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Abstract 

The development of effective and reliable control strategies plays a critical role in the 

optimisation of all bio-based processes, especially with respect to their scaling-up and general 

transition towards industrial-scale manufacturing. The complexity of the reactions occurring and the 

sensitivity of the biological components involved place stringent demands on the availability of fine-

tuning capabilities and responsiveness of bioprocess control systems. Nevertheless, the 

implementation of powerful control techniques is hindered by the lack of accurate measurements. In 

fact, it is fundamental to possess accurate metrics in order to monitor both insightful process 

parameters and outputs of the implemented control strategies. The collection of such data usually 

follows the compromise: high accuracy – long measurement time, as opposed to low accuracy – short 

measurement time. 

This project aims to build and validate an innovative monitoring platform, that will allow the 

implementation of advanced control techniques to a number of bioprocesses. This platform, called 

BioControl 1.0, consists in a Graphic User Interface (GUI) programmed in MATLAB language and it 

allows the user to collect and interpret data from a Proton Transfer Reaction Time of Flight Mass 

Spectrometer (PTR-ToF-MS). The PTR-ToF-MS will sample the headspace of a bioreactor, providing a 

real-time measurement of the compounds contained in the gaseous phase – in equilibrium with the 

subjacent liquid one, the concentration of whose solutes is the target of this measurement method. 

Despite the applicability of such setup to several processes, this study targets the production 

of linalool production, a terpene with the potential of being transformed into biofuel. Bacterial 

synthesis of linalool via E. coli has been studied through plasmid engineering: repeated DNA 

sequences over different areas of the plasmid have been selectively removed, enhancing production 

consistency (from 13% successfully transformed colonies to 100%) while attaining maximum average 

titres around 165mg/Loverlay in small-scale batches (i.e. 5mL).  

BioControl detection capability towards linalool has been tested on scaled-up E. coli 

fermentations carried out in 1L bioreactors (500mL of working volume), resulting in accurate tracking 

of linalool concentration profile in the liquid phase over a 30h operation time. Linalool titres as low as 

100ppb-vol have been successfully detected, while scaled fermentation led to the accumulation of a 

maximum of 190mg/ Loverlay. 

Feasibility of linalool production control through optogenetics has been tested through 

MATLAB and Simulink simulations, indicating that stable control is viable. 
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1. Introduction 

1.1.  Bioprocesses and control 

Industrial processes involving biological vectors include a number of different operations, 

spanning chemical synthesis by means of simple enzymatic systems to multi-organism co-culture 

anaerobic digestion systems for bio-waste treatment. The variety of applications belonging to this 

field makes it difficult to categorize the use of core technologies relevant to bioprocessing, and the 

benefits of making such distinctions is debatable. Nevertheless, it is important to define boundaries 

for the topic being discussed and a bioprocess definition is therefore needed. Throughout this work, 

the term bioprocess refers to all of those processes that envision i) the treatment of a biological 

feedstock, ii) the use of a bio-based catalyst, and iii) the manipulation of microorganisms (Liu, 2017). 

These descriptors unite bioprocesses that share some fundamental aspects such as feedstock 

variability, biological systems modelling and microbial homeostasis. 

High yield and selectivity, process intensification, reduction in toxic and expensive catalysts, 

use of mild reaction conditions, and the exploitation of waste materials represent some of the main 

benefits of bioprocesses over traditional manufacturing approaches (Liguori & Faraco, 2016; Sy et al., 

2018; Xie et al., 2019). As such, industrial bioprocessing is one of the fastest growing industrial sectors, 

with estimates for projected global market value around 360 billion GBP by 2025 (National Plan for 

Industrial Biotechnology, 2013). Evidence of the increased importance of this field is given by the many 

bioprocesses already adopted in industrial manufacturing, including the synthesis of biofuels and 

bioplastics ("Industry progress on UCO sustainability for UK biodiesel production", 2019; Sanctis, 

2016), waste recovery from different types of residues ("Biodiesel", 2019; "Industry progress on UCO 

sustainability for UK biodiesel production", 2019) and wastewater purification. 

 

Notwithstanding the above, growth of biomanufacturing industries has been hindered by 

multiple problems intrinsic to bioprocesses. Inconsistent product yields, non-uniform operational 

conditions, and maintenance of microorganism homeostasis need urgent attention to allow wider 

adoption of bioprocesses across the industrial sector. The efficiency of existing technologies has 

increased dramatically in recent years (Goldrick at al., 2019), but issues such as process consistency 

and long operation times remain as major challenges. Such problems often arise from the 

physiological limits of the microorganisms and biocatalytic systems employed, but equally they are 

also due to the administration of poor control strategies for the overall bio-production process. For 
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example, bioprocess systems rely on fine-tuning of process conditions such as temperature, pH, 

dissolved oxygen, by-product accumulation, etc. (Fernández-Naveira et al. 2017; Gehan et al., 2019; 

Pachauri et al., 2017). Similarly, modified microorganisms require metabolic control, since the 

biological burden imposed by the expression of additional genes inevitably leads to the formation of 

low-(or non-)producing variants (Rugbjerg & Sommer, 2019). For these reasons, further development 

of current control technology is mandatory for the scale-up of industrial biomanufacture. 

The following work focuses on two elements playing a key role in the design of effective 

bioprocess control strategies: measurement systems and genetic-level control. Specifically, the 

possibility of combining PTR-ToF-MS with optogenetic control is addressed: the former possesses high 

sensitivity and specificity over real-time measurements, while the latter allows for externally tunable 

genetic control. Proving the feasibility of this type of approach is the ultimate goal of this dissertation. 

 

1.2.  Innovative measurement techniques 

Robust and reliable measurement techniques are essential to the design and implementation 

of a successful control strategy. Real data availability dictates control strategy structure and the lack 

of measurable parameters undermines the efficiency of any conceivable control solution (Holzberg et 

al., 2018). From the measurement perspective, bioprocesses are inherently challenging systems and 

are characterized by troublesome features. For example, bioprocesses have specific strict sterility 

requirements, operate under high levels of agitation, often have gritty/opaque environments with 

suspended solids, can be run with multiple phase configuration, and are generally ruled by stricter 

regulation policies than traditional chemical processes (Alford, 2006; Holzberg et al., 2018). In addition 

to this, many of the required measurements involve quantification of intermediates, enzymes, and 

inhibitors related to microbial activity. Also, in order to be suitable for control implementation, 

measurements must ensure high levels of accuracy and (quasi-) real-time acquisition. For all of these 

reasons, the adoption of control routines for bioprocesses based on novel measurements has been 

slow to emerge. Examples of successful case studies are available in the literature (Chauvatcharin, 

1995; Ferreira et al., 2001; Lidgren et al., 2006; Maciejewska et al., 2006; Moeller et al., 2011; 

Sagmeister et al., 2013; Yuhong, 2003), but recent contributions focus on sensors for bioprocess 

monitoring rather than sensors for controlling them (although they may be useful for both purposes). 

Holzberg and his co-workers (Holzberg et al., 2018) reviewed the present state of sensor 

technology in the biomanufacturing industry, with a focus on the transition from batch to continuous 

processes. Their work analyses the most established sensors available, categorizing them by their 

measurement rationale (i.e. either optical or electrochemical). 
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1.2.1. Proton Transfer Reaction Mass Spectrometry (PTR-MS) 

Mass Spectrometry is a well-established analytical technique that has become the mainstay 

analysis approach for numerous applications across various research landscapes. New methodologies 

for the use of mass spectrometry are constantly under development, widening the range of 

applicability of this technology. 

One promising research field is represented by PTR-MS. This specific MS configuration is based 

on a mild ionization reaction carried out by hydronium ions through proton transfer, resulting in low 

levels of sample fragmentation and thus allowing for the detection of the molecular ion and aiding 

identification of unknown species (see Figure 1.1). Proton transfer ionization with hydronium ions is 

governed by a selection rule which states that only analytes with a proton affinity greater than that of 

the ion source (i.e. water in most cases) can be ionised. A great advantage of PTR-MS is that common 

air constituents (N2, O2) have lower proton affinity than water and do not react, thus no diluting 

buffer gas is required. 

This makes PTR-MS highly applicable to the detection of volatile compounds within bioreactor 

headspace through direct extraction of the ‘air’ to the mass spectrometer detector and has 

considerable potential for bioprocess control purposes (Blake, 2009; Romano, Capozzi, Spano, & 

Biasioli, 2015), leading to interesting applications of this technology, especially if coupled to a Time of 

Flight (ToF) mass analyser, which offers high sensitivity for the detection of a broad range of masses. 

 

Figure 1.1. Schematics of a traditional PTR-MS instrument consisting of an ion source, an ion source gas (H2O) port and a drift 
reactor constructed by a series of ring electrodes. Adapted from TOFWERK AG website (Tofwerk AG, 2020). 
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Benozzi and co-workers (Benozzi et al., 2015) employed PTR-ToF-MS to monitor a yogurt 

fermentation process. Over 300 substance-related peaks were detected during the analyses, although 

just 13 showed a statistically significant difference between the tested batches. Most of these 

compounds strongly contribute to yogurt flavor, and therefore have an important role in product 

quality evaluation. PTR-ToF-MS is a promising method to screen fermentation progression; it also has 

potential applications in the control process trajectory to adjust final quality. Specific interest should 

be given to the detection limits achieved, which resulted in tens of ppbV without the need of any 

chromatographic separation. 

As for what is reported in literature, PTR-ToF-MS technology has not yet been exploited in 

control engineering, but this is a promising area for future investigation. 

 

1.3.  Genetic embedded control 

Biological systems are highly regulated. Consequently, all living cells have countless control 

systems that enable preservation of homeostatic conditions. Deeper insight of natural control 

strategies and an ability to implement iterative design, build, test and learn (DBTL) synthetic biology 

cycles should enable molecular level bioengineering of new control loops for industrial bioprocesses 

(Chen et al., 2013). This “hard wiring” in the cell of next generation control systems – for example, the 

insertion of genetic switches that respond to internal cell-based stimuli – will open up new 

opportunities for the control of industrial bioprocesses. 

 

Kobayashi and co-workers have designed a hard wired, genetically encoded control system 

(Kobayashi et al., 2004). Cell programmability was achieved by borrowing a genetic toggle switch 

design and rearranging it in a modular fashion. Their system comprised three modules: 1) a signal 

detection module, 2) a regulatory module, and 3) an output module. In variants of the basic design, 

different elements can be used in each module. This not only makes the cells programmable but also 

enables implementation of this modular design in a number of different settings. An important aspect 

of the overall design strategy is the response of the system to endogenous stimuli. In other words, the 

signal detection modules respond to endogenously synthesized molecules. This is distinct from prior 

studies in which genetic switches were created that respond to external stimuli, for example externally 

added inducer molecules (Gardner et al., 2000). Signal detection modules that respond endogenously 

to either i) DNA damage or ii) quorum-sensing activated at a specific population density, were used to 

demonstrate the regulatory potential of these next generation internal control systems. A bimodal 
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genetic toggle switch, which is resistant to noise in the system, was used as the regulatory module 

(Gardner et al., 2000). Output modules used were either green fluorescent protein (GFP) expression 

or biofilm production. High sensitivity to DNA damage (based on the detection of single-stranded DNA) 

and the ability to switch targeted output production back and forth depending on population density, 

were characterized by these control systems. This is an important milestone in the design of next 

generation control systems, setting out design principles for building generic tools that enable 

implementation of internal cellular control mechanisms. In principle, these systems offer feedback 

control with an on/off policy: when the controlled parameter overcomes a fixed threshold level 

production is deactivated; then, it is restored once the control parameter falls below this threshold 

level. However, outputs were found to be sensitive to initial system conditions and the output profiles 

observed did not attain a constant value. 

 

A stable profile of the controlled output was obtained in a similar control strategy 

implemented by You and co-workers (You, 2004). They exploited the same signal detection module 

used in the quorum-sensing system described above in order to track population density. The output 

module was designed to produce a “killer gene” (CcdB, a cytotoxic protein). Cell growth is prevented 

by the synthesis of CcdB once the population density reaches a fixed threshold. This provides a 

constant level of microbial cells and thereby stabilizes the microbial population. The effectiveness of 

the strategy was demonstrated against an uninduced OFF-circuit control. In this control, the microbial 

growth curve has a typical exponential profile, followed by a stationary phase when nutrients are 

depleted. The induced ON-circuit culture overlaps perfectly with the OFF-circuit control in the first 

part of the exponential phase. However, once population density reaches about 108 colony forming 

units per milliliter of culture (CFU/mL), the rate of growth slows and the growth curve enters an 

oscillation phase. Over a 17 h period, these oscillations are slowly damped and eventually disappear, 

giving way to a constant population level for the remaining experiment (conducted over about 30 h). 

Any deviation from expected cell densities is below 5% during this phase illustrating the attainment 

of a constant microbial cell population. Similar control strategies have been reported (Atkinson, 2003; 

Becksei, 2000), but without prolonged stability of the controlled parameter. The observed oscillations 

are significant – the population density increased two-fold from floor to peak value – and the time 

delay to reach a stable cell count is high (several hours). Further DBTL cycles could in principle improve 

and/or modulate these features. Also, the study focuses on population control, without offering any 

aperture on controlling the expression of specific genes. The latter will likely be important in the 

design of control systems for industrial bioprocesses. 
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The work of Aoki and co-workers (Aoki et al., 2019) explores further the potential application 

of in vivo control mechanisms. They regulate either a protein of interest or biomass accumulation by 

means of a genetically encoded feedback loop. Important to this design is the use of a pair of s and 

anti-s factors SigW and RsiW (Figure 1.2). RsiW has the capacity to bind to – and inactivate – SigW. 

Both SigW and RsiW can be used to create an antithetic feedback motif (i.e. the two factors play 

opposite roles, the former up-regulating expression, the latter down-regulating it), which the authors 

argue is needed for robust adaptation to disturbances and set-point changes. They studied two 

targeted gene expression systems: i) fluorescent protein expression and ii) metE expression, which is 

required for methionine biosynthesis, cell viability and consequent biomass accumulation. Expression 

of these systems was directly proportional to the synthesis of the positive regulator of expression 

RsiW, which annihilates its antithetic SigW. As SigW works as a positive regulator for the expression 

of the target gene(s) of interest (GoI), this system acts as a stabilizer for productivity. It successfully 

rejects applied disturbances: upon a 50% output change in the open loop system, the closed loop 

ensures deviation < 25% and full oscillation damping in about 7 h. In principle, should it be required, 

this system could also be modulated through the use of inducer molecules (Figure 1.2), for example 

to impart control of TF1 synthesis using external inducers. This could be used for adjusting the position 

of equilibrium of the overall control system. 
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Figure 1.2. Generalized Aoki and co-workers approach to achieve genetically-encoded in vivo feedback control (Aoki et al., 
2019). A constitutively expressed transcription factor (TF1) regulates the expression of SIGW. In turn, SIGW induces the 
expression of both a second transcription factor (TF2) and a gene of interest (GOI). To close the loop, TF2 regulates the 
expression of RSIW, which annihilates with SIGW. The rationale is that the more SIGW is synthesized, the more GOI and RSIW 
are produced – up to the level that all SIGW is annihilated and GOI concentration reaches stability. In principle, the approach 
could be modified to impart control of TF1 synthesis using external inducers. This could be used for adjusting the equilibrium 
of the overall control system. 

 

1.3.1. Optogenetics 

 The use of optogenetics has emerged as one of the most promising recent strategies to 

implement genetic embedded control. The triggering of photosensitive switches that respond in an 

accurate and precise manner to specific wavelengths of light in principle could enable the coupling of 

in vivo and in silico control mechanisms. There are numerous advantages in implementing such an 

approach, including the high temporal and spatial precision obtained, the ability to achieve target 

specificity and good reversibility (i.e. the capability of the optogenetic switch to revert to the initial 

state after light exposure) (Bacchus & Fussenegger, 2012; De Mena et al., 2018; Olson et al., 2014; 

Zhang & Cui, 2015). Especially important for the high-level production of small molecules and other 

products is the potential to gain “real-time” control of production using optogenetics coupled to real 

time monitoring of product build up. This could be used to protect against over-accumulation of toxic 

compounds. These would be important milestones in the implementation of tunable in vivo control 

strategies that would pave the way to numerous further developments. The tuning of such systems, 
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however, would be complex and case dependent. We consider below investigations carried out on in 

silico control systems applied to genetically embedded switches as the first steps towards these goals. 

 

Zhao and co-workers (Zhao et al., 2018) employed a light-activated transcription factor and 

its corresponding promoter in a system termed “OptoEXP”. This was used to gain control for the 

expression of a particular gene of interest (GoI). The strong dark-to-light expression difference is a 

specific advantage of this configuration. Studies conducted with green fluorescent protein 

demonstrated a 43-fold increase in expression when light is activated with respect to dark conditions. 

Of particular interest is the realization of both inducible and repressible systems starting from an 

inducible one. Using an antithetic motif (similar to that discussed above for Aoki and co-workers 

decsibed above), light is used both to induce expression of a gene and to halt expression of another. 

Effectively, two different systems are generated: i) an inducible-only system by placing the GoI after 

the OptoEXP promoter, inducing its expression when light is switched on; (ii) an inducible-repressible 

system by placing under the regulation of OptoEXP a GoI and an antithetic transcription factor that 

annihilates the one inducing the expression of a second GoI. In this way, light induces the expression 

of the first GoI and prevents expression of the second GoI, while darkness acts the other way round 

(Figure 1.3). 

 

The second configuration was applied to the enhancement of isobutanol production by S. 

cerevisiae. As ethanol is one of the main by-products, repression of pyruvate decarboxylase (PDC) is 

expected to reduce its production. However, total repression of that pathway would prevent growth 

of yeast on glucose, with consequent impact on biomass accumulation. The inducible-repressible 

system was therefore exploited to express PDC under light conditions, and favor isobutanol 

production under dark conditions. This strategy achieves the balancing of microbial growth and 

isobutanol production. During the dark period, light pulses allowed for energy production to maintain 

metabolism. By optimizing such pulses and other growing conditions, this approach achieved a 

production titer of 8.49 g/L isobutanol, 5-fold higher production compared to the best previous 

strategies. 
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Figure 1.3. Generalized Zhao and co-workers control strategy through optogenetic switch (Zhao et al., 2018). (A) Inducible-
only system: light input allows for the activation of the optogenetic transcription factor (OTF); this induces the expression of 
the gene of interest (GOI). (B) Inducible-repressible system: light induces the production of a first GOI (GOI1) and the anti-
transcription factor (aTF); the latter annihilates the constitutively expressed transcription factor (TF), so that the expression 
of a second GOI (GOI2) is not induced. Under dark conditions, GOI1 and aTF are not synthesized, hence GOI2 can be expressed. 

 

The work of Zhao and colleagues demonstrates the potential application of optogenetics to 

bioprocess regulation, proving that it is possible to implement and articulate modulation strategies at 

the same time. The aim of the work was to maximize productivity levels, but no hybrid in vivo – in 

silico control policy has yet been applied to this system. 

 

Currently, the only available example of a hybrid in vivo – in silico control is that reported by 

Milias-Argeitis and co-workers (Milias-Argeitis et al., 2016; Milias-Argeitis et al., 2011). Their 

innovative approach led to the design of the first optogenetic-based feedback control to fully regulate 

the production of a gene of interest in E. coli, in this case a fluorescent protein. The adopted 

configuration employs a switch triggered by green and red light, resulting in expression and repression 

of the gene of interest, respectively. Control policy was implemented with fluorescence signal and 

optical density as the controlled variables, and LED light activation as the manipulated variable (Figure 

1.4). Standard Proportional-Integral (PI) control and Model Predictive Control (MPC) techniques were 

compared, proving the efficiency of both during disturbance rejection and the superiority of the latter 

for set-point tracking. When the desired output is modified over time, its profile was successfully 

tracked by MPC policy (< 5% deviation), whereas PI fails to achieve the same level of accuracy. MPC 

was better than PI control because there is a lag from the light signal until the point that the 

fluorescence signal accumulates sufficiently to enable it to be measured; MPC is able to predict that 

lag and respond in a timely fashion. 
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This last application demonstrates a fully genetically-encoded control strategy. It also serves 

to illustrate the benefit of combining different biological and non-biological tools. Optogenetics is 

paired with an accurate measurement system (the flow cytometer) and a powerful control technique 

(MPC). The combination of these elements allows for an effective strategy, able to keep a complex 

biological system under full control, even when tracking a variable set-point.  

 

 

Figure 1.4. A genetically-encoded in silico feedback control loop. The numbers in the Figure identify individual components as 
follows: (1) – Controller; (2) – Peristaltic pump; (3) – Fresh culture media; (4) – Removed culture media; (5) – UV-Vis; (6) – 
Bioreactor; (7) – PBS; (8) – Flow cytometer; (Yellow lines) – Culture media streams; (Dashed lines) – Signal streams. Automatic 
sampling of culture media allows for optical density measurement of the culture media and fluorescence measurement of the 
targeted fluorescent protein expression. Set point for both parameters is then tracked by switching LED light from green 
(protein expression) to red (protein repression) by means of an external computer-based controller. Figure based on reported 
studies using in silico feedback control (Milias-Argeitis et al., 2016). 

 

1.4.  Terpenoids 

Terpenoids (or isoprenoids) contribute to more than half of all of the naturally synthesised 

compounds discovered to this day, with over 55,000 described structures (Bian et al., 2017; Leferink 

et al., 2019; Leferink et al., 2016; Oldfield & Lin, 2012; Xiao et al., 2019). Their presence has been 

detected amongst the majority of life forms and their diversity accounts for the many key biochemical 

roles they fulfil – from electron transport, to photosynthesis, to membrane structure (Bian et al., 2017; 

Kempinski, 2015; Lange et al., 2000; Lombard & Moreira, 2011). 

Because of the many possible applications they are prone to (see Table 1.1), terpenoids 

represent a commercially interesting product, with a global market worth more than $5 billion 
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(Leferink et al., 2016). They are commonly used as drugs, supplements, food additives, fragrances, 

pesticides and as platform chemicals for further transformation (Ashour et al., 2018; Li et al., 2020; 

Tetali, 2019; Vickers et al., 2017). Moreover, recent studies proved their potential as biofuels 

precursors, satisfying fundamental requirements like low freezing point, low temperature viscosity, 

high energy density and high volumetric net heat of combustion (Mendez-Perez et al., 2017; Mewalal 

et al., 2017). 

 

Table 1.1. Examples of largely manufactured terpenoids. 

Sector Products 

Pharmaceutical Artemisin 

Cannibidiol 

Nutraceutical Coenzyme Q10 

Squalene 

Vitamin K 

Vitamin E 

Food Valencene 

Nootkatone 

Lycopene 

Menthol 

Beta-carotene 

Commodity polymers Isoprene 

Farnesene 

Fragrances Limonene 

Linalool 

Eucaliptol 

Geraniol 

Fuels Pinene 

Limonene 

Linalool 

Farnesene 
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Terpenoids are particularly abundant in plants, where they mostly serve as attractors or 

repellents of animals and insects (Ashour et al., 2018; Kempinski, 2015). Nevertheless, the extraction 

of these compounds from plants is inefficient, subject to seasonality and unsustainable (Wang et al., 

2017;  Zhang, 2013). Currently, one of the main industrial sources of terpenoids is turpentine oil, a by-

product of the paper industry, from whose distillation many pinenes are recovered – which can be 

subsequently transformed into other terpenes (Behr & Johnen, 2009; Schwab et al., 2013). The second 

biggest source is represented by citrus oil from citrus juice production, from which limonene is isolated 

by distillation (Schwab et al., 2013). 

 

Due to the low efficiency of terpenoids extraction from plants, alternative production 

pathways are being investigated and a promising route is given by microbial synthesis (Wang et al., 

2017). Engineered bacterial chassis can feed on an inexpensive, renewable carbon source and exploit 

a specifically designed enzymatic pathway to synthesise several terpenoids (Gupta & Phulara, 2015; 

Tippmann et al., 2013). 

Terpenoids are naturally synthesised from the C5 isoprenoid precursor isopentanyl 

diphosphate (IPP) and its isomer dimethylallyl pyrophosphate (DMAPP). These compounds are the 

final products of either the methylerythritol 4-phosphate pathway (MEP) or the mevalonate pathway 

(MVA), which are reported in Figure 1.5 (Leferink et al., 2016; Oldfield & Lin, 2012). Condensation of 

either of IPP or DMAPP by means of a prenyltransferases leads to the formation of geranyl 

pyrophosphate (GPP), which is the precursor of a number of monoterpenes (i.e. characterised by a 

C10 structure) (Gao et al., 2012; Oldfield & Lin, 2012). Further condensation with additional 

IPP/DMAPP molecules allows for the synthesis of precursors for sesquiterpenes, diterpenes, 

triterpines, etc. (Ashour et al., 2018; Oldfield & Lin, 2012). 

To conclude the biochemical pathway to terpenes, enzymes belonging to the class of terpene 

synthases carry out the last transformation step, bringing about several modifications to the 

precursors’ chemical structure, such as cyclisation, hybrid shift, alkyl shift, deprotonation and 

reprotonation (Ashour et al., 2018; Kempinski, 2015). 
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Figure 1.5. MEP (left) and MVA (right) pathways for isoprenoid precursors IPP/GPP synthesis. 

 

Since the MVA and the MEP pathways are included in the genome of several bacteria, both of 

these biochemical routes have been heavily investigated in order to engineer microbial terpenes 

production (Miziorko, 2011; Oldfield & Lin, 2012). Many successful examples are available in 

literature, though the complexity of these pathways can place a hurdle on further improvements (Li 

et al., 2020; Rico et al., 2019; Yang et al., 2016). As a matter of fact, the route from glucose to 

IPP/DMAPP is formed by a cascade of 18 enzymatic steps: unbalanced/toxic intermediates and rate-

limiting reactions easily compromise the final yield (Liu et al., 2020). As a consequence, many studies 

are focusing on the evaluation of alternative paths, such as the isoprenol mediated or 

prenol/isoprenol based. Promising results have been achieved for what regards the synthesis of both 

hemiterpenes and monoterpenes, with titres as high as 620mg/L for isoprene and 500mg/L for 

limonene (Clomburg et al., 2019; Yang et al., 2016). In addition to this, other studies are investigating 
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on the improvement of terpene synthases, in order to enhance the selectivity towards the production 

of single terpenes (Leferink et al., 2016). 

 

1.4.1. Linalool 

Linalool is a monoterpene alcohol found across many plant species (e.g. basil, coriander, etc.). 

It naturally occurs in two enantiomeric forms (see Figure 1.6), which are characterised by different 

aromas as well as physico-chemical properties (Dudareva et al., 2006; Kamatou, 2008; Nakano et al., 

2011). 

 

 

Figure 1.6. The two naturally occurring enantiomeric forms of linalool. 

 

Naturally, it is employed by plants as insect repellent and germicide, while industrially it is 

used in fragrances, hygiene products, household cleaners, food, and beverages. Linalool has also been 

used in traditional medicine, proving to act as an anti-inflammatory, anti-oxidant, anti-nociceptic, anti-

depressant and potential anti-tumoral compound (Cao et al., 2017; Karuppiah et al., 2017; Lapczynski 

et al., 2008;  Zhang, 2013). In addition to this, more recent studies are benchmarking its potential use 

as a bio-based fuel precursor. As a matter of fact, linalool’s structure is suitable to undergo ring-closing 

metathesis reaction, yielding to rocket and jet engine propellant RJ-4 (Hoye, 1999; Meylemans et al., 

2011). 

Especially due to this newly discovered potential, studies have focused on designing an 

innovative production process. Currently, linalool’s most common sources are: (i) recovery from 

linalool-producing plants, (ii) synthesis from pinene isolated from turpentine oil, and (iii) synthesis 

from petroleum derivatives (Kamatou, 2008; Pommer, 1975). Novel microbial pathways have been 

explored, engineering bacteria, yeasts, and fungi (e.g. E. coli, S. cerevisiae, Yarrowia lipolytica) (Cao et 

al., 2017; Karuppiah et al., 2017; Mendez-Perez et al., 2017; Zhang, 2013). According to literature, the 
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highest production value was achieved by Mendez-Perez and collaborators, who designed a linalool 

production strategy exploiting heterologous MVA pathway combined with linalool synthase from 

Mentha citrate and reported titres as high as 505mg/L over a 72h fermentation period (Mendez-Perez 

et al., 2017). 

Despite not achieving commercially feasible productivity, such technology represents a 

reliable and well-known pathway, with a great potential to future improvements. Live measurement 

of intermediates and genetically tuneable control over the expression of selected parts of the 

enzymatic cascade could dramatically improve the overall yield. For these reasons, linalool has been 

selected as the most suitable candidate for the following work. 

 

1.5. Summary 

Industrial biomanufacture is a fast-growing market, but its further development is hindered 

by process inconsistency and requirement of strict supervision. Adequate process control strategies 

need to be developed to mitigate these issues, nevertheless accurate monitoring of bioprocesses is 

difficult to achieve, along with a fine control of the biological vectors. 

 In this thesis, it is proposed to combine real-time monitoring with PTR-ToF-MS on one side, 

with DNA-embedded optogenetic control on the other. The former allows for sensitive live headspace 

measurement of volatile compounds (down to ppt concentrations), while the latter ensures light-

controlled gene expression. The feasibility of this approach will be tested on E. coli based synthesis of 

linalool, a monoterpene with widespread applications that has the potential to be used as a biofuel 

precursor. 
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2. Project aims 

The aims of this project can be summarised as follows: 

 

• Optimise the plasmid used for linalool pathway integration in E. coli by removing 

homologous regions, in order to enhance production consistency; 

• Execute preliminary tests to evaluate detection capability of PTR-ToF-MS towards 

linalool both in vials and in 1L bioreactors; 

• Understand PTR-ToF-MS data output and develop suitable tools to manage, interpret 

and store it; 

• Build a data pipeline to handle live measurement of bioprocess headspace; 

• Design a User Interface (UI) to manage measurement data; 

• Simulate optogenetics control of linalool producing bacterial cultures and test 

stability of a Proportional Integral Derivative (PID) control routine; 
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3. Materials and methods 

3.1. Strain engineering 

3.1.1. Reagents 

Ethyl acetate, sec-butyl benzene, nonane, anhydrous magnesium sulphate, R-(-)-linalool and 

terpene mixture were purchased from Sigma Aldrich. Agarose, carbenicillin, isopropyl β-D-1-

thiogalactopyranoside (IPTG), Terrific Broth (TB) phosphate buffered and Luria Broth (LB) were 

purchased from Formedium. SOC outgrowth medium and nuclease-free water were purchased from 

New England Biolabs (NEB). Glucose was purchased from Fisher Chemical.  

 
All media were prepared according to supplier recommendation and autoclaved before use. 

Solution stocks of carbenicillin (100 mg/mL), IPTG (100 mM) and glucose (40 %) were prepared, filter 

sterilized (Sartorius MiniSart 0.22µm) and kept at -20 °C freezer (except for glucose). Carbenicillin was 

used at a concentration of 100 μg/mL both in liquid media and in agar plates.  

 

Monarch Plasmid DNA Miniprep kit from NEB was used for plasmid isolation, NucleoSpin Gel 

and PCR Clean-up kit from Macherey-Nagel was used for DNA purification from agarose gel. Standard 

suppliers’ protocols have been followed. 

 

3.1.2. Equipment 

Eppendorf MiniSpin centrifuge was used for pelleting 2 mL tubes, Eppendorf ThermoMixer C 

was used for shaking and heating 2 mL tubes, Biometra TRIO thermocycler was used for all Polymerase 

Chain Reactions (PCRs), Thermo Scientific NanoDrop 2000 was used for determining DNA 

concentrations, Infors HT Multitron incubation shaker was used for culture growth and linalool assays, 

BioRad Gel Doc EZ imager was used for imaging DNA agarose gels, Varian Cary 50 Bio 

Spectrophotometer was used for measuring Optical Density measurements at 600nm (OD600), 

Agilent Technologies 7890B GC equipped with an Agilent Technologies 5977A MSD GCMS was used to 

assess linalool concentration in cultures. 
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3.1.3. Genes 

Linalool pathway – comprising MVA, GPP synthase (GPPS) and linalool synthase (LinS) – was 

cloned in a single-plasmid, as reported in Leferink at al. (Leferink et al., 2016). This plasmid is reported 

in Table 3.1. Primers employed are reported in Table 3.2. 

 

Table 3.1. Employed plasmids. 

Plasmid name 

Origin of replication, 

antibiotic marker, 

promoter 

Genes Reference 

pMVALinS p15A, 

ampicillin, 

lacUV5 

EcAtoB, SaHMGS, SaHMGR, ScMK, ScPMK, 

ScPMD, EcIDI, AgtrGPPS, bLinS 

Leferink et 

al., 2016  

 

Table 3.2. Employed primers. 

Primer name Sequence 

pMVALinStoNR2frag1.F CCATGTCTCTGCCATTCC 

pMVALinStoNR2frag1.R GTCGGCGAAAAAACCCC 

pMVALinStoNR2frag2.F GGTTTTTTCGCCGACTGCA 

pMVALinStoNR2frag2.R AAGGGAGAGCGTCGAGATCC 

pMVALinStoNR2frag3.F TCGACGCTCTCCCTTATGC 

pMVALinStoNR2frag3.R CTTATTGTTGTCTAATTTCTTGTAAAATATGTTCC 

pMVALinStoNR2frag4.F GACAACAATAAGGCGAATTGATCTGGTTTGACAGC 

pMVALinStoNR2frag4/5.R ATGGCAGAGACATGGTTATTTCCTCC 

pMVALinStoNR2frag5.F TAGACAACAATAAGGCTGTTGACAATTAATCATCC 

pMVALinStoNR1frag6.F CAGCGGTTAAGGATCCTTCCTCGCTCACTGACTCG 

pMVALinStoNR1frag7.R TGATCTCCCTCCTAGATCCTTAAGACG 

pMVALinStoNR1frag8.F CTAGGAGGGAGATCATATGAGC 



Giovanni Lorenzon – MPhil Thesis 

 

 30 

pMVALinStoNR1frag9.R GATCCTTAACCGCTGCTACG 

pMVALinStoNR2isol.F GCGTTACGATCAAGATCGTCAA 

pMVALinStoNR2isol.R GCTGAACTTGATGTTCTTTGCG 

check.F CGTGTTTGTGATCTGGTGC 

check.R GTATCTTCCTGGCATCTTCCAGG 

 

3.1.4. Strains 

Competent E. coli NEB-DH5α cells (T1 phage resistant and endA deficient) from NEB were used 

both for plasmid amplification and expression.  

 

3.1.5. Agarose gel protocol 

DNA separation was carried out by agarose gel electrophoresis. Agarose gel was prepared at 

a concentration of 2% for DNA fragments shorter than 1500bp, 0.8% for longer fragments. Safe View 

from NBS Biologicals was used as nucleic acid stain in a concentration of 0.01% v/v. Subsequently, 

DNA samples were dyed using Purple Loading Dye from NEB in a proportion of 1:6 of dye and sample. 

Gel placed in TAE buffer (4.84g of Tris, 1.142mL of acetic acid, 2mL of 0.5M EDTA in 1L of water at a 

controlled pH 8.0) was loaded and run for 1h at 100V. ‘100bp’ DNA ladder was used for DNA fragments 

shorter than 1500bp, ‘1 kb plus’ for longer fragments (both from NEB).  

 

3.1.6. Gene sequencing 

DNA fragments and plasmids were sequenced using Eurofins Genomics Tubeseq service. For 

every 800bp to be sequenced, two 2mL vials were filled with 15μL of plasmid DNA in a concentration 

of 50-100ng/μL mixed with 2μL of either sequencing primer at 15pmol/μL.  
 

3.1.7. Plasmid preparation protocol 

Variations on pMVALinS to remove homologous regions were obtained through PCR and in-

fusion cloning from the original plasmid. Three variations were designed: (i) pMVALinS.NR1, (ii) 
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pMVALinS.NR2a, and (iii) pMVALinS.NR2b. The cloning protocols to synthesise them are reported in 

Figure 3.1. 

PCRs were executed in 200µL PCR tubes employing Q5 High-Fidelity Hot Start DNA Polymerase 

Kit from NEB. Reagents amounts and thermocycling conditions are a reported in Table 3.3 and Table 

3.4, respectively. PCR products concentration was checked to be higher than 20ng/µL. 

In-fusion cloning was carried out with In-Fusion HD cloning Kit from Takara Bio. DNA 

fragments were designed to have 15bp overlap and were obtained by PCR amplification, agarose gel 

electrophoresis and final gel extraction. An aliquot of DNA material was then transferred into a 200µL 

PCR tube, following kit supplier’s recommended amounts (~10ng for fragments < 0.5kbp, or ~50ng for 

fragments 0.5kbp to 10kbp). The mix was combined with 2µL of In-Fusion HD Enzyme Premix and 

volume was adjusted to 10µL using nuclease-free water. The tube was incubated for 15min at 50°C 

and eventually placed on ice. 

In-fusion cloned plasmids were used to transform competent E. coli cells (see 3.1.8 below) 

and plate-cultured overnight. Colony PCR was executed on plate colonies to check for appropriate 

sequence removal and positive colonies were used to carry out the linalool assay. The primers used 

to carry out the colony PCRs are: check.F + check.R for pMVALinS.NR1, pMVALinStoNR2isol.F + 

pMVALinStoNR2isol.R for pMVALinS.NR2a, and pMVALinStoNR2isol.F + pMVALinStoNR2isol.R for 

pMVALinS.NR2b. Gel images and expected amplified fragment sizes are reported in Figure 3.2. 

 

Table 3.3. PCR reagents amounts. 

Component Amount (for 50µL volume) 

5x Q5 Reaction Buffer 10µL 

10mM NTPS 1µL 

10µM Forward Primer 2.5µL 

10µM Reverse Primer 2.5µL 

Template DNA 0.1 - 0.5ng 

Q5 High Fidelity DNA 

Polymerase 

0.5µL 

Nuclease-free water To 50µL 
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Table 3.4. 3-steps PCR thermocycling conditions. TANNEALING was calculated with TM calculator online from NEB. 

Step name Temperature (°C) Time 

Initial denaturation 98 30s 

Cycling (30x):   

Ø Denaturation 98 10s 

Ø Annealing TANNEALING 30s 

Ø Extension 72 20s/kbp 

Final extension 72 2min 

 

 

 

 

 

(a) 
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(b) 
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(c) 
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(d) 

 Figure 3.1. Original pMVALinS plasmid map and cloning strategies to obtain 3 homologous-region-free alternatives. (a) 
Original pMVALinS map. (b) Cloning strategy to obtain pMVALinS.NR1. (c) Cloning strategy to obtain pMVALinS.NR2a. (d) 
Cloning strategy to obtain pMVALinS.NR2b. 

 

Figure 3.2. Colony PCR gels of the 3 pMVALinS variations. Ladders are on the left side, while fragments on the right. Expected 
fragment length is reported. 
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3.1.8. Transformation protocol 

Plasmids were transformed into E. coli strains according to supplier’s protocol. Briefly, cells 

from -80°C freezer were thawed on ice for 10min and approximately 50ng of plasmid DNA was added 

to 50μL of cell mixture. Cells were placed on ice for 30min, heat shocked at 42°C for 30s and placed 

on ice for 5min. 250μL of room temperature SOC outgrowth medium was added into the mixture and 

cells were incubated at 37°C for 1h at 190rpm. Mixture was plated on 2 LB-agar plates with 1‰ 

carbenicillin in the amounts of 25μL and 250μL and incubated overnight at 37°C.  

 

3.1.9. Linalool production assay protocol 

3.1.9.1. Small-scale fermentation 

Linalool production assay was executed according to Leferink at al. (Leferink et al., 2016). 

Glass vials (28mL in volume) containing 3mL TB medium supplemented with 0.4% glucose and 100μg/L 

carbenicillin were inoculated with overnight plate-cultured colonies from freshly transformed cells. 

Vials were then placed in shaking oven at 37°C and 190rpm. Upon attainment of 0.4 OD600 (i.e. 4 to 

5h), cells were induced with 50μM IPTG, a nonane overlay was inoculated in the proportion of 1:5 v/v, 

and vials were incubated for 72h at 30°C and 190rpm. 

 

3.1.9.2. Scaled-up fermentation 

-80°C glycerol stock of linalool producing strain was recovered overnight in 5mL TB with 

100μg/L carbenicillin at 37°C. The next day, 500µL of recovered culture were used to prepare a 50mL 

TB with 0.4% glucose and 100μg/L carbenicillin inoculum, cultured at 30°C until 0.4 OD600. The so-

prepared inoculum was then added to an Infors Multifors 2 1L bioreactor for a total culture volume of 

500mL of TB with 0.4% glucose and 100μg/L carbenicillin.  The reactor was left to operate overnight 

at 400rpm, 25°C, and 0.5Lair/Lmedia·min aeration. The morning after, reactor temperature was 

increased to 30°C, until OD600 of 0.4 was reached. Upon attainment of the desired OD, the culture 

was induced with 50μM IPTG and another aliquot of carbenicillin was added to a final concentration 

of 100μg/L. Fermentation was then carried out for 30h. 
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3.1.9.3. Linalool quantification 

For small-scale cultures, upon completion of the fermentation process vials were collected 

and centrifuged at 13,000rpm for 2min, in order to allow for phase separation of the water and organic 

layers. Nonane was then transferred into 2mL tubes and dried over anhydrous magnesium sulphate. 

Equal volumes of dried sample and 0.1% sec-butylbenzene (used at internal standard) in ethyl acetate 

were mixed in glass chromatography (GC) vials. 

Linalool quantification was carried out through GC-MS analysis. The products were separated 

on a DB-WAX column (30m length x 0.32mm internal diameter, 0.25μM film thickness, Agilent 

Technologies). The injector temperature was set at 240°C with a split ratio of 20:1 (1μL injection). The 

carrier gas was helium with a flow rate of 1mL/min and a pressure of 5.1psi. The following oven 

program was used: 50°C (1min hold), ramp to 68°C at 5°C/min (2min hold), and ramp to 230°C at 

25°C/min (2min hold). The ion source temperature of the mass spectrometer (MS) was set to 230°C 

and spectra were recorded from 50m/q to 250m/q. 

Linalool concentration was extrapolated on the basis of the ratio between the peak areas of 

linalool and sec-butylbenzene, according to Equation 3.1: 

Equation 
3.1 !!"# =

#!"#
#$%&&

∙ %'(!  (3.1) 

 

where !!"# is the concentration of linalool, #!"# is the linalool peak area, #$%&& is the sec-

butylbenzene peak area, and %'(! is the correlation coefficient obtained from calibration 

against spiked linalool samples (Guiochon & Guillemin, 1988). Effectively, %'(! is the slope 

of the linear fitting of the calibration points reported in Figure 3.3 and its value is 4.6693·10-4. 

Final concentration value is expressed in mgLINALOOL/LOVERLAY. 

 

To quantify linalool concentration in scaled-up cultures, 1mL aliquots were drawn from the 

bioreactor and subsequently mixed with 200μL (i.e. 1:5 v/v) nonane to extract the terpene in the 

organic phase. Then, linalool analysis was carried out through GC-MS exactly as discussed above, 

although its value is representative of the whole culture media volume, so it must be expressed in 

mgLINALOOL/L (while if expressed in mgLINALOOL/LOVERLAY its value would be 5-fold higher). 
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Figure 3.3. Linalool calibration for GC-MS analysis. 

 
3.2. Terpenes measurement through PTR-ToF-MS  

3.2.1. Experimental setup 

Terpenes detection has been assessed by PTR-ToF-MS measurements. The equipment used 

was a Vocus PTR-ToF-MS from TOFWERK, which was used either alone or in combination with an ARI 

Modular GC from Aerodyne Research, while sample handling was carried out by means of a PAL RSI 

Series II Autosampler from PAL System. Both the chromatographic and sampling modules were 

controlled through Acquility, the Vocus GUI. 

Vocus voltages are reported in Figure 3.4, reagent flowrate was set at 20sccm, and zero-gas 

flowrate was kept either at 0sccm for vial detection through GC-PTR-ToF-MS or at 40sccm for 

bioreactor detection via PTR-ToF-MS. 

When using the GC module, samples were loaded on 20mL glass vials and separation was 

carried out through a DB-WAX column (30m length x 0.32mm internal diameter, 0.25μM film 

thickness, Agilent Technologies). Injection temperature was variable, with a split ratio of 10:1 

(0.2SCCM for 60s of sample purging, for a total of 0.2cm3 injection). The carrier gas was helium with a 

flow rate of 1.8SCCM and a pressure of 5.1psi. The following oven program was used: 40°C (1min 

hold), ramp to 60°C at 13.3°C/min, ramp to 175°C at 46°C/min, ramp to 205°C at 18°C/min, ramp to 

225°C at 16°C/min, and ramp to 235°C at 12°C/min (4min hold). The ion source temperature of the 

mass spectrometer (MS) was set to 150°C and spectra were recorded from 1m/q to 216m/q. 

When sampling bioreactor headspace directly with the Vocus (i.e. no GC step included), a 

heated transfer line was used to connect reactor and MS, whose temperature was kept at 50°C. 
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Figure 3.4. TOFWERK PTR-ToF-MS Vocus voltage settings. 

 

3.2.2. Design of Experiment 

Design of Experiment (DoE) technique (Montgomery, 2013) was used to assess linalool 

measurement variability in vials through GC-PTR-ToF-MS. Face-centred central composite design was 

followed (Montgomery, 2013), employing 2 quantitative parameters – injection temperature and 

liquid volume – and 2 qualitative parameters – solvent type (TB, nonane, TB+nonane) and sample 

incubation (incubation, non-incubation). Employed solvents were TB, nonane, and TB + nonane 

(proportion 5:1 v/v), while 1h-incubation at 30°C was compared with no incubation (i.e. vial headspace 

sampled at room temperature). The measured output was signal/noise ratio of linalool, whose 

concentration was kept at a constant value of 10ppm throughout all of the runs. 

11 runs were executed for each qualitatively different condition (i.e. 6 configurations), 

including a central point triplicate. Experimental design and summary of the experiments conducted 

are reported in Figure 3.5 and Table 3.5, respectively. 
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Table 3.5. Summary of experimental runs executed for each qualitatively different configuration. 

 Injection temperature [°C] Liquid volume [mL]  

 30 0.5  

 30 2.75  

 30 5  

 50 0.5  

 50 2.75  

 50 2.75  

 50 2.75  

 50 5  

 70 0.5  

 70 2.75  

 70 5  

(1, -1) (1, 0) (1, 1) 

(0, -1) (0, 0) (0, 1) 

(-1, -1) (-1, 0) (-1, 1) 

Par 1 

Par 2

(Par 1, Par2) 

Figure 3.5. Schematic of face-centred central composite design with 2 quantitative parameters. ‘-1’ and ‘1’ correspond to the 
lower and upper limits of the experimental range studied, while ‘0’ is the mid-range value. Central point (0,0) run is carried 
out in triplicate. 
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Coefficient regression was carried out on coded variables, defined in Equation 3.2: 

Equation 

3.2 !! =
#! − (&'! + ''!)/2
(&'! − ''!)/2

 (3.2) 

where !!  is the coded variable, #!  is the corresponding natural variable (i.e. injection temperature, 

liquid volume), and ''!  - &'!  are the limits of the experimental range of the variable (e.g. 30°C and 

70°C for the injection temperature) (Montgomery, 2013). Coded variables are quantitative variables 

that are normalised on the basis of their investigation range. The advantage of working with coded 

variables is given by an easier readability of the results analysis. As a matter of fact, when assessing 

the effect of a coded variable on an observed parameter, the magnitudes of the model coefficients 

are directly comparable, since they are dimensionless. Since two quantitative variables were 

investigated in this study (i.e. injection temperature and liquid volume), two coded variables are 

employed. 

Linear regression based on least sum of squared errors was adopted, including single parameter 

effects, the interaction effect and the squared single parameter effects, following Equation 3.3: 

Equation 

3.3 ,- = ." + .# ∙ !# + .$ ∙ !$ + .% ∙ !#!$ + .& ∙ !#$ + .' ∙ !$$ (3.3) 

where ,- is the predicted output, .!  are the regression coefficients, and !!  are the coded variables. 

Response surfaces are generated accordingly. In addition to standard single parameter main effects, 

It was decided to include interaction effects in order to study a potential influence of either of the 

quantitative parameter on the other. Additionally, quadratic effects were considered as well, since 

non linearity of the investigated parameters was suspected.  

 

3.3. Monitoring platform and control simulations 

BioControl 1.0, the control platform to handle output data from the PTR-ToF-MS, was 

designed in MATLAB R2020a, employing the AppDesigner tool. ‘Statistics and Machine Learning’ and 

‘Bioinformatics’ toolboxes were used, along with ‘Natural-Order Filename Sort’ script available on 

MathWorks website. 

Simulations of control stability of optogenetic-controlled bacterial systems were carried out 

in Simulink, with support scripts executed in MATLAB R2020a. 
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3.3.1. General description of BioControl 

The main purpose of this project is the realisation of a monitoring platform that will be able 

to collect data coming from the live headspace analysis of a bioreactor and elaborate it in order to 

provide insight on the liquid concentration of selected target compounds. This information lays the 

foundation for future implementation of control strategies, so to improve general bioprocess 

performances. Since the use of the PTR-ToF-MS technology is innovative with respect to this particular 

application, it is necessary to build an integrated solution that will allow the user to fully exploit the 

potential of this setup. 

BioControl has been developed with the purpose to offer a software that could import, store, 

manipulate and display raw data from a PTR-ToF-MS in real time. It has been programmed in MATLAB 

AppDesigner, which consents the development of standalone software programmes that might be 

even run remotely on a MathWorks server. So far, its design is able to execute the monitoring function 

only, which is also limited to one single target compound. All the reported functionalities have been 

tested against suitably generated mock-files first, and then over real experiments too. 

 

3.3.2. Data structure and handling 

The datafiles in output from the Vocus PTR-ToF-MS are organised in a Hierarchical Data 

Format (HDF) structure and possess the extension ‘.h5’. This type of data is suitable for the storage of 

large amount of information, organised in Groups, Datasets and Attributes. The downside of this type 

of files is the impossibility to gain access to the information gathered within them until definitive file 

closure. Therefore, file saving has been set to be triggered every 30s through Acquility, so to allow 

data reading at a rate close to real-time analysis. 

 

Inside of each ‘.h5’ file, ion intensities are stored in 4-dimensional matrixes of size [M x 1 x CS 

x TC], where M is the number of recorded masses, CS is the chunk size of the single time cycle (i.e. 

number of time points saved at every time cycle) and TC is the number of time cycles measured during 

the specific experiment. Usually, M comprises of ~150k mass points (average mass resolution of 

0.0014m/q, over a 216m/q range), accounting for the sheer amount of data stored in any ‘.h5’ file 

(circa 50MB/min of analysis). TP = CS x TC represents the total number of recorded timepoints (CS x 

TC to be intended as the mathematical product between the numbers indicating the lengths of CS and 

TC, not as a 2-dimensional matrix with size CS by TC), with an average time resolution of 0.3s. For 

every timepoint, an ion intensity value is registered at every measured mass. Despite the fact that CS 
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should normally be fixed, it can variate between files – though normally attaining a value of 6. The 

reason why CS is allowed to change is not clear, nevertheless it must be considered as an unknown 

variable when querying an ‘.h5’ file. 

In order to interpret the data, the original matrix is rearranged in a bidimensional structure 

with size [M x TP]. On the basis of a user-defined mass target and relative neighbourhood, an interval 

of rows is extracted and integrated at each timepoint over the selected range of masses. In this way, 

a single intensity value is paired to a single time value, thus obtaining a final array with size [1 x TP]. 

To avoid speed problems and excessive task queuing, data manipulation is carried out only on 

selectively extracted data, so to avoid useless time-costing operations. This means that the packages 

of raw data imported from the PTR-ToF-MS are not extracted as a whole, but only accessed at the 

required spot (e.g. only the data related to the range of the mass target is extracted, maintaining the 

other masses’ data compressed). 

 

BioControl runs on the same computer controlling the PTR-ToF-MS, hence ‘.h5’ files are 

directly imported and read. By employing a timer callback function (i.e. a MATLAB object capable to 

trigger the execution of specific functions in a timed manner), the software recursively scopes for new 

available datafiles, extracts the target data to interpret and visualise it, and eventually discards it. A 

data buffer of 5min is kept stored at a time, while additional files are deleted. Nevertheless, the 

intensity profile over time of the target compound is stored in MATLAB files (i.e. ‘.mat’) for the whole 

duration of the experiment. 

 

3.3.3. GUI structure and features 

3.3.3.1. Sidebar 

BioControl GUI, as reported in Figure 3.6, comprises of a sidebar where: 

 

• It is possible to select which modality to operate with, which could be either 

‘Simulation’ or real ‘Sample testing’. Along with recursive data analysis, the former 

one triggers a timer for the repeated generation of mock files that will simulate the 

expected PTR-ToF-MS output. The latter allows for data analysis and display of real 

experimental data from the PTR-ToF-MS. 
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• Target compound mass needs to be entered, as well as its mass neighbourhood, along 

which to integrate the intensity. This allows for the monitoring of a specific compound 

(or multiple compounds sharing the same mass). 

• A ‘Status’ panel, flagging the current data acquisition, the elapsed time since data 

acquisition started, and eventual error messages. 

• ‘START’ & ‘STOP’ buttons to trigger data acquisition either from real files or from mock 

ones. 

 

Fields in the ‘Monitoring target’ panel needs to be filled with suitable values before starting 

an acquisition. In the case of operating in ‘Simulation’ modality, it is required to provide more 

information on the ‘Simulation’ tab (see below). Error messages regarding any missing field are printed 

in the error log text area. 

 

 

Figure 3.6. BioControl sidebar and ‘Calibration’ tab. 
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3.3.3.2. Calibration 

The first tab allows to include an experimental calibration, so that the software might directly 

convert headspace data into liquid phase concentration of the target compound to be analysed. 

Pressing on the ‘Start new calibration’ button, an auxiliary application will be called and a 

second window will appear (see Figure 3.7). It features the possibility to define calibration points over 

previously recorded datafiles. Effectively, it is possible to pair a user-defined concentration value with 

one or more ‘.h5’ files containing the headspace measurement of a sample spiked at that same 

concentration. Such experimental point will be then reported on the calibration graph (along with 

error bars generated accordingly). Base 10 logarithmic scale is used to plot data, in order to better 

visualise concentrations across a large scale (from ppb units to hundreds of ppm). 

 Once all of the points are included, it is possible to regress the parameters of a linear fit of 

the calibration data (pressing the button on the lower left ‘Linear fit’), which will be shown in the 

dedicated text boxes (i.e. ‘Slope’, “Intercept’ and ‘R2’ fields on the bottom of the window). Linear 

regression of the parameters is carried out on logarithmic values, as it results in a more balanced fit 

of all of the experimental points. A line showing the regressed fit will be also reported on the graph 

(see Figure 3.8). Again, it is necessary to specify a target mass and neighbourhood to allow for the 

extraction of data specific to the compound of interest (‘Compound central mass (Da)’ and ‘Compound 

mass neighbourhood (Da)’ fields on the right side of the window). Not providing such info will trigger 

suitable error messages reported on pop-up alert windows. 

After regressing the fitting parameters, it is possible to store them along with experimental 

points data in an ‘.xlsx’ spreadsheet. Furthermore, in order to test platform functionality, it is possible 

to generate a random calibration set by pressing the button ‘Generate mock calibration’. The mass of 

the mocked mass will be requested upon generation (see Figure 3.9). 

 

Once an ‘.xlsx’ calibration file is available, it is possible to load it via the BioControl ‘Calibration’ 

tab, pressing on the button ‘Choose calibration file’ (see Figure 3.6). Importing that, will populate both 

the calibration graph and the ‘Calibration parameters’ panel, along with resulting in a green 

‘Calibration acquired’ lamp (see Figure 3.10) – mandatory to proceed with data acquisition. 
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Figure 3.7. BioControl calibration app window – general outlook. 
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Figure 3.8. BioControl calibration app window – experimental calibration points and linear fitting. 
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Figure 3.9. BioControl calibration app window – prompt window to provide mass value for the mock calibration set 
generation. 

 
Figure 3.10. BioControl ‘Calibration’ tab populated with imported calibration data. 
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3.3.3.3. Simulation 

In the case of the execution of a simulated data acquisition, it is necessary to include additional 

data on which mass value would be simulated. Through the ‘Simulation’ tab (see Figure 3.11), in the 

‘Simulation parameters’ panel, the user must include the desired time range that each mock-file will 

cover (‘Mockfile timespan’) and the mass to be simulated (‘Simulated mass’). As a matter of fact, as 

previously mentioned, the expected output of the PTR-ToF-MS consists of a series of ‘.h5’ files, each 

containing data of about 30s of operation. This value can be customised by the user to have smaller 

or larger mock-files (useful to test performances). 

Once data acquisition is started (and therefore mock-file generation is too), intensity data 

from each simulated timespan will be recursively reported on the simulation graph (see Figure 3.12). 

 

 

 

Figure 3.11. BioControl ‘Simulation’ tab – general outlook. 
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Figure 3.12. BioControl ‘Simulation’ tab – outlook during simulation. 

3.3.3.4. Live monitoring 

In the ‘Monitoring’ tab (see Figure 3.13), the acquired data is reported. The top graph shows 

the ‘Raw headspace ion count’, which consists of the ion intensity profile for the target mass to be 

analysed (each timepoint representing the mass spectrum integrated over the predefined 

neighbourhood of the target mass). The bottom graph exploits the provided calibration to display the 

concentration in the liquid phase of the target compound, which is displayed as a 2-minutes-rolling 

average. Examples of these graphs during acquisition over real data and mock-files are reported in  

Figure 3.13 and Figure 3.14, respectively 

. 
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Figure 3.13. BioControl ‘Monitoring’ tab – outlook during live PTR-ToF-MS acquisition. 

 

 
 

Figure 3.14. BioControl ‘Monitoring’ tab – outlook during simulation. 
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3.3.3.5. History import 

One additional feature of BioControl is the ‘History’ tab, in which it is possible to import 

previous experiments. As a matter of fact, the ‘Monitoring’ tab displays current headspace data over 

a window of 10 minutes only, so that this feature is ideal to examine acquisitions in their entirety. 

It is possible to import either raw PTR-ToF-MS data (i.e. ‘.h5’ files) or pre-processed data from 

previous acquisitions run with BioControl (see upper graph in Figure 3.15), which automatically saves 

compressed information about time-signal intensity profile in ‘.mat’ files while operating. In addition 

to this, it is possible to analyse more in detail the imported acquisition by means of a zoomed graph 

coupled with a scroller and a selector for the time interval one wants to scope (see lower graph in 

Figure 3.15). 

Ultimately, it is possible to add GC-MS controls to the acquisition history, which can be 

manually imported through the button ‘Import GCMS controls’ (see Figure 3.16). 

 

 

Figure 3.15. BioControl ‘History’ tab – outlook with imported acquisition and GC-MS controls. 
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Figure 3.16. BioControl ‘History’ tab – detail of pop-up window to manually enter GC-MS controls. 
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4. Results and discussion 

4.1. Plasmid engineering 

Linalool production by E. coli transformation with plasmid pMVALinS has proved to be 

successful, nevertheless it seems to lead to inconsistent synthesis. As a matter of fact, despite the 

adoption of a uniform transformation protocol and a standard analytical assay, each fermentation 

round seems to strongly deviate from the others. Data from previous experiments (following the exact 

same transformation and fermentation protocols adopted for this work) has been analysed and it 

comes to light that standard deviations can be almost as high as the average output values, as shown 

in Figure 4.1. Considering the reported 10 batches (three biological replicates), the overall productivity 

value lies around 240mg/L over the course of 72h of fermentation, with a standard deviation of 

196mg/LOVERLAY. 

In addition to this huge inter-batch variability, at times cultures yield titres sensibly lower with 

respect to the other biological replicates of the group (<30% of the average batch value). In general, 

around 13% of the samples show this behaviour, but for some cloning rounds this percentage could 

be even higher, even up to 100%. 

 

 

Figure 4.1. Previous assays for linalool production in E. coli transformed with pMVALinS. Averages and error bars are 
calculated over 3 biological replicates. 
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A possible reason for the high variability could be given by the presence of homologous 

regions on pMVALinS. As a matter of fact, there are two pairs of repeated sequences: (1) between 

2076-2213bp and 9449-9586bp, (2) between 1-134bp and 9724-9856bp. These regions could cause 

homologous recombination, which would lead to the formation of two separate plasmids, each one 

containing part of the linalool pathway. Eventually, the plasmid not containing the antibiotic 

resistance would end up being rejected by the cell, thus compromising linalool production. 

Region no.1 measures 138bp and contains the terminators rrnbB T1 and T7Te. Its two 

homologous parts are located between the LinS gene and the origin of replication (2076-2213bp), and 

between the end of a group of genes promoted by the lac UV5 promoter and the beginning of another 

group of genes promoted by the trc promoter (9449-9586bp). Despite termination sequences 

positioned at 2076-2213bp (which might help improving the expression rate of the linalool synthase), 

their removal is feasible without causing any major harm to cell metabolism, nor compromising 

linalool synthesis. 

Region no.2 measures 134bp and contains the trc promoter and the lac operator, plus an 

additional non-coding sequence. Its two homologous parts are located before the AgtrGPPS gene (1-

134bp) and before the ScMK gene (9724-9856bp). Of course, it is impossible to remove the entirety 

of this sequence, the promoters being of fundamental importance for correct expression. 

Nevertheless, it is possible to remove a non-coding homologous region as big as 65bp. 

 

 

Figure 4.2. On the left, schematic of the repeated regions. On the right, list of the pMVALinS variations produced with 
indication of the removed sequences. 

 

Three variations of pMVALinS have been designed, following the schematic reported in Figure 

4.2. Removal of the repeated sequence close to the GPP synthase has not been considered yet, 

because of the higher complexity of gene editing in that region. 
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Linalool assay has been conducted for a first batch in order to compare production consistency 

for cells transformed with pMVALinS and pMVALins.NR1. The results reported in Figure 4.3 represent 

15 biological replicates for each plasmid. It is possible to notice that the majority of the cultures 

transformed with pMVALinS didn’t produce linalool (i.e. ~87%), while all those transformed with 

pMVALins.NR1 had measurable output. Productivity is very low if compared to previous results, but 

production repeatability is strongly enhanced. 

 

 

Figure 4.3. Linalool assay results for pMVALinS – pMVALinS.NR1 comparison (15 biological replicates each). Red dots are non-
null titre replicates, blue dots are null titre ones. Averages and standard deviations are calculated on the basis of non-null 
values. 

 
A second test has been conducted to compare the productivity of all the designed plasmids 

and results are reported in Figure 4.4. Variants NR2a and NR2b didn’t seem to lead to any positive 

result, but NR1 yielded to production levels comparable to previously obtained data. Moreover, 

production consistency seems to be retained, as all of the NR1 replicates synthesised linalool. 

Clearly, more rounds of testing are needed, but pMVALinS.NR1 pledges to be a promising 

candidate for obtaining more consistent linalool production levels in the future. 
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Figure 4.4. Linalool assay results for pMVALinS – pMVALinS.NR1 – pMVALinS.NR2a – pMVALinS.NR2b comparison. Averages 
and error bars are calculated over 3 biological replicates. 

 

4.2. Linalool detection limits evaluation 

Assessment of the detection limit for linalool was carried out not only keeping in mind the 

fermentation conditions at which its synthesis is carried out by the previously discussed engineered 

E. coli, but also the experimental setup of the PTR-ToF-MS setup. After an initial adjustment of the GC 

protocol to allow for clear separation of linalool, tests were conducted varying sample volume, sample 

temperature, incubation time, injection temperature, and solvent.  The analysis is based on the 

signal/noise ratio, for which a threshold value of 5 represents the minimal detectability of a 

compound. 

It was decided to carry out a DoE to evaluate the effect of 2 quantitative factors and 2 

qualitative factors: injection temperature, liquid volume, solvent, and sample incubation, respectively 

(the last one meant as storage of the sample at a fixed temperature for a specific amount of time prior 

to its injection into the PTR-ToF-MS). Injection temperature was varied between 30-70°C, a 

temperature range which was suggested by the operability range of the heated transfer line 

connecting bioreactor and MS. Liquid volume was varied between 0.5-5mL, the latter value being a 

safe liquid level for when vials are purged with the autosampler needle. Moreover, it was decided to 

investigate the effect caused by employing different solvents. Specifically, (i) TB, (ii) nonane, and (iii) 

TB mixed with nonane, as these media are used in the standard linalool assay (especially the TB-
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nonane pairing). Lastly, incubation at 30°C for 30 minutes was evaluated, comparing incubated 

samples against non-incubated ones, as direct sampling of the bioreactor would be taken on 

temperature-controlled cultures. 

Below are reported the response surfaces for each pair of non-incubated/incubated solvent 

(see Figure 4.5). The general trend is that incubated samples produce a better signal/noise ratio, which 

is the expected effect. As a matter of fact, incubation at a temperature higher than the room one 

should push the equilibrium towards the gas phase, therefore having more linalool available in the 

headspace. Nevertheless, it is possible to notice that there is not a substantial difference between the 

two conditions in none of the examined solvents. 

Highest values of signal/noise ratio were obtained from TB alone, which was strongly 

influenced by both volume and injection temperature in the non-incubated experimental round, while 

its response flattened when incubated. Lowest values were shown for TB-nonane mix, indicating that 

the linalool drawn to the organic layer (high partition coefficient towards nonane) is likely to interact 

with both phases – the aqueous one below and the gas one above. In this way the amount of linalool 

passing to the headspace is reduced. Nonetheless, high injection temperature and volume positively 

influenced detectability, as it is possible to notice a strong increase in signal/noise ratio for the TB-

nonane mix at the upper limit conditions of both parameters. 

As for pure nonane, neither of the two parameters taken into account had a particularly strong 

effect on detectability, although higher volumes increased signal/noise ratio values in the incubated 

run. 
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(a)                                                                  (b) 

 
(c)                                                                  (d) 

 

(e)                                                                  (f) 

Figure 4.5. Response surfaces generated from central composite experiment design. (a) & (b) are non-incubated and 
incubated TB; (c) & (d) are non-incubated and incubated nonane; (e) & (f) are non-incubated and incubated TB+nonane.  
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Given the results of the DoE, it was then assessed the detection limit for linalool in both TB 

and nonane, using the standard 20mL vials with GC-PTR-ToF-MS, 1h incubation at 30°C, 50°C injection 

temperature, and 5mL of liquid volume. As reported in Figure 4.6, it is possible to see that the 

detection limit for TB lies around 16ppb, while for nonane is close to 400ppb (corresponding to 14µg/L 

and 343µg/L, respectively). 

 

 

Figure 4.6. Linalool detection limit in TB and nonane according to GC-PTR-ToF-MS. Samples prepared in 20mL vials, 1h 
incubation at 30°C, 50°C injection temperature, and 5mL of liquid volume 

 

Nevertheless, after the execution of these measurements, it has emerged that 

chromatographic separation seemed to be affected by anomalies. Strong retention time deviations 

from the expected have been registered not only for linalool, but also for other terpenes (see Figure 

4.7). In fact, a fault with the main oven control thermocouple has recently been detected and it is 

currently being fixed. 
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(a)                                                                                                       (b) 

 

Figure 4.7. Peak retention time shift. Above: linalool (a) and a-pinene (b) retention time variation for 10 replicates, average 
value and standard deviation reported. Below: highlight of two replicates of pure linalool, 2µL sample volume, ambient 
temperature incubation, 37°C injection temperature. 

 
4.3. Platform testing 

4.3.1. Calibration 

The most fundamental step in testing BioControl operation over a real-time sampling of a 

bioreactor headspace was the acquisition of reliable linalool calibrations. Initial spiking tests were 

conducted on 500mL LB media in 1L reactor, set at 37°C, 400rpm stirring, and 0.5Lair/Lmedia·min. PTR-

ToF-MS zero-gas flowrate was set at 0sccm, so to be as sensitive as possible towards linalool detection. 

Spiking was carried out by injecting 1mL of linalool in LB at a conveniently chosen concentration, so 

to bring the titre inside of the reactor to the desired value.  

The objective of the calibration is to evaluate both the lower and upper detection limit for the 

analysis method. As a matter of fact, the sensor of the PTR-ToF-MS presents a physical limit related to 

351 ± 9 373 ± 14 
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the maximum number of ions it can detect at a time (between 106-107), and when that threshold is 

overcome the instrument “saturates” and it generates acquisition errors and anomalous output files. 

Results of the first tests are reported in Figure 4.8, for which values from 16ppb to 10ppm 

linalool are plotted. Despite leading to a good fit, this calibration is not ideal as it saturates PTR-ToF-

MS detector at the highest concentration tested, 10ppm. This value is not ideal as an upper detection 

limit, as desired detectability range should include the concentrations values that have been observed 

at small-scale. Since we are expecting concentrations around tens of mg/LMEDIA (i.e. 165 

mgLINALOOL/LOVERLAY = 33 mgLINALOOL/LMEDIA), an acceptable upper limit would lie around 50ppm at least 

(though concentrations as high as 200ppm would represent an ideal target). 

 

 

Figure 4.8. PTR-ToF-MS linalool calibration in 1L bioreactor (conditions replicated in triplicate to obtain each point and 
corresponding error bar). LB media, 500mL liquid volume, 37°C, 400rpm stirring, 0.5Lair/Lmedia·min, 0sccm zero-gas flowrate. 

 

After some additional tests, it was decided to proceed with identical setup conditions, but 

operating with a zero-gas flowrate of 40sccm. In the graphs below (Figure 4.9) it is possible to see the 

results for LB, TB, and TB spiked with E. coli. It is easy to notice that all of these calibrations show very 

similar coefficients, leading to Vocus detector saturation around 250-500ppm, which are 

concentrations substantially higher than the range we are currently expecting to work with. The fact 

that different media show strong similarity is very positive too, as it gives way for this method to be 

used with different cultures. Furthermore, E. coli growth inside of the reactor didn’t appear to hinder 

linalool detection. 

 SLOPE 0.5996  

 INTERCEPT 3.6508  

 R2 0.97  
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                   (a) 

 

(b) 

 

 

 

 

 

 SLOPE 0.5089  

 INTERCEPT 3.4270  

 R2 0.95  

 SLOPE 0.5704  

 INTERCEPT 3.2200  

 R2 0.90  
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(c) 

Figure 4.9. PTR-ToF-MS linalool calibrations in 1L bioreactor (conditions replicated in triplicate to obtain each point and 
corresponding error bar). 500mL liquid volume, 37°C, 400rpm stirring, 0.5Lair/Lmedia·min, 40sccm zero-gas flowrate. (a) 
calibration in LB media; (b) calibration in TB media; (c) calibration in TB media spiked with E. coli. 

Further testing regarded operational conditions of the fermentation. It was decided to test a 

higher agitation speed (1000rpm) and a lower bioreactor temperature (30°C), since similar assays are 

executed at these conditions (e.g. linalool standard fermentation protocol comprises 30°C incubation 

after IPTG induction). Results for these two additional tests are reported in Figure 4.10, where it Is 

possible to notice that while stronger stirring did not lead to substantially different regression 

coefficients, lower temperature did: calibration line is steeper and intercept is much lower. This is 

positive, as it implies that in the tested conditions the system has a higher detection sensitivity (higher 

signal-to-concentration ratio). 

 

 

 

 

 

 

 

 SLOPE 0.6155  

 INTERCEPT 3.0102  

 R2 0.91  
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                       (a) 

 

 

(b) 

Figure 4.10. PTR-ToF-MS linalool calibrations in 1L bioreactor (conditions replicated in triplicate to obtain each point and 
corresponding error bar). TB media, 500mL liquid volume, 0.5Lair/Lmedia·min, 40sccm zero-gas flowrate. (a) calibration at 
1000rpm and 37°C; (b) calibration at 400rpm and 30°C. 

 

In Figure 4.11, it is possible to compare the calibrations discussed above and it is evident that 

the only parameter strongly influencing them is the bioreactor temperature. This is a positive result, 

meaning that calibrations are reliable across a range of operational conditions. 

 SLOPE 0.5674  

 INTERCEPT 3.0969  

 R2 0.90  

 SLOPE 0.7611  

 INTERCEPT 1.7812  

 R2 0.97  
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Finally, one last calibration was executed with a nonane overlay in the proportion of 1:5 v/v 

with respect to TB media, which was additionally spiked with E. coli. Results reported in Figure 4.12 

show that no linalool was detected under a threshold of 250ppm, meaning that this measurement 

method is not compatible with the standard fermentation assay carried out at small-scale currently. 

 

 

Figure 4.11. PTR-ToF-MS linalool calibrations in 1L bioreactor (conditions replicated in triplicate to obtain each point and 
corresponding error bar). 500mL liquid volume, 0.5Lair/Lmedia·min, 40sccm zero-gas flowrate. (cyan line) LB media, 400rpm 
and 37°C; (orange line) TB media, 400rpm and 37°C; (green line) TB media, 1000rpm and 37°C; (black line) TB media spiked 
with E. coli, 400rpm and 37°C; (red line) TB media, 400rpm and 30°C. 
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Figure 4.12. PTR-ToF-MS linalool calibrations in 1L bioreactor (conditions replicated in triplicate to obtain each point and 
related error bar). TB media spiked with E. coli, 1:5 v/v nonane overlay, 500mL liquid volume, 37°C, 400rpm stirring, 
0.5Lair/Lmedia·min, 40sccm zero-gas flowrate. 

 

4.3.2. Scaled-up linalool fermentation 

Once BioControl had been successfully tested against mockfiles and suitable calibrations had 

been obtained, it was used to monitor a scaled-up linalool fermentation assay. Enhanced consistency 

strain transformed with previously descripted pMVALinS.NR1 was used to scale up fermentation to 

500mL, without the use of any nonane overlay – as it was observed that would have strongly 

compromised linalool detection. BioControl-acquired results are reported in Figure 4.13 and 

represent a 30h fermentation assay. 

The general outlook of the test is extremely positive, as linalool was successfully detected over 

the whole fermentation time and GC-MS controls (red dots in the graph) conducted on culture broth 

samples confirm that the detected concentrations are correct. Moreover, despite small local 

oscillations, the obtained profile is extremely consistent and not prone to particularly strong variations 

(blue line represents a 2-minutes-rolling average, which is not a large window of time). Furthermore, 

the acquisition provides useful insight on the real-time profile of the fermentation, which can be used 

to optimise the standard assay (e.g. a fermentation time reduction will be considered for future 

experiments). 

In addition, concentrations achieved in this experiment are very promising and in line with 

previous results. Peak concentration was around 38mg/LMEDIA, which would be the equivalent of 
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190mg/LOVERLAY, as no nonane overlay was used. This is very promising, especially because of the 

absence of any organic overlay. As a matter of fact, Its purpose is to avoid linalool accumulation in the 

culture media, which would have cytotoxic effects on cells. Nevertheless, the lack of nonane did not 

seem to compromise the fermentation process significantly. 

On the other hand, it is possible to notice how after 24h of fermentation, linalool 

concentration steeply decreased. Although no definitive conclusion has been drawn yet, it was 

confirmed that after 24h no linalool-producing plasmid was retained inside of the cells. Nevertheless, 

this isn’t enough to explain linalool depletion. A possible reason for this would be linalool stripping 

caused by air bubbling. As a matter of fact, in order to avoid pressure build-up inside of the reactor 

due to compressed air being pumped inside of it, a ventilation outlet is left open. Despite the presence 

of a 5°C water condenser on the outlet, it could be that droplets of linalool were stripped away from 

the culture media. This could be problematic, as it would imply that also during the whole operation 

time linalool had been constantly removed from the bioreactor. 

 

 

 

Figure 4.13. BioControl-acquired linalool concentration profile over a 30h fermentation assay carried out in 1L bioreactor 
using pMVALinS.NR1 plasmid in E. coli chassis. Red dots represent GC-MS controls. Anomalous concentration spike around 6-
7h was due to broth droplets accumulation in the PTR-ToF-MS transfer line, which was purged restoring measurement 
accuracy. 
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4.4. Control loop simulation 

4.4.1. System response modelling 

Since the aim of this work is to lay the foundations for future investigations on fine control of 

microbial systems, the feasibility of an optogenetics-based control routine implementation on linalool 

production has been assessed by software simulation. 

To evaluate control efficacy and stability it is necessary to design a closed-loop system, define 

the necessary transfer functions (TFs), and finally tune the controller element. In Figure 4.14, the 

closed-loop system employed in this work is reported. It was chosen to adopt a simple feedback 

control routine, based on the deviation from a fixed setpoint value of the controlled variable. 

Controlled variable was linalool productivity, while manipulated variable was light intensity (since we 

are assuming to simulate linalool production by means of an optogenetics-regulated biopathway), 

whose value ranges from 0 to 1 (i.e. dark condition vs. highest light intensity). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Since optogenetics-controlled biosynthetic pathways are not available yet, the necessary data 

to extrapolate the biological system’s TF were obtained from standard small-scale batch fermentation 

experiments. Linalool concentration was measured at several time points through GC-MS analysis, so 

to map production profile over time. It was assumed that IPTG induction would have quite ideally 

approximated a light intensity step change from 0 to 1, since both induce expression of linalool 

metabolic pathway. 

Additionally, batch fermentation doesn’t involve substrate make-up to the culture, therefore 

substrate consumption must be taken into account. In other words, the dynamic of the system is not 

DISTURBANCE 

+ 
- 

+ 
+ 

OUTPUT BIOPROCESS CONTROLLER SETPOINT 
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ROR 
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Figure 4.14. Feedback control loop schematic. Output corresponds to the controlled variable (linalool productivity), which 
can be influenced by some external disturbance. The value of the controlled variable is assessed and compared to a user-
defined setpoint. Deviation from that value is sent to the controller, which elaborates an adequate manipulated variable 
(light intensity) input, so to bring the bioprocess to the desired state. 
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merely given by the effect of the IPTG induction, because substrate consumption plays a fundamental 

role too. As a matter of fact, linalool productivity increases due to the addition of IPTG, but it is also 

held back by the progressive reduction of available substrate. Consequently, it was assumed that two 

different effects would have contributed to the studied system’s behaviour: (i) productivity increase 

due to IPTG induction, and (ii) productivity decrease due to decreasing substrate availability. Both of 

these effects would have simultaneously taken place since the beginning of the fermentation assay, 

nevertheless our interest was to test feasibility over a semi-batch system, where a control routine 

would generate the most significant benefit. Therefore, fermentation data were used to regress a TF 

model including both effects, the first one of which would have been used to test control stability 

later. 

The transfer function that was used to determine the model coefficients by regression is 

reported in Equation 4.1: 

Equation 

4.1 0( =
1′(3)
!′(3) =

4
5# ∙ 3 + 1

− 4
5$ ∙ 3 + 1

 (4.1) 

where 0( stands for transfer function of the process, 
)*(,)
.*(,) is the deviation of the controlled variable 

1′(3) (i.e. linalool productivity) due to the change of the manipulated variable !′(3) (i.e. light intensity 

≅ IPTG induction) in the Laplacian domain, 4 is the process gain (assumed to be equal and of opposite 

sign in the two effects, as their combination would ultimately lead to 0mg/L·h productivity within the 

end of the fermentation assay, due to substrate consumption), 5# is the time constant of the first 

effect (i.e. productivity increase due to induction), and 5$ is the time constant of the second effect 

(i.e. productivity decrease due to substrate depletion). The two time constants are assumed to have 

different values, the first one being much smaller with respect to the second one, as productivity 

increase due to induction is expected to be a much quicker effect than productivity decrease due to 

substrate consumption, likely to be abundant during the first part of the fermentation. 

In order to regress the coefficients, experimental data were fitted with the time domain 

transposed function reported in Equation 4.2: 

Equation 

4.2 ,(8) = 9 ∙ 4 :;1 − </0 1!2 = − ;1 − </0 1"2 => (4.2) 

where ,(8) is the linalool productivity profile over time, and 9 is the change of the manipulated 

variable (= 1, as it is assumed that it is a step change from dark conditions to maximum intensity light). 

Simple fitting of this function based on least sum of squared errors would not produce 

physically feasible results, as the value of 4 would be pushed as high as possible. Since 4 represents 
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the maximum level of productivity the system would achieve if substrate was constantly replenished, 

values higher than 30-40mg/L·h are likely to be strongly unphysical. Moreover, the two time constants 

would likely assume very similar if not identical values if not bounded by a constraint. 

Therefore, a second criterion was added to the least sum of squared error to optimise 

coefficient regression. Optimum search had to stop once variation in the sum of squared error reached 

a value < 1% of the last figure. In addition to this, 5$ was modelled so to represent 5# plus an additional 

positive value, so to push 5$ value to be larger than 5#. The modified function is reported in Equation 

4.3: 

Equation 

4.3 ,(8) = 9 ∙ 4 :;1 − </0 1"31#2 = − ;1 − </0 1"2 => (4.3) 

where 54 is the additional term to be added to 5# to obtain 5$ = 5# + 54. In this way, number of 

coefficients to be regressed did not increase, while helping to push the regression model towards 

more physical values. Boundaries on both 5# and 54 were set to [500, 4500] min, range that includes 

values that are compatible with the process to be modelled. K upper boundary was increased step by 

step with the iterations of the fitting function, starting from a value of 5 mgL-1h-1I-1. 

Using this approach, values within a reasonable range were obtained for 4, 5#, 5$, while 

guaranteeing a good fit of the experimental data (reported in Figure 4.15 and Table 4.1). 

Table 4.1. Results of the TF model fitting employing Equation 4.3. Process gain is expressed in productivity over light 
intensity. 

 K [mgL-1h-1I-1] 23  

 ?5 [min] 1220  

 ?6 [min] 857  

 ?7 [min] 3077  

 SSE [mgL-1h-1] 9.6  
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Figure 4.15. Fitting of TF model for the biological system. Red crosses represent experimental points for linalool productivity 
obtained by GC-MS analysis (each point is the average of three biological replicates). Blue line is the fitted productivity profile 
obtained from Equation 4.3. 

 

4.4.2. PID tuning and stability analysis 

Once having obtained sensible parameters for the bioprocess TF, it was decided to use them 

to tune a PID controller. As mentioned before, only the positive effect of the modelled TF has been 

considered, as the desired process to be modelled would be a fed-batch with constant substrate make 

up. 

A Simulink representation of the closed loop system reported in Figure 4.14 has been 

designed and MATLAB tool for automatic PID tuning has been employed (considering a parallel PID 

configuration). PID controller transfer function is reported in Equation 4.4,  

Equation 

4.4 08 =
@*(3)
<*(3) = 49 +

4!
3 +

4: ∙ 3
5; ∙ 3 + 1

 (4.4) 

where 08  stands for the transfer function of the control element, 
<$(,)
=$(,) is the controller output (i.e. 

bioprocess input) value over the controlled variable error in the Laplacian domain, 49 is the 

proportional gain, 4!  is the integrator gain, 4:  is the derivative gain, and 5; is derivative filter time. 
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Standard PID formulation doesn’t include the denominator on the derivative term as reported in 

Equation 4.4 (i.e. 5; ∙ 3 + 1), which is called derivative filter. It was decided that a filter would have 

been appropriate, given the nature of the system in analysis. As a matter of fact, the derivative term 

of a PID contributes to reducing the settling time (i.e. the time it takes to reach steady state). 

Nevertheless, in case of noisy measurement of the controlled variable, the derivative term can easily 

generate of oscillations (Seborg et al., 2011). Therefore, since the measurement of linalool 

productivity through PTR-ToF-MS is prone to noise, the derivative filter was included, consisting of a 

simple first order dynamics. Tuned parameters are reported in Table 4.2. 

 

Table 4.2. Tuned coefficients for PID controller. 

 A> [mg-1L h I] 27.7036  

 A? [mg-1L h I] 2.6615  

 A@ [mg-1L h I] -12.6155  

 ?A [min] 1.4062  

 

Final step was testing stability of the control routine over the tuned parameters. It was verified 

following Nyquist stability criterion (Seborg et al., 2011), which states that a closed-loop control 

system is stable if all of the poles of its equation are negative or have negative real part. The generic 

term for the closed loop equation of the system in analysis is reported in Equation 4.5:  

Equation 

4.5 1 = 080(
1 + 0BC

1D( +
0E

1 + 0BC
B (4.5) 

Where Y is the controlled variable, 1D( is the setpoint change, 0E is the transfer function of the 

disturbances entering the system, D is the disturbance, and 0BC is the open loop transfer function 

(being 0BC = 080(). Disturbances have not been investigated specifically and they have been 

included only for completeness. Neither their origin (i.e. the variable affected by unexpected 

variation) nor their impact (i.e. the transfer function that describes their effect on the controlled 

variable) is known, therefore they have not been included in the formal stability analysis, leading to 

the equation reported in Equation 4.6: 
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Equation 

4.6 
1
1D(

= 0E
1 + 0BC

= 080(
1 + 080(

=
C49 + 4!3 +

4: ∙ 3
5; ∙ 3 + 1D ;

4
5# ∙ 3 + 1 −

4
5$ ∙ 3 + 1=

1 + C49 +
4!
3 +

4: ∙ 3
5; ∙ 3 + 1D ;

4
5# ∙ 3 + 1 −

4
5$ ∙ 3 + 1=

 (4.6) 

To verify its poles are negative, it is sufficient to verify that the characteristic equation (i.e. 1 + 0BC , 

the denominator) has negative roots. In order to do this, the Routh-Hurwitz stability criterion is 

employed, which states that a necessary and sufficient condition for all roots of the characteristic 

equation of a system to have negative real parts is that all of the elements in the left column of the 

Routh array are positive (Seborg et al., 2011).  The stability criterion is based on a characteristic 

equation that has the form of: 

Equation 

4.7 EF3F + EF/#3F/# + EF/$3F/$ +⋯+ E#3 + E" = 0 (4.7) 

Rearranging the denominator in Equation 4.6, we obtain the expression reported in Equation 4.8: 

Equation 

4.8 

3&H5;5#5$I + ⋯	

3% ;5#5$ + 5;(5# + 5$) + 4H495; + 4:I(5$−5#)= + ⋯	

3$ ;5# + 5$ + 5; + 4H49 + 4!5;I(5$−5#)= + ⋯	

3(1 + 44!(5$−5#)) > 0 

(4.8) 

 

Therefore, it is possible to define the coefficients according to the desire form of the equation, as in 

Equation 4.9 below: 

Equation 

4.9 

E& = 5;5#5$	
E% = 5#5$ + 5;(5# + 5$) + 4H495; + 4:I(5$−5#)	
E$ = 5# + 5$ + 5; + 4H49 + 4!5;I(5$−5#)	
E# = 1 + 44!(5$−5#) 

(4.9) 

 

Then, the Routh array is built, following the structure reported in Figure 4.16: 
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Figure 4.16. Structure of the Routh array and terms calculation rule (Seborg et al., 2011). 

 

Substituting all the coefficients (i.e. K, 5#, 5$, 49, 4! , 4: , 5;), the following values are obtained for the 

left column of the array: 

 

Table 4.3. Left column of Routh array value for the system in exam. 

 E& 5278790.428  

 E% 4885045.805  

 M# 1224558.240  

 N# 113676.326  

 O# 0  

 

As all of the values are positive, the system is then assumed stable. 
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Additionally, an empirical verification of the stability was carried out by simulating the 

response of the feedback system in Matlab over a servo control scenario (Figure 4.17). To assess the 

stability of the system, a sensitivity analysis was run on the coefficients, allowing a random ±20% 

maximum variation for each single parameter. A total of 1000 cases were generated and are below 

illustrated. It is possible to notice how, despite substantial deviation from optimal tuning conditions, 

the controlled variable responds in a stable and timely manner. As a matter of fact, upon a unit step 

change in setpoint (from 0 to 1, equal to darkness to light condition), the new value of the controlled 

variable is reached within 30min, with a 20% overshoot for the worst-case scenario. 

 

 

Figure 4.17. Tuning parameters sensitivity test with 1000 random scenarios varying each parameter up to ±20% from optimal 
value. 

 
4.5. Summary 

In this chapter the results of the different experiments and simulations are reported. Firstly, 

the design of the plasmid used for the production of linalool is addressed. Two homologous regions 

are highlighted in the plasmid and 3 alternative designs removing either one or both are investigated. 

Design NR1 is showed to improve production consistency, though at the same time yielding lower 

concentrations with respect to the average of previous testing. 

Subsequently, sensitivity of PTR-ToF-MS towards linalool detection is tested against 

parameters like injection temperature, sample volume, solvent type and sample incubation (i.e. 

sample stabilisation at a fixed temperature before injection). Results show that in general higher 
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injection temperature and sample incubation has a positive effect on signal intensity. TB media leads 

to noisier measurement than average, but at same time to the best detectability limit (14ppb). 

Calibration of PTR-ToF-MS for linalool measurement in bioreactors is then addressed, 

considering multiple parameters. Calibrations with different conditions show very similar 

slope/intercept, indicating that the measurement method is stable and reliable across a range of 

operations. Moreover, it is highlighted that nonane overlay is not suitable for this type of setup as it 

strongly reduces the sensitivity range.  

Next, real process monitoring through BioControl is tested over standard linalool 

fermentation assay. By comparison against standard GC-MS quantification at various time points, it is 

proved that the measurement of the monoterpene not only is feasible, but also accurate. 

Eventually, simulation of the control loop to maintain linalool productivity is carried out. Block 

diagram of the closed-loop system is designed. Bioprocess transfer function is defined and its 

parameters are regressed. Lastly, a PID control element is used to simulate a feedback control of the 

system. After tuning, its stability is verified both theoretically and empirically. 
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5. Conclusions and future work 

Microbial synthesis of linalool has been analysed with the perspective of integrating its 

productive process with control techniques based on PTR-ToF-MS headspace analysis. 

Firstly, process consistency has been investigated, observing high variability in linalool titres. 

The presence of repeated sequences in the plasmid used to transform E. coli cells was suspected as a 

potential cause for production variability, as such configuration could cause homologous 

recombination. Three plasmid alternatives were designed and tested, amongst which one showed 

strong repeatability enhancement, despite not reaching the same productivity levels attained by 

previous experiments. 

Then PTR-ToF-MS technology has been used to perform linalool headspace analysis on sample 

vials. The optimisation of conditions such as sample volume, injection temperature, and solvent 

allowed to perform successful linalool detection at levels far below regular GC-MS analysis and more 

than adequate to track linalool in batch fermentation assays. 

An original software has been designed to operate as a monitoring platform for fermentative 

processes: data from PTR-ToF-MS headspace analysis are imported and interpreted, so to allow for 

live monitoring of a microbial culture batch; this information can then be used to implement control 

strategies to optimise productivity.  

Lastly, feasibility of the implementation of control routines on microbial synthesis of linalool 

has been assessed through simulation of closed loop system response, whose dynamic has been 

modelled over experimental data. Stability of the control routine has been confirmed by means of PID 

tuning parameters sensitivity analysis. 

 

Future work will focus on the execution of further tests for the optimisation of the modified 

E. coli strain: additional alternative plasmids without homologous regions will be designed and tested, 

so to guarantee a more stable production of linalool. Subsequently, optogenetic control will be added 

by means of a second plasmid, allowing for an externally triggered expression of linalool synthase with 

a light-induced genetic switch. 

The control platform will be expanded so to feature the possibility to modulate an external 

light switch on the basis of the control strategy adopted. Eventually, different control routines will be 

designed and tested, aiming at a more consistent linalool production over time, along with a more 

balanced biological burden on microbial cells. 
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Appendix 

All the code reported in the following pages is also available on GitHub at: 

https://github.com/giovanni92lorenzon/BioControl1.0 

 

Custom functions: 

geth5log.m 

function [n_cycles, n_zeroes, chunk_size, error_msg] = geth5log(filename) 
% ========================================================================= 
% INPUTs 
% 'filename' = Name of the .h5 file in output from the PTR-MS in GC-mode 
% 
% OUTPUTs 
% 'n_cycles' = Number of completed acquisition cycles 
% 'n_zeroes' = Number of zeroes in the last cycle 
% 'chunk_size' = Chunk size of stored data 
% 'error_msg' = Regarding unexpected n_cycles, n_zeroes, or chunk_size 
% 
% 
% Function to extract number of completed acquisition cycles and number of 
% zeroes in the final cycle FOR REGULAR PTR-MS FILES in GC MODE 
% ========================================================================= 
 
 
% ========================================================================= 
% Initialisation and error handling 
% ========================================================================= 
assert(ischar(filename),'First input <filename> must be a char array.') 
 
check = strcmpi(filename((end - 2):end),'.h5'); 
if ~check 
 error('Filetype was not expected. Use .h5 file.') 
end 
 
 
% ========================================================================= 
% Log data extraction 
% ========================================================================= 
name_log_dtst = '/AcquisitionLog/Log'; % Where the vector containing all 
                                          % of the measured masses is 
                                          % stored 
cycles_pos = 27; % Position index for the beginning of the 'number of 
                 % cycles' entry in the logfile of each .h5 file 
shift_to_zeroes_pos = 17; % Shift from end of the 'cycles' entry to the 
                          % beginning of the 'zeroes' entry 
expected_chunk_size = 6; 
%-------------------------------------------------------------------------- 
log = h5read(filename, name_log_dtst); 
log = log.logtext'; 
 
length_check = find(log(2,:) == ' '); 
if length(length_check) <= 3 
    error_msg = ['MSmode_file']; 
    n_cycles = 0; 
    n_zeroes = 0; 
    chunk_size = 0; 
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    return 
end 
 
spot = ''; 
cycles = ''; 
while ~strcmp(spot, ' ') 
    spot = log(2,cycles_pos); 
    cycles = [cycles spot]; 
    cycles_pos = cycles_pos + 1; 
end 
 
n_cycles = str2double(cycles(1:(end-1))); 
 
 
% ========================================================================= 
% Double check with actual time array 
% ========================================================================= 
info = h5info(filename, '/TimingData/BufTimes'); 
time_dtst_size = info.Dataspace.Size; 
 
check1 = time_dtst_size(1) ~= expected_chunk_size; 
check2 = time_dtst_size(2) ~= n_cycles; 
 
if  check1 || check2 
    n_cycles = time_dtst_size(2); 
    chunk_size = time_dtst_size(1); 
 
    start = [1 n_cycles]; 
    count = [chunk_size 1]; 
    last_cycle_data = ... 
        h5read(filename, '/TimingData/BufTimes', start, count); 
    indexes = find(last_cycle_data == 0); 
    n_zeroes = length(indexes); 
    if check1 && ~check2 
        error_msg = ['UnexpectedChunkSize(' num2str(chunk_size) ')']; 
    elseif ~check1 && check2 
        error_msg = ['UnexpectedCycleNumber(' num2str(n_cycles) ')']; 
    else 
        error_msg = ['UnexpectedChunkSize(' num2str(chunk_size) ')' ... 
            '&UnexpectedCycleNumber(' num2str(n_cycles) ')']; 
    end 
else 
    n_zeroes = str2double(log(2,(cycles_pos + shift_to_zeroes_pos))); 
    chunk_size = expected_chunk_size; 
    error_msg = 'None'; 
end 

 

geth5mocklog.m 

function [n_cycles, n_zeroes] = geth5mocklog(filename) 
% ========================================================================= 
% INPUTs 
% 'filename' = Name of the .h5 mockfile to simulate live PTR-MS acquisition 
% 
% OUTPUTs 
% 'n_cycles' = Number of completed acquisition cycles 
% 'n_zeroes' = Number of zeroes in the last cycle 
% 
% 
% Function to extract number of completed acquisition cycles and number of 
% zeroes in the final cycle FOR MOCK PTR-MS FILES 
% ========================================================================= 
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% ========================================================================= 
% Initialisation and error handling 
% ========================================================================= 
assert(ischar(filename),'First input <filename> must be a char array.') 
 
check = strcmpi(filename((end - 2):end),'.h5'); 
if ~check 
 error('Filetype was not expected. Use .h5 file.') 
end 
 
 
% ========================================================================= 
% Log data extraction 
% ========================================================================= 
name_log_dtst = '/AcquisitionLog/Log'; % Where the vector containing all 
                                          % of the measured masses is 
                                          % stored 
cycles_pos = 27; % Position index for the beginning of the 'number of 
                 % cycles' entry in the logfile of each .h5 file 
shift_to_zeroes_pos = 17; % Shift from end of the 'cycles' entry to the 
                          % beginning of the 'zeroes' entry 
%-------------------------------------------------------------------------- 
log = char(h5read(filename, name_log_dtst)); 
 
spot = ''; 
cycles = ''; 
while ~strcmp(spot, ' ') 
    spot = log(cycles_pos); 
    cycles = [cycles spot]; 
    cycles_pos = cycles_pos + 1; 
end 
 
n_cycles = str2double(cycles(1:(end-1))); 
n_zeroes = str2double(log(cycles_pos + shift_to_zeroes_pos)); 
end 

 

geth5logMS.m 

function [n_cycles, n_zeroes, chunk_size] = geth5logMS(filename) 
% ========================================================================= 
% INPUTs 
% 'filename' = Name of the .h5 file in output from the PTR-MS in MS-mode 
% 
% OUTPUTs 
% 'n_cycles' = Number of completed acquisition cycles 
% 'n_zeroes' = Number of zeroes in the last cycle 
% 'chunk_size' = Chunk size of stored data 
% 
% 
% Function to extract number of completed acquisition cycles and number of 
% zeroes in the final cycle FOR REGULAR PTR-MS FILES in MS MODE 
% ========================================================================= 
 
 
% ========================================================================= 
% Initialisation and error handling 
% ========================================================================= 
assert(ischar(filename),'First input <filename> must be a char array.') 
 
check = strcmpi(filename((end - 2):end),'.h5'); 
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if ~check 
 error('Filetype was not expected. Use .h5 file.') 
end 
 
 
% ========================================================================= 
% Log data extraction 
% ========================================================================= 
info = h5info(filename, '/TimingData/BufTimes'); 
time_dtst_size = info.Dataspace.Size; 
 
n_cycles = time_dtst_size(2); 
chunk_size = time_dtst_size(1); 
 
start = [1 n_cycles]; 
count = [chunk_size 1]; 
last_cycle_data = ... 
    h5read(filename, '/TimingData/BufTimes', start, count); 
indexes = find(last_cycle_data == 0); 
n_zeroes = length(indexes); 
 
end 

 

geth5masses.m 

function masses = geth5masses(filename) 
% ========================================================================= 
% INPUTs 
% 'filename' = Name of the .h5 file in output from the PTR-MS (or mockfile) 
% 
% OUTPUTs 
% 'masses' = Mx1 column array containing all of the masses detected by the 
%            PTR-MS (or mock masses) 
% 
% 
% Function to extract the whole array of the masses analysed by the PTR-MS 
% ========================================================================= 
 
 
% ========================================================================= 
% Initialisation and error handling 
% ========================================================================= 
assert(ischar(filename),'First input <filename> must be a char array.') 
 
check = strcmpi(filename((end - 2):end),'.h5'); 
if ~check 
 error('Filetype was not expected. Use .h5 file.') 
end 
 
 
% ========================================================================= 
% Mass data extraction 
% ========================================================================= 
name_mass_dtst = '/FullSpectra/MassAxis'; % Where the vector containing all 
                                          % of the measured masses is 
                                          % stored 
%-------------------------------------------------------------------------- 
masses = h5read(filename, name_mass_dtst); 
end 
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geth5times.m 

function times = geth5times(filename) 
% ========================================================================= 
% INPUTs 
% 'filename' = Name of the .h5 file in output from the PTR-MS (or mockfile) 
% 
% OUTPUTs 
% 'times' = 1xP row array containing all of the timepoints registered by 
%           the current file 
% 
% 
% Function to extract the timepoints measured by the PTR-MS. Storage 
% structure within .h5 file is [S,C], where S is the chunk size (=6), and C 
% is the number of completed acquisition cycles. Mind that the 
% function extracts all of the values and rearranges them in a 1xP 
% structure, where P is given by P = S*C - n_zeroes (zeroes are chunked) 
% 
% DEPENDANCIES: 'geth5log.m', 'geth5mocklog.m', 'geth5logMS.m' 
% ========================================================================= 
 
 
% ========================================================================= 
% Initialisation and error handling 
% ========================================================================= 
assert(ischar(filename),'First input <filename> must be a char array.') 
 
check = strcmpi(filename((end - 2):end),'.h5'); 
if ~check 
 error('Filetype was not expected. Use .h5 file.') 
end 
 
 
% ========================================================================= 
% Log data extraction 
% ========================================================================= 
if contains(filename, 'mock') 
    [n_cycles, n_zeroes] = geth5mocklog(filename); 
    chunk_size = 6; % Storage file chunk size for time points 
else 
    [n_cycles, n_zeroes, chunk_size, error_msg] = geth5log(filename); 
    if strcmp(error_msg, 'MSmode_file') 
        [n_cycles, n_zeroes, chunk_size] = geth5logMS(filename); 
    end 
end 
 
 
% ========================================================================= 
% Time data extraction 
% ========================================================================= 
name_time_dtst = '/TimingData/BufTimes'; % Where all the times of the 
                                         % single timesteps are stored 
% chunk_size = 6; % Storage file chunk size for time points 
%-------------------------------------------------------------------------- 
time_raw = h5read(filename, name_time_dtst); 
 
times = zeros(1,n_cycles*chunk_size); 
for i = 1:(n_cycles) 
    times( ... 
        (((i-1)*chunk_size)+1): ... 
        (((i-1)*chunk_size)+chunk_size) ... 
        ) = time_raw(:,i); 
end 
%-------------------------------------------------------------------------- 
for z = 1:n_zeroes 
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    times(:,end) = []; 
end 
end 

 

geth5mrcumpeaks.m 

function [cumpeakprof, mass_rng, times] = geth5mrcumpeaks( ... 
    filename, ... 
    central_mass, neighbourhood) 
% ========================================================================= 
% INPUTs 
% 'filename' = Name of the .h5 file in output from the PTR-MS (or mockfile) 
% 'central_mass' = Mass target to be analysed. 
%                  To be considered as --> !!!(MASS + 1)!!! 
% 'neighbourhood' = Defines the mass range to be included in the 
%                   calculation of the peak at the specified mass target 
%                   [central_mass-neighbourhood,central_mass+neighbourhood] 
% 
% OUTPUTs 
% 'cumpeakprof' = 1xP array containing the cumulative signal intensity 
%                 profile over time (P) for the mass range defined in the 
%                 inputs. 
%                 Each column contains the  cumulative ions/s value 
%                 calculated across all of the masses for a fixed 
%                 timepoint. 
% 'mass_rng' = Mrx1 column array containing the masses within the range 
%              described by the central mass +- neighbourhood 
% 'times' = 1xP row array containing all of the timepoints registered by 
%           the current file 
% 
% 
% Function to extract the cumulative signal intensity across the inputted 
% mass range over time. Storage structure within .h5 file is [M,1,S,C], 
% where M is the number of all of the detected masses, S is the chunk size 
% (=6), and C is the number of completed acquisition cycles. Mind that this 
% function extracts all of the values and rearranges them in a MrxP 
% structure, where P is given by P = S*C - n_zeroes (zeroes are chunked), 
% and Mr is equal to the number of mass points between the provided range 
% to be analysed. Eventually, it sums up the values across each column, to 
% get an output like 1xP. 
% 
% DEPENDANCIES: 'geth5log.m', 'geth5mocklog.m', 'geth5masses.m', 
%               'geth5time.m' 
% ========================================================================= 
 
 
% ========================================================================= 
% Initialisation and error handling 
% ========================================================================= 
format long 
 
assert(ischar(filename),'First input <filename> must be a char array.') 
 
check = strcmpi(filename((end - 2):end),'.h5'); 
if ~check 
 error('Filetype was not expected. Use .h5 file.') 
end 
%-------------------------------------------------------------------------- 
bool = isnumeric(central_mass) & isnumeric(neighbourhood); 
 
assert(bool, ['Second and third inputs <central_mass> and ' ... 
    '<neighbourhood> must be numeric values.']); 
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%-------------------------------------------------------------------------- 
% Gathers data on masses analysed to check if 'central_mass' and 
% 'neighbourhood' are valid picks 
masses = geth5masses(filename); 
 
assert(~(central_mass < masses(1) | central_mass > masses(end)), ... 
    ['Second input <central_mass> does not fall within the mass range ' ... 
    'measured by the inputted file.']) 
 
 
% ========================================================================= 
% Pair mass range to mass list indexes 
% ========================================================================= 
cond = (central_mass - neighbourhood) < masses(1) | ... 
    (central_mass + neighbourhood) > masses(end); 
 
assert(~cond, 'Neighbourhood to be analysed exceeds mass range limits.') 
 
[~,ix_min] = min(abs(masses - (central_mass - neighbourhood))); 
[~,ix_max] = min(abs(masses - (central_mass + neighbourhood))); 
 
 
 
% ========================================================================= 
% Log data extraction 
% ========================================================================= 
if contains(filename, 'mock') 
    [n_cycles, n_zeroes] = geth5mocklog(filename); 
    chunk_size = 6; % Storage file chunk size for time points 
else 
    [n_cycles, n_zeroes, chunk_size, error_msg] = geth5log(filename); 
    if strcmp(error_msg, 'MSmode_file') 
        [n_cycles, n_zeroes, chunk_size] = geth5logMS(filename); 
    end 
end 
 
 
% ========================================================================= 
% Extracting peak data 
% ========================================================================= 
name_tofdata_dtst = '/FullSpectra/TofData'; % Where ions/s data are stored 
                                            % for every time point and for 
                                            % every recorded mass 
% chunk_size = 6; % Storage file chunk size for time points 
 
start = [ix_min 1 1 1]; 
x_count = length(masses(ix_min:ix_max)); 
count = [x_count 1 chunk_size n_cycles]; 
stride = [1 1 1 1]; 
%-------------------------------------------------------------------------- 
tofdata_raw = h5read(filename, name_tofdata_dtst, start, count, stride); 
 
time_length = chunk_size*n_cycles; 
 
tofdata = zeros(x_count,time_length); 
for i = 1:x_count 
    singlemass = zeros(1,time_length); 
    for j = 1:(n_cycles) 
        singlemass( ... 
            (((j-1)*chunk_size)+1): ... 
            (((j-1)*chunk_size)+chunk_size) ... 
            ) = tofdata_raw(i,1,:,j); 
    end 
    tofdata(i,:) = singlemass; 
end 
%-------------------------------------------------------------------------- 
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for z = 1:n_zeroes 
    tofdata(:,end) = []; 
end 
%-------------------------------------------------------------------------- 
cumpeakprof = sum(tofdata); 
 
mass_rng = masses(ix_min:ix_max); 
 
times = geth5times(filename); 
 
% cumpeakprof = zeros(1,length(times)); 
% for i = 1:length(times) 
%     single = trapz(mass_rng,tofdata(:,i)); 
%     cumpeakprof(i) = single; 
% end 
end 

 

geth5mtrcumpeaks.m 

function [cumpeakprofrng, mass_rng, times_rng] = geth5mtrcumpeaks( ... 
    filename, ... 
    central_mass, neighbourhood, ... 
    t_start, t_end) 
% ========================================================================= 
% INPUTs 
% 'filename' = Name of the .h5 file in output from the PTR-MS (or mockfile) 
% 'central_mass' = Mass target to be analysed 
% 'neighbourhood' = Defines the mass range to be included in the 
%                   calculation of the peak at the specified mass target 
%                   [central_mass-neighbourhood,central_mass+neighbourhood] 
% 't_start' = Time (in seconds) to the define the starting point of the 
%             output array 
% 't_end' = Time (in seconds) to the define the end point of the output 
%           array 
% 
% OUTPUTs 
% 'cumpeakprofrng' = 1xPr array containing the cumulative signal intensity 
%                    profile over a specific range of time (Pr) within that 
%                    recorded by the file in analysis for the mass range 
%                    defined in the inputs. 
%                    Each column contains the  cumulative ions/s value 
%                    calculated across all of the masses for a fixed 
%                    timepoint. 
% 'mass_rng' = Mrx1 column array containing the masses within the range 
%              described by the central mass +- neighbourhood 
% 'times_rng' = 1xPr row array containing the timepoints within the range 
%               given by the last two inputs 
% 
% 
% Function to extract the cumulative signal intensity across the inputted 
% mass range over a specific range of time. Storage structure within .h5 
% file is [M,1,S,C], where M is the number of all of the detected masses, 
% S is the chunk size (=6), and C is the number of completed acquisition 
% cycles. Mind that this function extracts all of the values and rearranges 
% them in a MrxPr structure, where Pr is the selected range of times 
% belonging to the original set given by P = S*C - n_zeroes (zeroes are 
% chunked), and Mr is equal to the number of mass points between the 
% provided range to be analysed. Eventually, it sums up the values across 
% each column, to get an output like 1xPr. 
% 
% DEPENDANCIES: 'geth5masses.m', 'geth5time.m', 'geth5log.m' 
% ========================================================================= 
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% ========================================================================= 
% Initialisation and error handling 
% ========================================================================= 
format long 
 
assert(ischar(filename),'First input <filename> must be a char array.') 
 
check = strcmpi(filename((end - 2):end),'.h5'); 
if ~check 
 error('Filetype was not expected. Use .h5 file.') 
end 
%-------------------------------------------------------------------------- 
bool = isnumeric(central_mass) & isnumeric(neighbourhood); 
 
assert(bool, ['Second and third inputs <central_mass> and ' ... 
    '<neighbourhood> must be numeric values.']); 
%-------------------------------------------------------------------------- 
% Gathers data on masses analysed to check if 'central_mass' and 
% 'neighbourhood' are valid picks 
masses = geth5masses(filename); 
 
assert(~(central_mass < masses(1) | central_mass > masses(end)), ... 
    ['Second input <central_mass> does not fall within the mass range ' ... 
    'measured by the inputted file.']) 
%-------------------------------------------------------------------------- 
% Gathers data on times analysed to check if 't_start' and 't_end' 
% are valid picks 
times = geth5times(filename); 
 
assert(~(t_start < times(1) | t_end > times(end)), ... 
    'Inputted time limits exceed those of the file in exam.') 
 
 
% ========================================================================= 
% Pair mass range to mass list indexes 
% ========================================================================= 
cond = (central_mass - neighbourhood) < masses(1) | ... 
    (central_mass + neighbourhood) > masses(end); 
 
assert(~cond, 'Neighbourhood to be analysed exceeds mass range limits') 
 
[~,ix_min] = min(abs(masses - (central_mass - neighbourhood))); 
[~,ix_max] = min(abs(masses - (central_mass + neighbourhood))); 
 
 
% ========================================================================= 
% Extracts chunk size to be employed 
% ========================================================================= 
if contains(filename, 'mock') 
    chunk_size = 6; 
else 
    [~,~,chunk_size, error_msg] = geth5log(filename); 
    if strcmp(error_msg, 'MSmode_file') 
        [~, ~, chunk_size] = geth5logMS(filename); 
    end 
end 
 
 
% ========================================================================= 
% Pair time range to times list indexes 
% ========================================================================= 
[~,ix_st] = min(abs(times - t_start),[],'all','linear'); 
[~,ix_end] = min(abs(times - t_end),[],'all','linear'); 
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cyc_st = ceil(ix_st/chunk_size); 
rem_st = rem(ix_st,chunk_size); 
cyc_end = ceil(ix_end/chunk_size); 
rem_end = rem(ix_end,chunk_size); 
rng = cyc_end - cyc_st; 
 
times_rng = times(ix_st:ix_end); 
 
 
% ========================================================================= 
% Extracting peak data 
% ========================================================================= 
name_tofdata_dtst = '/FullSpectra/TofData'; % Where ions/s data are stored 
                                            % for every time point and for 
                                            % every recorded mass 
 
start = [ix_min 1 1 cyc_st]; 
x_count = length(masses(ix_min:ix_max)); 
z_count = rng + 1; 
count = [x_count 1 chunk_size z_count]; 
stride = [1 1 1 1]; 
%-------------------------------------------------------------------------- 
tofdata_raw = h5read(filename, name_tofdata_dtst, start, count, stride); 
 
time_length = chunk_size*z_count; 
 
tofdata = zeros(x_count,time_length); 
for i = 1:x_count 
    singlemass = zeros(1,time_length); 
    for j = 1:(z_count) 
        singlemass( ... 
            (((j-1)*chunk_size)+1): ... 
            (((j-1)*chunk_size)+chunk_size) ... 
            ) = tofdata_raw(i,1,:,j); 
    end 
    tofdata(i,:) = singlemass; 
end 
%-------------------------------------------------------------------------- 
if rem_st == 0 
    if rem_end == 0 
        tofdata = tofdata(1:end,chunk_size:end); 
    else 
        tofdata = tofdata(1:end,chunk_size:(end-(chunk_size-rem_end))); 
    end 
else 
    if rem_end == 0 
        tofdata = tofdata(1:end,rem_st:end); 
    else 
        tofdata = tofdata(1:end,rem_st:(end-(chunk_size-rem_end))); 
    end 
end 
%-------------------------------------------------------------------------- 
cumpeakprofrng = sum(tofdata); 
 
mass_rng = masses(ix_min:ix_max); 
end 

 

genaddh5mock.m 

function name_curr_mock = genaddh5mock(user_mass,timelength_mock,varargin) 
% ========================================================================= 
% INPUTs 
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% 'user_mass' = Mass value at which simulate a random intensity profile 
% 'timelength_mock' = Timespan covered by the mockfile to be generated 
% 
% OPTIONAL INPUTs 
% (1st ARG)'random distribution function' = The function used to generate 
%                                           the peak intensity profile over 
%                                           time. 
%                                           DEFAULT = 'stable' 
%                                           OPT1 = 'sinusoindal' 
%                                           OPT2 = 'constant' 
% (2nd ARG)'measured masses starting point' = The lowest mass value 
%                                             detected by the PTRMS during 
%                                             the current mock. 
%                                             DEFAULT = 0 
%                                             OPT = N > 0 
% 
% OUTPUTs 
% 'name_curr_mock' = Name of the mock .h5 file in output 
% 
% 
% Function that generates a mock .h5 file to emulate the output of the 
% PTR-MS. The output file is generated exactly as the original one, except 
% for the data logging regarding the number of completed acquisition cycles 
% and the number of zeroes contained in the last time cycle. In addition to 
% file generation, the function adds a random output profile at the mass 
% value chosen by the user. This random profile is given by the combination 
% of two distributions: (i) a distribution over time based on a userdefined 
% distribution' which determines the intensity profile over time for the 
% exact mass inputted by the user; (ii) a normal distribution across the 
% masses to generate fictional peaks around the chosen mass (usually there 
% is a neighbourhood of masses to be considered when detecting a specific 
% one) 
% ========================================================================= 
 
 
% ========================================================================= 
% Initialisation 
% ========================================================================= 
% delete 'PTRMSmocksequence*.h5' 
% close all 
% clear all 
format long 
% clc 
 
 
% ========================================================================= 
% Error handling & optional arguments evaluation 
% ========================================================================= 
switch nargin 
    case 2 
        assert(isnumeric(user_mass) & ... 
            2 == ndims(user_mass) & ... 
            216 > user_mass & ... 
            0 < user_mass & ... 
            1 == size(user_mass,1) & ... 
            1 == size(user_mass,2), ... 
            ['First input <user_mass> must be a positive scalar ' ... 
            'lower than 216m/q.']) 
        assert(isnumeric(timelength_mock) & ... 
            2 == ndims(timelength_mock) & ... 
            5 < timelength_mock & ... 
            1 == size(timelength_mock,1) & ... 
            1 == size(timelength_mock,2), ... 
            ['Second input <timelength_mock> must be a positive ' ... 
            'scalar higher than 5s.']) 
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        start_mass = 0; 
        distr_fun = 'stable'; 
    case 3 
        assert(isnumeric(user_mass) & ... 
            2 == ndims(user_mass) & ... 
            216 > user_mass & ... 
            0 < user_mass & ... 
            1 == size(user_mass,1) & ... 
            1 == size(user_mass,2), ... 
            ['First input <user_mass> must be a positive scalar ' ... 
            'lower than 216m/q.']) 
        assert(isnumeric(timelength_mock) & ... 
            2 == ndims(timelength_mock) & ... 
            5 < timelength_mock & ... 
            1 == size(timelength_mock,1) & ... 
            1 == size(timelength_mock,2), ... 
            ['Second input <timelength_mock> must be a positive ' ... 
            'scalar higher than 5s.']) 
        assert(ischar(varargin{1}) & ... 
            2 == ndims(varargin{1}) & ... 
            1 == size(varargin{1},1), ... 
            ['Third input <random distribution function> must be ' ... 
            'a char row vector (1xN char).']) 
        assert(strcmpi(varargin{1}, 'stable') | ... 
            strcmpi(varargin{1}, 'sinusoidal') | ... 
            strcmpi(varargin{1}, 'constant'), ... 
            ['Third input <random distribution function> must match ' ... 
            'the options <stable>, <sinusoidal> or <constant>.']) 
 
        start_mass = 0; 
        distr_fun = varargin{1}; 
    otherwise 
        assert(isnumeric(varargin{2}) & ... 
            2 == ndims(varargin{2}) & ... 
            0 < varargin{2} & ... 
            1 == size(varargin{2},1) & ... 
            1 == size(varargin{2},2), ... 
            ['Fourth input <measured masses starting point> must ' ... 
            'be a positive scalar higher than 0m/q.']) 
 
        start_mass = varargin{2}; 
        spectrum_extension = 216; % Span of detection range of PTRMS 
        end_mass_rng = start_mass + spectrum_extension; 
 
        assert(isnumeric(user_mass) & ... 
            2 == ndims(user_mass) & ... 
            end_mass_rng > user_mass & ... 
            start_mass < user_mass & ... 
            1 == size(user_mass,1) & ... 
            1 == size(user_mass,2), ... 
            ['First input <user_mass> must be a positive scalar ' ... 
            'lower than ' num2str(round(end_mass_rng)) 'm/q.']) 
        assert(isnumeric(timelength_mock) & ... 
            2 == ndims(timelength_mock) & ... 
            5 < timelength_mock & ... 
            1 == size(timelength_mock,1) & ... 
            1 == size(timelength_mock,2), ... 
            ['Second input <timelength_mock> must be a positive ' ... 
            'scalar higher than 5s.']) 
        assert(ischar(varargin{1}) & ... 
            2 == ndims(varargin{1}) & ... 
            1 == size(varargin{1},1), ... 
            ['Third input <random distribution function> must be ' ... 
            'a char row vector (1xN char).']) 
        assert(strcmpi(varargin{1}, 'stable') | ... 
            strcmpi(varargin{1}, 'sinusoidal') | ... 
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            strcmpi(varargin, 'constant'), ... 
            ['Third input <random distribution function> must match ' ... 
            'the options <stable>, <sinusoidal> or <constant>.']) 
 
        distr_fun = varargin{1}; 
end 
 
 
% ========================================================================= 
% Constants 
% ========================================================================= 
avg_mass_step = 0.0014; % Mass resolution of the PTRMS 
avg_time_step = 0.3; % Time in between ions sampling from the PTRMS 
spectrum_extension = 216; % Span of detection range of PTRMS 
chunk_size = 6; % Storage file chunk size for time points 
cycles_pos = 27; % Position index for the beginning of the 'number of 
                 % cycles' entry in the logfile of each .h5 file 
shift_to_zeroes_pos = 17; % Shift from end of the 'cycles' entry to the 
                          % beginning of the 'zeroes' entry 
neighbourhood_mock = 0.14; % Neighbourhood of masses whose ion count still 
                           % contributes to the evaluation of the central 
                           % mass value the user wants to examine. This is 
                           % not for scoping, but rather for the definition 
                           % of the structure of the mockfile. 
 
 
% ========================================================================= 
% User specified data 
% ========================================================================= 
beg_mass_rng = start_mass + 1; % starting point of the examined mass range (starts 
from 
                  % 1 because it's the mass of the single proton, the 
                  % smallest detectable ion 
% user_mass = 154.25; % Target mass to be analysed 
mass_of_choice = user_mass + 1; % We're working with the shifted mass 
                                % (proton is attached, so +1 in mass) 
% timelength_mock = 30; % Length of time covered by the mockfile in seconds 
 
 
% ========================================================================= 
% Flags 
% ========================================================================= 
no_prev_files_flag = 0; % Marks if there is already a previous mock spectra 
                        % file (0 = there are previous files; 1 = there is 
                        % no previous file) 
 
 
% ========================================================================= 
% Check for previous mock-files / modifies the relative flag accordingly / 
% assess the file-number associated with the last mock-file available (the 
% one with the highest number in the name - not the most recent one) 
% ========================================================================= 
mocks = dir('PTRMSmocksequence*.h5'); 
n_mocks = length(mocks); 
 
if n_mocks == 0 
    n_last_mock = 0; 
    no_prev_files_flag = 1; 
elseif n_mocks ==1 
    n_last_mock = str2double(mocks.name(end-5:end-3)); 
else 
    ns_mocks = zeros(1,n_mocks); 
    for i = 1:n_mocks 
        ns_mocks(i) = str2double(mocks(i).name(end-5:end-3)); 
    end 
    n_last_mock = max(ns_mocks); 
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end 
 
 
% ========================================================================= 
% Defines name for the current mockfile to be outputted (the final file 
% name has to be identified by three digits '$$$' --> max n_mockfiles is 
% therefore '999') 
% ========================================================================= 
n_curr_mock = n_last_mock + 1; 
 
if n_curr_mock >= 100 
    id_curr_mock = num2str(n_curr_mock); 
elseif n_curr_mock < 100 && n_curr_mock >= 10 
    id_curr_mock = ['0' num2str(n_curr_mock)]; 
else 
    id_curr_mock = ['00' num2str(n_curr_mock)]; 
end 
 
name_curr_mock = ['PTRMSmocksequence' id_curr_mock '.h5']; 
 
 
% ========================================================================= 
% Defines the exact number of timepoints for the current mockfile being 
% produced (I want each mockfile to cover approximately 30s and being ~0.3s 
% the average timestep in the MS data acquisition system it means that the 
% number of timesteps is 100. As I want to be flexible and allow already 
% for good adaptability towards the files the platform will be working with 
% I randomly assign a number of timepoints between 96 and 102. This because 
% the chunk size of the data storage system is 6. Every cycle consists of 6 
% entries and if the data buffer is emptied at a point in which all 6 
% points of the current cycles aren't yet acquired, the system fills the 
% remaining entries with zeroes, so to have a valid array structure to 
% insert inside of the .h5 file. Similarly, if the number of timepoints 
% randomly generated here differs from 96 or 102, there'll be a number of 
% zeroes in the final data chunk. 
% ========================================================================= 
rng('shuffle'); 
low_threshold = ... 
    floor((timelength_mock/avg_time_step)/chunk_size)*chunk_size; 
high_threshold = low_threshold + chunk_size; 
n_timepoints_curr_mock = randi([low_threshold, high_threshold]); 
n_timecycles_curr_mock = ceil(n_timepoints_curr_mock/6); 
remainder = rem(n_timepoints_curr_mock,chunk_size); 
if remainder > 0 
    n_zeroes_curr_mock = chunk_size - remainder; % From 1 to 5 
else 
    n_zeroes_curr_mock = 0; 
end 
 
% ========================================================================= 
% Creates all the .h5 structures for the current mockfile 
% ========================================================================= 
name_time_dtst = '/TimingData/BufTimes'; % Where all the times of the 
                                         % single timesteps are stored 
time_size_curr_mock = [6 n_timecycles_curr_mock]; 
h5create(name_curr_mock,name_time_dtst,time_size_curr_mock); 
%-------------------------------------------------------------------------- 
name_mass_dtst = '/FullSpectra/MassAxis'; % Where the vector containing all 
                                          % of the measured masses is 
                                          % stored 
masses_length = round(spectrum_extension/avg_mass_step); 
mass_size_curr_mock = [masses_length 1]; 
h5create(name_curr_mock,name_mass_dtst,mass_size_curr_mock); 
%-------------------------------------------------------------------------- 
name_tofdata_dtst = '/FullSpectra/TofData'; % Where ions/s data are stored 
                                            % for every time point and for 
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                                            % every recorded mass 
tofdata_size_curr_mock = ... 
    [masses_length, ... 
    1, ... 
    chunk_size, ... 
    n_timecycles_curr_mock]; 
h5create(name_curr_mock,name_tofdata_dtst,tofdata_size_curr_mock); 
%-------------------------------------------------------------------------- 
name_log_dtst = '/AcquisitionLog/Log'; % Where the info about the number of 
                                       % of completed cycles and zeroes in 
                                       % the last cycle is stored 
% log_size_curr_mock = [1 (91 + length(num2str(n_timecycles_curr_mock)))]; 
log_size_curr_mock = [1 1]; 
h5create(name_curr_mock,name_log_dtst,log_size_curr_mock, ... 
    'Datatype', 'string'); 
 
 
% ========================================================================= 
% Evaluates the starting timepoint based on the presence/absence of 
% previous mockfiles 
% ========================================================================= 
if no_prev_files_flag == 1 
    start_time_curr_mock = 0; 
else 
    % Identifies the file to open to extract the info related to time 
    if n_curr_mock >= 2 && n_curr_mock <= 10 
        id_last_mock = ['00' num2str(n_last_mock)]; 
    elseif n_curr_mock > 10 && n_curr_mock <= 100 
        id_last_mock = ['0' num2str(n_last_mock)]; 
    else 
        id_last_mock = num2str(n_last_mock); 
    end 
 
    % Opens time dataset and file log 
    name_last_mock = ['PTRMSmocksequence' id_last_mock '.h5']; 
    data_time_last_mock = h5read(name_last_mock, name_time_dtst); 
    log_last_mock = char(h5read(name_last_mock, name_log_dtst)); 
 
    % Extracts no. of cycles & zeroes from log 
    spot = ''; 
    cycles = ''; 
    while strcmp(spot, ' ') == 0 
        spot = log_last_mock(cycles_pos); 
        cycles = [cycles spot]; 
        cycles_pos = cycles_pos + 1; 
    end 
 
    n_timecycles_last_mock = str2double(cycles(1:(end-1))); 
    n_zeroes_last_mock = ... 
        str2double(log_last_mock( ... 
        cycles_pos + shift_to_zeroes_pos ... 
        )); 
 
    % Extracts last recorded timepoint and adds timestep to get the 
    % starting point of the current mockfile 
    if n_zeroes_last_mock > 0 
        start_time_curr_mock = ... 
            data_time_last_mock((end - n_zeroes_last_mock), end) + ... 
            avg_time_step; 
    else 
        start_time_curr_mock = ... 
            data_time_last_mock(end,end) + ... 
            avg_time_step; 
    end 
 
end 
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% ========================================================================= 
% Switch between the functions for the creation of the mock intensity 
% profile. Switch is based on the variable 'distr_fun' 
% ========================================================================= 
switch distr_fun 
%-------------------------------------------------------------------------- 
    case 'stable' 
% ========================================================================= 
% Define a random distribution parameters over time of the ions count. 
% This distributions defines the profile over time of the central 
% mass to be analysed. It employs the probability density function 'pdf' 
% based on the distribution given by 'makedist' (which in turn employs a 
% 4-parameters stable distribution). Distribution parameters are randomly 
% picked amongst pre-defined ranges that are found to be suitable for the 
% desired profile to output. 
% ========================================================================= 
lim_alpha = [1 2]; 
lim_beta = [-1 1]; 
lim_gamma = [10 timelength_mock]; 
 
% Defines the delta par based on the time range sampled. Delta is related 
% to the central position of the distribution, therefore it needs to 
% account for the actually measured time chunk 
if no_prev_files_flag == 1 
    lim_delta = [0 30]; 
else 
    lim_delta = [(start_time_curr_mock) ... 
        (start_time_curr_mock + n_timepoints_curr_mock*avg_time_step)]; 
end 
 
% Randomly defines the 4 parameters within the defined ranges 
lims = [lim_alpha; lim_beta; lim_gamma; lim_delta]; 
for i = 1:4 
    if i == 1 
        alpha = (lims(i,2) - lims(i,1))*rand + lims(i,1); 
    elseif i == 2 
        beta = (lims(i,2) - lims(i,1))*rand + lims(i,1); 
    elseif i == 3 
        gamma = (lims(i,2) - lims(i,1))*rand + lims(i,1); 
    elseif i == 4 
        delta = (lims(i,2) - lims(i,1))*rand + lims(i,1); 
    end 
end 
 
% Creates central distribution 
scaling_factor = 100000; % Takes output of distribution function to values 
                         % similar to those given by actual ions count on 
                         % real measurement of PTRMS 
 
times = linspace(start_time_curr_mock, ... 
    (start_time_curr_mock + avg_time_step*(n_timepoints_curr_mock-1)), ... 
    n_timepoints_curr_mock); 
distribution = ... 
    makedist('Stable','alpha',alpha,'beta',beta,'gam',gamma,'delta',delta); 
central_ions_distr = pdf(distribution,times); 
central_ions_distr = central_ions_distr*scaling_factor; 
 
 
%-------------------------------------------------------------------------- 
    case 'sinusoidal' 
% ========================================================================= 
% Define a random distribution parameters over time of the ions count. 
% This distributions defines the profile over time of the central 
% mass to be analysed. It employs a 'sinusoidal' function, slowed down to 
% guarantee a non-excessive oscillation. Distribution parameters are 
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% randomly picked amongst pre-defined ranges that are found to be suitable 
% for the desired profile to output. 
% ========================================================================= 
lim_slow_factor = [2.5 4]; 
lim_scaling_factor = [500 5000]; % Takes output of distribution function to 
                                 % values similar to those given by actual 
                                 % ions count on real measurement of PTRMS 
 
slow_factor = (lim_slow_factor(2) - lim_slow_factor(1))*rand + ... 
    lim_slow_factor(1); 
scaling_factor = (lim_scaling_factor(2) - lim_scaling_factor(1))*rand + ... 
    lim_scaling_factor(1); 
 
times = linspace(start_time_curr_mock, ... 
    (start_time_curr_mock + avg_time_step*(n_timepoints_curr_mock-1)), ... 
    n_timepoints_curr_mock); 
 
central_ions_distr = scaling_factor*sin(times/slow_factor); 
 
if no_prev_files_flag == 1 
    central_ions_distr = central_ions_distr + lim_scaling_factor(2); 
end 
 
 
%-------------------------------------------------------------------------- 
    case 'constant' 
% ========================================================================= 
% Define a random distribution parameters over time of the ions count. 
% This distributions defines the profile over time of the central 
% mass to be analysed. It employs a 'sinusoidal' function, slowed down to 
% guarantee a non-excessive oscillation. Distribution parameters are 
% randomly picked amongst pre-defined ranges that are found to be suitable 
% for the desired profile to output. 
% ========================================================================= 
times = linspace(start_time_curr_mock, ... 
    (start_time_curr_mock + avg_time_step*(n_timepoints_curr_mock-1)), ... 
    n_timepoints_curr_mock); 
 
if no_prev_files_flag == 1 
    prompt = 'Output level'; 
    dlgtitle = 'Enter numerical value of mocked output'; 
    dims = [1 100]; 
    output = inputdlg(prompt,dlgtitle,dims); 
 
    central_ions_distr = linspace( ... 
        str2double(output{1}), ... 
        str2double(output{1}), ... 
        n_timepoints_curr_mock); 
else 
    central_ions_distr = zeros(1, n_timepoints_curr_mock); 
end 
%-------------------------------------------------------------------------- 
end 
 
 
% ========================================================================= 
% Generates the orthogonal distribution related to the masses. Target mass 
% isn't the only one that registers ions related to the target coumpound, 
% also a small neighbourhood records ions which are fundamental to the 
% accurate measurement of the concentration of the target compound. 
% Therefore, it is desirable to simulate the same profile in the mock file. 
% To do this, a normal distribution is generated. Combining the ions 
% distribution over time with the distribution over the masses, will 
% generate the surface of peaks across both masses and timepoints. 
% ========================================================================= 
% Generates the whole list of masses that the PTRMS will analyse 



Giovanni Lorenzon – MPhil Thesis 

 

 104 

data_mass_curr_mock = ... 
    [beg_mass_rng:... 
    avg_mass_step:... 
    (beg_mass_rng + (masses_length - 1)*avg_mass_step)]; 
data_mass_curr_mock = data_mass_curr_mock'; 
 
% Extracts the mass range in which the mock profile will be generated 
% according to the user defined mass value whose peak must be simulated 
[~,ix_mass_choice] = min(abs(data_mass_curr_mock - mass_of_choice)); 
ixs_neighbourhood = round(neighbourhood_mock/avg_mass_step); 
masses_mock = data_mass_curr_mock(... 
    ix_mass_choice - ixs_neighbourhood:... 
    ix_mass_choice + ixs_neighbourhood... 
    ); 
 
 
% Generates the distribution 
norm_distr = normpdf( ... 
    masses_mock, ... % Created across the prev identified range of masses 
    mass_of_choice, ... % Centre is on the target mass 
    neighbourhood_mock/3); % Gives quite a narrow distr, okay for purpose 
norm_distr = norm_distr/max(norm_distr); % Normalise to get 'height' values 
                                         % of the distr to be 0:1 
 
 
% ========================================================================= 
% Accounts for the eventual previous mockfile distribution and guarantees 
% continuity across the next mockfile in the distribution of peaks. First, 
% it finds the position of the last peak entry for the target mass in the 
% previous mockfile, then it extracts it, and lastly it uses it to offset 
% the currently generated distribution. 
% ========================================================================= 
if no_prev_files_flag == 0 
    ix_last_entry_last_mock = chunk_size - n_zeroes_last_mock; 
    read_start = [... 
        ix_mass_choice, ... 
        1, ... 
        ix_last_entry_last_mock, ... 
        n_timecycles_last_mock ... 
        ]; 
    read_count = [1 1 1 1]; 
 
    endvalue_tofdata_last_mock = ... 
        h5read(name_last_mock,name_tofdata_dtst,read_start,read_count); 
 
    central_ions_distr = ... 
        central_ions_distr + ... 
        (endvalue_tofdata_last_mock - central_ions_distr(1)); 
 
    if any(central_ions_distr < 0) 
        central_ions_distr(central_ions_distr < 0) = 0; 
    end 
end 
 
 
% ========================================================================= 
% Generates the mixed time-mass distribution of the ion peaks. Then it adds 
% the zeroes to maintain proper chunk size, and lastly it structures the 
% data in the same way they are stored in the original .h5 files. 
% ========================================================================= 
cross_ions_distr = zeros(length(masses_mock),n_timepoints_curr_mock); 
for i = 1:length(masses_mock) 
    cross_ions_distr(i,:) = norm_distr(i)*central_ions_distr; 
end 
 
% Adds zeroes 
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if n_zeroes_curr_mock == 0 
    cross_ions_distr_w_nulls = cross_ions_distr; 
else 
    cross_ions_distr_w_nulls = [ ... 
        cross_ions_distr, ... 
        zeros(length(masses_mock), n_zeroes_curr_mock) ... 
        ]; 
end 
 
% Rearrange data to be written to .h5 file 
data_tofdata_curr_mock = ... 
    zeros(length(masses_mock), 1, 6, n_timecycles_curr_mock); 
for i = 1:length(masses_mock) 
    for j = 1:n_timecycles_curr_mock 
        data_tofdata_curr_mock(i,1,:,j) = ... 
            cross_ions_distr_w_nulls( ... 
            i, ... 
            ((j-1)*chunk_size+1):((j-1)*chunk_size+chunk_size) ... 
            ); 
    end 
end 
 
 
% ========================================================================= 
% Organises and writes data on the previously generated datasets of the 
% mockfile 
% ========================================================================= 
data_time_curr_mock = zeros(time_size_curr_mock); 
if n_zeroes_curr_mock == 0 
    for i = 1:n_timecycles_curr_mock 
        data_time_curr_mock(:,i) = ... 
            times((((i-1)*chunk_size)+1):(((i-1)*chunk_size)+chunk_size)); 
    end 
else 
    for i = 1:(n_timecycles_curr_mock - 1) 
        data_time_curr_mock(:,i) = ... 
            times((((i-1)*chunk_size)+1):(((i-1)*chunk_size)+chunk_size)); 
    end 
    data_time_curr_mock(:,end) = ... 
        [times(((n_timecycles_curr_mock-1)*chunk_size+1):end), ... 
        zeros(1, n_zeroes_curr_mock)]; 
end 
 
h5write(name_curr_mock,name_time_dtst,data_time_curr_mock); 
%-------------------------------------------------------------------------- 
h5write(name_curr_mock,name_mass_dtst,data_mass_curr_mock); 
%-------------------------------------------------------------------------- 
write_start = [ ... 
    (ix_mass_choice - ixs_neighbourhood), ... 
    1, ... 
    1, ... 
    1 ... 
    ]; 
write_count = [length(masses_mock) 1 6 n_timecycles_curr_mock]; 
 
h5write( ... 
    name_curr_mock, ... 
    name_tofdata_dtst, ... 
    data_tofdata_curr_mock, ... 
    write_start, ... 
    write_count ... 
    ); 
%-------------------------------------------------------------------------- 
log_curr_mock = string([ ... 
    'Acquisition aborted after ' ... 
    num2str(n_timecycles_curr_mock) ... 
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    ' complete writes. ' ... 
    num2str(n_zeroes_curr_mock) ... 
    ' additional bufs in the incomplete last write.' ... 
    ]); 
 
h5write(name_curr_mock,name_log_dtst,log_curr_mock) 
end 

genaddh5calmock.m 

function name_curr_mock = ... 
    genaddh5calmock(user_mass,timelength_mock,signal_intensity) 
% ========================================================================= 
% INPUTs 
% 'user_mass' = Mass value at which simulate a random intensity profile 
% 'timelength_mock' = Timespan covered by the mockfile to be generated 
% 'signal_intensity' = The intensity value of the constant output that will 
%                      be mocked 
% 
% OUTPUTs 
% 'name_curr_mock' = Name of the mock .h5 file in output 
% 
% 
% Function that generates a mock .h5 file to emulate the output of the 
% PTR-MS. The output file is generated exactly as the original one, except 
% for the data logging regarding the number of completed acquisition cycles 
% and the number of zeroes contained in the last time cycle. In addition to 
% file generation, the function adds a constant output profile at the mass 
% value chosen by the user. This random profile is given by the combination 
% of two distributions: (i) a distribution over time based on a 'constant 
% distribution' which determines the intensity profile over time for the 
% exact mass inputted by the user; (ii) a normal distribution across the 
% masses to generate fictional peaks around the chosen mass (usually there 
% is a neighbourhood of masses to be considered when detecting a specific 
% one) 
% ========================================================================= 
 
 
% ========================================================================= 
% Initialisation 
% ========================================================================= 
% delete 'PTRMSmockcalsequence*.h5' 
% close all 
% clear all 
format long 
% clc 
 
 
% ========================================================================= 
% Error handling & optional arguments evaluation 
% ========================================================================= 
assert(isnumeric(user_mass) & ... 
    2 == ndims(user_mass) & ... 
    216 > user_mass & ... 
    0 < user_mass & ... 
    1 == size(user_mass,1) & ... 
    1 == size(user_mass,2), ... 
    ['First input <user_mass> must be a positive scalar ' ... 
    'lower than 216m/q.']) 
assert(isnumeric(timelength_mock) & ... 
    2 == ndims(timelength_mock) & ... 
    5 < timelength_mock & ... 
    1 == size(timelength_mock,1) & ... 
    1 == size(timelength_mock,2), ... 
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    ['Second input <timelength_mock> must be a positive ' ... 
    'scalar higher than 5s.']) 
 
 
% ========================================================================= 
% Constants 
% ========================================================================= 
avg_mass_step = 0.0014; % Mass resolution of the PTRMS 
avg_time_step = 0.3; % Time in between ions sampling from the PTRMS 
spectrum_extension = 216; % Span of detection range of PTRMS 
chunk_size = 6; % Storage file chunk size for time points 
cycles_pos = 27; % Position index for the beginning of the 'number of 
                 % cycles' entry in the logfile of each .h5 file 
shift_to_zeroes_pos = 17; % Shift from end of the 'cycles' entry to the 
                          % beginning of the 'zeroes' entry 
neighbourhood_mock = 0.14; % Neighbourhood of masses whose ion count still 
                           % contributes to the evaluation of the central 
                           % mass value the user wants to examine. This is 
                           % not for scoping, but rather for the definition 
                           % of the structure of the mockfile. 
distr_fun = 'constant'; 
 
 
% ========================================================================= 
% User specified data 
% ========================================================================= 
beg_mass_rng = 1; % starting point of the examined mass range (starts from 
                  % 1 because it's the mass of the single proton, the 
                  % smallest detectable ion 
% user_mass = 154.25; % Target mass to be analysed 
mass_of_choice = user_mass + 1; % We're working with the shifted mass 
                                % (proton is attached, so +1 in mass) 
% timelength_mock = 30; % Length of time covered by the mockfile in seconds 
 
 
% ========================================================================= 
% Flags 
% ========================================================================= 
no_prev_files_flag = 0; % Marks if there is already a previous mock spectra 
                        % file (0 = there are previous files; 1 = there is 
                        % no previous file) 
 
 
% ========================================================================= 
% Check for previous mock-files / modifies the relative flag accordingly / 
% assess the file-number associated with the last mock-file available (the 
% one with the highest number in the name - not the most recent one) 
% ========================================================================= 
mocks = dir('PTRMSmockcalsequence*.h5'); 
n_mocks = length(mocks); 
 
if n_mocks == 0 
    n_last_mock = 0; 
    no_prev_files_flag = 1; 
elseif n_mocks ==1 
    n_last_mock = str2double(mocks.name(end-5:end-3)); 
else 
    ns_mocks = zeros(1,n_mocks); 
    for i = 1:n_mocks 
        ns_mocks(i) = str2double(mocks(i).name(end-5:end-3)); 
    end 
    n_last_mock = max(ns_mocks); 
end 
 
 
% ========================================================================= 
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% Defines name for the current mockfile to be outputted (the final file 
% name has to be identified by three digits '$$$' --> max n_mockfiles is 
% therefore '999') 
% ========================================================================= 
n_curr_mock = n_last_mock + 1; 
 
if n_curr_mock >= 100 
    id_curr_mock = num2str(n_curr_mock); 
elseif n_curr_mock < 100 && n_curr_mock >= 10 
    id_curr_mock = ['0' num2str(n_curr_mock)]; 
else 
    id_curr_mock = ['00' num2str(n_curr_mock)]; 
end 
 
name_curr_mock = ['PTRMSmockcalsequence' id_curr_mock '.h5']; 
 
 
% ========================================================================= 
% Defines the exact number of timepoints for the current mockfile being 
% produced (I want each mockfile to cover approximately 30s and being ~0.3s 
% the average timestep in the MS data acquisition system it means that the 
% number of timesteps is 100. As I want to be flexible and allow already 
% for good adaptability towards the files the platform will be working with 
% I randomly assign a number of timepoints between 96 and 102. This because 
% the chunk size of the data storage system is 6. Every cycle consists of 6 
% entries and if the data buffer is emptied at a point in which all 6 
% points of the current cycles aren't yet acquired, the system fills the 
% remaining entries with zeroes, so to have a valid array structure to 
% insert inside of the .h5 file. Similarly, if the number of timepoints 
% randomly generated here differs from 96 or 102, there'll be a number of 
% zeroes in the final data chunk. 
% ========================================================================= 
rng('shuffle'); 
low_threshold = ... 
    floor((timelength_mock/avg_time_step)/chunk_size)*chunk_size; 
high_threshold = low_threshold + chunk_size; 
n_timepoints_curr_mock = randi([low_threshold, high_threshold]); 
n_timecycles_curr_mock = ceil(n_timepoints_curr_mock/6); 
remainder = rem(n_timepoints_curr_mock,chunk_size); 
if remainder > 0 
    n_zeroes_curr_mock = chunk_size - remainder; % From 1 to 5 
else 
    n_zeroes_curr_mock = 0; 
end 
 
% ========================================================================= 
% Creates all the .h5 structures for the current mockfile 
% ========================================================================= 
name_time_dtst = '/TimingData/BufTimes'; % Where all the times of the 
                                         % single timesteps are stored 
time_size_curr_mock = [6 n_timecycles_curr_mock]; 
h5create(name_curr_mock,name_time_dtst,time_size_curr_mock); 
%-------------------------------------------------------------------------- 
name_mass_dtst = '/FullSpectra/MassAxis'; % Where the vector containing all 
                                          % of the measured masses is 
                                          % stored 
masses_length = round(spectrum_extension/avg_mass_step); 
mass_size_curr_mock = [masses_length 1]; 
h5create(name_curr_mock,name_mass_dtst,mass_size_curr_mock); 
%-------------------------------------------------------------------------- 
name_tofdata_dtst = '/FullSpectra/TofData'; % Where ions/s data are stored 
                                            % for every time point and for 
                                            % every recorded mass 
tofdata_size_curr_mock = ... 
    [masses_length, ... 
    1, ... 
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    chunk_size, ... 
    n_timecycles_curr_mock]; 
h5create(name_curr_mock,name_tofdata_dtst,tofdata_size_curr_mock); 
%-------------------------------------------------------------------------- 
name_log_dtst = '/AcquisitionLog/Log'; % Where the info about the number of 
                                       % of completed cycles and zeroes in 
                                       % the last cycle is stored 
% log_size_curr_mock = [1 (91 + length(num2str(n_timecycles_curr_mock)))]; 
log_size_curr_mock = [1 1]; 
h5create(name_curr_mock,name_log_dtst,log_size_curr_mock, ... 
    'Datatype', 'string'); 
 
 
% ========================================================================= 
% Evaluates the starting timepoint based on the presence/absence of 
% previous mockfiles 
% ========================================================================= 
if no_prev_files_flag == 1 
    start_time_curr_mock = 0; 
else 
    % Identifies the file to open to extract the info related to time 
    if n_curr_mock >= 2 && n_curr_mock <= 10 
        id_last_mock = ['00' num2str(n_last_mock)]; 
    elseif n_curr_mock > 10 && n_curr_mock <= 100 
        id_last_mock = ['0' num2str(n_last_mock)]; 
    else 
        id_last_mock = num2str(n_last_mock); 
    end 
 
    % Opens time dataset and file log 
    name_last_mock = ['PTRMSmockcalsequence' id_last_mock '.h5']; 
    data_time_last_mock = h5read(name_last_mock, name_time_dtst); 
    log_last_mock = char(h5read(name_last_mock, name_log_dtst)); 
 
    % Extracts no. of cycles & zeroes from log 
    spot = ''; 
    cycles = ''; 
    while strcmp(spot, ' ') == 0 
        spot = log_last_mock(cycles_pos); 
        cycles = [cycles spot]; 
        cycles_pos = cycles_pos + 1; 
    end 
 
    n_timecycles_last_mock = str2double(cycles(1:(end-1))); 
    n_zeroes_last_mock = ... 
        str2double(log_last_mock( ... 
        cycles_pos + shift_to_zeroes_pos ... 
        )); 
 
    % Extracts last recorded timepoint and adds timestep to get the 
    % starting point of the current mockfile 
    if n_zeroes_last_mock > 0 
        start_time_curr_mock = ... 
            data_time_last_mock((end - n_zeroes_last_mock), end) + ... 
            avg_time_step; 
    else 
        start_time_curr_mock = ... 
            data_time_last_mock(end,end) + ... 
            avg_time_step; 
    end 
 
end 
 
% ========================================================================= 
% Switch between the functions for the creation of the mock intensity 
% profile. Switch is based on the variable 'distr_fun' 
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% ========================================================================= 
switch distr_fun 
%-------------------------------------------------------------------------- 
    case 'stable' 
% ========================================================================= 
% Define a random distribution parameters over time of the ions count. 
% This distributions defines the profile over time of the central 
% mass to be analysed. It employs the probability density function 'pdf' 
% based on the distribution given by 'makedist' (which in turn employs a 
% 4-parameters stable distribution). Distribution parameters are randomly 
% picked amongst pre-defined ranges that are found to be suitable for the 
% desired profile to output. 
% ========================================================================= 
lim_alpha = [1 2]; 
lim_beta = [-1 1]; 
lim_gamma = [10 timelength_mock]; 
 
% Defines the delta par based on the time range sampled. Delta is related 
% to the central position of the distribution, therefore it needs to 
% account for the actually measured time chunk 
if no_prev_files_flag == 1 
    lim_delta = [0 30]; 
else 
    lim_delta = [(start_time_curr_mock) ... 
        (start_time_curr_mock + n_timepoints_curr_mock*avg_time_step)]; 
end 
 
% Randomly defines the 4 parameters within the defined ranges 
lims = [lim_alpha; lim_beta; lim_gamma; lim_delta]; 
for i = 1:4 
    if i == 1 
        alpha = (lims(i,2) - lims(i,1))*rand + lims(i,1); 
    elseif i == 2 
        beta = (lims(i,2) - lims(i,1))*rand + lims(i,1); 
    elseif i == 3 
        gamma = (lims(i,2) - lims(i,1))*rand + lims(i,1); 
    elseif i == 4 
        delta = (lims(i,2) - lims(i,1))*rand + lims(i,1); 
    end 
end 
 
% Creates central distribution 
scaling_factor = 100000; % Takes output of distribution function to values 
                         % similar to those given by actual ions count on 
                         % real measurement of PTRMS 
 
times = linspace(start_time_curr_mock, ... 
    (start_time_curr_mock + avg_time_step*(n_timepoints_curr_mock-1)), ... 
    n_timepoints_curr_mock); 
distribution = ... 
    makedist('Stable','alpha',alpha,'beta',beta,'gam',gamma,'delta',delta); 
central_ions_distr = pdf(distribution,times); 
central_ions_distr = central_ions_distr*scaling_factor; 
 
 
%-------------------------------------------------------------------------- 
    case 'sinusoidal' 
% ========================================================================= 
% Define a random distribution parameters over time of the ions count. 
% This distributions defines the profile over time of the central 
% mass to be analysed. It employs a 'sinusoidal' function, slowed down to 
% guarantee a non-excessive oscillation. Distribution parameters are 
% randomly picked amongst pre-defined ranges that are found to be suitable 
% for the desired profile to output. 
% ========================================================================= 
lim_slow_factor = [2.5 4]; 
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lim_scaling_factor = [500 5000]; % Takes output of distribution function to 
                                 % values similar to those given by actual 
                                 % ions count on real measurement of PTRMS 
 
slow_factor = (lim_slow_factor(2) - lim_slow_factor(1))*rand + ... 
    lim_slow_factor(1); 
scaling_factor = (lim_scaling_factor(2) - lim_scaling_factor(1))*rand + ... 
    lim_scaling_factor(1); 
 
times = linspace(start_time_curr_mock, ... 
    (start_time_curr_mock + avg_time_step*(n_timepoints_curr_mock-1)), ... 
    n_timepoints_curr_mock); 
 
central_ions_distr = scaling_factor*sin(times/slow_factor); 
 
if no_prev_files_flag == 1 
    central_ions_distr = central_ions_distr + lim_scaling_factor(2); 
end 
 
 
%-------------------------------------------------------------------------- 
    case 'constant' 
% ========================================================================= 
% Define a random distribution parameters over time of the ions count. 
% This distributions defines the profile over time of the central 
% mass to be analysed. It employs a 'sinusoidal' function, slowed down to 
% guarantee a non-excessive oscillation. Distribution parameters are 
% randomly picked amongst pre-defined ranges that are found to be suitable 
% for the desired profile to output. 
% ========================================================================= 
times = linspace(start_time_curr_mock, ... 
    (start_time_curr_mock + avg_time_step*(n_timepoints_curr_mock-1)), ... 
n_timepoints_curr_mock); 
 
output = signal_intensity; 
 
central_ions_distr = linspace( ... 
    output, ... 
    output, ... 
    n_timepoints_curr_mock); 
%-------------------------------------------------------------------------- 
end 
 
 
% ========================================================================= 
% Generates the orthogonal distribution related to the masses. Target mass 
% isn't the only one that registers ions related to the target coumpound, 
% also a small neighbourhood records ions which are fundamental to the 
% accurate measurement of the concentration of the target compound. 
% Therefore, it is desirable to simulate the same profile in the mock file. 
% To do this, a normal distribution is generated. Combining the ions 
% distribution over time with the distribution over the masses, will 
% generate the surface of peaks across both masses and timepoints. 
% ========================================================================= 
% Generates the whole list of masses that the PTRMS will analyse 
data_mass_curr_mock = ... 
    [beg_mass_rng:... 
    avg_mass_step:... 
    (beg_mass_rng + (masses_length - 1)*avg_mass_step)]; 
data_mass_curr_mock = data_mass_curr_mock'; 
 
% Extracts the mass range in which the mock profile will be generated 
% according to the user defined mass value whose peak must be simulated 
[~,ix_mass_choice] = min(abs(data_mass_curr_mock - mass_of_choice)); 
ixs_neighbourhood = round(neighbourhood_mock/avg_mass_step); 
masses_mock = data_mass_curr_mock(... 
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    ix_mass_choice - ixs_neighbourhood:... 
    ix_mass_choice + ixs_neighbourhood... 
    ); 
 
 
% Generates the distribution 
norm_distr = normpdf( ... 
    masses_mock, ... % Created across the prev identified range of masses 
    mass_of_choice, ... % Centre is on the target mass 
    neighbourhood_mock/3); % Gives quite a narrow distr, okay for purpose 
norm_distr = norm_distr/max(norm_distr); % Normalise to get 'height' values 
                                         % of the distr to be 0:1 
 
 
% ========================================================================= 
% Generates the mixed time-mass distribution of the ion peaks. Then it adds 
% the zeroes to maintain proper chunk size, and lastly it structures the 
% data in the same way they are stored in the original .h5 files. 
% ========================================================================= 
cross_ions_distr = zeros(length(masses_mock),n_timepoints_curr_mock); 
for i = 1:length(masses_mock) 
    cross_ions_distr(i,:) = norm_distr(i)*central_ions_distr; 
end 
 
% Adds zeroes 
if n_zeroes_curr_mock == 0 
    cross_ions_distr_w_nulls = cross_ions_distr; 
else 
    cross_ions_distr_w_nulls = [ ... 
        cross_ions_distr, ... 
        zeros(length(masses_mock), n_zeroes_curr_mock) ... 
        ]; 
end 
 
% Rearrange data to be written to .h5 file 
data_tofdata_curr_mock = ... 
    zeros(length(masses_mock), 1, 6, n_timecycles_curr_mock); 
for i = 1:length(masses_mock) 
    for j = 1:n_timecycles_curr_mock 
        data_tofdata_curr_mock(i,1,:,j) = ... 
            cross_ions_distr_w_nulls( ... 
            i, ... 
            ((j-1)*chunk_size+1):((j-1)*chunk_size+chunk_size) ... 
            ); 
    end 
end 
 
 
% ========================================================================= 
% Organises and writes data on the previously generated datasets of the 
% mockfile 
% ========================================================================= 
data_time_curr_mock = zeros(time_size_curr_mock); 
if n_zeroes_curr_mock == 0 
    for i = 1:n_timecycles_curr_mock 
        data_time_curr_mock(:,i) = ... 
            times((((i-1)*chunk_size)+1):(((i-1)*chunk_size)+chunk_size)); 
    end 
else 
    for i = 1:(n_timecycles_curr_mock - 1) 
        data_time_curr_mock(:,i) = ... 
            times((((i-1)*chunk_size)+1):(((i-1)*chunk_size)+chunk_size)); 
    end 
    data_time_curr_mock(:,end) = ... 
        [times(((n_timecycles_curr_mock-1)*chunk_size+1):end), ... 
        zeros(1, n_zeroes_curr_mock)]; 
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end 
 
h5write(name_curr_mock,name_time_dtst,data_time_curr_mock); 
%-------------------------------------------------------------------------- 
h5write(name_curr_mock,name_mass_dtst,data_mass_curr_mock); 
%-------------------------------------------------------------------------- 
write_start = [ ... 
    (ix_mass_choice - ixs_neighbourhood), ... 
    1, ... 
    1, ... 
    1 ... 
    ]; 
write_count = [length(masses_mock) 1 6 n_timecycles_curr_mock]; 
 
h5write( ... 
    name_curr_mock, ... 
    name_tofdata_dtst, ... 
    data_tofdata_curr_mock, ... 
    write_start, ... 
    write_count ... 
    ); 
%-------------------------------------------------------------------------- 
log_curr_mock = string([ ... 
    'Acquisition aborted after ' ... 
    num2str(n_timecycles_curr_mock) ... 
    ' complete writes. ' ... 
    num2str(n_zeroes_curr_mock) ... 
    ' additional bufs in the incomplete last write.' ... 
    ]); 
 
h5write(name_curr_mock,name_log_dtst,log_curr_mock) 
 
end 

 

 

BioControl 1.0: 

Main interface 

classdef platform_test_test < matlab.apps.AppBase 
 
    % Properties that correspond to app components 
    properties (Access = public) 
        BioControl                      matlab.ui.Figure 
        FileMenu                        matlab.ui.container.Menu 
        OpenfolderMenu                  matlab.ui.container.Menu 
        GridLayout                      matlab.ui.container.GridLayout 
        LeftPanel                       matlab.ui.container.Panel 
        StatusPanel                     matlab.ui.container.Panel 
        DataacquisitionLampLabel        matlab.ui.control.Label 
        DataacquisitionLamp             matlab.ui.control.Lamp 
        ErrorlogTextAreaLabel           matlab.ui.control.Label 
        ErrorlogTextArea                matlab.ui.control.TextArea 
        ChooseoperationalmodalityButtonGroup  matlab.ui.container.ButtonGroup 
        SimulationButton                matlab.ui.control.RadioButton 
        SampletestingButton             matlab.ui.control.RadioButton 
        ChoosePTRMSdatafilesfolderButton  matlab.ui.control.Button 
        FolderSelectedLamp              matlab.ui.control.Lamp 
        MonitoringtargetPanel           matlab.ui.container.Panel 
        TargetmassEditFieldLabel        matlab.ui.control.Label 
        TargetmassEditField             matlab.ui.control.NumericEditField 
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        mqLabel_4                       matlab.ui.control.Label 
        NeighbourhoodEditFieldLabel     matlab.ui.control.Label 
        NeighbourhoodEditField          matlab.ui.control.NumericEditField 
        mqLabel_5                       matlab.ui.control.Label 
        STARTButton                     matlab.ui.control.Button 
        STOPButton                      matlab.ui.control.Button 
        ElapsedtimeEditFieldLabel       matlab.ui.control.Label 
        ElapsedtimeEditField            matlab.ui.control.EditField 
        RightPanel                      matlab.ui.container.Panel 
        TabGroup                        matlab.ui.container.TabGroup 
        CalibrationTab                  matlab.ui.container.Tab 
        CalibrationPanel                matlab.ui.container.Panel 
        StartnewcalibrationButton       matlab.ui.control.Button 
        CalibrationacquiredLampLabel    matlab.ui.control.Label 
        CalibrationacquiredLamp         matlab.ui.control.Lamp 
        ChoosecalibrationfileButton     matlab.ui.control.Button 
        UIAxesCal                       matlab.ui.control.UIAxes 
        CalibrationparametersPanel      matlab.ui.container.Panel 
        LOG10INTENSITYLabel             matlab.ui.control.Label 
        SlopeEditField                  matlab.ui.control.NumericEditField 
        xLOG10CONCLabel                 matlab.ui.control.Label 
        InterceptEditField              matlab.ui.control.NumericEditField 
        SimulationTab                   matlab.ui.container.Tab 
        Panel2_3                        matlab.ui.container.Panel 
        MockfiletimespanEditFieldLabel  matlab.ui.control.Label 
        MockfiletimespanEditField       matlab.ui.control.NumericEditField 
        sLabel                          matlab.ui.control.Label 
        SimulatedmassEditFieldLabel     matlab.ui.control.Label 
        SimulatedmassEditField          matlab.ui.control.NumericEditField 
        mqLabel                         matlab.ui.control.Label 
        Panel2_5                        matlab.ui.container.Panel 
        MockfilegenerationLampLabel     matlab.ui.control.Label 
        MockfilegenerationLamp          matlab.ui.control.Lamp 
        UIAxesSim                       matlab.ui.control.UIAxes 
        MonitoringTab                   matlab.ui.container.Tab 
        UIAxesMon1                      matlab.ui.control.UIAxes 
        UIAxesMon2                      matlab.ui.control.UIAxes 
        HistoryTab                      matlab.ui.container.Tab 
        WholeHistory                    matlab.ui.control.UIAxes 
        SlidingHistory                  matlab.ui.control.UIAxes 
        TimeSlider                      matlab.ui.control.Slider 
        ImportoptionsPanel              matlab.ui.container.Panel 
        ChoosefolderfileButton          matlab.ui.control.Button 
        ImportexperimentButton          matlab.ui.control.Button 
        HistoryDataLamp                 matlab.ui.control.Lamp 
        ImportGCMScontrolsButton        matlab.ui.control.Button 
        ChoosetoimportDropDownLabel     matlab.ui.control.Label 
        ChoosetoimportDropDown          matlab.ui.control.DropDown 
        GraphoptionsPanel               matlab.ui.container.Panel 
        PlottedtimeintervalminSpinnerLabel  matlab.ui.control.Label 
        PlottedtimeintervalminSpinner   matlab.ui.control.Spinner 
    end 
 
    % Properties that correspond to apps with auto-reflow 
    properties (Access = private) 
        onePanelWidth = 576; 
    end 
 
 
    properties (Access = private) 
        TimerMock % Timer object to time the generation of the mockfiles 
        TimerAnalysisMock % Timer object to time the acquisition of data from 
                          % the mockfiles 
        TimerAnalysis % Timer object to time the acquisition of data from 
                      % the PTRMS files 
        TimerStopWatch % Timer object to account for elapsed time 
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        TicTimer % Object to indicate the startpoint of the stopwatch 
        LastMock % Name of the last mockfile that has been generated 
        ErrorNumber % Indicator of the consecutive error to be logged 
        CalSlope % Slope of the current calibration 
        CalIntercept % Intercept of the current calibration 
        DataFolder % Folder containing the data outputted by the PTRMS 
        LastAnalysedFile % Name of the last file that has been loaded 
        NoAnalysedFiles % Number of files analysed so far 
        StartTimerVec % Vector indicating the starting time of the 
                     % current acquisition 
        HistoryData % Folder containing all of teh files acquired during 
                    % an experiment (can be a pointer to both a folder or a 
                    % file) 
        EndOfSlider % Last time value of the current monitoring history 
                    % that has been imported 
        TimeToPlotSlide % Array of time values from the imported monitoring 
                        % history 
        ConcToPlotSlide % Array of conc values from the imported monitoring 
                        % history 
    end 
 
    methods (Access = private) 
 
 
%************************************************************************** 
%************************************************************************** 
% FUNCTION 1 
%************************************************************************** 
%************************************************************************** 
        function ClearGraphsNoCalFcn(app,~,~) 
            % Stores info on current A/R and position 
            aspect_ratio1 = app.UIAxesSim.PlotBoxAspectRatio; 
            position1 = app.UIAxesSim.Position; 
            % Wipes UIAxesSim 
            cla(app.UIAxesSim,'reset'); 
            % Creates new axes 
            app.UIAxesSim = uiaxes(app.SimulationTab); 
            title(app.UIAxesSim, '') 
            xlabel(app.UIAxesSim, 'Time [s]') 
            ylabel(app.UIAxesSim, 'Intensity [ions]') 
            app.UIAxesSim.PlotBoxAspectRatio = aspect_ratio1; 
            app.UIAxesSim.Position = position1; 
 
 
            % Stores info on current A/R and position 
            aspect_ratio2 = app.UIAxesMon1.PlotBoxAspectRatio; 
            position2 = app.UIAxesMon1.Position; 
            % Wipes UIAxesMon1 
            cla(app.UIAxesMon1,'reset'); 
            % Creates new axes 
            app.UIAxesMon1 = uiaxes(app.MonitoringTab); 
            title(app.UIAxesMon1, 'Raw headspace ion count') 
            xlabel(app.UIAxesMon1, 'Time [min]') 
            ylabel(app.UIAxesMon1, 'Intensity [ions]') 
            app.UIAxesMon1.PlotBoxAspectRatio = aspect_ratio2; 
            app.UIAxesMon1.Position = position2; 
 
 
            % Stores info on current A/R and position 
            aspect_ratio3 = app.UIAxesMon2.PlotBoxAspectRatio; 
            position3 = app.UIAxesMon2.Position; 
            % Wipes UIAxesMon2 
            cla(app.UIAxesMon2,'reset'); 
            % Creates new axes 
            app.UIAxesMon2 = uiaxes(app.MonitoringTab); 
            title(app.UIAxesMon2,['2 min rolling average liquid ' ... 
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                'concentration']) 
            xlabel(app.UIAxesMon2, 'Time [min]') 
            ylabel(app.UIAxesMon2, 'Concentration [mg/L]') 
            app.UIAxesMon2.PlotBoxAspectRatio = aspect_ratio3; 
            app.UIAxesMon2.Position = position3; 
        end 
 
 
 
%************************************************************************** 
%************************************************************************** 
% FUNCTION 2 
%************************************************************************** 
%************************************************************************** 
        function GenerateMockFcn(app,~,~) 
            user_mass= app.SimulatedmassEditField.Value; 
            timelength_mock= app.MockfiletimespanEditField.Value; 
            app.LastMock.Value = ... 
                genaddh5mock(user_mass,timelength_mock); 
        end 
 
 
 
%************************************************************************** 
%************************************************************************** 
% FUNCTION 3 
%************************************************************************** 
%************************************************************************** 
        function StartFcn(app,~,~) 
            ClearGraphsNoCalFcn(app) 
 
            if app.SimulationButton.Value == true 
                start(app.TimerAnalysisMock) 
            else 
                start(app.TimerAnalysis) 
 
            end 
        end 
 
 
 
%************************************************************************** 
%************************************************************************** 
% FUNCTION 4 
%************************************************************************** 
%************************************************************************** 
        function ReadMockFcn(app,~,~) 
            app.DataacquisitionLamp.Color = [0 1 0]; 
 
            filename = app.LastMock.Value; 
            central_mass = app.TargetmassEditField.Value + 1; 
            neighbourhood = app.NeighbourhoodEditField.Value; 
            [cumpeakprof,~,times] = geth5mrcumpeaks( ... 
                filename, ... 
                central_mass, neighbourhood); 
 
            % ============================================================= 
            % Saves time and central ion profile to plot over time 
            % ============================================================= 
            cumpeakprof = cumpeakprof'; 
            times = times'; 
 
            mocks = dir('PTRMSmocksequence*.h5'); 
            n_mocks = length(mocks); 
 
            if n_mocks <= 1 
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                x = times; 
                y = cumpeakprof; 
                RawInt = y; 
                Time = x; 
            else 
                load('whole_simulation.mat') 
                x = [x; times]; 
                y = [y; cumpeakprof]; 
                RawInt = y; 
                Time = x; 
            end 
 
            save('whole_simulation.mat','x','y','Time','RawInt') 
 
 
            % ============================================================= 
            % Plots ions peaks distribution across elapsed time since the 
            % first mockfile that has been generated 
            % ============================================================= 
            plot(app.UIAxesSim,times,cumpeakprof) 
            plot(app.UIAxesMon1,x,y) 
 
            rolling_rng = 360; % Timespan for rolling range graph (~=2mins) 
            y = (y - app.CalIntercept.Value)./app.CalSlope.Value; 
 
            len = length(x); 
            if len > rolling_rng 
                X = x(rolling_rng:end); 
                Y = zeros((len - (rolling_rng - 1)),1); 
                for i = rolling_rng:len 
                    Y(i - (rolling_rng - 1)) = ... 
                        sum(y((i - (rolling_rng - 1)):i))/rolling_rng; 
                end 
 
                plot(app.UIAxesMon2,X,Y) 
            end 
 
            % ============================================================= 
            % Gets rid of past, useless mockfiles (leaves 5 buffer files) 
            % ============================================================= 
            if n_mocks > 5 
                delete(mocks(1).name) 
            end 
 
        end 
 
 
 
%************************************************************************** 
%************************************************************************** 
% FUNCTION 5 
%************************************************************************** 
%************************************************************************** 
        function ReadFcn(app,~,~) 
            app.DataacquisitionLamp.Color = [0 1 0]; 
 
            cd(app.DataFolder.Value) 
            filelist = dir('*.h5'); 
 
            numeric_dates = zeros(length(filelist),1); 
            for j = 1:length(filelist) 
                numeric_dates(j) = datenum(filelist(j).date); 
            end 
            [~, index]= max(numeric_dates); 
            filename = filelist(index).name; 
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            check = strcmp(filename(1), '2'); 
            if ~check 
                return 
            end 
 
 
            if strcmp(filename, app.LastAnalysedFile.Value) 
                return 
            end 
 
 
            app.NoAnalysedFiles.Value = app.NoAnalysedFiles.Value + 1; 
 
            central_mass = app.TargetmassEditField.Value + 1; 
            neighbourhood = app.NeighbourhoodEditField.Value; 
            [cumpeakprof,~,times] = geth5mrcumpeaks( ... 
                filename, ... 
                central_mass, neighbourhood); 
 
            % ============================================================= 
            % Saves time and central ion profile to plot over time 
            % ============================================================= 
            cumpeakprof = cumpeakprof'; 
            times = times'; 
 
            FormatInput = 'yyyymmdd_HHMMSS'; 
            [~,DateStringCurr,~] = fileparts(filename); 
 
            if isempty(app.LastAnalysedFile.Value) 
                app.StartTimerVec.Value = ... 
                    datevec(DateStringCurr,FormatInput); 
                x = times; 
                y = cumpeakprof; 
                RawInt = y; 
                Time = x; 
            else 
                load('whole_simulation.mat') 
                endtime_current_file = datevec(DateStringCurr,FormatInput); 
 
                [~,DateStringPast,~] = ... 
                    fileparts(app.LastAnalysedFile.Value); 
                endtime_past_file = datevec(DateStringPast,FormatInput); 
 
 
                t_elapsed_from_beg = ... 
                    etime(endtime_past_file, app.StartTimerVec.Value) ... 
                    + times(end); 
                t_between_files = ... 
                    etime(endtime_current_file, endtime_past_file); 
                addition = ... 
                    t_elapsed_from_beg + t_between_files - times(end); 
 
                times = times + addition; 
 
                x = [x; times]; 
                y = [y; cumpeakprof]; 
                RawInt = y; 
                Time = x; 
 
            end 
 
            save('whole_simulation.mat','x','y','Time','RawInt') 
 
 
            % ============================================================= 
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            % Plots ions peaks distribution across elapsed time since the 
            % first mockfile that has been generated 
            % ============================================================= 
            if length(x) < 1000 
                plot(app.UIAxesMon1, x./60, y) 
                xlim(app.UIAxesMon1, [0 5]) 
                xlim(app.UIAxesMon2, [0 5]) 
            else 
                plot(app.UIAxesMon1, x((end-999):end)./60,y((end-999):end)) 
                xlim(app.UIAxesMon1, [(x(end)./60 - 5) x(end)./60]) 
                xlim(app.UIAxesMon2, [(x(end)./60 - 5) x(end)./60]) 
            end 
 
            rolling_rng = 400; % Timespan for rolling range graph (~=2mins) 
            y = 0.858*0.001*(10.^... 
                ((log10(y) - app.CalIntercept.Value)./app.CalSlope.Value)); 
 
            len = length(x); 
            if len > rolling_rng && len <= 1500 
                X = x(rolling_rng:end)./60; 
                Y = []; 
                for i = rolling_rng:len 
                    Y = [Y; ... 
                        sum(y((i - (rolling_rng-1)):i))/rolling_rng]; 
                end 
 
                plot(app.UIAxesMon2,X,Y) 
            elseif len > 1500 
                X = x((end-999):end)./60; 
                Y = []; 
                for i = (len-999):len 
                    Y = [Y ... 
                        sum(y((i - (rolling_rng-1)):i))/rolling_rng]; 
                end 
 
                plot(app.UIAxesMon2,X,Y) 
            end 
 
            app.LastAnalysedFile.Value = filename; 
        end 
 
 
%************************************************************************** 
%************************************************************************** 
% FUNCTION 6 
%************************************************************************** 
%************************************************************************** 
        function StopWatchStartFcn(app,~,~) 
            TocTimer = 0; 
            TocTimer = seconds(TocTimer); 
            TocTimer.Format = 'hh:mm:ss'; 
            text = char(TocTimer); 
            app.ElapsedtimeEditField.Value = text; 
        end 
 
 
 
%************************************************************************** 
%************************************************************************** 
% FUNCTION 7 
%************************************************************************** 
%************************************************************************** 
        function StopWatchFcn(app,~,~) 
            TocTimer = toc; 
            TocTimer = seconds(TocTimer); 
            TocTimer.Format = 'hh:mm:ss'; 
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            text = char(TocTimer); 
            app.ElapsedtimeEditField.Value = text; 
        end 
 
 
    end 
 
    % Callbacks that handle component events 
    methods (Access = private) 
 
        % Code that executes after component creation 
        function startupFcn(app) 
            format long 
 
            app.ErrorNumber.Value = 0; 
            app.LastMock.Value = ''; 
            app.DataFolder.Value = ''; 
            app.LastAnalysedFile.Value = ''; 
            app.NoAnalysedFiles.Value = 0; 
            app.StartTimerVec.Value = []; 
            app.HistoryData.Value = ''; 
            app.EndOfSlider.Value = 0; 
            app.TimeToPlotSlide.Value = []; 
            app.ConcToPlotSlide.Value = []; 
 
            app.MockfilegenerationLamp.Color = [.8 .8 .8]; 
            app.DataacquisitionLamp.Color = [.8 .8 .8]; 
            app.CalibrationacquiredLamp.Color = [.8 .8 .8]; 
            app.FolderSelectedLamp.Color = [.8 .8 .8]; 
 
            app.MockfiletimespanEditField.Value = 30; 
            app.SimulatedmassEditField.Value = 154.25; 
            app.TargetmassEditField.Value = 154.25; 
            app.NeighbourhoodEditField.Value = 0.2; 
 
            app.ElapsedtimeEditField.Value = '00:00:00'; 
 
 
 
            delete 'PTRMSmocksequence*.h5' 'whole_simulation*' 
 
            period = 30;    %Period for timer (in seconds) 
 
            app.TimerMock = timer(... 
                'ExecutionMode', 'fixedRate', ... 
                'Period', period, ... 
                'BusyMode', 'queue'); 
            app.TimerMock.TimerFcn = @(~,~) app.GenerateMockFcn; 
            app.TimerMock.StartFcn = @(~,~) app.StartFcn; 
 
            app.TimerAnalysisMock = timer(... 
                'StartDelay', 2, ... 
                'ExecutionMode', 'fixedRate', ... 
                'Period', period, ... 
                'BusyMode', 'queue'); 
            app.TimerAnalysisMock.TimerFcn = @(~,~) app.ReadMockFcn; 
 
            app.TimerAnalysis = timer(... 
                'ExecutionMode', 'fixedRate', ... 
                'Period', 5, ... 
                'BusyMode', 'queue'); 
            app.TimerAnalysis.TimerFcn = @(~,~) app.ReadFcn; 
 
            app.TimerStopWatch = timer(... 
                'ExecutionMode', 'fixedRate', ... 
                'Period', 0.25, ... 
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                'BusyMode', 'queue'); 
            app.TimerStopWatch.TimerFcn = @(~,~) app.StopWatchFcn; 
            app.TimerStopWatch.StartFcn = @(~,~) app.StopWatchStartFcn; 
        end 
 
        % Button pushed function: STARTButton 
        function STARTButtonPushed(app, event) 
            % Checks that all the necessary inputs are non-null 
            % Checks on calibration to be acquired 
            check = app.CalibrationacquiredLamp.Color == [0 1 0]; 
            if ~check 
                app.ErrorNumber.Value = app.ErrorNumber.Value + 1; 
                heading = ['ERROR NO.' num2str(app.ErrorNumber.Value)]; 
                text = ['Need to import calibration first.']; 
                app.ErrorlogTextArea.Value = ... 
                    [heading ... 
                    newline text ... 
                    newline ' ' ... 
                    newline ' ']; 
                return 
            end 
 
 
            % Checks on target mass 
            check = app.TargetmassEditField.Value <= 1; 
            if check 
                app.ErrorNumber.Value = app.ErrorNumber.Value + 1; 
                heading = ['ERROR NO.' num2str(app.ErrorNumber.Value)]; 
                text = ['Target mass needs to be higher than 1.']; 
                app.ErrorlogTextArea.Value = ... 
                    [heading ... 
                    newline text ... 
                    newline ' ' ... 
                    newline ' ']; 
                return 
            end 
 
            %Checks on neighbourhood 
            check = app.NeighbourhoodEditField.Value <= 0; 
            if check 
                app.ErrorNumber.Value = app.ErrorNumber.Value + 1; 
                heading = ['ERROR NO.' num2str(app.ErrorNumber.Value)]; 
                text = ['Neighbourhood needs to be a positive number.']; 
                app.ErrorlogTextArea.Value = ... 
                    [heading ... 
                    newline text ... 
                    newline ' ' ... 
                    newline ' ']; 
                return 
            end 
 
            %Checks on simulation timespan 
            simulation = app.SimulationButton.Value == true; 
            check = app.MockfiletimespanEditField.Value <= 5; 
            if simulation && check 
                app.ErrorNumber.Value = app.ErrorNumber.Value + 1; 
                heading = ['ERROR NO.' num2str(app.ErrorNumber.Value)]; 
                text = ['The timespan covered by each mockfile ' ... 
                    'can''t be lower than 5s.']; 
                app.ErrorlogTextArea.Value = ... 
                    [heading ... 
                    newline text ... 
                    newline ' ' ... 
                    newline ' ']; 
                return 
            end 
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            %Checks on simulated mass 
            simulation = app.SimulationButton.Value == true; 
            check = app.SimulatedmassEditField.Value <= 1; 
            if simulation && check 
                app.ErrorNumber.Value = app.ErrorNumber.Value + 1; 
                heading = ['ERROR NO.' num2str(app.ErrorNumber.Value)]; 
                text = ['Simulated mass needs to be higher than 1.']; 
                app.ErrorlogTextArea.Value = ... 
                    [heading ... 
                    newline text ... 
                    newline ' ' ... 
                    newline ' ']; 
                return 
            end 
 
            %Checks on selected folder for PTRMS datafiles 
            if app.SimulationButton.Value == false 
                check = isempty(app.DataFolder.Value); 
                if check 
                    app.ErrorNumber.Value = app.ErrorNumber.Value + 1; 
                    heading = ['ERROR NO.' num2str(app.ErrorNumber.Value)]; 
                    text = ['Need to select the folder containing ' ... 
                        'PTRMS datafiles when operating in ''Sample ' ... 
                        'Testing'' mode.']; 
                    app.ErrorlogTextArea.Value = ... 
                        [heading ... 
                        newline text ... 
                        newline ' ' ... 
                        newline ' ']; 
                    return 
                end 
            end 
 
 
            close all 
            delete 'PTRMSmocksequence*.h5' 'whole_simulation*' 
 
            app.LastAnalysedFile.Value = ''; 
            app.StartTimerVec.Value = []; 
            app.NoAnalysedFiles.Value = 0; 
 
            if app.SimulationButton.Value == true 
                start(app.TimerMock) 
            else 
                StartFcn(app) 
            end 
 
            StopwatchStatus = get(app.TimerStopWatch,'Running'); 
            if strcmp(StopwatchStatus, 'on') 
                stop(app.TimerStopWatch) 
            end 
            start(app.TimerStopWatch) 
 
            app.MockfilegenerationLamp.Color = [0 1 0]; 
 
            tic 
        end 
 
        % Button pushed function: STOPButton 
        function STOPButtonPushed(app, event) 
            load('whole_simulation.mat', 'x', 'y') 
 
            check = isempty(x) | isempty(y); 
            if ~check 
                time = datetime('now','format','yyyy.MM.dd-HH.mm.ss'); 
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                temp = datestr(time,'yyyy.mm.dd-HH.MM.ss'); 
                name = ['monitoring-' temp '.mat']; 
                filter = {'*.mat'}; 
                [file,path] = uiputfile(filter,'BioControl 1.0',name); 
 
                check = file == 0 || path == 0; 
                if check 
                    msg = 'Sure about not saving your acquisition?'; 
                    title = 'BioControl 1.0'; 
                    selection = uiconfirm(app.BioControl,msg,title,... 
                       'Options',{'Don''t save','Cancel'},... 
                       'DefaultOption',2,'CancelOption',2, ... 
                       'Icon','warning'); 
                    switch selection 
                        case 'Don''t save' 
                            stop(app.TimerMock) 
                            stop(app.TimerAnalysis) 
                            stop(app.TimerStopWatch) 
 
                            app.MockfilegenerationLamp.Color = [.8 .8 .8]; 
                            app.DataacquisitionLamp.Color = [.8 .8 .8]; 
                        case 'Cancel' 
                            return 
                    end 
                else 
                    Time = x; 
                    RawInt = y; 
                    directory = fullfile(path, file); 
                    save(directory,"Time","RawInt") 
 
                    stop(app.TimerMock) 
                    stop(app.TimerAnalysis) 
                    stop(app.TimerStopWatch) 
 
                    app.MockfilegenerationLamp.Color = [.8 .8 .8]; 
                    app.DataacquisitionLamp.Color = [.8 .8 .8]; 
                end 
            else 
                stop(app.TimerMock) 
                stop(app.TimerAnalysis) 
                stop(app.TimerStopWatch) 
 
                app.MockfilegenerationLamp.Color = [.8 .8 .8]; 
                app.DataacquisitionLamp.Color = [.8 .8 .8]; 
            end 
 
 
        end 
 
        % Close request function: BioControl 
        function BioControlCloseRequest(app, event) 
            stop(app.TimerMock) 
            stop(app.TimerAnalysis) 
            stop(app.TimerStopWatch) 
 
            close all 
            delete 'PTRMSmocksequence*.h5' 'whole_simulation*' 
 
            delete(app) 
        end 
 
        % Button pushed function: StartnewcalibrationButton 
        function StartnewcalibrationButtonPushed(app, event) 
            cal 
        end 
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        % Button pushed function: ChoosecalibrationfileButton 
        function ChoosecalibrationfileButtonPushed(app, event) 
            filter = '.xlsx'; 
            title = 'BioControl 1.0'; 
            [file, path] = uigetfile(filter, title); 
 
            check = ischar(file) & ischar(path); 
            if ~check 
                return 
            end 
 
            filename = fullfile(path, file); 
 
            fit_parameters = readcell(filename,'Range','A6:B6'); 
            fit_parameters = cell2mat(fit_parameters); 
            exp_points = readcell(filename,'Range','A8:B20'); 
            for i = 1:length(exp_points) 
                check = ismissing(exp_points{i}); 
                if check 
                    exp_points = exp_points(1:(i-1),:); 
                end 
            end 
            exp_points = cell2mat(exp_points); 
 
            X = [exp_points(1,1) exp_points(end,1)]; 
            X = log10(X); 
            Y = X.*fit_parameters(1) + fit_parameters(2); 
            plot(app.UIAxesCal,10.^X,10.^Y,'LineWidth', 2,'Color','b'); 
 
            hold(app.UIAxesCal, 'on') 
 
            scatter(app.UIAxesCal,exp_points(:,1),exp_points(:,2), ... 
                'Marker', 'o', ... 
                'MarkerFaceColor', 'r', ... 
                'SizeData', 50); 
 
            set(app.UIAxesCal,'YScale','log') 
            set(app.UIAxesCal,'XScale','log') 
            grid(app.UIAxesCal, 'on') 
 
 
            app.CalSlope.Value = fit_parameters(1); 
            app.CalIntercept.Value = fit_parameters(2); 
 
            app.InterceptEditField.Value = app.CalIntercept.Value; 
            app.SlopeEditField.Value = app.CalSlope.Value; 
 
            app.CalibrationacquiredLamp.Color = [0 1 0]; 
        end 
 
        % Button pushed function: ChoosePTRMSdatafilesfolderButton 
        function ChoosePTRMSdatafilesfolderButtonPushed(app, event) 
            title = 'BioControl 1.0'; 
            selpath = uigetdir(title); 
 
            if selpath ~= 0 
                app.FolderSelectedLamp.Color = [0 1 0]; 
                app.DataFolder.Value = selpath; 
            end 
        end 
 
        % Button pushed function: ChoosefolderfileButton 
        function ChoosefolderfileButtonPushed(app, event) 
            switch app.ChoosetoimportDropDown.Value 
                case 'Raw data' 
                    title = 'BioControl 1.0'; 
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                    selpath = uigetdir(title); 
 
                    if selpath ~= 0 
                        app.HistoryDataLamp.Color = [0 1 0]; 
                        app.HistoryData.Value = selpath; 
                    end 
                case 'Pre-processed data' 
                    filter = '.mat'; 
                    title = 'BioControl 1.0'; 
                    [file, path] = uigetfile(filter, title); 
 
                    check = ischar(file) & ischar(path); 
                    if ~check 
                        return 
                    end 
 
                    app.HistoryData.Value = fullfile(path, file); 
                    app.HistoryDataLamp.Color = [0 1 0]; 
            end 
        end 
 
        % Value changed function: ChoosetoimportDropDown 
        function ChoosetoimportDropDownValueChanged(app, event) 
            value = app.ChoosetoimportDropDown.Value; 
            app.HistoryDataLamp.Color = [.8 .8 .8]; 
        end 
 
        % Button pushed function: ImportexperimentButton 
        function ImportexperimentButtonPushed(app, event) 
            % Checks that all the necessary inputs are non-null 
            % Checks on folder/file pointer to be present 
            check = app.HistoryDataLamp.Color == [0 1 0]; 
            if ~check 
                app.ErrorNumber.Value = app.ErrorNumber.Value + 1; 
                heading = ['ERROR NO.' num2str(app.ErrorNumber.Value)]; 
                text = ['Need to import folder/file first.']; 
                app.ErrorlogTextArea.Value = ... 
                    [heading ... 
                    newline text ... 
                    newline ' ' ... 
                    newline ' ']; 
                return 
            end 
 
            % Checks on calibration to be acquired 
            check = app.CalibrationacquiredLamp.Color == [0 1 0]; 
            if ~check 
                app.ErrorNumber.Value = app.ErrorNumber.Value + 1; 
                heading = ['ERROR NO.' num2str(app.ErrorNumber.Value)]; 
                text = ['Need to import calibration first.']; 
                app.ErrorlogTextArea.Value = ... 
                    [heading ... 
                    newline text ... 
                    newline ' ' ... 
                    newline ' ']; 
                return 
            end 
 
 
            % Checks on target mass 
            check = app.TargetmassEditField.Value <= 1; 
            if check 
                app.ErrorNumber.Value = app.ErrorNumber.Value + 1; 
                heading = ['ERROR NO.' num2str(app.ErrorNumber.Value)]; 
                text = ['Target mass needs to be higher than 1.']; 
                app.ErrorlogTextArea.Value = ... 
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                    [heading ... 
                    newline text ... 
                    newline ' ' ... 
                    newline ' ']; 
                return 
            end 
 
            %Checks on neighbourhood 
            check = app.NeighbourhoodEditField.Value <= 0; 
            if check 
                app.ErrorNumber.Value = app.ErrorNumber.Value + 1; 
                heading = ['ERROR NO.' num2str(app.ErrorNumber.Value)]; 
                text = ['Neighbourhood needs to be a positive number.']; 
                app.ErrorlogTextArea.Value = ... 
                    [heading ... 
                    newline text ... 
                    newline ' ' ... 
                    newline ' ']; 
                return 
            end 
 
            switch app.ChoosetoimportDropDown.Value 
                case 'Raw data' 
                    cd(app.HistoryData.Value) 
                    filelist = dir('*.h5'); 
 
                    Dialog = uiprogressdlg(app.BioControl, ... 
                        'Title', 'BioControl 1.0', ... 
                        'Message', 'Loading files...'); 
 
                    files_count = length(filelist); 
 
                    for i = 1:files_count 
                        Dialog.Value = i/files_count; 
                        curr_filename = filelist(i).name; 
 
                        central_mass = app.TargetmassEditField.Value + 1; 
                        neighbourhood = app.NeighbourhoodEditField.Value; 
                        [cumpeakprof,~,times] = geth5mrcumpeaks( ... 
                            curr_filename, ... 
                            central_mass, neighbourhood); 
 
 
                        cumpeakprof = cumpeakprof'; 
                        times = times'; 
 
                        FormatInput = 'yyyymmdd_HHMMSS'; 
                        [~,DateStringCurr,~] = fileparts(curr_filename); 
 
                        if i == 1 
                            app.StartTimerVec.Value = ... 
                                datevec(DateStringCurr,FormatInput); 
                            x = times; 
                            y = cumpeakprof; 
                        else 
                            endtime_current_file = ... 
                                datevec(DateStringCurr,FormatInput); 
 
                            [~,DateStringPast,~] = ... 
                                fileparts(past_filename); 
                            endtime_past_file = ... 
                                datevec(DateStringPast,FormatInput); 
 
 
                            t_elapsed_from_beg = ... 
                                etime(... 
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                                endtime_past_file, ... 
                                app.StartTimerVec.Value) ... 
                                + times(end); 
                            t_between_files = ... 
                                etime(... 
                                endtime_current_file, endtime_past_file); 
                            addition = ... 
                                t_elapsed_from_beg + t_between_files ... 
                                - times(end); 
 
                            times = times + addition; 
 
                            x = [x; times]; 
                            y = [y; cumpeakprof]; 
                        end 
 
                        past_filename = curr_filename; 
                    end 
 
                    Time = x; 
                    RawInt = y; 
                    save('monitoring_history.mat',"Time","RawInt") 
 
                    app.TimeSlider.Enable = 'on'; 
 
                    app.EndOfSlider.Value = x(end)/60; % in minutes 
 
                    X = x(400:end); 
                    app.TimeToPlotSlide.Value = X; 
 
                    y = 0.858*0.001*... 
                        (10.^... 
                        ((log10(y)-app.CalIntercept.Value)./... 
                        app.CalSlope.Value)); 
 
                    Y = []; 
                    for i = 400:length(x) 
                    Y = [Y; ... 
                        sum(y((i - (399)):i))/400]; 
                    end 
                    app.ConcToPlotSlide.Value = Y; 
 
                    plot(app.WholeHistory, ... 
                        X(1:300:end)./3600, Y(1:300:end)) 
                    xlim(app.WholeHistory, [x(1)/3600 x(end)/3600]) 
 
                    plot(app.SlidingHistory, ... 
                        X(1:(app.PlottedtimeintervalminSpinner.Value*200))./60,... 
                        Y(1:(app.PlottedtimeintervalminSpinner.Value*200))) 
                    xlim(app.SlidingHistory, ... 
                        [0 app.PlottedtimeintervalminSpinner.Value]) 
 
                    close(Dialog) 
 
                case 'Pre-processed data' 
                    load(app.HistoryData.Value) 
                    x = Time; 
                    y = RawInt; 
 
                    app.TimeSlider.Enable = 'on'; 
 
                    app.EndOfSlider.Value = x(end)/60; % in minutes 
 
                    X = x(400:end); 
                    app.TimeToPlotSlide.Value = X; 
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                    y = 0.858*0.001*... 
                        (10.^... 
                        ((log10(y)-app.CalIntercept.Value)./... 
                        app.CalSlope.Value)); 
 
                    Y = []; 
                    for i = 400:length(x) 
                    Y = [Y; ... 
                        sum(y((i - (399)):i))/400]; 
                    end 
                    app.ConcToPlotSlide.Value = Y; 
 
                    plot(app.WholeHistory, ... 
                        X(1:300:end)./3600, Y(1:300:end)) 
                    xlim(app.WholeHistory, [x(1)/3600 x(end)/3600]) 
 
                    plot(app.SlidingHistory, ... 
                        X(1:(app.PlottedtimeintervalminSpinner.Value*200))./60,... 
                        Y(1:(app.PlottedtimeintervalminSpinner.Value*200))) 
                    xlim(app.SlidingHistory, ... 
                        [0 app.PlottedtimeintervalminSpinner.Value]) 
            end 
        end 
 
        % Value changing function: TimeSlider 
        function TimeSliderValueChanging(app, event) 
            changingValue = event.Value; 
 
            tot_range = ... 
                app.EndOfSlider.Value ... 
                - app.PlottedtimeintervalminSpinner.Value; 
            plot_range = [(changingValue*tot_range), ... 
                (changingValue*tot_range ... 
                + app.PlottedtimeintervalminSpinner.Value)]; 
 
            indexes = ... 
                find((app.TimeToPlotSlide.Value./60) > plot_range(1) & ... 
                (app.TimeToPlotSlide.Value./60) < plot_range(2)); 
 
            plot(app.SlidingHistory, ... 
                app.TimeToPlotSlide.Value(indexes)./60, ... 
                app.ConcToPlotSlide.Value(indexes)) 
            xlim(app.SlidingHistory, plot_range) 
 
            ylim(app.SlidingHistory, ... 
                [min(app.ConcToPlotSlide.Value(indexes)), ... 
                max(app.ConcToPlotSlide.Value(indexes))]) 
 
        end 
 
        % Button pushed function: ImportGCMScontrolsButton 
        function ImportGCMScontrolsButtonPushed(app, event) 
            condition = true; 
            while condition 
                prompt = {'Enter time value [min]:', ... 
                    'Enter concentration value [mg/L];'}; 
                dlgtitle = 'BioControl 1.0'; 
                dims = [1 50]; 
                answer = inputdlg(prompt, dlgtitle, dims); 
 
                check = isempty(answer); 
                if check 
                    return 
                end 
 
                x = str2double(answer{1}); 
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                y = str2double(answer{2}); 
 
                check = isempty(answer{1}) | isempty(answer{2}) | ... 
                    isnan(x) | isnan(y); 
                if check 
                    uialert(app.BioControl, ... 
                        'Entered inputs are not valid!', ... 
                        'BioControl 1.0', 'Icon', 'error'); 
                    condition = false; 
                else 
                    hold(app.WholeHistory, 'on') 
                    scatter(app.WholeHistory,x./60,y, ... 
                        'Marker', 'o', ... 
                        'MarkerFaceColor', 'r', ... 
                        'SizeData', 50); 
                    hold(app.WholeHistory, 'off') 
                end 
            end 
        end 
 
        % Changes arrangement of the app based on UIFigure width 
        function updateAppLayout(app, event) 
            currentFigureWidth = app.BioControl.Position(3); 
            if(currentFigureWidth <= app.onePanelWidth) 
                % Change to a 2x1 grid 
                app.GridLayout.RowHeight = {655, 655}; 
                app.GridLayout.ColumnWidth = {'1x'}; 
                app.RightPanel.Layout.Row = 2; 
                app.RightPanel.Layout.Column = 1; 
            else 
                % Change to a 1x2 grid 
                app.GridLayout.RowHeight = {'1x'}; 
                app.GridLayout.ColumnWidth = {236, '1x'}; 
                app.RightPanel.Layout.Row = 1; 
                app.RightPanel.Layout.Column = 2; 
            end 
        end 
    end 
 
    % Component initialization 
    methods (Access = private) 
 
        % Create UIFigure and components 
        function createComponents(app) 
 
            % Create BioControl and hide until all components are created 
            app.BioControl = uifigure('Visible', 'off'); 
            app.BioControl.AutoResizeChildren = 'off'; 
            app.BioControl.Position = [100 100 1076 655]; 
            app.BioControl.Name = 'BioControl 1.0'; 
            app.BioControl.CloseRequestFcn = createCallbackFcn(app, 
@BioControlCloseRequest, true); 
            app.BioControl.SizeChangedFcn = createCallbackFcn(app, 
@updateAppLayout, true); 
 
            % Create FileMenu 
            app.FileMenu = uimenu(app.BioControl); 
            app.FileMenu.Text = 'File'; 
 
            % Create OpenfolderMenu 
            app.OpenfolderMenu = uimenu(app.FileMenu); 
            app.OpenfolderMenu.Text = 'Open folder'; 
 
            % Create GridLayout 
            app.GridLayout = uigridlayout(app.BioControl); 
            app.GridLayout.ColumnWidth = {236, '1x'}; 
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            app.GridLayout.RowHeight = {'1x'}; 
            app.GridLayout.ColumnSpacing = 0; 
            app.GridLayout.RowSpacing = 0; 
            app.GridLayout.Padding = [0 0 0 0]; 
            app.GridLayout.Scrollable = 'on'; 
 
            % Create LeftPanel 
            app.LeftPanel = uipanel(app.GridLayout); 
            app.LeftPanel.Layout.Row = 1; 
            app.LeftPanel.Layout.Column = 1; 
 
            % Create StatusPanel 
            app.StatusPanel = uipanel(app.LeftPanel); 
            app.StatusPanel.Title = 'Status'; 
            app.StatusPanel.Position = [25 15 189 294]; 
 
            % Create DataacquisitionLampLabel 
            app.DataacquisitionLampLabel = uilabel(app.StatusPanel); 
            app.DataacquisitionLampLabel.HorizontalAlignment = 'right'; 
            app.DataacquisitionLampLabel.Position = [12 237 92 22]; 
            app.DataacquisitionLampLabel.Text = 'Data acquisition'; 
 
            % Create DataacquisitionLamp 
            app.DataacquisitionLamp = uilamp(app.StatusPanel); 
            app.DataacquisitionLamp.Position = [144 238 20 20]; 
            app.DataacquisitionLamp.Color = [0.8 0.8 0.8]; 
 
            % Create ErrorlogTextAreaLabel 
            app.ErrorlogTextAreaLabel = uilabel(app.StatusPanel); 
            app.ErrorlogTextAreaLabel.HorizontalAlignment = 'right'; 
            app.ErrorlogTextAreaLabel.Position = [14 168 55 22]; 
            app.ErrorlogTextAreaLabel.Text = 'Error log:'; 
 
            % Create ErrorlogTextArea 
            app.ErrorlogTextArea = uitextarea(app.StatusPanel); 
            app.ErrorlogTextArea.Position = [14 10 162 156]; 
 
            % Create ChooseoperationalmodalityButtonGroup 
            app.ChooseoperationalmodalityButtonGroup = 
uibuttongroup(app.LeftPanel); 
            app.ChooseoperationalmodalityButtonGroup.Title = 'Choose operational 
modality'; 
            app.ChooseoperationalmodalityButtonGroup.Position = [24 496 189 143]; 
 
            % Create SimulationButton 
            app.SimulationButton = 
uiradiobutton(app.ChooseoperationalmodalityButtonGroup); 
            app.SimulationButton.Text = 'Simulation'; 
            app.SimulationButton.Position = [12 90 78 22]; 
            app.SimulationButton.Value = true; 
 
            % Create SampletestingButton 
            app.SampletestingButton = 
uiradiobutton(app.ChooseoperationalmodalityButtonGroup); 
            app.SampletestingButton.Text = 'Sample testing'; 
            app.SampletestingButton.Position = [12 60 102 22]; 
 
            % Create ChoosePTRMSdatafilesfolderButton 
            app.ChoosePTRMSdatafilesfolderButton = 
uibutton(app.ChooseoperationalmodalityButtonGroup, 'push'); 
            app.ChoosePTRMSdatafilesfolderButton.ButtonPushedFcn = 
createCallbackFcn(app, @ChoosePTRMSdatafilesfolderButtonPushed, true); 
            app.ChoosePTRMSdatafilesfolderButton.Position = [12 15 102 36]; 
            app.ChoosePTRMSdatafilesfolderButton.Text = {'Choose PTRMS'; 'datafiles 
folder'}; 
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            % Create FolderSelectedLamp 
            app.FolderSelectedLamp = 
uilamp(app.ChooseoperationalmodalityButtonGroup); 
            app.FolderSelectedLamp.Position = [145 23 20 20]; 
            app.FolderSelectedLamp.Color = [0.8 0.8 0.8]; 
 
            % Create MonitoringtargetPanel 
            app.MonitoringtargetPanel = uipanel(app.LeftPanel); 
            app.MonitoringtargetPanel.Title = 'Monitoring target'; 
            app.MonitoringtargetPanel.Position = [25 387 189 100]; 
 
            % Create TargetmassEditFieldLabel 
            app.TargetmassEditFieldLabel = uilabel(app.MonitoringtargetPanel); 
            app.TargetmassEditFieldLabel.HorizontalAlignment = 'right'; 
            app.TargetmassEditFieldLabel.Position = [6 49 70 22]; 
            app.TargetmassEditFieldLabel.Text = 'Target mass'; 
 
            % Create TargetmassEditField 
            app.TargetmassEditField = uieditfield(app.MonitoringtargetPanel, 
'numeric'); 
            app.TargetmassEditField.Position = [102 49 46 22]; 
 
            % Create mqLabel_4 
            app.mqLabel_4 = uilabel(app.MonitoringtargetPanel); 
            app.mqLabel_4.Position = [152 49 27 22]; 
            app.mqLabel_4.Text = 'm/q'; 
 
            % Create NeighbourhoodEditFieldLabel 
            app.NeighbourhoodEditFieldLabel = uilabel(app.MonitoringtargetPanel); 
            app.NeighbourhoodEditFieldLabel.HorizontalAlignment = 'right'; 
            app.NeighbourhoodEditFieldLabel.Position = [6 16 89 22]; 
            app.NeighbourhoodEditFieldLabel.Text = 'Neighbourhood'; 
 
            % Create NeighbourhoodEditField 
            app.NeighbourhoodEditField = uieditfield(app.MonitoringtargetPanel, 
'numeric'); 
            app.NeighbourhoodEditField.Position = [102 16 46 22]; 
 
            % Create mqLabel_5 
            app.mqLabel_5 = uilabel(app.MonitoringtargetPanel); 
            app.mqLabel_5.Position = [152 16 27 22]; 
            app.mqLabel_5.Text = 'm/q'; 
 
            % Create STARTButton 
            app.STARTButton = uibutton(app.LeftPanel, 'push'); 
            app.STARTButton.ButtonPushedFcn = createCallbackFcn(app, 
@STARTButtonPushed, true); 
            app.STARTButton.FontWeight = 'bold'; 
            app.STARTButton.FontColor = [0.4667 0.6745 0.1882]; 
            app.STARTButton.Position = [25 336 88 28]; 
            app.STARTButton.Text = 'START'; 
 
            % Create STOPButton 
            app.STOPButton = uibutton(app.LeftPanel, 'push'); 
            app.STOPButton.ButtonPushedFcn = createCallbackFcn(app, 
@STOPButtonPushed, true); 
            app.STOPButton.FontWeight = 'bold'; 
            app.STOPButton.FontColor = [1 0 0]; 
            app.STOPButton.Position = [128 336 86 28]; 
            app.STOPButton.Text = 'STOP'; 
 
            % Create ElapsedtimeEditFieldLabel 
            app.ElapsedtimeEditFieldLabel = uilabel(app.LeftPanel); 
            app.ElapsedtimeEditFieldLabel.HorizontalAlignment = 'right'; 
            app.ElapsedtimeEditFieldLabel.Position = [39 219 75 22]; 
            app.ElapsedtimeEditFieldLabel.Text = 'Elapsed time'; 
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            % Create ElapsedtimeEditField 
            app.ElapsedtimeEditField = uieditfield(app.LeftPanel, 'text'); 
            app.ElapsedtimeEditField.Position = [141 219 60 22]; 
 
            % Create RightPanel 
            app.RightPanel = uipanel(app.GridLayout); 
            app.RightPanel.Layout.Row = 1; 
            app.RightPanel.Layout.Column = 2; 
 
            % Create TabGroup 
            app.TabGroup = uitabgroup(app.RightPanel); 
            app.TabGroup.Position = [7 6 828 643]; 
 
            % Create CalibrationTab 
            app.CalibrationTab = uitab(app.TabGroup); 
            app.CalibrationTab.Title = 'Calibration'; 
 
            % Create CalibrationPanel 
            app.CalibrationPanel = uipanel(app.CalibrationTab); 
            app.CalibrationPanel.Tooltip = {'Provide a preliminary calibration of 
the target compouns(s). Either call the calibration tool or select the appropriate 
calibration file'}; 
            app.CalibrationPanel.Title = 'Calibration'; 
            app.CalibrationPanel.Position = [576 295 222 196]; 
 
            % Create StartnewcalibrationButton 
            app.StartnewcalibrationButton = uibutton(app.CalibrationPanel, 'push'); 
            app.StartnewcalibrationButton.ButtonPushedFcn = createCallbackFcn(app, 
@StartnewcalibrationButtonPushed, true); 
            app.StartnewcalibrationButton.Position = [52 118 118 42]; 
            app.StartnewcalibrationButton.Text = {'Start'; 'new calibration'}; 
 
            % Create CalibrationacquiredLampLabel 
            app.CalibrationacquiredLampLabel = uilabel(app.CalibrationPanel); 
            app.CalibrationacquiredLampLabel.Position = [21 13 64 27]; 
            app.CalibrationacquiredLampLabel.Text = {'Calibration'; 'acquired'}; 
 
            % Create CalibrationacquiredLamp 
            app.CalibrationacquiredLamp = uilamp(app.CalibrationPanel); 
            app.CalibrationacquiredLamp.Position = [179 15 23 23]; 
            app.CalibrationacquiredLamp.Color = [0.8 0.8 0.8]; 
 
            % Create ChoosecalibrationfileButton 
            app.ChoosecalibrationfileButton = uibutton(app.CalibrationPanel, 
'push'); 
            app.ChoosecalibrationfileButton.ButtonPushedFcn = 
createCallbackFcn(app, @ChoosecalibrationfileButtonPushed, true); 
            app.ChoosecalibrationfileButton.Position = [52 62 118 39]; 
            app.ChoosecalibrationfileButton.Text = {'Choose'; 'calibration file'}; 
 
            % Create UIAxesCal 
            app.UIAxesCal = uiaxes(app.CalibrationTab); 
            title(app.UIAxesCal, 'Calibration graph') 
            xlabel(app.UIAxesCal, 'Target compound concentration [ppb vol]') 
            ylabel(app.UIAxesCal, 'Intensity [ions/s]') 
            app.UIAxesCal.PlotBoxAspectRatio = [1 1.04312114989733 1]; 
            app.UIAxesCal.Position = [15 16 536 564]; 
 
            % Create CalibrationparametersPanel 
            app.CalibrationparametersPanel = uipanel(app.CalibrationTab); 
            app.CalibrationparametersPanel.Title = 'Calibration parameters'; 
            app.CalibrationparametersPanel.Position = [567 177 240 100]; 
 
            % Create LOG10INTENSITYLabel 
            app.LOG10INTENSITYLabel = uilabel(app.CalibrationparametersPanel); 



Giovanni Lorenzon – MPhil Thesis 

 

 133 

            app.LOG10INTENSITYLabel.HorizontalAlignment = 'right'; 
            app.LOG10INTENSITYLabel.Position = [2 45 124 22]; 
            app.LOG10INTENSITYLabel.Text = 'LOG10 (INTENSITY) ='; 
 
            % Create SlopeEditField 
            app.SlopeEditField = uieditfield(app.CalibrationparametersPanel, 
'numeric'); 
            app.SlopeEditField.HorizontalAlignment = 'center'; 
            app.SlopeEditField.Position = [6 21 59 22]; 
 
            % Create xLOG10CONCLabel 
            app.xLOG10CONCLabel = uilabel(app.CalibrationparametersPanel); 
            app.xLOG10CONCLabel.HorizontalAlignment = 'right'; 
            app.xLOG10CONCLabel.Position = [63 22 112 22]; 
            app.xLOG10CONCLabel.Text = 'x LOG10 (CONC) + '; 
 
            % Create InterceptEditField 
            app.InterceptEditField = uieditfield(app.CalibrationparametersPanel, 
'numeric'); 
            app.InterceptEditField.HorizontalAlignment = 'center'; 
            app.InterceptEditField.Position = [175 21 60 22]; 
 
            % Create SimulationTab 
            app.SimulationTab = uitab(app.TabGroup); 
            app.SimulationTab.Title = 'Simulation'; 
 
            % Create Panel2_3 
            app.Panel2_3 = uipanel(app.SimulationTab); 
            app.Panel2_3.AutoResizeChildren = 'off'; 
            app.Panel2_3.Title = 'Simulation parameters'; 
            app.Panel2_3.Position = [593 341 200 94]; 
 
            % Create MockfiletimespanEditFieldLabel 
            app.MockfiletimespanEditFieldLabel = uilabel(app.Panel2_3); 
            app.MockfiletimespanEditFieldLabel.HorizontalAlignment = 'right'; 
            app.MockfiletimespanEditFieldLabel.Position = [2 41 103 22]; 
            app.MockfiletimespanEditFieldLabel.Text = 'Mockfile timespan'; 
 
            % Create MockfiletimespanEditField 
            app.MockfiletimespanEditField = uieditfield(app.Panel2_3, 'numeric'); 
            app.MockfiletimespanEditField.Position = [117 41 46 22]; 
 
            % Create sLabel 
            app.sLabel = uilabel(app.Panel2_3); 
            app.sLabel.Position = [167 41 25 22]; 
            app.sLabel.Text = 's'; 
 
            % Create SimulatedmassEditFieldLabel 
            app.SimulatedmassEditFieldLabel = uilabel(app.Panel2_3); 
            app.SimulatedmassEditFieldLabel.HorizontalAlignment = 'right'; 
            app.SimulatedmassEditFieldLabel.Position = [1 12 91 22]; 
            app.SimulatedmassEditFieldLabel.Text = 'Simulated mass'; 
 
            % Create SimulatedmassEditField 
            app.SimulatedmassEditField = uieditfield(app.Panel2_3, 'numeric'); 
            app.SimulatedmassEditField.Position = [118 12 46 22]; 
 
            % Create mqLabel 
            app.mqLabel = uilabel(app.Panel2_3); 
            app.mqLabel.Position = [168 12 27 22]; 
            app.mqLabel.Text = 'm/q'; 
 
            % Create Panel2_5 
            app.Panel2_5 = uipanel(app.SimulationTab); 
            app.Panel2_5.AutoResizeChildren = 'off'; 
            app.Panel2_5.Title = 'Simulation state'; 
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            app.Panel2_5.Position = [592 235 200 71]; 
 
            % Create MockfilegenerationLampLabel 
            app.MockfilegenerationLampLabel = uilabel(app.Panel2_5); 
            app.MockfilegenerationLampLabel.HorizontalAlignment = 'right'; 
            app.MockfilegenerationLampLabel.Position = [2 17 111 22]; 
            app.MockfilegenerationLampLabel.Text = 'Mockfile generation'; 
 
            % Create MockfilegenerationLamp 
            app.MockfilegenerationLamp = uilamp(app.Panel2_5); 
            app.MockfilegenerationLamp.Position = [169 18 20 20]; 
            app.MockfilegenerationLamp.Color = [0.8 0.8 0.8]; 
 
            % Create UIAxesSim 
            app.UIAxesSim = uiaxes(app.SimulationTab); 
            title(app.UIAxesSim, 'Last randomly-generated datachunk') 
            xlabel(app.UIAxesSim, 'Time [s]') 
            ylabel(app.UIAxesSim, 'Intensity [ions]') 
            app.UIAxesSim.PlotBoxAspectRatio = [1 1.04857444561774 1]; 
            app.UIAxesSim.XTick = [0 0.2 0.4 0.6 0.8 1]; 
            app.UIAxesSim.Position = [41 28 524 552]; 
 
            % Create MonitoringTab 
            app.MonitoringTab = uitab(app.TabGroup); 
            app.MonitoringTab.Title = 'Monitoring'; 
 
            % Create UIAxesMon1 
            app.UIAxesMon1 = uiaxes(app.MonitoringTab); 
            title(app.UIAxesMon1, 'Raw headspace ion count') 
            xlabel(app.UIAxesMon1, 'Time [min]') 
            ylabel(app.UIAxesMon1, 'Intensity [ions]') 
            app.UIAxesMon1.PlotBoxAspectRatio = [3.03846153846154 1 1]; 
            app.UIAxesMon1.Position = [29 313 760 290]; 
 
            % Create UIAxesMon2 
            app.UIAxesMon2 = uiaxes(app.MonitoringTab); 
            title(app.UIAxesMon2, '2 min rolling average liquid concentration') 
            xlabel(app.UIAxesMon2, 'Time [min]') 
            ylabel(app.UIAxesMon2, 'Concentration [mg/L]') 
            app.UIAxesMon2.PlotBoxAspectRatio = [3.03846153846154 1 1]; 
            app.UIAxesMon2.Position = [29 19 760 290]; 
 
            % Create HistoryTab 
            app.HistoryTab = uitab(app.TabGroup); 
            app.HistoryTab.Title = 'History'; 
 
            % Create WholeHistory 
            app.WholeHistory = uiaxes(app.HistoryTab); 
            title(app.WholeHistory, 'Entire acquisition') 
            xlabel(app.WholeHistory, 'Time [h]') 
            ylabel(app.WholeHistory, 'Concentration [mg/L]') 
            app.WholeHistory.PlotBoxAspectRatio = [2.69444444444444 1 1]; 
            app.WholeHistory.Position = [39 330 590 272]; 
 
            % Create SlidingHistory 
            app.SlidingHistory = uiaxes(app.HistoryTab); 
            title(app.SlidingHistory, 'Zoomed graph') 
            xlabel(app.SlidingHistory, 'Time [min]') 
            ylabel(app.SlidingHistory, 'Concentration [mg/L]') 
            app.SlidingHistory.PlotBoxAspectRatio = [2.59821428571429 1 1]; 
            app.SlidingHistory.Position = [39 42 590 280]; 
 
            % Create TimeSlider 
            app.TimeSlider = uislider(app.HistoryTab); 
            app.TimeSlider.Limits = [0 1]; 
            app.TimeSlider.MajorTicks = []; 
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            app.TimeSlider.ValueChangingFcn = createCallbackFcn(app, 
@TimeSliderValueChanging, true); 
            app.TimeSlider.MinorTicks = []; 
            app.TimeSlider.Enable = 'off'; 
            app.TimeSlider.Position = [126 19 457 3]; 
 
            % Create ImportoptionsPanel 
            app.ImportoptionsPanel = uipanel(app.HistoryTab); 
            app.ImportoptionsPanel.Title = 'Import options'; 
            app.ImportoptionsPanel.Position = [633 374 183 198]; 
 
            % Create ChoosefolderfileButton 
            app.ChoosefolderfileButton = uibutton(app.ImportoptionsPanel, 'push'); 
            app.ChoosefolderfileButton.ButtonPushedFcn = createCallbackFcn(app, 
@ChoosefolderfileButtonPushed, true); 
            app.ChoosefolderfileButton.Position = [14 81 109 36]; 
            app.ChoosefolderfileButton.Text = {'Choose'; 'folder/file'}; 
 
            % Create ImportexperimentButton 
            app.ImportexperimentButton = uibutton(app.ImportoptionsPanel, 'push'); 
            app.ImportexperimentButton.ButtonPushedFcn = createCallbackFcn(app, 
@ImportexperimentButtonPushed, true); 
            app.ImportexperimentButton.Position = [14 46 152 23]; 
            app.ImportexperimentButton.Text = 'Import experiment'; 
 
            % Create HistoryDataLamp 
            app.HistoryDataLamp = uilamp(app.ImportoptionsPanel); 
            app.HistoryDataLamp.Position = [140 89 20 20]; 
            app.HistoryDataLamp.Color = [0.8 0.8 0.8]; 
 
            % Create ImportGCMScontrolsButton 
            app.ImportGCMScontrolsButton = uibutton(app.ImportoptionsPanel, 
'push'); 
            app.ImportGCMScontrolsButton.ButtonPushedFcn = createCallbackFcn(app, 
@ImportGCMScontrolsButtonPushed, true); 
            app.ImportGCMScontrolsButton.Position = [14 13 152 22]; 
            app.ImportGCMScontrolsButton.Text = 'Import GCMS controls'; 
 
            % Create ChoosetoimportDropDownLabel 
            app.ChoosetoimportDropDownLabel = uilabel(app.ImportoptionsPanel); 
            app.ChoosetoimportDropDownLabel.Position = [14 149 102 23]; 
            app.ChoosetoimportDropDownLabel.Text = 'Choose to import:'; 
 
            % Create ChoosetoimportDropDown 
            app.ChoosetoimportDropDown = uidropdown(app.ImportoptionsPanel); 
            app.ChoosetoimportDropDown.Items = {'Raw data', 'Pre-processed data'}; 
            app.ChoosetoimportDropDown.ValueChangedFcn = createCallbackFcn(app, 
@ChoosetoimportDropDownValueChanged, true); 
            app.ChoosetoimportDropDown.Position = [13 129 153 22]; 
            app.ChoosetoimportDropDown.Value = 'Raw data'; 
 
            % Create GraphoptionsPanel 
            app.GraphoptionsPanel = uipanel(app.HistoryTab); 
            app.GraphoptionsPanel.Title = 'Graph options'; 
            app.GraphoptionsPanel.Position = [633 144 183 85]; 
 
            % Create PlottedtimeintervalminSpinnerLabel 
            app.PlottedtimeintervalminSpinnerLabel = 
uilabel(app.GraphoptionsPanel); 
            app.PlottedtimeintervalminSpinnerLabel.Position = [10 36 142 23]; 
            app.PlottedtimeintervalminSpinnerLabel.Text = 'Plotted time interval 
[min]'; 
 
            % Create PlottedtimeintervalminSpinner 
            app.PlottedtimeintervalminSpinner = uispinner(app.GraphoptionsPanel); 
            app.PlottedtimeintervalminSpinner.Position = [10 12 140 22]; 
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            app.PlottedtimeintervalminSpinner.Value = 100; 
 
            % Show the figure after all components are created 
            app.BioControl.Visible = 'on'; 
        end 
    end 
 
    % App creation and deletion 
    methods (Access = public) 
 
        % Construct app 
        function app = platform_test_test 
 
            % Create UIFigure and components 
            createComponents(app) 
 
            % Register the app with App Designer 
            registerApp(app, app.BioControl) 
 
            % Execute the startup function 
            runStartupFcn(app, @startupFcn) 
 
            if nargout == 0 
                clear app 
            end 
        end 
 
        % Code that executes before app deletion 
        function delete(app) 
 
            % Delete UIFigure when app is deleted 
            delete(app.BioControl) 
        end 
    end 
end 

 

 

Calibration interface 

classdef cal < matlab.apps.AppBase 
 
    % Properties that correspond to app components 
    properties (Access = public) 
        BioControl10CalibrationtabUIFigure  matlab.ui.Figure 
        UIAxes                         matlab.ui.control.UIAxes 
        PaircalibrationfileButton      matlab.ui.control.Button 
        CompoundconcentrationppbLabel  matlab.ui.control.Label 
        ComponentConcentrationEditField  matlab.ui.control.NumericEditField 
        CleargraphButton               matlab.ui.control.Button 
        SlopeEditFieldLabel            matlab.ui.control.Label 
        SlopeEditField                 matlab.ui.control.NumericEditField 
        LinearfitButton                matlab.ui.control.Button 
        StorecalibrationButton         matlab.ui.control.Button 
        InterceptEditFieldLabel        matlab.ui.control.Label 
        InterceptEditField             matlab.ui.control.NumericEditField 
        R2EditFieldLabel               matlab.ui.control.Label 
        R2EditField                    matlab.ui.control.NumericEditField 
        GeneratemockcalibrationButton  matlab.ui.control.Button 
        CompoundcentralmassDaLabel     matlab.ui.control.Label 
        ComponentCentralMassEditField  matlab.ui.control.NumericEditField 
        CompoundmassneighbourhoodDaLabel  matlab.ui.control.Label 
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        ComponentMassNeighbourhoodEditField  matlab.ui.control.NumericEditField 
    end 
 
 
    properties (Access = private) 
 
        TempFolderPath % Path of the temporary folder where mock 
                       % calibrations points are stored 
        NoPointsOnGraph % Number of points already plotted on the graph 
        DataToFit % Array containing concentration&intensity values for 
                  % each point added to the calibration 
        FitParameters % Structure storing the last fitted parameters 
    end 
 
    methods (Access = private) 
 
        function DeleteH5Content(app,~,~) 
            filePattern = fullfile( ... 
                app.TempFolderPath.Value, 'PTRMSmockcalsequence*.h5'); 
            files = dir(filePattern); 
            for k = 1:length(files) 
              baseFileName = files(k).name; 
              fullFileName = fullfile( ... 
                  app.TempFolderPath.Value, baseFileName); 
              delete(fullFileName); 
            end 
        end 
 
    end 
 
 
    % Callbacks that handle component events 
    methods (Access = private) 
 
        % Code that executes after component creation 
        function startupFcn(app) 
            format long 
            hold(app.UIAxes, 'on') 
 
            app.TempFolderPath.Value = ''; 
            app.NoPointsOnGraph.Value = 0; 
            app.DataToFit.Value = []; 
            app.FitParameters.Value = []; 
        end 
 
        % Button pushed function: PaircalibrationfileButton 
        function PaircalibrationfileButtonPushed(app, event) 
            check = isempty(app.ComponentConcentrationEditField.Value); 
            if check 
                uialert(app.BioControl10CalibrationtabUIFigure, ... 
                ['Insert a concentration value before proceding ' ... 
                'to pair up file and concentration.'], ... 
                'BioControl 1.0', 'Icon', 'error'); 
 
                return 
            end 
 
            check = app.ComponentCentralMassEditField.Value == 0; 
            if check 
                uialert(app.BioControl10CalibrationtabUIFigure, ... 
                ['Insert target mass value before proceding ' ... 
                'to pair up file and concentration.'], ... 
                'BioControl 1.0', 'Icon', 'error'); 
 
                return 
            end 
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            check = app.ComponentMassNeighbourhoodEditField.Value == 0; 
            if check 
                uialert(app.BioControl10CalibrationtabUIFigure, ... 
                ['Insert a mass neighbourhood value before proceding ' ... 
                'to pair up file and concentration.'], ... 
                'BioControl 1.0', 'Icon', 'error'); 
 
                return 
            end 
 
            filter = '.h5'; 
            title = 'BioControl 1.0 - Select one or more calibration files'; 
            [filename,path] = uigetfile(filter, title,'MultiSelect','on'); 
 
            multiple_entrance_check = iscell(filename); 
            if ~multiple_entrance_check 
                single_entrance_check = ischar(filename); 
                if ~single_entrance_check 
                    return 
                end 
            end 
 
            if multiple_entrance_check 
                ext_check = false; 
                for i = 1:length(filename) 
                    [~,~,extension] = fileparts(filename{i}); 
                    ext_check = ext_check | ~strcmpi(extension, filter); 
                    if ext_check 
                        uialert(app.BioControl10CalibrationtabUIFigure, ... 
                        ['The selected file doesn''t have the ' ... 
                        'expected extension (<.h5>).'], ... 
                        'BioControl 1.0', 'Icon', 'error'); 
 
                        return 
                    end 
                end 
            else 
                [~,~,extension] = fileparts(filename); 
                ext_check = ~strcmpi(extension, filter); 
                if ext_check 
                    uialert(app.BioControl10CalibrationtabUIFigure, ... 
                    ['The selected file doesn''t have the ' ... 
                    'expected extension (<.h5>).'], ... 
                    'BioControl 1.0', 'Icon', 'error'); 
 
                    return 
                end 
            end 
 
 
            cd(path); 
            if multiple_entrance_check 
                pruned_data = []; 
                for i = 1:length(filename) 
                    [cumpeakprof,~,~] = geth5mrcumpeaks( ... 
                        filename{i}, ... 
                        (app.ComponentCentralMassEditField.Value + 1), ... 
                        app.ComponentMassNeighbourhoodEditField.Value); 
 
                    pruned_data = [pruned_data rmoutliers(cumpeakprof)]; 
                end 
            else 
                [cumpeakprof,~,~] = geth5mrcumpeaks( ... 
                    filename, ... 
                    (app.ComponentCentralMassEditField.Value + 1), ... 
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                    app.ComponentMassNeighbourhoodEditField.Value); 
 
                pruned_data = rmoutliers(cumpeakprof); 
            end 
 
            avg_output = mean(pruned_data); 
            error = std(pruned_data); 
 
 
            errorbar(app.UIAxes, ... 
                app.ComponentConcentrationEditField.Value, ... 
                avg_output, ... 
                error, ... 
                'Marker', 'o', ... 
                'MarkerFaceColor', 'b'); 
 
            set(app.UIAxes,'YScale','log') 
            set(app.UIAxes,'XScale','log') 
            grid(app.UIAxes, 'on') 
 
            app.NoPointsOnGraph.Value = app.NoPointsOnGraph.Value + 1; 
 
            new_point = ... 
                [app.ComponentConcentrationEditField.Value; ... 
                avg_output; ... 
                error]; 
            app.DataToFit.Value = [app.DataToFit.Value new_point]; 
        end 
 
        % Button pushed function: CleargraphButton 
        function CleargraphButtonPushed(app, event) 
            aspect_ratio = app.UIAxes.PlotBoxAspectRatio; 
            position = app.UIAxes.Position; 
 
            cla(app.UIAxes,'reset'); 
 
            % Create UIAxes 
            app.UIAxes = uiaxes(app.BioControl10CalibrationtabUIFigure); 
            title(app.UIAxes, 'Calibration data') 
            xlabel(app.UIAxes, 'Component concentration [ppb vol]') 
            ylabel(app.UIAxes, 'Average intensity [ions/s] ') 
            app.UIAxes.PlotBoxAspectRatio = aspect_ratio; 
            app.UIAxes.Position = position; 
 
            hold(app.UIAxes, 'on') 
 
            app.NoPointsOnGraph.Value = 0; 
            app.DataToFit.Value = []; 
            app.FitParameters.Value = []; 
        end 
 
        % Button pushed function: LinearfitButton 
        function LinearfitButtonPushed(app, event) 
            check = app.NoPointsOnGraph.Value >= 2; 
 
            if ~check 
                uialert(app.BioControl10CalibrationtabUIFigure, ... 
                ['Can''t fit less than 2 experimental points. ' ... 
                'Add more points to the graph.'], ... 
                'BioControl 1.0', 'Icon', 'error'); 
 
                return 
            end 
 
 
            X = app.DataToFit.Value(1,:); 
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            Y = app.DataToFit.Value(2,:); 
            logx = log10(X); 
            logy = log10(Y); 
 
 
            [app.FitParameters.Value,S] = polyfit(logx,logy,1); 
            R2 = 1 - (S.normr^2)/(norm(logy-mean(logy))^2); 

            app.R2EditField.Value = R2; 

            app.SlopeEditField.Value = app.FitParameters.Value(1); 

            app.InterceptEditField.Value = app.FitParameters.Value(2); 

 

            A = [min(logx) max(logx)]; 

            B = polyval(app.FitParameters.Value,A); 

            loglog(app.UIAxes,10.^A,10.^B,'Color','r','LineWidth',1) 
        end 
 
        % Button pushed function: StorecalibrationButton 
        function StorecalibrationButtonPushed(app, event) 
            check = isempty(app.DataToFit.Value); 
 
            if check 
                uialert(app.BioControl10CalibrationtabUIFigure, ... 
                ['No data points available for storing. ' ... 
                'Plot data points before proceeding.'], ... 
                'BioControl 1.0', 'Icon', 'error'); 
 
                return 
            end 
 
            time = datetime('now','format','yyyy.MM.dd-HH.mm.ss'); 
            temp = datestr(time,'yyyy.mm.dd-HH.MM.ss'); 
            name = ['calibration-' temp '.xlsx']; 
 
 
            filter = {'*.xlsx';'*.csv'}; 
            [file,path] = uiputfile(filter,'BioControl 1.0',name); 
 
            check = file == 0; 
            if check 
                return 
            end 
 
            if strcmpi(app.TempFolderPath.Value, path(1:(end-1))) 
                path = path(1:(end-5)); 
            end 
 
            name = fullfile(path, file); 
 
            prompt = 'Comments:'; 
            dlgtitle = 'BioControl 1.0'; 
            dims = [7 70]; 
            comments = inputdlg(prompt,dlgtitle,dims); 
            if ~isempty(char(comments)) 
                textlog{1} = 'Comments:'; 
                textlog{end + 1} = char(comments); 
                textlog{end + 1} = ''; 
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            else 
                textlog{1} = 'Comments:'; 
                textlog{end + 1} = 'none'; 
                textlog{end + 1} = ''; 
            end 
            writecell(textlog, name) 
 
            if isempty(app.FitParameters.Value) 
                % Stores just data points 
                datalog = {'Date','Time',''; 
                datestr(datetime('now','format','dd/MM/yyyy'),'dd/mm/yyyy'),... 
                datestr(datetime('now','format','HH:mm:ss'),'HH:MM:ss'),''; 
                    'LINEAR FIT ON LOG10 VALUES','',''; 
                    'Slope','Intercept','R2'; 
                    '','',''; 
                    'Concentration [ppm vol]','Intensity [ions/s]','STD Error []'}; 
            else 
                % Stores data points and calibration data 
                datalog = {'Date','Time',''; 
                datestr(datetime('now','format','dd/MM/yyyy'),'dd/mm/yyyy'),... 
                datestr(datetime('now','format','HH:mm:ss'),'HH:MM:ss'),''; 
                    'LINEAR FIT ON LOG10 VALUES','',''; 
                    'Slope','Intercept','R2'; 
                
app.FitParameters.Value(1),app.FitParameters.Value(2),app.R2EditField.Value; 
                    'Concentration [ppb vol]','Intensity [ions/s]','STD Error []'}; 
            end 
 
            writecell(datalog, name, 'Range', 'A2:C7') 
 
            co = (app.DataToFit.Value(1,:)); 
            av = (app.DataToFit.Value(2,:)); 
            er = (app.DataToFit.Value(3,:)); 
            data = [co' av' er']; 
 
            textpoints = 'datalog_points = {'; 
            for i = 1:length(co) 
                textpoints = [textpoints 'data(' num2str(i) ',1),data(' num2str(i) 
',2),data(' num2str(i) ',3)']; 
                if i ~= length(co) 
                    textpoints = [textpoints ';']; 
                end 
            end 
            textpoints = [textpoints '};']; 
 
            eval(textpoints); 
 
            writecell(datalog_points, name, 'WriteMode', 'append') 
        end 
 
        % Close request function: BioControl10CalibrationtabUIFigure 
        function BioControl10CalibrationtabUIFigureCloseRequest(app, event) 
            if ~isempty(app.TempFolderPath.Value) 
                if 7 == exist(app.TempFolderPath.Value, 'dir') 
                    cd(app.TempFolderPath.Value) 
                    DeleteH5Content(app) 
                    if isempty(ls) 
                        cd .. 
                        rmdir(app.TempFolderPath.Value) 
                    end 
                end 
            end 
 
            clear parameters 
            global parameters 
            parameters = app.FitParameters.Value; 
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            delete(app); 
            fclose('all'); 
        end 
 
        % Button pushed function: GeneratemockcalibrationButton 
        function GeneratemockcalibrationButtonPushed(app, event) 
            prompt = 'Mass [Da]'; 
            dlgtitle = 'Enter numerical value of mocked mass'; 
            dims = [1 100]; 
            output = inputdlg(prompt,dlgtitle,dims); 
 
            check = isempty(output); 
            if check 
                return 
            end 
            %--------------------------- 
            CleargraphButtonPushed(app, event) 
            %--------------------------- 
            if isempty(app.TempFolderPath.Value) 
                mkdir('Temp') 
                cd('Temp') 
                app.TempFolderPath.Value = cd; 
            else 
                cd(app.TempFolderPath.Value) 
                DeleteFolderContent(app) 
            end 
            %---------------------------- 
            user_mass = str2double(output{1}); 
            timelength_mock = 60; 
            signal_intensity = 25; 
            conc = 0; 
 
            for i = 1:5 
                filename = genaddh5calmock( ... 
                    user_mass,timelength_mock,signal_intensity); 
 
                [cumpeakprof,~,~] = geth5mrcumpeaks( ... 
                    filename, ... 
                    (user_mass + 1), ... 
                    0.3); 
 
                avg_output = mean(cumpeakprof); 
                error = std(cumpeakprof); 
 
                errorbar(app.UIAxes, ... 
                conc, ... 
                avg_output, ... 
                error, ... 
                'Marker', 'o', ... 
                'MarkerFaceColor', 'b'); 
 
                new_point = [conc; avg_output; error]; 
                app.DataToFit.Value = [app.DataToFit.Value new_point]; 
 
                signal_intensity = signal_intensity + 500; 
                conc = conc + 10; 
            end 
            %---------------------------- 
            app.NoPointsOnGraph.Value = app.NoPointsOnGraph.Value + 5; 
 
            LinearfitButtonPushed(app, event) 
 
        end 
    end 
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    % Component initialization 
    methods (Access = private) 
 
        % Create UIFigure and components 
        function createComponents(app) 
 
            % Create BioControl10CalibrationtabUIFigure and hide until all 
components are created 
            app.BioControl10CalibrationtabUIFigure = uifigure('Visible', 'off'); 
            app.BioControl10CalibrationtabUIFigure.AutoResizeChildren = 'off'; 
            app.BioControl10CalibrationtabUIFigure.Position = [330 130 700 480]; 
            app.BioControl10CalibrationtabUIFigure.Name = 'BioControl 1.0 - 
Calibration tab'; 
            app.BioControl10CalibrationtabUIFigure.Resize = 'off'; 
            app.BioControl10CalibrationtabUIFigure.CloseRequestFcn = 
createCallbackFcn(app, @BioControl10CalibrationtabUIFigureCloseRequest, true); 
 
            % Create UIAxes 
            app.UIAxes = uiaxes(app.BioControl10CalibrationtabUIFigure); 
            title(app.UIAxes, 'Calibration data') 
            xlabel(app.UIAxes, 'Target compound concentration [ppb vol]') 
            ylabel(app.UIAxes, 'Average intensity [ions/s] ') 
            app.UIAxes.PlotBoxAspectRatio = [1.24148606811146 1 1]; 
            app.UIAxes.Position = [13 79 449 378]; 
 
            % Create PaircalibrationfileButton 
            app.PaircalibrationfileButton = 
uibutton(app.BioControl10CalibrationtabUIFigure, 'push'); 
            app.PaircalibrationfileButton.ButtonPushedFcn = createCallbackFcn(app, 
@PaircalibrationfileButtonPushed, true); 
            app.PaircalibrationfileButton.Position = [531 244 100 36]; 
            app.PaircalibrationfileButton.Text = {'Pair'; 'calibration file'}; 
 
            % Create CompoundconcentrationppbLabel 
            app.CompoundconcentrationppbLabel = 
uilabel(app.BioControl10CalibrationtabUIFigure); 
            app.CompoundconcentrationppbLabel.Position = [486 402 110 28]; 
            app.CompoundconcentrationppbLabel.Text = {'Compound'; 'concentration 
[ppb]'}; 
 
            % Create ComponentConcentrationEditField 
            app.ComponentConcentrationEditField = 
uieditfield(app.BioControl10CalibrationtabUIFigure, 'numeric'); 
            app.ComponentConcentrationEditField.Position = [613 402 61 28]; 
 
            % Create CleargraphButton 
            app.CleargraphButton = uibutton(app.BioControl10CalibrationtabUIFigure, 
'push'); 
            app.CleargraphButton.ButtonPushedFcn = createCallbackFcn(app, 
@CleargraphButtonPushed, true); 
            app.CleargraphButton.Position = [531 131 100 22]; 
            app.CleargraphButton.Text = 'Clear graph'; 
 
            % Create SlopeEditFieldLabel 
            app.SlopeEditFieldLabel = 
uilabel(app.BioControl10CalibrationtabUIFigure); 
            app.SlopeEditFieldLabel.HorizontalAlignment = 'right'; 
            app.SlopeEditFieldLabel.Position = [171 29 36 22]; 
            app.SlopeEditFieldLabel.Text = 'Slope'; 
 
            % Create SlopeEditField 
            app.SlopeEditField = 
uieditfield(app.BioControl10CalibrationtabUIFigure, 'numeric'); 
            app.SlopeEditField.Editable = 'off'; 
            app.SlopeEditField.Position = [214 29 74 22]; 
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            % Create LinearfitButton 
            app.LinearfitButton = uibutton(app.BioControl10CalibrationtabUIFigure, 
'push'); 
            app.LinearfitButton.ButtonPushedFcn = createCallbackFcn(app, 
@LinearfitButtonPushed, true); 
            app.LinearfitButton.Position = [44 29 100 22]; 
            app.LinearfitButton.Text = 'Linear fit'; 
 
            % Create StorecalibrationButton 
            app.StorecalibrationButton = 
uibutton(app.BioControl10CalibrationtabUIFigure, 'push'); 
            app.StorecalibrationButton.ButtonPushedFcn = createCallbackFcn(app, 
@StorecalibrationButtonPushed, true); 
            app.StorecalibrationButton.Position = [530 104 102 22]; 
            app.StorecalibrationButton.Text = 'Store calibration'; 
 
            % Create InterceptEditFieldLabel 
            app.InterceptEditFieldLabel = 
uilabel(app.BioControl10CalibrationtabUIFigure); 
            app.InterceptEditFieldLabel.HorizontalAlignment = 'right'; 
            app.InterceptEditFieldLabel.Position = [321 29 52 22]; 
            app.InterceptEditFieldLabel.Text = 'Intercept'; 
 
            % Create InterceptEditField 
            app.InterceptEditField = 
uieditfield(app.BioControl10CalibrationtabUIFigure, 'numeric'); 
            app.InterceptEditField.Editable = 'off'; 
            app.InterceptEditField.Position = [380 29 74 22]; 
 
            % Create R2EditFieldLabel 
            app.R2EditFieldLabel = uilabel(app.BioControl10CalibrationtabUIFigure); 
            app.R2EditFieldLabel.HorizontalAlignment = 'right'; 
            app.R2EditFieldLabel.Position = [499 29 25 22]; 
            app.R2EditFieldLabel.Text = 'R2'; 
 
            % Create R2EditField 
            app.R2EditField = uieditfield(app.BioControl10CalibrationtabUIFigure, 
'numeric'); 
            app.R2EditField.Editable = 'off'; 
            app.R2EditField.Position = [536 29 74 22]; 
 
            % Create GeneratemockcalibrationButton 
            app.GeneratemockcalibrationButton = 
uibutton(app.BioControl10CalibrationtabUIFigure, 'push'); 
            app.GeneratemockcalibrationButton.ButtonPushedFcn = 
createCallbackFcn(app, @GeneratemockcalibrationButtonPushed, true); 
            app.GeneratemockcalibrationButton.Position = [531 203 100 36]; 
            app.GeneratemockcalibrationButton.Text = {'Generate mock'; 
'calibration'}; 
 
            % Create CompoundcentralmassDaLabel 
            app.CompoundcentralmassDaLabel = 
uilabel(app.BioControl10CalibrationtabUIFigure); 
            app.CompoundcentralmassDaLabel.Position = [488 363 108 28]; 
            app.CompoundcentralmassDaLabel.Text = {'Compound central'; 'mass 
(Da)'}; 
 
            % Create ComponentCentralMassEditField 
            app.ComponentCentralMassEditField = 
uieditfield(app.BioControl10CalibrationtabUIFigure, 'numeric'); 
            app.ComponentCentralMassEditField.Position = [613 363 61 28]; 
 
            % Create CompoundmassneighbourhoodDaLabel 
            app.CompoundmassneighbourhoodDaLabel = 
uilabel(app.BioControl10CalibrationtabUIFigure); 
            app.CompoundmassneighbourhoodDaLabel.Position = [488 323 112 28]; 
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            app.CompoundmassneighbourhoodDaLabel.Text = {'Compound mass'; 
'neighbourhood (Da)'}; 
 
            % Create ComponentMassNeighbourhoodEditField 
            app.ComponentMassNeighbourhoodEditField = 
uieditfield(app.BioControl10CalibrationtabUIFigure, 'numeric'); 
            app.ComponentMassNeighbourhoodEditField.Position = [613 323 61 28]; 
 
            % Show the figure after all components are created 
            app.BioControl10CalibrationtabUIFigure.Visible = 'on'; 
        end 
    end 
 
    % App creation and deletion 
    methods (Access = public) 
 
        % Construct app 
        function app = cal 
 
            % Create UIFigure and components 
            createComponents(app) 
 
            % Register the app with App Designer 
            registerApp(app, app.BioControl10CalibrationtabUIFigure) 
 
            % Execute the startup function 
            runStartupFcn(app, @startupFcn) 
 
            if nargout == 0 
                clear app 
            end 
        end 
 
        % Code that executes before app deletion 
        function delete(app) 
 
            % Delete UIFigure when app is deleted 
            delete(app.BioControl10CalibrationtabUIFigure) 
        end 
    end 
end 

 

Control simulation: 

full_parallel_transfer_function_regression.m 

% ========================================================================= 
% PROFILE FITTING 
% Script for fitting real experimental data of microbial fermentation of 
% linalool with a parallel effects model. Parallel first order transfer 
% functions are employed to approximate the kinetics of terpene 
% production upon induction while considering substrate consumption. 
% IPTG induction is the system input from 0 to 100% (here equal to 0 to 1). 
% ========================================================================= 
 
% ========================================================================= 
% Initialisation 
% ========================================================================= 
close all 
clear all 
clc 
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% ========================================================================= 
% Data import and preparation 
% ========================================================================= 
% Import data that are saved in a .mat file containing the time values of 
% the timepoints ('TimePoints) and the concentration of the target compound 
% to be modeled ('Concs'). Both objects are arrays arranged as 1xN, where N 
% is the number of the acquired timepoints. 
load (['/Users/a30754gl/Desktop/MATLAB works/' ... 
    'support scripts/limonene_conc_time_profile.mat']) 
 
 
% ========================================================================= 
% Parameters boundaries 
% ========================================================================= 
% Defined over observation of the experimental productivity values 
LB = [5 500 500]; % 1st is K, 2nd is Tau1, 3rd is Tau2 
UB = [5 4500 4500]; % Same order 
 
iter = 100; 
regression_performances = zeros(iter,4); 
KoptData = zeros(iter,4); 
f = figure('visible','off'); 
for n = 1:iter 
% ========================================================================= 
% Initialise parameters guesses 
% ========================================================================= 
Kin = LB(1) + (UB(1) - LB(1))/2; 
Tau1in = LB(2) + (UB(2) - LB(2))/2; 
Tau2in = LB(3) + (UB(3) - LB(3))/2; 
 
 
% ========================================================================= 
% Regress parameters 
% ========================================================================= 
% Minimum search to minimise the objective function, given by Sum of 
% Squared Errors (SSE) 
X0 = [Kin Tau1in Tau2in]; 
FOBFun = @(pars)SSECalcFun(pars,Productivity,TimePoints); 
options = optimset('MaxIter',100000, ... 
    'MaxFunEvals',100000); 
 
[regressed_pars, SSEvalue] = fminsearchbnd(FOBFun,X0, ... 
    LB, UB, ... 
    options); 
 
% ========================================================================= 
% Calculate fitted productivity 
% ========================================================================= 
K = regressed_pars(1); 
Tau1 = regressed_pars(2); 
Tau2 = regressed_pars(3); 
DeltaU = 1; 
Time = 0:1:4500; 
 
FittedProductivity = ParallelTFStep(K,Tau1,Tau2,DeltaU,Time); 
 
 
% ========================================================================= 
% Data plotting 
% ========================================================================= 
% Top graph 
if n == 100 
    subplot(1,2,1) 
    hold on 
    plot(Time,FittedProductivity,'b') 
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    hold on 
    scatter(TimePoints,Productivity,'r','x') 
 
    legend('Optimal fit','Experimental points') 
else 
    subplot(1,2,1) 
    hold on 
    plot(Time,FittedProductivity,'b','HandleVisibility','off') 
end 
 
ax = gca; 
ax.YLim = [-1 10]; 
 
 
% ========================================================================= 
% Find K based on current regressed parameters 
% ========================================================================= 
time_index = round(Tau1); 
ProdEstimate = FittedProductivity(time_index); 
first_effect_contribution = 0.632; % Choosing to pick productivity value at 
                                   % 1 time constant (Tau1) means that I am 
                                   % at 63.2% of the contribution of the 
                                   % first effect by deafult. The 
                                   % contribution of the other effect must 
                                   % be calculated instead 
second_effect_contribution = 1 - exp((-time_index)/(Tau1 + Tau2)); 
 
syms X 
eqn = ProdEstimate - ... 
    (first_effect_contribution*X - second_effect_contribution*X) == 0; 
Kestimate = solve(eqn,X); 
 
KoptData(n,:) = ... 
    [time_index ProdEstimate second_effect_contribution Kestimate]; 
 
 
% ========================================================================= 
% Store performance data 
% ========================================================================= 
regression_performances(n,:) = [K Tau1 Tau2 SSEvalue]; 
 
 
% ========================================================================= 
% Update parameters boundaries 
% ========================================================================= 
UB(1) = UB(1) + 1; % Only K boundaries need to change, as it is the only 
                   % parameter which is not dependant on anything else and 
                   % can become unphysical 
end 
 
 
% ========================================================================= 
% Find best fit 
% ========================================================================= 
SSEvalues = regression_performances(:,4); 
SSEdiffs = zeros(iter-1); 
for i = 2:iter 
    SSEdiffs(i-1) = abs(SSEvalues(i-1) - SSEvalues(i)); 
end 
 
acceptable_indexes = find(SSEdiffs < .01*min(SSEvalues)); 
best_fit_index = acceptable_indexes(1); 
 
 
% ========================================================================= 
% Calculate best profile 
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% ========================================================================= 
Kopt = regression_performances(best_fit_index,1); 
Tau1opt = regression_performances(best_fit_index,2); 
Tau2opt = regression_performances(best_fit_index,3); 
FittedProductivity = ParallelTFStep(K,Tau1,Tau2,DeltaU,Time); 
 
 
% ========================================================================= 
% Adjust plots 
% ========================================================================= 
% Bottom graph 
subplot(1,2,2) 
hold on 
plot(Time,FittedProductivity,'b') 
scatter(TimePoints,Productivity,'r','x') 
xlabel('Time [min]') 
ylabel('Linalool productivity [mgL^{-1}h^{-1}]') 
 
legend('Optimal fit','Experimental points') 
 
set(f, 'visible', 'on'); 
 
disp(regression_performances(best_fit_index,:)) 
 
 
% ========================================================================= 
% Object function definition (FOBfun) 
% ================ ========================================================= 
% The objective function used in here is a simple Sum of Squared Errors 
% (SSE) 
function FOBoutput = SSECalcFun(pars,prod,t) 
    K = pars(1); 
    Tau1 = pars(2); 
    Tau2 = pars(3); 
    DeltaU = 1; 
 
    y = ParallelTFStep(K,Tau1,Tau2,DeltaU,t); 
 
    FOBoutput = 0; 
    for i = 1:length(y) 
        FOBoutput = FOBoutput + (prod(i) - y(i))^2; 
    end 
end 
 
 
function response_profile = ... 
    ParallelTFStep(k,tau1,tau2,delta_u,time) 
 
    response_profile = delta_u*(... 
        k*(exp(-time./(tau1 + tau2)) - exp(-time./tau1))); 
 
end 

 

control_tuning_sensitivity_test.m 

% ========================================================================= 
% PID TUNING SENSITIVITY TEST 
% PID controller is tuned in order to execute feedback control on linalool 
% productivity. Biological system transfer function is derived from 
% experimental data and used here to build a close loop control system. 
% Control efficacy sensitivity is tested by modifying PID parameters up to 
% 20% from their optimal value in a random way. 1000 scenarios are randomly 
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% generated. 
% ========================================================================= 
 
% ========================================================================= 
% Initialisation 
% ========================================================================= 
close all 
clear all 
clc 
 
format long 
rng('shuffle'); 
 
 
% ========================================================================= 
% Closed loop building 
% ========================================================================= 
% Definition of bioprocess transfer function from previously obtained 
% parameters 
numerator = 23; 
denominator = [1219.6 1]; 
sys = tf(numerator,denominator); 
sys.TimeUnit = 'minutes'; 
 
% PID is tuned on the basis of the bioprocess transfer function 
[C_pid,info] = pidtune(sys,'PIDF',0.5); 
C_pid.TimeUnit = 'minutes'; 
 
% Outer cycle defining 2 cases: step change & disturbance rejection 
for c = 1:2 
    if c == 1 
        CL_pid = feedback(C_pid*sys,1); 
        [y1,t1] = step(CL_pid); 
 
        figure(c) 
        hold on 
    else 
        CL_pid_dist = feedback(sys,C_pid); 
        [y1,t1] = step(CL_pid_dist); 
 
        figure(c) 
        hold on 
    end 
 
    % Inner cycle to generate 1000 random combinations of the 4 parameters, 
    % varied up to a maximum of 20% from thei optimal value 
    pid_tunings = zeros(1001,4); 
    pid_tunings(1,:) = [C_pid.Kp C_pid.Ki C_pid.Kd C_pid.Tf]; 
    ranges = abs(.20*pid_tunings(1,:)); 
    for i = 1:1000 
        for n = 1:4 
            eval(['random' num2str(n) ' = rand;']); 
            eval([ ... 
            'if random' num2str(n) ' >=.5;' ... 
                 'sign' num2str(n) ' = 1;' ... 
            'else;' ... 
                 'sign' num2str(n) ' = -1;' ... 
            'end']); 
        end 
 
        C_pid.Kp = pid_tunings(1,1) + sign1*random1*ranges(1); 
        C_pid.Ki = pid_tunings(1,2) + sign2*random2*ranges(2); 
        C_pid.Kd = pid_tunings(1,3) + sign3*random3*ranges(3); 
        C_pid.Tf = pid_tunings(1,4) + sign4*random4*ranges(4); 
 
        pid_tunings(n+1,:) = [C_pid.Kp C_pid.Ki C_pid.Kd C_pid.Tf]; 
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        if c == 1 
            CL_pid = feedback(C_pid*sys,1); 
        else 
            CL_pid = feedback(sys,C_pid); 
        end 
 
        [y,t] = step(CL_pid); 
        if i ~= 1000 
            plot(t,y,'r','HandleVisibility','off') 
        else 
            plot(t,y,'r') 
        end 
 
    end 
 
    plot(t1,y1,'b') 
    xlabel('Minutes') 
    ylabel('\DeltaProductivity/\DeltaProductivity_{max}') 
    legend('Random tuning parameters deviation (up to 20% from optimal)', ... 
        'Optimal tuning parameters') 
 
end 

 
 


