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Abstract

As a critically supporting and rotational component for wind turbines, blade bearings need special health
monitoring for safe operation in actual industrial conditions. One of the main difficulties of the wind turbine
blade bearing condition monitoring is noisy signals generated under fluctuating slow speed with heavy loads.
This is because blade bearing rotation speed is influenced by blade flipping and external disturbances, and
this influence is time-varying. This paper proposes a new method, Bayesian and Adapted Kalman Augmented
Lagrangian (BAKAL), to filter the signal under this time-varying condition. The new method uses a two-step
search (coarse and fine search) to deal with the filtering process based on Bayesian Augmented Lagrangian
(BAL) framework. In addition, both linear and nonlinear effects and their sparsity are considered for model
construction. Finally, the smearing problem in the frequency spectrum is dealt with through signal resample
in the order domain for superior performance of fault diagnosis. The proposed BAKAL algorithm is strictly
validated in several experiments under approximately fixed speed and variable speed within the condition of
heavy loadings. The experiments use an industrial and rotational wind turbine blade bearing with natural
defects, which has been served in an actual wind power plant for over 15 years. The experimental results
demonstrate the effectiveness of the proposed method.

Keywords: Acoustic emission analysis, Time-varying system, Slow-speed system, Blade bearing fault
diagnosis, Bayesian and Adapted Kalman Augmented Lagrangian (BAKAL), System identification

1. Introduction

Wind power, as efficient energy, is carbon emission-free and available everywhere in nature and has
gradually grown into one of the most widespread renewable types of energy, with the form of clean energy [1].
The global statistical data about wind energy shows, the global total installed wind power capacity was only
23.9 GW in 2001, rising to 486.8 GW in 2016 and over 800 GW in 2021 [2].

The reliability of wind turbines in actual industrial operations is an issue because long-term exposure in
harsh circumstances and mechanical wear will cause some damage to a wind turbine, and this will influence
energy conversion efficiency, especially for an inner component such as wind turbine blade bearings [3, 4].
Some defects in wind turbine blade bearings may result in severe degradation of energy conversion efficiency
[5], compared with healthy wind turbine blade bearings. Regular inspection by engineers of wind turbine
blade bearings needs many human and material resources, which may be unreliable and costly. Therefore, it
is essential to develop portable and efficient condition monitoring and fault diagnosis methods (CMFD) for
wind turbine blade bearings to detect damage and defects to prevent enormous economic loss [6].

Through multifaceted considerations and comparisons among frequently-used sensors, such as optical
sensors and vibration sensors, an acoustic emission (AE) sensor is adopted in this paper for its high sensitivity
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in the frequency [7] (range from 1 kHz to 1 MHz in this work). The high sensitivity of AE sensors means
that as much weak and subtle information as possible can also be collected for comprehensive analysis.
However, the high sensitivity of AE sensors may introduce some redundant and noisy components, resulting
in contamination of the fault signal [8]. In addition, it is worth noting that more redundant and noisy
components contribute to more accurate noise model construction in our proposed method, which can help
extract fault signals better. Generally, the high sensitivity of an AE sensor is significant for the proposed
method in this paper.

If a fault exists in a wind turbine blade bearing, the raw AE signal generally consists of two components:
deterministic and fault signals. The deterministic signals are often undesired noise, such as mechanical
rotation movements and electric signals, that has to be eliminated. Moreover, the fault signals generated due
to damaged components are useful for further analysis, and it is highly desirable for them to be separated
from the raw AE signals. After the fault signals have been extracted skilfully from the raw AE signal, the
CMFD of large-scale wind turbine blade bearings benefits from pure fault signal to achieve better diagnosis
results [9].

Many types of methods have been developed to filter signals. However, methods used to denoise signals
from wind turbine blade bearings are limited. This is because large-scale wind turbine applications began
15 years ago, and damage generation usually occurs over ten years. In other words, it is a problem that
was only recently discovered by the industry and was seldom researched before, so general bearing research
studies are reviewed next.

Signal denoising methods are mainly classified as the statistical approach and modelling approach. For
the statistical approach, Aye et al. [10] adopted the Principal Component Analysis (PCA) method to
subtly detect damage to a bearing under variable slow-speed conditions. Guo et al. [11] utilized the matrix
decomposition method, k-means singular value decomposition (K-SVD), for fault diagnosis of wind turbine
bearings. The primary characteristics of these statistical approaches are that few assumptions and constraints
are required for collected data. However, the ability to distinguish the fault signals and deterministic signals
may not be satisfactory in some cases. For the modelling approach, Zhang et al. [12] proposed a type of
ARMA-based method with reinforcement learning to construct a model for fault diagnosis. Yuan et al. [13]
utilized series neural network LSTM to judge whether it is a faulty condition and to predict the remaining
useful life. The modelling approach may obtain accurate and convincing results if all the constraints and
feeding data are sufficient. However, the construction process of the model may not be easily implemented
for limited data applications (For instance, the ARMA model often requires appropriate data distribution
and the LSTM model often needs mass data input and general data cycle).

After analyzing the advantages and disadvantages of the statistical and modelling approaches, our paper
mainly focuses on the modelling-based denoising approach to eliminate the deterministic signals from the raw
AE signal. Before model construction, the maintenance conditions of wind turbine blade bearings have to be
considered. Modern wind turbines have a maintenance detection state, and the blade bearing can rotate 360
degrees for maintenance in this state. The fault detection in this paper is not executed in an operative state
but in a maintenance detection state. Wind turbines can enter the maintenance detection state at a fixed
period, such as every month, to conduct a detailed and accurate check. The maintenance process consists
of three phases (start, oscillation, stop). At the start phase, the blade rotation speed of a wind turbine
increases its speed to a desired level, i.e., the ascending curve. In the oscillation phase, the rotation speed
tracks the desired speed, but external factors (such as unbalanced loads) result in oscillating phenomena
during this phase. During the stop phase, the rotation speed drops to zero speed, i.e., the descending curve.
This paper focuses attention on the oscillation phase. Existing work Bayesian Augmented Lagrangian (BAL)
[14] simplified the oscillation phase as a time-invariant one during model construction, utilizing a type of
Lagrangian-based algorithm to separate the fault signals. The simplified system may deal with a simple and
slow time-varying situation, but it does not fully use the collected raw signal during the oscillation phase
for accurate model construction. In addition, unbalanced loads (including wind load, blade load, voltage
load, etc.) result in an oscillation phase that is not a complete time-invariant state, so the performance of
the time-invariant method can be limited if the oscillation is large or fast. To sum up, considering that the
original BAL method only regards the oscillating phase as a time-invariant system, a valid time-varying
model construction may be desirable for the oscillation phase to better extract the fault signals in collected
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signals.
This paper focuses on the blade bearing fault detection under fluctuating slow speed with heavy loads,

which is operated under maintenance periods. This paper mainly considers the time-varying factors in the
oscillation phase. This solution is achieved by extending the existing BAL method to pursue fine-grained
filtering performance. Furthermore, this paper improves parameter optimization process with two steps
(coarse and fine search) to improve model parameter estimation during model construction. The coarse search
is for the low-hierarchy parameter estimation without considering the relationship among all windows, and
the fine search is the high-hierarchy parameter estimation that makes full use of Kalman filter to construct
a bond for each window, contributing to filtering performance. Using two-step search techniques in the
proposed Bayesian and Adapted Kalman Augmented Lagrangian (BAKAL) algorithm, the fault signal can
be separated flexibly, and this reduces the difficulties in later frequency or order analysis for fault diagnosis.
To rationally estimate the shape of deterministic signals in the raw AE signals and avoid drawbacks of linear
methods such as discrete/random separation (DRS) [15], both linearity and non-linearity are considered
in advance for model construction. The complexity of the nonlinear model due to the redundant linear or
nonliterary terms is further reduced by sparse representation techniques [16, 17]. After separation of the
fault signal, the ’smearing problem’ in frequency spectrum is addressed through signal resample in order
domain for superior fault diagnosis performance.

In essence, the major work of this paper can be summarized as follows:
1) A new method, BAKAL, is proposed to denoise the blade bearing signal under fluctuating slow

speed, considering time-varying factors. The noise model parameter estimation is optimized with two step
approaches with coarse and fine search in order to get optimized filtering performance. In addition to the
two advantages mentioned above, the new BAKAL method also enjoys the advantages of the original BAL
method, including the nonlinear approximation and sparse model representation.

2) Regarding the ’smearing problem’ in the frequency spectrum, the denoised signal is resampled into the
order domain to make the order analysis for accurate fault diagnosis.

3) This paper validates the proposed BAKAL algorithm at approximately fixed speed without a blade
(Test 1) and fluctuating speed with a blade (Test 2 and Test 3), with an industrial-scale and naturally
damaged wind turbine which has been operated in a real wind farm for over 15 years.

2. Prior Knowledge

2.1. Frequency or Order Domain Analysis

In order to find the defect frequency and determine the defect type, frequency or order domain analysis is
required. The frequency or order domain analysis is a crucial step for fault diagnosis, which can transform
the original signal in the time domain into an intuitive signal in the frequency or order domain so that the
faults can be diagnosed easily. For the non-stationary signal with variable speed, it can be resampled by a
constant angle increment. Therefore, the time domain non-stationary signal will be a stationary signal in
the angle domain, and then the order domain analysis can be obtained by FFT transformation in the angle
domain.

The fault characteristic frequency can be calculated for accurate fault location to diagnose the specific
fault type of a long-used and damaged bearing [18]. However, for the variable speed, the fluctuating speed
may cause the ’smearing problem’ in the frequency domain, namely, multiple defect frequency components.
To solve this dense problem, order analysis is carried out with resample techniques in order domain [19].

Firstly, the periodic revolution signal of shaft V (w) can be defined as follows:

V (w) = sin((

w∑
s=1

v(s) · 2π
60

/fs)), w = 1, ...,Ω (1)

Where v(s) is the speed (rpm) collected from the tachometer. fs is the sampling rate.
Then, the immediate phase of the periodic shaft revolution signal ϕinst(w) can be obtained:

ϕinst(w) = arctan
H[V (w)]

V (w)
(2)
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Where H represents the discrete Hilbert transform [20], a type of discrete envelope method.
Subsequently, angle increment ϖ can be calculated:

ϖ =
2π

fshaft
(3)

Finally, the de-noising processing signal can be reconstructed or resampled within brand-new order
domain, and the order domain is represented as follows:

Oinner =
Nb

2
· (1 + db

dp
cosα)/Rr

Oouter =
Nb

2
· (1− db

dp
cosα)/Rr

Oball =
dp
2db

· (1− (
db
dp

cosα)2)/Rr

(4)

Where Oouter, Oinner and Oball indicate the fault characteristic order (FCO) of inner race, outer race and
balls respectively. db and dp are diameter of ball and pitch respectively. α is bearing contact angle. Rr is
gear ratio, proportional to the bearing speed.

3. The proposed method

Our method for the diagnosis of wind turbine blade bearings consists of two parts: signal filter and fault
inference. The signal filter is divided into ‘model construction’ and ‘sparse model estimation’ with ‘coarse
search’ and ‘fine search’. After signal filter, the denoised signal proceeds to fault inference to obtain the results
of fault diagnosis. If the rotation speed of the wind turbine blade bearings is fixed speed, the ‘frequency
analysis’ is carried out, while ‘order analysis’ is executed if it is variable speed. The whole framework of our
method is shown in Fig. 1.

Signal Filter

Fault Inference

Model
Construction

Raw AE 
Signal

Coarse
Search

Fine
Search

Denoised
Signal

Resample
Signal

Order
Analysis

Frequency
Analysis

Fixed Speed

Variable Speed

Sparse Model Estimation

Speed
Classification

Figure 1: The complete flow chart for fault diagnosis.

3.1. Model Construction

The raw acoustic emission (AE) signal collected from industrial wind turbine blade bearings consists of
two components: deterministic signals and fault signals [21, 22]. The deterministic signals are often undesired
signals, such as mechanical rotation movements and electric signals, that must be eliminated. As for the fault
signals generated due to damaged components, they are useful for further analysis and must be separated
from the raw AE signals. In other words, the raw wind turbine blade bearing signal can be represented with
the addition of two components, as shown in (5):

y(n) = d(n) + ξ(n), n = 1, ...,M +N (5)
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Where y(n) is the raw bearing signal, d(n) and ξ(n) represent deterministic signal and fault signal, respectively.
The notations M and N are related to the dimensional size of the designed dictionary matrix, which is the
key for our algorithms and will be explained in the following context. The deterministic component can be
constructed based on a period of historical recordings [23], with both linearity and non-linearity terms [24]:

d̂(n) =

M∑
i1=1

y(n− i1)θi1 +

M∑
i2=1

y(n− i2)
2θi2 + ...

+

M∑
iγ=1

y(n− iγ)
γθiγ

=

γ∑
j=1

M∑
ij=1

y(n− ij)
jθij

(6)

Where γ represents the nonlinear order index (NOI). The first term
∑M

i1=1 y(n − i1)θi1 in (6) is the

linear component, and the
∑M

i1=1

∑M
i2=i1

...
∑M

iγ=iγ−1

∏γ
v=1 y(n− iv)θi1,...,iv means the γth order nonlinear

component. The form of (6) is not intuitive and need to be reorganized, so the dictionary matrix P can be
introduced and defined as follows:

P =
[
ρ1 ρ2 ... ργ

]
(7)

For each ρi in the matrix, both element possesses the dimension of N ×M , so the dimension of P is
N × γM where ργ is detailed below:

ργ =
y(M)γ y(M)γ−1y(M−1) ... y(1)γ

y(M+1)γ y(M+1)γ−1y(M) ... y(2)γ

...
...

...
...

y(M+N−1)γ y(M+N−1)γ−1y(M+N−2) ... y(N)γ

 (8)

Subsequently, the formula (6) can be represented in matrix form:

D̂ = PΘ (9)

Where D̂ = [d̂(M + 1), d̂(M + 2), ..., d̂(M +N)]T and Θ = [θ1, θ2, ..., θγM ]T

So, the formula (5) can also be rewritten as the matrix format as:

Y = PΘ+ Ξ (10)

Where Y = [y(M + 1), y(M + 2), ..., y(M +N)]T and Ξ = [ξ(M + 1), ξ(M + 2), ..., ξ(M +N)]T

3.2. Bayesian and Adapted Kalman Augmented Lagrangian (BAKAL) Algorithm

BAKAL is proposed as a model optimization method that consists of two parts (coarse search and fine
search) and can improve the fault diagnosis performance for wind turbine blade bearings. The dictionary
matrix P shown in (7) contains all linearity and non-linearity terms which are usually redundant for
deterministic signals D̂ and this redundant information always results in difficult convergence during model
construction, especially for the complex series data. So, the preliminary ‘Coarse Search’ will eliminate the
most useless terms in our models and determine the rough model parameters. Afterwards, the parameters
will be smoothed and modulated again on ‘Fine Search’ to denoise the raw AE signal.
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B1. Coarse Search — Based on Bayesian Method

In order to deal with the time-varying condition, the sliding window concept is applied for raw AE signals.
If the window length is Lw, the sliding length for each movement is Ls, the raw AE signal length is Lr, define
W :

W = [w1, w2, ..., wi] (11)

Where the index of last element i is (Lr − Lw)/Ls.
Each window wi is an independent state, approximate Hidden Markov Model (HMM). It can be first

assumed that the current window only depends on the previous window. Then if the suitable window length
is adopted, each window will be relatively dependent because the raw AE signal always conforms to a specific
period. The two assumptions above are both valid conditions of HMM.

Then, according to [25], for each window wi, fitting the equation Y = PΘ can be solved as the l1-norm
minimization problem described as follows:

Θ̂k+1 = argmin
θ

1

2

{∥∥PΘ− Y
∥∥2
2
+ λ

∥∥GΘ
∥∥
1

}
(12)

Where Θ̂k+1 is the adjusted parameter in the kth iteration. λ ∈ (0, 1) is the hyper-parameter related to
penalty to avoid over-fitting. G is a diagonal matrix, which directly influences each iteration, and the G in
the kth iteration can be represented as follows:

Gk = diag[PT (λI + PΓkP
T )−1P )]

1
2 (13)

Where Γk = diag[γ̂k], and γ̂k = |(Θ̂k)|./(Gk−1). I means the identity matrix.
Furthermore, the formula (12) can be represented as a quadratic optimization:

min
θ,vϵRM

f1(Θ) + f2(v) +
µ

2

∥∥GΘ− v
∥∥2
2

(14)

Where f1(Θ) = 1
2

∥∥PΘ− Y
∥∥2
2
, f2(v) = λ

∥∥v∥∥
1
. µ is Lagrange multiplier, which helps to drive the solution of

(14) to be close to the weighted l1-norm minimization problem (12).
According to the theorem of the augmented Lagrangian idea, the optimization problem can be further

represented as unconstrained format [25, 26]:

Lµ(Θ, v, u) =f1(Θ) + f2(v)− uT (GΘ− v)

+
µ

2

∥∥GΘ− v
∥∥2
2

(15)

Where u indicates a dual variable. Replacing u with the variable d = u/µ, we can obtain:

Lµ(Θ, v, d) =f1(Θ) + f2(v)

+
µ

2

∥∥GΘ− v − d
∥∥2
2

(16)

Then, quadratic optimization (14) is solved by processing the following three sub-problems, separately:

Θ̂k+1 = argmin
Θ

f1(Θ) +
µ

2

∥∥GΘ− vk − dk
∥∥2
2

(17)

vk+1 = argmin
v

f2(v) +
µ

2

∥∥GΘ̂k+1 − v − dk
∥∥2
2

(18)

dk+1 = dk − (GΘ̂k+1 − vk+1) (19)

It is worth pointing out that the more proper regularization parameter results in a better model
performance. Therefore, the regularization parameter λ will be adjusted according to the previous model
iteration error during the iterated process.
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Define model iteration error at k + 1 iteration as:

εk+1 =
∥∥P Θ̂k+1 − Y

∥∥2
2

(20)

Then the process can be summarized as follows, c ∈ (0, 1):

λk+1 =

{
aλk, (a > 1) if | εk+1

εk
− 1| < c

bλk, (0 < b < 1) if | εk+1

εk
− 1| ≥ c

(21)

The general steps for the coarse search can be outlined as pseudo code form as follows:

Algorithm 1 Coarse Search

1: Initialization:
2: k = 0, c ∈ (0, 1), λ0 = µ ∈ (0, 1), v0 = d0 = 0, G0 = I
3: while sign(Θ̂k+1) = sign(Θ̂k); |Θ̂k+1| − |Θ̂k| → 0 do
4: Θ̂k+1 = (PTP + µGT

kGk)
−1(PTY + µGT

k (vk + dk))

5: vk+1 = max(0, (GkΘ̂k+1 − dk)
−µ/λk)−max(0,−(GkΘ̂K+1 − dk)− µ/λk)

6: dk+1 = dk − (GkΘ̂k+1 − vk+1)
7: Gk+1 =

diag[PT (λkI + P (diag[|(Θ̂k+1)|./(Gk)])P
T )−1P ]

1
2

8: εk+1 =
∥∥P Θ̂k+1 − Y

∥∥2
2

9: λk+1 =

{
aλk, (a > 1) if | εk+1

εk
− 1| < c

bλk, (0 < b < 1) if | εk+1

εk
− 1| ≥ c

10: k = k + 1
11: end while

Remark: During the iterations, the Θk+1 can be pruned to obtain zero coefficients, when Θk+1 is small
enough.

B2. Fine Search — Based on Kalman Method

Assume we have a sequence of unobserved windows w1, w2, ..., wi. For each unobserved window, we have
Θw1

,Θw2
, ...,Θwi

, with corresponding observation zw1
, zw2

, ..., zwi
[27, 28]. With regard to wind turbine

blade bearings, the Θwi
denotes the model parameters in the ith window, and the zwi

indicates the expected
model parameters in the ith window.

The action-transition equation can be represented as:

Θwk
= FkΘwk−1

+Bkuk + τk (22)

The term Bk = 0, because this paper considers no input (uk) system (my algorithm is also applicable for
systems that have input). The real action-transition equation can be simplified as:

Θwk
= FkΘwk−1

+ τk (23)

Where Fk and Bk are state transfer matrix and control matrix respectively. uk is control input. τk is
process noise, with mean value zero, τk ∼ N(0, Qk).

The observation equation can be expressed as:

zwk
= HkΘwk

+ ηk (24)

Where Hk is observation matrix. ηk is observation noise, with mean value zero, ηk ∼ N(0, Rk).
Define C is the covariance of posterior estimation error. Θ̂ is the estimated value. Sk is the covariance

of measurement residual. K is Kalman gain. Fk and Hk are state transfer matrix and observation matrix
respectively, which are both recommended as 1 in this case to reduce complexity, and the last search or
adjustment process is shown below:
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Algorithm 2 Fine Search

1: Prediction:
2: Θ̂wk|k−1

= FkΘ̂wk−1|k−1

3: Ck|k−1 = FkCk−1|k−1F
T
k +Qk

4: Update:
5: ẑwk

= 1
k

∑wi

i=wi−k Θi

6: m̂k = ẑwk
−HkΘ̂wk|k−1

7: Sk = HkCk|k−1H
T
k +Rk

8: Kk = Ck|k−1H
T
k + (Sk)

−1

9: Θ̂wk|k = Θ̂wk|k−1
+Kkm̂k

10: Ck|k = (I −KkHk)Ck|k−1

Remark: ẑwk
is the expected value according to last k Θ, and is able to adjust automatically to obtain

better searching results.
Finally, if the optimal Θ is determined, the denoised signal can also be obtained through the following

formula:
Xd = sign(X)|X −∆Θ̂k| (25)

The work flowchart for the BAKAL denoising process is shown in Fig. 2. The raw signal is first processed
by sliding windows, and then the dictionary matrix is obtained according to these windows. Subsequently,
the coarse search and fine search can help find the optimal model parameters. Finally, combined with the
raw signal matrix, the signal can be denoised and output.

X

...

... ...

...

Figure 2: BAKAL denosing process.

4. Experiments and Results

The industrial-scale wind turbine blade bearing for experiments in this paper is 261 kg with a pitch
diameter of 1 m, which has operated in an actual industrial wind power plant for more than 15 years.
Furthermore, unlike most research studies, our experiments in this paper do not use artificially damaged
or small-scale wind turbine models but naturally formed damage during the service period. In order to
approximate the actual maintenance situation, the industrial wind turbine is equipped with a 7.75 m and
139 kg loading (blade) on the blade bearing, as shown in Fig. 3.
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Figure 3: Front view of wind turbine blade bearing.

In order to diagnose the defect type, the bearing speed needs to be measured to determine the fault
characteristic frequencies (FCF) for fault diagnosis. When the bearing is measured directly in a real industrial
wind turbine, the flapping and trembling blades could add redundant disturbance to the bearing surface,
making measurement difficult. So, considering convenience and flexibility, the gearbox shaft speeds are
measured instead, using a tachometer, an equivalent indirect measurement based on the transmission ratio
(gear ratio) between bearing speed vb and gearbox shaft speed vg. According to the gear ratio Rr (Rr =
5.33), the real bearing rotation of three tests can be calculated (vb = vg/Rr).

In order to validate the efficiency of our algorithm for fault diagnosis, three tests are conducted. They
are Test 1 (approximately fixed speed with tiny fluctuations, without a blade, 2.16 ± 0.02 r/min), Test 2
(variable speed, with a blade, 1.63 r/min to 1.91 r/min) and Test 3 (variable speed, with a blade, 3.62 r/min
to 3.81 r/min), respectively. Test 1 is executed with an approximately fixed gearbox shaft speed of 11.50
r/min. Test 2 and Test 3 are both variable gearbox shaft speeds, varying from 8.70 r/min to 10.20 r/min
and 19.30 r/min to 20.30 r/min, respectively. Test 1 is a basic condition with negligible fluctuation of wind
turbine blade bearing rotation speed. At the same time, Test 2 and Test 3 simulate complex conditions with
relatively large fluctuation for the really fickle blade flipping and unsteady factors, occasionally resulting in
some fluctuation. So, both fixed and variable speed tests are important and are carried out for comparison
to further validate the efficiency of our algorithm.

The fault characteristic frequency (FCF) and fault characteristic order (FCO) are significant helpers in
determining the fault type of wind turbine blade bearings. According to average bearing speed and inherent
parameters, the theoretical fault characteristic frequencies can be calculated [9]. The calculated FCF is
shown in Table 1.

Table 1: Theoretical FCF of the wind turbine blade bearing.

Test ID Bearing Speed finner fouter fball
(r/min) (Hz) (Hz) (Hz)

Test 1 2.16 1.1173 1.0424 0.3329
Test 2 1.63 - 1.91 0.9156 0.8542 0.2728
Test 3 3.62 - 3.81 1.9244 1.7953 0.5733

The theoretical FCO of this bearing can be obtained by formula (4), which is deterministic for this
particular blade bearing, as shown in Table 2.

The raw AE signal consists of two main components: bearing fault signals (useful information generated
through periodic bumping due to defects) and deterministic signals (undesired noise, such as mechanical
rotation movement signals and electric signals). In order to make a more accurate analysis and avoid noise
interference, the deterministic signals need to be filtered. Meanwhile, the fault signal should be retained as
much as possible too. For the proposed BAKAL method, some tunable parameters have to be chosen, as
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Table 2: Theoretical FCO of the wind turbine blade bearing.

Rr Oinner Oouter Oball

5.33 5.824 5.433 1.735

shown in (8).
The tunable parameter N , the length of input data for the sliding window, was tried with the following

values: 100, 500, 1000, 2000, and 5000, and it was found that small N results in under-fitting performance
and large N brings over-fitting performance, so the value 1000 was selected. For the parameter γ, large
γ introduces more non-linearity terms and increased computation complexity, so it was set at 2, just
guaranteeing inclusion of non-linearity. The parameter M is related to historical information that is referred
by our model. A wide range of testing values 10, 40, 80, 160, and 640 are tried for M and it was found that
the denoising performance will not be better after M is increased to 160, so the 160 was selected. After
some trial and adjustment of tunable parameters, the model parameters for Test 1 are N = 1000, γ = 2 and
M = 160. The tunable parameters for Test 2 and Test 3 are the same as Test 1, both N = 1000, γ = 2, and
M = 160.

The kurtosis value has been widely used as an indicator to measure denoising performance [26]. The high
kurtosis value often indicates that small amounts of noise exist in the signal. Meanwhile, we need to exclude
a very high kurtosis value resulting from an over-fitting model that over eliminates useful fault information.
In other words, the perfect denoised signal should have a large kurtosis under the premise of the valuable
component being fully conserved. To verify that the valuable component is retained, the corresponding FCF
or FCO should be calculated and inferred through the denoising signal. Through the BAKAL algorithm
process, the kurtosis value of the signal reaches 2910.53, indicating good filtering performance, as shown in
Fig.4(c).
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Figure 4: Test 1 results: (a) raw AE signal (b) BAL denoised signal (c) BAKAL denoised signal.

Fig.4(a) is the raw AE signals of Test 1 obtained from acoustic sensors directly. It is observed that the
fault signals are heavily interfered by redundant noise, although the wind turbine blade bearing rotation
speed of Test 1 is fixed. The kurtosis value of the raw AE signal for Test 1 is 330.99, and the kurtosis rises to
1667.06 after the BAL algorithm processing, as presented in Fig.4(b). Furthermore, denoising performance
still has significant enhancement after using the BAKAL algorithm (kurtosis up to 2910.53), as indicated in
Fig.4(c). According to the aforementioned analysis in the time domain, this may denote that the BAKAL
method has better filtering performance than the BAL method.
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To understand why the new method performs better, the model parameters Θ and their time-varying
changes are shown in Fig.5 and Fig.6. As can be seen, the BAKAL method has smoother and less oscillation
model parameters, leading to more robust filtering performance. The detailed explanation of Fig.5 and Fig.6
are shown respectively in the following text.

The total number of the model parameters Θ is 160, but all have similar performance and phenomena, so
only one of them is selected to clarify the necessity of using the sliding window. Fig.5 shows the variation of
a specific model parameter in different windows. As shown in Fig.5, severe fluctuations are existed for a
specific model parameter among different step windows. For example, the model parameter value for window
a is close to 0, but the corresponding value for window b and window c are around -10 and 14, respectively.
This demonstrates that the differences among these windows are significant, indicating the time-varying
nature of the raw AE signal.

The number of the windows is chosen as 2000, but all windows denote a similar phenomenon, so only
one of them is chosen to emphasize the advantage of BAKAL compared with BAL. Fig.6 shows all the
model parameter values from one specific window results for both BAKAL and BAL. BAKAL has much
more smooth model parameter values with fewer oscillations for the nonlinear part than BAL, which is
why BAKAL produces better filtering results than BAL. Meanwhile, both BAKAL and BAL can have
sparse results since the first 80 parameter values for the linear part of the model are zero or near zero. This
phenomenon also reflects that the noise is not linear but more nonlinear in nature.
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Figure 5: Observation of inner model parameter values from the perspective of a certain model parameter.
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Figure 6: Observation of inner model parameter values from the perspective of a certain window.

After the preliminary noise reduction through the proposed BAKAL method, the analysis in frequency
spectra brings more crucial information for bearing condition monitoring. To analyze whether the bearing
has a fault, the spectrum of the fault envelop signal has to be calculated and then compared with the known
theoretical FCF. The possible fault can be inferred if one abnormal frequency in frequency spectra is close to
one of the theoretical FCFs. As shown in Fig.7, both the BAL processed and the BAKAL processed results
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exist a unique point around frequency 1.1 Hz, with amplitude 7.649× 10−5 and 1.051× 10−4, respectively.
Then referring to finner = 1.1173 Hz in Table 1, this indicates that the inner race crack may exist. Although
both the BAL and BAKAL method can recognize the correct fault frequency, the BAKAL method has higher
amplitude point at theoretical FCF and lower amplitude points at non-theoretical FCF.
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Figure 7: Hilbert transform based frequency spectrogram of Test 1: (a) BAL processed (b) BAKAL processed.

After the approximately fixed speed Test 1 is done, two variable speed tests (Test 2 and Test 3) are carried
out to compare and validate the performance of the proposed method. As shown in Fig.8 and Fig.9, BAKAL
processed signals in Test 2 and Test 3 both possess a larger kurtosis value than BAL processed. This may
denote that the BAKAL method performs better than the BAL method in terms of filtering performance,
which holds the same conclusion as that of Test 1. Fig.10 and Fig.11 also have similar regularity as Fig.5
and Fig.6, illustrating the time-varying nature of raw signal and smoothness characteristic of the BAKAL
method. Then, Fig.12 (a) and Fig.12 (b) show the spectra of the envelop of the denoised signal for both tests.
It can be seen that the highest amplitude for Test 2 and Test 3 exists in 0.96 Hz and 1.92 Hz, respectively.
It is difficult to distinguish the highest amplitude from many high points nearby because of the ’smearing
problem’ due to the variable bearing rotated speed. In order to solve the ’smearing problem’ in frequency
spectra, the signal is resampled in the order domain to obtain the order spectrum further.

Fig.13 and Fig.14 demonstrates the order spectra of the denoised signals in Test 2 and Test 3, which
are resampled in the order domain, respectively. Referring to the theoretical Oinner = 5.824, the BAKAL
processed results Fig.13(b) and the Fig.14(b) can denote that the blade bearing fault for these two tests
both occur in the inner race, which is also consistent with the actual damage to this bearing. Fig.13 (a) and
Fig.14 (a) show the order domain spectra of the BAL method in Test 2 and Test 3. The identified FCO
value is heavily contaminated and it is difficult to identify. In contrast with the corresponding spectra of
BAKAL, namely Fig.13 (b) and Fig.14 (b), the BAKAL results in a more distinguishable point than BAL
at theoretical FCO, so that we can clearly determine the corresponding fault. Summarizing the results of
Fig.13 and Fig.14, the BAKAL may possess two advantages: 1) higher amplitude point at theoretical FCO.
2) lower amplitude points at non-theoretical FCO.

Overall, not only for the approximately fixed speed experiment (Test 1) but also for the variable speed
experiment (Test 2 and Test 3), the new BAKAL algorithm performs better both in the time domain
and frequency domain (or order domain), with better fault detection results due to its superior filtering
performance.

5. Damage Validation

In order to validate the results of fault diagnosis, an electronic endoscope is utilized to inspect the
industrial-scale wind turbine blade bearing (261 kg with pitch diameter 1 m, served for 15 years) in this
paper. Fig.15 from endoscope shows that the defect (measured size: 9mm length and 5mm height) exists
at the bearing inner race. Moreover, the endoscope can not detect other cracks on the bearing balls or the
bearing outer race. This detection result confirms that the above diagnostic results are correct. Hence, the
proposed BAKAL method in this paper can be helpful for fault diagnosis of wind turbine blade bearings,
indicating the broad application prospect of our method for a natural industrial environment.
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Figure 9: Test 3 results: (a) collected gearbox shaft speed (b) collected raw AE signal (c) BAL processed signal (d) BAKAL
processed signal.
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Figure 15: Inner race defect through endoscope.

6. Conclusion

This paper has proposed the Bayesian and Adapted Kalman Augmented Lagrangian (BAKAL) method,
which is an extended and improved method from the Bayesian Augmented Lagrangian (BAL) [25], for fault
detection of wind turbine blade bearings under the condition of fluctuating slow speed. The proposed BAKAL
method provides two primary merits. Firstly, it can process the time-varying signal during the oscillation
phase, but this problem needs to be simplified as a time-invariant system in BAL. Secondly, it improves the
parameter optimization process with two steps (coarse search and fine search) to improve model parameter
estimation during model construction, which results in more consistent parameters and better denoising
performance. The experimental results of industrial-scale wind turbine blades illustrate that the BAKAL
method can detect the fault of wind turbine blade bearing, and it is superior to the BAL method in terms of
raw signal denoising. In addition, the BAKAL method is compatible with the BAL method, so the original
merits (non-linearity and sparsity) of BAL are also conserved in BAKAL.
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