer interface. The variation of strain in the 

BNNS, εBNNS, is given as [25] 

BNNS m

cosh

1
cosh( / 2)

x
ns

l

ns
  

   
   

 
 
 

 
(4.4) 
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where  

BNNS

2 mG t
n

E T


 
 
 

 (4.5) 

and εm is the applied matrix strain, s is the aspect ratio of the BNNS, x represents the 

position in the flake, l is the length of the flake, Gm is the matrix shear modulus, 

EBNNS is the Young’s modulus of the BNNS, t is the thickness of the BNNS and T is 

the total thickness of polymer matrix. The parameter n has been widely accepted as a 

parameter for evaluating the interfacial stress transfer efficiency. The dashed line in 

Figure 4.5(g) is a reasonable fit of Equation (4.4) to the Raman mapping results using 

ns10. The aspect ratio for the hBN nanosheet in Figure 4.5 is s = 10 m/17 nm  590. 

Since for this BNNS, ns = 10 and so n = 0.017. This value of n is some 30 larger that 

the value of n = 610-4 determined for a sandwiched graphene monolayer on a 

polymer substrate [22]. The higher value of n implies that better stress transfer can be 

expected between BNNSs and a polymer matrix than for graphene, presumably a 

result of the more polar nature of the bonding in hBN. 

 

It can be seen in Figure 4.5(g) that the strain rises to about 90% of the plateau value 

over about 3 μm from the edge, suggesting the critical length lc of the few-layer 

BNNS reinforcement of the order of 6 μm. The value of critical length determined for 

monolayer graphene using a similar approach is 3 μm [22], but it should be noted 

that the BNNS flake in Figure 4.5 is 17 nm thick. Hence the critical aspect ratio, sc, 

for this 50-layer BNNS is 350 compared with a value of around 104 (3 μm/0.35 nm) 

for monolayer graphene. This is further indication that BNNSs should give good 

reinforcement in nanocomposites at lower levels of exfoliation than for graphene. The 

importance of the aspect ratio upon stress transfer is highlighted in Figure 4.6. This 

shows that a 4 m wide and 20 nm thick (aspect ratio, s200) BNNS has a lower 

Raman band shift rate than a thicker (54 nm) BNNS for which s> 350. 
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Figure 4.6 (a) Optical micrograph and (b) AFM image of the marked spots on two 

BNNS flakes. (c&d) The height profiles corresponding to the two solid lines in (b). (e) 

Raman spectra of 2 marked spots on the BNNSs. (f&g) Raman spectra of the 2 marked 

spots on the BNNSs before and after 0.2% tensile strain was applied. (h) The positions 

of the Raman G band as a function of tensile strain for the 2 marked spots on the 

BNNSs showing a large shift rate for spot 1 from a thicker BNNS with larger lateral 

dimensions than the thinner BNNS in spot 2, only 4 m wide. 

 

For a well-bonded 2D BNNS/polymer interface, the interfacial shear stress τi can be 

given by [22] 

i BNNS m

sinh( )

cosh( / 2)

x
ns

l
nE

ns
   

(4.6) 

The Young’s modulus of a 17 nm thick hBN nanosheet without a top coating can be 

calculated using Equation (4.3). It is found that the effective modulus of BNNSs 

drops from 0.87 TPa (modulus of 1L BNNS [13]) to 0.60 TPa when the thickness 

increases to 17 nm (~50 layers). Hence the maximum value of τi at the edges of the 11 

μm long hBN nanosheet for ns = 10 is calculated to be 4.7 MPa increasing to 9.4 MPa 

when εm is 0.05% and 0.1%, respectively. In the case of a graphene monolayer a 

maximum value of τi at 0.4% applied strain was found to be only 2.3 MPa [22], 
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confirming the better stress transfer for the hBN nanosheet on the polymer substrate. 

 

When εm is increased up to 0.15% (Figure 4.5(h)), an approximate linear strain 

variation develops from the edges to the centre of the flake, up to ~3.5 μm from the 

edges. It is found that shear-lag theory can no longer be used to fit the strain variation 

at both edges of the flake, but it still can be fitted in the centre of the flake (red dashed 

line), where the strain in the flake keeps almost constant at around 0.15%. This 

situation is analogous to the partially-debonded situation in the single fibre pull-out 

test [26], where interfacial failure starts at the edges of the reinforcement and 

propagates gradually to the center of the fibre. In our case, it appears that the 

BNNS/polymer interface has started to fail at the edges of the nanosheet but 

continuous interfacial debonding has not reached the centre of the flake at this stage. 

Stress is transferred by interfacial friction (i.e. friction between the mismatched 

BNNS and the polymer, which will usually result in residual stress) [27] along the 

failed interface and the value of τi in this region can be determined from the slope of 

the linear fit (blue dashed line) in Figure 4.5(h) using the force balance equation [22] 

BNNS i

BNNS

d

dx E t

 
   (4.7) 

which gives a value of 4.3 MPa of τi at edges of the flake. 

 

When the strain is increased further to 0.3%, it is found that the BNNS/polymer 

interface has completely failed as shown in Figure 4.5(i). In this case the strain 

linearly increases from the edges to the center of the flake up to only ~0.15% strain 

(much smaller than εm) and dips in the middle of the flake. This suggests that the 

interfacial debonding has reached the centre of the flake and stress transfer throughout 

the nanosheet is taking place through interfacial friction. In this case, the value of τi 

for the failed interface is estimated to be 3.8 MPa. This can again be contrasted with 

the behavour of a graphene monolayer [22] where a value of τi of only 0.3-0.8 MPa 
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was determined for a failed interface at 0.6% applied strain confirming the better 

stress transfer for the BNNSs. 

 

4.4 Conclusions 

Stress transfer both between the individual layers within exfoliated hBN nanosheets 

and between an hBN nanosheet and a polymer substrate has been followed through 

the use of Raman spectroscopy. Overall it has been demonstrated that the efficiency of 

stress transfer both between the individual hBN layers in the nanosheets and between 

the nanosheets and the substrate is better for BNNSs than for mono- or multi-layer 

graphene. The implication of this study is that BNNSs should give rise to better 

reinforcement in nanocomposites than exfoliated graphene nanosheets as long as the 

BNNS/polymer interface remains intact.  
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Chapter 5  Mechanisms of Reinforcement of 

Polymer-Based Nanocomposites by hBN Nanosheets† 

5.1 Introduction 

Opto-thermal Raman measurement [1] and AFM nanoindentation [2] have confirmed 

the hBN nanosheets (BNNSs) to be one of the thermally-conductive and strongest 

insulators (Chapter 1). The BNNSs are thus anticipated to be promising 

multi-functional nanofillers for polymer nanocomposites [3-4] (see Chapter 2). 

Although impressive reinforcements on different polymer matrices with the addition 

of low content of BNNSs were reported [5-9], research upon mechanical properties of 

BNNSs/polymer nanocomposites has still not been studied systematically.  

 

Chapter 4 demonstrated the Raman spectroscopic study to investigate the mechanisms 

of stress transfer in individual BNNSs and it was found that the efficiency of stress 

transfer both between the individual hBN layers in the nanosheets and between the 

nanosheets and the substrate is better for BNNSs than for mono- or multi-layer 

graphene. In addition, it was shown that shear-lag theory, that is widely used to 

analyse conventional fibre-reinforced composites [10], could be used at the nano-level 

for the BNNSs. 

 

It is well established that the reinforcement of polymers by carbon-based nanofillers is 

controlled by stress transfer from the matrix to the reinforcement [11] and this can be 

followed using Raman spectroscopy and following stress-induced band shifts [12]. In 

this chapter, Raman spectroscopy has been used to characterize the dispersion of the 

BNNSs in the PVA and the level of stress transfer from the PVA to the BNNSs. To 

                                                 

†This chapter is based on a paper, “Mechanisms of Reinforcement of Polymer-Based 

Nanocomposites by hBN Nanosheets”, submitted. 
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study the effect of the geometry of the BNNSs upon the level of reinforcement in 

polymer-based nanocomposites [13], three types of BNNSs with different geometries 

have been prepared, two of which have similar lateral dimensions and two that have a 

similar aspect ratio (length/thickness). PVA nanocomposites with different loadings of 

the three types of BNNSs have been prepared and this enables the effect of BNNS 

volume fraction and geometry upon the mechanical properties such as Young’s 

modulus, yield stress and breaking strength, to be determined. The reinforcement of 

the polymer has been modelled using a combination of the rule of mixtures and 

modified shear lag theory. It has also been suggested that the BNNSs with the larger 

aspect ratio demonstrate a superior level of reinforcement. 

 

5.2 Experimental 

5.2.1 Materials 

For liquid-phase exfoliation (LE), two different sources of bulk boron nitride crystals 

were employed: 1. Sigma hBN crystals (Sigma Aldrich) with ~1 μm average flake 

size (Figure 5.1(a)); 2. Momentive hBN crystals (Momentive Performance Materials) 

with ~40μm average flake size (Figure 5.1(b)). Isopropanol (IPA, > 99.5%) was 

purchased from Fisher Scientific and used as received. The PVA powder (MW 

~89000-98000, 99+% hydrolyzed) was purchased from Sigma Aldrich and used as 

received. 

 

Figure 5.1 SEM images of Sigma (a) and Momentive (b) boron nitride crystals used for 
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liquid-phase exfoliation. 

 

5.2.2 Liquid-Phase Exfoliation 

Liquid-phase exfoliation [14] was conducted with reference to previous work [15-16]. 

Around 4 g boron nitride crystals were added to a 400 mL mixture of 

isopropanol/deionized water (DW) (1:1). The solutions were then sonicated in an 

Elmasonic P70H sonication bath (220 W effective power output, Elma Schmidbauer 

GmbH). The sonication frequency was fixed at 37 kHz. The sonication power and 

time were 40% of maximum power and 12 h for the Sigma crystals, and 60% and 18 h 

for the Momentive crystals, respectively. The as-prepared dispersions were then 

centrifuged with different rotation speeds, using a benchtop centrifuge (Thermo 

Fisher Scientific).  

 

Figure 5.2 Schematic of liquid-phase preparation of Sigma, M3000, M6000 BNNSs. 

 

As shown in Figure 5.2, the supernatant liquid from the Sigma BNNSs was collected 

directly after a 30 min centrifugation at 6000 rpm. Then the nanosheets (denoted as 

Sigma) were obtained following filtration and overnight vacuum drying at 80 °C. The 
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dispersion of the Momentive BNNSs was first centrifuged at 1000 rpm for 30 min. 

The sediment was isolated and discarded, so that large and thick BNNSs that had not 

been sufficiently exfoliated were thus removed. The supernatant liquid after the first 

isolation was then centrifuged at 3000 rpm for another 30 min. The sediments were 

collected and denoted as M3000 nanosheets. The supernatant liquid after the second 

isolation was finally centrifuged at 6000 rpm for 30 min. The as-obtained diluted 

supernatant was isolated from the sediments (that were discarded) and filtered, dried 

and denoted as M6000 nanosheets. In summary, 3 types of exfoliated BNNSs with 

different aspect ratios, lateral size and thickness (Sigma, M3000 and M6000) were 

thus prepared for the nanocomposite fabrication. 

 

5.2.3 Preparation of the BNNS/PVA Nanocomposite Films 

To prepare the BNNS/PVA nanocomposites, a measured amount of the exfoliated 

BNNSs was added to DW and the mixture was then sonicated in an ultrasonic bath at 

60% power for 1 hour to obtain a homogeneous dispersion. A measured amount of 

PVA powder was added into BNNS/DW dispersion to give a mass ratio of the PVA to 

DW of 10 wt% and a loading of 0.1-1 wt% nanosheets relative to the PVA. The 

BNNS/PVA/DW solution was then mixed using magnetic stirring, heated to 90 °C in 

a water bath and held for 3 hours. This was followed by natural cooling and an extra 2 

hour moderate bath sonication using 40 wt% power, to achieve good mixing.  

 

The as-prepared BNNS/PVA aqueous solutions were cast onto different substrates. 

For mechanical testing, the solutions were cast onto glass petri dishes. For the Raman 

deformation testing, the solutions were cast onto PMMA beams. All of the 

nanocomposite films were left in an oven for 2 days and dried at 60 °C, followed by 

overnight vacuum treatment to remove any residual moisture. 
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5.2.4 Characterization of the Liquid-phase Exfoliated BNNSs 

and BNNS/PVA Nanocomposite Films 

The sizes of the 3 types of exfoliated BNNSs were estimated using a Zeiss Ultra 55 

scanning electron microscopy (SEM) operated at ~2 kV (in-lens mode) and a 

Nanowizard atomic force microscope (AFM) (JPK Instruments) in the QI mode. The 

thickness of the BNNSs was measured using the same AFM. In addition, a 

PANalytical X’Pert Pro X-ray (0.154 nm wavelength) diffractometer (XRD) was used 

to investigate the quality of the BNNSs prepared. The Horiba LabRAM Evolution HR 

Raman spectrometer equipped with a Coherent 488 nm sapphire laser was employed 

to evaluate the dispersion of the BNNSs in the PVA nanocomposites. Raman mapping 

was undertaken on two 100 × 100 μm2 areas of the 1 wt% BNNS/PVA films mapped 

in 2μm steps. 

 

A Q100 differential scanning calorimeter (DSC) (TA Instruments) was used to study 

the effect of the addition of the BNNSs upon the crystallization of the PVA matrix. A 

heat-cool-heat procedure from 10 °C to 250 °C was set up, with a 10 °C/min ramp 

rate. In addition, XRD patterns of the nanocomposite films were obtained using the 

above-mentioned diffractometer.  

 

5.2.5 Mechanical Testing 

An Instron-3344 universal testing machine with a 100 N load cell was used for the 

evaluating the mechanical properties of the neat PVA and BNNS/PVA nanocomposite 

films. The BNNS/PVA nanocomposite samples with different loadings were cut into 

standard dumbbell-shaped specimens with a 15 mm gauge length and 4 mm width. 

The thickness of each specimen (generally between 0.2-0.3 mm) was measured 

individually using a micrometer. The samples were then conditioned in a mechanical 
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testing laboratory for 1 day, in which the temperature and humidity were controlled at 

23.0 ± 0.1 °C and 50 ± 5%, respectively. In total 4 specimens for each kind (3 types of 

BNNSs with different loadings and neat PVA) of sample were tested for averaging the 

data. The strain was determined from the cross-head displacement and the crosshead 

speed was set at 2 mm/min. 

 

5.2.6 In situ Raman Deformation Studies 

A Horiba LabRAM Evolution HR spectrometer equipped with 488 nm sapphire laser 

was used for the analysis of the BNNS/PVA nanocomposites. The in-situ Raman 

deformation analysis was conducted by inserting the BNNS-loaded PMMA beams 

into a four-point-bending rig fixed on the Raman microscope stage. A resistance strain 

gauge was used on the PMMA beam surface to monitor the strain applied on the 

PMMA substrate. The beams were deformed up to 0.4% strain in ~0.04% intervals 

and Raman spectra were collected and fitted at each strain level. The exposure time 

for each Raman scan was 20 s with a power output ~1.3 mW and a laser spot size of 

~2 μm. The most prominent Raman band of hBN is the E2g mode (denoted as the G 

band) which originates from in-plane atomic displacement and is equivalent to the G 

band of graphene [17]. 

 

5.3 Results and Discussion 

5.3.1 Characterization of the individual BNNSs 

Figure 5.3 shows the measured dimensions of three types of the LE-BNNSs in terms 

of the average length (L), thickness (t). As shown in Figure 5.3(a), the AFM scan of 

LE Sigma suggests it has a small average lateral sheet length, with a maximum BNNS 

length of ~500 nm. This is the result of the ~1 μm size of original Sigma crystals. The 
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height profile along the line scan in Figure 5.3(a) shows that the LE Sigma BNNSs 

have a range of thickness that is generally lower than 10 nm. In addition some 

ultrathin mono- and bilayer BNNSs even can be obtained. The sheet length and 

thickness data of Sigma BNNSs are summarized as histograms in Figure 5.3(d&g). 

The measured length of Sigma ranges between ~50 nm and ~500 nm with a mean 

value of around 200 nm. The thickness varies between 0-20 nm, with the majority 

ranging from ~1 nm to ~10 nm. The mean thickness of the Sigma BNNSs was found 

to be 5.4 nm (i.e. 15 layers). 

 

Significantly larger BNNSs can be seen in the AFM image of M3000 shown in Figure 

5.3(b). The histogram in Figure 5.3(e) suggests that the length of M3000 BNNSs is in 

the range 2 μm to 5 μm and with a mean value of 3.6 μm. The height profile of the 

line scan in Figure 5.3(b) and histogram in Figure 5.3(h) suggest that M3000 is much 

thicker than the Sigma BNNSs, and the thickness of some nanosheets reaches several 

hundred microns. The mean sheet thickness of M3000 was 110 nm. In contrast for 

the sediment separated from dispersion after relatively low speed centrifugation, the 

AFM images and corresponding height profile in Figure 5.3(c) and Figure 5.4(a) 

demonstrate that the M6000 BNNSs are much thinner with smaller lateral dimensions 

than the M3000 BNNSs. Histograms in Figure 5.3(f&i) demonstrate that the length of 

the M6000 BNNSs is in the range 0.3-2 μm with a thickness between 1 nm and 6 nm. 

The mean length and thickness of M6000 were 1.1 μm and 5 nm, respectively. The 

accuracy of AFM results was further verified by SEM observation of the BNNSs. 

SEM images of the three types of BNNSs in Figures 5.4(b-e) show good consistency 

with the AFM observations in Figure 5.3. 

 

The aspect ratio (s = L/t) of 2D materials is a key parameter for evaluating their 

reinforcement on nanocomposites [11]. A histogram showing the measured 

distribution of L/t for the Sigma BNNSs is shown in Figure 5.3(j) and the mean aspect 
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ratio of Sigma BNNSs was found to be 63. Figure 5.3(k) shows the measured 

distribution of L/t for M3000 and the mean aspect ratio is 55. A histogram of the 

distribution of L/t for the M6000 BNNSs is shown in Figure 5.3(l) and the mean 

aspect ratio of M6000 BNNSs was found to be 350. Properties of three types of 

LE-BNNSs were summarized in Table 5.1. 

 

Figure 5.3 AFM images and height profiles of the line scans in the corresponding 

images (a-c), histograms of length (d-f), thickness (g-i), aspect ratio (j-l) of Sigma (left), 
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M3000 (middle) and M6000 (right) BNNSs. Some 200 examples of each type of BNNS 

were measured to generate the histograms. 

 

Figure 5.4 (a) AFM image of M6000 BNNSs and corresponding height profile of solid 

line; SEM images of Sigma (b), M3000 (c), M6000 (d, e). 

 

Table 5.1 Properties of three types of LE-BNNSs 

BNNSs Sigma M3000 M6000 

<L> (μm) 0.20 3.63 1.06 

<t> (nm) 5.5 110.2 5.0 

<L/t> 63.2 55.4 351.1 
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XRD patterns of Sigma and M6000 are shown in Figure 5.5, compared to the XRD 

pattern of the original crystals. No obvious changes on diffraction peaks shape and 

position of both nanosheets were observed, indicating the preservation of the hBN 2D 

crystal structure after the liquid-phase exfoliation. The Raman spectra of Sigma and 

M6000 BNNSs are presented in Figure 5.5(c) and 5.5(d), respectively. It can be 

observed that both of the nanosheets show a simple spectrum with a well-defined G 

band at ~1366 cm-1, characteristic of the intralayer hBN E2g mode. No obvious shift of 

the G band position was observed following the liquid-phase exfoliation but the band 

intensity of both types of BNNS decreases, suggesting a smaller average thickness of 

the LE-BNNSs compared with that of the original crystals. 

 

Figure 5.5 XRD patterns of (a) Sigma hBN crystals and BNNSs and (b) Momentive 

crystals and M6000 BNNSs. Raman spectra of (c) Sigma BN crystals and BNNSs and 

(d) Momentive crystals and M6000 BNNSs. 

 

It is interesting to point out that, despite their differences in lateral dimensions and 
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thicknesses, the mean aspect ratios of Sigma and M3000 are similar. On the other 

hand, M6000 has a similar average thickness to the Sigma BNNSs, but 5 times the 

average length, and therefore aspect ratio, than Sigma. We have therefore produced a 

set of exfoliated BNNSs that will enable the effects of BNNS length, thickness and 

aspect ratio upon the reinforcement of a polymer matrix to be evaluated separately by 

comparing the mechanical properties of nanocomposites reinforced by similar 

loadings of the three different types of LE BNNSs. 

 

5.3.2 Dispersion of the BNNTs in the Nanocomposites- Raman 

mapping 

The dispersion of BNNSs in the PVA matrix was evaluated by mapping the intensity 

ratio of the BNNS Raman G band at ~1366 cm-1 relative to that of the PVA band at 

~1447 cm-1 as shown in Figure 5.6. Compared with the Raman bands of the PVA 

matrix, the Raman spectra of 1 wt% BNNSs (M6000)/PVA spectra shown in Figure 

5.6(a) showed a relatively-weak signal of BNNSs, which may be explained by the 

non-resonance Raman scattering of BNNSs due to their wide band gap [18]. Figure 

5.6(b) shows the BNNS G band at 1366 cm-1 more clearly. It is surrounded by the 

Raman bands of the polymer matrix band that can be deconvoluted from the C-H & 

O-H bending modes of PVA. It is reported that the intensity of the G band of BNNSs 

increases with the number of layers [19], thus the much thicker M3000 BNNSs 

exhibit a stronger G band than M6000 and Sigma BNNSs, as shown in Figure 5.6(c). 

 

Figure 5.6 (a) Raman spectra of PVA and 1 wt% BNNSs (M6000)/PVA 
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nanocomposites. (b) Raman spectra of 1 wt% BNNSs/PVA nanocomposites in the 

range 1300 – 1500 cm-1. (c) Raman spectra of 3 types of BNNSs/PVA at 1 wt% loading. 

 

Optical micrographs of nanocomposites with 1wt% loadings of the three different 

types of BNNSs are shown in Figure 5.7 along with 100 × 100 μm2 Raman maps of 

the 3 types of 1 wt% BNNS/PVA nanocomposite films. As can be seen in Figure 

5.7(d), the Raman map of the 1 wt% Sigma/PVA is filled by homogeneous light blue 

areas, implying a relatively uniform dispersion of the Sigma BNNSs in the PVA 

matrix, although since the average sheet size for Sigma (200 nm) is smaller than the 

Raman laser spot size (2 m), only the overall level of dispersion can be evaluated. 

In contrast, intensity distribution in the Raman map of the 1 wt% M3000/PVA is not 

so homogeneous. The colour range in Figure 5.7(e) suggests that I1366/I1447 varies 

between 0.4 and 1.2 and high intensity ratio red areas were observed throughout the 

map, showing the existence of thick BNNSs or agglomerates in the nanocomposites. 

The Raman map of M6000 in Figure 5.7(f) shows a relatively-homogeneous intensity 

distribution, suggesting it has a better dispersion than M3000 in the PVA. 

Nevertheless, a few red areas can still be seen in Figure 5.7(f), suggesting that some 

of the M6000 BNNSs also agglomerated at this relatively high loading.  

 

Figure 5.7 Optical micrograph and 100 μm×100 μm Raman mapping (I1366/I1447) 

intensity ratio of a 1 wt% (a&d) Sigma/PVA, (b&e) M3000/PVA, (c&f) M6000/PVA 
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nanocomposites film. 

5.3.3 Mechanical Properties of the Nanocomposites 

The stress-strain curve for the PVA and three types of BNNSs/PVA nanocomposite 

with 0.1 wt% loadings of the BNNSs are shown in Figure 5.8(a&b). It is clear to see 

that just 0.1 wt% addition of M6000 increases Young’s modulus, yield and breaking 

strength of PVA matrix significantly. In contrast, the addition of the same loading of 

Sigma BNNSs produces very limited reinforcement (modulus increase) of the 

polymer. A decline of both the yield stress and breaking strength was also observed. 

The addition of 0.1 wt% of M3000 leads to a noticeable increase in the Young’s 

modulus, but only limited enhancement of the yield stress and breaking strength of the 

PVA. 

 

Figure 5.8 (a) Elastic region and (b) full range stress-strain curves for three types of 

BNNSs/PVA nanocomposites and PVA films at 0.1 wt% loading. (c) Young’s modulus, 

(d) Yield stress and (e) Breaking strength of the three types of nanocomposite films for 
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different BNNS loadings. 

 

DSC results in Table 5.2 have shown that the addition of 1 wt% of all three types of 

BNNSs does not change the melting temperature of crystals, Tm, or the crystallinity of 

the PVA and nanocomposites films significantly. 

 

Table 5.2 DSC results of neat PVA and 3 kinds of 1 wt% BNNSs/PVA films. 

Materials Tm (°C) △Hm (J/g) fc 

Neat PVA -1 229.8±1.4 59.8±4.3 37.1% 

1 wt/% Sigma/PVA 230.5±0.9 60.9±4.4 37.8% 

1 wt/% M3000/PVA 231.0±1.2 56.8±5.2 35.2% 

1 wt/% M6000/PVA 228.3±1.8 55.1±4.6 34.1% 

 

The degree of crystallinity (fc) was determined as the ratio between the heat of fusion 

(ΔHm) of the film and the thermodynamic enthalpy of melting of a 100% crystalline 

PVA [20-21] (ΔH0
m, the standard value of 162 J/g was used in this work [22]). It can 

be seen in Table 5.2 that the presence of all three kinds of BNNSs in PVA matrix did 

not induce obvious change on Tm and fc, so it is unlikely that any of the variation in 

the mechanical properties of the nanocomposites are the result of changes in the PVA 

matrix. 

 

5.3.4 Stress-induced Raman band shifts for 1 wt% BNNSs/PVA 

nanocomposites 

The position of the BNNS G band has been shown to be strain sensitive [23]. It is 

therefore possible to use the well-established in-situ Raman deformation test to 

evaluate stress transfer to the BNNSs in the nanocomposites (see Chapter 3&4). Shifts 
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of the Raman G band in three kinds of 1 wt% BNNS/PVA nanocomposites were 

found during the deformation, as illustrated in Figure 5.9.  

 

Figure 5.9 (a&b) Raman G band shift of BNNSs in 1 wt% Momentive 3000/PVA film 

at 0.4% strain. (c&d) Raman G band shift of BNNSs in 1 wt% Momentive 6000/PVA 

film at 0.12% strain. 

 

Figure 5.10 presents the dependence of the peak position upon strain and it is seen 

that the smallest rate of band shift was detected for the 1 wt% Sigma/PVA 

nanocomposite sample, indicating poor stress transfer from polymer matrix to the 

BNNSs. This is consistent with tensile test result that Sigma shows very little 

reinforcement of the PVA at 1 wt% loading. Higher levels of the BNNS G band were 

found for the 1 wt% M3000/PVA (Figure 5.10(b)) and 1 wt% M6000/PVA (Figure 

5.10(c)) samples which also show better reinforcement in the mechanical testing data 

(Figure 5.8). The band shift data in Figure 5.10 were fitted to straight lines for data 

points up to 0.3% strain. At higher strains it was found that no further band shift 

occurred which can be attributed to interfacial slippage between BNNSs and PVA at 
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low strain, indicating a limited level of adhesion between the BNNSs and PVA matrix, 

as had been reported in Chapter 4. 

 

Figure 5.10 Raman G band shift of the BNNSs in (a) 1 wt% Sigma/PVA, (b) M3000 

and (c) M6000/PVA nanocomposite films as a function of strain. 

 

It should also be pointed out that well-defined Raman band shift were not found for 

all specimens and some examples of scattered band shift data for the three BNNSs are 

show in Figure 5.11. This scatter is probably because the Raman laser spot size of 2 

m is of similar dimensions to the size of the BNNSs in the M3000 and M6000 

nanocomposites which means that band shifts are essentially sometimes being 

measured on the edges of the BNNSs. 

 

Figure 5.11 Raman G band shift of the BNNSs in (a) 1 wt% Sigma/PVA, (b) M3000 

and (c) M6000/PVA nanocomposite films as a function of strain. 

 

5.3.5 Modelling of the Mechanical Properties of the 

Nanocomposites 

It has been demonstrated previously that the Young’s modulus of a nanocomposite, Ec, 
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can be analysed using the modified rule of mixtures [11, 24] (see Chapter 2): 

Ec=EeffVBNNSs +Em(1-VBNNSs) (5.1) 

where Eeff and Em are the effective Young’s moduli of the BNNSs and the Young’s 

modulus of PVA, respectively. VBNNSs is the volume fraction of BNNSs in the 

nanocomposites. 
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Figure 5.12 Dependence of the Young’s modulus of the BNNS/PVA nanocomposites, 

Ec, upon the volume fraction of the BNNSs, VBNNSs. The dashed lines correspond to 

the different stated values of Eeff in Equation (5.1). 

 

The original formulations of the nanocomposites were prepared in terms of the weight 

fraction of BNNSs and it is possible to do the conversion to Vf using a density of hBN 

of 2.27 g/cm3 [25] and 1.3 g/cm3 for PVA [26]. The BNNS loading may be converted 

from mass fraction WBNNSs (wt%) to volume fraction VBNNSs (vol%) using: 

 BNNSs PVA
BNNSs

BNNSs PVA BNNSs BNNSs(1 )

W
V

W W



 


 
 (5.2) 

where ρBNNS and ρPVA represent the densities of BNNTs and PVA. 

 

Figure 5.12 shows the dependence of the Young’s modulus of the nanocomposites 

upon volume fraction of the three different types of BNNSs using the data from 
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Figure 5.8(c) and listed in Table 5.3. The dashed lines are fits to Equation (5.1) for 

different values of the effective Young’s modulus, Eeff (It should be noted that these 

lines are just general fits for the Young’s modulus at low BNNSs concentrations (0 

vol%-0.115 vol%), more accurate fits could be achieved by supplementing more 

concentration gradients at low BNNSs volume fraction, such as 0.01 vol%, 0.02 vol% 

etc.). It can be seen that the values of Ec initially increase with increasing volume 

fraction but then fall away above a volume fraction of 0.4%, due probably to 

agglomeration occurring at higher loadings (Figure 5.7). Overall it can be seen that 

the highest level of reinforcement is found for the M6000 BNNSs and the lowest level 

was for the Sigma BNNSs. At low volume fractions the data for the Sigma BNNSs 

fall close to the line for Eeff = 100 GPa whereas the data points for the M6000 BNNSs 

are close to the line for Eeff = 500 GPa. The Sigma and M6000 BNNSs are of similar 

thickness (~5 nm) but the M6000 BNNSs have larger lateral dimensions and a higher 

aspect ratio, s = L/t (Figure 5.3). 

 

Table 5.3 Mechanical properties of three types of nanocomposite films. 

Materials Young’s 

modulus (GPa) 

Yield stress 

(MPa) 

Breaking 

strength (MPa) 

Volume 

Fraction (%) 

Neat PVA 1.52±0.11 71.5±6.0 59.3±4.5 0 

0.1 wt% Sigma/PVA 1.53±0.05 67.4±4.1 57.7±4.9 0.057 

0.1 wt% M3000/PVA 1.78±0.18 69.1±3.1 60.8±5.5 0.057 

0.1 wt% M6000/PVA 1.84±0.11 75.4±9.3 66.1±7.4 0.057 

0.2 wt% Sigma/PVA 1.60±0.08 67.1±4.6 59.1±4.4 0.115 

0.2 wt% M3000/PVA 1.82±0.06 76.8±2.7 64.9±2.4 0.115 

0.2 wt% M6000/PVA 1.99±0.10 81.2±4.6 68.7±3.7 0.115 

0.3 wt% Sigma/PVA 1.82±0.24 79.4±7.8 67.6±6.7 0.173 

0.3 wt% M3000/PVA 1.83±0.09 82.5±1.9 67.3±2.7 0.173 

0.3 wt% M6000/PVA 2.04±0.14 86.6±3.2 70.9±1.9 0.173 
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0.5 wt% Sigma/PVA 1.95±0.04 86.7±2.2 72.2±0.6 0.286 

0.5 wt% M3000/PVA 1.95±0.12 86.1±0.5 69.0±2.4 0.286 

0.5 wt% M6000/PVA 2.12±0.12 90.8±1.0 76.0±1.6 0.286 

1 wt% Sigma/PVA 1.52±0.05 72.2±4.6 60.4±4.9 0.575 

1 wt% M3000/PVA 1.69±0.14 71.8±2.3 58.7±3.1 0.575 

1 wt% M6000/PVA 1.89±0.01 82.0±2.0 69.3±1.1 0.575 

 

The effective modulus of the BNNSs in the nanocomposites is given by [11] 

Eeff=ηlηoEBNNSs (5.3) 

where EBNNSs is the Young’s modulus of hBN nanosheets. The Krenchel orientation 

factor ηo enables the effect of filler orientation upon the reinforcement efficiency to be 

determined and it ranges from 8/15 for randomly oriented to 1 for well-aligned 

flakes [27-28]. Since the specimens for the mechanical property measurements were 

prepared by casting a thin film, it is likely that the BNNSs are mainly aligned in-plane 

and so ηo can be taken as being close to unity. The length factor, ηl, which has a value 

of between 0 and 1, reflects the dependence of reinforcement on flake length and 

increases with the flake aspect ratio s [29]. The length factor ηl is given by [13] 

2/

)2/tanh(
-1=l ns

ns
η  (5.4) 

where s is the aspect ratio and n is given as (see Chapter 2) 

m

f

2G t
n

E T

 
  

 
 (5.5) 

Gm is the shear modulus of the polymer, l is the length of BNNS along with strain 

direction, and t and T are the thickness of the BNNS and the representative volume. In 

practice n can be considered to be a fitting parameter and was shown in Chapter 4 to 

be of the order of 0.017 for the deformation of a single hBN sheet on a polymer 

substrate. Another issue to consider is that the Young’s modulus of the BNNSs may 

depend upon their thickness (i.e. number of layers) due to easy shear between the 
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individual layers. Chapter 4 has demonstrated that, unlike multi-layer graphene, there 

is relatively good interlayer stress transfer within BNNSs, so this effect can be 

neglected in the present study. 

 

Any differences in the value of Eeff for the three different BNNSs will therefore be 

controlled principally by the value of l through Equation (5.4). The Sigma material 

has an average aspect ratio of s = 63 (Figure 5.3(j)) so using a value of n = 0.017, a 

value of l0.1 is obtained from Equation (5.4) for this material. In contrast the 

M6000 material has an average aspect ratio of s = 351 (Figure 5.3(i)) which leads to a 

value of l0.65. Using a value of EBNNSs of 800 GPa (0.8 TPa) for hBN [30], then 

Equation (5.3) predicts value of Eeff 80 GPa for the Sigma BNNSs and one of 520 

GPa for the M6000 BNNSs. These value of Eeff are very similar to those used to fit 

the data for the nanocomposites at low volume fractions in Figure 5.12. Hence it 

implies that the values of the effective Young’s modulus of the BNNSs in the 

nanocomposites are controlled by their aspect ratios, with M6000 being the best 

material having the highest aspect ratio. Sheets of M3000 have larger lateral 

dimensions than M6000 (Figure 5.3) but are thicker and have an inferior aspect ratio 

and so do not give such good reinforcement (Figure 5.12). Sheets of the Sigma 

material have similar thickness to those of M6000 but smaller lateral dimensions 

which again leads to a lower aspect ratio and inferior reinforcement (Figure 5.12). It 

should also be pointed out that Figure 5.12 also shows that the level of reinforcement 

decreases with increasing volume fraction showing that the BNNSs are prone to 

agglomeration leading to a poorer dispersion. Hence future studies will be needed to 

develop techniques to improve the distribution of the BNNSs in the nanocomposites if 

better levels of reinforcement are needed. 

 

It is possible to also estimate the effective Young’s modulus of the BNNSs 

independently from the stress-induced Raman band shifts shown in Figure 5.10. 
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Unfortunately this could only be done as a result of the relatively weak Raman 

scattering from hBN for the highest 1 wt% loading of BNNSs (Vf0.6%), for which 

there is agglomeration of the BNNSs. The effective modulus of the reinforcement is 

given by [31] 

( 
2g BNNSs

eff

2g

d ( )

d d / d (ref )

E E
E

E



  
   (5.6) 

where dω(E2g)/dε is the shift rate of the hBN Raman E2g band as the function of strain. 

The reference band shift rate value, dω(E2g)/dε(ref) found in Chapter 4 for the 

deformation of isolated monolayer sheets can be taken as -11 cm-1/% although there is 

a small decrease as the sheet thickness increases. If the Young’s modulus of a 

monolayer hBN sheet, EBNNSs is taken as 800 GPa then the value of dω(E2g)/dε of -0.9 

± 0.2 cm-1/% strain measured for M6000 in Figure 5 leads to an effective modulus of 

Eeff of ~100 GPa. This is consistent with the value expected for the agglomerated 

BNNSs in Figure 5.12 at 0.6% volume fraction. 

 

5.4 Conclusions 

It has been found that the addition of hBN nanosheets (BNNSs) to poly(vinyl alcohol) 

can lead to an increase in the Young’s modulus, yield strength and breaking strength 

of the polymer. The level of reinforcement is found to increase with an increasing 

loading of the BNNSs but the performance decrease above about 0.5 wt% of the filler 

as the result of agglomeration effects. The use of BNNSs with different geometries 

has demonstrated that the best levels of reinforcement are found with the BNNSs with 

the highest aspect ratio which are shown to have an effective Young’s modulus in the 

nanocomposites in excess of 500 GPa at low loadings. It is suggested that future 

studies should concentrate upon chemical functionalization of the BNNSs to 

strengthen the interface between the filler and polymer matrix and methods to 

improve the dispersion of the BNNSs in the polymer matrix. 
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Chapter 6  Reinforcement of Polymer-based 

Nanocomposites by Boron Nitride Nanotubes‡ 

6.1 Introduction 

Benefitting from a similar crystal structure with their graphitic analogue, as outlined 

in Chapter 1, one-dimensional (1D) boron nitride nanotubes (BNNTs) inherit the 

extraordinary mechanical properties and thermal conductivities of carbon nanotubes 

(CNTs) [1]. A recent experimental evaluation from Zhou et al. [2] reported an elastic 

modulus of over 900 GPa for MW-BNNTs that decreased gradually to a plateau 

of660 GPa (over three times that of steel) on irradiation due to the formation of 

equilibrium defective surface cavities. This endows thermally conductive and 

electrically insulating BNNTs with great potential to be used as specialty 

reinforcements for nanocomposites that require both electrical insulation and good 

thermal stability. However, it is still necessary to find a more effective and feasible 

method to provide evaluation of the microstructure of BNNTs inside nanocomposites, 

that is both instructive and beneficial for optimizing mechanical and thermal 

enhancement. 

 

In this present chapter, a straightforward and non-destructive method for appraising 

the dispersion and interfacial stress transfer of BNNTs in polymer nanocomposites 

using non-resonance Raman spectroscopy is employed in a similar way to how it was 

used in Chapters 4&5. Various loadings of multi-walled BNNTs are incorporated into 

poly(vinyl alcohol) (PVA) and prepare nanocomposites films. Although the activation 

of resonant Raman scattering (significant signal enhancement [3]) in BNNTs is 

                                                 

‡This chapter is based on a paper, “Reinforcement of Polymer-Based Nanocomposites 

by Thermally Conductive and Electrically Insulating Boron Nitride Nanotubes”, ACS 

Applied Nano Materials, 2019, 3(1): 364-374. 
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difficult due to its wide and chirality-independent band gap (Figure 6.1), it is still 

possible to excite the electrons of BNNTs to a virtual state and obtain non-resonant 

Raman scattering of BNNTs in the polymer matrix. The nanotube dispersion in the 

nanocomposites is studied by Raman mapping tests. Interfacial stress transfer from 

the PVA matrix to the BNNTs is investigated from the stress-induced Raman band 

shifts of the BNNTs in the matrix and this behaviour is correlated with the mechanical 

properties of the nanocomposites. The effect of surface functionalization of 

BNNTs [4-8] upon both their dispersion and stress transfer in the nanocomposites is 

also discussed. 

 

Figure 6.1 Schematic of resonance Raman scattering and non-resonance Raman 

scattering of boron nitride nanotubes. 

 

6.2 Experimental 

6.2.1 Materials 

The multi-walled(MW) boron nitride nanotubes (BNNTs) were synthesized using a 

hydrogen-catalyzed induction plasma processing method [9] and purified before 

use [10] (see Chapter 1). These purified BNNTs have relatively small diameters and a 

variable number of walls. The PVA (MW 89000-98000, 99+% hydrolyzed) was 

purchased from Sigma Aldrich and used as received. The hydrogen peroxide (H2O2, 
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30 wt% solution in water) was used as received for the BNNTs functionalization. 

 

6.2.2 Functionalization of the BNNTs 

The hydroxyl functionalization of the BNNTs was carried out following the previous 

report by Zhi et al. [5]. Around 20 mg of BNNTs was dispersed into 20 ml H2O2 (30 

wt% aqueous solution) by magnetic stirring for 12 h and low-power bath sonication 

for 4h. The dispersion was then transferred into a 100 ml autoclave within a Teflon 

liner. After being sealed, the autoclave was put into a temperature-controlled oven and 

kept at 120 °C for 24 h. After natural cooling, the BNNTs were filtrated and washed 

several times with distilled water, followed by drying overnight in a vacuum oven at 

40 °C. The OH-BNNTs were then used to prepare nanocomposites. 

 

6.2.3 Preparation of BNNTs/PVA Nanocomposites 

To prepare the BNNTs/PVA nanocomposites, PVA powder was added into distilled 

water at room temperature (RT) and the mass ratio of PVA to DW was 14 wt%. The 

appropriate amount of BNNTs was added to PVA/DW solution to give 0.1 to  1 wt% 

nanotubes loadings relative to the PVA amount. The solution was mixed using 

magnetic stirring, heated to 90 °C in a water bath and held for 3 hours. This was 

followed by extra overnight stirring at RT to achieve sufficient mixing. The 

as-prepared BNNTs/PVA suspension was ultrasonicated using a sonication probe 

(Q700 sonicator, QSonica) with maximum power output of 700 W. The probe was 

used for 2 min and left to rest for 2 min before the power was applied again. The total 

power time was 1 h. The amplitude used was 50%, which is a relatively low value to 

avoid damage to both the BNNTs and PVA polymer chains. This resulting 

nanocomposite aqueous solution was then used to manufacture the nanocomposite 
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specimens. 

 

The BNNTs/PVA nanocomposite films were prepared by casting the nanocomposite 

aqueous solution on different substrates. For mechanical testing, the solution was 

casted onto glass petri dishes. For the Raman deformation testing, the solution was 

casted onto PMMA beams. In both cases, the nanocomposites films were allowed to 

dry for at least 72 hours, to ensure residual moisture had evaporated fully. The thin 

films for TEM characterization were prepared by direct spin casting the 

nanocomposite aqueous solution onto copper TEM grids. 

 

6.2.4 Characterization of the BNNTs and OH-BNNTs 

The purity of the BNNTs was investigated using: a TGA/DSC 1 system 

(Mettler-Toledo), samples were heated from room temperature to 800 C in both 

nitrogen and air atmosphere; a Horiba LabRAM Evolution HR Raman spectrometer 

with a Coherent 488 nm sapphire laser and a PANalytical X’Pert Pro X-ray 

diffractometer (1.54A wavelength). The morphology and structure of BNNTs were 

observed using an EVO 50 SEM (Zeiss) and a Talos F200X high resolution TEM 

system (FEI). The functionalization of BNNTs was studied by X-ray photoelectron 

spectroscopy (XPS) using a Kratos Axis Ultra X-ray photoelectron spectrometer; 

Fourier transform infrared spectra (FTIR) using a Nicolet 5700 spectrometer (Thermo 

Fisher Scientific), in the transmission mode (3 scans for each run). Scanning 

transmission electron microscopy annular dark field (STEM-ADF) and energy loss 

spectroscopy (EELS) mapping were performed using an aberration corrected Titan G2 

80-200 kV S/TEM system (FEI). The convergence and EELS collection angle were 

21 and 48 mrad, respectively. TEMs were operating at an acceleration voltage of 200 

kV. Contact angle measurements were undertaken using a Krüss Drop shape Analyzer 

DSA100. 
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6.2.5 Mechanical Testing 

The tensile properties of the neat PVA and BNNT/PVA nanocomposites were 

evaluated using an Instron-1122 universal testing machine with a 100 N load cell. All 

the film samples were cut into dumbbell-shaped specimens with a 15 mm gauge 

length, 4 mm width and a thickness of around 0.1 mm measured using a micrometer. 

The samples were allowed to condition in an environmentally-controlled mechanical 

testing laboratory for 24 h, in which the temperature is kept at 23.0 ± 0.1 °C and 

humidity controlled at 50 ± 5%. The crosshead speed was set at 2 mm/min and 4 

specimens of the nanocomposites for each level of BNNTs loading were tested. The 

specimen strain was determined from the cross-head displacement. 

 

6.2.6 Raman Spectroscopy 

All of the Raman measurements were conducted using a Horiba LabRAM Evolution 

HR Raman spectrometer equipped with a Kimmon Koha 325 nm He-Cd NUV laser, a 

Coherent 488 nm sapphire laser and a CVI Melles Griot 633 nm He-Ne laser. The 488 

nm sapphire laser, with 1.4 mW output power and 30 s exposure time, was found to 

be the most suitable for the Raman characterization studies.  

 

For the Raman mapping, several 100 μm × 100 μm areas of different film samples 

were mapped in 2 µm step intervals.  

 

For in-situ Raman deformation analysis of the nanocomposite films, the PMMA 

beams covered with BNNTs/PVA nanocomposite films were inserted into a 

four-point-bending rig located on the Raman microscope stage. A resistance strain 

gauge was attached to the PMMA specimen surface using cyanoacrylate adhesive to 

monitor the strain applied to the beam. The beams were deformed up to 0.4 % strain 
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in 0.04% intervals and the Raman spectra were collected at each strain level. The 

laser spot size used was 2 μm. 

 

6.3 Results and Discussion 

6.3.1 As-Purified BNNTs 

Figure 6.2 shows high-resolution TEM images of the as-purified BNNTs. It can be 

seen that there is a mixture of BNNTs with different numbers of walls, the majority of 

which have 2-5 walls (5-10 nm in diameter) with some having >10 walls (>20 nm in 

diameter). The distribution of wall numbers is shown in Figure 6.2(f) and significantly, 

no single-walled BNNTs were found. This is consistent with the TEM observation 

from the original report [9]. Other TEM observations (Figure 6.3(b)) showed that 

bundled structures were still maintained even after a long time bath sonication in 

isopropanol (IPA) [11], suggesting that debundling of the BNNTs may not be easy. 

 

Figure 6.2 High-resolution TEM images of a BNNTs bundle containing DW-BNNTs 

(a), a three-walled BNNT (b), a four-walled BNNT (c), a six-walled BNNT (d) and an 
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11-walled BNNT (e). (f) Distribution of wall number of the MWBNNTs used in this 

work. 

 

Figure 6.3 (a-b) TEM images of BNNTs bundling and some hBN shells. 

 

The purity of BNNTs was also studied by a number of other techniques. TGA was 

undertaken both under nitrogen and air atmospheres. From Figure 6.4(a, b), although 

the mass of BNNTs decreases slowly when they are heated from RT to 800 °C in 

nitrogen and air atmosphere, the mass loss is only around 3.5 wt% in both cases 

indicating the high purity of the BN-based nanostructures in the sample. The EELS 

spectrum of the BNNTs is shown in Figure 6.4(c), in which a clear boron K-edge at 

189 eV and nitrogen K-edge at 401 eV can be identified. The B/N ratio of the 

spectrum is estimated to be 1, suggesting mainly B-N chemical bonding in the tube 

walls. XRD pattern of BNNTs (Figure 6.4(d)) exhibits a weak peak at 2θ = 21.5° and 

a shoulder peak at 2θ = 25.9°, corresponding to the pattern of the boron hydride 

structure [12]. Hence, these two peaks are attributed to amorphous BxNyHz 

intermediates. The strong peak at 2θ = 26.8°, weak peaks at 2θ = 41.8° and 55.2° 

correspond to the (002), (100), (004) reflections of hBN [13]. 
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Figure 6.4 TGA and DTG plot of BNNTs in a nitrogen atmosphere (a) and an air 

atmosphere (b). (c) EELS spectra of BNNTs. (d) XRD pattern of BNNTs. (e) Raman 

spectra of BNNTs in the low frequency range and high frequency range respectively. 

 

6.3.2 Functionalized BNNTs 

The functionalization of the BNNTs is illustrated schematically in Figure 6.5(a). The 

elemental composition of BNNTs before and after hydroxylation was studied by XPS 

as shown in Figure 6.5(b-f). From full-range XPS spectra of the BNNTs, it is 

interesting that two distinct binding energy peaks at 284.5 eV and 532.5 eV were 

observed, indicating the existence of carbon and oxygen on the surface of the 

nanotubes. As the BNNTs samples were prepared using a carbon-free method [9-10] 

and no organic solvent was used during the preparation of XPS specimens, surface 

carbon and oxygen on the BNNTs must come from unavoidable contaminations from 

air, such as adherent CO2 on the outer shell of nanotubes. A much weaker C 1s peak 

was observed in the full spectra of OH-BNNTs, indicating that some C, O-containing 

impurities or attachments were removed after functionalization. Although carbon 

contaminations are removed, the O 1s peak remains stable since the elemental 
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composition of oxygen decreases only slightly from 4.14 at% to 3.77 at% after 

hydroxylation (Table 6.1). Since the majority of surface contaminations were removed, 

it thus confirms that the oxygen content of the OH-BNNTs derives principally from 

the OH functional groups on the wall surfaces of the BNNTs. 

 

Figure 6.5 (a) Schematic of hydroxylation of BNNTs also showing the resultant change 

in water contact angle. (b) XPS survey spectra of as-purified BNNTs and OH-BNNTs. 

(c, e) XPS B 1s spectra of BNNTs and OH-BNNTs. (d, f) XPS N 1s spectra of BNNTs 

and OH-BNNTs. 

 

Table 6.1 Elemental composition of BNNTs and OH-BNNTs measured by XPS 

 B N C O 

BNNTs 43.64 at% 43.73 at% 8.49 at% 4.14 at% 

OH-BNNTs 47.70 at% 46.00 at% 2.53 at% 3.77 at% 

 

The accuracy of the XPS analysis was verified further from FTIR spectra, as shown in 
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Figure 6.6(a). The FTIR spectrum of pristine BNNTs is highly consistent with that of 

hBN crystals, in which the in-plane B-N stretching mode at 1400 cm-1 and 

out-of-plane B-N-B stretching mode at 800 cm-1 are clearly observed, indicating the 

hexagonal B3N3 ring structure of BNNTs [14-15]. Additionally, the weak peak at 

3150 cm-1 in the FTIR spectrum of BNNTs can be assigned to be the stretching 

mode of N-H bonding, proving the presence of BxNyHz intermediates in the BNNTs. 

In contrast to BNNTs, the FTIR spectrum of OH-BNNTs exhibits a wide and intense 

absorption peak at 3400-3500 cm-1 which corresponds to O-H bonding, demonstrating 

the successful hydroxylation of BNNTs. Meanwhile, the weak peak at 3150 cm-1 

from BxNyHz intermediates was not observed, indicating that it might be digested 

during the reaction. 

 

The contact angle of water on BNNTs film decreases remarkably from 87.5° (Figure 

6.6(b)) to 28.9° (Figure 6.6(c)) after the modification with H2O2. 

 

The EELS spectrum (Figure 6.6(d)) of OH-BNNTs exhibits an individual wide energy 

loss peak at 535 - 540 eV, corresponding to 1sσ* transition of oxygen K-edge, 

therefore the bonding type of oxygen is likely to be sp3, rather than sp2. The XRD 

pattern (Figure 6.6(e)) of BNNTs does not show any difference after –OH 

functionalization, indicating an intact crystal structure after reaction with H2O2. TEM 

EELS mappings of OH-BNNTs imply the attachment of abundant oxygen on the 

nanotube walls after functionalization (note that some oxygen might come from 

unavoidable SiO2 contamination during TEM sample preparation, but almost no Si 

was detected in both outer walls of BNNTs bundles). The success of –OH 

functionalization of the BNNTs is therefore confirmed. 
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Figure 6.6 (a) FTIR spectra of hBN crystal, BNNTs and OH-BNNTs. Water contact 

angle of a film of BNNTs (b) and OH-BNNTs (c). (d) EELS spectra of BNNTs and 

OH-BNNTs. (e) XRD pattern of BNNTs and OH-BNNTs. (f-k) TEM EELS mapping of 

Boron, Nitrogen, Oxygen elements and few Si contaminations on OH-BNNTs. 

 

6.3.3 Raman Spectroscopy 

The Raman spectra of the as-purified and functionalized BNNTs are shown in Figure 

6.7(a) and (b) respectively. It can be seen that both materials show a simple spectrum 

with a well-defined G band at 1368 cm-1, characteristic of hBN [16]. Raman 

spectroscopy was also employed to characterise the PVA/BNNTs nanocomposites. 
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Previous studies [17-21] have shown that well-defined Raman spectra can be obtained 

from CNTs even very low loadings CNTs (<0.05 wt%) in polymer-based 

nanocomposites. This is because the CNTs undergo resonance Raman scattering so 

that the strength of the Raman signal is very much higher than that of the polymer 

matrix. In contrast, it is only possible to detect the G band of the BNNTs in the PVA 

composites at loadings in excess of around 1% as can be seen in Figure 6.7(c) where 

an extra peak is present in the PVA nanocomposite at around 1370 cm-1 among the 

Raman bands for the PVA matrix. This is shown more clearly in Figure 6.7(d) where 

the BNNT G band at 1368 cm-1 is deconvoluted from the surrounding Raman bands 

of the PVA. (See the similar analysis in Chapter 5)  

 

Figure 6.7 (a) Raman spectra of BNNTs (b) Raman spectrum of functionalized BNNTs 

(c) Full-range Raman spectra of 1 wt% BNNTs/PVA nanocomposites. (d) Zoom-in 

Raman spectra of 1 wt% BNNTs/PVA nanocomposites. 

 

The spectra in Figure 6.7 were obtained using a 488 nm sapphire laser but a 
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systematic study was also undertaken to see if it was possible to employ lasers of 

different wavelength to optimise the analysis of the PVA/BNNTs composites, as 

shown in Figure 6.8. In principle, a laser with shorter wavelength and higher energy 

should be favourable, but potential damage to the polymer matrix needs also to be 

considered. In situ Raman characterization of 1 wt% BNNTs/PVA nanocomposites 

was performed using a 488 nm laser and a 633 nm laser with similar output power 

(achieved by adjusting the power of the 488 nm sapphire laser), as shown in Figure 

6.8(a, b). Figure 6.8(c) gives the corresponding Raman spectra for Figure 6.8(a, b). It 

can be seen that the 488 nm laser gives rise to much more intense Raman bands for 

both the BNNTs (1368 cm-1) and PVA matrix (1447 cm-1) than the 633 nm laser. 

Ideally, UV lasers are expected to give stronger Raman bands of BNNTs, but the high 

energy of a 325 nm NUV laser causes damage to the polymer matrix, even with a low 

output power, as illustrated in Figure 6.8(d, e). Hence, UV lasers are not appropriate 

for the investigation of BNNT/polymer composites systems due to their unavoidable 

damage to the matrix, although they have been used widely to study the Raman 

spectra of BNNTs [22] and BN [23]. Hence, it was decided that the 488 nm laser 

would be the optimum one to be used. 

 

Figure 6.8 Optical graph of 1 wt% BNNTs/PVA nanocomposites in-situ radiated by a 

488 nm blue laser (a) and a 633 red laser (b) with same power. (c) Raman spectra of 1 
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wt% BNNTs/PVA nanocomposites recorded using a 488 nm and a 633 nm laser with 

the same power. (d, e) Optical graph of 1 wt% BNNTs/PVA nanocomposites before and 

after radiated by a 325 nm NUV laser. (f) Raman spectra of 1 wt% BNNTs/PVA 

nanocomposites recorded after short time NUV radiation. 

 

The dispersion of BNNTs in polymer matrix was assessed by mapping the intensity 

ratio of the BNNT G band at 1368 cm-1 relative to that of the PVA band at 1447 

cm-1. Figure 6.9(a) demonstrates the 100 μm × 100 μm Raman map of a 1 wt% 

BNNTs/PVA nanocomposites film with a relatively poor dispersion of nanotubes, in 

which the BNNTs were distributed into PVA matrix by a 4 hour bath sonication. 

Several >10 µm-scale white particles can be observed in the optical micrograph of the 

nanocomposite film that appear to be agglomerations of the BNNTs. These particles 

are imaged as brightly-coloured areas in the Raman map, implying that the ratio 

I1386/I1447 can be used to map the distribution of the BNNTs in the nanocomposites. A 

finer dispersion of BNNTs in PVA matrix was realized by 1 hour probe sonication and 

fewer agglomerations can be observed by the optical micrograph shown in Figure 

6.9(b) and confirmed in the Raman map. The dispersion of the OH-BNNTs in the 

nanocomposites was also evaluated as shown in Figure 6.9(c) where it can be seen 

that the functionalization improves the dispersion further. 



Chapter 6  Reinforcement of Polymer-based Nanocomposites by Boron Nitride 

Nanotubes 

194 

 

 

Figure 6.9 Optical micrographs, 100 μm × 100 μm Raman mapping (I1386/I1447 intensity 

ratio), Raman spectra of area A, B, C in corresponding optical micrographs of (a) A 1 

wt% BNNTs/PVA nanocomposites film prepared by mixing BNNTs using a 4 h 

sonication bath. (b) A 1 wt% BNNTs/PVA nanocomposites film prepared by mixing 

BNNTs using a 1h probe sonication. (c) A 1 wt% OH-BNNTs/PVA nanocomposites 

film prepared by mixing BNNTs using a 1h probe sonication. 

 

The dispersion of the BNNTs in the PVA was also studied using transmission electron 

microscopy (TEM) as shown in Figure 6.10. It is found that many BNNTs are still in 

the form of bundles as verified by TEM (Figure 6.10(b)) and HRTEM (Figure 6.10(c, 

d)), although some individual MW-BNNTs can also be detected (Figure 6.10(e)).  
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Figure 6.10 (a) STEM-ADF image of a BNNTs agglomeration. (b) STEM-ADF image 

of several separated BNNTs bundles. (c, d) HR STEM-ADF images of independent 

BNNTs bundles in BNNTs/PVA nanocomposites. (e) HR STEM-ADF image of an 

individual MW-BNNT in a 1 wt% BNNTs/PVA composites film dispersed using probe 

sonication. 

 

6.3.4 Mechanical Properties 

Stress-Strain Behaviour The stress-strain curves for the PVA matrix and BNNTs/PVA 

nanocomposite with 1wt% loading of the as-purified BNNTs are shown in Figure 6.11. 

It is clear that the addition of the BNNTs increases both the yield stress and fracture 

stress of the polymer. The stress/strain curve for the OH-BNNTs/PVA nanocomposite 

with a 1 wt% loading is also shown in Figure 6.11. It can be seen that the 

nanocomposite with the OH-BNNTs has a higher Young’s modulus, yield strength and 

breaking strength than the nanocomposite film with the unfunctionalized BNNTs at 

the same loading. The mechanical properties determined from the stress-strain curves 

for all the nanocomposite films studies are summarized in Figure 6.11(c) & Table 6.2. 
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Figure 6.11 (a) Elastic region and (b) full range stress/strain curves for the as-purified 

and functionalised BNNTs/PVA nanocomposite and PVA films at 1 wt% loading. (c) 

Mechanical properties of neat PVA and BNNTs/PVA films. 

 

Table 6.2 Tensile test results of neat PVA and BNNTs/PVA films. 

Materials Young’s 

modulus (GPa) 

Yield stress 

(MPa) 

Breaking 

strength (MPa) 

Eeff (GPa) 

Neat PVA 1.23 ± 0.19 36.9± 9.9 46.6± 2.5 - 

0.1 wt% BNNTs/PVA 1.47 ± 0.24 50.2± 5.4 50.5± 9.6 680 

0.2 wt% BNNTs/PVA 1.67 ± 0.33 51.2± 3.8 53.4± 2.7 630 

0.3 wt% BNNTs/PVA 1.80 ± 0.32 59.1± 5.1 57.0± 1.6 540 
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0.5 wt% BNNTs/PVA 1.78 ± 0.05 57.7± 7.0 51.5± 4.6 310 

1 wt% BNNTs/PVA 1.84 ± 0.18 53.4± 5.3 51.5± 2.1 180 

1 wt% OH-BNNTs/PVA 1.99 ± 0.20 61.4± 4.4 54.6± 1.5 220 

 

Stress-Induced Raman Band Shifts Shifts of the BNNT Raman G band in the 

BNNTs/PVA nanocomposites with a 1 wt% loading were monitored during 

deformation as shown in Figure 6.12. The spectra were obtained from areas of the 

nanocomposites showing relative a uniform distribution of the BNNTs (Figure 6.12). 

Three different areas were chosen at random and it can be seen that there is some 

variation in the rate of downshift of the G band with a maximum value of -4.2 ±1.7 

cm-1/% being obtained in one area. This variability is probably the result of different 

levels of dispersion and different populations of BNNTs within the 2 µm laser spot. 

Nevertheless, it is found that the downshift of the G band stops at 0.2% strain, above 

which it remains constant or actually shifts back, most likely the result of breakdown 

of the BNNT/PVA interface. 
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Figure 6.12 (a) Raman spectra of a region (area A in Figure 6.9(b)) with relatively 

homogeneous BNNTs dispersion in 1 wt% BNNTs/PVA film before and during tensile 

deformation and (b) Fitted zoom-in Raman G band shift of area A at different 

incremental strains. (c) G band shifts of three relatively homogeneous areas in 1 wt% 

BNNTs/PVA film as a function of strain. 

 

Stress-induced shifts of the G band were also monitored for the OH-BNNTs/PVA 

nanocomposite with a 1 wt% loading of functionalized nanotubes as shown in Figure 

6.13. In this case, a higher band-shift rate of -6.4 ±1.3 cm-1/% is obtained with a linear 

shift up to a strain of 0.4%. The higher shift rate and greater linear region are an 

indication of the better dispersion and stronger interface for the OH-BNNTs in the 

PVA than for the unfunctionalized nanotubes (Figure 6.12). 

 

Figure 6.13 (a) Raman G band of OH-BNNTs at incremental strains. (b) Fitted zoom-in 

Raman G band shift of OH-BNNTs at incremental strains. (c) Shift of the G band 

position for OH-BNNTs in 1 wt% OH-BNNTs/PVA film as a function of strain. 
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6.3.5 Micromechanics of Deformation 

It is well established that for both carbon nanotubes and graphene, the modified rule 

of mixtures can be used to account for the dependence of the Young’s modulus of the 

nanocomposite, Ec, upon the volume fraction of the nanofiller (see Chapter 3). In the 

case of BNNTs, Ec will have a relationship of the form [18] 

c o 1 BNNTs BNNTs BNNTs m(1 )E V E V E     (6.1) 

where VBNNTs is the volume fraction of the BNNTs, EBNNTs is the Young’s modulus of 

the BNNTs and Em is the Young’s modulus of the matrix. Additionally, o is the 

orientation parameter and l the length parameter of the BNNTs filler. 

 

The BNNTs loading may be converted from mass fraction WBNNTs (wt%) to volume 

fraction VBNNTs (vol%) using: 

𝑉BNNTs =
𝑊BNNTs𝜌PVA

𝑊BNNTs𝜌PVA + (1 −𝑊BNNTs)𝜌BNNTs
 (6.2) 

where ρBNNTs and ρPVA represent the densities of BNNTs and PVA, which are 1.38 

g/cm3 (the value for MW-BNNTs determined by Zhi et al. [24], but found to be highly 

dependent on the preparation method) and 1.3 g/cm3 [25], respectively. As a result, a 

mass fraction of 1 wt% BNNTs/PVA corresponds to a volume fraction of around 0.94 

vol%. 

 

Polarized Raman spectroscopy shows that the orientation of BNNTs in 

nanocomposites film is random (see chapter 7). Thus we can take the value of ηo to be 

3/8, the value of a random in-plane distribution of fibers [18]. This means that the 

effective Young’s modulus of the BNNTs in the nanocomposites is given by lEBNNTs 

(=Eeff). The values of Eeff determined from the Young’s modulus data are listed in 

Table 6.2. The dependence of Eeff upon VBNNTs using the data from Table 6.2 is shown 

in Figure 6.14. It can be seen that the effective Young’s modulus of the BNNTs 

decreases with increasing volume fraction. This implies that there is good distribution 
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of BNNTs at low volume fraction but that it becomes worse as the volume fraction 

increases. This observation is consistent with another study [8]. It is possible to 

determine the value of EBNNTs by extrapolating the data in Figure 6.14 to zero volume 

fraction and this gives a value of Eeff  825±100 GPa. Since it can be assumed that the 

BNNTs are effectively infinitely long and will become isolated as VBNNTs0, l can 

be assumed to be 1 in this case. Hence EBNNTs is of the order of 825 GPa, consistent 

with the estimates of the intrinsic Young’s modulus of MW-BNNTs (EBNNTs) in the 

range of 0.5 - 1.2 TPa [26-28]. 

 

Figure 6.14 Dependence of the effective Young’s modulus of the BNNTs/PVA 

nanocomposites upon the volume fraction of the BNNTs. The curve is an empirical fit 

of the data to second order polynomial function. 

 

The value of the effective Young’s modulus of the BNNTs, Eeff for each loading is 

given in Table 6.2. It can be seen that it decreases significantly as the loading of 

BNNTs increases and falls to a value of 180 GPa for 1 wt% loading. This appears to 

result from a poor BNNTs distribution due to bundling [29] reducing the effective 

aspect ratio of the nanotubes [30] and leading to a large reduction in l. Table 6.2 also 

shows that the performance of the functionalized BNNTs is somewhat better, having a 

value Eeff of 220 GPa at the same loading, implying that the OH-BNNTs have a 

better dispersion and stronger interfacial interaction with the PVA matrix. 
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It is also possible to estimate the Grüneisen parameter for the BNNTs from the 

stress-induced Raman band shifts. The average shift rate per percentage strain for the 

BNNT G band dG/d from the three plots in Figure 6.12(c) is 2.4±1.3 cm-1/% for a 

loading of 1 wt% in the PVA matrix. The value of Eeff for this loading of BNNTs is 

180 GPa. Since the band shift rate would be expected to scale with the effective 

modulus of the nanotubes in the composite [18], this gives a band shift rate of 

2.4825/180 = 11.0±5.9 cm-1/% for the as-purified BNNTs. The Grüneisen parameter 

can then be determined using the relationship  

G
G 0

G

 = 
(1 )




  
 (6.3) 

where the Raman frequency of the G band is 𝜔G
0=1368 cm-1 and the Poissons ratio of 

the matrix v=0.4. Setting G/ = dG/d , then the value G is calculated using this 

equation is 1.34±0.72. This value is similar to that determined for the BNNSs in 

Chapter 4 and in the middle of the range of 1.04 to 2.07 both measured 

experimentally and calculated for hBN nanoplatelets, reported by Androulidakis et 

al. [16]. 

 

6.4 Conclusions 

A detailed investigation has been carried out for the microstructure and mechanical 

properties of PVA nanocomposites reinforced with BNNTs. The nanotubes and 

nanocomposites have been fully characterized. Raman mapping of the BNNT G band 

intensity can be employed to assess the distribution of the BNNTs in the polymer 

matrix. This is usually difficult since this band is relatively weak due to the lack of 

resonance. A method has, however, been developed of deconvoluting the band from 

the Raman spectrum of the matrix polymer enabling its intensity and position to be 

determined in the nanocomposite. It has also demonstrated that the BNNTs are 
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capable of producing high levels of reinforcement in the polymer-matrix 

nanocomposites. The effective Young’s modulus of the BNNTs is found to the range 

from around 825 GPa at low volume fractions to the order of 180 GPa at 1 wt% 

loading, as a result of bundling leading to a poor dispersion in the polymer matrix at 

high loadings. It has also shown that the mechanical properties of the nanocomposites 

can be improved through –OH functionalization of the BNNTs, leading to a better 

dispersion, improved reinforcement and a higher effective Young’s modulus. Stress 

transfer from the polymer matrix to the BNNTs has been followed from 

stress-induced shifts of the Raman G band of the BNNTs. The levels of band shift are 

found to be consistent with the effective Young’s modulus of the BNNTs determined 

from mechanical testing. The stress-induced G-band shifts also enabled the Grüneisen 

parameter of the BNNTs to be determined that is similar to the value determined for 

hBN nanoplatelets. It is clear that, these BNNT materials offer considerable potential 

for applications in nanocomposites that need electrical insulation accompanied by 

high levels of stiffness and strength, along with potential good thermal stability, such 

as thermal management materials for electronic devices and communication 

equipment. 
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Chapter 7  Raman Spectroscopy of BNNTs in 

Electrospun BNNTs/PVA Nanofibres 

7.1 Introduction 

Electrospinning is one of the simplest methods to prepare nanofibres with diameters 

on the nm scale. Electrospun composite nanofibres have been attracting enormous 

research interest for over decades due to their versatile and adjustable properties [1-4]. 

A series of previous studies [5-8] on CNT/polymer electrospun nanofibres has proven 

that electrospinning is an effective method to disperse and orient 1D nanotubes in a 

polymer matrix. Both TEM [9-11], AFM [12] observations and polarized Raman 

characterization [5-6] have confirmed the high orientation of CNTs along the 

nanofibres axis. It is also found that electrospinning can effectively debundle 

CNTs [12], which is helpful on improving their mechanical reinforcement of the 

matrix. 

 

Despite BNNTs being synthesized only 4 years after the discovery of CNTs [13-14], 

electrospun BNNT/polymer nanofibres have only been reported in very few studies. 

Terao et al. [15] first reported the preparation of BNNTs/PVA films by the stacking 

and hot-pressing multiple layers of electrospun composite nanofibre sheets. The 

BNNTs-dispersed PVA aqueous solution was spun with a high voltage and formed 

into nanofibres. A high-speed rotating aluminum wire drum was used to collect and 

orient the nanofibres. As-prepared nanofibre sheets were thus constructed using 

oriented nanofibres. The BNNTs in the nanofibres were found to be well aligned 

along the fibre axis by TEM observation. The orientation of BNNTs in the thick 

nanocomposites films can therefore be controlled by changing the layer stacking 

direction of nanofibre sheets. The authors thus prepared the films containing oriented 

BNNTs by stacking all nanofibre sheets into one direction and cross-linked BNNT 
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network by stacking sheets rotated 90° with respect to adjacent layers, respectively. It 

was found that high orientation of the BNNTs further improves the thermal 

conductivity of the nanocomposites film. Very recently, electrospun 

BNNTs/polyvinylpyrrolidone (PVP) and BNNTs/polyacrylonitrile (PAN) nanofibres 

were reported by Kim et al. [16] and Estevez et al. [17], respectively. However, both 

studies focused on the enhanced thermal conductivity of nanofibres induced by 

BNNTs incorporation and still used an electron microscope to prove the orientation of 

BNNTs. To the best of our knowledge, the orientation of BNNTs in the electrospun 

BNNTs/polymer nanofibres has not yet studied using Raman spectroscopy. 

 

Different from the case of 0.04 wt% CNT/polymer nanofibres where only an 

individual nanofibre with ~1 μm diameter is needed to give a strong CNT Raman 

signals. It is found that the Raman band of MW-BNNTs in an isolated 1 wt% 

BNNTs/PVA electrospun nanofibre is weak and hard to distinguish. Hence in this 

chapter, a highly-oriented electrospun MW-BNNTs/PVA nanofibre nonwoven fabric 

was prepared for polarized Raman analysis. The MW-BNNT/PVA aqueous solution 

was prepared for nanofibre spinning. The spinning conditions were optimized to 

prepare composite nanofibres with a stable and appropriate diameter. A special 

collector consisting of two strips of conductive aluminum foils and an insulating sheet 

was used for collecting the uniaxially-aligned fibre fabric [18]. The orientation of 

BNNTs in the fabric was studied by non-resonance polarized Raman spectroscopy.  

 

It should be noted that this chapter only contains preliminary results of a systematic 

project studying the orientation of BNNTs in the nanocomposites using polarized 

Raman spectroscopy. For future work, it is expected that the BNNTs/polymer 

nanocomposites containing highly-oriented BNNTs can be prepared and studied by 

polarized Raman spectroscopy using a VV configuration (higher accuracy), the stress 

transfer from the polymer matrix to the BNNTs can be studied by in-situ Raman 
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deformation test (See 8.2.5 in Chapter 8). 

 

7.2 Experimental 

7.2.1 Materials 

The MW-BNNTs used in this work were identical with those in chapter 6, which were 

synthesized using a hydrogen-catalyzed induction plasma processing method [19] and 

purified before use [20]. The PVA (MW 89000-98000, 99+% hydrolyzed) was 

purchased from Sigma Aldrich and used as received. 

 

7.2.2 Electrospinning of BNNTs/PVA nanofibre nonwoven fabric 

 

Figure 7.1 (a) Schematic diagram of electrospinning set-up for collecting oriented 

composite nanofibres. (b) Photograph of electrospinning set-up for collecting aligned 

BNNT/PVA nanofibre fabric. 
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The BNNT/PVA aqueous solution was prepared following the same method as 

described in chapter 6, the only difference being that the loading of the BNNTs was 

fixed at 1 wt%. Electrospinning was carried out as soon as the nanocomposites 

solution was prepared. A syringe of 10 ml capacity and a needle with 1.1 mm outer 

diameter were used and attached to the pump. The tip-to-collector was 8 cm and 

electric voltage was 20 kV. In order to collect well-aligned nanofibres on the collector, 

a PMMA sheet was used as collector of the nanofibers. A pair of parallel aluminum 

strips was attached on the both ends of the polymer substrate and an electric field was 

generated between the two aluminum electrodes thus stretched the nanofibres and 

made them attach uniaxiallyed on the PMMA collector (Figure 7.1(a)). To achieve a 

better alignment of nanofibres, a shorter distance between two aluminum strips was 

employed as illustrated in Figure 7.1(b). 

 

7.2.3 Characterization 

The orientation and surface morphology of electrospun nanofibres were observed 

using an EVO 50 SEM (Zeiss) in the secondary electron mode and a Nanowizard 

AFM (JPK Instruments) in the QI mode. For SEM, the nanofibre-deposited PMMA 

collector was stuck to the SEM stub by carbon tape, which was then sputter coated 

with platinum.  

 

Figure 7.2 Schematic diagrams of the orientation of BNNTs in a composites nanofibre 
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and of the nanofibre relative to the polarized Raman spectroscopy measurement 

parameters. (a) Local coordinate system of the BNNTs (x, y, z) is related to that of the 

nanofibre (X, Y, Z) by Euler angles (θ, ϕ, ξ). (b) For polarized Raman measurement, the 

incident laser propagates along the X. X’ axis while the polarization direction of the 

incident laser is changed by rotating the half-wave plate in the path of incident 

radiation. The scattered light was not polarized [21]. 

 

A Horiba LabRAM Evolution HR Raman spectrometer equipped with a Coherent 488 

nm sapphire laser was used for the Raman measurements. The orientation of the 

BNNTs in the well-aligned nanofibre nonwoven fabric was determined using 

polarized Raman spectroscopy, in which a λ/2 (half-wave) plate was used to polarize 

the incident laser [21]. A VN configuration is used in this work, which meant that 

only the incident laser was polarized whereas the Raman scattered light was not 

because of the relatively weak non-resonance Raman signal from the BNNTs. The 

angle between polarized incident laser and the reference direction of the sample was 

defined as Φ and adjusted by rotating the λ/2 plate. The angle Φ was changed in steps 

of 10o with Raman spectra collected at each step. The laser spot size was about 1-2 

μm in diameter and covered many BNNTs. The principles of polarized Raman 

spectroscopy are illustrated in Figure 7.2. 

 

7.3 Results and discussion 

7.3.1 Nanofibre surfaces and diameter 

Solution concentration, applied voltage, tip-collector distance were optimized to spin 

electrospun nanofibre with controllable diameter. First of all, nanofibres spun from 7 

wt%, 10 wt% and 14 wt% PVA/H2O solutions were studied using SEM as shown in 

Figure 7.3. A typical bead-on-string structure were observed for many nanofibres spun 
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from 7 wt% solution (Figure 7.3(a-b)), the number of beads gradually decreases for 

10 wt% solution (Figure 7.3(c-d)) and eventually disappeared when the solution 

concentration reached 14 wt%. 

 

The formation of beads in nanofibre can be explained by comparing the strength of 

the Coulomb force and viscoelastic force acting on the polymer jet [22]. For low 

viscosity solutions (7 wt%, 10 wt%), the Coulomb force is higher than viscoelastic 

force, which induces the overstretching of the charged polymer jet and their break-up 

into many small beads. When the viscosity of the solution increases (14 wt%) and 

eventually results in a larger viscoelastic force than coulomb force, nanofibres with 

smooth surface and stable diameter are obtained as the viscoelastic force is strong 

enough to prevent the breakup of the charged jet (Figure 7.3(e-f)). 

 

Figure 7.3 SEM images of PVA electrospun fibres with (a-b) 7 wt%, (c-d) 10 wt%, (e-f) 
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14 wt% polymer concentrations (tip-collector distance: 8 cm, applied voltage: 20 kV). 

Although it has been reported that the tip-collector distance affects the diameter of the 

electrospun nanofibre [23], no obvious change on both PVA and 1 wt% BNNTs/PVA 

nanofibre diameter was observed when the tip-collector distance increases from 4-14 

cm (Figure 7.4). This suggests that the electrospun 1 wt% BNNTs/PVA nanofibres can 

be collected at a broad range of tip-collector distance, as in the case of electrospun 

CNT/PVA nanofibres [24]. 

 

Figure 7.4 SEM images of 1 wt% BNNT/PVA electrospun fibres collected using 

different tip-collector distances: (a-b) 4 cm. (c-d) 8 cm (PVA concentration: 14 wt%, 

applied voltage: 20 kV). 

 

It is found that the applied voltage can also massively affect the morphology of 

nanofibres. Figure 7.5(a) shows the SEM image of nanofibre spun at 5 kV, where a 

ribbon-like structure is seen. This is due to the presence of residual solvent inside the 

nanofibres spun at low voltage [25]. After the solvent naturally evaporates, the 

nanofibres on the collector collapse and become flat ribbons. When the applied 

voltage exceeded a certain value (15 kV), circular nanofibres were observed (Figure 
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7.5(b)), suggesting that the solvent evaporated fully before the nanofibres approached 

the collector. 

 

Additionally, the diameter of 1 wt% BNNTs/PVA nanofibres was not as uniform as 

that of pure PVA nanofibres spun under identical conditions. This might indicate that 

the addition of 1 wt% BNNTs changes the surface tension of the PVA aqueous 

solution. On the other hand, insulating BNNTs further reduces the conductivity of the 

solution and thus reduce the charge density on the PVA jet, which consequently 

results in weaker charge repulsion and a weakened force to stretch and stabilize the 

nanofibres [26]. 

 

Figure 7.5 SEM images of 1 wt% BNNTs/PVA nanofibres spun at different voltage: (a) 

5 kV. (b) 15kV (PVA concentration: 14 wt%, tip-collector distance: 8 cm). 

 

7.3.2 Uniaxially-aligned nanofibres 

In an attempt to massively strengthen the Raman band intensity of BNNTs/PVA 

nanofibre, we prepared an oriented electrospun nanofibre nonwoven fabric containing 

well-aligned BNNTs, based on the set-up shown in Figure 7.6. Thus multiple oriented 

nanofibres could be radiated by the laser spot. To verify the validity of the set-up, 

small numbers of nanofibres were spun on the PMMA collector and their morphology 

and orientation were observed. The SEM and AFM images in Figure 7.6 imply 

uniform orientation of most of the nanofibres along the PMMA substrate axis. AFM 
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height profiles of two individual oriented nanofibres in Figure 7.6(f) indicate a ~1 μm 

diameter of the nanofibres prepared (Note that the resolution of the AFM image is 

relatively low, so the shape of the profiles may not be accurate enough. A curved 

shape could be expected in a higher magnification micrograph). 

 

Figure 7.6 (a-c) SEM images of aligned electrospun 1 wt% BNNTs/PVA nanofibres on 

PMMA substrate. (d) Optical micrograph of an individual BNNTs/PVA nanofibre with 

~1 μm width parallel to the axis of PMMA substrate. (e) AFM image of several 

BNNTs/PVA nanofibres parallel to the axis of PMMA substrate. (f) Height profiles 

across two nanofibres in (e). 

 

The optical graph of the nonwoven nanofibre fabric in Figure 7.7 demonstrates that 

most of nanofibres are parallel to the PMMA beam axis. 

 

Figure 7.7 Optical micrograph of a fabric consisting of aligned 1 wt% BNNTs/PVA 

nanofibres. 



Chapter 7  Raman Spectroscopy of BNNTs in Electrospun BNNTs/PVA Nanofibres 

215 

 

7.3.3 Orientation of BNNTs in the nanofibre nonwoven fabric 

To identify the dependence of BNNTs Raman bands intensity upon the orientation of 

nanotubes experimentally, we polarized the incident laser parallel to the axis of 

principle axis of the spectrometer by inserting a λ/2 plate between the specimen and 

laser source. In comparison with the aligned nanofibre nonwoven fabric (Figure 

7.8(b)), the orientation of 1 wt% BNNT/PVA film (Figure 7.8(a)) prepared in chapter 

6 was also studied. It can be seen from Figure 7.8(d) that the intensity of PVA peak 

does not change with polarization angle, which can be used as a reference. The 

intensity of BNNTs band at ~1366 cm-1 keeps almost constant in a composite film 

(Figure 7.8(c)), indicating a random orientation of BNNTs. In contrast, the intensity of 

G band in aligned nanofibre nonwoven fabric varies with angle Φ (Figure 7.8(e)). 

Although the BNNT peak is from the G mode, the Raman band intensity of a 

nanotube is still mainly contributed by the component along the direction of nanotube 

axis. 

 

Figure 7.8 Schematics of (a) BNNTs randomly distributed into a nanocomposites film 

and (b) Highly-oriented BNNTs line up along the axis of electrospun nanofibres inside 

aligned nanofibres fabric. (c) Variation of MW-BNNTs G band intensity as a function 
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of the angle between incident laser and horizontal axis of the BNNT/PVA 

nanocomposites film (Chapter 6). (d) Raman spectra of 1 wt% BNNTs/PVA nanofibre 

nonwoven fabric at incremental angles between nanofibres axis and incident laser. (e) 

Variation of MW-BNNTs G band intensity as a function of the angle between incident 

laser and nanofibres axis. 

 

Therefore, the polarizability tensor α of the BNNT can be written as [21]: 

0 0 0

0 0 0

0 0 1



 
 


 
  

 (7.1) 

and the intensity of Raman band can be given as [21]: 

2( )s II e e  (7.2) 

where I is the Raman band intensity, se is the tensor for scattered radiation and Ie  is 

the tensor for incident radiation. Since the experiment was carried out with polarized 

incident radiation and unpolarized scattered radiation, se is cancelled out. 

Consequently, the intensity of the Raman band as the function of Φ can be expressed 

as [21]: 

2

0 2
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 (7.3) 

where 〈P2(cosθ)〉=(3〈cos2θ〉-1)/2 is the second-order orientation factor, more 

commonly known as the Hermans’ orientation factor in composite science 

(0≤〈P2(cosθ)〉≤1, the larger the value of 〈P2(cosθ)〉, the better the orientation) [21]. 

Fitting the experimental results in Figure 7.8(e) using Eq7.3 gives 〈P2(cosθ)〉=0.22 

and I0=1.74, indicating that the BNNTs in the fibres are quite well oriented along the 

fibre direction. 

 

Based on the value of 〈P2(cosθ)〉, the orientation distribution function (ODF) of the 

BNNTs in the nanofibres can also be reconstructed by using [21]: 
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2 2( ) exp (cos )f A P       (7.4) 

A=0.0113783 and λ2= -0.997918 can be obtained by solving the equations, details of 

these can be found in Ref [21]. On the basis of this, the ODF of BNNTs can be 

estimated as shown in Figure 7.9. Polarized Raman results suggest a random 

distribution of the BNNTs in composite film and good orientation in the nanofibres. 

 

Figure 7.9 Orientation distribution function (ODF) of the BNNTs in the nanofibres and 

composite film. 

7.4 Conclusions 

Electrospun nanofibres containing BNNTs have been successfully prepared. 

Circular-section and smooth 1 wt% BNNTs/PVA nanofibres could be achieved by 

optimizing electrospinning conditions, i.e. 14 wt% PVA concentration, 15-20 kV 

applied voltage and 4-14 cm-1 tip-collector distance. A bead-on-string structure was 

observed for nanofibres spun from low PVA concentration solution (7 wt%-10 wt%), 

while low voltage (<15 kV) spun fibres demonstrate a flat ribbon structure. 

As-obtained nanofibres were found to have diameter varying from 0.1-1 μm. Aligned 

nanocomposite nanofibre nonwoven fabrics have been collected using a pair of 
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parallel metal electrodes sitting an insulating PMMA substrate. High orientation of 

BNNTs along the fibre axis has been confirmed by polarized Raman spectroscopy, in 

which the Raman G band intensity of BNNTs maximizes when the laser is parallel to 

its axis and minimizes when perpendicular. In contrast, no Raman band intensity 

change with laser polarization was observed for the BNNTs in nanocomposite films, 

suggesting a random distribution in that case.  
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Chapter 8 Conclusions and Suggestions for Future 

Work 

8.1 Conclusions 

8.1.1 In-situ Raman deformation of few-layer BNNSs 

It has been found that the G band of BNNSs linearly shifts to lower frequency under 

unaxial tensile strain. Different from previous report on deformed 1L-4L BNNSs [1] 

where the G band tends to split into two sub-bands, band broadening, rather than 

splitting, was observed for the case of thicker (>6 nm) few-layer BNNSs, possibly as 

the result of the low levels of applied strain used in this study. Measurements on the 

band shift of 10.0 nm, 8.8 nm and 20.0 nm thick BNNSs have shown that the shift 

rate drops slightly as the thickness of the BNNSs increases from 8.8 nm to 20 nm, 

suggesting the layer-layer interaction inside the BNNSs is much stronger than 

few-layer graphene. On the other hand, the band shift rate of BNNSs decreases further 

with an increasing number of layers eventually dropping to ~ -2 cm-1/% when the 

thickness increased to ~100 nm (300 layers). The efficiency of internal stress transfer 

between the different hBN layers k has been found to be of the order of 99%. A value 

of k = 0.99 means that the effective Young’s modulus of the BNNSs will only fall to 

half of the monolayer value for 100-layer BNNS (N = 100). Hence it appears that it is 

less important to achieve a high degree of exfoliation to very thin nanosheets, when 

using hBN in nanocomposites, than in the case of graphite and graphene whose k is 

only in the range of 0.6-0.8. Taking the reference G band shift rate to be -11 cm-1/%, 

the Grüneisen parameter of the BNNSs has been determined to be 1.23. 

 

Stress transfer from PMMA substrate to the BNNSs has been monitored by mapping 

the strain along a nanosheet of 11 μm length and 17 nm in thickness. When a low 
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strain (0.1%) was applied to PMMA substrate, the strain builds up from the two 

edges and becomes constant along the middle of the nanosheet where the strain in the 

flake equals to the applied matrix strain, suggesting good bonding between the 

BNNSs and PMMA substrate. The interfacial shear stress is calculated to be 9.4 MPa 

when applied matrix strain is 0.1%. When the applied matrix strain is increased 

further to 0.3%, it is found that the BNNS/polymer interface has completely failed 

and the interfacial shear stress for the failed interface is estimated to be 3.8 MPa. In 

comparison with the case of a graphene monolayer with a 2.3 MPa maximum 

interfacial shear stress at well-bonded interface and a 0.3-0.8 MPa stress at failed 

interface, better stress transfer can be expected between BNNSs and a polymer matrix 

than for graphene. In summary, BNNSs should give better mechanical reinforcement 

than graphene in polymer-based nanocomposites as a result of good internal interlayer 

stress transfer within the nanosheets and better interfacial stress transfer to the 

polymer matrix. 

 

8.1.2 Liquid-exfoliated BNNSs/polymer nanocomposites 

Three types of BNNSs with different average flake size, thickness and aspect ratio 

have been prepared by liquid exfoliation and used for preparing nanocomposites. It 

has been found from tensile testing that M6000 with highest aspect ratio (~350) 

exhibits best reinforcement on polymer matrix at all different BNNSs loadings from 

0.1 wt% to 1 wt%. M3000, a bigger but much thicker flake with low aspect ratio (~55) 

demonstrates relatively good reinforcement at low loading, but its effective modulus 

massively decreases at higher loading. Sigma, very small but thin BNNSs having a 

similar mean aspect ratio (~63) as M3000, exhibits very limited reinforcement on the 

PVA matrix.  

 

The level of reinforcement is found to increase with an increasing loading of BNNSs 
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but the performance decrease above about 0.5 wt% of the filler. The dispersion of 

three types of BNNSs in the PVA matrix has been estimated by mapping the Raman 

BNNS E2g mode (G band) intensity. Sigma and M6000 exhibit relatively 

homogeneous distribution even at 1 wt% loading, but some agglomerations has been 

seen in 1 wt% M6000/PVA film. In contrast, M3000 with much bigger flake size 

tends to agglomerate in polymer matrix, which has significantly damaged its 

reinforcement on polymer at relatively high loading. In-situ Raman deformation 

results are highly consistent with tensile testing results where 1 wt% M6000/PVA and 

1 wt% M3000/PVA has exhibited higher Raman BNNS G band shift than 1 wt% 

Sigma/PVA. It has also been found that no further band shift occurred when applied 

matrix strain is higher than 0.3%, suggesting relatively poor interfacial adhesion 

between the BNNSs and polymer matrix. Hence, chemical functionalization of the 

BNNSs is needed for realizing a stronger BNNSs/polymer interface and better 

dispersion of the BNNSs in the polymer matrix. 

 

8.1.3 BNNTs/polymer nanocomposites 

The microstructure and mechanical properties of BNNTs/PVA nanocomposites have 

been investigated in detail. The typical multi-walled structure of the BNNTs has been 

confirmed by TEM and the nanocomposites have been fully characterized by 

non-resonance Raman spectroscopy. The distribution of BNNTs in the polymer matrix 

has been assessed by mapping the Raman BNNT G band intensity. Although this band 

is weak due to the lack of resonance, it still can be deconvoluted from the Raman 

spectrum of the PVA matrix, enabling its intensity and position to be determined in 

the nanocomposite. The BNNTs have also been found to be able to massively enhance 

the mechanical properties of the nanocomposites. The effective Young’s modulus of 

the BNNTs has been found to be 825 GPa at low volume fraction but decreases to the 

order of 180 GPa at 1 wt% loading, due to bundling and agglomeration in the polymer 
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matrix at high loadings. Additionally, it has also demonstrated that hydroxylation of 

BNNTs can further improve the mechanical properties of the nanocomposites. -OH 

functionalized BNNTs exhibit a better dispersion and stronger interface with the 

polymer matrix, leading to a higher effective Young’s modulus. Stress-induced Raman 

shifts of the BNNT G band have been used to study the stress transfer from the 

polymer matrix to both the BNNTs and functionalized BNNTs. The levels of band 

shift have been found to be consistent with the effective Young’s modulus of the 

BNNTs determined from mechanical testing. A value of 1.34 ± 0.72 has been 

determined for the Grüneisen parameter of the BNNTs from the stress-induced Raman 

band shifts, very close to the value determined for the BNNSs (1.23). 

 

Figure 8.1 Dependence of the effective Young’s modulus of the BNNSs (M6000)/PVA 

and BNNTs/PVA nanocomposites upon the mass fraction of the BNNSs and BNNTs. 

 

In comparison with the M6000 BNNSs which demonstrates best reinforcement on 

PVA matrix, it can be observed in Figure 8.1 that 1D BNNTs shows better 

reinforcement than 2D BNNSs at every mass fraction, which can most likely be 

attributed to lower density and higher aspect ratio of BNNTs. 
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8.1.4 Electrospun BNNTs/polymer nanofibres 

1 wt% BNNTs/PVA electrospun nanofibres with different diameters and structure 

have been successfully prepared. Electrospinning conditions, i.e. PVA solution 

concentration, voltage, tip-collector distance have been optimized as 14 wt%, 15-20 

kV and 4-14 cm-1, respectively, for preparing circular and smooth composite 

nanofibres. As-obtained nanofibres have been observed by SEM and found to have 

diameters varying from 0.1-1 μm. Nonwoven fabric containing highly-aligned 

BNNTs/PVA nanofibres has been successfully prepared by sitting a pair of parallel 

aluminum electrodes on insulating PMMA collector. The orientation of BNNTs inside 

the fabric has been investigated by polarized Raman spectroscopy with a VN 

configuration. It has been demonstrated that the Raman G band intensity of BNNTs 

maximizes when the laser is parallel to its axis and minimizes when perpendicular, 

indicating that the BNNTs in the fibres are quite well oriented along the fibre 

direction. In comparison, no Raman band intensity change with laser polarization was 

observed for the case of BNNTs/polymer nanocomposites film, suggesting a random 

distribution of the BNNTs in the polymer matrix. 

 

8.2 Suggestions for future work 

8.2.1 Deformation of a 1-4L BNNSs/polymer model composite 

Although the deformation of few-layer BNNSs has been studied in chapter 4 and the 

strain-induced Raman band shifts of 2L-4L BNNSs have been reported by 

Androulidakis et al. [1], experimental measurement of the strain-induced Raman shift 

of 1L BNNSs, to our knowledge, still has not been realized. Furthermore, BNNSs 

exhibit much higher inner layer-layer bonding than graphene, the effect of this strong 

interlayer bonding on the deformation behaviour of BNNSs, such as the interfacial 
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stress transfer between polymer matrix and BNNSs with different thickness, need to 

be studied further. 

 

It is reported that the thin layer of SU-8 top coating can make 4L BNNSs visible on 

PMMA substrate [1]. The thickness of SU-8 coating could be well controlled by 

adjusting the rotation speed and SU-8/thinner concentration. The thickness of SU-8 

coating could be then determined by an ellipsometer. 

 

To make 1L-3L BNNSs detectable on PMMA/SU-8 beam, an identify-transfer 

strategy could be designed. First of all, BNNSs could be exfoliated by standard 

mechanical exfoliation [2] and transferred on a Si/SiO2 wafer with 90 nm SiO2 

coating. It is reported that the optical contrast of 1L BNNSs (~2.5%) is enough to be 

detected by human eye [3], so 1L-4L could be distinguished and marked by an optical 

microscope with a green filter. Based on the estimated ~6 μm critical length of 

few-layer BNNSs in this thesis, relatively large flake dimension will be needed for 

accurate Raman deformation testing. PMMA could be used to transfer marked 1L-4L 

BNNSs onto a PMMA/SU-8 beam. Hence, BNNSs will be sandwiched by PMMA 

coating and PMMA/SU-8 beam and as-obtained model composite could be deformed 

and studied by Raman in detail [4]. Theoretically, 1-3L BNNSs will become optically 

invisible after the transfer, but it may be possible to distinguish surrounding much 

thicker BNNSs or even unexfoliated bulk hBN, the location of 1L-3L BNNSs can 

thus be confirmed from their location on Si/SiO2, as illustrated in Figure 8.2 [5]. 

 

The very weak Raman signal of 1L-4L BNNSs might be overcome by using a 488 nm 

sapphire laser and ×100 objective with appropriate grating and laser exposure time. 

Raman band shift of 1L-4L with big enough flake size could be studied first. Strain 

distribution in the BNNSs and interfacial shear stress at different applied matrix strain 

could be evaluated. 
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Figure 8.2 Optical images of 1L-2L BNNSs on a (a) Si/SiO2 wafer and (b) transferred 

onto a TEM grid [5]. 

 

8.2.2 Deformation of wrinkled BNNSs 

The deformation of wrinkled CVD graphene [6] revealed that the presence of 

delaminated wrinkles separate flat graphene into isolated “islands” and reduce the 

stress transfer inside the flake. On the contrary, Galiotis et al. [7] reported that 

substrate-attached wrinkles further enhanced the graphene/substrate interfacial shear 

stress. It is more interesting to find that these supported wrinkles massively improve 

the interlayer stress transfer in 2L-3L corrugated graphene, the Raman 2D band shift 

of 3L wrinkled graphene (-57.1 cm-1/%) was twice that of a 3L flat flake (-28.6 

cm-1/%).  

 

Different from the case of graphene, the interlayer bonding inside BNNSs has been 

proven to be very strong. It can be deduced that wrinkled multi-layer BNNSs will 

exhibit different deformation behavior from the graphene with same number of layers. 

In particular, the effect of delaminated wrinkles on the stress transfer across the 

BNNSs flake could be studied. 
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To make BNNSs visible, PMMA beam could be spin coated with 180 nm SU-8 

photoresist. For comparison, wrinkle-free BNNSs with identical thickness could be 

prepared by standard mechanical exfoliation method. Both BNNSs could be 

transferred on PMMA/SU-8 substrate and their Raman band shifts could be studied. 

Strain distribution at 0.1%, 0.2%, 0.3%, 0.4%, 0.5% applied matrix strain could be 

monitored by Raman strain mapping.  

 

8.2.3 Deformation of functionalized BNNSs 

As shown in Chapter 4, pristine BNNSs exhibit relatively poor interfacial bonding 

with polymer matrix. Several review papers [8-10] have all emphasized the necessity 

of surface modification to realize the ideal mechanical reinforcement of BNNSs upon 

the polymers. Weng et al. [10] summarized different functionalization routes of 

BNNSs and concluded that functional groups can be attached to both in-plane and 

edge sites of the nanosheets. However, the effect of functionalization on the strong 

layer-layer bonding and AA’ stacking order of BNNSs, to our knowledge, has not 

been investigated. Moreover, it is still a challenge to straightforwardly estimate the 

interfacial bonding between different types of functionalized BNNSs and different 

kinds of polymer matrix. This kindles our interest in studying the deformation of 

functionalized BNNSs by the use of the Raman deformation technique. 

 

In this work, different kinds of functionalized BNNSs could be prepared. Pristine 

BNNSs could be exfoliated from bulk hBN and transferred on Si/SiO2 wafer for 

gaseous functionalization. As-prepared functionalized BNNSs of variable thickness 

could be transferred onto a polymer beam and deformed. The change of layer-layer 

bonding in the functionalized BNNSs and functionalized BNNSs/polymer interfacial 

stress transfer could then be studied by Raman spectroscopy.  

 



Chapter 8  Conclusions and Suggestions for Future Work 

229 

 

It would be particularly interesting to study the interface between some special 

functionalized BNNSs and polymer matrix, such as fluorinated BNNSs and 

fluorine-contained polymers such as polyvinylidene fluoride (PVDF), 

polytetrafluoroethylene (PTFE). 

 

8.2.4 Deformation of a SW-BNNT/PVA nanocomposite film 

Chapter 6 has reported the linear Raman band shift rates of MW-BNNTs, which have 

found to fluctuate in different areas. This can be explained by the bundling in the 

polymer matrix and random distribution of number of walls of the MW-BNNTs. 

However, the Raman band shift of SW-BNNTs, to our knowledge, has still not been 

studied. The preparation of SW-BNNTs is rarely reported. Arenal et al. [11] 

successfully synthesized SW-BNNTs using laser ablation method, but as-prepared 

SW-BNNTs contain many other hBN nanostructures such as nanocages and 

nanoplatelets [12]. Golberg et al. [13] reported the successful preparation of 

SW-BNNTs using hard-template method, where the SW-CNTs was used as a template 

reacted withB2O3 and nitrogen gas at >1500 °C, to fully convert SW-CNTs into 

SW-BNNTs. This method is easier to realize the preparation of SW-BNNTs with 

relatively high purity. 

 

In this suggestion, MW-CNTs could be used to prepare MW-BNNTs, for optimizing 

the experimental conditions for substitution reaction. To realize better control the 

reaction, ammonia gas (NH3) could be used to prepare BNNTs at lower temperature 

(1100 °C) [14]. Once the optimal parameters for the reaction are confirmed, 

SW-CNTs could be used to prepare SW-BNNTs. The product could be studied by 

different characterization technique to investigate if the single-wall structure of the 

CNTs is well retained after the reaction. It then could be used to prepare polymer 

nanocomposite films containing random distributed SW-BNNTs and oriented 
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SW-BNNTs (by hot pressing stacked layers of well-aligned SW-BNNTs electrospun 

nanofibre fabric as a film). Raman band shifts of the SW-BNNTs could be 

systematically studied. 

 

8.2.5 Deformation of an oriented BNNTs/PVA nanocomposite 

film 

Previous work on CNT/polymer nanocomposites [15] has proven that the good 

orientation of 1D nanotubes with high aspect ratio and excellent anisotropic properties 

can further improve the mechanical and other properties of the nanocomposites. 

Raman spectroscopy has been widely used for evaluating the CNTs/polymer 

interfacial stress transfer efficiency: the higher the linear Raman 2D band shift rate of 

CNTs, the higher the effective Young’s modulus. More importantly, Wagner et 

al. [16-17] have demonstrated that the band shift rate is even higher if the nanotubes 

are parallel with the directions of maximum strain and Raman laser polarization. 

However, relevant Raman studies on investigating the mechanical reinforcement of 

oriented BNNTs upon the polymer matrix, to our knowledge, have not been reported.  

 

Terao et al. [18] has shown that high orientation of the BNNTs improves the thermal 

conductivity of the nanocomposites film. Considering that nonwoven fabric 

containing oriented multi-walled BNNTs has been successfully prepared in Chapter 7, 

it may be possible to prepare BNNTs/PVA nanocomposites film contained aligned 

BNNTs by hot-pressing multi layers of nonwoven fabrics. 

 

The degree of orientation of the BNNTs in the nanocomposites films could be 

controlled by adjusting the stacking angle between adjacent layers of nonwoven fabric. 

For example, if 2 layers of fabric will be needed for prepare to a nanocomposites film, 

film containing highly aligned BNNTs will be prepared by stacking 2 layers of fabric 
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along one direction; the orientation of BNNTs in the film could be gradually 

decreased by rotating the top layer 30, 60, 90 degree relative to the bottom layer of 

fabric. Hence, it may be possible to prepare nanocomposites films with oriented, 

partially-oriented, random BNNTs. Their mechanical properties could then be studied 

by mechanical testing and in-situ Raman deformation analysis. 
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