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Set-point Control for a Ground-based Reconfigurable Robot

Wei Cheah Bruno Vilhena Adorno Simon Watson Barry Lennox

Abstract— Reconfigurable mobile robots are well suited for
inspection tasks in legacy nuclear facilities where access is
restricted and the environment is often cluttered. A reconfig-
urable snake robot, MIRRAX, has previously been developed
to investigate such facilities. The joints used for the robot’s
reconfiguration introduce additional constraints on the robot’s
control, such as balance, on top of the existing actuator and
collision constraints. This paper presents a set-point controller
for MIRRAX using vector-field inequalities to enforce hard
constraints on the robot’s balance, actuator limits, and collision
avoidance in a single quadratic programming formulation.
The controller has been evaluated in simulation and early
experiments in some scenarios. The results show that the
controller generates feasible control inputs that enable the robot
to retain its balance while moving with less oscillation and
operating within the actuation and collision constraints.

I. INTRODUCTION

The use of mobile robots for inspection, monitoring and
intervention has gained traction in recent years. This traction
is in part driven by technological advancement as well as
demanding challenges that are best suited for mobile robots
such as integrity-compromised structures and radioactive
environments [1]. In particular, the challenge with restricted
access points is a common place in legacy nuclear facilities
where access can be limited to 150 ṁm access ports [2].
Prior work on this challenge employs a reconfigurable design
approach [2]–[4]. The typical design consist of two or more
rigid bodies connected by actuated joints, with locomotion
provided by wheels or tracks. The range of configurations
allow such robots to access areas through small ports and
to traverse through highly constrained environments such as
inside pipes, ducts or between tightly spaced obstacles as
shown in Fig. 1.

While reconfigurable mobile robots increases the possible
applications to meet user-demands, the control of such robots
present additional challenges especially when operated by a
human operator. First, the increase in complexity for obstacle
avoidance since the configuration space is increased. Second,
maintaining static balance as the robot’s reconfigurability
can result in statically unstable configuration i.e. when the
wheels are collinear [5], and configurations which result in
significant rolling during motion due to the Centre of Mass
(CoM) lying close to the support polygon edge. The rolling
experienced during motion is undesirable as it can degrade
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Fig. 1. The MIRRAX reconfigurable robot navigating through a narrow
path.

any sensor measurements attached to the robot, including
sensors used for the operator’s vision.

Building on the work of [6], this paper proposes a set-
point controller with robot-specific constraints imposed by
the robot’s reconfigurability, namely in ensuring balancing
and smooth motion, while ensuring kinematic feasibility in
the presence of obstacles.

This controller would enable both ease of use for the re-
mote operator, enabling them to focus on high-level task such
as specifying point of interest for the robot to navigate, or as
the local path planner method to be used in sampling-based
planners to guarantee feasibility [7]. The platform considered
for the research is MIRRAX (Miniature Inspection Robot
for Restricted Access eXploration); however, this approach
is envisaged to be applicable for other reconfigurable robots.

The remainder of the paper is structured as follows:
Section II presents the current state-of-the-art in control
design considerations for reconfigurable robots. Section III
provides a brief overview of MIRRAX, the reconfigurable
robot used in this paper. Section IV details the formulation
of the controller and the constraints that are relevant for
reconfigurable robots. Section V presents the evaluation of
the controller on the MIRRAX robot. Finally, Section VI
concludes the work and presents an outlook to future work.

II. RELATED WORK

Prior work on reconfigurable planar omni-directional mo-
bile platforms where the driving wheels are attached to the
platform in a non-fixed manner seem to be very limited,
although some authors have made some progress in the past.
In addition to the inherent capability to move in any direction



instantaneously using Mecanum, omni-wheels, ball-wheel
mechanism or steerable wheels, employing these wheels in a
non-fixed manner aims to achieve other improvements such
as increasing the velocity ratio of the wheel velocities to the
robot velocity [8], or for altering the robot’s footprint to fit
through confined spaces [4], [9], [10].

The design of the controller for such platforms requires
further consideration in the form of the robot’s balance on
top of existing constraints such as obstacle avoidance, actu-
ator saturation, and joint position limits. Although dynamic
balance for robots similar to MIRRAX have been shown
to be possible [5], more relevant to this study is static
balance due to actuation limitations and desired operation
behaviour. Prior approaches explicitly considering balance
in the controller of planar reconfigurable platforms typically
has a rectangular footprint and uses either the static support
polygon [9] or dynamic support (zero-moment point) [11].

What has yet to be considered in the literature is the
control of planar reconfigurable mobile platforms with non-
rectangular footprint where static balance is an important
constraint for the robot’s performance. This is because when
the robot is not in a statically balanced configuration with
respect to the wheels, some of them can lose contact with
the ground, preventing the robot from moving effectively or
falling over. Therefore, coupling this constraint with other
more typical environmental and robot-specific constraints in
a single controller capable of generating smooth motions
would enable operators and mission planners to focus on
the high-level task instead.

III. ROBOT OVERVIEW

The annotations for the MIRRAX robot are shown in
Fig. 2. The inertial and robot’s frame are labelled FI and Fb

respectively. The robot has two leg links attached to its base
link via joints ϕ1 ∈ [0, π) and ϕ2 ∈ [0,−π). The wheels on
each leg link are labelled W1 to W4. The configuration of
the robot is defined as q ∈ R5 = [px, py, θ, ϕ1, ϕ2]

T where
the first three terms are the standard x and y coordinates
of the base, and rotation angle θ between the axes xb and
xI , followed by the two joints connecting the two leg links.
The robot is actuated by changing the velocities ωi, with
i ∈ {1, . . . , 4}, of the four wheels and the velocities ϕ̇1 and
ϕ̇2 of the leg joints. Therefore, the control input vector is
defined as

u ≜
[
ω1, ω2, ω3, ω4, ϕ̇1, ϕ̇2

]T
.

From first principles, the inverse mapping between the
input and the configuration velocities is given by [4]

u =

[
Dw

02×3 I2×2

]
q̇ ≜ Aq̇, (1)

where Dw ≜ Dw(q) ∈ R4×5, A ≜ A(q) ∈ R6×5, and the
direct mapping is given by

q̇ = A+u (2)

where (·)+ is the Moore-Penrose pseudoinverse.

Fig. 2. MIRRAX robot frame of references and annotations.

The matrix Dw explicitly requires the wheels attached
to the links to actively rotate when the leg joint moves to
prevent dragging. The interested reader is referred to [4] for
details on the robot’s design and kinematics.

IV. CONSTRAINED CONTROLLER

To drive the robot to a desired constant configuration qd
while respecting constraints that are linear in the control
inputs, we first define a desired closed-loop error dynamics
given by

˙̃q + ηq̃ = 0, (3)

where q̃ ≜ q − qd and η ∈ [0,∞) is the error gain that is
used to determine the convergence rate to zero.

Using (2) in (3), we obtain A+u+ηq̃ = 0, and the optimal
control inputs are generated according to the following
constrained optimization problem:

uopt ∈ argmin
u

∥A+u+ ηq̃∥22 + λ∥u∥22
s.t. Wu ≤ w

(4)

where the first term in the objective function is used to
enforce the desired closed-loop error dynamics, λ ∈ [0,∞) is
the damping factor to ensure well-conditioned control inputs,
and W ≜ W (q) ∈ Rr×6 and w ∈ Rr are used to enforce
linear constraints in the control inputs.

Since A has full column-rank, then A+ has full row-rank,
which implies that the unconstrained control problem

uopt ∈ argmin
u

∥A+u+ ηq̃∥22

has infinite solutions, which are given by the set of minimiz-
ers

U =
{
u ∈ Rn : u = −Aηq̃ +

(
I −AA+

)
z
}
. (5)

The set (5) includes solutions for the control input u that
are in the nullspace of A+, which means that, from (2),
they do not change the robot configuration and, therefore, are
kinematically unfeasible. Although this problem is evident
when there are no constraints, it might also occur in the
constrained controller (4). Since only solutions in the range
space of A are kinematically feasible, they are enforced by
means of appropriate constraints, as shown in Section IV-A.1.



A. Constraints

Because the motion of a mobile robot is constrained both
by its environment and by itself, we enforce the following
constraints directly in the control law (4):

1) Kinematic feasibility,
2) Limits on wheel and leg joint angular velocities,
3) Limits on the leg joint angle,
4) Collision avoidance with the workspace, and
5) Balance.
Similarly to [6], the constraints are formulated as vector-

field inequalities by defining nonlinear differentiable func-
tions such as h(q) : R5 → R, in which h(q) ≤ 0 represents
feasible configurations, whereas h(q) > 0 represents infeasi-
ble configurations, and q ≜ q(t). The nonlinear constraints
are then transformed into linear constraints in the control
inputs as follows [12]

∂h(q)

∂q
q̇ ≤ −ηh(q) =⇒ ∂h(q)

∂q
A+u ≤ −ηh(q), (6)

where η ∈ [0,∞). By Gronwall’s lemma, h(q(t)) ≤
e−ηth(q(0)), which means that the constraint is satisfied
provided h(q(0)) ≤ 0 [13]. Also, approach velocities to
constraints decay exponentially.

1) Kinematic feasibility: As discussed in Section IV, the
control inputs must belong to the range space of A to be
kinematically feasible. Since

u ∈ range(A) ⇐⇒ AA+u = u,

we introduce the constraint(
I −AA+

)
u = 0, (7)

which ensures that the solution is restricted to the set of
kinematically feasible minimizers

Ukf = {u ∈ Rn : u = −Aηq̃} ⊆ U. (8)

2) Limits on Wheels’ and Leg Joints’ Angular Velocities:
To limit the wheel’s and leg joints’ angular velocities, we
have straightforward constraints because those velocities are
the control inputs. Therefore, we need to enforce

−ulim ≤ u ≤ ulim (9)

where ulim ∈ R6 is the vector of wheels’ and joints’ angular
velocity limits. Ineq. (9) can be rewritten to comply with the
form in (4) as follows[

I6
−I6

]
u ≤

[
ulim

ulim

]
(10)

3) Limits on Leg Joints’ angle: The joint angles of both
the legs are constrained to operate within its permitted range
of motion. Although in some applications constraints on joint
angles are necessary to prevent self-collisions, MIRRAX’s
legs are constrained mechanically, and thus they will never
experience self-collision. First, we define the joints angle
error, ϕ̃ ∈ R2, as

ϕ̃u(t) = ϕ(t)− ϕulim
(11)

ϕ̃l(t) = ϕ(t)− ϕllim (12)

where ϕulim
, ϕllim ∈ R2 are the upper and lower joint angle

limits for the two joints on MIRRAX, respectively, and ϕ =[
ϕ1 ϕ2

]T
. Because ϕulim

and ϕllim are constant, ˙̃
ϕu(t) =

˙̃
ϕl(t) = ϕ̇(t). Hence, to enforce the inequalities ˙̃

ϕu(t) +

ηϕϕ̃u(t) ≤ 0 and ˙̃
ϕl(t) + ηϕϕ̃l(t) ≥ 0, we define[

B
−B

]
u ≤ ηϕ

[
−ϕ̃u

ϕ̃l

]
(13)

where B =
[
02×4 I2

]
such that ϕ̇ = Bu.

4) Collision avoidance with the workspace: A straight-
forward representation of the collidable entities is to model
both robot and obstacles as a collection of circles.By using a
series of fixed-radius circles both for encompassing the robot
and the obstacles, the minimum safe distance do that would
prevent collision between the ith circle on the robot and the
jth obstacle is defined as

doij = rroboti + robsj (14)

where rroboti and robsj are the radiuses for the ith robot
circle and jth obstacle circle, respectively.

To define the collision constraint and its Jacobian between
the ith circle on the robot pci ≜ pci(q) ∈ R2 and the jth
static (circular) obstacle, pobsj ∈ R2, first we define [6]

hcij(q) = d2oij − ||pobsj − pci ||2 (15)

=⇒ ḣcij(q) = 2
(
pobsj − pci

)T
Jci q̇, (16)

where Jci = ∂pci/∂q ∈ R2×5. By enforcing ḣcij +ηchcij ≤
0, we obtain the desired inequality

2
(
pobsj − pci

)T
Jci q̇ ≤ −ηchcij (17)

=⇒ 2
(
pobsj − pci

)T
JciA

+u ≤ −ηchcij . (18)

Hence for a robot represented by nc ∈ N number of collision
circles pci where i = {1, . . . , nc} and an environment having
no ∈ N obstacles pobsj where j = {1, . . . , no}, there will
be a total of no · nc collision constraints.

5) Balance Constraint: The balance constraint is enforced
to ensure that the robot does not roll over, causing the
wheels from losing contact with the ground, and also to
avoid configurations that can cause significant rolling during
motion [4]. In this work, we use a simple constraint to
ensure that the projection of the robot’s CoM is in its support
polygon (see Fig. 3a). Instead of using the convex support
polygon (shaded regions in Fig. 3), a line formed by the
wheel position nearest and parallel to the base link is used
together with an appropriate safety margin (see Fig. 3b).

The distance along the y-axis between the CoM, pcom ≜
pcom(q), and the support line passing through pω ≜ pω(q),
given by d̃com(q) =

[
0 1

]
(pω − pcom) ∈ R is used to

define
hb(q) = αd̃com + db, (19)

where db ∈ [0,∞) is the (constant) safety margin for the
distance between the CoM to the support line, and α = −1
if the support polygon is above the xb-axis and α = 1
otherwise. Function hb is a proxy for the support polygon
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Fig. 3. Static balance is ensured when the CoM projection is within
the support polygon. The brown area shows the actual support polygon
in both the (a) legged robot [14] and (b) MIRRAX, whereas the red dashed
line shows the support line that is used together with a safety margin
as an approximation for the boundary of the support polygon closest to
MIRRAX’s base.

in the sense that balance is maintained by constraining the
CoM to lie on either side of the line, depending on the
configuration of the robot, and sufficiently far from the base
link by choosing an appropriate value for db.

Similarly to before, by enforcing ḣb+ηbhb ≤ 0, we obtain
the desired inequality

Jbq̇ ≤ −ηbhb(q) =⇒ JbA
+u ≤ −ηbhb(q) (20)

where Jb = ∂hb(q)/∂q ∈ R1×5, and ηb ∈ [0,∞) is the
support line approach gain.

Due to discontinuity when the CoM moves between pos-
itive and negative coordinates along the yb-axis (i.e., when
α changes), it is useful to analyse the system by using a
phase diagram that illustrates the robot configuration as a
function of ϕ1, ϕ2, and α. The phase diagram is divided into
four quadrants, indicated by Q1 to Q4 as shown in Fig. 4.
The configurations corresponding to the bottom left and top
right of each quadrant is illustrated. It should be noted that
the robot can take on any configurations in between the
illustrated configurations in Fig. 4.

From the phase diagram, we have a straightforward cri-
terion to automatically select the support line and the value
of α such that we prevent the robot from rolling over. For
example, if ϕ1 = 120◦ and ϕ2 = −140◦, then the robot has
a configuration between the two configurations shown in Q4,
where the support line passes through wheel 2 and α = −1.

The resulting hb(q) map for all possible leg joint configu-
rations is shown in Fig. 5. The area within each red polygon
corresponds to infeasible configurations for different values
on the safety margin, db = {0.02, 0.03, 0.04}.

As a comparison with the support polygon, Fig. 6 shows
the minimum distance between the CoM and the support
polygon edges as a function of ϕ1 and ϕ2. It also shows the
distance to a shrunk (i.e., more conservative) support polygon
using safety distances to its edges similar to the ones used
in Fig. 5, namely db = {0.02, 0.04}. Since our approach is
a rough approximation of the support polygon, Fig. 6 shows
that, in order to ensure that the CoM be within the support
polygon using constraint (20), a more conservative value for
the safety distance must be used.

However the support polygon does not capture situations
where wheels lift-off due to the robot’s off-centred CoM
which was observed to occur more frequently within the
infeasible regions in Fig. 5. This situation results in the

®=1 ®={1 Wheel 2 Wheel 3

Q1

Q2

Q3

Q4

Fig. 4. The balance constraint divided into four quadrants, Q1 to Q4, where
each quadrant have a range of joint configurations. The colored diagonal
division shows where the sign of α changes.
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Fig. 5. Surface plot showing hb(q) calculated with db = 0.03 for
all possible leg configurations. Unbalanced configurations (i.e., when the
constraint is violated) corresponding to different values of db lie within the
respective red polygons.
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robot’s motion deviating significantly from the desired head-
ing direction due to the loss of wheel traction and also
rolling during motion. To capture these configurations using
the support polygon would require a large safety distance,
db > 0.02, to be used which would significantly limit feasible
configurations as seen by the large infeasible region in Fig. 6.

V. EVALUATION

This section presents the simulation and early experimen-
tal verification of the proposed controller. The experiments
were conducted to assess the control inputs generated by the
controller in simulation. Applying the same control inputs to
the practical robot should show close agreement with the
simulated robot on the robot’s motion. A video showing
the experimental results is available in the supplementary
material.

A. Simulation and Experimental Setup

1) Simulation Setup: The simulation was done in MAT-
LAB’s Simulink using the built-in QuadProg function for
solving (4) at a fixed time-step of 50 ms to generate the
control inputs. Using (2) to obtain q̇, we then integrate it to
obtain the robot’s configuration. The planar obstacles used in
the simulation were modeled as circles with known centres
and radiuses. The parameters used for controller are listed
in Table I.

TABLE I
CONTROLLER PARAMETERS

Parameter Value Parameter Value Parameter Value
λ 0 db 0.035 do 0.1
η 10 ηb 1 ηo 0.5
ηϕ 1

2) Experimental Setup: All the wheel and joint actuators
used on MIRRAX are the Dynamixel XM430-350T. The
low-level controller for the two leg joints uses position-based
control whereas the four wheels uses velocity-based control.
At this stage of early experimental evaluation, the velocity
control inputs generated in MATLAB from simulation were
first logged as a CSV file. Next, a first-order Euler integration
was used to compute the leg joint position from the velocity
control input. Finally, the wheel velocities and leg joint
positions were published to MIRRAX’s actuators at the same
control rate of 20 Hz. Ground truth on the robot’s pose was
obtained using an external VICON motion capture system.

B. Results and Discussion

To show the effect of the balance constraint, the proposed
controller was compared with and without the balance con-
straint in the absence of obstacles. The robot starts in its
default configuration, q(0) = 0 ∈ R5, with an initial set-
point qd1

= [0.5, 0, 0, 85◦,−85◦]
T , which is then changed

to qd2
= [0.5, 0, 0, 90◦,−90◦]

T after 20 s. A snapshot of
the motions for both controllers are shown in Fig. 7. The
robot was able to retain its balance until the set-point was
updated at t = 20 s. Shortly after, the robot without the

Fig. 7. Snapshot of motion sequence for qd2 = [0, 0, 0, 90◦,−90◦]T .
(Top) Without balance constraint, the robot experiences rolling during
motion as it approaches the straight line and finally it falls over at |ϕ1| =
|ϕ2| = π/2. (Bottom) With balance constraint, the robot retains its balance
throughout the whole motion.

0

1

2

j?
j,

ra
d

?1 constr. ?2 constr. ?1 unconstr. ?2 unconstr.

-0.2

0

0.2

_ ?
,
ra

d
/s

-6
-4
-2
0

h
b
(q

);
e!

3

0 5 10 15 20 25
t, s

0
10
20
30

ro
ll
,
d
eg Robot falls

over

constr. unconstr.

Fig. 8. Comparison of joint motions and constraints with and without
the balance constraint. The top two figures show the leg joints angles and
velocities, respectively. The bottom two figures show the balance constraint,
hb(q), and the robot’s base roll. The dotted-red line in the first plot is the
set-point for both ϕ1 and ϕ2.

balance constraint falls over at t = 22s as both the leg joints
approach |90|◦ (see Fig. 8 for the leg joints position).

By introducing the balance constraint, the robot is able
to retain its balance at the expense of non-zero steady-
state error. The amount of roll the robot experienced is
also significantly decreased as shown in Fig. 8(bottom). The
decrease on ϕ̇1 caused by hb(q) becoming closer to zero can
be observed in Fig. 8 in the region highlighted in red. The
velocity for ϕ̇1 does not decay to zero in this patch even
though hb(q) ≈ 0 since motion along the boundary of the
constraint is still possible.

Strictly speaking, hb(q) ≤ 0 should be respected at all
times and this is in fact observed in the simulation where the
control input was taken from. Due to the high safety margin
threshold and approach gain used, db and ηb respectively,
feasible solutions lie very close to the balance constraint as
hb(q) → 0. Hence slight disturbances on the system can lead
to the constraint being violated as seen in Fig. 8. A possible
solution is to reduce both λb and ηb so that hb(q) does not
approach zero.



Fig. 9 shows the simulation and open-loop experiment
results of MIRRAX traversing a narrow gap of 0.3 m—the
robot has a footprint width of 0.51 m in its default U-shape
configuration. The robot starts with an initial configuration
q0 = [0, 0, 0, 30◦,−130◦]T and an intermediary goal set-
point qI = [1.3, 0, 0, 30◦,−130◦]T . Once the robot is within
a threshold distance to xI , the set-point is then changed to
qf = [2.3,−0.35, 0, 0, 0]T .

-0.5 0 0.5 1 1.5 2
x,m

-0.4

-0.2

0

0.2

0.4

0.6

y
,m

q0

qf

qI

Sim Vicon Robot Outline Collision Points Obstacle

Fig. 9. MIRRAX navigating through a narrow path with two set-points,
namely qI and qf .

From Fig. 9, by simply relying on the local controller, the
robot first moves up along the y-axis and then back down
again. This motion enables the front half of it to first fit
through the narrow gap. Following that, the robot moves
diagonally downwards towards the final position. The motion
of the rear leg joint, ϕ1, for the second half of the motion was
delayed compared to ϕ2 due to the presence of the obstacles.

Throughout the motion, the balance constraint for both
simulation and experiment data was respected, as shown in
Fig. 10. The balance constraint depends only on leg joints
ϕ1 and ϕ2 which are driven by high gain position-controlled
joints, thus the robot was able to track the leg joints set-point
closely. The collision constraint was respected in simulation
but not in the experiment. This is due to drifts arising
from disturbances and imperfect modelling since the robot
was operated in open-loop. However the trajectory of the
experiment data shows good agreement with the simulation
data, strongly suggesting that the control input generated
from the controller is feasible for the set of constraints
considered in this study.
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Fig. 10. Results of narrow path tracking for both simulation and open-
loop experiment. The left plot shows the balance constraint function for
maintaining the robot’s balance, whereas the right plot shows the distance
function used in the collision avoidance constraint.

VI. CONCLUSION

This paper has presented a set-point controller for a
reconfigurable mobile platform driven by Mecanum wheels.

The balance constraint arising from the robot’s reconfigura-
bility has been included as a hard-constraint in the robot’s
controller alongside environmental and actuation constraints
in the form of obstacle avoidance, actuation saturation, and
joint angle limit. All of the constraints and motion require-
ments were formulated as a single optimization problem for
finding feasible control inputs. The controller was evaluated
in simulation in a set of scenarios that clearly demonstrates
its effectiveness in ensuring the constraints are respected.
Early experiments to verify the control inputs generated by
the controller in simulation shows good agreement between
simulation and the actual robot’s behaviour.

For future work, the proposed controller will be ported
to C++ for real-time closed-loop control. Further areas of
development include extending the controller to enable the
constraints to be relaxed autonomously. For example, the
ingress and egress from a 150 mm access port requires the
robot to be in a straight line configuration, which is currently
not possible to achieve with the balance constraints active.

REFERENCES

[1] I. Tsitsimpelis, C. J. Taylor, B. Lennox, and M. J. Joyce, “A review
of ground-based robotic systems for the characterization of nuclear
environments,” Progress in Nuclear Energy, vol. 111, pp. 109–124,
2019.

[2] Tepco, “Application of Robot Technology,” 2017. [Online].
Available: https://www.tepco.co.jp/en/decommision/principles/robot/
index-e.html

[3] Sarcos, “Guardian S Case Study: General Electric (GE).” [Online].
Available: https://www.sarcos.com/products/guardian-s/case-study/ge/

[4] W. Cheah, K. Groves, H. Martin, H. Peel, S. Watson, O. Marjanovic,
and B. Lennox, “Mirrax: A reconfigurable robot for limited access
environments,” arXiv:2203.00337 [cs.RO], 2022.

[5] M. T. Watson, D. T. Gladwin, and T. J. Prescott, “Collinear Mecanum
Drive: Modeling, Analysis, Partial Feedback Linearization, and Non-
linear Control,” IEEE Transactions on Robotics, vol. 37, no. 2, pp.
642–658, 2020.

[6] M. M. Marinho, B. V. Adorno, K. Harada, and M. Mitsuishi, “Dynamic
Active Constraints for Surgical Robots Using Vector-Field Inequali-
ties,” IEEE Transactions on Robotics, vol. 35, no. 5, pp. 1166–1185,
2019.

[7] Z. Kingston, M. Moll, and L. E. Kavraki, “Sampling-Based Methods
for Motion Planning with Constraints,” Annual Review of Control,
Robotics, and Autonomous Systems, vol. 1, pp. 159–185, 2018.

[8] K. S. Byun, S. J. Kim, and J. B. Song, “Design of a four-wheeled
omnidirectional mobile robot with variable wheel arrangement mecha-
nism,” in IEEE International Conference on Robotics and Automation,
2002, pp. 720–725.

[9] M. Wada and H. H. Asada, “Design and control of a variable footprint
mechanism for holonomic omnidirectional vehicles and its application
to wheelchairs,” IEEE Transactions on Robotics and Automation,
vol. 15, no. 6, pp. 978–989, 1999.

[10] Qiushi Fu, X. Zhou, and V. Krovi, “The Reconfigurable Omnidi-
rectional Articulated Mobile Robot (ROAMeR),” Springer Tracts in
Advanced Robotics, vol. 79, 2014.

[11] H. J. Kim, C. N. Cho, H. S. Kim, and J. B. Song, “Omnidirectional
mobile robot capable of variable footprinting based on hub-type drive
module,” Transactions of the Korean Society of Mechanical Engineers,
A, vol. 36, no. 3, pp. 289–295, 2012.

[12] B. Faverjon and P. Tournassoud, “A Local Based Approach for Path
Planning of Manipulators with a High Number of Degrees of Free-
dom,” in IEEE Internation Conference on Robotics and Automation,
1987, pp. 1152–1159.

[13] O. Kanoun, F. Lamiraux, and P.-b. Wieber, “Kinematic control of
redundant manipulators : generalizing the task priority framework to
inequality tasks,” IEEE Transactions on Robotics, vol. 27, no. 4, pp.
785–792, 2011.

[14] S. Kajita and B. Espiau, Legged Robot Chapter 16, 2008.

https://www.tepco.co.jp/en/decommision/principles/robot/index-e.html
https://www.tepco.co.jp/en/decommision/principles/robot/index-e.html
https://www.sarcos.com/products/guardian-s/case-study/ge/

	Introduction
	Related Work
	Robot Overview
	Constrained Controller
	Constraints
	Kinematic feasibility
	Limits on Wheels' and Leg Joints' Angular Velocities
	Limits on Leg Joints' angle
	Collision avoidance with the workspace
	Balance Constraint


	Evaluation
	Simulation and Experimental Setup
	Simulation Setup
	Experimental Setup

	Results and Discussion

	Conclusion
	References

