

Next-generation
control strategy for
biomanufacture

G. Lorenzon

Supervisors – Nigel Scrutton, Sam Hay, Eriko Takano
Master of Philosophy Thesis - 2020

A thesis submitted to the University of Manchester for the degree of
Master of Philosophy in the Faculty of Science & Engineering

School of Natural Science
Department of Chemistry

Giovanni Lorenzon – MPhil Thesis

 2

Table of Contents

Table of Contents .. 2

Table of Figures ... 4

Abstract... 8

Declaration .. 9

Copyright statement .. 10

Acknowledgments ... 11

1. Introduction ... 12

1.1. Bioprocesses and control ... 12

1.2. Innovative measurement techniques ... 13

1.2.1. Proton Transfer Reaction Mass Spectrometry (PTR-MS) .. 14

1.3. Genetic embedded control .. 15

1.3.1. Optogenetics ... 18

1.4. Terpenoids .. 21

1.4.1. Linalool .. 25

1.5. Summary ... 26

2. Project aims ... 27

3. Materials and methods .. 28

3.1. Strain engineering ... 28

3.1.1. Reagents .. 28

3.1.2. Equipment ... 28

3.1.3. Genes .. 29

3.1.4. Strains .. 30

3.1.5. Agarose gel protocol ... 30

3.1.6. Gene sequencing ... 30

3.1.7. Plasmid preparation protocol ... 30

3.1.8. Transformation protocol ... 36

3.1.9. Linalool production assay protocol ... 36

Giovanni Lorenzon – MPhil Thesis

 3

3.2. Terpenes measurement through PTR-ToF-MS .. 38

3.2.1. Experimental setup ... 38

3.2.2. Design of Experiment .. 39

3.3. Monitoring platform and control simulations .. 41

3.3.1. General description of BioControl ... 42

3.3.2. Data structure and handling ... 42

3.3.3. GUI structure and features .. 43

4. Results and discussion ... 54

4.1. Plasmid engineering .. 54

4.2. Linalool detection limits evaluation ... 57

4.3. Platform testing ... 61

4.3.1. Calibration ... 61

4.3.2. Scaled-up linalool fermentation .. 67

4.4. Control loop simulation ... 69

4.4.1. System response modelling .. 69

4.4.2. PID tuning and stability analysis .. 72

4.5. Summary ... 76

5. Conclusions and future work .. 78

Bibliography .. 79

Appendix ... 87

(Word count: 32673)

Giovanni Lorenzon – MPhil Thesis

 4

Table of Figures

Figure 1.1. Schematics of a traditional PTR-MS instrument consisting of an ion source, an ion source

gas (H2O) port and a drift reactor constructed by a series of ring electrodes. Adapted from TOFWERK

AG website (Tofwerk AG, 2020). .. 14

Figure 1.2. Generalized Aoki and co-workers approach to achieve genetically-encoded in vivo feedback

control (Aoki et al., 2019). A constitutively expressed transcription factor (TF1) regulates the

expression of SIGW. In turn, SIGW induces the expression of both a second transcription factor (TF2)

and a gene of interest (GOI). To close the loop, TF2 regulates the expression of RSIW, which annihilates

with SIGW. The rationale is that the more SIGW is synthesized, the more GOI and RSIW are produced

– up to the level that all SIGW is annihilated and GOI concentration reaches stability. In principle, the

approach could be modified to impart control of TF1 synthesis using external inducers. This could be

used for adjusting the equilibrium of the overall control system. ... 18

Figure 1.3. Generalized Zhao and co-workers control strategy through optogenetic switch (Zhao et al.,

2018). (A) Inducible-only system: light input allows for the activation of the optogenetic transcription

factor (OTF); this induces the expression of the gene of interest (GOI). (B) Inducible-repressible system:

light induces the production of a first GOI (GOI1) and the anti-transcription factor (aTF); the latter

annihilates the constitutively expressed transcription factor (TF), so that the expression of a second

GOI (GOI2) is not induced. Under dark conditions, GOI1 and aTF are not synthesized, hence GOI2 can

be expressed. ... 20

Figure 1.4. A genetically-encoded in silico feedback control loop. The numbers in the Figure identify

individual components as follows: (1) – Controller; (2) – Peristaltic pump; (3) – Fresh culture media;

(4) – Removed culture media; (5) – UV-Vis; (6) – Bioreactor; (7) – PBS; (8) – Flow cytometer; (Yellow

lines) – Culture media streams; (Dashed lines) – Signal streams. Automatic sampling of culture media

allows for optical density measurement of the culture media and fluorescence measurement of the

targeted fluorescent protein expression. Set point for both parameters is then tracked by switching

LED light from green (protein expression) to red (protein repression) by means of an external

computer-based controller. Figure based on reported studies using in silico feedback control (Milias-

Argeitis et al., 2016). .. 21

Figure 1.5. MEP (left) and MVA (right) pathways for isoprenoid precursors IPP/GPP synthesis. 24

Figure 1.6. The two naturally occurring enantiomeric forms of linalool. .. 25

Giovanni Lorenzon – MPhil Thesis

 5

Figure 3.1. Original pMVALinS plasmid map and cloning strategies to obtain 3 homologous-region-free

alternatives. (a) Original pMVALinS map. (b) Cloning strategy to obtain pMVALinS.NR1. (c) Cloning

strategy to obtain pMVALinS.NR2a. (d) Cloning strategy to obtain pMVALinS.NR2b. 35

Figure 3.2. Colony PCR gels of the 3 pMVALinS variations. Ladders are on the left side, while fragments

on the right. Expected fragment length is reported. ... 35

Figure 3.3. Linalool calibration for GC-MS analysis. .. 38

Figure 3.4. TOFWERK PTR-ToF-MS Vocus voltage settings. ... 39

Figure 3.5. Schematic of face-centred central composite design with 2 quantitative parameters. ‘-1’

and ‘1’ correspond to the lower and upper limits of the experimental range studied, while ‘0’ is the

mid-range value. Central point (0,0) run is carried out in triplicate. ... 40

Figure 3.6. BioControl sidebar and ‘Calibration’ tab. .. 44

Figure 3.7. BioControl calibration app window – general outlook. ... 46

Figure 3.8. BioControl calibration app window – experimental calibration points and linear fitting. 47

Figure 3.9. BioControl calibration app window – prompt window to provide mass value for the mock

calibration set generation. ... 48

Figure 3.10. BioControl ‘Calibration’ tab populated with imported calibration data. 48

Figure 3.11. BioControl ‘Simulation’ tab – general outlook. ... 49

Figure 3.12. BioControl ‘Simulation’ tab – outlook during simulation. ... 50

Figure 3.13. BioControl ‘Monitoring’ tab – outlook during live PTR-ToF-MS acquisition. 51

Figure 3.14. BioControl ‘Monitoring’ tab – outlook during simulation. .. 51

Figure 3.15. BioControl ‘History’ tab – outlook with imported acquisition and GC-MS controls. 52

Figure 3.16. BioControl ‘History’ tab – detail of pop-up window to manually enter GC-MS controls. 53

Figure 4.1. Previous assays for linalool production in E. coli transformed with pMVALinS. Averages and

error bars are calculated over 3 biological replicates. ... 54

Figure 4.2. On the left, schematic of the repeated regions. On the right, list of the pMVALinS variations

produced with indication of the removed sequences. .. 55

Giovanni Lorenzon – MPhil Thesis

 6

Figure 4.3. Linalool assay results for pMVALinS – pMVALinS.NR1 comparison (15 biological replicates

each). Red dots are non-null titre replicates, blue dots are null titre ones. Averages and standard

deviations are calculated on the basis of non-null values. .. 56

Figure 4.4. Linalool assay results for pMVALinS – pMVALinS.NR1 – pMVALinS.NR2a – pMVALinS.NR2b

comparison. Averages and error bars are calculated over 3 biological replicates. 57

Figure 4.5. Response surfaces generated from central composite experiment design. (a) & (b) are non-

incubated and incubated TB; (c) & (d) are non-incubated and incubated nonane; (e) & (f) are non-

incubated and incubated TB+nonane. ... 59

Figure 4.6. Linalool detection limit in TB and nonane according to GC-PTR-ToF-MS. Samples prepared

in 20mL vials, 1h incubation at 30°C, 50°C injection temperature, and 5mL of liquid volume 60

Figure 4.7. Peak retention time shift. Above: linalool (a) and a-pinene (b) retention time variation for

10 replicates, average value and standard deviation reported. Below: highlight of two replicates of

pure linalool, 2µL sample volume, ambient temperature incubation, 37°C injection temperature. .. 61

Figure 4.8. PTR-ToF-MS linalool calibration in 1L bioreactor (conditions replicated in triplicate to

obtain each point and corresponding error bar). LB media, 500mL liquid volume, 37°C, 400rpm stirring,

0.5Lair/Lmedia·min, 0sccm zero-gas flowrate. ... 62

Figure 4.9. PTR-ToF-MS linalool calibrations in 1L bioreactor (conditions replicated in triplicate to

obtain each point and corresponding error bar). 500mL liquid volume, 37°C, 400rpm stirring,

0.5Lair/Lmedia·min, 40sccm zero-gas flowrate. (a) calibration in LB media; (b) calibration in TB media; (c)

calibration in TB media spiked with E. coli. ... 64

Figure 4.10. PTR-ToF-MS linalool calibrations in 1L bioreactor (conditions replicated in triplicate to

obtain each point and corresponding error bar). TB media, 500mL liquid volume, 0.5Lair/Lmedia·min,

40sccm zero-gas flowrate. (a) calibration at 1000rpm and 37°C; (b) calibration at 400rpm and 30°C.

 ... 65

Figure 4.11. PTR-ToF-MS linalool calibrations in 1L bioreactor (conditions replicated in triplicate to

obtain each point and corresponding error bar). 500mL liquid volume, 0.5Lair/Lmedia·min, 40sccm zero-

gas flowrate. (cyan line) LB media, 400rpm and 37°C; (orange line) TB media, 400rpm and 37°C; (green

line) TB media, 1000rpm and 37°C; (black line) TB media spiked with E. coli, 400rpm and 37°C; (red

line) TB media, 400rpm and 30°C. ... 66

Giovanni Lorenzon – MPhil Thesis

 7

Figure 4.12. PTR-ToF-MS linalool calibrations in 1L bioreactor (conditions replicated in triplicate to

obtain each point and related error bar). TB media spiked with E. coli, 1:5 v/v nonane overlay, 500mL

liquid volume, 37°C, 400rpm stirring, 0.5Lair/Lmedia·min, 40sccm zero-gas flowrate. 67

Figure 4.13. BioControl-acquired linalool concentration profile over a 30h fermentation assay carried

out in 1L bioreactor using pMVALinS.NR1 plasmid in E. coli chassis. Red dots represent GC-MS controls.

Anomalous concentration spike around 6-7h was due to broth droplets accumulation in the PTR-ToF-

MS transfer line, which was purged restoring measurement accuracy. .. 68

Figure 4.14. Feedback control loop schematic. Output corresponds to the controlled variable (linalool

productivity), which can be influenced by some external disturbance. The value of the controlled

variable is assessed and compared to a user-defined setpoint. Deviation from that value is sent to the

controller, which elaborates an adequate manipulated variable (light intensity) input, so to bring the

bioprocess to the desired state. .. 69

Figure 4.15. Fitting of TF model for the biological system. Red crosses represent experimental points

for linalool productivity obtained by GC-MS analysis (each point is the average of three biological

replicates). Blue line is the fitted productivity profile obtained from Equation 4.3. 72

Figure 4.16. Structure of the Routh array and terms calculation rule (Seborg et al., 2011). 75

Figure 4.17. Tuning parameters sensitivity test with 1000 random scenarios varying each parameter

up to ±20% from optimal value. .. 76

Giovanni Lorenzon – MPhil Thesis

 8

Abstract

The development of effective and reliable control strategies plays a critical role in the

optimisation of all bio-based processes, especially with respect to their scaling-up and general

transition towards industrial-scale manufacturing. The complexity of the reactions occurring and the

sensitivity of the biological components involved place stringent demands on the availability of fine-

tuning capabilities and responsiveness of bioprocess control systems. Nevertheless, the

implementation of powerful control techniques is hindered by the lack of accurate measurements. In

fact, it is fundamental to possess accurate metrics in order to monitor both insightful process

parameters and outputs of the implemented control strategies. The collection of such data usually

follows the compromise: high accuracy – long measurement time, as opposed to low accuracy – short

measurement time.

This project aims to build and validate an innovative monitoring platform, that will allow the

implementation of advanced control techniques to a number of bioprocesses. This platform, called

BioControl 1.0, consists in a Graphic User Interface (GUI) programmed in MATLAB language and it

allows the user to collect and interpret data from a Proton Transfer Reaction Time of Flight Mass

Spectrometer (PTR-ToF-MS). The PTR-ToF-MS will sample the headspace of a bioreactor, providing a

real-time measurement of the compounds contained in the gaseous phase – in equilibrium with the

subjacent liquid one, the concentration of whose solutes is the target of this measurement method.

Despite the applicability of such setup to several processes, this study targets the production

of linalool production, a terpene with the potential of being transformed into biofuel. Bacterial

synthesis of linalool via E. coli has been studied through plasmid engineering: repeated DNA

sequences over different areas of the plasmid have been selectively removed, enhancing production

consistency (from 13% successfully transformed colonies to 100%) while attaining maximum average

titres around 165mg/Loverlay in small-scale batches (i.e. 5mL).

BioControl detection capability towards linalool has been tested on scaled-up E. coli

fermentations carried out in 1L bioreactors (500mL of working volume), resulting in accurate tracking

of linalool concentration profile in the liquid phase over a 30h operation time. Linalool titres as low as

100ppb-vol have been successfully detected, while scaled fermentation led to the accumulation of a

maximum of 190mg/ Loverlay.

Feasibility of linalool production control through optogenetics has been tested through

MATLAB and Simulink simulations, indicating that stable control is viable.

Giovanni Lorenzon – MPhil Thesis

 9

Declaration

I declare that no portion of the work referred to in the thesis has been submitted in support of an

application for another degree or qualification of this or any other university or other institute of

learning.

Giovanni Lorenzon – MPhil Thesis

 10

Copyright statement

i. The author of this thesis (including any appendices and/or schedules to this thesis) owns certain

copyright or related rights in it (the “Copyright”) and s/he has given the University of

Manchester certain rights to use such Copyright, including for administrative purposes

ii. Copies of this thesis, either in full or in extracts and whether in hard or electronic copy, may be

made only in accordance with the Copyright, Designs and Patents Act 1988 (as amended) and

regulations issued under it or, where appropriate, in accordance with licensing agreements

which the University has from time to time. This page must form part of any such copies made.

iii. The ownership of certain Copyright, patents, designs, trademarks and other intellectual

property (the “Intellectual Property”) and any reproductions of copyright works in the thesis,

for example graphs and tables (“Reproductions”), which may be described in this thesis, may

not be owned by the author and may be owned by third parties. Such Intellectual Property and

Reproductions cannot and must not be made available for use without the prior written

permission of the owner(s) of the relevant Intellectual Property and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication and

commercialisation of this thesis, the Copyright and any Intellectual Property and/or

Reproductions described in it may take place is available in the University IP Policy (see

http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=24420), in any relevant Thesis

restriction declarations deposited in the University Library, the University Library’s regulations

(see http://www.library.manchester.ac.uk/about/regulations/) and in the University’s policy on

Presentation of Theses

Giovanni Lorenzon – MPhil Thesis

 11

Acknowledgments

I want to thank Nigel and Sam for being enthusiastic, affable, and dedicated supervisors: I am

honored to have had the possibility to work with both.

A special thanks goes to Mauro, who taught me patiently about molecular biology and who

constantly offers his valuable help. Similarly, I want to thank Kat, Clara, Robin, Matt and Lucy for having

been the most available and open with me.

I am also truly grateful to our wonderful lab technicians Michi and Shirley, who helped me

literally uncountable times.

Lastly, thanks to all of the members of the Scrutton Group for being such a positive and

inspiring group of people.

Giovanni Lorenzon – MPhil Thesis

 12

1. Introduction

1.1. Bioprocesses and control

Industrial processes involving biological vectors include a number of different operations,

spanning chemical synthesis by means of simple enzymatic systems to multi-organism co-culture

anaerobic digestion systems for bio-waste treatment. The variety of applications belonging to this

field makes it difficult to categorize the use of core technologies relevant to bioprocessing, and the

benefits of making such distinctions is debatable. Nevertheless, it is important to define boundaries

for the topic being discussed and a bioprocess definition is therefore needed. Throughout this work,

the term bioprocess refers to all of those processes that envision i) the treatment of a biological

feedstock, ii) the use of a bio-based catalyst, and iii) the manipulation of microorganisms (Liu, 2017).

These descriptors unite bioprocesses that share some fundamental aspects such as feedstock

variability, biological systems modelling and microbial homeostasis.

High yield and selectivity, process intensification, reduction in toxic and expensive catalysts,

use of mild reaction conditions, and the exploitation of waste materials represent some of the main

benefits of bioprocesses over traditional manufacturing approaches (Liguori & Faraco, 2016; Sy et al.,

2018; Xie et al., 2019). As such, industrial bioprocessing is one of the fastest growing industrial sectors,

with estimates for projected global market value around 360 billion GBP by 2025 (National Plan for

Industrial Biotechnology, 2013). Evidence of the increased importance of this field is given by the many

bioprocesses already adopted in industrial manufacturing, including the synthesis of biofuels and

bioplastics ("Industry progress on UCO sustainability for UK biodiesel production", 2019; Sanctis,

2016), waste recovery from different types of residues ("Biodiesel", 2019; "Industry progress on UCO

sustainability for UK biodiesel production", 2019) and wastewater purification.

Notwithstanding the above, growth of biomanufacturing industries has been hindered by

multiple problems intrinsic to bioprocesses. Inconsistent product yields, non-uniform operational

conditions, and maintenance of microorganism homeostasis need urgent attention to allow wider

adoption of bioprocesses across the industrial sector. The efficiency of existing technologies has

increased dramatically in recent years (Goldrick at al., 2019), but issues such as process consistency

and long operation times remain as major challenges. Such problems often arise from the

physiological limits of the microorganisms and biocatalytic systems employed, but equally they are

also due to the administration of poor control strategies for the overall bio-production process. For

Giovanni Lorenzon – MPhil Thesis

 13

example, bioprocess systems rely on fine-tuning of process conditions such as temperature, pH,

dissolved oxygen, by-product accumulation, etc. (Fernández-Naveira et al. 2017; Gehan et al., 2019;

Pachauri et al., 2017). Similarly, modified microorganisms require metabolic control, since the

biological burden imposed by the expression of additional genes inevitably leads to the formation of

low-(or non-)producing variants (Rugbjerg & Sommer, 2019). For these reasons, further development

of current control technology is mandatory for the scale-up of industrial biomanufacture.

The following work focuses on two elements playing a key role in the design of effective

bioprocess control strategies: measurement systems and genetic-level control. Specifically, the

possibility of combining PTR-ToF-MS with optogenetic control is addressed: the former possesses high

sensitivity and specificity over real-time measurements, while the latter allows for externally tunable

genetic control. Proving the feasibility of this type of approach is the ultimate goal of this dissertation.

1.2. Innovative measurement techniques

Robust and reliable measurement techniques are essential to the design and implementation

of a successful control strategy. Real data availability dictates control strategy structure and the lack

of measurable parameters undermines the efficiency of any conceivable control solution (Holzberg et

al., 2018). From the measurement perspective, bioprocesses are inherently challenging systems and

are characterized by troublesome features. For example, bioprocesses have specific strict sterility

requirements, operate under high levels of agitation, often have gritty/opaque environments with

suspended solids, can be run with multiple phase configuration, and are generally ruled by stricter

regulation policies than traditional chemical processes (Alford, 2006; Holzberg et al., 2018). In addition

to this, many of the required measurements involve quantification of intermediates, enzymes, and

inhibitors related to microbial activity. Also, in order to be suitable for control implementation,

measurements must ensure high levels of accuracy and (quasi-) real-time acquisition. For all of these

reasons, the adoption of control routines for bioprocesses based on novel measurements has been

slow to emerge. Examples of successful case studies are available in the literature (Chauvatcharin,

1995; Ferreira et al., 2001; Lidgren et al., 2006; Maciejewska et al., 2006; Moeller et al., 2011;

Sagmeister et al., 2013; Yuhong, 2003), but recent contributions focus on sensors for bioprocess

monitoring rather than sensors for controlling them (although they may be useful for both purposes).

Holzberg and his co-workers (Holzberg et al., 2018) reviewed the present state of sensor

technology in the biomanufacturing industry, with a focus on the transition from batch to continuous

processes. Their work analyses the most established sensors available, categorizing them by their

measurement rationale (i.e. either optical or electrochemical).

Giovanni Lorenzon – MPhil Thesis

 14

1.2.1. Proton Transfer Reaction Mass Spectrometry (PTR-MS)

Mass Spectrometry is a well-established analytical technique that has become the mainstay

analysis approach for numerous applications across various research landscapes. New methodologies

for the use of mass spectrometry are constantly under development, widening the range of

applicability of this technology.

One promising research field is represented by PTR-MS. This specific MS configuration is based

on a mild ionization reaction carried out by hydronium ions through proton transfer, resulting in low

levels of sample fragmentation and thus allowing for the detection of the molecular ion and aiding

identification of unknown species (see Figure 1.1). Proton transfer ionization with hydronium ions is

governed by a selection rule which states that only analytes with a proton affinity greater than that of

the ion source (i.e. water in most cases) can be ionised. A great advantage of PTR-MS is that common

air constituents (N2, O2) have lower proton affinity than water and do not react, thus no diluting

buffer gas is required.

This makes PTR-MS highly applicable to the detection of volatile compounds within bioreactor

headspace through direct extraction of the ‘air’ to the mass spectrometer detector and has

considerable potential for bioprocess control purposes (Blake, 2009; Romano, Capozzi, Spano, &

Biasioli, 2015), leading to interesting applications of this technology, especially if coupled to a Time of

Flight (ToF) mass analyser, which offers high sensitivity for the detection of a broad range of masses.

Figure 1.1. Schematics of a traditional PTR-MS instrument consisting of an ion source, an ion source gas (H2O) port and a drift
reactor constructed by a series of ring electrodes. Adapted from TOFWERK AG website (Tofwerk AG, 2020).

Giovanni Lorenzon – MPhil Thesis

 15

Benozzi and co-workers (Benozzi et al., 2015) employed PTR-ToF-MS to monitor a yogurt

fermentation process. Over 300 substance-related peaks were detected during the analyses, although

just 13 showed a statistically significant difference between the tested batches. Most of these

compounds strongly contribute to yogurt flavor, and therefore have an important role in product

quality evaluation. PTR-ToF-MS is a promising method to screen fermentation progression; it also has

potential applications in the control process trajectory to adjust final quality. Specific interest should

be given to the detection limits achieved, which resulted in tens of ppbV without the need of any

chromatographic separation.

As for what is reported in literature, PTR-ToF-MS technology has not yet been exploited in

control engineering, but this is a promising area for future investigation.

1.3. Genetic embedded control

Biological systems are highly regulated. Consequently, all living cells have countless control

systems that enable preservation of homeostatic conditions. Deeper insight of natural control

strategies and an ability to implement iterative design, build, test and learn (DBTL) synthetic biology

cycles should enable molecular level bioengineering of new control loops for industrial bioprocesses

(Chen et al., 2013). This “hard wiring” in the cell of next generation control systems – for example, the

insertion of genetic switches that respond to internal cell-based stimuli – will open up new

opportunities for the control of industrial bioprocesses.

Kobayashi and co-workers have designed a hard wired, genetically encoded control system

(Kobayashi et al., 2004). Cell programmability was achieved by borrowing a genetic toggle switch

design and rearranging it in a modular fashion. Their system comprised three modules: 1) a signal

detection module, 2) a regulatory module, and 3) an output module. In variants of the basic design,

different elements can be used in each module. This not only makes the cells programmable but also

enables implementation of this modular design in a number of different settings. An important aspect

of the overall design strategy is the response of the system to endogenous stimuli. In other words, the

signal detection modules respond to endogenously synthesized molecules. This is distinct from prior

studies in which genetic switches were created that respond to external stimuli, for example externally

added inducer molecules (Gardner et al., 2000). Signal detection modules that respond endogenously

to either i) DNA damage or ii) quorum-sensing activated at a specific population density, were used to

demonstrate the regulatory potential of these next generation internal control systems. A bimodal

Giovanni Lorenzon – MPhil Thesis

 16

genetic toggle switch, which is resistant to noise in the system, was used as the regulatory module

(Gardner et al., 2000). Output modules used were either green fluorescent protein (GFP) expression

or biofilm production. High sensitivity to DNA damage (based on the detection of single-stranded DNA)

and the ability to switch targeted output production back and forth depending on population density,

were characterized by these control systems. This is an important milestone in the design of next

generation control systems, setting out design principles for building generic tools that enable

implementation of internal cellular control mechanisms. In principle, these systems offer feedback

control with an on/off policy: when the controlled parameter overcomes a fixed threshold level

production is deactivated; then, it is restored once the control parameter falls below this threshold

level. However, outputs were found to be sensitive to initial system conditions and the output profiles

observed did not attain a constant value.

A stable profile of the controlled output was obtained in a similar control strategy

implemented by You and co-workers (You, 2004). They exploited the same signal detection module

used in the quorum-sensing system described above in order to track population density. The output

module was designed to produce a “killer gene” (CcdB, a cytotoxic protein). Cell growth is prevented

by the synthesis of CcdB once the population density reaches a fixed threshold. This provides a

constant level of microbial cells and thereby stabilizes the microbial population. The effectiveness of

the strategy was demonstrated against an uninduced OFF-circuit control. In this control, the microbial

growth curve has a typical exponential profile, followed by a stationary phase when nutrients are

depleted. The induced ON-circuit culture overlaps perfectly with the OFF-circuit control in the first

part of the exponential phase. However, once population density reaches about 108 colony forming

units per milliliter of culture (CFU/mL), the rate of growth slows and the growth curve enters an

oscillation phase. Over a 17 h period, these oscillations are slowly damped and eventually disappear,

giving way to a constant population level for the remaining experiment (conducted over about 30 h).

Any deviation from expected cell densities is below 5% during this phase illustrating the attainment

of a constant microbial cell population. Similar control strategies have been reported (Atkinson, 2003;

Becksei, 2000), but without prolonged stability of the controlled parameter. The observed oscillations

are significant – the population density increased two-fold from floor to peak value – and the time

delay to reach a stable cell count is high (several hours). Further DBTL cycles could in principle improve

and/or modulate these features. Also, the study focuses on population control, without offering any

aperture on controlling the expression of specific genes. The latter will likely be important in the

design of control systems for industrial bioprocesses.

Giovanni Lorenzon – MPhil Thesis

 17

The work of Aoki and co-workers (Aoki et al., 2019) explores further the potential application

of in vivo control mechanisms. They regulate either a protein of interest or biomass accumulation by

means of a genetically encoded feedback loop. Important to this design is the use of a pair of s and

anti-s factors SigW and RsiW (Figure 1.2). RsiW has the capacity to bind to – and inactivate – SigW.

Both SigW and RsiW can be used to create an antithetic feedback motif (i.e. the two factors play

opposite roles, the former up-regulating expression, the latter down-regulating it), which the authors

argue is needed for robust adaptation to disturbances and set-point changes. They studied two

targeted gene expression systems: i) fluorescent protein expression and ii) metE expression, which is

required for methionine biosynthesis, cell viability and consequent biomass accumulation. Expression

of these systems was directly proportional to the synthesis of the positive regulator of expression

RsiW, which annihilates its antithetic SigW. As SigW works as a positive regulator for the expression

of the target gene(s) of interest (GoI), this system acts as a stabilizer for productivity. It successfully

rejects applied disturbances: upon a 50% output change in the open loop system, the closed loop

ensures deviation < 25% and full oscillation damping in about 7 h. In principle, should it be required,

this system could also be modulated through the use of inducer molecules (Figure 1.2), for example

to impart control of TF1 synthesis using external inducers. This could be used for adjusting the position

of equilibrium of the overall control system.

Giovanni Lorenzon – MPhil Thesis

 18

Figure 1.2. Generalized Aoki and co-workers approach to achieve genetically-encoded in vivo feedback control (Aoki et al.,
2019). A constitutively expressed transcription factor (TF1) regulates the expression of SIGW. In turn, SIGW induces the
expression of both a second transcription factor (TF2) and a gene of interest (GOI). To close the loop, TF2 regulates the
expression of RSIW, which annihilates with SIGW. The rationale is that the more SIGW is synthesized, the more GOI and RSIW
are produced – up to the level that all SIGW is annihilated and GOI concentration reaches stability. In principle, the approach
could be modified to impart control of TF1 synthesis using external inducers. This could be used for adjusting the equilibrium
of the overall control system.

1.3.1. Optogenetics

 The use of optogenetics has emerged as one of the most promising recent strategies to

implement genetic embedded control. The triggering of photosensitive switches that respond in an

accurate and precise manner to specific wavelengths of light in principle could enable the coupling of

in vivo and in silico control mechanisms. There are numerous advantages in implementing such an

approach, including the high temporal and spatial precision obtained, the ability to achieve target

specificity and good reversibility (i.e. the capability of the optogenetic switch to revert to the initial

state after light exposure) (Bacchus & Fussenegger, 2012; De Mena et al., 2018; Olson et al., 2014;

Zhang & Cui, 2015). Especially important for the high-level production of small molecules and other

products is the potential to gain “real-time” control of production using optogenetics coupled to real

time monitoring of product build up. This could be used to protect against over-accumulation of toxic

compounds. These would be important milestones in the implementation of tunable in vivo control

strategies that would pave the way to numerous further developments. The tuning of such systems,

Giovanni Lorenzon – MPhil Thesis

 19

however, would be complex and case dependent. We consider below investigations carried out on in

silico control systems applied to genetically embedded switches as the first steps towards these goals.

Zhao and co-workers (Zhao et al., 2018) employed a light-activated transcription factor and

its corresponding promoter in a system termed “OptoEXP”. This was used to gain control for the

expression of a particular gene of interest (GoI). The strong dark-to-light expression difference is a

specific advantage of this configuration. Studies conducted with green fluorescent protein

demonstrated a 43-fold increase in expression when light is activated with respect to dark conditions.

Of particular interest is the realization of both inducible and repressible systems starting from an

inducible one. Using an antithetic motif (similar to that discussed above for Aoki and co-workers

decsibed above), light is used both to induce expression of a gene and to halt expression of another.

Effectively, two different systems are generated: i) an inducible-only system by placing the GoI after

the OptoEXP promoter, inducing its expression when light is switched on; (ii) an inducible-repressible

system by placing under the regulation of OptoEXP a GoI and an antithetic transcription factor that

annihilates the one inducing the expression of a second GoI. In this way, light induces the expression

of the first GoI and prevents expression of the second GoI, while darkness acts the other way round

(Figure 1.3).

The second configuration was applied to the enhancement of isobutanol production by S.

cerevisiae. As ethanol is one of the main by-products, repression of pyruvate decarboxylase (PDC) is

expected to reduce its production. However, total repression of that pathway would prevent growth

of yeast on glucose, with consequent impact on biomass accumulation. The inducible-repressible

system was therefore exploited to express PDC under light conditions, and favor isobutanol

production under dark conditions. This strategy achieves the balancing of microbial growth and

isobutanol production. During the dark period, light pulses allowed for energy production to maintain

metabolism. By optimizing such pulses and other growing conditions, this approach achieved a

production titer of 8.49 g/L isobutanol, 5-fold higher production compared to the best previous

strategies.

Giovanni Lorenzon – MPhil Thesis

 20

Figure 1.3. Generalized Zhao and co-workers control strategy through optogenetic switch (Zhao et al., 2018). (A) Inducible-
only system: light input allows for the activation of the optogenetic transcription factor (OTF); this induces the expression of
the gene of interest (GOI). (B) Inducible-repressible system: light induces the production of a first GOI (GOI1) and the anti-
transcription factor (aTF); the latter annihilates the constitutively expressed transcription factor (TF), so that the expression
of a second GOI (GOI2) is not induced. Under dark conditions, GOI1 and aTF are not synthesized, hence GOI2 can be expressed.

The work of Zhao and colleagues demonstrates the potential application of optogenetics to

bioprocess regulation, proving that it is possible to implement and articulate modulation strategies at

the same time. The aim of the work was to maximize productivity levels, but no hybrid in vivo – in

silico control policy has yet been applied to this system.

Currently, the only available example of a hybrid in vivo – in silico control is that reported by

Milias-Argeitis and co-workers (Milias-Argeitis et al., 2016; Milias-Argeitis et al., 2011). Their

innovative approach led to the design of the first optogenetic-based feedback control to fully regulate

the production of a gene of interest in E. coli, in this case a fluorescent protein. The adopted

configuration employs a switch triggered by green and red light, resulting in expression and repression

of the gene of interest, respectively. Control policy was implemented with fluorescence signal and

optical density as the controlled variables, and LED light activation as the manipulated variable (Figure

1.4). Standard Proportional-Integral (PI) control and Model Predictive Control (MPC) techniques were

compared, proving the efficiency of both during disturbance rejection and the superiority of the latter

for set-point tracking. When the desired output is modified over time, its profile was successfully

tracked by MPC policy (< 5% deviation), whereas PI fails to achieve the same level of accuracy. MPC

was better than PI control because there is a lag from the light signal until the point that the

fluorescence signal accumulates sufficiently to enable it to be measured; MPC is able to predict that

lag and respond in a timely fashion.

Giovanni Lorenzon – MPhil Thesis

 21

This last application demonstrates a fully genetically-encoded control strategy. It also serves

to illustrate the benefit of combining different biological and non-biological tools. Optogenetics is

paired with an accurate measurement system (the flow cytometer) and a powerful control technique

(MPC). The combination of these elements allows for an effective strategy, able to keep a complex

biological system under full control, even when tracking a variable set-point.

Figure 1.4. A genetically-encoded in silico feedback control loop. The numbers in the Figure identify individual components as
follows: (1) – Controller; (2) – Peristaltic pump; (3) – Fresh culture media; (4) – Removed culture media; (5) – UV-Vis; (6) –
Bioreactor; (7) – PBS; (8) – Flow cytometer; (Yellow lines) – Culture media streams; (Dashed lines) – Signal streams. Automatic
sampling of culture media allows for optical density measurement of the culture media and fluorescence measurement of the
targeted fluorescent protein expression. Set point for both parameters is then tracked by switching LED light from green
(protein expression) to red (protein repression) by means of an external computer-based controller. Figure based on reported
studies using in silico feedback control (Milias-Argeitis et al., 2016).

1.4. Terpenoids

Terpenoids (or isoprenoids) contribute to more than half of all of the naturally synthesised

compounds discovered to this day, with over 55,000 described structures (Bian et al., 2017; Leferink

et al., 2019; Leferink et al., 2016; Oldfield & Lin, 2012; Xiao et al., 2019). Their presence has been

detected amongst the majority of life forms and their diversity accounts for the many key biochemical

roles they fulfil – from electron transport, to photosynthesis, to membrane structure (Bian et al., 2017;

Kempinski, 2015; Lange et al., 2000; Lombard & Moreira, 2011).

Because of the many possible applications they are prone to (see Table 1.1), terpenoids

represent a commercially interesting product, with a global market worth more than $5 billion

Giovanni Lorenzon – MPhil Thesis

 22

(Leferink et al., 2016). They are commonly used as drugs, supplements, food additives, fragrances,

pesticides and as platform chemicals for further transformation (Ashour et al., 2018; Li et al., 2020;

Tetali, 2019; Vickers et al., 2017). Moreover, recent studies proved their potential as biofuels

precursors, satisfying fundamental requirements like low freezing point, low temperature viscosity,

high energy density and high volumetric net heat of combustion (Mendez-Perez et al., 2017; Mewalal

et al., 2017).

Table 1.1. Examples of largely manufactured terpenoids.

Sector Products

Pharmaceutical Artemisin

Cannibidiol

Nutraceutical Coenzyme Q10

Squalene

Vitamin K

Vitamin E

Food Valencene

Nootkatone

Lycopene

Menthol

Beta-carotene

Commodity polymers Isoprene

Farnesene

Fragrances Limonene

Linalool

Eucaliptol

Geraniol

Fuels Pinene

Limonene

Linalool

Farnesene

Giovanni Lorenzon – MPhil Thesis

 23

Terpenoids are particularly abundant in plants, where they mostly serve as attractors or

repellents of animals and insects (Ashour et al., 2018; Kempinski, 2015). Nevertheless, the extraction

of these compounds from plants is inefficient, subject to seasonality and unsustainable (Wang et al.,

2017; Zhang, 2013). Currently, one of the main industrial sources of terpenoids is turpentine oil, a by-

product of the paper industry, from whose distillation many pinenes are recovered – which can be

subsequently transformed into other terpenes (Behr & Johnen, 2009; Schwab et al., 2013). The second

biggest source is represented by citrus oil from citrus juice production, from which limonene is isolated

by distillation (Schwab et al., 2013).

Due to the low efficiency of terpenoids extraction from plants, alternative production

pathways are being investigated and a promising route is given by microbial synthesis (Wang et al.,

2017). Engineered bacterial chassis can feed on an inexpensive, renewable carbon source and exploit

a specifically designed enzymatic pathway to synthesise several terpenoids (Gupta & Phulara, 2015;

Tippmann et al., 2013).

Terpenoids are naturally synthesised from the C5 isoprenoid precursor isopentanyl

diphosphate (IPP) and its isomer dimethylallyl pyrophosphate (DMAPP). These compounds are the

final products of either the methylerythritol 4-phosphate pathway (MEP) or the mevalonate pathway

(MVA), which are reported in Figure 1.5 (Leferink et al., 2016; Oldfield & Lin, 2012). Condensation of

either of IPP or DMAPP by means of a prenyltransferases leads to the formation of geranyl

pyrophosphate (GPP), which is the precursor of a number of monoterpenes (i.e. characterised by a

C10 structure) (Gao et al., 2012; Oldfield & Lin, 2012). Further condensation with additional

IPP/DMAPP molecules allows for the synthesis of precursors for sesquiterpenes, diterpenes,

triterpines, etc. (Ashour et al., 2018; Oldfield & Lin, 2012).

To conclude the biochemical pathway to terpenes, enzymes belonging to the class of terpene

synthases carry out the last transformation step, bringing about several modifications to the

precursors’ chemical structure, such as cyclisation, hybrid shift, alkyl shift, deprotonation and

reprotonation (Ashour et al., 2018; Kempinski, 2015).

Giovanni Lorenzon – MPhil Thesis

 24

Figure 1.5. MEP (left) and MVA (right) pathways for isoprenoid precursors IPP/GPP synthesis.

Since the MVA and the MEP pathways are included in the genome of several bacteria, both of

these biochemical routes have been heavily investigated in order to engineer microbial terpenes

production (Miziorko, 2011; Oldfield & Lin, 2012). Many successful examples are available in

literature, though the complexity of these pathways can place a hurdle on further improvements (Li

et al., 2020; Rico et al., 2019; Yang et al., 2016). As a matter of fact, the route from glucose to

IPP/DMAPP is formed by a cascade of 18 enzymatic steps: unbalanced/toxic intermediates and rate-

limiting reactions easily compromise the final yield (Liu et al., 2020). As a consequence, many studies

are focusing on the evaluation of alternative paths, such as the isoprenol mediated or

prenol/isoprenol based. Promising results have been achieved for what regards the synthesis of both

hemiterpenes and monoterpenes, with titres as high as 620mg/L for isoprene and 500mg/L for

limonene (Clomburg et al., 2019; Yang et al., 2016). In addition to this, other studies are investigating

Giovanni Lorenzon – MPhil Thesis

 25

on the improvement of terpene synthases, in order to enhance the selectivity towards the production

of single terpenes (Leferink et al., 2016).

1.4.1. Linalool

Linalool is a monoterpene alcohol found across many plant species (e.g. basil, coriander, etc.).

It naturally occurs in two enantiomeric forms (see Figure 1.6), which are characterised by different

aromas as well as physico-chemical properties (Dudareva et al., 2006; Kamatou, 2008; Nakano et al.,

2011).

Figure 1.6. The two naturally occurring enantiomeric forms of linalool.

Naturally, it is employed by plants as insect repellent and germicide, while industrially it is

used in fragrances, hygiene products, household cleaners, food, and beverages. Linalool has also been

used in traditional medicine, proving to act as an anti-inflammatory, anti-oxidant, anti-nociceptic, anti-

depressant and potential anti-tumoral compound (Cao et al., 2017; Karuppiah et al., 2017; Lapczynski

et al., 2008; Zhang, 2013). In addition to this, more recent studies are benchmarking its potential use

as a bio-based fuel precursor. As a matter of fact, linalool’s structure is suitable to undergo ring-closing

metathesis reaction, yielding to rocket and jet engine propellant RJ-4 (Hoye, 1999; Meylemans et al.,

2011).

Especially due to this newly discovered potential, studies have focused on designing an

innovative production process. Currently, linalool’s most common sources are: (i) recovery from

linalool-producing plants, (ii) synthesis from pinene isolated from turpentine oil, and (iii) synthesis

from petroleum derivatives (Kamatou, 2008; Pommer, 1975). Novel microbial pathways have been

explored, engineering bacteria, yeasts, and fungi (e.g. E. coli, S. cerevisiae, Yarrowia lipolytica) (Cao et

al., 2017; Karuppiah et al., 2017; Mendez-Perez et al., 2017; Zhang, 2013). According to literature, the

Giovanni Lorenzon – MPhil Thesis

 26

highest production value was achieved by Mendez-Perez and collaborators, who designed a linalool

production strategy exploiting heterologous MVA pathway combined with linalool synthase from

Mentha citrate and reported titres as high as 505mg/L over a 72h fermentation period (Mendez-Perez

et al., 2017).

Despite not achieving commercially feasible productivity, such technology represents a

reliable and well-known pathway, with a great potential to future improvements. Live measurement

of intermediates and genetically tuneable control over the expression of selected parts of the

enzymatic cascade could dramatically improve the overall yield. For these reasons, linalool has been

selected as the most suitable candidate for the following work.

1.5. Summary

Industrial biomanufacture is a fast-growing market, but its further development is hindered

by process inconsistency and requirement of strict supervision. Adequate process control strategies

need to be developed to mitigate these issues, nevertheless accurate monitoring of bioprocesses is

difficult to achieve, along with a fine control of the biological vectors.

 In this thesis, it is proposed to combine real-time monitoring with PTR-ToF-MS on one side,

with DNA-embedded optogenetic control on the other. The former allows for sensitive live headspace

measurement of volatile compounds (down to ppt concentrations), while the latter ensures light-

controlled gene expression. The feasibility of this approach will be tested on E. coli based synthesis of

linalool, a monoterpene with widespread applications that has the potential to be used as a biofuel

precursor.

Giovanni Lorenzon – MPhil Thesis

 27

2. Project aims

The aims of this project can be summarised as follows:

• Optimise the plasmid used for linalool pathway integration in E. coli by removing

homologous regions, in order to enhance production consistency;

• Execute preliminary tests to evaluate detection capability of PTR-ToF-MS towards

linalool both in vials and in 1L bioreactors;

• Understand PTR-ToF-MS data output and develop suitable tools to manage, interpret

and store it;

• Build a data pipeline to handle live measurement of bioprocess headspace;

• Design a User Interface (UI) to manage measurement data;

• Simulate optogenetics control of linalool producing bacterial cultures and test

stability of a Proportional Integral Derivative (PID) control routine;

Giovanni Lorenzon – MPhil Thesis

 28

3. Materials and methods

3.1. Strain engineering

3.1.1. Reagents

Ethyl acetate, sec-butyl benzene, nonane, anhydrous magnesium sulphate, R-(-)-linalool and

terpene mixture were purchased from Sigma Aldrich. Agarose, carbenicillin, isopropyl β-D-1-

thiogalactopyranoside (IPTG), Terrific Broth (TB) phosphate buffered and Luria Broth (LB) were

purchased from Formedium. SOC outgrowth medium and nuclease-free water were purchased from

New England Biolabs (NEB). Glucose was purchased from Fisher Chemical.

All media were prepared according to supplier recommendation and autoclaved before use.

Solution stocks of carbenicillin (100 mg/mL), IPTG (100 mM) and glucose (40 %) were prepared, filter

sterilized (Sartorius MiniSart 0.22µm) and kept at -20 °C freezer (except for glucose). Carbenicillin was

used at a concentration of 100 μg/mL both in liquid media and in agar plates.

Monarch Plasmid DNA Miniprep kit from NEB was used for plasmid isolation, NucleoSpin Gel

and PCR Clean-up kit from Macherey-Nagel was used for DNA purification from agarose gel. Standard

suppliers’ protocols have been followed.

3.1.2. Equipment

Eppendorf MiniSpin centrifuge was used for pelleting 2 mL tubes, Eppendorf ThermoMixer C

was used for shaking and heating 2 mL tubes, Biometra TRIO thermocycler was used for all Polymerase

Chain Reactions (PCRs), Thermo Scientific NanoDrop 2000 was used for determining DNA

concentrations, Infors HT Multitron incubation shaker was used for culture growth and linalool assays,

BioRad Gel Doc EZ imager was used for imaging DNA agarose gels, Varian Cary 50 Bio

Spectrophotometer was used for measuring Optical Density measurements at 600nm (OD600),

Agilent Technologies 7890B GC equipped with an Agilent Technologies 5977A MSD GCMS was used to

assess linalool concentration in cultures.

Giovanni Lorenzon – MPhil Thesis

 29

3.1.3. Genes

Linalool pathway – comprising MVA, GPP synthase (GPPS) and linalool synthase (LinS) – was

cloned in a single-plasmid, as reported in Leferink at al. (Leferink et al., 2016). This plasmid is reported

in Table 3.1. Primers employed are reported in Table 3.2.

Table 3.1. Employed plasmids.

Plasmid name

Origin of replication,

antibiotic marker,

promoter

Genes Reference

pMVALinS p15A,

ampicillin,

lacUV5

EcAtoB, SaHMGS, SaHMGR, ScMK, ScPMK,

ScPMD, EcIDI, AgtrGPPS, bLinS

Leferink et

al., 2016

Table 3.2. Employed primers.

Primer name Sequence

pMVALinStoNR2frag1.F CCATGTCTCTGCCATTCC

pMVALinStoNR2frag1.R GTCGGCGAAAAAACCCC

pMVALinStoNR2frag2.F GGTTTTTTCGCCGACTGCA

pMVALinStoNR2frag2.R AAGGGAGAGCGTCGAGATCC

pMVALinStoNR2frag3.F TCGACGCTCTCCCTTATGC

pMVALinStoNR2frag3.R CTTATTGTTGTCTAATTTCTTGTAAAATATGTTCC

pMVALinStoNR2frag4.F GACAACAATAAGGCGAATTGATCTGGTTTGACAGC

pMVALinStoNR2frag4/5.R ATGGCAGAGACATGGTTATTTCCTCC

pMVALinStoNR2frag5.F TAGACAACAATAAGGCTGTTGACAATTAATCATCC

pMVALinStoNR1frag6.F CAGCGGTTAAGGATCCTTCCTCGCTCACTGACTCG

pMVALinStoNR1frag7.R TGATCTCCCTCCTAGATCCTTAAGACG

pMVALinStoNR1frag8.F CTAGGAGGGAGATCATATGAGC

Giovanni Lorenzon – MPhil Thesis

 30

pMVALinStoNR1frag9.R GATCCTTAACCGCTGCTACG

pMVALinStoNR2isol.F GCGTTACGATCAAGATCGTCAA

pMVALinStoNR2isol.R GCTGAACTTGATGTTCTTTGCG

check.F CGTGTTTGTGATCTGGTGC

check.R GTATCTTCCTGGCATCTTCCAGG

3.1.4. Strains

Competent E. coli NEB-DH5α cells (T1 phage resistant and endA deficient) from NEB were used

both for plasmid amplification and expression.

3.1.5. Agarose gel protocol

DNA separation was carried out by agarose gel electrophoresis. Agarose gel was prepared at

a concentration of 2% for DNA fragments shorter than 1500bp, 0.8% for longer fragments. Safe View

from NBS Biologicals was used as nucleic acid stain in a concentration of 0.01% v/v. Subsequently,

DNA samples were dyed using Purple Loading Dye from NEB in a proportion of 1:6 of dye and sample.

Gel placed in TAE buffer (4.84g of Tris, 1.142mL of acetic acid, 2mL of 0.5M EDTA in 1L of water at a

controlled pH 8.0) was loaded and run for 1h at 100V. ‘100bp’ DNA ladder was used for DNA fragments

shorter than 1500bp, ‘1 kb plus’ for longer fragments (both from NEB).

3.1.6. Gene sequencing

DNA fragments and plasmids were sequenced using Eurofins Genomics Tubeseq service. For

every 800bp to be sequenced, two 2mL vials were filled with 15μL of plasmid DNA in a concentration

of 50-100ng/μL mixed with 2μL of either sequencing primer at 15pmol/μL.

3.1.7. Plasmid preparation protocol

Variations on pMVALinS to remove homologous regions were obtained through PCR and in-

fusion cloning from the original plasmid. Three variations were designed: (i) pMVALinS.NR1, (ii)

Giovanni Lorenzon – MPhil Thesis

 31

pMVALinS.NR2a, and (iii) pMVALinS.NR2b. The cloning protocols to synthesise them are reported in

Figure 3.1.

PCRs were executed in 200µL PCR tubes employing Q5 High-Fidelity Hot Start DNA Polymerase

Kit from NEB. Reagents amounts and thermocycling conditions are a reported in Table 3.3 and Table

3.4, respectively. PCR products concentration was checked to be higher than 20ng/µL.

In-fusion cloning was carried out with In-Fusion HD cloning Kit from Takara Bio. DNA

fragments were designed to have 15bp overlap and were obtained by PCR amplification, agarose gel

electrophoresis and final gel extraction. An aliquot of DNA material was then transferred into a 200µL

PCR tube, following kit supplier’s recommended amounts (~10ng for fragments < 0.5kbp, or ~50ng for

fragments 0.5kbp to 10kbp). The mix was combined with 2µL of In-Fusion HD Enzyme Premix and

volume was adjusted to 10µL using nuclease-free water. The tube was incubated for 15min at 50°C

and eventually placed on ice.

In-fusion cloned plasmids were used to transform competent E. coli cells (see 3.1.8 below)

and plate-cultured overnight. Colony PCR was executed on plate colonies to check for appropriate

sequence removal and positive colonies were used to carry out the linalool assay. The primers used

to carry out the colony PCRs are: check.F + check.R for pMVALinS.NR1, pMVALinStoNR2isol.F +

pMVALinStoNR2isol.R for pMVALinS.NR2a, and pMVALinStoNR2isol.F + pMVALinStoNR2isol.R for

pMVALinS.NR2b. Gel images and expected amplified fragment sizes are reported in Figure 3.2.

Table 3.3. PCR reagents amounts.

Component Amount (for 50µL volume)

5x Q5 Reaction Buffer 10µL

10mM NTPS 1µL

10µM Forward Primer 2.5µL

10µM Reverse Primer 2.5µL

Template DNA 0.1 - 0.5ng

Q5 High Fidelity DNA

Polymerase

0.5µL

Nuclease-free water To 50µL

Giovanni Lorenzon – MPhil Thesis

 32

Table 3.4. 3-steps PCR thermocycling conditions. TANNEALING was calculated with TM calculator online from NEB.

Step name Temperature (°C) Time

Initial denaturation 98 30s

Cycling (30x):

Ø Denaturation 98 10s

Ø Annealing TANNEALING 30s

Ø Extension 72 20s/kbp

Final extension 72 2min

(a)

Giovanni Lorenzon – MPhil Thesis

 33

(b)

Giovanni Lorenzon – MPhil Thesis

 34

(c)

Giovanni Lorenzon – MPhil Thesis

 35

(d)

 Figure 3.1. Original pMVALinS plasmid map and cloning strategies to obtain 3 homologous-region-free alternatives. (a)
Original pMVALinS map. (b) Cloning strategy to obtain pMVALinS.NR1. (c) Cloning strategy to obtain pMVALinS.NR2a. (d)
Cloning strategy to obtain pMVALinS.NR2b.

Figure 3.2. Colony PCR gels of the 3 pMVALinS variations. Ladders are on the left side, while fragments on the right. Expected
fragment length is reported.

Giovanni Lorenzon – MPhil Thesis

 36

3.1.8. Transformation protocol

Plasmids were transformed into E. coli strains according to supplier’s protocol. Briefly, cells

from -80°C freezer were thawed on ice for 10min and approximately 50ng of plasmid DNA was added

to 50μL of cell mixture. Cells were placed on ice for 30min, heat shocked at 42°C for 30s and placed

on ice for 5min. 250μL of room temperature SOC outgrowth medium was added into the mixture and

cells were incubated at 37°C for 1h at 190rpm. Mixture was plated on 2 LB-agar plates with 1‰

carbenicillin in the amounts of 25μL and 250μL and incubated overnight at 37°C.

3.1.9. Linalool production assay protocol

3.1.9.1. Small-scale fermentation

Linalool production assay was executed according to Leferink at al. (Leferink et al., 2016).

Glass vials (28mL in volume) containing 3mL TB medium supplemented with 0.4% glucose and 100μg/L

carbenicillin were inoculated with overnight plate-cultured colonies from freshly transformed cells.

Vials were then placed in shaking oven at 37°C and 190rpm. Upon attainment of 0.4 OD600 (i.e. 4 to

5h), cells were induced with 50μM IPTG, a nonane overlay was inoculated in the proportion of 1:5 v/v,

and vials were incubated for 72h at 30°C and 190rpm.

3.1.9.2. Scaled-up fermentation

-80°C glycerol stock of linalool producing strain was recovered overnight in 5mL TB with

100μg/L carbenicillin at 37°C. The next day, 500µL of recovered culture were used to prepare a 50mL

TB with 0.4% glucose and 100μg/L carbenicillin inoculum, cultured at 30°C until 0.4 OD600. The so-

prepared inoculum was then added to an Infors Multifors 2 1L bioreactor for a total culture volume of

500mL of TB with 0.4% glucose and 100μg/L carbenicillin. The reactor was left to operate overnight

at 400rpm, 25°C, and 0.5Lair/Lmedia·min aeration. The morning after, reactor temperature was

increased to 30°C, until OD600 of 0.4 was reached. Upon attainment of the desired OD, the culture

was induced with 50μM IPTG and another aliquot of carbenicillin was added to a final concentration

of 100μg/L. Fermentation was then carried out for 30h.

Giovanni Lorenzon – MPhil Thesis

 37

3.1.9.3. Linalool quantification

For small-scale cultures, upon completion of the fermentation process vials were collected

and centrifuged at 13,000rpm for 2min, in order to allow for phase separation of the water and organic

layers. Nonane was then transferred into 2mL tubes and dried over anhydrous magnesium sulphate.

Equal volumes of dried sample and 0.1% sec-butylbenzene (used at internal standard) in ethyl acetate

were mixed in glass chromatography (GC) vials.

Linalool quantification was carried out through GC-MS analysis. The products were separated

on a DB-WAX column (30m length x 0.32mm internal diameter, 0.25μM film thickness, Agilent

Technologies). The injector temperature was set at 240°C with a split ratio of 20:1 (1μL injection). The

carrier gas was helium with a flow rate of 1mL/min and a pressure of 5.1psi. The following oven

program was used: 50°C (1min hold), ramp to 68°C at 5°C/min (2min hold), and ramp to 230°C at

25°C/min (2min hold). The ion source temperature of the mass spectrometer (MS) was set to 230°C

and spectra were recorded from 50m/q to 250m/q.

Linalool concentration was extrapolated on the basis of the ratio between the peak areas of

linalool and sec-butylbenzene, according to Equation 3.1:

Equation
3.1 !!"# =

#!"#
#$%&&

∙ %'(! (3.1)

where !!"# is the concentration of linalool, #!"# is the linalool peak area, #$%&& is the sec-

butylbenzene peak area, and %'(! is the correlation coefficient obtained from calibration

against spiked linalool samples (Guiochon & Guillemin, 1988). Effectively, %'(! is the slope

of the linear fitting of the calibration points reported in Figure 3.3 and its value is 4.6693·10-4.

Final concentration value is expressed in mgLINALOOL/LOVERLAY.

To quantify linalool concentration in scaled-up cultures, 1mL aliquots were drawn from the

bioreactor and subsequently mixed with 200μL (i.e. 1:5 v/v) nonane to extract the terpene in the

organic phase. Then, linalool analysis was carried out through GC-MS exactly as discussed above,

although its value is representative of the whole culture media volume, so it must be expressed in

mgLINALOOL/L (while if expressed in mgLINALOOL/LOVERLAY its value would be 5-fold higher).

Giovanni Lorenzon – MPhil Thesis

 38

Figure 3.3. Linalool calibration for GC-MS analysis.

3.2. Terpenes measurement through PTR-ToF-MS

3.2.1. Experimental setup

Terpenes detection has been assessed by PTR-ToF-MS measurements. The equipment used

was a Vocus PTR-ToF-MS from TOFWERK, which was used either alone or in combination with an ARI

Modular GC from Aerodyne Research, while sample handling was carried out by means of a PAL RSI

Series II Autosampler from PAL System. Both the chromatographic and sampling modules were

controlled through Acquility, the Vocus GUI.

Vocus voltages are reported in Figure 3.4, reagent flowrate was set at 20sccm, and zero-gas

flowrate was kept either at 0sccm for vial detection through GC-PTR-ToF-MS or at 40sccm for

bioreactor detection via PTR-ToF-MS.

When using the GC module, samples were loaded on 20mL glass vials and separation was

carried out through a DB-WAX column (30m length x 0.32mm internal diameter, 0.25μM film

thickness, Agilent Technologies). Injection temperature was variable, with a split ratio of 10:1

(0.2SCCM for 60s of sample purging, for a total of 0.2cm3 injection). The carrier gas was helium with a

flow rate of 1.8SCCM and a pressure of 5.1psi. The following oven program was used: 40°C (1min

hold), ramp to 60°C at 13.3°C/min, ramp to 175°C at 46°C/min, ramp to 205°C at 18°C/min, ramp to

225°C at 16°C/min, and ramp to 235°C at 12°C/min (4min hold). The ion source temperature of the

mass spectrometer (MS) was set to 150°C and spectra were recorded from 1m/q to 216m/q.

When sampling bioreactor headspace directly with the Vocus (i.e. no GC step included), a

heated transfer line was used to connect reactor and MS, whose temperature was kept at 50°C.

Giovanni Lorenzon – MPhil Thesis

 39

Figure 3.4. TOFWERK PTR-ToF-MS Vocus voltage settings.

3.2.2. Design of Experiment

Design of Experiment (DoE) technique (Montgomery, 2013) was used to assess linalool

measurement variability in vials through GC-PTR-ToF-MS. Face-centred central composite design was

followed (Montgomery, 2013), employing 2 quantitative parameters – injection temperature and

liquid volume – and 2 qualitative parameters – solvent type (TB, nonane, TB+nonane) and sample

incubation (incubation, non-incubation). Employed solvents were TB, nonane, and TB + nonane

(proportion 5:1 v/v), while 1h-incubation at 30°C was compared with no incubation (i.e. vial headspace

sampled at room temperature). The measured output was signal/noise ratio of linalool, whose

concentration was kept at a constant value of 10ppm throughout all of the runs.

11 runs were executed for each qualitatively different condition (i.e. 6 configurations),

including a central point triplicate. Experimental design and summary of the experiments conducted

are reported in Figure 3.5 and Table 3.5, respectively.

Giovanni Lorenzon – MPhil Thesis

 40

Table 3.5. Summary of experimental runs executed for each qualitatively different configuration.

 Injection temperature [°C] Liquid volume [mL]

 30 0.5

 30 2.75

 30 5

 50 0.5

 50 2.75

 50 2.75

 50 2.75

 50 5

 70 0.5

 70 2.75

 70 5

(1, -1) (1, 0) (1, 1)

(0, -1) (0, 0) (0, 1)

(-1, -1) (-1, 0) (-1, 1)

Par 1

Par 2

(Par 1, Par2)

Figure 3.5. Schematic of face-centred central composite design with 2 quantitative parameters. ‘-1’ and ‘1’ correspond to the
lower and upper limits of the experimental range studied, while ‘0’ is the mid-range value. Central point (0,0) run is carried
out in triplicate.

Giovanni Lorenzon – MPhil Thesis

 41

Coefficient regression was carried out on coded variables, defined in Equation 3.2:

Equation

3.2 !! =
#! − (&'! + ''!)/2
(&'! − ''!)/2

 (3.2)

where !! is the coded variable, #! is the corresponding natural variable (i.e. injection temperature,

liquid volume), and ''! - &'! are the limits of the experimental range of the variable (e.g. 30°C and

70°C for the injection temperature) (Montgomery, 2013). Coded variables are quantitative variables

that are normalised on the basis of their investigation range. The advantage of working with coded

variables is given by an easier readability of the results analysis. As a matter of fact, when assessing

the effect of a coded variable on an observed parameter, the magnitudes of the model coefficients

are directly comparable, since they are dimensionless. Since two quantitative variables were

investigated in this study (i.e. injection temperature and liquid volume), two coded variables are

employed.

Linear regression based on least sum of squared errors was adopted, including single parameter

effects, the interaction effect and the squared single parameter effects, following Equation 3.3:

Equation

3.3 ,- = ." + .# ∙ !# + .$ ∙ !$ + .% ∙ !#!$ + .& ∙ !#$ + .' ∙ !$$ (3.3)

where ,- is the predicted output, .! are the regression coefficients, and !! are the coded variables.

Response surfaces are generated accordingly. In addition to standard single parameter main effects,

It was decided to include interaction effects in order to study a potential influence of either of the

quantitative parameter on the other. Additionally, quadratic effects were considered as well, since

non linearity of the investigated parameters was suspected.

3.3. Monitoring platform and control simulations

BioControl 1.0, the control platform to handle output data from the PTR-ToF-MS, was

designed in MATLAB R2020a, employing the AppDesigner tool. ‘Statistics and Machine Learning’ and

‘Bioinformatics’ toolboxes were used, along with ‘Natural-Order Filename Sort’ script available on

MathWorks website.

Simulations of control stability of optogenetic-controlled bacterial systems were carried out

in Simulink, with support scripts executed in MATLAB R2020a.

Giovanni Lorenzon – MPhil Thesis

 42

3.3.1. General description of BioControl

The main purpose of this project is the realisation of a monitoring platform that will be able

to collect data coming from the live headspace analysis of a bioreactor and elaborate it in order to

provide insight on the liquid concentration of selected target compounds. This information lays the

foundation for future implementation of control strategies, so to improve general bioprocess

performances. Since the use of the PTR-ToF-MS technology is innovative with respect to this particular

application, it is necessary to build an integrated solution that will allow the user to fully exploit the

potential of this setup.

BioControl has been developed with the purpose to offer a software that could import, store,

manipulate and display raw data from a PTR-ToF-MS in real time. It has been programmed in MATLAB

AppDesigner, which consents the development of standalone software programmes that might be

even run remotely on a MathWorks server. So far, its design is able to execute the monitoring function

only, which is also limited to one single target compound. All the reported functionalities have been

tested against suitably generated mock-files first, and then over real experiments too.

3.3.2. Data structure and handling

The datafiles in output from the Vocus PTR-ToF-MS are organised in a Hierarchical Data

Format (HDF) structure and possess the extension ‘.h5’. This type of data is suitable for the storage of

large amount of information, organised in Groups, Datasets and Attributes. The downside of this type

of files is the impossibility to gain access to the information gathered within them until definitive file

closure. Therefore, file saving has been set to be triggered every 30s through Acquility, so to allow

data reading at a rate close to real-time analysis.

Inside of each ‘.h5’ file, ion intensities are stored in 4-dimensional matrixes of size [M x 1 x CS

x TC], where M is the number of recorded masses, CS is the chunk size of the single time cycle (i.e.

number of time points saved at every time cycle) and TC is the number of time cycles measured during

the specific experiment. Usually, M comprises of ~150k mass points (average mass resolution of

0.0014m/q, over a 216m/q range), accounting for the sheer amount of data stored in any ‘.h5’ file

(circa 50MB/min of analysis). TP = CS x TC represents the total number of recorded timepoints (CS x

TC to be intended as the mathematical product between the numbers indicating the lengths of CS and

TC, not as a 2-dimensional matrix with size CS by TC), with an average time resolution of 0.3s. For

every timepoint, an ion intensity value is registered at every measured mass. Despite the fact that CS

Giovanni Lorenzon – MPhil Thesis

 43

should normally be fixed, it can variate between files – though normally attaining a value of 6. The

reason why CS is allowed to change is not clear, nevertheless it must be considered as an unknown

variable when querying an ‘.h5’ file.

In order to interpret the data, the original matrix is rearranged in a bidimensional structure

with size [M x TP]. On the basis of a user-defined mass target and relative neighbourhood, an interval

of rows is extracted and integrated at each timepoint over the selected range of masses. In this way,

a single intensity value is paired to a single time value, thus obtaining a final array with size [1 x TP].

To avoid speed problems and excessive task queuing, data manipulation is carried out only on

selectively extracted data, so to avoid useless time-costing operations. This means that the packages

of raw data imported from the PTR-ToF-MS are not extracted as a whole, but only accessed at the

required spot (e.g. only the data related to the range of the mass target is extracted, maintaining the

other masses’ data compressed).

BioControl runs on the same computer controlling the PTR-ToF-MS, hence ‘.h5’ files are

directly imported and read. By employing a timer callback function (i.e. a MATLAB object capable to

trigger the execution of specific functions in a timed manner), the software recursively scopes for new

available datafiles, extracts the target data to interpret and visualise it, and eventually discards it. A

data buffer of 5min is kept stored at a time, while additional files are deleted. Nevertheless, the

intensity profile over time of the target compound is stored in MATLAB files (i.e. ‘.mat’) for the whole

duration of the experiment.

3.3.3. GUI structure and features

3.3.3.1. Sidebar

BioControl GUI, as reported in Figure 3.6, comprises of a sidebar where:

• It is possible to select which modality to operate with, which could be either

‘Simulation’ or real ‘Sample testing’. Along with recursive data analysis, the former

one triggers a timer for the repeated generation of mock files that will simulate the

expected PTR-ToF-MS output. The latter allows for data analysis and display of real

experimental data from the PTR-ToF-MS.

Giovanni Lorenzon – MPhil Thesis

 44

• Target compound mass needs to be entered, as well as its mass neighbourhood, along

which to integrate the intensity. This allows for the monitoring of a specific compound

(or multiple compounds sharing the same mass).

• A ‘Status’ panel, flagging the current data acquisition, the elapsed time since data

acquisition started, and eventual error messages.

• ‘START’ & ‘STOP’ buttons to trigger data acquisition either from real files or from mock

ones.

Fields in the ‘Monitoring target’ panel needs to be filled with suitable values before starting

an acquisition. In the case of operating in ‘Simulation’ modality, it is required to provide more

information on the ‘Simulation’ tab (see below). Error messages regarding any missing field are printed

in the error log text area.

Figure 3.6. BioControl sidebar and ‘Calibration’ tab.

Giovanni Lorenzon – MPhil Thesis

 45

3.3.3.2. Calibration

The first tab allows to include an experimental calibration, so that the software might directly

convert headspace data into liquid phase concentration of the target compound to be analysed.

Pressing on the ‘Start new calibration’ button, an auxiliary application will be called and a

second window will appear (see Figure 3.7). It features the possibility to define calibration points over

previously recorded datafiles. Effectively, it is possible to pair a user-defined concentration value with

one or more ‘.h5’ files containing the headspace measurement of a sample spiked at that same

concentration. Such experimental point will be then reported on the calibration graph (along with

error bars generated accordingly). Base 10 logarithmic scale is used to plot data, in order to better

visualise concentrations across a large scale (from ppb units to hundreds of ppm).

 Once all of the points are included, it is possible to regress the parameters of a linear fit of

the calibration data (pressing the button on the lower left ‘Linear fit’), which will be shown in the

dedicated text boxes (i.e. ‘Slope’, “Intercept’ and ‘R2’ fields on the bottom of the window). Linear

regression of the parameters is carried out on logarithmic values, as it results in a more balanced fit

of all of the experimental points. A line showing the regressed fit will be also reported on the graph

(see Figure 3.8). Again, it is necessary to specify a target mass and neighbourhood to allow for the

extraction of data specific to the compound of interest (‘Compound central mass (Da)’ and ‘Compound

mass neighbourhood (Da)’ fields on the right side of the window). Not providing such info will trigger

suitable error messages reported on pop-up alert windows.

After regressing the fitting parameters, it is possible to store them along with experimental

points data in an ‘.xlsx’ spreadsheet. Furthermore, in order to test platform functionality, it is possible

to generate a random calibration set by pressing the button ‘Generate mock calibration’. The mass of

the mocked mass will be requested upon generation (see Figure 3.9).

Once an ‘.xlsx’ calibration file is available, it is possible to load it via the BioControl ‘Calibration’

tab, pressing on the button ‘Choose calibration file’ (see Figure 3.6). Importing that, will populate both

the calibration graph and the ‘Calibration parameters’ panel, along with resulting in a green

‘Calibration acquired’ lamp (see Figure 3.10) – mandatory to proceed with data acquisition.

Giovanni Lorenzon – MPhil Thesis

 46

Figure 3.7. BioControl calibration app window – general outlook.

Giovanni Lorenzon – MPhil Thesis

 47

Figure 3.8. BioControl calibration app window – experimental calibration points and linear fitting.

Giovanni Lorenzon – MPhil Thesis

 48

Figure 3.9. BioControl calibration app window – prompt window to provide mass value for the mock calibration set
generation.

Figure 3.10. BioControl ‘Calibration’ tab populated with imported calibration data.

Giovanni Lorenzon – MPhil Thesis

 49

3.3.3.3. Simulation

In the case of the execution of a simulated data acquisition, it is necessary to include additional

data on which mass value would be simulated. Through the ‘Simulation’ tab (see Figure 3.11), in the

‘Simulation parameters’ panel, the user must include the desired time range that each mock-file will

cover (‘Mockfile timespan’) and the mass to be simulated (‘Simulated mass’). As a matter of fact, as

previously mentioned, the expected output of the PTR-ToF-MS consists of a series of ‘.h5’ files, each

containing data of about 30s of operation. This value can be customised by the user to have smaller

or larger mock-files (useful to test performances).

Once data acquisition is started (and therefore mock-file generation is too), intensity data

from each simulated timespan will be recursively reported on the simulation graph (see Figure 3.12).

Figure 3.11. BioControl ‘Simulation’ tab – general outlook.

Giovanni Lorenzon – MPhil Thesis

 50

Figure 3.12. BioControl ‘Simulation’ tab – outlook during simulation.

3.3.3.4. Live monitoring

In the ‘Monitoring’ tab (see Figure 3.13), the acquired data is reported. The top graph shows

the ‘Raw headspace ion count’, which consists of the ion intensity profile for the target mass to be

analysed (each timepoint representing the mass spectrum integrated over the predefined

neighbourhood of the target mass). The bottom graph exploits the provided calibration to display the

concentration in the liquid phase of the target compound, which is displayed as a 2-minutes-rolling

average. Examples of these graphs during acquisition over real data and mock-files are reported in

Figure 3.13 and Figure 3.14, respectively

.

Giovanni Lorenzon – MPhil Thesis

 51

Figure 3.13. BioControl ‘Monitoring’ tab – outlook during live PTR-ToF-MS acquisition.

Figure 3.14. BioControl ‘Monitoring’ tab – outlook during simulation.

Giovanni Lorenzon – MPhil Thesis

 52

3.3.3.5. History import

One additional feature of BioControl is the ‘History’ tab, in which it is possible to import

previous experiments. As a matter of fact, the ‘Monitoring’ tab displays current headspace data over

a window of 10 minutes only, so that this feature is ideal to examine acquisitions in their entirety.

It is possible to import either raw PTR-ToF-MS data (i.e. ‘.h5’ files) or pre-processed data from

previous acquisitions run with BioControl (see upper graph in Figure 3.15), which automatically saves

compressed information about time-signal intensity profile in ‘.mat’ files while operating. In addition

to this, it is possible to analyse more in detail the imported acquisition by means of a zoomed graph

coupled with a scroller and a selector for the time interval one wants to scope (see lower graph in

Figure 3.15).

Ultimately, it is possible to add GC-MS controls to the acquisition history, which can be

manually imported through the button ‘Import GCMS controls’ (see Figure 3.16).

Figure 3.15. BioControl ‘History’ tab – outlook with imported acquisition and GC-MS controls.

Giovanni Lorenzon – MPhil Thesis

 53

Figure 3.16. BioControl ‘History’ tab – detail of pop-up window to manually enter GC-MS controls.

Giovanni Lorenzon – MPhil Thesis

 54

4. Results and discussion

4.1. Plasmid engineering

Linalool production by E. coli transformation with plasmid pMVALinS has proved to be

successful, nevertheless it seems to lead to inconsistent synthesis. As a matter of fact, despite the

adoption of a uniform transformation protocol and a standard analytical assay, each fermentation

round seems to strongly deviate from the others. Data from previous experiments (following the exact

same transformation and fermentation protocols adopted for this work) has been analysed and it

comes to light that standard deviations can be almost as high as the average output values, as shown

in Figure 4.1. Considering the reported 10 batches (three biological replicates), the overall productivity

value lies around 240mg/L over the course of 72h of fermentation, with a standard deviation of

196mg/LOVERLAY.

In addition to this huge inter-batch variability, at times cultures yield titres sensibly lower with

respect to the other biological replicates of the group (<30% of the average batch value). In general,

around 13% of the samples show this behaviour, but for some cloning rounds this percentage could

be even higher, even up to 100%.

Figure 4.1. Previous assays for linalool production in E. coli transformed with pMVALinS. Averages and error bars are
calculated over 3 biological replicates.

Giovanni Lorenzon – MPhil Thesis

 55

A possible reason for the high variability could be given by the presence of homologous

regions on pMVALinS. As a matter of fact, there are two pairs of repeated sequences: (1) between

2076-2213bp and 9449-9586bp, (2) between 1-134bp and 9724-9856bp. These regions could cause

homologous recombination, which would lead to the formation of two separate plasmids, each one

containing part of the linalool pathway. Eventually, the plasmid not containing the antibiotic

resistance would end up being rejected by the cell, thus compromising linalool production.

Region no.1 measures 138bp and contains the terminators rrnbB T1 and T7Te. Its two

homologous parts are located between the LinS gene and the origin of replication (2076-2213bp), and

between the end of a group of genes promoted by the lac UV5 promoter and the beginning of another

group of genes promoted by the trc promoter (9449-9586bp). Despite termination sequences

positioned at 2076-2213bp (which might help improving the expression rate of the linalool synthase),

their removal is feasible without causing any major harm to cell metabolism, nor compromising

linalool synthesis.

Region no.2 measures 134bp and contains the trc promoter and the lac operator, plus an

additional non-coding sequence. Its two homologous parts are located before the AgtrGPPS gene (1-

134bp) and before the ScMK gene (9724-9856bp). Of course, it is impossible to remove the entirety

of this sequence, the promoters being of fundamental importance for correct expression.

Nevertheless, it is possible to remove a non-coding homologous region as big as 65bp.

Figure 4.2. On the left, schematic of the repeated regions. On the right, list of the pMVALinS variations produced with
indication of the removed sequences.

Three variations of pMVALinS have been designed, following the schematic reported in Figure

4.2. Removal of the repeated sequence close to the GPP synthase has not been considered yet,

because of the higher complexity of gene editing in that region.

Giovanni Lorenzon – MPhil Thesis

 56

Linalool assay has been conducted for a first batch in order to compare production consistency

for cells transformed with pMVALinS and pMVALins.NR1. The results reported in Figure 4.3 represent

15 biological replicates for each plasmid. It is possible to notice that the majority of the cultures

transformed with pMVALinS didn’t produce linalool (i.e. ~87%), while all those transformed with

pMVALins.NR1 had measurable output. Productivity is very low if compared to previous results, but

production repeatability is strongly enhanced.

Figure 4.3. Linalool assay results for pMVALinS – pMVALinS.NR1 comparison (15 biological replicates each). Red dots are non-
null titre replicates, blue dots are null titre ones. Averages and standard deviations are calculated on the basis of non-null
values.

A second test has been conducted to compare the productivity of all the designed plasmids

and results are reported in Figure 4.4. Variants NR2a and NR2b didn’t seem to lead to any positive

result, but NR1 yielded to production levels comparable to previously obtained data. Moreover,

production consistency seems to be retained, as all of the NR1 replicates synthesised linalool.

Clearly, more rounds of testing are needed, but pMVALinS.NR1 pledges to be a promising

candidate for obtaining more consistent linalool production levels in the future.

Giovanni Lorenzon – MPhil Thesis

 57

Figure 4.4. Linalool assay results for pMVALinS – pMVALinS.NR1 – pMVALinS.NR2a – pMVALinS.NR2b comparison. Averages
and error bars are calculated over 3 biological replicates.

4.2. Linalool detection limits evaluation

Assessment of the detection limit for linalool was carried out not only keeping in mind the

fermentation conditions at which its synthesis is carried out by the previously discussed engineered

E. coli, but also the experimental setup of the PTR-ToF-MS setup. After an initial adjustment of the GC

protocol to allow for clear separation of linalool, tests were conducted varying sample volume, sample

temperature, incubation time, injection temperature, and solvent. The analysis is based on the

signal/noise ratio, for which a threshold value of 5 represents the minimal detectability of a

compound.

It was decided to carry out a DoE to evaluate the effect of 2 quantitative factors and 2

qualitative factors: injection temperature, liquid volume, solvent, and sample incubation, respectively

(the last one meant as storage of the sample at a fixed temperature for a specific amount of time prior

to its injection into the PTR-ToF-MS). Injection temperature was varied between 30-70°C, a

temperature range which was suggested by the operability range of the heated transfer line

connecting bioreactor and MS. Liquid volume was varied between 0.5-5mL, the latter value being a

safe liquid level for when vials are purged with the autosampler needle. Moreover, it was decided to

investigate the effect caused by employing different solvents. Specifically, (i) TB, (ii) nonane, and (iii)

TB mixed with nonane, as these media are used in the standard linalool assay (especially the TB-

Giovanni Lorenzon – MPhil Thesis

 58

nonane pairing). Lastly, incubation at 30°C for 30 minutes was evaluated, comparing incubated

samples against non-incubated ones, as direct sampling of the bioreactor would be taken on

temperature-controlled cultures.

Below are reported the response surfaces for each pair of non-incubated/incubated solvent

(see Figure 4.5). The general trend is that incubated samples produce a better signal/noise ratio, which

is the expected effect. As a matter of fact, incubation at a temperature higher than the room one

should push the equilibrium towards the gas phase, therefore having more linalool available in the

headspace. Nevertheless, it is possible to notice that there is not a substantial difference between the

two conditions in none of the examined solvents.

Highest values of signal/noise ratio were obtained from TB alone, which was strongly

influenced by both volume and injection temperature in the non-incubated experimental round, while

its response flattened when incubated. Lowest values were shown for TB-nonane mix, indicating that

the linalool drawn to the organic layer (high partition coefficient towards nonane) is likely to interact

with both phases – the aqueous one below and the gas one above. In this way the amount of linalool

passing to the headspace is reduced. Nonetheless, high injection temperature and volume positively

influenced detectability, as it is possible to notice a strong increase in signal/noise ratio for the TB-

nonane mix at the upper limit conditions of both parameters.

As for pure nonane, neither of the two parameters taken into account had a particularly strong

effect on detectability, although higher volumes increased signal/noise ratio values in the incubated

run.

Giovanni Lorenzon – MPhil Thesis

 59

(a) (b)

(c) (d)

(e) (f)

Figure 4.5. Response surfaces generated from central composite experiment design. (a) & (b) are non-incubated and
incubated TB; (c) & (d) are non-incubated and incubated nonane; (e) & (f) are non-incubated and incubated TB+nonane.

Giovanni Lorenzon – MPhil Thesis

 60

Given the results of the DoE, it was then assessed the detection limit for linalool in both TB

and nonane, using the standard 20mL vials with GC-PTR-ToF-MS, 1h incubation at 30°C, 50°C injection

temperature, and 5mL of liquid volume. As reported in Figure 4.6, it is possible to see that the

detection limit for TB lies around 16ppb, while for nonane is close to 400ppb (corresponding to 14µg/L

and 343µg/L, respectively).

Figure 4.6. Linalool detection limit in TB and nonane according to GC-PTR-ToF-MS. Samples prepared in 20mL vials, 1h
incubation at 30°C, 50°C injection temperature, and 5mL of liquid volume

Nevertheless, after the execution of these measurements, it has emerged that

chromatographic separation seemed to be affected by anomalies. Strong retention time deviations

from the expected have been registered not only for linalool, but also for other terpenes (see Figure

4.7). In fact, a fault with the main oven control thermocouple has recently been detected and it is

currently being fixed.

Giovanni Lorenzon – MPhil Thesis

 61

(a) (b)

Figure 4.7. Peak retention time shift. Above: linalool (a) and a-pinene (b) retention time variation for 10 replicates, average
value and standard deviation reported. Below: highlight of two replicates of pure linalool, 2µL sample volume, ambient
temperature incubation, 37°C injection temperature.

4.3. Platform testing

4.3.1. Calibration

The most fundamental step in testing BioControl operation over a real-time sampling of a

bioreactor headspace was the acquisition of reliable linalool calibrations. Initial spiking tests were

conducted on 500mL LB media in 1L reactor, set at 37°C, 400rpm stirring, and 0.5Lair/Lmedia·min. PTR-

ToF-MS zero-gas flowrate was set at 0sccm, so to be as sensitive as possible towards linalool detection.

Spiking was carried out by injecting 1mL of linalool in LB at a conveniently chosen concentration, so

to bring the titre inside of the reactor to the desired value.

The objective of the calibration is to evaluate both the lower and upper detection limit for the

analysis method. As a matter of fact, the sensor of the PTR-ToF-MS presents a physical limit related to

351 ± 9 373 ± 14

Giovanni Lorenzon – MPhil Thesis

 62

the maximum number of ions it can detect at a time (between 106-107), and when that threshold is

overcome the instrument “saturates” and it generates acquisition errors and anomalous output files.

Results of the first tests are reported in Figure 4.8, for which values from 16ppb to 10ppm

linalool are plotted. Despite leading to a good fit, this calibration is not ideal as it saturates PTR-ToF-

MS detector at the highest concentration tested, 10ppm. This value is not ideal as an upper detection

limit, as desired detectability range should include the concentrations values that have been observed

at small-scale. Since we are expecting concentrations around tens of mg/LMEDIA (i.e. 165

mgLINALOOL/LOVERLAY = 33 mgLINALOOL/LMEDIA), an acceptable upper limit would lie around 50ppm at least

(though concentrations as high as 200ppm would represent an ideal target).

Figure 4.8. PTR-ToF-MS linalool calibration in 1L bioreactor (conditions replicated in triplicate to obtain each point and
corresponding error bar). LB media, 500mL liquid volume, 37°C, 400rpm stirring, 0.5Lair/Lmedia·min, 0sccm zero-gas flowrate.

After some additional tests, it was decided to proceed with identical setup conditions, but

operating with a zero-gas flowrate of 40sccm. In the graphs below (Figure 4.9) it is possible to see the

results for LB, TB, and TB spiked with E. coli. It is easy to notice that all of these calibrations show very

similar coefficients, leading to Vocus detector saturation around 250-500ppm, which are

concentrations substantially higher than the range we are currently expecting to work with. The fact

that different media show strong similarity is very positive too, as it gives way for this method to be

used with different cultures. Furthermore, E. coli growth inside of the reactor didn’t appear to hinder

linalool detection.

 SLOPE 0.5996

 INTERCEPT 3.6508

 R2 0.97

Giovanni Lorenzon – MPhil Thesis

 63

 (a)

(b)

 SLOPE 0.5089

 INTERCEPT 3.4270

 R2 0.95

 SLOPE 0.5704

 INTERCEPT 3.2200

 R2 0.90

Giovanni Lorenzon – MPhil Thesis

 64

(c)

Figure 4.9. PTR-ToF-MS linalool calibrations in 1L bioreactor (conditions replicated in triplicate to obtain each point and
corresponding error bar). 500mL liquid volume, 37°C, 400rpm stirring, 0.5Lair/Lmedia·min, 40sccm zero-gas flowrate. (a)
calibration in LB media; (b) calibration in TB media; (c) calibration in TB media spiked with E. coli.

Further testing regarded operational conditions of the fermentation. It was decided to test a

higher agitation speed (1000rpm) and a lower bioreactor temperature (30°C), since similar assays are

executed at these conditions (e.g. linalool standard fermentation protocol comprises 30°C incubation

after IPTG induction). Results for these two additional tests are reported in Figure 4.10, where it Is

possible to notice that while stronger stirring did not lead to substantially different regression

coefficients, lower temperature did: calibration line is steeper and intercept is much lower. This is

positive, as it implies that in the tested conditions the system has a higher detection sensitivity (higher

signal-to-concentration ratio).

 SLOPE 0.6155

 INTERCEPT 3.0102

 R2 0.91

Giovanni Lorenzon – MPhil Thesis

 65

 (a)

(b)

Figure 4.10. PTR-ToF-MS linalool calibrations in 1L bioreactor (conditions replicated in triplicate to obtain each point and
corresponding error bar). TB media, 500mL liquid volume, 0.5Lair/Lmedia·min, 40sccm zero-gas flowrate. (a) calibration at
1000rpm and 37°C; (b) calibration at 400rpm and 30°C.

In Figure 4.11, it is possible to compare the calibrations discussed above and it is evident that

the only parameter strongly influencing them is the bioreactor temperature. This is a positive result,

meaning that calibrations are reliable across a range of operational conditions.

 SLOPE 0.5674

 INTERCEPT 3.0969

 R2 0.90

 SLOPE 0.7611

 INTERCEPT 1.7812

 R2 0.97

Giovanni Lorenzon – MPhil Thesis

 66

Finally, one last calibration was executed with a nonane overlay in the proportion of 1:5 v/v

with respect to TB media, which was additionally spiked with E. coli. Results reported in Figure 4.12

show that no linalool was detected under a threshold of 250ppm, meaning that this measurement

method is not compatible with the standard fermentation assay carried out at small-scale currently.

Figure 4.11. PTR-ToF-MS linalool calibrations in 1L bioreactor (conditions replicated in triplicate to obtain each point and
corresponding error bar). 500mL liquid volume, 0.5Lair/Lmedia·min, 40sccm zero-gas flowrate. (cyan line) LB media, 400rpm
and 37°C; (orange line) TB media, 400rpm and 37°C; (green line) TB media, 1000rpm and 37°C; (black line) TB media spiked
with E. coli, 400rpm and 37°C; (red line) TB media, 400rpm and 30°C.

Giovanni Lorenzon – MPhil Thesis

 67

Figure 4.12. PTR-ToF-MS linalool calibrations in 1L bioreactor (conditions replicated in triplicate to obtain each point and
related error bar). TB media spiked with E. coli, 1:5 v/v nonane overlay, 500mL liquid volume, 37°C, 400rpm stirring,
0.5Lair/Lmedia·min, 40sccm zero-gas flowrate.

4.3.2. Scaled-up linalool fermentation

Once BioControl had been successfully tested against mockfiles and suitable calibrations had

been obtained, it was used to monitor a scaled-up linalool fermentation assay. Enhanced consistency

strain transformed with previously descripted pMVALinS.NR1 was used to scale up fermentation to

500mL, without the use of any nonane overlay – as it was observed that would have strongly

compromised linalool detection. BioControl-acquired results are reported in Figure 4.13 and

represent a 30h fermentation assay.

The general outlook of the test is extremely positive, as linalool was successfully detected over

the whole fermentation time and GC-MS controls (red dots in the graph) conducted on culture broth

samples confirm that the detected concentrations are correct. Moreover, despite small local

oscillations, the obtained profile is extremely consistent and not prone to particularly strong variations

(blue line represents a 2-minutes-rolling average, which is not a large window of time). Furthermore,

the acquisition provides useful insight on the real-time profile of the fermentation, which can be used

to optimise the standard assay (e.g. a fermentation time reduction will be considered for future

experiments).

In addition, concentrations achieved in this experiment are very promising and in line with

previous results. Peak concentration was around 38mg/LMEDIA, which would be the equivalent of

Giovanni Lorenzon – MPhil Thesis

 68

190mg/LOVERLAY, as no nonane overlay was used. This is very promising, especially because of the

absence of any organic overlay. As a matter of fact, Its purpose is to avoid linalool accumulation in the

culture media, which would have cytotoxic effects on cells. Nevertheless, the lack of nonane did not

seem to compromise the fermentation process significantly.

On the other hand, it is possible to notice how after 24h of fermentation, linalool

concentration steeply decreased. Although no definitive conclusion has been drawn yet, it was

confirmed that after 24h no linalool-producing plasmid was retained inside of the cells. Nevertheless,

this isn’t enough to explain linalool depletion. A possible reason for this would be linalool stripping

caused by air bubbling. As a matter of fact, in order to avoid pressure build-up inside of the reactor

due to compressed air being pumped inside of it, a ventilation outlet is left open. Despite the presence

of a 5°C water condenser on the outlet, it could be that droplets of linalool were stripped away from

the culture media. This could be problematic, as it would imply that also during the whole operation

time linalool had been constantly removed from the bioreactor.

Figure 4.13. BioControl-acquired linalool concentration profile over a 30h fermentation assay carried out in 1L bioreactor
using pMVALinS.NR1 plasmid in E. coli chassis. Red dots represent GC-MS controls. Anomalous concentration spike around 6-
7h was due to broth droplets accumulation in the PTR-ToF-MS transfer line, which was purged restoring measurement
accuracy.

Giovanni Lorenzon – MPhil Thesis

 69

4.4. Control loop simulation

4.4.1. System response modelling

Since the aim of this work is to lay the foundations for future investigations on fine control of

microbial systems, the feasibility of an optogenetics-based control routine implementation on linalool

production has been assessed by software simulation.

To evaluate control efficacy and stability it is necessary to design a closed-loop system, define

the necessary transfer functions (TFs), and finally tune the controller element. In Figure 4.14, the

closed-loop system employed in this work is reported. It was chosen to adopt a simple feedback

control routine, based on the deviation from a fixed setpoint value of the controlled variable.

Controlled variable was linalool productivity, while manipulated variable was light intensity (since we

are assuming to simulate linalool production by means of an optogenetics-regulated biopathway),

whose value ranges from 0 to 1 (i.e. dark condition vs. highest light intensity).

Since optogenetics-controlled biosynthetic pathways are not available yet, the necessary data

to extrapolate the biological system’s TF were obtained from standard small-scale batch fermentation

experiments. Linalool concentration was measured at several time points through GC-MS analysis, so

to map production profile over time. It was assumed that IPTG induction would have quite ideally

approximated a light intensity step change from 0 to 1, since both induce expression of linalool

metabolic pathway.

Additionally, batch fermentation doesn’t involve substrate make-up to the culture, therefore

substrate consumption must be taken into account. In other words, the dynamic of the system is not

DISTURBANCE

+
-

+
+

OUTPUT BIOPROCESS CONTROLLER SETPOINT

ER
ROR

IN
PU

T

Figure 4.14. Feedback control loop schematic. Output corresponds to the controlled variable (linalool productivity), which
can be influenced by some external disturbance. The value of the controlled variable is assessed and compared to a user-
defined setpoint. Deviation from that value is sent to the controller, which elaborates an adequate manipulated variable
(light intensity) input, so to bring the bioprocess to the desired state.

Giovanni Lorenzon – MPhil Thesis

 70

merely given by the effect of the IPTG induction, because substrate consumption plays a fundamental

role too. As a matter of fact, linalool productivity increases due to the addition of IPTG, but it is also

held back by the progressive reduction of available substrate. Consequently, it was assumed that two

different effects would have contributed to the studied system’s behaviour: (i) productivity increase

due to IPTG induction, and (ii) productivity decrease due to decreasing substrate availability. Both of

these effects would have simultaneously taken place since the beginning of the fermentation assay,

nevertheless our interest was to test feasibility over a semi-batch system, where a control routine

would generate the most significant benefit. Therefore, fermentation data were used to regress a TF

model including both effects, the first one of which would have been used to test control stability

later.

The transfer function that was used to determine the model coefficients by regression is

reported in Equation 4.1:

Equation

4.1 0(=
1′(3)
!′(3) =

4
5# ∙ 3 + 1

− 4
5$ ∙ 3 + 1

 (4.1)

where 0(stands for transfer function of the process,
)*(,)
.*(,) is the deviation of the controlled variable

1′(3) (i.e. linalool productivity) due to the change of the manipulated variable !′(3) (i.e. light intensity

≅ IPTG induction) in the Laplacian domain, 4 is the process gain (assumed to be equal and of opposite

sign in the two effects, as their combination would ultimately lead to 0mg/L·h productivity within the

end of the fermentation assay, due to substrate consumption), 5# is the time constant of the first

effect (i.e. productivity increase due to induction), and 5$ is the time constant of the second effect

(i.e. productivity decrease due to substrate depletion). The two time constants are assumed to have

different values, the first one being much smaller with respect to the second one, as productivity

increase due to induction is expected to be a much quicker effect than productivity decrease due to

substrate consumption, likely to be abundant during the first part of the fermentation.

In order to regress the coefficients, experimental data were fitted with the time domain

transposed function reported in Equation 4.2:

Equation

4.2 ,(8) = 9 ∙ 4 :;1 − </0 1!2 = − ;1 − </0 1"2 => (4.2)

where ,(8) is the linalool productivity profile over time, and 9 is the change of the manipulated

variable (= 1, as it is assumed that it is a step change from dark conditions to maximum intensity light).

Simple fitting of this function based on least sum of squared errors would not produce

physically feasible results, as the value of 4 would be pushed as high as possible. Since 4 represents

Giovanni Lorenzon – MPhil Thesis

 71

the maximum level of productivity the system would achieve if substrate was constantly replenished,

values higher than 30-40mg/L·h are likely to be strongly unphysical. Moreover, the two time constants

would likely assume very similar if not identical values if not bounded by a constraint.

Therefore, a second criterion was added to the least sum of squared error to optimise

coefficient regression. Optimum search had to stop once variation in the sum of squared error reached

a value < 1% of the last figure. In addition to this, 5$ was modelled so to represent 5# plus an additional

positive value, so to push 5$ value to be larger than 5#. The modified function is reported in Equation

4.3:

Equation

4.3 ,(8) = 9 ∙ 4 :;1 − </0 1"31#2 = − ;1 − </0 1"2 => (4.3)

where 54 is the additional term to be added to 5# to obtain 5$ = 5# + 54. In this way, number of

coefficients to be regressed did not increase, while helping to push the regression model towards

more physical values. Boundaries on both 5# and 54 were set to [500, 4500] min, range that includes

values that are compatible with the process to be modelled. K upper boundary was increased step by

step with the iterations of the fitting function, starting from a value of 5 mgL-1h-1I-1.

Using this approach, values within a reasonable range were obtained for 4, 5#, 5$, while

guaranteeing a good fit of the experimental data (reported in Figure 4.15 and Table 4.1).

Table 4.1. Results of the TF model fitting employing Equation 4.3. Process gain is expressed in productivity over light
intensity.

 K [mgL-1h-1I-1] 23

 ?5 [min] 1220

 ?6 [min] 857

 ?7 [min] 3077

 SSE [mgL-1h-1] 9.6

Giovanni Lorenzon – MPhil Thesis

 72

Figure 4.15. Fitting of TF model for the biological system. Red crosses represent experimental points for linalool productivity
obtained by GC-MS analysis (each point is the average of three biological replicates). Blue line is the fitted productivity profile
obtained from Equation 4.3.

4.4.2. PID tuning and stability analysis

Once having obtained sensible parameters for the bioprocess TF, it was decided to use them

to tune a PID controller. As mentioned before, only the positive effect of the modelled TF has been

considered, as the desired process to be modelled would be a fed-batch with constant substrate make

up.

A Simulink representation of the closed loop system reported in Figure 4.14 has been

designed and MATLAB tool for automatic PID tuning has been employed (considering a parallel PID

configuration). PID controller transfer function is reported in Equation 4.4,

Equation

4.4 08 =
@*(3)
<*(3) = 49 +

4!
3 +

4: ∙ 3
5; ∙ 3 + 1

 (4.4)

where 08 stands for the transfer function of the control element,
<$(,)
=$(,) is the controller output (i.e.

bioprocess input) value over the controlled variable error in the Laplacian domain, 49 is the

proportional gain, 4! is the integrator gain, 4: is the derivative gain, and 5; is derivative filter time.

Giovanni Lorenzon – MPhil Thesis

 73

Standard PID formulation doesn’t include the denominator on the derivative term as reported in

Equation 4.4 (i.e. 5; ∙ 3 + 1), which is called derivative filter. It was decided that a filter would have

been appropriate, given the nature of the system in analysis. As a matter of fact, the derivative term

of a PID contributes to reducing the settling time (i.e. the time it takes to reach steady state).

Nevertheless, in case of noisy measurement of the controlled variable, the derivative term can easily

generate of oscillations (Seborg et al., 2011). Therefore, since the measurement of linalool

productivity through PTR-ToF-MS is prone to noise, the derivative filter was included, consisting of a

simple first order dynamics. Tuned parameters are reported in Table 4.2.

Table 4.2. Tuned coefficients for PID controller.

 A> [mg-1L h I] 27.7036

 A? [mg-1L h I] 2.6615

 A@ [mg-1L h I] -12.6155

 ?A [min] 1.4062

Final step was testing stability of the control routine over the tuned parameters. It was verified

following Nyquist stability criterion (Seborg et al., 2011), which states that a closed-loop control

system is stable if all of the poles of its equation are negative or have negative real part. The generic

term for the closed loop equation of the system in analysis is reported in Equation 4.5:

Equation

4.5 1 = 080(
1 + 0BC

1D(+
0E

1 + 0BC
B (4.5)

Where Y is the controlled variable, 1D(is the setpoint change, 0E is the transfer function of the

disturbances entering the system, D is the disturbance, and 0BC is the open loop transfer function

(being 0BC = 080(). Disturbances have not been investigated specifically and they have been

included only for completeness. Neither their origin (i.e. the variable affected by unexpected

variation) nor their impact (i.e. the transfer function that describes their effect on the controlled

variable) is known, therefore they have not been included in the formal stability analysis, leading to

the equation reported in Equation 4.6:

Giovanni Lorenzon – MPhil Thesis

 74

Equation

4.6
1
1D(

= 0E
1 + 0BC

= 080(
1 + 080(

=
C49 + 4!3 +

4: ∙ 3
5; ∙ 3 + 1D ;

4
5# ∙ 3 + 1 −

4
5$ ∙ 3 + 1=

1 + C49 +
4!
3 +

4: ∙ 3
5; ∙ 3 + 1D ;

4
5# ∙ 3 + 1 −

4
5$ ∙ 3 + 1=

 (4.6)

To verify its poles are negative, it is sufficient to verify that the characteristic equation (i.e. 1 + 0BC ,

the denominator) has negative roots. In order to do this, the Routh-Hurwitz stability criterion is

employed, which states that a necessary and sufficient condition for all roots of the characteristic

equation of a system to have negative real parts is that all of the elements in the left column of the

Routh array are positive (Seborg et al., 2011). The stability criterion is based on a characteristic

equation that has the form of:

Equation

4.7 EF3F + EF/#3F/# + EF/$3F/$ +⋯+ E#3 + E" = 0 (4.7)

Rearranging the denominator in Equation 4.6, we obtain the expression reported in Equation 4.8:

Equation

4.8

3&H5;5#5$I + ⋯	

3% ;5#5$ + 5;(5# + 5$) + 4H495; + 4:I(5$−5#)= + ⋯	

3$;5# + 5$ + 5; + 4H49 + 4!5;I(5$−5#)= + ⋯	

3(1 + 44!(5$−5#)) > 0

(4.8)

Therefore, it is possible to define the coefficients according to the desire form of the equation, as in

Equation 4.9 below:

Equation

4.9

E& = 5;5#5$	
E% = 5#5$ + 5;(5# + 5$) + 4H495; + 4:I(5$−5#)	
E$ = 5# + 5$ + 5; + 4H49 + 4!5;I(5$−5#)	
E# = 1 + 44!(5$−5#)

(4.9)

Then, the Routh array is built, following the structure reported in Figure 4.16:

Giovanni Lorenzon – MPhil Thesis

 75

Figure 4.16. Structure of the Routh array and terms calculation rule (Seborg et al., 2011).

Substituting all the coefficients (i.e. K, 5#, 5$, 49, 4! , 4: , 5;), the following values are obtained for the

left column of the array:

Table 4.3. Left column of Routh array value for the system in exam.

 E& 5278790.428

 E% 4885045.805

 M# 1224558.240

 N# 113676.326

 O# 0

As all of the values are positive, the system is then assumed stable.

Giovanni Lorenzon – MPhil Thesis

 76

Additionally, an empirical verification of the stability was carried out by simulating the

response of the feedback system in Matlab over a servo control scenario (Figure 4.17). To assess the

stability of the system, a sensitivity analysis was run on the coefficients, allowing a random ±20%

maximum variation for each single parameter. A total of 1000 cases were generated and are below

illustrated. It is possible to notice how, despite substantial deviation from optimal tuning conditions,

the controlled variable responds in a stable and timely manner. As a matter of fact, upon a unit step

change in setpoint (from 0 to 1, equal to darkness to light condition), the new value of the controlled

variable is reached within 30min, with a 20% overshoot for the worst-case scenario.

Figure 4.17. Tuning parameters sensitivity test with 1000 random scenarios varying each parameter up to ±20% from optimal
value.

4.5. Summary

In this chapter the results of the different experiments and simulations are reported. Firstly,

the design of the plasmid used for the production of linalool is addressed. Two homologous regions

are highlighted in the plasmid and 3 alternative designs removing either one or both are investigated.

Design NR1 is showed to improve production consistency, though at the same time yielding lower

concentrations with respect to the average of previous testing.

Subsequently, sensitivity of PTR-ToF-MS towards linalool detection is tested against

parameters like injection temperature, sample volume, solvent type and sample incubation (i.e.

sample stabilisation at a fixed temperature before injection). Results show that in general higher

Giovanni Lorenzon – MPhil Thesis

 77

injection temperature and sample incubation has a positive effect on signal intensity. TB media leads

to noisier measurement than average, but at same time to the best detectability limit (14ppb).

Calibration of PTR-ToF-MS for linalool measurement in bioreactors is then addressed,

considering multiple parameters. Calibrations with different conditions show very similar

slope/intercept, indicating that the measurement method is stable and reliable across a range of

operations. Moreover, it is highlighted that nonane overlay is not suitable for this type of setup as it

strongly reduces the sensitivity range.

Next, real process monitoring through BioControl is tested over standard linalool

fermentation assay. By comparison against standard GC-MS quantification at various time points, it is

proved that the measurement of the monoterpene not only is feasible, but also accurate.

Eventually, simulation of the control loop to maintain linalool productivity is carried out. Block

diagram of the closed-loop system is designed. Bioprocess transfer function is defined and its

parameters are regressed. Lastly, a PID control element is used to simulate a feedback control of the

system. After tuning, its stability is verified both theoretically and empirically.

Giovanni Lorenzon – MPhil Thesis

 78

5. Conclusions and future work

Microbial synthesis of linalool has been analysed with the perspective of integrating its

productive process with control techniques based on PTR-ToF-MS headspace analysis.

Firstly, process consistency has been investigated, observing high variability in linalool titres.

The presence of repeated sequences in the plasmid used to transform E. coli cells was suspected as a

potential cause for production variability, as such configuration could cause homologous

recombination. Three plasmid alternatives were designed and tested, amongst which one showed

strong repeatability enhancement, despite not reaching the same productivity levels attained by

previous experiments.

Then PTR-ToF-MS technology has been used to perform linalool headspace analysis on sample

vials. The optimisation of conditions such as sample volume, injection temperature, and solvent

allowed to perform successful linalool detection at levels far below regular GC-MS analysis and more

than adequate to track linalool in batch fermentation assays.

An original software has been designed to operate as a monitoring platform for fermentative

processes: data from PTR-ToF-MS headspace analysis are imported and interpreted, so to allow for

live monitoring of a microbial culture batch; this information can then be used to implement control

strategies to optimise productivity.

Lastly, feasibility of the implementation of control routines on microbial synthesis of linalool

has been assessed through simulation of closed loop system response, whose dynamic has been

modelled over experimental data. Stability of the control routine has been confirmed by means of PID

tuning parameters sensitivity analysis.

Future work will focus on the execution of further tests for the optimisation of the modified

E. coli strain: additional alternative plasmids without homologous regions will be designed and tested,

so to guarantee a more stable production of linalool. Subsequently, optogenetic control will be added

by means of a second plasmid, allowing for an externally triggered expression of linalool synthase with

a light-induced genetic switch.

The control platform will be expanded so to feature the possibility to modulate an external

light switch on the basis of the control strategy adopted. Eventually, different control routines will be

designed and tested, aiming at a more consistent linalool production over time, along with a more

balanced biological burden on microbial cells.

Giovanni Lorenzon – MPhil Thesis

 79

Bibliography

Alford, J. S. (2006). Bioprocess control: Advances and challenges. Computers & Chemical Engineering,

30(10-12), 1464-1475. doi:10.1016/j.compchemeng.2006.05.039

Aoki, S. K., Lillacci, G., Gupta, A., Baumschlager, A., Schweingruber, D., & Khammash, M. (2019). A

universal biomolecular integral feedback controller for robust perfect adaptation. Nature, 570

(7762), 533-537. doi:10.1038/s41586-019-1321-1

Ashour, M., Wink, M., & Gershenzon, J. (2018). Biochemistry of Terpenoids: Monoterpenes,

Sesquiterpenes and Diterpenes. In Annual Plant Reviews online (pp. 258-303).

Atkinson, M. R. S., Savageau, M. A., Myers, J. T., Ninfa, A. J. (2003). Development of Genetic Circuitry

Exhibiting Toggle Switch or Oscillatory Behavior in Escherichia coli. Cell, 113, 597-607.

doi:https://doi.org/10.1016/S0092-8674(03)00346-5

Bacchus, W., & Fussenegger, M. (2012). The use of light for engineered control and reprogramming of

cellular functions. Current Opinion in Biotechnology, 23 (5), 695-702.

doi:10.1016/j.copbio.2011.12.004

Becksei, A., & Serrano, L. (2000). Engineering stability in gene networks by autoregulation. Nature,

405, 590-593.

Behr, A., & Johnen, L. (2009). Myrcene as a natural base chemical in sustainable chemistry: a critical

review. ChemSusChem, 2(12), 1072-1095. doi:10.1002/cssc.200900186

Benozzi, E., Romano, A., Capozzi, V., Makhoul, S., Cappellin, L., Khomenko, I., . . . Biasioli, F. (2015).

Monitoring of lactic fermentation driven by different starter cultures via direct injection mass

spectrometric analysis of flavour-related volatile compounds. Food Research International,

76(Pt 3), 682-688. doi:10.1016/j.foodres.2015.07.043

Bian, G., Deng, Z., Liu, T. (2017). Strategies for terpenoid overproduction and new terpenoid discovery.

Current Opinion in Biotechnology, 48, 234-241. doi:10.1016/j.copbio.2017.07.002

Biodiesel. (2019). Retrieved from https://www.olleco.co.uk/green-fuels/biodiesel

Blake, R. S. M., Paul S., Ellis, Andrew M. (2009). Proton-Transfer Reaction Mass Spectrometry.

Chemical Reviews, 109 (3), 861-896. doi:doi:10.1021/cr800364q

Giovanni Lorenzon – MPhil Thesis

 80

Cao, X., Wei, L. J., Lin, J. Y., Hua, Q. (2017). Enhancing linalool production by engineering oleaginous

yeast Yarrowia lipolytica. Bioresource Technology, 245(Pt B), 1641-1644.

doi:10.1016/j.biortech.2017.06.105

Chauvatcharin, S. S., T., Fujiyama, K., Yoshida, T. (1995). On-Line Monitoring and Control of Acetone-

Butanol Fermentation Membrane-Sensor Mass Spectrometry. Journal of Fermentation and

Bioengineering, 79, 264-269. doi:doi:10.1016/0922-338X(95)90614-6

Chen, S., Harrigan, P., Heineike, B., Stewart-Ornstein, J., & El-Samad, H. (2013). Building robust

functionality in synthetic circuits using engineered feedback regulation. Current Opinion in

Biotechnology, 24(4), 790-796. doi:10.1016/j.copbio.2013.02.025

Clomburg, J. M., Qian, S., Tan, Z., Cheong, S., & Gonzalez, R. (2019). The isoprenoid alcohol pathway,

a synthetic route for isoprenoid biosynthesis. Proceedings of the National Academy of Science

U S A, 116(26), 12810-12815. doi:10.1073/pnas.1821004116

De Mena, L., Rizk, P., Rincon-Limas, D. E. (2018). Bringing Light to Transcription: The Optogenetics

Repertoire. Frontiers in Genetics, 9, 518. doi:10.3389/fgene.2018.00518

Dudareva, N., Negre, F., Nagegowda, D. A., & Orlova, I. (2006). Plant Volatiles: Recent Advances and

Future Perspectives. Critical Reviews in Plant Sciences, 25(5), 417-440.

doi:10.1080/07352680600899973

Fernández-Naveira, Á., Veiga, M. C. Kennes, C. (2017). Effect of pH control on the anaerobic H-B-E

fermentation of syngas in bioreactors. Journal of Chemical Technology & Biotechnology, 92(6),

1178-1185. doi:10.1002/jctb.5232

Ferreira, L. S., De Souza Jr., M. B., Folly, R. O. M. (2001). Development of an alcohol fermentation

control system based on biosensor measurements interpreted by neural networks. Sensors

and Actuators, 75, 166-171. doi:doi:10.1016/S0925-4005(01)00540-8

Gao, Y., Honzatko, R. B., Peters, R. J. (2012). Terpenoid synthase structures: a so far incomplete view

of complex catalysis. Preceedings of the National Accademy of Sciences. Nat Prod Rep, 29(10),

1153-1175. doi:10.1039/c2np20059g

Gardner, T. S., Cantor, C. R., Collins, J. J. (2000). Construction of a genetic toggle switch in Escherichia

coli. Nature, 403, 339-342. doi:doi:10.1038/35002131

Gehan, O., Pigeon, E., Menard, T., Mosrati, R., Pouliquen, M., Fall, L. M., & Reuter, J. (2019). Dissolved

oxygen level output feedback control based on discrete-time measurements during a

Giovanni Lorenzon – MPhil Thesis

 81

Pseudomonas putida mt-2 fermentation. Journal of Process Control, 79, 29-40.

doi:10.1016/j.jprocont.2018.10.004

Goldrick, S., Duran-Villalobos, C.A., Jankauskas, K., Lovett, D., Farid, S.S., Lennox, B. (2019). Modern

day monitoring and control challenges outlined on an industrial-scale benchmark

fermentation process. Computational Chemical Engineering, 130, 106471,

10.1016/j.compchemeng.2019.05.037

Guiochon, G., & Guillemin, C. L. (1988). Quantitative analysis by gas chromatography measurement of

peak area and derivation of sample composition. For laboratory analyses and on-line process

control, 42, 629-659. doi.org/10.1016/S0301-4770(08)70087-3

Gupta, P., & Phulara, S. C. (2015). Metabolic engineering for isoprenoid-based biofuel production. J

Applied Microbiology, 119(3), 605-619. doi:10.1111/jam.12871

Holzberg, T. R., Watson, V., Brown, S., Andar, A., Ge, X., Kostov, Y., . . . Rao, G. (2018). Sensors for

biomanufacturing process development: facilitating the shift from batch to continuous

manufacturing. Current Opinion in Chemical Engineering, 22, 115-127.

doi:10.1016/j.coche.2018.09.008

Hoye, T. R., & Zao, H. (1999). Some allylic substituent effects in ring-closing metathesis reactions:

Allylic alcohol activation. Organic Letters, 1, 1123-1125.

Industry progress on UCO sustainability for UK biodiesel production. (2019). [Press release]

Kamatou, G. P. P., & Viljoen, A. M. (2008). Linalool – A Review of a Biologically Active Compound of

Commercial Importance. Natural Product Communication, 9, 1183-1192.

Karuppiah, V., Ranaghan, K. E., Leferink, N. G. H., Johannissen, L. O., Shanmugam, M., Ni Cheallaigh,

A., . . . Scrutton, N. S. (2017). Structural Basis of Catalysis in the Bacterial Monoterpene

Synthases Linalool Synthase and 1,8-Cineole Synthase. ACS Catalysis, 7(9), 6268-6282.

doi:10.1021/acscatal.7b01924

Kempinski, C. J., Z.; Bell, S., Chappell, J. (2015). Biotechnology of Isoprenoids. Advances in Biochemical

Engineering/Biotechnology, 148.

Kobayashi, H., Kaern, M., Araki, M., Chung, K., Gardner, T. S., Cantor, C. R., & Collins, J. J. (2004).

Programmable cells: interfacing natural and engineered gene networks. Proceedings of the

National Academy of Science, 101(22), 8414-8419. doi:10.1073/pnas.0402940101

Giovanni Lorenzon – MPhil Thesis

 82

Lange, B. M., Rujan, T., Martin, W., Croteau, R. (2000). Isoprenoid biosynthesis: the evolution of two

ancient and distinct pathways across genomes. Proceedings of the National Academy of

Science U S A, 97 (24), 13172-13177. doi:10.1073/pnas.240454797

Lapczynski, A., Bhatia, S. P., Letizia, C. S., Api, A. M. (2008). Fragrance material review on l-linalool.

Food and Chemical Toxicology, 46 Supplement 11, S195-196. doi:10.1016/j.fct.2008.06.057

Leferink, N. G. H., Dunstan, M. S., Hollywood, K. A., Swainston, N., Currin, A., Jervis, A. J., . . . Scrutton,

N. S. (2019). An automated pipeline for the screening of diverse monoterpene synthase

libraries. Scientific Reports, 9(1), 11936. doi:10.1038/s41598-019-48452-2

Leferink, N. G. H., Jervis, A. J., Zebec, Z., Toogood, H. S., Hay, S., Takano, E., Scrutton, N. S. (2016). A

'Plug and Play' Platform for the Production of Diverse Monoterpene Hydrocarbon Scaffolds in

Escherichia coli. ChemistrySelect, 1(9), 1893-1896. doi:10.1002/slct.201600563

Li, M., Hou, F., Wu, T., Jiang, X., Li, F., Liu, H., . . . Zhang, H. (2020). Recent advances of metabolic

engineering strategies in natural isoprenoid production using cell factories. Natural Product

Reports, 37(1), 80-99. doi:10.1039/c9np00016j

Lidgren, L., Lilja, O., Krook, M., Kriz, D. (2006). Automatic fermentation control based on a real-time in

situ SIRE biosensor regulated glucose feed. Biosensors and Bioelectronics, 21(10), 2010-2013.

doi:10.1016/j.bios.2005.09.012

Liguori, R., & Faraco, V. (2016). Biological processes for advancing lignocellulosic waste biorefinery by

advocating circular economy. Bioresource Technology, 215, 13-20.

doi:10.1016/j.biortech.2016.04.054

Liu, N., Santala, S., & Stephanopoulos, G. (2020). Mixed carbon substrates: a necessary nuisance or a

missed opportunity? Current Opinion in Biotechnology, 62, 15-21.

doi:10.1016/j.copbio.2019.07.003

Liu, S. (2017). Introduction. Bioprocess Engineering (pp. 1-20).

Lombard, J., & Moreira, D. (2011). Origins and early evolution of the mevalonate pathway of

isoprenoid biosynthesis in the three domains of life. Molecular Biology and Evolution, 28(1),

87-99. doi:10.1093/molbev/msq177

Maciejewska, M., Szczurek, A., Kerényi, Z. (2006). Utilisation of first principal component extracted

from gas sensor measurements as a process control variable in wine fermentation. Sensors

and Actuators B: Chemical, 115(1), 170-177. doi:10.1016/j.snb.2005.08.036

Giovanni Lorenzon – MPhil Thesis

 83

Mendez-Perez, D., Alonso-Gutierrez, J., Hu, Q., Molinas, M., Baidoo, E. E. K., Wang, G., . . . Lee, T. S.

(2017). Production of jet fuel precursor monoterpenoids from engineered Escherichia coli.

Biotechnology and Bioengineering, 114(8), 1703-1712. doi:10.1002/bit.26296

Mewalal, R., Rai, D. K., Kainer, D., Chen, F., Kulheim, C., Peter, G. F., Tuskan, G. A. (2017). Plant-Derived

Terpenes: A Feedstock for Specialty Biofuels. Trends in Biotechnology, 35(3), 227-240.

doi:10.1016/j.tibtech.2016.08.003

Meylemans, H. A., Quintana, R. L., Goldsmith, B. R., & Harvey, B. G. (2011). Solvent-free conversion of

linalool to methylcyclopentadiene dimers: a route to renewable high-density fuels.

ChemSusChem, 4(4), 465-469. doi:10.1002/cssc.201100017

Milias-Argeitis, A., Rullan, M., Aoki, S. K., Buchmann, P., Khammash, M. (2016). Automated

optogenetic feedback control for precise and robust regulation of gene expression and cell

growth. Nature Communications, 7, 12546. doi:10.1038/ncomms12546

Milias-Argeitis, A., Summers, S., Stewart-Ornstein, J., Zuleta, I., Pincus, D., El-Samad, H., . . . Lygeros, J.

(2011). In silico feedback for in vivo regulation of a gene expression circuit. Nature

Biotechnology, 29(12), 1114-1116. doi:10.1038/nbt.2018

Miziorko, H. M. (2011). Enzymes of the mevalonate pathway of isoprenoid biosynthesis. Archives of

Biochemistry and Biophysics, 505(2), 131-143. doi:10.1016/j.abb.2010.09.028

Moeller, L., Grunberg, M., Zehnsdorf, A., Aurich, A., Bley, T., Strehlitz, B. (2011). Repeated fed-batch

fermentation using biosensor online control for citric acid production by Yarrowia lipolytica.

Journal of Biotechnology, 153(3-4), 133-137. doi:10.1016/j.jbiotec.2011.03.013

Montgomery, D. C. (2013). Design and analysis of experiments. Eigth edition.

Nakano, C., Kim, H. K., Ohnishi, Y. (2011). Identification and characterization of the linalool/nerolidol

synthase from Streptomyces clavuligerus. Chembiochem, 12(16), 2403-2407.

doi:10.1002/cbic.201100501

National Plan for Industrial Biotechnology. (2013). Retrieved from

https://ec.europa.eu/knowledge4policy/sites/know4pol/files/scotland-

national_plan_for_industrial_biotechnology.pdf

Oldfield, E., & Lin, F. Y. (2012). Terpene biosynthesis: modularity rules. Angewandte Chemie

International Edition in English, 51(5), 1124-1137. doi:10.1002/anie.201103110

Giovanni Lorenzon – MPhil Thesis

 84

Olson, E. J., Hartsough, L. A., Landry, B. P., Shroff, R., Tabor, J. J. (2014). Characterizing bacterial gene

circuit dynamics with optically programmed gene expression signals. Nature Methods, 11(4),

449-455. doi:10.1038/nmeth.2884

Pachauri, N., Singh, V., Rani, A. (2017). Two degree of freedom PID based inferential control of

continuous bioreactor for ethanol production. ISA Transactions, 68, 235-250.

doi:10.1016/j.isatra.2017.03.014

Pommer, H. N., A. . (1975). Industrial Synthesis of Terpene Compounds. Organic Synthesis.

Rico, J., Duquesne, K., Petit, J. L., Mariage, A., Darii, E., Peruch, F., . . . Iacazio, G. (2019). Exploring

natural biodiversity to expand access to microbial terpene synthesis. Microbial Cell Factories,

18(1), 23. doi:10.1186/s12934-019-1074-4

Romano, A., Capozzi, V., Spano, G., Biasioli, F. (2015). Proton transfer reaction-mass spectrometry:

online and rapid determination of volatile organic compounds of microbial origin. Applied

Microbiology and Biotechnology, 99(9), 3787-3795. doi:10.1007/s00253-015-6528-y

Rugbjerg, P., & Sommer, M. O. A. (2019). Overcoming genetic heterogeneity in industrial

fermentations. Nature Biotechnology, 37(8), 869-876. doi:10.1038/s41587-019-0171-6

Sagmeister, P., Wechselberger, P., Jazini, M., Meitz, A., Langemann, T., Herwig, C. (2013). Soft sensor

assisted dynamic bioprocess control: Efficient tools for bioprocess development. Chemical

Engineering Science, 96, 190-198. doi:10.1016/j.ces.2013.02.069

Sanctis, F. D. (2016). Opening of the world’s first industrial scale plant for the production of butanediol

via fermentation of renewable raw materials [Press release]

Seborg et al. (2011). Process dynamics and control, 3rd edition, John Wiley & Sons.

Schwab, W., Fuchs, C., Huang, F.-C. (2013). Transformation of terpenes into fine chemicals. European

Journal of Lipid Science and Technology, 115(1), 3-8. doi:10.1002/ejlt.201200157

Sy, C. L., Ubando, A. T., Aviso, K. B., Tan, R. R. (2018). Multi-objective target oriented robust

optimization for the design of an integrated biorefinery. Journal of Cleaner Production, 170,

496-509. doi:10.1016/j.jclepro.2017.09.140

Tetali, S. D. (2019). Terpenes and isoprenoids: a wealth of compounds for global use. Planta, 249(1),

1-8. doi:10.1007/s00425-018-3056-x

Tofwerl AG (2020). Retrieved from https://www.tofwerk.com/

Giovanni Lorenzon – MPhil Thesis

 85

Tippmann, S., Chen, Y., Siewers, V., Nielsen, J. (2013). From flavors and pharmaceuticals to advanced

biofuels: production of isoprenoids in Saccharomyces cerevisiae. Biotechnology Journal, 8(12),

1435-1444. doi:10.1002/biot.201300028

Vickers, C. E., Williams, T. C., Peng, B., Cherry, J. (2017). Recent advances in synthetic biology for

engineering isoprenoid production in yeast. Current Opinion in Chemistry and Biology, 40, 47-

56. doi:10.1016/j.cbpa.2017.05.017

Wang, C., Zada, B., Wei, G., Kim, S. W. (2017). Metabolic engineering and synthetic biology approaches

driving isoprenoid production in Escherichia coli. Bioresource Technology, 241, 430-438.

doi:10.1016/j.biortech.2017.05.168

Xiao, H., Zhang, Y., Wang, M. (2019). Discovery and Engineering of Cytochrome P450s for Terpenoid

Biosynthesis. Trends in Biotechnology, 37(6), 618-631. doi:10.1016/j.tibtech.2018.11.008

Xie, J., Ping, H., Tan, T., Lei, L., Xie, H., Yang, X.-Y., Fu, Z. (2019). Bioprocess-inspired fabrication of

materials with new structures and functions. Progress in Materials Science, 105.

doi:10.1016/j.pmatsci.2019.05.004

Yang, J., Nie, Q., Liu, H., Xian, M., & Liu, H. (2016). A novel MVA-mediated pathway for isoprene

production in engineered E. coli. BMC Biotechnology, 16, 5. doi:10.1186/s12896-016-0236-2

You, L. C. I., R. S.; Weiss, R.; Arnold, F. H. (2004). Programmed population control by cell–cell

communication and regulated killing. Nature, 428(6985), 868-871. doi:10.1038/nature02468

Yuhong, W. D., H.; Dongjie, G.; Yihui, J. (2003). Wavelet Networks Based Soft Sensors and Predictive

Control in Fermentation Process. Process Systems Engineering, 1222-1227.

Zhang, J. (2013). Metabolic engineering of Escherichia coli for the biosynthesis of alpha-pinene.

Biotechnology and Biofuels, 6, 1-10.

Zhang, K., & Cui, B. (2015). Optogenetic control of intracellular signaling pathways. Trends in

Biotechnology, 33(2), 92-100. doi:10.1016/j.tibtech.2014.11.007

Zhao, E. M., Zhang, Y., Mehl, J., Park, H., Lalwani, M. A., Toettcher, J. E., Avalos, J. L. (2018). Optogenetic

regulation of engineered cellular metabolism for microbial chemical production. Nature,

555(7698), 683-687. doi:10.1038/nature26141

Giovanni Lorenzon – MPhil Thesis

 86

Giovanni Lorenzon – MPhil Thesis

 87

Appendix

All the code reported in the following pages is also available on GitHub at:

https://github.com/giovanni92lorenzon/BioControl1.0

Custom functions:

geth5log.m

function [n_cycles, n_zeroes, chunk_size, error_msg] = geth5log(filename)
% ===
% INPUTs
% 'filename' = Name of the .h5 file in output from the PTR-MS in GC-mode
%
% OUTPUTs
% 'n_cycles' = Number of completed acquisition cycles
% 'n_zeroes' = Number of zeroes in the last cycle
% 'chunk_size' = Chunk size of stored data
% 'error_msg' = Regarding unexpected n_cycles, n_zeroes, or chunk_size
%
%
% Function to extract number of completed acquisition cycles and number of
% zeroes in the final cycle FOR REGULAR PTR-MS FILES in GC MODE
% ===

% ===
% Initialisation and error handling
% ===
assert(ischar(filename),'First input <filename> must be a char array.')

check = strcmpi(filename((end - 2):end),'.h5');
if ~check
 error('Filetype was not expected. Use .h5 file.')
end

% ===
% Log data extraction
% ===
name_log_dtst = '/AcquisitionLog/Log'; % Where the vector containing all
 % of the measured masses is
 % stored
cycles_pos = 27; % Position index for the beginning of the 'number of
 % cycles' entry in the logfile of each .h5 file
shift_to_zeroes_pos = 17; % Shift from end of the 'cycles' entry to the
 % beginning of the 'zeroes' entry
expected_chunk_size = 6;
%--
log = h5read(filename, name_log_dtst);
log = log.logtext';

length_check = find(log(2,:) == ' ');
if length(length_check) <= 3
 error_msg = ['MSmode_file'];
 n_cycles = 0;
 n_zeroes = 0;
 chunk_size = 0;

Giovanni Lorenzon – MPhil Thesis

 88

 return
end

spot = '';
cycles = '';
while ~strcmp(spot, ' ')
 spot = log(2,cycles_pos);
 cycles = [cycles spot];
 cycles_pos = cycles_pos + 1;
end

n_cycles = str2double(cycles(1:(end-1)));

% ===
% Double check with actual time array
% ===
info = h5info(filename, '/TimingData/BufTimes');
time_dtst_size = info.Dataspace.Size;

check1 = time_dtst_size(1) ~= expected_chunk_size;
check2 = time_dtst_size(2) ~= n_cycles;

if check1 || check2
 n_cycles = time_dtst_size(2);
 chunk_size = time_dtst_size(1);

 start = [1 n_cycles];
 count = [chunk_size 1];
 last_cycle_data = ...
 h5read(filename, '/TimingData/BufTimes', start, count);
 indexes = find(last_cycle_data == 0);
 n_zeroes = length(indexes);
 if check1 && ~check2
 error_msg = ['UnexpectedChunkSize(' num2str(chunk_size) ')'];
 elseif ~check1 && check2
 error_msg = ['UnexpectedCycleNumber(' num2str(n_cycles) ')'];
 else
 error_msg = ['UnexpectedChunkSize(' num2str(chunk_size) ')' ...
 '&UnexpectedCycleNumber(' num2str(n_cycles) ')'];
 end
else
 n_zeroes = str2double(log(2,(cycles_pos + shift_to_zeroes_pos)));
 chunk_size = expected_chunk_size;
 error_msg = 'None';
end

geth5mocklog.m

function [n_cycles, n_zeroes] = geth5mocklog(filename)
% ===
% INPUTs
% 'filename' = Name of the .h5 mockfile to simulate live PTR-MS acquisition
%
% OUTPUTs
% 'n_cycles' = Number of completed acquisition cycles
% 'n_zeroes' = Number of zeroes in the last cycle
%
%
% Function to extract number of completed acquisition cycles and number of
% zeroes in the final cycle FOR MOCK PTR-MS FILES
% ===

Giovanni Lorenzon – MPhil Thesis

 89

% ===
% Initialisation and error handling
% ===
assert(ischar(filename),'First input <filename> must be a char array.')

check = strcmpi(filename((end - 2):end),'.h5');
if ~check
 error('Filetype was not expected. Use .h5 file.')
end

% ===
% Log data extraction
% ===
name_log_dtst = '/AcquisitionLog/Log'; % Where the vector containing all
 % of the measured masses is
 % stored
cycles_pos = 27; % Position index for the beginning of the 'number of
 % cycles' entry in the logfile of each .h5 file
shift_to_zeroes_pos = 17; % Shift from end of the 'cycles' entry to the
 % beginning of the 'zeroes' entry
%--
log = char(h5read(filename, name_log_dtst));

spot = '';
cycles = '';
while ~strcmp(spot, ' ')
 spot = log(cycles_pos);
 cycles = [cycles spot];
 cycles_pos = cycles_pos + 1;
end

n_cycles = str2double(cycles(1:(end-1)));
n_zeroes = str2double(log(cycles_pos + shift_to_zeroes_pos));
end

geth5logMS.m

function [n_cycles, n_zeroes, chunk_size] = geth5logMS(filename)
% ===
% INPUTs
% 'filename' = Name of the .h5 file in output from the PTR-MS in MS-mode
%
% OUTPUTs
% 'n_cycles' = Number of completed acquisition cycles
% 'n_zeroes' = Number of zeroes in the last cycle
% 'chunk_size' = Chunk size of stored data
%
%
% Function to extract number of completed acquisition cycles and number of
% zeroes in the final cycle FOR REGULAR PTR-MS FILES in MS MODE
% ===

% ===
% Initialisation and error handling
% ===
assert(ischar(filename),'First input <filename> must be a char array.')

check = strcmpi(filename((end - 2):end),'.h5');

Giovanni Lorenzon – MPhil Thesis

 90

if ~check
 error('Filetype was not expected. Use .h5 file.')
end

% ===
% Log data extraction
% ===
info = h5info(filename, '/TimingData/BufTimes');
time_dtst_size = info.Dataspace.Size;

n_cycles = time_dtst_size(2);
chunk_size = time_dtst_size(1);

start = [1 n_cycles];
count = [chunk_size 1];
last_cycle_data = ...
 h5read(filename, '/TimingData/BufTimes', start, count);
indexes = find(last_cycle_data == 0);
n_zeroes = length(indexes);

end

geth5masses.m

function masses = geth5masses(filename)
% ===
% INPUTs
% 'filename' = Name of the .h5 file in output from the PTR-MS (or mockfile)
%
% OUTPUTs
% 'masses' = Mx1 column array containing all of the masses detected by the
% PTR-MS (or mock masses)
%
%
% Function to extract the whole array of the masses analysed by the PTR-MS
% ===

% ===
% Initialisation and error handling
% ===
assert(ischar(filename),'First input <filename> must be a char array.')

check = strcmpi(filename((end - 2):end),'.h5');
if ~check
 error('Filetype was not expected. Use .h5 file.')
end

% ===
% Mass data extraction
% ===
name_mass_dtst = '/FullSpectra/MassAxis'; % Where the vector containing all
 % of the measured masses is
 % stored
%--
masses = h5read(filename, name_mass_dtst);
end

Giovanni Lorenzon – MPhil Thesis

 91

geth5times.m

function times = geth5times(filename)
% ===
% INPUTs
% 'filename' = Name of the .h5 file in output from the PTR-MS (or mockfile)
%
% OUTPUTs
% 'times' = 1xP row array containing all of the timepoints registered by
% the current file
%
%
% Function to extract the timepoints measured by the PTR-MS. Storage
% structure within .h5 file is [S,C], where S is the chunk size (=6), and C
% is the number of completed acquisition cycles. Mind that the
% function extracts all of the values and rearranges them in a 1xP
% structure, where P is given by P = S*C - n_zeroes (zeroes are chunked)
%
% DEPENDANCIES: 'geth5log.m', 'geth5mocklog.m', 'geth5logMS.m'
% ===

% ===
% Initialisation and error handling
% ===
assert(ischar(filename),'First input <filename> must be a char array.')

check = strcmpi(filename((end - 2):end),'.h5');
if ~check
 error('Filetype was not expected. Use .h5 file.')
end

% ===
% Log data extraction
% ===
if contains(filename, 'mock')
 [n_cycles, n_zeroes] = geth5mocklog(filename);
 chunk_size = 6; % Storage file chunk size for time points
else
 [n_cycles, n_zeroes, chunk_size, error_msg] = geth5log(filename);
 if strcmp(error_msg, 'MSmode_file')
 [n_cycles, n_zeroes, chunk_size] = geth5logMS(filename);
 end
end

% ===
% Time data extraction
% ===
name_time_dtst = '/TimingData/BufTimes'; % Where all the times of the
 % single timesteps are stored
% chunk_size = 6; % Storage file chunk size for time points
%--
time_raw = h5read(filename, name_time_dtst);

times = zeros(1,n_cycles*chunk_size);
for i = 1:(n_cycles)
 times(...
 (((i-1)*chunk_size)+1): ...
 (((i-1)*chunk_size)+chunk_size) ...
) = time_raw(:,i);
end
%--
for z = 1:n_zeroes

Giovanni Lorenzon – MPhil Thesis

 92

 times(:,end) = [];
end
end

geth5mrcumpeaks.m

function [cumpeakprof, mass_rng, times] = geth5mrcumpeaks(...
 filename, ...
 central_mass, neighbourhood)
% ===
% INPUTs
% 'filename' = Name of the .h5 file in output from the PTR-MS (or mockfile)
% 'central_mass' = Mass target to be analysed.
% To be considered as --> !!!(MASS + 1)!!!
% 'neighbourhood' = Defines the mass range to be included in the
% calculation of the peak at the specified mass target
% [central_mass-neighbourhood,central_mass+neighbourhood]
%
% OUTPUTs
% 'cumpeakprof' = 1xP array containing the cumulative signal intensity
% profile over time (P) for the mass range defined in the
% inputs.
% Each column contains the cumulative ions/s value
% calculated across all of the masses for a fixed
% timepoint.
% 'mass_rng' = Mrx1 column array containing the masses within the range
% described by the central mass +- neighbourhood
% 'times' = 1xP row array containing all of the timepoints registered by
% the current file
%
%
% Function to extract the cumulative signal intensity across the inputted
% mass range over time. Storage structure within .h5 file is [M,1,S,C],
% where M is the number of all of the detected masses, S is the chunk size
% (=6), and C is the number of completed acquisition cycles. Mind that this
% function extracts all of the values and rearranges them in a MrxP
% structure, where P is given by P = S*C - n_zeroes (zeroes are chunked),
% and Mr is equal to the number of mass points between the provided range
% to be analysed. Eventually, it sums up the values across each column, to
% get an output like 1xP.
%
% DEPENDANCIES: 'geth5log.m', 'geth5mocklog.m', 'geth5masses.m',
% 'geth5time.m'
% ===

% ===
% Initialisation and error handling
% ===
format long

assert(ischar(filename),'First input <filename> must be a char array.')

check = strcmpi(filename((end - 2):end),'.h5');
if ~check
 error('Filetype was not expected. Use .h5 file.')
end
%--
bool = isnumeric(central_mass) & isnumeric(neighbourhood);

assert(bool, ['Second and third inputs <central_mass> and ' ...
 '<neighbourhood> must be numeric values.']);

Giovanni Lorenzon – MPhil Thesis

 93

%--
% Gathers data on masses analysed to check if 'central_mass' and
% 'neighbourhood' are valid picks
masses = geth5masses(filename);

assert(~(central_mass < masses(1) | central_mass > masses(end)), ...
 ['Second input <central_mass> does not fall within the mass range ' ...
 'measured by the inputted file.'])

% ===
% Pair mass range to mass list indexes
% ===
cond = (central_mass - neighbourhood) < masses(1) | ...
 (central_mass + neighbourhood) > masses(end);

assert(~cond, 'Neighbourhood to be analysed exceeds mass range limits.')

[~,ix_min] = min(abs(masses - (central_mass - neighbourhood)));
[~,ix_max] = min(abs(masses - (central_mass + neighbourhood)));

% ===
% Log data extraction
% ===
if contains(filename, 'mock')
 [n_cycles, n_zeroes] = geth5mocklog(filename);
 chunk_size = 6; % Storage file chunk size for time points
else
 [n_cycles, n_zeroes, chunk_size, error_msg] = geth5log(filename);
 if strcmp(error_msg, 'MSmode_file')
 [n_cycles, n_zeroes, chunk_size] = geth5logMS(filename);
 end
end

% ===
% Extracting peak data
% ===
name_tofdata_dtst = '/FullSpectra/TofData'; % Where ions/s data are stored
 % for every time point and for
 % every recorded mass
% chunk_size = 6; % Storage file chunk size for time points

start = [ix_min 1 1 1];
x_count = length(masses(ix_min:ix_max));
count = [x_count 1 chunk_size n_cycles];
stride = [1 1 1 1];
%--
tofdata_raw = h5read(filename, name_tofdata_dtst, start, count, stride);

time_length = chunk_size*n_cycles;

tofdata = zeros(x_count,time_length);
for i = 1:x_count
 singlemass = zeros(1,time_length);
 for j = 1:(n_cycles)
 singlemass(...
 (((j-1)*chunk_size)+1): ...
 (((j-1)*chunk_size)+chunk_size) ...
) = tofdata_raw(i,1,:,j);
 end
 tofdata(i,:) = singlemass;
end
%--

Giovanni Lorenzon – MPhil Thesis

 94

for z = 1:n_zeroes
 tofdata(:,end) = [];
end
%--
cumpeakprof = sum(tofdata);

mass_rng = masses(ix_min:ix_max);

times = geth5times(filename);

% cumpeakprof = zeros(1,length(times));
% for i = 1:length(times)
% single = trapz(mass_rng,tofdata(:,i));
% cumpeakprof(i) = single;
% end
end

geth5mtrcumpeaks.m

function [cumpeakprofrng, mass_rng, times_rng] = geth5mtrcumpeaks(...
 filename, ...
 central_mass, neighbourhood, ...
 t_start, t_end)
% ===
% INPUTs
% 'filename' = Name of the .h5 file in output from the PTR-MS (or mockfile)
% 'central_mass' = Mass target to be analysed
% 'neighbourhood' = Defines the mass range to be included in the
% calculation of the peak at the specified mass target
% [central_mass-neighbourhood,central_mass+neighbourhood]
% 't_start' = Time (in seconds) to the define the starting point of the
% output array
% 't_end' = Time (in seconds) to the define the end point of the output
% array
%
% OUTPUTs
% 'cumpeakprofrng' = 1xPr array containing the cumulative signal intensity
% profile over a specific range of time (Pr) within that
% recorded by the file in analysis for the mass range
% defined in the inputs.
% Each column contains the cumulative ions/s value
% calculated across all of the masses for a fixed
% timepoint.
% 'mass_rng' = Mrx1 column array containing the masses within the range
% described by the central mass +- neighbourhood
% 'times_rng' = 1xPr row array containing the timepoints within the range
% given by the last two inputs
%
%
% Function to extract the cumulative signal intensity across the inputted
% mass range over a specific range of time. Storage structure within .h5
% file is [M,1,S,C], where M is the number of all of the detected masses,
% S is the chunk size (=6), and C is the number of completed acquisition
% cycles. Mind that this function extracts all of the values and rearranges
% them in a MrxPr structure, where Pr is the selected range of times
% belonging to the original set given by P = S*C - n_zeroes (zeroes are
% chunked), and Mr is equal to the number of mass points between the
% provided range to be analysed. Eventually, it sums up the values across
% each column, to get an output like 1xPr.
%
% DEPENDANCIES: 'geth5masses.m', 'geth5time.m', 'geth5log.m'
% ===

Giovanni Lorenzon – MPhil Thesis

 95

% ===
% Initialisation and error handling
% ===
format long

assert(ischar(filename),'First input <filename> must be a char array.')

check = strcmpi(filename((end - 2):end),'.h5');
if ~check
 error('Filetype was not expected. Use .h5 file.')
end
%--
bool = isnumeric(central_mass) & isnumeric(neighbourhood);

assert(bool, ['Second and third inputs <central_mass> and ' ...
 '<neighbourhood> must be numeric values.']);
%--
% Gathers data on masses analysed to check if 'central_mass' and
% 'neighbourhood' are valid picks
masses = geth5masses(filename);

assert(~(central_mass < masses(1) | central_mass > masses(end)), ...
 ['Second input <central_mass> does not fall within the mass range ' ...
 'measured by the inputted file.'])
%--
% Gathers data on times analysed to check if 't_start' and 't_end'
% are valid picks
times = geth5times(filename);

assert(~(t_start < times(1) | t_end > times(end)), ...
 'Inputted time limits exceed those of the file in exam.')

% ===
% Pair mass range to mass list indexes
% ===
cond = (central_mass - neighbourhood) < masses(1) | ...
 (central_mass + neighbourhood) > masses(end);

assert(~cond, 'Neighbourhood to be analysed exceeds mass range limits')

[~,ix_min] = min(abs(masses - (central_mass - neighbourhood)));
[~,ix_max] = min(abs(masses - (central_mass + neighbourhood)));

% ===
% Extracts chunk size to be employed
% ===
if contains(filename, 'mock')
 chunk_size = 6;
else
 [~,~,chunk_size, error_msg] = geth5log(filename);
 if strcmp(error_msg, 'MSmode_file')
 [~, ~, chunk_size] = geth5logMS(filename);
 end
end

% ===
% Pair time range to times list indexes
% ===
[~,ix_st] = min(abs(times - t_start),[],'all','linear');
[~,ix_end] = min(abs(times - t_end),[],'all','linear');

Giovanni Lorenzon – MPhil Thesis

 96

cyc_st = ceil(ix_st/chunk_size);
rem_st = rem(ix_st,chunk_size);
cyc_end = ceil(ix_end/chunk_size);
rem_end = rem(ix_end,chunk_size);
rng = cyc_end - cyc_st;

times_rng = times(ix_st:ix_end);

% ===
% Extracting peak data
% ===
name_tofdata_dtst = '/FullSpectra/TofData'; % Where ions/s data are stored
 % for every time point and for
 % every recorded mass

start = [ix_min 1 1 cyc_st];
x_count = length(masses(ix_min:ix_max));
z_count = rng + 1;
count = [x_count 1 chunk_size z_count];
stride = [1 1 1 1];
%--
tofdata_raw = h5read(filename, name_tofdata_dtst, start, count, stride);

time_length = chunk_size*z_count;

tofdata = zeros(x_count,time_length);
for i = 1:x_count
 singlemass = zeros(1,time_length);
 for j = 1:(z_count)
 singlemass(...
 (((j-1)*chunk_size)+1): ...
 (((j-1)*chunk_size)+chunk_size) ...
) = tofdata_raw(i,1,:,j);
 end
 tofdata(i,:) = singlemass;
end
%--
if rem_st == 0
 if rem_end == 0
 tofdata = tofdata(1:end,chunk_size:end);
 else
 tofdata = tofdata(1:end,chunk_size:(end-(chunk_size-rem_end)));
 end
else
 if rem_end == 0
 tofdata = tofdata(1:end,rem_st:end);
 else
 tofdata = tofdata(1:end,rem_st:(end-(chunk_size-rem_end)));
 end
end
%--
cumpeakprofrng = sum(tofdata);

mass_rng = masses(ix_min:ix_max);
end

genaddh5mock.m

function name_curr_mock = genaddh5mock(user_mass,timelength_mock,varargin)
% ===
% INPUTs

Giovanni Lorenzon – MPhil Thesis

 97

% 'user_mass' = Mass value at which simulate a random intensity profile
% 'timelength_mock' = Timespan covered by the mockfile to be generated
%
% OPTIONAL INPUTs
% (1st ARG)'random distribution function' = The function used to generate
% the peak intensity profile over
% time.
% DEFAULT = 'stable'
% OPT1 = 'sinusoindal'
% OPT2 = 'constant'
% (2nd ARG)'measured masses starting point' = The lowest mass value
% detected by the PTRMS during
% the current mock.
% DEFAULT = 0
% OPT = N > 0
%
% OUTPUTs
% 'name_curr_mock' = Name of the mock .h5 file in output
%
%
% Function that generates a mock .h5 file to emulate the output of the
% PTR-MS. The output file is generated exactly as the original one, except
% for the data logging regarding the number of completed acquisition cycles
% and the number of zeroes contained in the last time cycle. In addition to
% file generation, the function adds a random output profile at the mass
% value chosen by the user. This random profile is given by the combination
% of two distributions: (i) a distribution over time based on a userdefined
% distribution' which determines the intensity profile over time for the
% exact mass inputted by the user; (ii) a normal distribution across the
% masses to generate fictional peaks around the chosen mass (usually there
% is a neighbourhood of masses to be considered when detecting a specific
% one)
% ===

% ===
% Initialisation
% ===
% delete 'PTRMSmocksequence*.h5'
% close all
% clear all
format long
% clc

% ===
% Error handling & optional arguments evaluation
% ===
switch nargin
 case 2
 assert(isnumeric(user_mass) & ...
 2 == ndims(user_mass) & ...
 216 > user_mass & ...
 0 < user_mass & ...
 1 == size(user_mass,1) & ...
 1 == size(user_mass,2), ...
 ['First input <user_mass> must be a positive scalar ' ...
 'lower than 216m/q.'])
 assert(isnumeric(timelength_mock) & ...
 2 == ndims(timelength_mock) & ...
 5 < timelength_mock & ...
 1 == size(timelength_mock,1) & ...
 1 == size(timelength_mock,2), ...
 ['Second input <timelength_mock> must be a positive ' ...
 'scalar higher than 5s.'])

Giovanni Lorenzon – MPhil Thesis

 98

 start_mass = 0;
 distr_fun = 'stable';
 case 3
 assert(isnumeric(user_mass) & ...
 2 == ndims(user_mass) & ...
 216 > user_mass & ...
 0 < user_mass & ...
 1 == size(user_mass,1) & ...
 1 == size(user_mass,2), ...
 ['First input <user_mass> must be a positive scalar ' ...
 'lower than 216m/q.'])
 assert(isnumeric(timelength_mock) & ...
 2 == ndims(timelength_mock) & ...
 5 < timelength_mock & ...
 1 == size(timelength_mock,1) & ...
 1 == size(timelength_mock,2), ...
 ['Second input <timelength_mock> must be a positive ' ...
 'scalar higher than 5s.'])
 assert(ischar(varargin{1}) & ...
 2 == ndims(varargin{1}) & ...
 1 == size(varargin{1},1), ...
 ['Third input <random distribution function> must be ' ...
 'a char row vector (1xN char).'])
 assert(strcmpi(varargin{1}, 'stable') | ...
 strcmpi(varargin{1}, 'sinusoidal') | ...
 strcmpi(varargin{1}, 'constant'), ...
 ['Third input <random distribution function> must match ' ...
 'the options <stable>, <sinusoidal> or <constant>.'])

 start_mass = 0;
 distr_fun = varargin{1};
 otherwise
 assert(isnumeric(varargin{2}) & ...
 2 == ndims(varargin{2}) & ...
 0 < varargin{2} & ...
 1 == size(varargin{2},1) & ...
 1 == size(varargin{2},2), ...
 ['Fourth input <measured masses starting point> must ' ...
 'be a positive scalar higher than 0m/q.'])

 start_mass = varargin{2};
 spectrum_extension = 216; % Span of detection range of PTRMS
 end_mass_rng = start_mass + spectrum_extension;

 assert(isnumeric(user_mass) & ...
 2 == ndims(user_mass) & ...
 end_mass_rng > user_mass & ...
 start_mass < user_mass & ...
 1 == size(user_mass,1) & ...
 1 == size(user_mass,2), ...
 ['First input <user_mass> must be a positive scalar ' ...
 'lower than ' num2str(round(end_mass_rng)) 'm/q.'])
 assert(isnumeric(timelength_mock) & ...
 2 == ndims(timelength_mock) & ...
 5 < timelength_mock & ...
 1 == size(timelength_mock,1) & ...
 1 == size(timelength_mock,2), ...
 ['Second input <timelength_mock> must be a positive ' ...
 'scalar higher than 5s.'])
 assert(ischar(varargin{1}) & ...
 2 == ndims(varargin{1}) & ...
 1 == size(varargin{1},1), ...
 ['Third input <random distribution function> must be ' ...
 'a char row vector (1xN char).'])
 assert(strcmpi(varargin{1}, 'stable') | ...
 strcmpi(varargin{1}, 'sinusoidal') | ...

Giovanni Lorenzon – MPhil Thesis

 99

 strcmpi(varargin, 'constant'), ...
 ['Third input <random distribution function> must match ' ...
 'the options <stable>, <sinusoidal> or <constant>.'])

 distr_fun = varargin{1};
end

% ===
% Constants
% ===
avg_mass_step = 0.0014; % Mass resolution of the PTRMS
avg_time_step = 0.3; % Time in between ions sampling from the PTRMS
spectrum_extension = 216; % Span of detection range of PTRMS
chunk_size = 6; % Storage file chunk size for time points
cycles_pos = 27; % Position index for the beginning of the 'number of
 % cycles' entry in the logfile of each .h5 file
shift_to_zeroes_pos = 17; % Shift from end of the 'cycles' entry to the
 % beginning of the 'zeroes' entry
neighbourhood_mock = 0.14; % Neighbourhood of masses whose ion count still
 % contributes to the evaluation of the central
 % mass value the user wants to examine. This is
 % not for scoping, but rather for the definition
 % of the structure of the mockfile.

% ===
% User specified data
% ===
beg_mass_rng = start_mass + 1; % starting point of the examined mass range (starts
from
 % 1 because it's the mass of the single proton, the
 % smallest detectable ion
% user_mass = 154.25; % Target mass to be analysed
mass_of_choice = user_mass + 1; % We're working with the shifted mass
 % (proton is attached, so +1 in mass)
% timelength_mock = 30; % Length of time covered by the mockfile in seconds

% ===
% Flags
% ===
no_prev_files_flag = 0; % Marks if there is already a previous mock spectra
 % file (0 = there are previous files; 1 = there is
 % no previous file)

% ===
% Check for previous mock-files / modifies the relative flag accordingly /
% assess the file-number associated with the last mock-file available (the
% one with the highest number in the name - not the most recent one)
% ===
mocks = dir('PTRMSmocksequence*.h5');
n_mocks = length(mocks);

if n_mocks == 0
 n_last_mock = 0;
 no_prev_files_flag = 1;
elseif n_mocks ==1
 n_last_mock = str2double(mocks.name(end-5:end-3));
else
 ns_mocks = zeros(1,n_mocks);
 for i = 1:n_mocks
 ns_mocks(i) = str2double(mocks(i).name(end-5:end-3));
 end
 n_last_mock = max(ns_mocks);

Giovanni Lorenzon – MPhil Thesis

 100

end

% ===
% Defines name for the current mockfile to be outputted (the final file
% name has to be identified by three digits '$$$' --> max n_mockfiles is
% therefore '999')
% ===
n_curr_mock = n_last_mock + 1;

if n_curr_mock >= 100
 id_curr_mock = num2str(n_curr_mock);
elseif n_curr_mock < 100 && n_curr_mock >= 10
 id_curr_mock = ['0' num2str(n_curr_mock)];
else
 id_curr_mock = ['00' num2str(n_curr_mock)];
end

name_curr_mock = ['PTRMSmocksequence' id_curr_mock '.h5'];

% ===
% Defines the exact number of timepoints for the current mockfile being
% produced (I want each mockfile to cover approximately 30s and being ~0.3s
% the average timestep in the MS data acquisition system it means that the
% number of timesteps is 100. As I want to be flexible and allow already
% for good adaptability towards the files the platform will be working with
% I randomly assign a number of timepoints between 96 and 102. This because
% the chunk size of the data storage system is 6. Every cycle consists of 6
% entries and if the data buffer is emptied at a point in which all 6
% points of the current cycles aren't yet acquired, the system fills the
% remaining entries with zeroes, so to have a valid array structure to
% insert inside of the .h5 file. Similarly, if the number of timepoints
% randomly generated here differs from 96 or 102, there'll be a number of
% zeroes in the final data chunk.
% ===
rng('shuffle');
low_threshold = ...
 floor((timelength_mock/avg_time_step)/chunk_size)*chunk_size;
high_threshold = low_threshold + chunk_size;
n_timepoints_curr_mock = randi([low_threshold, high_threshold]);
n_timecycles_curr_mock = ceil(n_timepoints_curr_mock/6);
remainder = rem(n_timepoints_curr_mock,chunk_size);
if remainder > 0
 n_zeroes_curr_mock = chunk_size - remainder; % From 1 to 5
else
 n_zeroes_curr_mock = 0;
end

% ===
% Creates all the .h5 structures for the current mockfile
% ===
name_time_dtst = '/TimingData/BufTimes'; % Where all the times of the
 % single timesteps are stored
time_size_curr_mock = [6 n_timecycles_curr_mock];
h5create(name_curr_mock,name_time_dtst,time_size_curr_mock);
%--
name_mass_dtst = '/FullSpectra/MassAxis'; % Where the vector containing all
 % of the measured masses is
 % stored
masses_length = round(spectrum_extension/avg_mass_step);
mass_size_curr_mock = [masses_length 1];
h5create(name_curr_mock,name_mass_dtst,mass_size_curr_mock);
%--
name_tofdata_dtst = '/FullSpectra/TofData'; % Where ions/s data are stored
 % for every time point and for

Giovanni Lorenzon – MPhil Thesis

 101

 % every recorded mass
tofdata_size_curr_mock = ...
 [masses_length, ...
 1, ...
 chunk_size, ...
 n_timecycles_curr_mock];
h5create(name_curr_mock,name_tofdata_dtst,tofdata_size_curr_mock);
%--
name_log_dtst = '/AcquisitionLog/Log'; % Where the info about the number of
 % of completed cycles and zeroes in
 % the last cycle is stored
% log_size_curr_mock = [1 (91 + length(num2str(n_timecycles_curr_mock)))];
log_size_curr_mock = [1 1];
h5create(name_curr_mock,name_log_dtst,log_size_curr_mock, ...
 'Datatype', 'string');

% ===
% Evaluates the starting timepoint based on the presence/absence of
% previous mockfiles
% ===
if no_prev_files_flag == 1
 start_time_curr_mock = 0;
else
 % Identifies the file to open to extract the info related to time
 if n_curr_mock >= 2 && n_curr_mock <= 10
 id_last_mock = ['00' num2str(n_last_mock)];
 elseif n_curr_mock > 10 && n_curr_mock <= 100
 id_last_mock = ['0' num2str(n_last_mock)];
 else
 id_last_mock = num2str(n_last_mock);
 end

 % Opens time dataset and file log
 name_last_mock = ['PTRMSmocksequence' id_last_mock '.h5'];
 data_time_last_mock = h5read(name_last_mock, name_time_dtst);
 log_last_mock = char(h5read(name_last_mock, name_log_dtst));

 % Extracts no. of cycles & zeroes from log
 spot = '';
 cycles = '';
 while strcmp(spot, ' ') == 0
 spot = log_last_mock(cycles_pos);
 cycles = [cycles spot];
 cycles_pos = cycles_pos + 1;
 end

 n_timecycles_last_mock = str2double(cycles(1:(end-1)));
 n_zeroes_last_mock = ...
 str2double(log_last_mock(...
 cycles_pos + shift_to_zeroes_pos ...
));

 % Extracts last recorded timepoint and adds timestep to get the
 % starting point of the current mockfile
 if n_zeroes_last_mock > 0
 start_time_curr_mock = ...
 data_time_last_mock((end - n_zeroes_last_mock), end) + ...
 avg_time_step;
 else
 start_time_curr_mock = ...
 data_time_last_mock(end,end) + ...
 avg_time_step;
 end

end

Giovanni Lorenzon – MPhil Thesis

 102

% ===
% Switch between the functions for the creation of the mock intensity
% profile. Switch is based on the variable 'distr_fun'
% ===
switch distr_fun
%--
 case 'stable'
% ===
% Define a random distribution parameters over time of the ions count.
% This distributions defines the profile over time of the central
% mass to be analysed. It employs the probability density function 'pdf'
% based on the distribution given by 'makedist' (which in turn employs a
% 4-parameters stable distribution). Distribution parameters are randomly
% picked amongst pre-defined ranges that are found to be suitable for the
% desired profile to output.
% ===
lim_alpha = [1 2];
lim_beta = [-1 1];
lim_gamma = [10 timelength_mock];

% Defines the delta par based on the time range sampled. Delta is related
% to the central position of the distribution, therefore it needs to
% account for the actually measured time chunk
if no_prev_files_flag == 1
 lim_delta = [0 30];
else
 lim_delta = [(start_time_curr_mock) ...
 (start_time_curr_mock + n_timepoints_curr_mock*avg_time_step)];
end

% Randomly defines the 4 parameters within the defined ranges
lims = [lim_alpha; lim_beta; lim_gamma; lim_delta];
for i = 1:4
 if i == 1
 alpha = (lims(i,2) - lims(i,1))*rand + lims(i,1);
 elseif i == 2
 beta = (lims(i,2) - lims(i,1))*rand + lims(i,1);
 elseif i == 3
 gamma = (lims(i,2) - lims(i,1))*rand + lims(i,1);
 elseif i == 4
 delta = (lims(i,2) - lims(i,1))*rand + lims(i,1);
 end
end

% Creates central distribution
scaling_factor = 100000; % Takes output of distribution function to values
 % similar to those given by actual ions count on
 % real measurement of PTRMS

times = linspace(start_time_curr_mock, ...
 (start_time_curr_mock + avg_time_step*(n_timepoints_curr_mock-1)), ...
 n_timepoints_curr_mock);
distribution = ...
 makedist('Stable','alpha',alpha,'beta',beta,'gam',gamma,'delta',delta);
central_ions_distr = pdf(distribution,times);
central_ions_distr = central_ions_distr*scaling_factor;

%--
 case 'sinusoidal'
% ===
% Define a random distribution parameters over time of the ions count.
% This distributions defines the profile over time of the central
% mass to be analysed. It employs a 'sinusoidal' function, slowed down to
% guarantee a non-excessive oscillation. Distribution parameters are

Giovanni Lorenzon – MPhil Thesis

 103

% randomly picked amongst pre-defined ranges that are found to be suitable
% for the desired profile to output.
% ===
lim_slow_factor = [2.5 4];
lim_scaling_factor = [500 5000]; % Takes output of distribution function to
 % values similar to those given by actual
 % ions count on real measurement of PTRMS

slow_factor = (lim_slow_factor(2) - lim_slow_factor(1))*rand + ...
 lim_slow_factor(1);
scaling_factor = (lim_scaling_factor(2) - lim_scaling_factor(1))*rand + ...
 lim_scaling_factor(1);

times = linspace(start_time_curr_mock, ...
 (start_time_curr_mock + avg_time_step*(n_timepoints_curr_mock-1)), ...
 n_timepoints_curr_mock);

central_ions_distr = scaling_factor*sin(times/slow_factor);

if no_prev_files_flag == 1
 central_ions_distr = central_ions_distr + lim_scaling_factor(2);
end

%--
 case 'constant'
% ===
% Define a random distribution parameters over time of the ions count.
% This distributions defines the profile over time of the central
% mass to be analysed. It employs a 'sinusoidal' function, slowed down to
% guarantee a non-excessive oscillation. Distribution parameters are
% randomly picked amongst pre-defined ranges that are found to be suitable
% for the desired profile to output.
% ===
times = linspace(start_time_curr_mock, ...
 (start_time_curr_mock + avg_time_step*(n_timepoints_curr_mock-1)), ...
 n_timepoints_curr_mock);

if no_prev_files_flag == 1
 prompt = 'Output level';
 dlgtitle = 'Enter numerical value of mocked output';
 dims = [1 100];
 output = inputdlg(prompt,dlgtitle,dims);

 central_ions_distr = linspace(...
 str2double(output{1}), ...
 str2double(output{1}), ...
 n_timepoints_curr_mock);
else
 central_ions_distr = zeros(1, n_timepoints_curr_mock);
end
%--
end

% ===
% Generates the orthogonal distribution related to the masses. Target mass
% isn't the only one that registers ions related to the target coumpound,
% also a small neighbourhood records ions which are fundamental to the
% accurate measurement of the concentration of the target compound.
% Therefore, it is desirable to simulate the same profile in the mock file.
% To do this, a normal distribution is generated. Combining the ions
% distribution over time with the distribution over the masses, will
% generate the surface of peaks across both masses and timepoints.
% ===
% Generates the whole list of masses that the PTRMS will analyse

Giovanni Lorenzon – MPhil Thesis

 104

data_mass_curr_mock = ...
 [beg_mass_rng:...
 avg_mass_step:...
 (beg_mass_rng + (masses_length - 1)*avg_mass_step)];
data_mass_curr_mock = data_mass_curr_mock';

% Extracts the mass range in which the mock profile will be generated
% according to the user defined mass value whose peak must be simulated
[~,ix_mass_choice] = min(abs(data_mass_curr_mock - mass_of_choice));
ixs_neighbourhood = round(neighbourhood_mock/avg_mass_step);
masses_mock = data_mass_curr_mock(...
 ix_mass_choice - ixs_neighbourhood:...
 ix_mass_choice + ixs_neighbourhood...
);

% Generates the distribution
norm_distr = normpdf(...
 masses_mock, ... % Created across the prev identified range of masses
 mass_of_choice, ... % Centre is on the target mass
 neighbourhood_mock/3); % Gives quite a narrow distr, okay for purpose
norm_distr = norm_distr/max(norm_distr); % Normalise to get 'height' values
 % of the distr to be 0:1

% ===
% Accounts for the eventual previous mockfile distribution and guarantees
% continuity across the next mockfile in the distribution of peaks. First,
% it finds the position of the last peak entry for the target mass in the
% previous mockfile, then it extracts it, and lastly it uses it to offset
% the currently generated distribution.
% ===
if no_prev_files_flag == 0
 ix_last_entry_last_mock = chunk_size - n_zeroes_last_mock;
 read_start = [...
 ix_mass_choice, ...
 1, ...
 ix_last_entry_last_mock, ...
 n_timecycles_last_mock ...
];
 read_count = [1 1 1 1];

 endvalue_tofdata_last_mock = ...
 h5read(name_last_mock,name_tofdata_dtst,read_start,read_count);

 central_ions_distr = ...
 central_ions_distr + ...
 (endvalue_tofdata_last_mock - central_ions_distr(1));

 if any(central_ions_distr < 0)
 central_ions_distr(central_ions_distr < 0) = 0;
 end
end

% ===
% Generates the mixed time-mass distribution of the ion peaks. Then it adds
% the zeroes to maintain proper chunk size, and lastly it structures the
% data in the same way they are stored in the original .h5 files.
% ===
cross_ions_distr = zeros(length(masses_mock),n_timepoints_curr_mock);
for i = 1:length(masses_mock)
 cross_ions_distr(i,:) = norm_distr(i)*central_ions_distr;
end

% Adds zeroes

Giovanni Lorenzon – MPhil Thesis

 105

if n_zeroes_curr_mock == 0
 cross_ions_distr_w_nulls = cross_ions_distr;
else
 cross_ions_distr_w_nulls = [...
 cross_ions_distr, ...
 zeros(length(masses_mock), n_zeroes_curr_mock) ...
];
end

% Rearrange data to be written to .h5 file
data_tofdata_curr_mock = ...
 zeros(length(masses_mock), 1, 6, n_timecycles_curr_mock);
for i = 1:length(masses_mock)
 for j = 1:n_timecycles_curr_mock
 data_tofdata_curr_mock(i,1,:,j) = ...
 cross_ions_distr_w_nulls(...
 i, ...
 ((j-1)*chunk_size+1):((j-1)*chunk_size+chunk_size) ...
);
 end
end

% ===
% Organises and writes data on the previously generated datasets of the
% mockfile
% ===
data_time_curr_mock = zeros(time_size_curr_mock);
if n_zeroes_curr_mock == 0
 for i = 1:n_timecycles_curr_mock
 data_time_curr_mock(:,i) = ...
 times((((i-1)*chunk_size)+1):(((i-1)*chunk_size)+chunk_size));
 end
else
 for i = 1:(n_timecycles_curr_mock - 1)
 data_time_curr_mock(:,i) = ...
 times((((i-1)*chunk_size)+1):(((i-1)*chunk_size)+chunk_size));
 end
 data_time_curr_mock(:,end) = ...
 [times(((n_timecycles_curr_mock-1)*chunk_size+1):end), ...
 zeros(1, n_zeroes_curr_mock)];
end

h5write(name_curr_mock,name_time_dtst,data_time_curr_mock);
%--
h5write(name_curr_mock,name_mass_dtst,data_mass_curr_mock);
%--
write_start = [...
 (ix_mass_choice - ixs_neighbourhood), ...
 1, ...
 1, ...
 1 ...
];
write_count = [length(masses_mock) 1 6 n_timecycles_curr_mock];

h5write(...
 name_curr_mock, ...
 name_tofdata_dtst, ...
 data_tofdata_curr_mock, ...
 write_start, ...
 write_count ...
);
%--
log_curr_mock = string([...
 'Acquisition aborted after ' ...
 num2str(n_timecycles_curr_mock) ...

Giovanni Lorenzon – MPhil Thesis

 106

 ' complete writes. ' ...
 num2str(n_zeroes_curr_mock) ...
 ' additional bufs in the incomplete last write.' ...
]);

h5write(name_curr_mock,name_log_dtst,log_curr_mock)
end

genaddh5calmock.m

function name_curr_mock = ...
 genaddh5calmock(user_mass,timelength_mock,signal_intensity)
% ===
% INPUTs
% 'user_mass' = Mass value at which simulate a random intensity profile
% 'timelength_mock' = Timespan covered by the mockfile to be generated
% 'signal_intensity' = The intensity value of the constant output that will
% be mocked
%
% OUTPUTs
% 'name_curr_mock' = Name of the mock .h5 file in output
%
%
% Function that generates a mock .h5 file to emulate the output of the
% PTR-MS. The output file is generated exactly as the original one, except
% for the data logging regarding the number of completed acquisition cycles
% and the number of zeroes contained in the last time cycle. In addition to
% file generation, the function adds a constant output profile at the mass
% value chosen by the user. This random profile is given by the combination
% of two distributions: (i) a distribution over time based on a 'constant
% distribution' which determines the intensity profile over time for the
% exact mass inputted by the user; (ii) a normal distribution across the
% masses to generate fictional peaks around the chosen mass (usually there
% is a neighbourhood of masses to be considered when detecting a specific
% one)
% ===

% ===
% Initialisation
% ===
% delete 'PTRMSmockcalsequence*.h5'
% close all
% clear all
format long
% clc

% ===
% Error handling & optional arguments evaluation
% ===
assert(isnumeric(user_mass) & ...
 2 == ndims(user_mass) & ...
 216 > user_mass & ...
 0 < user_mass & ...
 1 == size(user_mass,1) & ...
 1 == size(user_mass,2), ...
 ['First input <user_mass> must be a positive scalar ' ...
 'lower than 216m/q.'])
assert(isnumeric(timelength_mock) & ...
 2 == ndims(timelength_mock) & ...
 5 < timelength_mock & ...
 1 == size(timelength_mock,1) & ...
 1 == size(timelength_mock,2), ...

Giovanni Lorenzon – MPhil Thesis

 107

 ['Second input <timelength_mock> must be a positive ' ...
 'scalar higher than 5s.'])

% ===
% Constants
% ===
avg_mass_step = 0.0014; % Mass resolution of the PTRMS
avg_time_step = 0.3; % Time in between ions sampling from the PTRMS
spectrum_extension = 216; % Span of detection range of PTRMS
chunk_size = 6; % Storage file chunk size for time points
cycles_pos = 27; % Position index for the beginning of the 'number of
 % cycles' entry in the logfile of each .h5 file
shift_to_zeroes_pos = 17; % Shift from end of the 'cycles' entry to the
 % beginning of the 'zeroes' entry
neighbourhood_mock = 0.14; % Neighbourhood of masses whose ion count still
 % contributes to the evaluation of the central
 % mass value the user wants to examine. This is
 % not for scoping, but rather for the definition
 % of the structure of the mockfile.
distr_fun = 'constant';

% ===
% User specified data
% ===
beg_mass_rng = 1; % starting point of the examined mass range (starts from
 % 1 because it's the mass of the single proton, the
 % smallest detectable ion
% user_mass = 154.25; % Target mass to be analysed
mass_of_choice = user_mass + 1; % We're working with the shifted mass
 % (proton is attached, so +1 in mass)
% timelength_mock = 30; % Length of time covered by the mockfile in seconds

% ===
% Flags
% ===
no_prev_files_flag = 0; % Marks if there is already a previous mock spectra
 % file (0 = there are previous files; 1 = there is
 % no previous file)

% ===
% Check for previous mock-files / modifies the relative flag accordingly /
% assess the file-number associated with the last mock-file available (the
% one with the highest number in the name - not the most recent one)
% ===
mocks = dir('PTRMSmockcalsequence*.h5');
n_mocks = length(mocks);

if n_mocks == 0
 n_last_mock = 0;
 no_prev_files_flag = 1;
elseif n_mocks ==1
 n_last_mock = str2double(mocks.name(end-5:end-3));
else
 ns_mocks = zeros(1,n_mocks);
 for i = 1:n_mocks
 ns_mocks(i) = str2double(mocks(i).name(end-5:end-3));
 end
 n_last_mock = max(ns_mocks);
end

% ===

Giovanni Lorenzon – MPhil Thesis

 108

% Defines name for the current mockfile to be outputted (the final file
% name has to be identified by three digits '$$$' --> max n_mockfiles is
% therefore '999')
% ===
n_curr_mock = n_last_mock + 1;

if n_curr_mock >= 100
 id_curr_mock = num2str(n_curr_mock);
elseif n_curr_mock < 100 && n_curr_mock >= 10
 id_curr_mock = ['0' num2str(n_curr_mock)];
else
 id_curr_mock = ['00' num2str(n_curr_mock)];
end

name_curr_mock = ['PTRMSmockcalsequence' id_curr_mock '.h5'];

% ===
% Defines the exact number of timepoints for the current mockfile being
% produced (I want each mockfile to cover approximately 30s and being ~0.3s
% the average timestep in the MS data acquisition system it means that the
% number of timesteps is 100. As I want to be flexible and allow already
% for good adaptability towards the files the platform will be working with
% I randomly assign a number of timepoints between 96 and 102. This because
% the chunk size of the data storage system is 6. Every cycle consists of 6
% entries and if the data buffer is emptied at a point in which all 6
% points of the current cycles aren't yet acquired, the system fills the
% remaining entries with zeroes, so to have a valid array structure to
% insert inside of the .h5 file. Similarly, if the number of timepoints
% randomly generated here differs from 96 or 102, there'll be a number of
% zeroes in the final data chunk.
% ===
rng('shuffle');
low_threshold = ...
 floor((timelength_mock/avg_time_step)/chunk_size)*chunk_size;
high_threshold = low_threshold + chunk_size;
n_timepoints_curr_mock = randi([low_threshold, high_threshold]);
n_timecycles_curr_mock = ceil(n_timepoints_curr_mock/6);
remainder = rem(n_timepoints_curr_mock,chunk_size);
if remainder > 0
 n_zeroes_curr_mock = chunk_size - remainder; % From 1 to 5
else
 n_zeroes_curr_mock = 0;
end

% ===
% Creates all the .h5 structures for the current mockfile
% ===
name_time_dtst = '/TimingData/BufTimes'; % Where all the times of the
 % single timesteps are stored
time_size_curr_mock = [6 n_timecycles_curr_mock];
h5create(name_curr_mock,name_time_dtst,time_size_curr_mock);
%--
name_mass_dtst = '/FullSpectra/MassAxis'; % Where the vector containing all
 % of the measured masses is
 % stored
masses_length = round(spectrum_extension/avg_mass_step);
mass_size_curr_mock = [masses_length 1];
h5create(name_curr_mock,name_mass_dtst,mass_size_curr_mock);
%--
name_tofdata_dtst = '/FullSpectra/TofData'; % Where ions/s data are stored
 % for every time point and for
 % every recorded mass
tofdata_size_curr_mock = ...
 [masses_length, ...
 1, ...

Giovanni Lorenzon – MPhil Thesis

 109

 chunk_size, ...
 n_timecycles_curr_mock];
h5create(name_curr_mock,name_tofdata_dtst,tofdata_size_curr_mock);
%--
name_log_dtst = '/AcquisitionLog/Log'; % Where the info about the number of
 % of completed cycles and zeroes in
 % the last cycle is stored
% log_size_curr_mock = [1 (91 + length(num2str(n_timecycles_curr_mock)))];
log_size_curr_mock = [1 1];
h5create(name_curr_mock,name_log_dtst,log_size_curr_mock, ...
 'Datatype', 'string');

% ===
% Evaluates the starting timepoint based on the presence/absence of
% previous mockfiles
% ===
if no_prev_files_flag == 1
 start_time_curr_mock = 0;
else
 % Identifies the file to open to extract the info related to time
 if n_curr_mock >= 2 && n_curr_mock <= 10
 id_last_mock = ['00' num2str(n_last_mock)];
 elseif n_curr_mock > 10 && n_curr_mock <= 100
 id_last_mock = ['0' num2str(n_last_mock)];
 else
 id_last_mock = num2str(n_last_mock);
 end

 % Opens time dataset and file log
 name_last_mock = ['PTRMSmockcalsequence' id_last_mock '.h5'];
 data_time_last_mock = h5read(name_last_mock, name_time_dtst);
 log_last_mock = char(h5read(name_last_mock, name_log_dtst));

 % Extracts no. of cycles & zeroes from log
 spot = '';
 cycles = '';
 while strcmp(spot, ' ') == 0
 spot = log_last_mock(cycles_pos);
 cycles = [cycles spot];
 cycles_pos = cycles_pos + 1;
 end

 n_timecycles_last_mock = str2double(cycles(1:(end-1)));
 n_zeroes_last_mock = ...
 str2double(log_last_mock(...
 cycles_pos + shift_to_zeroes_pos ...
));

 % Extracts last recorded timepoint and adds timestep to get the
 % starting point of the current mockfile
 if n_zeroes_last_mock > 0
 start_time_curr_mock = ...
 data_time_last_mock((end - n_zeroes_last_mock), end) + ...
 avg_time_step;
 else
 start_time_curr_mock = ...
 data_time_last_mock(end,end) + ...
 avg_time_step;
 end

end

% ===
% Switch between the functions for the creation of the mock intensity
% profile. Switch is based on the variable 'distr_fun'

Giovanni Lorenzon – MPhil Thesis

 110

% ===
switch distr_fun
%--
 case 'stable'
% ===
% Define a random distribution parameters over time of the ions count.
% This distributions defines the profile over time of the central
% mass to be analysed. It employs the probability density function 'pdf'
% based on the distribution given by 'makedist' (which in turn employs a
% 4-parameters stable distribution). Distribution parameters are randomly
% picked amongst pre-defined ranges that are found to be suitable for the
% desired profile to output.
% ===
lim_alpha = [1 2];
lim_beta = [-1 1];
lim_gamma = [10 timelength_mock];

% Defines the delta par based on the time range sampled. Delta is related
% to the central position of the distribution, therefore it needs to
% account for the actually measured time chunk
if no_prev_files_flag == 1
 lim_delta = [0 30];
else
 lim_delta = [(start_time_curr_mock) ...
 (start_time_curr_mock + n_timepoints_curr_mock*avg_time_step)];
end

% Randomly defines the 4 parameters within the defined ranges
lims = [lim_alpha; lim_beta; lim_gamma; lim_delta];
for i = 1:4
 if i == 1
 alpha = (lims(i,2) - lims(i,1))*rand + lims(i,1);
 elseif i == 2
 beta = (lims(i,2) - lims(i,1))*rand + lims(i,1);
 elseif i == 3
 gamma = (lims(i,2) - lims(i,1))*rand + lims(i,1);
 elseif i == 4
 delta = (lims(i,2) - lims(i,1))*rand + lims(i,1);
 end
end

% Creates central distribution
scaling_factor = 100000; % Takes output of distribution function to values
 % similar to those given by actual ions count on
 % real measurement of PTRMS

times = linspace(start_time_curr_mock, ...
 (start_time_curr_mock + avg_time_step*(n_timepoints_curr_mock-1)), ...
 n_timepoints_curr_mock);
distribution = ...
 makedist('Stable','alpha',alpha,'beta',beta,'gam',gamma,'delta',delta);
central_ions_distr = pdf(distribution,times);
central_ions_distr = central_ions_distr*scaling_factor;

%--
 case 'sinusoidal'
% ===
% Define a random distribution parameters over time of the ions count.
% This distributions defines the profile over time of the central
% mass to be analysed. It employs a 'sinusoidal' function, slowed down to
% guarantee a non-excessive oscillation. Distribution parameters are
% randomly picked amongst pre-defined ranges that are found to be suitable
% for the desired profile to output.
% ===
lim_slow_factor = [2.5 4];

Giovanni Lorenzon – MPhil Thesis

 111

lim_scaling_factor = [500 5000]; % Takes output of distribution function to
 % values similar to those given by actual
 % ions count on real measurement of PTRMS

slow_factor = (lim_slow_factor(2) - lim_slow_factor(1))*rand + ...
 lim_slow_factor(1);
scaling_factor = (lim_scaling_factor(2) - lim_scaling_factor(1))*rand + ...
 lim_scaling_factor(1);

times = linspace(start_time_curr_mock, ...
 (start_time_curr_mock + avg_time_step*(n_timepoints_curr_mock-1)), ...
 n_timepoints_curr_mock);

central_ions_distr = scaling_factor*sin(times/slow_factor);

if no_prev_files_flag == 1
 central_ions_distr = central_ions_distr + lim_scaling_factor(2);
end

%--
 case 'constant'
% ===
% Define a random distribution parameters over time of the ions count.
% This distributions defines the profile over time of the central
% mass to be analysed. It employs a 'sinusoidal' function, slowed down to
% guarantee a non-excessive oscillation. Distribution parameters are
% randomly picked amongst pre-defined ranges that are found to be suitable
% for the desired profile to output.
% ===
times = linspace(start_time_curr_mock, ...
 (start_time_curr_mock + avg_time_step*(n_timepoints_curr_mock-1)), ...
n_timepoints_curr_mock);

output = signal_intensity;

central_ions_distr = linspace(...
 output, ...
 output, ...
 n_timepoints_curr_mock);
%--
end

% ===
% Generates the orthogonal distribution related to the masses. Target mass
% isn't the only one that registers ions related to the target coumpound,
% also a small neighbourhood records ions which are fundamental to the
% accurate measurement of the concentration of the target compound.
% Therefore, it is desirable to simulate the same profile in the mock file.
% To do this, a normal distribution is generated. Combining the ions
% distribution over time with the distribution over the masses, will
% generate the surface of peaks across both masses and timepoints.
% ===
% Generates the whole list of masses that the PTRMS will analyse
data_mass_curr_mock = ...
 [beg_mass_rng:...
 avg_mass_step:...
 (beg_mass_rng + (masses_length - 1)*avg_mass_step)];
data_mass_curr_mock = data_mass_curr_mock';

% Extracts the mass range in which the mock profile will be generated
% according to the user defined mass value whose peak must be simulated
[~,ix_mass_choice] = min(abs(data_mass_curr_mock - mass_of_choice));
ixs_neighbourhood = round(neighbourhood_mock/avg_mass_step);
masses_mock = data_mass_curr_mock(...

Giovanni Lorenzon – MPhil Thesis

 112

 ix_mass_choice - ixs_neighbourhood:...
 ix_mass_choice + ixs_neighbourhood...
);

% Generates the distribution
norm_distr = normpdf(...
 masses_mock, ... % Created across the prev identified range of masses
 mass_of_choice, ... % Centre is on the target mass
 neighbourhood_mock/3); % Gives quite a narrow distr, okay for purpose
norm_distr = norm_distr/max(norm_distr); % Normalise to get 'height' values
 % of the distr to be 0:1

% ===
% Generates the mixed time-mass distribution of the ion peaks. Then it adds
% the zeroes to maintain proper chunk size, and lastly it structures the
% data in the same way they are stored in the original .h5 files.
% ===
cross_ions_distr = zeros(length(masses_mock),n_timepoints_curr_mock);
for i = 1:length(masses_mock)
 cross_ions_distr(i,:) = norm_distr(i)*central_ions_distr;
end

% Adds zeroes
if n_zeroes_curr_mock == 0
 cross_ions_distr_w_nulls = cross_ions_distr;
else
 cross_ions_distr_w_nulls = [...
 cross_ions_distr, ...
 zeros(length(masses_mock), n_zeroes_curr_mock) ...
];
end

% Rearrange data to be written to .h5 file
data_tofdata_curr_mock = ...
 zeros(length(masses_mock), 1, 6, n_timecycles_curr_mock);
for i = 1:length(masses_mock)
 for j = 1:n_timecycles_curr_mock
 data_tofdata_curr_mock(i,1,:,j) = ...
 cross_ions_distr_w_nulls(...
 i, ...
 ((j-1)*chunk_size+1):((j-1)*chunk_size+chunk_size) ...
);
 end
end

% ===
% Organises and writes data on the previously generated datasets of the
% mockfile
% ===
data_time_curr_mock = zeros(time_size_curr_mock);
if n_zeroes_curr_mock == 0
 for i = 1:n_timecycles_curr_mock
 data_time_curr_mock(:,i) = ...
 times((((i-1)*chunk_size)+1):(((i-1)*chunk_size)+chunk_size));
 end
else
 for i = 1:(n_timecycles_curr_mock - 1)
 data_time_curr_mock(:,i) = ...
 times((((i-1)*chunk_size)+1):(((i-1)*chunk_size)+chunk_size));
 end
 data_time_curr_mock(:,end) = ...
 [times(((n_timecycles_curr_mock-1)*chunk_size+1):end), ...
 zeros(1, n_zeroes_curr_mock)];

Giovanni Lorenzon – MPhil Thesis

 113

end

h5write(name_curr_mock,name_time_dtst,data_time_curr_mock);
%--
h5write(name_curr_mock,name_mass_dtst,data_mass_curr_mock);
%--
write_start = [...
 (ix_mass_choice - ixs_neighbourhood), ...
 1, ...
 1, ...
 1 ...
];
write_count = [length(masses_mock) 1 6 n_timecycles_curr_mock];

h5write(...
 name_curr_mock, ...
 name_tofdata_dtst, ...
 data_tofdata_curr_mock, ...
 write_start, ...
 write_count ...
);
%--
log_curr_mock = string([...
 'Acquisition aborted after ' ...
 num2str(n_timecycles_curr_mock) ...
 ' complete writes. ' ...
 num2str(n_zeroes_curr_mock) ...
 ' additional bufs in the incomplete last write.' ...
]);

h5write(name_curr_mock,name_log_dtst,log_curr_mock)

end

BioControl 1.0:

Main interface

classdef platform_test_test < matlab.apps.AppBase

 % Properties that correspond to app components
 properties (Access = public)
 BioControl matlab.ui.Figure
 FileMenu matlab.ui.container.Menu
 OpenfolderMenu matlab.ui.container.Menu
 GridLayout matlab.ui.container.GridLayout
 LeftPanel matlab.ui.container.Panel
 StatusPanel matlab.ui.container.Panel
 DataacquisitionLampLabel matlab.ui.control.Label
 DataacquisitionLamp matlab.ui.control.Lamp
 ErrorlogTextAreaLabel matlab.ui.control.Label
 ErrorlogTextArea matlab.ui.control.TextArea
 ChooseoperationalmodalityButtonGroup matlab.ui.container.ButtonGroup
 SimulationButton matlab.ui.control.RadioButton
 SampletestingButton matlab.ui.control.RadioButton
 ChoosePTRMSdatafilesfolderButton matlab.ui.control.Button
 FolderSelectedLamp matlab.ui.control.Lamp
 MonitoringtargetPanel matlab.ui.container.Panel
 TargetmassEditFieldLabel matlab.ui.control.Label
 TargetmassEditField matlab.ui.control.NumericEditField

Giovanni Lorenzon – MPhil Thesis

 114

 mqLabel_4 matlab.ui.control.Label
 NeighbourhoodEditFieldLabel matlab.ui.control.Label
 NeighbourhoodEditField matlab.ui.control.NumericEditField
 mqLabel_5 matlab.ui.control.Label
 STARTButton matlab.ui.control.Button
 STOPButton matlab.ui.control.Button
 ElapsedtimeEditFieldLabel matlab.ui.control.Label
 ElapsedtimeEditField matlab.ui.control.EditField
 RightPanel matlab.ui.container.Panel
 TabGroup matlab.ui.container.TabGroup
 CalibrationTab matlab.ui.container.Tab
 CalibrationPanel matlab.ui.container.Panel
 StartnewcalibrationButton matlab.ui.control.Button
 CalibrationacquiredLampLabel matlab.ui.control.Label
 CalibrationacquiredLamp matlab.ui.control.Lamp
 ChoosecalibrationfileButton matlab.ui.control.Button
 UIAxesCal matlab.ui.control.UIAxes
 CalibrationparametersPanel matlab.ui.container.Panel
 LOG10INTENSITYLabel matlab.ui.control.Label
 SlopeEditField matlab.ui.control.NumericEditField
 xLOG10CONCLabel matlab.ui.control.Label
 InterceptEditField matlab.ui.control.NumericEditField
 SimulationTab matlab.ui.container.Tab
 Panel2_3 matlab.ui.container.Panel
 MockfiletimespanEditFieldLabel matlab.ui.control.Label
 MockfiletimespanEditField matlab.ui.control.NumericEditField
 sLabel matlab.ui.control.Label
 SimulatedmassEditFieldLabel matlab.ui.control.Label
 SimulatedmassEditField matlab.ui.control.NumericEditField
 mqLabel matlab.ui.control.Label
 Panel2_5 matlab.ui.container.Panel
 MockfilegenerationLampLabel matlab.ui.control.Label
 MockfilegenerationLamp matlab.ui.control.Lamp
 UIAxesSim matlab.ui.control.UIAxes
 MonitoringTab matlab.ui.container.Tab
 UIAxesMon1 matlab.ui.control.UIAxes
 UIAxesMon2 matlab.ui.control.UIAxes
 HistoryTab matlab.ui.container.Tab
 WholeHistory matlab.ui.control.UIAxes
 SlidingHistory matlab.ui.control.UIAxes
 TimeSlider matlab.ui.control.Slider
 ImportoptionsPanel matlab.ui.container.Panel
 ChoosefolderfileButton matlab.ui.control.Button
 ImportexperimentButton matlab.ui.control.Button
 HistoryDataLamp matlab.ui.control.Lamp
 ImportGCMScontrolsButton matlab.ui.control.Button
 ChoosetoimportDropDownLabel matlab.ui.control.Label
 ChoosetoimportDropDown matlab.ui.control.DropDown
 GraphoptionsPanel matlab.ui.container.Panel
 PlottedtimeintervalminSpinnerLabel matlab.ui.control.Label
 PlottedtimeintervalminSpinner matlab.ui.control.Spinner
 end

 % Properties that correspond to apps with auto-reflow
 properties (Access = private)
 onePanelWidth = 576;
 end

 properties (Access = private)
 TimerMock % Timer object to time the generation of the mockfiles
 TimerAnalysisMock % Timer object to time the acquisition of data from
 % the mockfiles
 TimerAnalysis % Timer object to time the acquisition of data from
 % the PTRMS files
 TimerStopWatch % Timer object to account for elapsed time

Giovanni Lorenzon – MPhil Thesis

 115

 TicTimer % Object to indicate the startpoint of the stopwatch
 LastMock % Name of the last mockfile that has been generated
 ErrorNumber % Indicator of the consecutive error to be logged
 CalSlope % Slope of the current calibration
 CalIntercept % Intercept of the current calibration
 DataFolder % Folder containing the data outputted by the PTRMS
 LastAnalysedFile % Name of the last file that has been loaded
 NoAnalysedFiles % Number of files analysed so far
 StartTimerVec % Vector indicating the starting time of the
 % current acquisition
 HistoryData % Folder containing all of teh files acquired during
 % an experiment (can be a pointer to both a folder or a
 % file)
 EndOfSlider % Last time value of the current monitoring history
 % that has been imported
 TimeToPlotSlide % Array of time values from the imported monitoring
 % history
 ConcToPlotSlide % Array of conc values from the imported monitoring
 % history
 end

 methods (Access = private)

%**
%**
% FUNCTION 1
%**
%**
 function ClearGraphsNoCalFcn(app,~,~)
 % Stores info on current A/R and position
 aspect_ratio1 = app.UIAxesSim.PlotBoxAspectRatio;
 position1 = app.UIAxesSim.Position;
 % Wipes UIAxesSim
 cla(app.UIAxesSim,'reset');
 % Creates new axes
 app.UIAxesSim = uiaxes(app.SimulationTab);
 title(app.UIAxesSim, '')
 xlabel(app.UIAxesSim, 'Time [s]')
 ylabel(app.UIAxesSim, 'Intensity [ions]')
 app.UIAxesSim.PlotBoxAspectRatio = aspect_ratio1;
 app.UIAxesSim.Position = position1;

 % Stores info on current A/R and position
 aspect_ratio2 = app.UIAxesMon1.PlotBoxAspectRatio;
 position2 = app.UIAxesMon1.Position;
 % Wipes UIAxesMon1
 cla(app.UIAxesMon1,'reset');
 % Creates new axes
 app.UIAxesMon1 = uiaxes(app.MonitoringTab);
 title(app.UIAxesMon1, 'Raw headspace ion count')
 xlabel(app.UIAxesMon1, 'Time [min]')
 ylabel(app.UIAxesMon1, 'Intensity [ions]')
 app.UIAxesMon1.PlotBoxAspectRatio = aspect_ratio2;
 app.UIAxesMon1.Position = position2;

 % Stores info on current A/R and position
 aspect_ratio3 = app.UIAxesMon2.PlotBoxAspectRatio;
 position3 = app.UIAxesMon2.Position;
 % Wipes UIAxesMon2
 cla(app.UIAxesMon2,'reset');
 % Creates new axes
 app.UIAxesMon2 = uiaxes(app.MonitoringTab);
 title(app.UIAxesMon2,['2 min rolling average liquid ' ...

Giovanni Lorenzon – MPhil Thesis

 116

 'concentration'])
 xlabel(app.UIAxesMon2, 'Time [min]')
 ylabel(app.UIAxesMon2, 'Concentration [mg/L]')
 app.UIAxesMon2.PlotBoxAspectRatio = aspect_ratio3;
 app.UIAxesMon2.Position = position3;
 end

%**
%**
% FUNCTION 2
%**
%**
 function GenerateMockFcn(app,~,~)
 user_mass= app.SimulatedmassEditField.Value;
 timelength_mock= app.MockfiletimespanEditField.Value;
 app.LastMock.Value = ...
 genaddh5mock(user_mass,timelength_mock);
 end

%**
%**
% FUNCTION 3
%**
%**
 function StartFcn(app,~,~)
 ClearGraphsNoCalFcn(app)

 if app.SimulationButton.Value == true
 start(app.TimerAnalysisMock)
 else
 start(app.TimerAnalysis)

 end
 end

%**
%**
% FUNCTION 4
%**
%**
 function ReadMockFcn(app,~,~)
 app.DataacquisitionLamp.Color = [0 1 0];

 filename = app.LastMock.Value;
 central_mass = app.TargetmassEditField.Value + 1;
 neighbourhood = app.NeighbourhoodEditField.Value;
 [cumpeakprof,~,times] = geth5mrcumpeaks(...
 filename, ...
 central_mass, neighbourhood);

 % ===
 % Saves time and central ion profile to plot over time
 % ===
 cumpeakprof = cumpeakprof';
 times = times';

 mocks = dir('PTRMSmocksequence*.h5');
 n_mocks = length(mocks);

 if n_mocks <= 1

Giovanni Lorenzon – MPhil Thesis

 117

 x = times;
 y = cumpeakprof;
 RawInt = y;
 Time = x;
 else
 load('whole_simulation.mat')
 x = [x; times];
 y = [y; cumpeakprof];
 RawInt = y;
 Time = x;
 end

 save('whole_simulation.mat','x','y','Time','RawInt')

 % ===
 % Plots ions peaks distribution across elapsed time since the
 % first mockfile that has been generated
 % ===
 plot(app.UIAxesSim,times,cumpeakprof)
 plot(app.UIAxesMon1,x,y)

 rolling_rng = 360; % Timespan for rolling range graph (~=2mins)
 y = (y - app.CalIntercept.Value)./app.CalSlope.Value;

 len = length(x);
 if len > rolling_rng
 X = x(rolling_rng:end);
 Y = zeros((len - (rolling_rng - 1)),1);
 for i = rolling_rng:len
 Y(i - (rolling_rng - 1)) = ...
 sum(y((i - (rolling_rng - 1)):i))/rolling_rng;
 end

 plot(app.UIAxesMon2,X,Y)
 end

 % ===
 % Gets rid of past, useless mockfiles (leaves 5 buffer files)
 % ===
 if n_mocks > 5
 delete(mocks(1).name)
 end

 end

%**
%**
% FUNCTION 5
%**
%**
 function ReadFcn(app,~,~)
 app.DataacquisitionLamp.Color = [0 1 0];

 cd(app.DataFolder.Value)
 filelist = dir('*.h5');

 numeric_dates = zeros(length(filelist),1);
 for j = 1:length(filelist)
 numeric_dates(j) = datenum(filelist(j).date);
 end
 [~, index]= max(numeric_dates);
 filename = filelist(index).name;

Giovanni Lorenzon – MPhil Thesis

 118

 check = strcmp(filename(1), '2');
 if ~check
 return
 end

 if strcmp(filename, app.LastAnalysedFile.Value)
 return
 end

 app.NoAnalysedFiles.Value = app.NoAnalysedFiles.Value + 1;

 central_mass = app.TargetmassEditField.Value + 1;
 neighbourhood = app.NeighbourhoodEditField.Value;
 [cumpeakprof,~,times] = geth5mrcumpeaks(...
 filename, ...
 central_mass, neighbourhood);

 % ===
 % Saves time and central ion profile to plot over time
 % ===
 cumpeakprof = cumpeakprof';
 times = times';

 FormatInput = 'yyyymmdd_HHMMSS';
 [~,DateStringCurr,~] = fileparts(filename);

 if isempty(app.LastAnalysedFile.Value)
 app.StartTimerVec.Value = ...
 datevec(DateStringCurr,FormatInput);
 x = times;
 y = cumpeakprof;
 RawInt = y;
 Time = x;
 else
 load('whole_simulation.mat')
 endtime_current_file = datevec(DateStringCurr,FormatInput);

 [~,DateStringPast,~] = ...
 fileparts(app.LastAnalysedFile.Value);
 endtime_past_file = datevec(DateStringPast,FormatInput);

 t_elapsed_from_beg = ...
 etime(endtime_past_file, app.StartTimerVec.Value) ...
 + times(end);
 t_between_files = ...
 etime(endtime_current_file, endtime_past_file);
 addition = ...
 t_elapsed_from_beg + t_between_files - times(end);

 times = times + addition;

 x = [x; times];
 y = [y; cumpeakprof];
 RawInt = y;
 Time = x;

 end

 save('whole_simulation.mat','x','y','Time','RawInt')

 % ===

Giovanni Lorenzon – MPhil Thesis

 119

 % Plots ions peaks distribution across elapsed time since the
 % first mockfile that has been generated
 % ===
 if length(x) < 1000
 plot(app.UIAxesMon1, x./60, y)
 xlim(app.UIAxesMon1, [0 5])
 xlim(app.UIAxesMon2, [0 5])
 else
 plot(app.UIAxesMon1, x((end-999):end)./60,y((end-999):end))
 xlim(app.UIAxesMon1, [(x(end)./60 - 5) x(end)./60])
 xlim(app.UIAxesMon2, [(x(end)./60 - 5) x(end)./60])
 end

 rolling_rng = 400; % Timespan for rolling range graph (~=2mins)
 y = 0.858*0.001*(10.^...
 ((log10(y) - app.CalIntercept.Value)./app.CalSlope.Value));

 len = length(x);
 if len > rolling_rng && len <= 1500
 X = x(rolling_rng:end)./60;
 Y = [];
 for i = rolling_rng:len
 Y = [Y; ...
 sum(y((i - (rolling_rng-1)):i))/rolling_rng];
 end

 plot(app.UIAxesMon2,X,Y)
 elseif len > 1500
 X = x((end-999):end)./60;
 Y = [];
 for i = (len-999):len
 Y = [Y ...
 sum(y((i - (rolling_rng-1)):i))/rolling_rng];
 end

 plot(app.UIAxesMon2,X,Y)
 end

 app.LastAnalysedFile.Value = filename;
 end

%**
%**
% FUNCTION 6
%**
%**
 function StopWatchStartFcn(app,~,~)
 TocTimer = 0;
 TocTimer = seconds(TocTimer);
 TocTimer.Format = 'hh:mm:ss';
 text = char(TocTimer);
 app.ElapsedtimeEditField.Value = text;
 end

%**
%**
% FUNCTION 7
%**
%**
 function StopWatchFcn(app,~,~)
 TocTimer = toc;
 TocTimer = seconds(TocTimer);
 TocTimer.Format = 'hh:mm:ss';

Giovanni Lorenzon – MPhil Thesis

 120

 text = char(TocTimer);
 app.ElapsedtimeEditField.Value = text;
 end

 end

 % Callbacks that handle component events
 methods (Access = private)

 % Code that executes after component creation
 function startupFcn(app)
 format long

 app.ErrorNumber.Value = 0;
 app.LastMock.Value = '';
 app.DataFolder.Value = '';
 app.LastAnalysedFile.Value = '';
 app.NoAnalysedFiles.Value = 0;
 app.StartTimerVec.Value = [];
 app.HistoryData.Value = '';
 app.EndOfSlider.Value = 0;
 app.TimeToPlotSlide.Value = [];
 app.ConcToPlotSlide.Value = [];

 app.MockfilegenerationLamp.Color = [.8 .8 .8];
 app.DataacquisitionLamp.Color = [.8 .8 .8];
 app.CalibrationacquiredLamp.Color = [.8 .8 .8];
 app.FolderSelectedLamp.Color = [.8 .8 .8];

 app.MockfiletimespanEditField.Value = 30;
 app.SimulatedmassEditField.Value = 154.25;
 app.TargetmassEditField.Value = 154.25;
 app.NeighbourhoodEditField.Value = 0.2;

 app.ElapsedtimeEditField.Value = '00:00:00';

 delete 'PTRMSmocksequence*.h5' 'whole_simulation*'

 period = 30; %Period for timer (in seconds)

 app.TimerMock = timer(...
 'ExecutionMode', 'fixedRate', ...
 'Period', period, ...
 'BusyMode', 'queue');
 app.TimerMock.TimerFcn = @(~,~) app.GenerateMockFcn;
 app.TimerMock.StartFcn = @(~,~) app.StartFcn;

 app.TimerAnalysisMock = timer(...
 'StartDelay', 2, ...
 'ExecutionMode', 'fixedRate', ...
 'Period', period, ...
 'BusyMode', 'queue');
 app.TimerAnalysisMock.TimerFcn = @(~,~) app.ReadMockFcn;

 app.TimerAnalysis = timer(...
 'ExecutionMode', 'fixedRate', ...
 'Period', 5, ...
 'BusyMode', 'queue');
 app.TimerAnalysis.TimerFcn = @(~,~) app.ReadFcn;

 app.TimerStopWatch = timer(...
 'ExecutionMode', 'fixedRate', ...
 'Period', 0.25, ...

Giovanni Lorenzon – MPhil Thesis

 121

 'BusyMode', 'queue');
 app.TimerStopWatch.TimerFcn = @(~,~) app.StopWatchFcn;
 app.TimerStopWatch.StartFcn = @(~,~) app.StopWatchStartFcn;
 end

 % Button pushed function: STARTButton
 function STARTButtonPushed(app, event)
 % Checks that all the necessary inputs are non-null
 % Checks on calibration to be acquired
 check = app.CalibrationacquiredLamp.Color == [0 1 0];
 if ~check
 app.ErrorNumber.Value = app.ErrorNumber.Value + 1;
 heading = ['ERROR NO.' num2str(app.ErrorNumber.Value)];
 text = ['Need to import calibration first.'];
 app.ErrorlogTextArea.Value = ...
 [heading ...
 newline text ...
 newline ' ' ...
 newline ' '];
 return
 end

 % Checks on target mass
 check = app.TargetmassEditField.Value <= 1;
 if check
 app.ErrorNumber.Value = app.ErrorNumber.Value + 1;
 heading = ['ERROR NO.' num2str(app.ErrorNumber.Value)];
 text = ['Target mass needs to be higher than 1.'];
 app.ErrorlogTextArea.Value = ...
 [heading ...
 newline text ...
 newline ' ' ...
 newline ' '];
 return
 end

 %Checks on neighbourhood
 check = app.NeighbourhoodEditField.Value <= 0;
 if check
 app.ErrorNumber.Value = app.ErrorNumber.Value + 1;
 heading = ['ERROR NO.' num2str(app.ErrorNumber.Value)];
 text = ['Neighbourhood needs to be a positive number.'];
 app.ErrorlogTextArea.Value = ...
 [heading ...
 newline text ...
 newline ' ' ...
 newline ' '];
 return
 end

 %Checks on simulation timespan
 simulation = app.SimulationButton.Value == true;
 check = app.MockfiletimespanEditField.Value <= 5;
 if simulation && check
 app.ErrorNumber.Value = app.ErrorNumber.Value + 1;
 heading = ['ERROR NO.' num2str(app.ErrorNumber.Value)];
 text = ['The timespan covered by each mockfile ' ...
 'can''t be lower than 5s.'];
 app.ErrorlogTextArea.Value = ...
 [heading ...
 newline text ...
 newline ' ' ...
 newline ' '];
 return
 end

Giovanni Lorenzon – MPhil Thesis

 122

 %Checks on simulated mass
 simulation = app.SimulationButton.Value == true;
 check = app.SimulatedmassEditField.Value <= 1;
 if simulation && check
 app.ErrorNumber.Value = app.ErrorNumber.Value + 1;
 heading = ['ERROR NO.' num2str(app.ErrorNumber.Value)];
 text = ['Simulated mass needs to be higher than 1.'];
 app.ErrorlogTextArea.Value = ...
 [heading ...
 newline text ...
 newline ' ' ...
 newline ' '];
 return
 end

 %Checks on selected folder for PTRMS datafiles
 if app.SimulationButton.Value == false
 check = isempty(app.DataFolder.Value);
 if check
 app.ErrorNumber.Value = app.ErrorNumber.Value + 1;
 heading = ['ERROR NO.' num2str(app.ErrorNumber.Value)];
 text = ['Need to select the folder containing ' ...
 'PTRMS datafiles when operating in ''Sample ' ...
 'Testing'' mode.'];
 app.ErrorlogTextArea.Value = ...
 [heading ...
 newline text ...
 newline ' ' ...
 newline ' '];
 return
 end
 end

 close all
 delete 'PTRMSmocksequence*.h5' 'whole_simulation*'

 app.LastAnalysedFile.Value = '';
 app.StartTimerVec.Value = [];
 app.NoAnalysedFiles.Value = 0;

 if app.SimulationButton.Value == true
 start(app.TimerMock)
 else
 StartFcn(app)
 end

 StopwatchStatus = get(app.TimerStopWatch,'Running');
 if strcmp(StopwatchStatus, 'on')
 stop(app.TimerStopWatch)
 end
 start(app.TimerStopWatch)

 app.MockfilegenerationLamp.Color = [0 1 0];

 tic
 end

 % Button pushed function: STOPButton
 function STOPButtonPushed(app, event)
 load('whole_simulation.mat', 'x', 'y')

 check = isempty(x) | isempty(y);
 if ~check
 time = datetime('now','format','yyyy.MM.dd-HH.mm.ss');

Giovanni Lorenzon – MPhil Thesis

 123

 temp = datestr(time,'yyyy.mm.dd-HH.MM.ss');
 name = ['monitoring-' temp '.mat'];
 filter = {'*.mat'};
 [file,path] = uiputfile(filter,'BioControl 1.0',name);

 check = file == 0 || path == 0;
 if check
 msg = 'Sure about not saving your acquisition?';
 title = 'BioControl 1.0';
 selection = uiconfirm(app.BioControl,msg,title,...
 'Options',{'Don''t save','Cancel'},...
 'DefaultOption',2,'CancelOption',2, ...
 'Icon','warning');
 switch selection
 case 'Don''t save'
 stop(app.TimerMock)
 stop(app.TimerAnalysis)
 stop(app.TimerStopWatch)

 app.MockfilegenerationLamp.Color = [.8 .8 .8];
 app.DataacquisitionLamp.Color = [.8 .8 .8];
 case 'Cancel'
 return
 end
 else
 Time = x;
 RawInt = y;
 directory = fullfile(path, file);
 save(directory,"Time","RawInt")

 stop(app.TimerMock)
 stop(app.TimerAnalysis)
 stop(app.TimerStopWatch)

 app.MockfilegenerationLamp.Color = [.8 .8 .8];
 app.DataacquisitionLamp.Color = [.8 .8 .8];
 end
 else
 stop(app.TimerMock)
 stop(app.TimerAnalysis)
 stop(app.TimerStopWatch)

 app.MockfilegenerationLamp.Color = [.8 .8 .8];
 app.DataacquisitionLamp.Color = [.8 .8 .8];
 end

 end

 % Close request function: BioControl
 function BioControlCloseRequest(app, event)
 stop(app.TimerMock)
 stop(app.TimerAnalysis)
 stop(app.TimerStopWatch)

 close all
 delete 'PTRMSmocksequence*.h5' 'whole_simulation*'

 delete(app)
 end

 % Button pushed function: StartnewcalibrationButton
 function StartnewcalibrationButtonPushed(app, event)
 cal
 end

Giovanni Lorenzon – MPhil Thesis

 124

 % Button pushed function: ChoosecalibrationfileButton
 function ChoosecalibrationfileButtonPushed(app, event)
 filter = '.xlsx';
 title = 'BioControl 1.0';
 [file, path] = uigetfile(filter, title);

 check = ischar(file) & ischar(path);
 if ~check
 return
 end

 filename = fullfile(path, file);

 fit_parameters = readcell(filename,'Range','A6:B6');
 fit_parameters = cell2mat(fit_parameters);
 exp_points = readcell(filename,'Range','A8:B20');
 for i = 1:length(exp_points)
 check = ismissing(exp_points{i});
 if check
 exp_points = exp_points(1:(i-1),:);
 end
 end
 exp_points = cell2mat(exp_points);

 X = [exp_points(1,1) exp_points(end,1)];
 X = log10(X);
 Y = X.*fit_parameters(1) + fit_parameters(2);
 plot(app.UIAxesCal,10.^X,10.^Y,'LineWidth', 2,'Color','b');

 hold(app.UIAxesCal, 'on')

 scatter(app.UIAxesCal,exp_points(:,1),exp_points(:,2), ...
 'Marker', 'o', ...
 'MarkerFaceColor', 'r', ...
 'SizeData', 50);

 set(app.UIAxesCal,'YScale','log')
 set(app.UIAxesCal,'XScale','log')
 grid(app.UIAxesCal, 'on')

 app.CalSlope.Value = fit_parameters(1);
 app.CalIntercept.Value = fit_parameters(2);

 app.InterceptEditField.Value = app.CalIntercept.Value;
 app.SlopeEditField.Value = app.CalSlope.Value;

 app.CalibrationacquiredLamp.Color = [0 1 0];
 end

 % Button pushed function: ChoosePTRMSdatafilesfolderButton
 function ChoosePTRMSdatafilesfolderButtonPushed(app, event)
 title = 'BioControl 1.0';
 selpath = uigetdir(title);

 if selpath ~= 0
 app.FolderSelectedLamp.Color = [0 1 0];
 app.DataFolder.Value = selpath;
 end
 end

 % Button pushed function: ChoosefolderfileButton
 function ChoosefolderfileButtonPushed(app, event)
 switch app.ChoosetoimportDropDown.Value
 case 'Raw data'
 title = 'BioControl 1.0';

Giovanni Lorenzon – MPhil Thesis

 125

 selpath = uigetdir(title);

 if selpath ~= 0
 app.HistoryDataLamp.Color = [0 1 0];
 app.HistoryData.Value = selpath;
 end
 case 'Pre-processed data'
 filter = '.mat';
 title = 'BioControl 1.0';
 [file, path] = uigetfile(filter, title);

 check = ischar(file) & ischar(path);
 if ~check
 return
 end

 app.HistoryData.Value = fullfile(path, file);
 app.HistoryDataLamp.Color = [0 1 0];
 end
 end

 % Value changed function: ChoosetoimportDropDown
 function ChoosetoimportDropDownValueChanged(app, event)
 value = app.ChoosetoimportDropDown.Value;
 app.HistoryDataLamp.Color = [.8 .8 .8];
 end

 % Button pushed function: ImportexperimentButton
 function ImportexperimentButtonPushed(app, event)
 % Checks that all the necessary inputs are non-null
 % Checks on folder/file pointer to be present
 check = app.HistoryDataLamp.Color == [0 1 0];
 if ~check
 app.ErrorNumber.Value = app.ErrorNumber.Value + 1;
 heading = ['ERROR NO.' num2str(app.ErrorNumber.Value)];
 text = ['Need to import folder/file first.'];
 app.ErrorlogTextArea.Value = ...
 [heading ...
 newline text ...
 newline ' ' ...
 newline ' '];
 return
 end

 % Checks on calibration to be acquired
 check = app.CalibrationacquiredLamp.Color == [0 1 0];
 if ~check
 app.ErrorNumber.Value = app.ErrorNumber.Value + 1;
 heading = ['ERROR NO.' num2str(app.ErrorNumber.Value)];
 text = ['Need to import calibration first.'];
 app.ErrorlogTextArea.Value = ...
 [heading ...
 newline text ...
 newline ' ' ...
 newline ' '];
 return
 end

 % Checks on target mass
 check = app.TargetmassEditField.Value <= 1;
 if check
 app.ErrorNumber.Value = app.ErrorNumber.Value + 1;
 heading = ['ERROR NO.' num2str(app.ErrorNumber.Value)];
 text = ['Target mass needs to be higher than 1.'];
 app.ErrorlogTextArea.Value = ...

Giovanni Lorenzon – MPhil Thesis

 126

 [heading ...
 newline text ...
 newline ' ' ...
 newline ' '];
 return
 end

 %Checks on neighbourhood
 check = app.NeighbourhoodEditField.Value <= 0;
 if check
 app.ErrorNumber.Value = app.ErrorNumber.Value + 1;
 heading = ['ERROR NO.' num2str(app.ErrorNumber.Value)];
 text = ['Neighbourhood needs to be a positive number.'];
 app.ErrorlogTextArea.Value = ...
 [heading ...
 newline text ...
 newline ' ' ...
 newline ' '];
 return
 end

 switch app.ChoosetoimportDropDown.Value
 case 'Raw data'
 cd(app.HistoryData.Value)
 filelist = dir('*.h5');

 Dialog = uiprogressdlg(app.BioControl, ...
 'Title', 'BioControl 1.0', ...
 'Message', 'Loading files...');

 files_count = length(filelist);

 for i = 1:files_count
 Dialog.Value = i/files_count;
 curr_filename = filelist(i).name;

 central_mass = app.TargetmassEditField.Value + 1;
 neighbourhood = app.NeighbourhoodEditField.Value;
 [cumpeakprof,~,times] = geth5mrcumpeaks(...
 curr_filename, ...
 central_mass, neighbourhood);

 cumpeakprof = cumpeakprof';
 times = times';

 FormatInput = 'yyyymmdd_HHMMSS';
 [~,DateStringCurr,~] = fileparts(curr_filename);

 if i == 1
 app.StartTimerVec.Value = ...
 datevec(DateStringCurr,FormatInput);
 x = times;
 y = cumpeakprof;
 else
 endtime_current_file = ...
 datevec(DateStringCurr,FormatInput);

 [~,DateStringPast,~] = ...
 fileparts(past_filename);
 endtime_past_file = ...
 datevec(DateStringPast,FormatInput);

 t_elapsed_from_beg = ...
 etime(...

Giovanni Lorenzon – MPhil Thesis

 127

 endtime_past_file, ...
 app.StartTimerVec.Value) ...
 + times(end);
 t_between_files = ...
 etime(...
 endtime_current_file, endtime_past_file);
 addition = ...
 t_elapsed_from_beg + t_between_files ...
 - times(end);

 times = times + addition;

 x = [x; times];
 y = [y; cumpeakprof];
 end

 past_filename = curr_filename;
 end

 Time = x;
 RawInt = y;
 save('monitoring_history.mat',"Time","RawInt")

 app.TimeSlider.Enable = 'on';

 app.EndOfSlider.Value = x(end)/60; % in minutes

 X = x(400:end);
 app.TimeToPlotSlide.Value = X;

 y = 0.858*0.001*...
 (10.^...
 ((log10(y)-app.CalIntercept.Value)./...
 app.CalSlope.Value));

 Y = [];
 for i = 400:length(x)
 Y = [Y; ...
 sum(y((i - (399)):i))/400];
 end
 app.ConcToPlotSlide.Value = Y;

 plot(app.WholeHistory, ...
 X(1:300:end)./3600, Y(1:300:end))
 xlim(app.WholeHistory, [x(1)/3600 x(end)/3600])

 plot(app.SlidingHistory, ...
 X(1:(app.PlottedtimeintervalminSpinner.Value*200))./60,...
 Y(1:(app.PlottedtimeintervalminSpinner.Value*200)))
 xlim(app.SlidingHistory, ...
 [0 app.PlottedtimeintervalminSpinner.Value])

 close(Dialog)

 case 'Pre-processed data'
 load(app.HistoryData.Value)
 x = Time;
 y = RawInt;

 app.TimeSlider.Enable = 'on';

 app.EndOfSlider.Value = x(end)/60; % in minutes

 X = x(400:end);
 app.TimeToPlotSlide.Value = X;

Giovanni Lorenzon – MPhil Thesis

 128

 y = 0.858*0.001*...
 (10.^...
 ((log10(y)-app.CalIntercept.Value)./...
 app.CalSlope.Value));

 Y = [];
 for i = 400:length(x)
 Y = [Y; ...
 sum(y((i - (399)):i))/400];
 end
 app.ConcToPlotSlide.Value = Y;

 plot(app.WholeHistory, ...
 X(1:300:end)./3600, Y(1:300:end))
 xlim(app.WholeHistory, [x(1)/3600 x(end)/3600])

 plot(app.SlidingHistory, ...
 X(1:(app.PlottedtimeintervalminSpinner.Value*200))./60,...
 Y(1:(app.PlottedtimeintervalminSpinner.Value*200)))
 xlim(app.SlidingHistory, ...
 [0 app.PlottedtimeintervalminSpinner.Value])
 end
 end

 % Value changing function: TimeSlider
 function TimeSliderValueChanging(app, event)
 changingValue = event.Value;

 tot_range = ...
 app.EndOfSlider.Value ...
 - app.PlottedtimeintervalminSpinner.Value;
 plot_range = [(changingValue*tot_range), ...
 (changingValue*tot_range ...
 + app.PlottedtimeintervalminSpinner.Value)];

 indexes = ...
 find((app.TimeToPlotSlide.Value./60) > plot_range(1) & ...
 (app.TimeToPlotSlide.Value./60) < plot_range(2));

 plot(app.SlidingHistory, ...
 app.TimeToPlotSlide.Value(indexes)./60, ...
 app.ConcToPlotSlide.Value(indexes))
 xlim(app.SlidingHistory, plot_range)

 ylim(app.SlidingHistory, ...
 [min(app.ConcToPlotSlide.Value(indexes)), ...
 max(app.ConcToPlotSlide.Value(indexes))])

 end

 % Button pushed function: ImportGCMScontrolsButton
 function ImportGCMScontrolsButtonPushed(app, event)
 condition = true;
 while condition
 prompt = {'Enter time value [min]:', ...
 'Enter concentration value [mg/L];'};
 dlgtitle = 'BioControl 1.0';
 dims = [1 50];
 answer = inputdlg(prompt, dlgtitle, dims);

 check = isempty(answer);
 if check
 return
 end

 x = str2double(answer{1});

Giovanni Lorenzon – MPhil Thesis

 129

 y = str2double(answer{2});

 check = isempty(answer{1}) | isempty(answer{2}) | ...
 isnan(x) | isnan(y);
 if check
 uialert(app.BioControl, ...
 'Entered inputs are not valid!', ...
 'BioControl 1.0', 'Icon', 'error');
 condition = false;
 else
 hold(app.WholeHistory, 'on')
 scatter(app.WholeHistory,x./60,y, ...
 'Marker', 'o', ...
 'MarkerFaceColor', 'r', ...
 'SizeData', 50);
 hold(app.WholeHistory, 'off')
 end
 end
 end

 % Changes arrangement of the app based on UIFigure width
 function updateAppLayout(app, event)
 currentFigureWidth = app.BioControl.Position(3);
 if(currentFigureWidth <= app.onePanelWidth)
 % Change to a 2x1 grid
 app.GridLayout.RowHeight = {655, 655};
 app.GridLayout.ColumnWidth = {'1x'};
 app.RightPanel.Layout.Row = 2;
 app.RightPanel.Layout.Column = 1;
 else
 % Change to a 1x2 grid
 app.GridLayout.RowHeight = {'1x'};
 app.GridLayout.ColumnWidth = {236, '1x'};
 app.RightPanel.Layout.Row = 1;
 app.RightPanel.Layout.Column = 2;
 end
 end
 end

 % Component initialization
 methods (Access = private)

 % Create UIFigure and components
 function createComponents(app)

 % Create BioControl and hide until all components are created
 app.BioControl = uifigure('Visible', 'off');
 app.BioControl.AutoResizeChildren = 'off';
 app.BioControl.Position = [100 100 1076 655];
 app.BioControl.Name = 'BioControl 1.0';
 app.BioControl.CloseRequestFcn = createCallbackFcn(app,
@BioControlCloseRequest, true);
 app.BioControl.SizeChangedFcn = createCallbackFcn(app,
@updateAppLayout, true);

 % Create FileMenu
 app.FileMenu = uimenu(app.BioControl);
 app.FileMenu.Text = 'File';

 % Create OpenfolderMenu
 app.OpenfolderMenu = uimenu(app.FileMenu);
 app.OpenfolderMenu.Text = 'Open folder';

 % Create GridLayout
 app.GridLayout = uigridlayout(app.BioControl);
 app.GridLayout.ColumnWidth = {236, '1x'};

Giovanni Lorenzon – MPhil Thesis

 130

 app.GridLayout.RowHeight = {'1x'};
 app.GridLayout.ColumnSpacing = 0;
 app.GridLayout.RowSpacing = 0;
 app.GridLayout.Padding = [0 0 0 0];
 app.GridLayout.Scrollable = 'on';

 % Create LeftPanel
 app.LeftPanel = uipanel(app.GridLayout);
 app.LeftPanel.Layout.Row = 1;
 app.LeftPanel.Layout.Column = 1;

 % Create StatusPanel
 app.StatusPanel = uipanel(app.LeftPanel);
 app.StatusPanel.Title = 'Status';
 app.StatusPanel.Position = [25 15 189 294];

 % Create DataacquisitionLampLabel
 app.DataacquisitionLampLabel = uilabel(app.StatusPanel);
 app.DataacquisitionLampLabel.HorizontalAlignment = 'right';
 app.DataacquisitionLampLabel.Position = [12 237 92 22];
 app.DataacquisitionLampLabel.Text = 'Data acquisition';

 % Create DataacquisitionLamp
 app.DataacquisitionLamp = uilamp(app.StatusPanel);
 app.DataacquisitionLamp.Position = [144 238 20 20];
 app.DataacquisitionLamp.Color = [0.8 0.8 0.8];

 % Create ErrorlogTextAreaLabel
 app.ErrorlogTextAreaLabel = uilabel(app.StatusPanel);
 app.ErrorlogTextAreaLabel.HorizontalAlignment = 'right';
 app.ErrorlogTextAreaLabel.Position = [14 168 55 22];
 app.ErrorlogTextAreaLabel.Text = 'Error log:';

 % Create ErrorlogTextArea
 app.ErrorlogTextArea = uitextarea(app.StatusPanel);
 app.ErrorlogTextArea.Position = [14 10 162 156];

 % Create ChooseoperationalmodalityButtonGroup
 app.ChooseoperationalmodalityButtonGroup =
uibuttongroup(app.LeftPanel);
 app.ChooseoperationalmodalityButtonGroup.Title = 'Choose operational
modality';
 app.ChooseoperationalmodalityButtonGroup.Position = [24 496 189 143];

 % Create SimulationButton
 app.SimulationButton =
uiradiobutton(app.ChooseoperationalmodalityButtonGroup);
 app.SimulationButton.Text = 'Simulation';
 app.SimulationButton.Position = [12 90 78 22];
 app.SimulationButton.Value = true;

 % Create SampletestingButton
 app.SampletestingButton =
uiradiobutton(app.ChooseoperationalmodalityButtonGroup);
 app.SampletestingButton.Text = 'Sample testing';
 app.SampletestingButton.Position = [12 60 102 22];

 % Create ChoosePTRMSdatafilesfolderButton
 app.ChoosePTRMSdatafilesfolderButton =
uibutton(app.ChooseoperationalmodalityButtonGroup, 'push');
 app.ChoosePTRMSdatafilesfolderButton.ButtonPushedFcn =
createCallbackFcn(app, @ChoosePTRMSdatafilesfolderButtonPushed, true);
 app.ChoosePTRMSdatafilesfolderButton.Position = [12 15 102 36];
 app.ChoosePTRMSdatafilesfolderButton.Text = {'Choose PTRMS'; 'datafiles
folder'};

Giovanni Lorenzon – MPhil Thesis

 131

 % Create FolderSelectedLamp
 app.FolderSelectedLamp =
uilamp(app.ChooseoperationalmodalityButtonGroup);
 app.FolderSelectedLamp.Position = [145 23 20 20];
 app.FolderSelectedLamp.Color = [0.8 0.8 0.8];

 % Create MonitoringtargetPanel
 app.MonitoringtargetPanel = uipanel(app.LeftPanel);
 app.MonitoringtargetPanel.Title = 'Monitoring target';
 app.MonitoringtargetPanel.Position = [25 387 189 100];

 % Create TargetmassEditFieldLabel
 app.TargetmassEditFieldLabel = uilabel(app.MonitoringtargetPanel);
 app.TargetmassEditFieldLabel.HorizontalAlignment = 'right';
 app.TargetmassEditFieldLabel.Position = [6 49 70 22];
 app.TargetmassEditFieldLabel.Text = 'Target mass';

 % Create TargetmassEditField
 app.TargetmassEditField = uieditfield(app.MonitoringtargetPanel,
'numeric');
 app.TargetmassEditField.Position = [102 49 46 22];

 % Create mqLabel_4
 app.mqLabel_4 = uilabel(app.MonitoringtargetPanel);
 app.mqLabel_4.Position = [152 49 27 22];
 app.mqLabel_4.Text = 'm/q';

 % Create NeighbourhoodEditFieldLabel
 app.NeighbourhoodEditFieldLabel = uilabel(app.MonitoringtargetPanel);
 app.NeighbourhoodEditFieldLabel.HorizontalAlignment = 'right';
 app.NeighbourhoodEditFieldLabel.Position = [6 16 89 22];
 app.NeighbourhoodEditFieldLabel.Text = 'Neighbourhood';

 % Create NeighbourhoodEditField
 app.NeighbourhoodEditField = uieditfield(app.MonitoringtargetPanel,
'numeric');
 app.NeighbourhoodEditField.Position = [102 16 46 22];

 % Create mqLabel_5
 app.mqLabel_5 = uilabel(app.MonitoringtargetPanel);
 app.mqLabel_5.Position = [152 16 27 22];
 app.mqLabel_5.Text = 'm/q';

 % Create STARTButton
 app.STARTButton = uibutton(app.LeftPanel, 'push');
 app.STARTButton.ButtonPushedFcn = createCallbackFcn(app,
@STARTButtonPushed, true);
 app.STARTButton.FontWeight = 'bold';
 app.STARTButton.FontColor = [0.4667 0.6745 0.1882];
 app.STARTButton.Position = [25 336 88 28];
 app.STARTButton.Text = 'START';

 % Create STOPButton
 app.STOPButton = uibutton(app.LeftPanel, 'push');
 app.STOPButton.ButtonPushedFcn = createCallbackFcn(app,
@STOPButtonPushed, true);
 app.STOPButton.FontWeight = 'bold';
 app.STOPButton.FontColor = [1 0 0];
 app.STOPButton.Position = [128 336 86 28];
 app.STOPButton.Text = 'STOP';

 % Create ElapsedtimeEditFieldLabel
 app.ElapsedtimeEditFieldLabel = uilabel(app.LeftPanel);
 app.ElapsedtimeEditFieldLabel.HorizontalAlignment = 'right';
 app.ElapsedtimeEditFieldLabel.Position = [39 219 75 22];
 app.ElapsedtimeEditFieldLabel.Text = 'Elapsed time';

Giovanni Lorenzon – MPhil Thesis

 132

 % Create ElapsedtimeEditField
 app.ElapsedtimeEditField = uieditfield(app.LeftPanel, 'text');
 app.ElapsedtimeEditField.Position = [141 219 60 22];

 % Create RightPanel
 app.RightPanel = uipanel(app.GridLayout);
 app.RightPanel.Layout.Row = 1;
 app.RightPanel.Layout.Column = 2;

 % Create TabGroup
 app.TabGroup = uitabgroup(app.RightPanel);
 app.TabGroup.Position = [7 6 828 643];

 % Create CalibrationTab
 app.CalibrationTab = uitab(app.TabGroup);
 app.CalibrationTab.Title = 'Calibration';

 % Create CalibrationPanel
 app.CalibrationPanel = uipanel(app.CalibrationTab);
 app.CalibrationPanel.Tooltip = {'Provide a preliminary calibration of
the target compouns(s). Either call the calibration tool or select the appropriate
calibration file'};
 app.CalibrationPanel.Title = 'Calibration';
 app.CalibrationPanel.Position = [576 295 222 196];

 % Create StartnewcalibrationButton
 app.StartnewcalibrationButton = uibutton(app.CalibrationPanel, 'push');
 app.StartnewcalibrationButton.ButtonPushedFcn = createCallbackFcn(app,
@StartnewcalibrationButtonPushed, true);
 app.StartnewcalibrationButton.Position = [52 118 118 42];
 app.StartnewcalibrationButton.Text = {'Start'; 'new calibration'};

 % Create CalibrationacquiredLampLabel
 app.CalibrationacquiredLampLabel = uilabel(app.CalibrationPanel);
 app.CalibrationacquiredLampLabel.Position = [21 13 64 27];
 app.CalibrationacquiredLampLabel.Text = {'Calibration'; 'acquired'};

 % Create CalibrationacquiredLamp
 app.CalibrationacquiredLamp = uilamp(app.CalibrationPanel);
 app.CalibrationacquiredLamp.Position = [179 15 23 23];
 app.CalibrationacquiredLamp.Color = [0.8 0.8 0.8];

 % Create ChoosecalibrationfileButton
 app.ChoosecalibrationfileButton = uibutton(app.CalibrationPanel,
'push');
 app.ChoosecalibrationfileButton.ButtonPushedFcn =
createCallbackFcn(app, @ChoosecalibrationfileButtonPushed, true);
 app.ChoosecalibrationfileButton.Position = [52 62 118 39];
 app.ChoosecalibrationfileButton.Text = {'Choose'; 'calibration file'};

 % Create UIAxesCal
 app.UIAxesCal = uiaxes(app.CalibrationTab);
 title(app.UIAxesCal, 'Calibration graph')
 xlabel(app.UIAxesCal, 'Target compound concentration [ppb vol]')
 ylabel(app.UIAxesCal, 'Intensity [ions/s]')
 app.UIAxesCal.PlotBoxAspectRatio = [1 1.04312114989733 1];
 app.UIAxesCal.Position = [15 16 536 564];

 % Create CalibrationparametersPanel
 app.CalibrationparametersPanel = uipanel(app.CalibrationTab);
 app.CalibrationparametersPanel.Title = 'Calibration parameters';
 app.CalibrationparametersPanel.Position = [567 177 240 100];

 % Create LOG10INTENSITYLabel
 app.LOG10INTENSITYLabel = uilabel(app.CalibrationparametersPanel);

Giovanni Lorenzon – MPhil Thesis

 133

 app.LOG10INTENSITYLabel.HorizontalAlignment = 'right';
 app.LOG10INTENSITYLabel.Position = [2 45 124 22];
 app.LOG10INTENSITYLabel.Text = 'LOG10 (INTENSITY) =';

 % Create SlopeEditField
 app.SlopeEditField = uieditfield(app.CalibrationparametersPanel,
'numeric');
 app.SlopeEditField.HorizontalAlignment = 'center';
 app.SlopeEditField.Position = [6 21 59 22];

 % Create xLOG10CONCLabel
 app.xLOG10CONCLabel = uilabel(app.CalibrationparametersPanel);
 app.xLOG10CONCLabel.HorizontalAlignment = 'right';
 app.xLOG10CONCLabel.Position = [63 22 112 22];
 app.xLOG10CONCLabel.Text = 'x LOG10 (CONC) + ';

 % Create InterceptEditField
 app.InterceptEditField = uieditfield(app.CalibrationparametersPanel,
'numeric');
 app.InterceptEditField.HorizontalAlignment = 'center';
 app.InterceptEditField.Position = [175 21 60 22];

 % Create SimulationTab
 app.SimulationTab = uitab(app.TabGroup);
 app.SimulationTab.Title = 'Simulation';

 % Create Panel2_3
 app.Panel2_3 = uipanel(app.SimulationTab);
 app.Panel2_3.AutoResizeChildren = 'off';
 app.Panel2_3.Title = 'Simulation parameters';
 app.Panel2_3.Position = [593 341 200 94];

 % Create MockfiletimespanEditFieldLabel
 app.MockfiletimespanEditFieldLabel = uilabel(app.Panel2_3);
 app.MockfiletimespanEditFieldLabel.HorizontalAlignment = 'right';
 app.MockfiletimespanEditFieldLabel.Position = [2 41 103 22];
 app.MockfiletimespanEditFieldLabel.Text = 'Mockfile timespan';

 % Create MockfiletimespanEditField
 app.MockfiletimespanEditField = uieditfield(app.Panel2_3, 'numeric');
 app.MockfiletimespanEditField.Position = [117 41 46 22];

 % Create sLabel
 app.sLabel = uilabel(app.Panel2_3);
 app.sLabel.Position = [167 41 25 22];
 app.sLabel.Text = 's';

 % Create SimulatedmassEditFieldLabel
 app.SimulatedmassEditFieldLabel = uilabel(app.Panel2_3);
 app.SimulatedmassEditFieldLabel.HorizontalAlignment = 'right';
 app.SimulatedmassEditFieldLabel.Position = [1 12 91 22];
 app.SimulatedmassEditFieldLabel.Text = 'Simulated mass';

 % Create SimulatedmassEditField
 app.SimulatedmassEditField = uieditfield(app.Panel2_3, 'numeric');
 app.SimulatedmassEditField.Position = [118 12 46 22];

 % Create mqLabel
 app.mqLabel = uilabel(app.Panel2_3);
 app.mqLabel.Position = [168 12 27 22];
 app.mqLabel.Text = 'm/q';

 % Create Panel2_5
 app.Panel2_5 = uipanel(app.SimulationTab);
 app.Panel2_5.AutoResizeChildren = 'off';
 app.Panel2_5.Title = 'Simulation state';

Giovanni Lorenzon – MPhil Thesis

 134

 app.Panel2_5.Position = [592 235 200 71];

 % Create MockfilegenerationLampLabel
 app.MockfilegenerationLampLabel = uilabel(app.Panel2_5);
 app.MockfilegenerationLampLabel.HorizontalAlignment = 'right';
 app.MockfilegenerationLampLabel.Position = [2 17 111 22];
 app.MockfilegenerationLampLabel.Text = 'Mockfile generation';

 % Create MockfilegenerationLamp
 app.MockfilegenerationLamp = uilamp(app.Panel2_5);
 app.MockfilegenerationLamp.Position = [169 18 20 20];
 app.MockfilegenerationLamp.Color = [0.8 0.8 0.8];

 % Create UIAxesSim
 app.UIAxesSim = uiaxes(app.SimulationTab);
 title(app.UIAxesSim, 'Last randomly-generated datachunk')
 xlabel(app.UIAxesSim, 'Time [s]')
 ylabel(app.UIAxesSim, 'Intensity [ions]')
 app.UIAxesSim.PlotBoxAspectRatio = [1 1.04857444561774 1];
 app.UIAxesSim.XTick = [0 0.2 0.4 0.6 0.8 1];
 app.UIAxesSim.Position = [41 28 524 552];

 % Create MonitoringTab
 app.MonitoringTab = uitab(app.TabGroup);
 app.MonitoringTab.Title = 'Monitoring';

 % Create UIAxesMon1
 app.UIAxesMon1 = uiaxes(app.MonitoringTab);
 title(app.UIAxesMon1, 'Raw headspace ion count')
 xlabel(app.UIAxesMon1, 'Time [min]')
 ylabel(app.UIAxesMon1, 'Intensity [ions]')
 app.UIAxesMon1.PlotBoxAspectRatio = [3.03846153846154 1 1];
 app.UIAxesMon1.Position = [29 313 760 290];

 % Create UIAxesMon2
 app.UIAxesMon2 = uiaxes(app.MonitoringTab);
 title(app.UIAxesMon2, '2 min rolling average liquid concentration')
 xlabel(app.UIAxesMon2, 'Time [min]')
 ylabel(app.UIAxesMon2, 'Concentration [mg/L]')
 app.UIAxesMon2.PlotBoxAspectRatio = [3.03846153846154 1 1];
 app.UIAxesMon2.Position = [29 19 760 290];

 % Create HistoryTab
 app.HistoryTab = uitab(app.TabGroup);
 app.HistoryTab.Title = 'History';

 % Create WholeHistory
 app.WholeHistory = uiaxes(app.HistoryTab);
 title(app.WholeHistory, 'Entire acquisition')
 xlabel(app.WholeHistory, 'Time [h]')
 ylabel(app.WholeHistory, 'Concentration [mg/L]')
 app.WholeHistory.PlotBoxAspectRatio = [2.69444444444444 1 1];
 app.WholeHistory.Position = [39 330 590 272];

 % Create SlidingHistory
 app.SlidingHistory = uiaxes(app.HistoryTab);
 title(app.SlidingHistory, 'Zoomed graph')
 xlabel(app.SlidingHistory, 'Time [min]')
 ylabel(app.SlidingHistory, 'Concentration [mg/L]')
 app.SlidingHistory.PlotBoxAspectRatio = [2.59821428571429 1 1];
 app.SlidingHistory.Position = [39 42 590 280];

 % Create TimeSlider
 app.TimeSlider = uislider(app.HistoryTab);
 app.TimeSlider.Limits = [0 1];
 app.TimeSlider.MajorTicks = [];

Giovanni Lorenzon – MPhil Thesis

 135

 app.TimeSlider.ValueChangingFcn = createCallbackFcn(app,
@TimeSliderValueChanging, true);
 app.TimeSlider.MinorTicks = [];
 app.TimeSlider.Enable = 'off';
 app.TimeSlider.Position = [126 19 457 3];

 % Create ImportoptionsPanel
 app.ImportoptionsPanel = uipanel(app.HistoryTab);
 app.ImportoptionsPanel.Title = 'Import options';
 app.ImportoptionsPanel.Position = [633 374 183 198];

 % Create ChoosefolderfileButton
 app.ChoosefolderfileButton = uibutton(app.ImportoptionsPanel, 'push');
 app.ChoosefolderfileButton.ButtonPushedFcn = createCallbackFcn(app,
@ChoosefolderfileButtonPushed, true);
 app.ChoosefolderfileButton.Position = [14 81 109 36];
 app.ChoosefolderfileButton.Text = {'Choose'; 'folder/file'};

 % Create ImportexperimentButton
 app.ImportexperimentButton = uibutton(app.ImportoptionsPanel, 'push');
 app.ImportexperimentButton.ButtonPushedFcn = createCallbackFcn(app,
@ImportexperimentButtonPushed, true);
 app.ImportexperimentButton.Position = [14 46 152 23];
 app.ImportexperimentButton.Text = 'Import experiment';

 % Create HistoryDataLamp
 app.HistoryDataLamp = uilamp(app.ImportoptionsPanel);
 app.HistoryDataLamp.Position = [140 89 20 20];
 app.HistoryDataLamp.Color = [0.8 0.8 0.8];

 % Create ImportGCMScontrolsButton
 app.ImportGCMScontrolsButton = uibutton(app.ImportoptionsPanel,
'push');
 app.ImportGCMScontrolsButton.ButtonPushedFcn = createCallbackFcn(app,
@ImportGCMScontrolsButtonPushed, true);
 app.ImportGCMScontrolsButton.Position = [14 13 152 22];
 app.ImportGCMScontrolsButton.Text = 'Import GCMS controls';

 % Create ChoosetoimportDropDownLabel
 app.ChoosetoimportDropDownLabel = uilabel(app.ImportoptionsPanel);
 app.ChoosetoimportDropDownLabel.Position = [14 149 102 23];
 app.ChoosetoimportDropDownLabel.Text = 'Choose to import:';

 % Create ChoosetoimportDropDown
 app.ChoosetoimportDropDown = uidropdown(app.ImportoptionsPanel);
 app.ChoosetoimportDropDown.Items = {'Raw data', 'Pre-processed data'};
 app.ChoosetoimportDropDown.ValueChangedFcn = createCallbackFcn(app,
@ChoosetoimportDropDownValueChanged, true);
 app.ChoosetoimportDropDown.Position = [13 129 153 22];
 app.ChoosetoimportDropDown.Value = 'Raw data';

 % Create GraphoptionsPanel
 app.GraphoptionsPanel = uipanel(app.HistoryTab);
 app.GraphoptionsPanel.Title = 'Graph options';
 app.GraphoptionsPanel.Position = [633 144 183 85];

 % Create PlottedtimeintervalminSpinnerLabel
 app.PlottedtimeintervalminSpinnerLabel =
uilabel(app.GraphoptionsPanel);
 app.PlottedtimeintervalminSpinnerLabel.Position = [10 36 142 23];
 app.PlottedtimeintervalminSpinnerLabel.Text = 'Plotted time interval
[min]';

 % Create PlottedtimeintervalminSpinner
 app.PlottedtimeintervalminSpinner = uispinner(app.GraphoptionsPanel);
 app.PlottedtimeintervalminSpinner.Position = [10 12 140 22];

Giovanni Lorenzon – MPhil Thesis

 136

 app.PlottedtimeintervalminSpinner.Value = 100;

 % Show the figure after all components are created
 app.BioControl.Visible = 'on';
 end
 end

 % App creation and deletion
 methods (Access = public)

 % Construct app
 function app = platform_test_test

 % Create UIFigure and components
 createComponents(app)

 % Register the app with App Designer
 registerApp(app, app.BioControl)

 % Execute the startup function
 runStartupFcn(app, @startupFcn)

 if nargout == 0
 clear app
 end
 end

 % Code that executes before app deletion
 function delete(app)

 % Delete UIFigure when app is deleted
 delete(app.BioControl)
 end
 end
end

Calibration interface

classdef cal < matlab.apps.AppBase

 % Properties that correspond to app components
 properties (Access = public)
 BioControl10CalibrationtabUIFigure matlab.ui.Figure
 UIAxes matlab.ui.control.UIAxes
 PaircalibrationfileButton matlab.ui.control.Button
 CompoundconcentrationppbLabel matlab.ui.control.Label
 ComponentConcentrationEditField matlab.ui.control.NumericEditField
 CleargraphButton matlab.ui.control.Button
 SlopeEditFieldLabel matlab.ui.control.Label
 SlopeEditField matlab.ui.control.NumericEditField
 LinearfitButton matlab.ui.control.Button
 StorecalibrationButton matlab.ui.control.Button
 InterceptEditFieldLabel matlab.ui.control.Label
 InterceptEditField matlab.ui.control.NumericEditField
 R2EditFieldLabel matlab.ui.control.Label
 R2EditField matlab.ui.control.NumericEditField
 GeneratemockcalibrationButton matlab.ui.control.Button
 CompoundcentralmassDaLabel matlab.ui.control.Label
 ComponentCentralMassEditField matlab.ui.control.NumericEditField
 CompoundmassneighbourhoodDaLabel matlab.ui.control.Label

Giovanni Lorenzon – MPhil Thesis

 137

 ComponentMassNeighbourhoodEditField matlab.ui.control.NumericEditField
 end

 properties (Access = private)

 TempFolderPath % Path of the temporary folder where mock
 % calibrations points are stored
 NoPointsOnGraph % Number of points already plotted on the graph
 DataToFit % Array containing concentration&intensity values for
 % each point added to the calibration
 FitParameters % Structure storing the last fitted parameters
 end

 methods (Access = private)

 function DeleteH5Content(app,~,~)
 filePattern = fullfile(...
 app.TempFolderPath.Value, 'PTRMSmockcalsequence*.h5');
 files = dir(filePattern);
 for k = 1:length(files)
 baseFileName = files(k).name;
 fullFileName = fullfile(...
 app.TempFolderPath.Value, baseFileName);
 delete(fullFileName);
 end
 end

 end

 % Callbacks that handle component events
 methods (Access = private)

 % Code that executes after component creation
 function startupFcn(app)
 format long
 hold(app.UIAxes, 'on')

 app.TempFolderPath.Value = '';
 app.NoPointsOnGraph.Value = 0;
 app.DataToFit.Value = [];
 app.FitParameters.Value = [];
 end

 % Button pushed function: PaircalibrationfileButton
 function PaircalibrationfileButtonPushed(app, event)
 check = isempty(app.ComponentConcentrationEditField.Value);
 if check
 uialert(app.BioControl10CalibrationtabUIFigure, ...
 ['Insert a concentration value before proceding ' ...
 'to pair up file and concentration.'], ...
 'BioControl 1.0', 'Icon', 'error');

 return
 end

 check = app.ComponentCentralMassEditField.Value == 0;
 if check
 uialert(app.BioControl10CalibrationtabUIFigure, ...
 ['Insert target mass value before proceding ' ...
 'to pair up file and concentration.'], ...
 'BioControl 1.0', 'Icon', 'error');

 return
 end

Giovanni Lorenzon – MPhil Thesis

 138

 check = app.ComponentMassNeighbourhoodEditField.Value == 0;
 if check
 uialert(app.BioControl10CalibrationtabUIFigure, ...
 ['Insert a mass neighbourhood value before proceding ' ...
 'to pair up file and concentration.'], ...
 'BioControl 1.0', 'Icon', 'error');

 return
 end

 filter = '.h5';
 title = 'BioControl 1.0 - Select one or more calibration files';
 [filename,path] = uigetfile(filter, title,'MultiSelect','on');

 multiple_entrance_check = iscell(filename);
 if ~multiple_entrance_check
 single_entrance_check = ischar(filename);
 if ~single_entrance_check
 return
 end
 end

 if multiple_entrance_check
 ext_check = false;
 for i = 1:length(filename)
 [~,~,extension] = fileparts(filename{i});
 ext_check = ext_check | ~strcmpi(extension, filter);
 if ext_check
 uialert(app.BioControl10CalibrationtabUIFigure, ...
 ['The selected file doesn''t have the ' ...
 'expected extension (<.h5>).'], ...
 'BioControl 1.0', 'Icon', 'error');

 return
 end
 end
 else
 [~,~,extension] = fileparts(filename);
 ext_check = ~strcmpi(extension, filter);
 if ext_check
 uialert(app.BioControl10CalibrationtabUIFigure, ...
 ['The selected file doesn''t have the ' ...
 'expected extension (<.h5>).'], ...
 'BioControl 1.0', 'Icon', 'error');

 return
 end
 end

 cd(path);
 if multiple_entrance_check
 pruned_data = [];
 for i = 1:length(filename)
 [cumpeakprof,~,~] = geth5mrcumpeaks(...
 filename{i}, ...
 (app.ComponentCentralMassEditField.Value + 1), ...
 app.ComponentMassNeighbourhoodEditField.Value);

 pruned_data = [pruned_data rmoutliers(cumpeakprof)];
 end
 else
 [cumpeakprof,~,~] = geth5mrcumpeaks(...
 filename, ...
 (app.ComponentCentralMassEditField.Value + 1), ...

Giovanni Lorenzon – MPhil Thesis

 139

 app.ComponentMassNeighbourhoodEditField.Value);

 pruned_data = rmoutliers(cumpeakprof);
 end

 avg_output = mean(pruned_data);
 error = std(pruned_data);

 errorbar(app.UIAxes, ...
 app.ComponentConcentrationEditField.Value, ...
 avg_output, ...
 error, ...
 'Marker', 'o', ...
 'MarkerFaceColor', 'b');

 set(app.UIAxes,'YScale','log')
 set(app.UIAxes,'XScale','log')
 grid(app.UIAxes, 'on')

 app.NoPointsOnGraph.Value = app.NoPointsOnGraph.Value + 1;

 new_point = ...
 [app.ComponentConcentrationEditField.Value; ...
 avg_output; ...
 error];
 app.DataToFit.Value = [app.DataToFit.Value new_point];
 end

 % Button pushed function: CleargraphButton
 function CleargraphButtonPushed(app, event)
 aspect_ratio = app.UIAxes.PlotBoxAspectRatio;
 position = app.UIAxes.Position;

 cla(app.UIAxes,'reset');

 % Create UIAxes
 app.UIAxes = uiaxes(app.BioControl10CalibrationtabUIFigure);
 title(app.UIAxes, 'Calibration data')
 xlabel(app.UIAxes, 'Component concentration [ppb vol]')
 ylabel(app.UIAxes, 'Average intensity [ions/s] ')
 app.UIAxes.PlotBoxAspectRatio = aspect_ratio;
 app.UIAxes.Position = position;

 hold(app.UIAxes, 'on')

 app.NoPointsOnGraph.Value = 0;
 app.DataToFit.Value = [];
 app.FitParameters.Value = [];
 end

 % Button pushed function: LinearfitButton
 function LinearfitButtonPushed(app, event)
 check = app.NoPointsOnGraph.Value >= 2;

 if ~check
 uialert(app.BioControl10CalibrationtabUIFigure, ...
 ['Can''t fit less than 2 experimental points. ' ...
 'Add more points to the graph.'], ...
 'BioControl 1.0', 'Icon', 'error');

 return
 end

 X = app.DataToFit.Value(1,:);

Giovanni Lorenzon – MPhil Thesis

 140

 Y = app.DataToFit.Value(2,:);
 logx = log10(X);
 logy = log10(Y);

 [app.FitParameters.Value,S] = polyfit(logx,logy,1);
 R2 = 1 - (S.normr^2)/(norm(logy-mean(logy))^2);

 app.R2EditField.Value = R2;

 app.SlopeEditField.Value = app.FitParameters.Value(1);

 app.InterceptEditField.Value = app.FitParameters.Value(2);

 A = [min(logx) max(logx)];

 B = polyval(app.FitParameters.Value,A);

 loglog(app.UIAxes,10.^A,10.^B,'Color','r','LineWidth',1)
 end

 % Button pushed function: StorecalibrationButton
 function StorecalibrationButtonPushed(app, event)
 check = isempty(app.DataToFit.Value);

 if check
 uialert(app.BioControl10CalibrationtabUIFigure, ...
 ['No data points available for storing. ' ...
 'Plot data points before proceeding.'], ...
 'BioControl 1.0', 'Icon', 'error');

 return
 end

 time = datetime('now','format','yyyy.MM.dd-HH.mm.ss');
 temp = datestr(time,'yyyy.mm.dd-HH.MM.ss');
 name = ['calibration-' temp '.xlsx'];

 filter = {'*.xlsx';'*.csv'};
 [file,path] = uiputfile(filter,'BioControl 1.0',name);

 check = file == 0;
 if check
 return
 end

 if strcmpi(app.TempFolderPath.Value, path(1:(end-1)))
 path = path(1:(end-5));
 end

 name = fullfile(path, file);

 prompt = 'Comments:';
 dlgtitle = 'BioControl 1.0';
 dims = [7 70];
 comments = inputdlg(prompt,dlgtitle,dims);
 if ~isempty(char(comments))
 textlog{1} = 'Comments:';
 textlog{end + 1} = char(comments);
 textlog{end + 1} = '';

Giovanni Lorenzon – MPhil Thesis

 141

 else
 textlog{1} = 'Comments:';
 textlog{end + 1} = 'none';
 textlog{end + 1} = '';
 end
 writecell(textlog, name)

 if isempty(app.FitParameters.Value)
 % Stores just data points
 datalog = {'Date','Time','';
 datestr(datetime('now','format','dd/MM/yyyy'),'dd/mm/yyyy'),...
 datestr(datetime('now','format','HH:mm:ss'),'HH:MM:ss'),'';
 'LINEAR FIT ON LOG10 VALUES','','';
 'Slope','Intercept','R2';
 '','','';
 'Concentration [ppm vol]','Intensity [ions/s]','STD Error []'};
 else
 % Stores data points and calibration data
 datalog = {'Date','Time','';
 datestr(datetime('now','format','dd/MM/yyyy'),'dd/mm/yyyy'),...
 datestr(datetime('now','format','HH:mm:ss'),'HH:MM:ss'),'';
 'LINEAR FIT ON LOG10 VALUES','','';
 'Slope','Intercept','R2';

app.FitParameters.Value(1),app.FitParameters.Value(2),app.R2EditField.Value;
 'Concentration [ppb vol]','Intensity [ions/s]','STD Error []'};
 end

 writecell(datalog, name, 'Range', 'A2:C7')

 co = (app.DataToFit.Value(1,:));
 av = (app.DataToFit.Value(2,:));
 er = (app.DataToFit.Value(3,:));
 data = [co' av' er'];

 textpoints = 'datalog_points = {';
 for i = 1:length(co)
 textpoints = [textpoints 'data(' num2str(i) ',1),data(' num2str(i)
',2),data(' num2str(i) ',3)'];
 if i ~= length(co)
 textpoints = [textpoints ';'];
 end
 end
 textpoints = [textpoints '};'];

 eval(textpoints);

 writecell(datalog_points, name, 'WriteMode', 'append')
 end

 % Close request function: BioControl10CalibrationtabUIFigure
 function BioControl10CalibrationtabUIFigureCloseRequest(app, event)
 if ~isempty(app.TempFolderPath.Value)
 if 7 == exist(app.TempFolderPath.Value, 'dir')
 cd(app.TempFolderPath.Value)
 DeleteH5Content(app)
 if isempty(ls)
 cd ..
 rmdir(app.TempFolderPath.Value)
 end
 end
 end

 clear parameters
 global parameters
 parameters = app.FitParameters.Value;

Giovanni Lorenzon – MPhil Thesis

 142

 delete(app);
 fclose('all');
 end

 % Button pushed function: GeneratemockcalibrationButton
 function GeneratemockcalibrationButtonPushed(app, event)
 prompt = 'Mass [Da]';
 dlgtitle = 'Enter numerical value of mocked mass';
 dims = [1 100];
 output = inputdlg(prompt,dlgtitle,dims);

 check = isempty(output);
 if check
 return
 end
 %---------------------------
 CleargraphButtonPushed(app, event)
 %---------------------------
 if isempty(app.TempFolderPath.Value)
 mkdir('Temp')
 cd('Temp')
 app.TempFolderPath.Value = cd;
 else
 cd(app.TempFolderPath.Value)
 DeleteFolderContent(app)
 end
 %----------------------------
 user_mass = str2double(output{1});
 timelength_mock = 60;
 signal_intensity = 25;
 conc = 0;

 for i = 1:5
 filename = genaddh5calmock(...
 user_mass,timelength_mock,signal_intensity);

 [cumpeakprof,~,~] = geth5mrcumpeaks(...
 filename, ...
 (user_mass + 1), ...
 0.3);

 avg_output = mean(cumpeakprof);
 error = std(cumpeakprof);

 errorbar(app.UIAxes, ...
 conc, ...
 avg_output, ...
 error, ...
 'Marker', 'o', ...
 'MarkerFaceColor', 'b');

 new_point = [conc; avg_output; error];
 app.DataToFit.Value = [app.DataToFit.Value new_point];

 signal_intensity = signal_intensity + 500;
 conc = conc + 10;
 end
 %----------------------------
 app.NoPointsOnGraph.Value = app.NoPointsOnGraph.Value + 5;

 LinearfitButtonPushed(app, event)

 end
 end

Giovanni Lorenzon – MPhil Thesis

 143

 % Component initialization
 methods (Access = private)

 % Create UIFigure and components
 function createComponents(app)

 % Create BioControl10CalibrationtabUIFigure and hide until all
components are created
 app.BioControl10CalibrationtabUIFigure = uifigure('Visible', 'off');
 app.BioControl10CalibrationtabUIFigure.AutoResizeChildren = 'off';
 app.BioControl10CalibrationtabUIFigure.Position = [330 130 700 480];
 app.BioControl10CalibrationtabUIFigure.Name = 'BioControl 1.0 -
Calibration tab';
 app.BioControl10CalibrationtabUIFigure.Resize = 'off';
 app.BioControl10CalibrationtabUIFigure.CloseRequestFcn =
createCallbackFcn(app, @BioControl10CalibrationtabUIFigureCloseRequest, true);

 % Create UIAxes
 app.UIAxes = uiaxes(app.BioControl10CalibrationtabUIFigure);
 title(app.UIAxes, 'Calibration data')
 xlabel(app.UIAxes, 'Target compound concentration [ppb vol]')
 ylabel(app.UIAxes, 'Average intensity [ions/s] ')
 app.UIAxes.PlotBoxAspectRatio = [1.24148606811146 1 1];
 app.UIAxes.Position = [13 79 449 378];

 % Create PaircalibrationfileButton
 app.PaircalibrationfileButton =
uibutton(app.BioControl10CalibrationtabUIFigure, 'push');
 app.PaircalibrationfileButton.ButtonPushedFcn = createCallbackFcn(app,
@PaircalibrationfileButtonPushed, true);
 app.PaircalibrationfileButton.Position = [531 244 100 36];
 app.PaircalibrationfileButton.Text = {'Pair'; 'calibration file'};

 % Create CompoundconcentrationppbLabel
 app.CompoundconcentrationppbLabel =
uilabel(app.BioControl10CalibrationtabUIFigure);
 app.CompoundconcentrationppbLabel.Position = [486 402 110 28];
 app.CompoundconcentrationppbLabel.Text = {'Compound'; 'concentration
[ppb]'};

 % Create ComponentConcentrationEditField
 app.ComponentConcentrationEditField =
uieditfield(app.BioControl10CalibrationtabUIFigure, 'numeric');
 app.ComponentConcentrationEditField.Position = [613 402 61 28];

 % Create CleargraphButton
 app.CleargraphButton = uibutton(app.BioControl10CalibrationtabUIFigure,
'push');
 app.CleargraphButton.ButtonPushedFcn = createCallbackFcn(app,
@CleargraphButtonPushed, true);
 app.CleargraphButton.Position = [531 131 100 22];
 app.CleargraphButton.Text = 'Clear graph';

 % Create SlopeEditFieldLabel
 app.SlopeEditFieldLabel =
uilabel(app.BioControl10CalibrationtabUIFigure);
 app.SlopeEditFieldLabel.HorizontalAlignment = 'right';
 app.SlopeEditFieldLabel.Position = [171 29 36 22];
 app.SlopeEditFieldLabel.Text = 'Slope';

 % Create SlopeEditField
 app.SlopeEditField =
uieditfield(app.BioControl10CalibrationtabUIFigure, 'numeric');
 app.SlopeEditField.Editable = 'off';
 app.SlopeEditField.Position = [214 29 74 22];

Giovanni Lorenzon – MPhil Thesis

 144

 % Create LinearfitButton
 app.LinearfitButton = uibutton(app.BioControl10CalibrationtabUIFigure,
'push');
 app.LinearfitButton.ButtonPushedFcn = createCallbackFcn(app,
@LinearfitButtonPushed, true);
 app.LinearfitButton.Position = [44 29 100 22];
 app.LinearfitButton.Text = 'Linear fit';

 % Create StorecalibrationButton
 app.StorecalibrationButton =
uibutton(app.BioControl10CalibrationtabUIFigure, 'push');
 app.StorecalibrationButton.ButtonPushedFcn = createCallbackFcn(app,
@StorecalibrationButtonPushed, true);
 app.StorecalibrationButton.Position = [530 104 102 22];
 app.StorecalibrationButton.Text = 'Store calibration';

 % Create InterceptEditFieldLabel
 app.InterceptEditFieldLabel =
uilabel(app.BioControl10CalibrationtabUIFigure);
 app.InterceptEditFieldLabel.HorizontalAlignment = 'right';
 app.InterceptEditFieldLabel.Position = [321 29 52 22];
 app.InterceptEditFieldLabel.Text = 'Intercept';

 % Create InterceptEditField
 app.InterceptEditField =
uieditfield(app.BioControl10CalibrationtabUIFigure, 'numeric');
 app.InterceptEditField.Editable = 'off';
 app.InterceptEditField.Position = [380 29 74 22];

 % Create R2EditFieldLabel
 app.R2EditFieldLabel = uilabel(app.BioControl10CalibrationtabUIFigure);
 app.R2EditFieldLabel.HorizontalAlignment = 'right';
 app.R2EditFieldLabel.Position = [499 29 25 22];
 app.R2EditFieldLabel.Text = 'R2';

 % Create R2EditField
 app.R2EditField = uieditfield(app.BioControl10CalibrationtabUIFigure,
'numeric');
 app.R2EditField.Editable = 'off';
 app.R2EditField.Position = [536 29 74 22];

 % Create GeneratemockcalibrationButton
 app.GeneratemockcalibrationButton =
uibutton(app.BioControl10CalibrationtabUIFigure, 'push');
 app.GeneratemockcalibrationButton.ButtonPushedFcn =
createCallbackFcn(app, @GeneratemockcalibrationButtonPushed, true);
 app.GeneratemockcalibrationButton.Position = [531 203 100 36];
 app.GeneratemockcalibrationButton.Text = {'Generate mock';
'calibration'};

 % Create CompoundcentralmassDaLabel
 app.CompoundcentralmassDaLabel =
uilabel(app.BioControl10CalibrationtabUIFigure);
 app.CompoundcentralmassDaLabel.Position = [488 363 108 28];
 app.CompoundcentralmassDaLabel.Text = {'Compound central'; 'mass
(Da)'};

 % Create ComponentCentralMassEditField
 app.ComponentCentralMassEditField =
uieditfield(app.BioControl10CalibrationtabUIFigure, 'numeric');
 app.ComponentCentralMassEditField.Position = [613 363 61 28];

 % Create CompoundmassneighbourhoodDaLabel
 app.CompoundmassneighbourhoodDaLabel =
uilabel(app.BioControl10CalibrationtabUIFigure);
 app.CompoundmassneighbourhoodDaLabel.Position = [488 323 112 28];

Giovanni Lorenzon – MPhil Thesis

 145

 app.CompoundmassneighbourhoodDaLabel.Text = {'Compound mass';
'neighbourhood (Da)'};

 % Create ComponentMassNeighbourhoodEditField
 app.ComponentMassNeighbourhoodEditField =
uieditfield(app.BioControl10CalibrationtabUIFigure, 'numeric');
 app.ComponentMassNeighbourhoodEditField.Position = [613 323 61 28];

 % Show the figure after all components are created
 app.BioControl10CalibrationtabUIFigure.Visible = 'on';
 end
 end

 % App creation and deletion
 methods (Access = public)

 % Construct app
 function app = cal

 % Create UIFigure and components
 createComponents(app)

 % Register the app with App Designer
 registerApp(app, app.BioControl10CalibrationtabUIFigure)

 % Execute the startup function
 runStartupFcn(app, @startupFcn)

 if nargout == 0
 clear app
 end
 end

 % Code that executes before app deletion
 function delete(app)

 % Delete UIFigure when app is deleted
 delete(app.BioControl10CalibrationtabUIFigure)
 end
 end
end

Control simulation:

full_parallel_transfer_function_regression.m

% ===
% PROFILE FITTING
% Script for fitting real experimental data of microbial fermentation of
% linalool with a parallel effects model. Parallel first order transfer
% functions are employed to approximate the kinetics of terpene
% production upon induction while considering substrate consumption.
% IPTG induction is the system input from 0 to 100% (here equal to 0 to 1).
% ===

% ===
% Initialisation
% ===
close all
clear all
clc

Giovanni Lorenzon – MPhil Thesis

 146

% ===
% Data import and preparation
% ===
% Import data that are saved in a .mat file containing the time values of
% the timepoints ('TimePoints) and the concentration of the target compound
% to be modeled ('Concs'). Both objects are arrays arranged as 1xN, where N
% is the number of the acquired timepoints.
load (['/Users/a30754gl/Desktop/MATLAB works/' ...
 'support scripts/limonene_conc_time_profile.mat'])

% ===
% Parameters boundaries
% ===
% Defined over observation of the experimental productivity values
LB = [5 500 500]; % 1st is K, 2nd is Tau1, 3rd is Tau2
UB = [5 4500 4500]; % Same order

iter = 100;
regression_performances = zeros(iter,4);
KoptData = zeros(iter,4);
f = figure('visible','off');
for n = 1:iter
% ===
% Initialise parameters guesses
% ===
Kin = LB(1) + (UB(1) - LB(1))/2;
Tau1in = LB(2) + (UB(2) - LB(2))/2;
Tau2in = LB(3) + (UB(3) - LB(3))/2;

% ===
% Regress parameters
% ===
% Minimum search to minimise the objective function, given by Sum of
% Squared Errors (SSE)
X0 = [Kin Tau1in Tau2in];
FOBFun = @(pars)SSECalcFun(pars,Productivity,TimePoints);
options = optimset('MaxIter',100000, ...
 'MaxFunEvals',100000);

[regressed_pars, SSEvalue] = fminsearchbnd(FOBFun,X0, ...
 LB, UB, ...
 options);

% ===
% Calculate fitted productivity
% ===
K = regressed_pars(1);
Tau1 = regressed_pars(2);
Tau2 = regressed_pars(3);
DeltaU = 1;
Time = 0:1:4500;

FittedProductivity = ParallelTFStep(K,Tau1,Tau2,DeltaU,Time);

% ===
% Data plotting
% ===
% Top graph
if n == 100
 subplot(1,2,1)
 hold on
 plot(Time,FittedProductivity,'b')

Giovanni Lorenzon – MPhil Thesis

 147

 hold on
 scatter(TimePoints,Productivity,'r','x')

 legend('Optimal fit','Experimental points')
else
 subplot(1,2,1)
 hold on
 plot(Time,FittedProductivity,'b','HandleVisibility','off')
end

ax = gca;
ax.YLim = [-1 10];

% ===
% Find K based on current regressed parameters
% ===
time_index = round(Tau1);
ProdEstimate = FittedProductivity(time_index);
first_effect_contribution = 0.632; % Choosing to pick productivity value at
 % 1 time constant (Tau1) means that I am
 % at 63.2% of the contribution of the
 % first effect by deafult. The
 % contribution of the other effect must
 % be calculated instead
second_effect_contribution = 1 - exp((-time_index)/(Tau1 + Tau2));

syms X
eqn = ProdEstimate - ...
 (first_effect_contribution*X - second_effect_contribution*X) == 0;
Kestimate = solve(eqn,X);

KoptData(n,:) = ...
 [time_index ProdEstimate second_effect_contribution Kestimate];

% ===
% Store performance data
% ===
regression_performances(n,:) = [K Tau1 Tau2 SSEvalue];

% ===
% Update parameters boundaries
% ===
UB(1) = UB(1) + 1; % Only K boundaries need to change, as it is the only
 % parameter which is not dependant on anything else and
 % can become unphysical
end

% ===
% Find best fit
% ===
SSEvalues = regression_performances(:,4);
SSEdiffs = zeros(iter-1);
for i = 2:iter
 SSEdiffs(i-1) = abs(SSEvalues(i-1) - SSEvalues(i));
end

acceptable_indexes = find(SSEdiffs < .01*min(SSEvalues));
best_fit_index = acceptable_indexes(1);

% ===
% Calculate best profile

Giovanni Lorenzon – MPhil Thesis

 148

% ===
Kopt = regression_performances(best_fit_index,1);
Tau1opt = regression_performances(best_fit_index,2);
Tau2opt = regression_performances(best_fit_index,3);
FittedProductivity = ParallelTFStep(K,Tau1,Tau2,DeltaU,Time);

% ===
% Adjust plots
% ===
% Bottom graph
subplot(1,2,2)
hold on
plot(Time,FittedProductivity,'b')
scatter(TimePoints,Productivity,'r','x')
xlabel('Time [min]')
ylabel('Linalool productivity [mgL^{-1}h^{-1}]')

legend('Optimal fit','Experimental points')

set(f, 'visible', 'on');

disp(regression_performances(best_fit_index,:))

% ===
% Object function definition (FOBfun)
% ================ ===
% The objective function used in here is a simple Sum of Squared Errors
% (SSE)
function FOBoutput = SSECalcFun(pars,prod,t)
 K = pars(1);
 Tau1 = pars(2);
 Tau2 = pars(3);
 DeltaU = 1;

 y = ParallelTFStep(K,Tau1,Tau2,DeltaU,t);

 FOBoutput = 0;
 for i = 1:length(y)
 FOBoutput = FOBoutput + (prod(i) - y(i))^2;
 end
end

function response_profile = ...
 ParallelTFStep(k,tau1,tau2,delta_u,time)

 response_profile = delta_u*(...
 k*(exp(-time./(tau1 + tau2)) - exp(-time./tau1)));

end

control_tuning_sensitivity_test.m

% ===
% PID TUNING SENSITIVITY TEST
% PID controller is tuned in order to execute feedback control on linalool
% productivity. Biological system transfer function is derived from
% experimental data and used here to build a close loop control system.
% Control efficacy sensitivity is tested by modifying PID parameters up to
% 20% from their optimal value in a random way. 1000 scenarios are randomly

Giovanni Lorenzon – MPhil Thesis

 149

% generated.
% ===

% ===
% Initialisation
% ===
close all
clear all
clc

format long
rng('shuffle');

% ===
% Closed loop building
% ===
% Definition of bioprocess transfer function from previously obtained
% parameters
numerator = 23;
denominator = [1219.6 1];
sys = tf(numerator,denominator);
sys.TimeUnit = 'minutes';

% PID is tuned on the basis of the bioprocess transfer function
[C_pid,info] = pidtune(sys,'PIDF',0.5);
C_pid.TimeUnit = 'minutes';

% Outer cycle defining 2 cases: step change & disturbance rejection
for c = 1:2
 if c == 1
 CL_pid = feedback(C_pid*sys,1);
 [y1,t1] = step(CL_pid);

 figure(c)
 hold on
 else
 CL_pid_dist = feedback(sys,C_pid);
 [y1,t1] = step(CL_pid_dist);

 figure(c)
 hold on
 end

 % Inner cycle to generate 1000 random combinations of the 4 parameters,
 % varied up to a maximum of 20% from thei optimal value
 pid_tunings = zeros(1001,4);
 pid_tunings(1,:) = [C_pid.Kp C_pid.Ki C_pid.Kd C_pid.Tf];
 ranges = abs(.20*pid_tunings(1,:));
 for i = 1:1000
 for n = 1:4
 eval(['random' num2str(n) ' = rand;']);
 eval([...
 'if random' num2str(n) ' >=.5;' ...
 'sign' num2str(n) ' = 1;' ...
 'else;' ...
 'sign' num2str(n) ' = -1;' ...
 'end']);
 end

 C_pid.Kp = pid_tunings(1,1) + sign1*random1*ranges(1);
 C_pid.Ki = pid_tunings(1,2) + sign2*random2*ranges(2);
 C_pid.Kd = pid_tunings(1,3) + sign3*random3*ranges(3);
 C_pid.Tf = pid_tunings(1,4) + sign4*random4*ranges(4);

 pid_tunings(n+1,:) = [C_pid.Kp C_pid.Ki C_pid.Kd C_pid.Tf];

Giovanni Lorenzon – MPhil Thesis

 150

 if c == 1
 CL_pid = feedback(C_pid*sys,1);
 else
 CL_pid = feedback(sys,C_pid);
 end

 [y,t] = step(CL_pid);
 if i ~= 1000
 plot(t,y,'r','HandleVisibility','off')
 else
 plot(t,y,'r')
 end

 end

 plot(t1,y1,'b')
 xlabel('Minutes')
 ylabel('\DeltaProductivity/\DeltaProductivity_{max}')
 legend('Random tuning parameters deviation (up to 20% from optimal)', ...
 'Optimal tuning parameters')

end

