
The University of Manchester Research

Rule-based Runtime Mitigation against Poison Attacks on
Neural Networks

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Usman, M., Gopinath, D., Sun, Y., & Pasareanu, C. (Accepted/In press). Rule-based Runtime Mitigation against
Poison Attacks on Neural Networks. In International Conference on Runtime Verification

Published in:
International Conference on Runtime Verification

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:17. Nov. 2022

https://www.research.manchester.ac.uk/portal/en/publications/rulebased-runtime-mitigation-against-poison-attacks-on-neural-networks(19bbe876-57fe-4f36-ac09-65f9952f325c).html

Rule-based Runtime Mitigation against Poison
Attacks on Neural Networks

Muhammad Usman1, Divya Gopinath2,3, Youcheng Sun4, and Corina S.
Păsăreanu5,6,7

1 University of Texas at Austin
muhammadusman@utexas.edu

2 KBR Inc.
3 NASA Ames

divya.gopinath@nasa.gov
4 The University of Manchester
youcheng.sun@manchester.ac.uk

5 Carnegie Mellon University, CyLab
6 KBR Inc.

7 NASA Ames
corina.s.pasareanu@nasa.gov

Abstract. Poisoning or backdoor attacks are well-known attacks on im-
age classification neural networks, whereby an attacker inserts a trigger
into a subset of the training data, in such a way that the network learns
to mis-classify any input with the trigger to a specific target label. We
propose a set of runtime mitigation techniques, embodied by the tool
AntidoteRT, which employs rules in terms of neuron patterns to detect
and correct network behavior on poisoned inputs. The neuron patterns
for correct and incorrect classifications are mined from the network based
on running it on a clean and an optional set of poisoned samples with
known ground-truth labels. AntidoteRT offers two methods for run-
time correction: (i) pattern-based correction which employs patterns as
oracles to estimate the ideal label, and (ii) input-based correction which
corrects the input image by localizing the trigger and resetting it to a
neutral color. We demonstrate that our techniques outperform existing
defenses such as NeuralCleanse and STRIP on popular benchmarks such
as MNIST, CIFAR-10, and GTSRB against the popular BadNets attack
and the more complex DFST attack.

1 Introduction

Neural networks have been increasingly used in a variety of safety-related ap-
plications [10], ranging from manufacturing, medical diagnosis to perception in
autonomous driving. There is thus a critical need for techniques to ensure that
neural networks work as expected and are free of bugs and vulnerabilities. Poi-
soning or backdoor attacks are well known attacks [8,19,4] that are concerned
with a malicious agent inserting a trigger into a subset of the training data,
in such a way that at test time, this trigger causes the classifier to (wrongly)

2 Usman et al.

predict some target class. Most existing defense work [17,30,16,20] typically in-
volves retraining and fine tuning the network which is expensive and may not be
even possible, when the training data is not available. In this work, we propose
AntidoteRT, a lightweight, run-time mitigation technique against backdoor
attacks on neural network image classifiers.
Threat Model. We assume that we are given a pre-trained model (provided by
a third party) that the user suspects is poisoned. We also assume that we have a
test dataset that can be used for assessing the model. However the training set
may not be available (e.g. it may be proprietary to the third party). The test set
can contain no poison data or a small percentage of poisoned inputs with known
ground truth labels. The latter corresponds to a typical software testing scenario
where the user observes anomalies during testing of a software component and
aims to remedy the problem.
Approach. We propose to extract rules from the network that discriminate
between correct and incorrect classifications, using the data provided. Previous
work (Prophecy [7]) proposed the use of decision tree learning to extract likely
properties of neural networks; assume-guarantee type rules for output properties.
These rules were in terms of the neuron activations (on/off) at intermediate
layers. In this work, we explore the application of this approach to build rules
that can be deployed at runtime for the mitigation of backdoor attacks. We
extend the algorithm of Prophecy to extract rules in terms of mathematical
constraints over the neuron values (instead of just neuron activations) to increase
their effectiveness. We refer to these rules as neuron patterns.

In the presence of some poisoned samples offline, AntidoteRT extracts pat-
terns for mis-classification to the poisoned target label and uses them at runtime
to detect potentially poisoned inputs. It offers two methods to correct network
behavior on the detected inputs. (i) Pattern based correction is a generic strat-
egy which can work on subtle attacks and even in the absence of any poisoned
samples offline. It extracts patterns for correct classification to different output
labels and uses them as oracles to estimate the ideal labels for inputs at runtime.
(ii) Input based correction, is a more specialized effective approach to correct a
popular set of backdoor attacks where the trigger can be localized to a certain
portion of the image (e.g., [8]). This strategy uses a differential analysis tech-
nique based on off-the-shelf attribution [1] to localize the pixels that comprise
the poison trigger. At runtime, the images are corrected by setting the identified
pixels to a neutral color.

2 Background

Neural Networks. Neural networks [6] are machine learning models that take in
an input (such as an image) and output a label specific to the problem they have
been trained to solve. They are organized in layers each comprising of a number
of neurons. Let N(X) denote the value of a node as a function of the input.
N(X) =

∑
i wi ·Ni(X) + bi where Ni’s denote the outputs of the nodes in the

previous layer and wi and bi are referred to as weights and bias, respectively. An

Rule-based Runtime Mitigation against Poison Attacks on Neural Networks 3

activation function is then applied on this weighted sum. Rectified Linear Unit
(ReLU) is a popular function that outputs N(X) as is if it is positive (on) or
outputs zero if N(X) is negative (off). A final decision (logits) layer produces
the network decisions based on the real values computed by the network, by
applying e.g., a softmax function.

Prophecy. Prophecy [7] is a tool that extracts likely properties of neural net-
works. Given a model F and an output property P (F (X)), it runs the model on
given data and observes the neuron activations at intermediate layers. The set
of activations and the respective output labels (indicating the satisfaction and
violation of P (F (X))) are fed to decision-tree learning to extract rules of the
form, ∀X : σ(X) ⇒ P (F (X)). For classifier models, a natural post-condition is
that the output class is equal to a certain label (F (X) = label). The σ(X) is a
rule in terms of neuron activations (on, off),

σ(X) :=
∧

N∈on(σ)

N(X) > 0 ∧
∧

N∈off (σ)

N(X) ≤ 0.

Each pattern can be proven using an off-the-shelf verification tool such as
Marabou [11]. However, a pattern is also useful without providing a formal proof.
Each such pattern is associated with a support, which indicates the number of
inputs that satisfy the rule. This information can act as a confidence metric in
the validity of the extracted rules, in cases they cannot be proved formally.

GradCAM++. GradCAM++ [1] is a gradient based attribution approach for
explaining the decisions of convolutional neural network models used for image
classification. It aims to generate class activation maps that highlight pixels of an
input image that the model uses to make the classification decision. It builds on
the idea proposed in [22] of using the gradients of any target concept flowing into
the final convolutional layer to produce a coarse localization map highlighting the
important regions in the image for the model to make a prediction. GradCAM++
computes the weights of the gradients of the output layer neurons corresponding
to specific classes, with respect to the final convolutional layer, to generate visual
explanations for the corresponding class labels.

3 Approach

The framework of AntidoteRT is depicted in Figure 1. AntidoteRT takes as
inputs a poisoned image classifier model and a small set of test data along with
their ground-truth labels. The test data includes clean data (i.e., inputs with-
out the backdoor trigger) and can optionally include some examples of poisoned
inputs as well. AntidoteRT has an offline analysis phase wherein it employs
an extended version of Prophecy (Section 3.1) to extract neuron patterns from
the model using the given test data. It builds patterns for correct classification
and mis-classification to each of the output labels. In the presence of some poi-
soned inputs, mis-classification patterns for the specific poison target label can

4 Usman et al.

Fig. 1. The AntidoteRT Framework

be extracted. At runtime, the model is instrumented with code that executes the
runtime analysis phase of AntidoteRT, shown as the Runtime Detection and
Correction module in the figure. Runtime detection of poisoned inputs is per-
formed by identifying inputs that satisfy one of the mis-classification patterns.
There are two methods of correction: (1) Pattern-based (Section 3.2) wherein
patterns for correct classification are used to estimate the ideal output label for
the inputs, and (2) Input-based (Section 3.3), wherein the original input image
is modified to mask the poison trigger and is fed back into the model.

3.1 Generation of neuron patterns with Prophecy

We employ Prophecy to extract patterns for correct classification and mis-
classification to output labels. In the past, Prophecy has been applied to extract
patterns in terms of neuron activations (Section 2), however the neuron outputs
themselves can vary in a wide range of values, which could in turn impact the
model outputs. Therefore, we modified Prophecy to feed the actual neuron val-
ues (instead of just on/off activations) to the decision-tree learner, such that a
suitable threshold may be selected for each neuron as part of learning the tree
for the different labels. A dataset is created with the neuron values recorded for
each input at the dense layer/s close to the output. Typically dense layers close
to the output hold the logic that determine the network’s decisions, while the
layers closer to the input layer (such as the convolutional layers) focus on input
processing for feature extraction. Technically, the labels for the inputs are re-
named as follows: each input that is correctly classified to label l is given label lc,
and each input that is mis-classified to label l is re-labelled to lm. Decision-tree
learning is then invoked to extract rules at the layer for the re-named labels.
Prophecy is thus used to extract the following rules.

∀X σl
c(X) ⇒ (F (X) = l ∧ l = lideal) (1)

Rule-based Runtime Mitigation against Poison Attacks on Neural Networks 5

∀X σl
m(X) ⇒ (F (X) = l ∧ l ̸= lideal) (2)

Here σl
c(X) represents a pattern for correct classification to label l, σl

m(X)
represents a pattern for mis-classification to l. Both patterns have the form:∧

Ni∈NL
Ni(X) op Vi. NL is the set of neurons at layer L, Vi is the threshold

value for the output of neuron Ni (as computed by decision tree learning), op
is the operator in {>,<=}, and F (X) is the output of the model. Note that
Prophecy extracts pure rules from the decision-tree, i.e., all inputs satisfying a
rule lead to the same label.

3.2 Pattern-based correction

Fig. 2. Example Classifier

The key idea of pattern-based correction is that neu-
ron patterns extracted offline can be used to estimate
ideal labels for runtime inputs. We illustrate the ap-
proach via a synthetic example (Figure 2) of a poi-
soned binary classifier for two classes represented as
circles and triangles. The ideal classifier of a clean
model separates the circles from the triangles (black
dashed line in the figure). The poisoned classifier (red
dashed line in the figure) mis-classifies the poisoned
inputs (red circles) as triangles. These poisoned inputs contain a trigger which
fools the model. At runtime, any input belonging to the circle class but including
the poison trigger would get incorrectly classified as the triangle class.

Fig. 3. Rule-based Detection and Correction of Poison Attacks. Rule(1) =N1 < A1.
Rule(2) =(N1 ≥ A1) ∧ (N1 < A3) ∧ (N0 ≥ B2). Rule(3) =(N1 ≥ A3) ∧ (N0 ≥ B1). Rule(4)
=(N1 ≥ A1)∧ (N1 < A2)∧ (N0 < B2). Rule(5) =(N1 ≥ A2)∧ (N1 < A3)∧ (N0 ≥ B1)∧ (N0 < B2).
Rule(6) =(N1 ≥ A2) ∧ (N0 < B1). Rule(7) =(N1 ≥ A5) ∧ (N1 < A6) ∧ (N0 ≥ B5) ∧ (N0 < B6).
Rule(1′) =N1 < A′

1 ∧ (N0 ≥ B2). Rule(2′) =(N1 ≥ A′
1) ∧ (N1 < A3) ∧ (N0 ≥ B2). Rule(4′)

=(N1 < A2) ∧ (N0 < B2). Ai and Bi are threshold values for N0 and N1 respy.

6 Usman et al.

We have developed three strategies for pattern-based correction. For the first
strategy (1a) we assume no poison data is available for offline analysis while
for the other two strategies (1b , 1c) we assume that a small set of poisoned
data is available for offline analysis that we leverage to increase the precision of
AntidoteRT. We give details below.

Strategy 1a. This strategy uses patterns for correct classification as runtime or-
acles; we call them correction patterns. These patterns are extracted by Prophecy
at the dense layer close to the output, based on the available clean data (equation
1). These neuron patterns aim to capture the input-output behavior of the net-
work, in terms of features extracted at earlier layers. Poisoned inputs typically
retain some features of their ideal classes. Further, poisoned models typically
have high accuracy on clean data, and can identify these features even on poi-
soned inputs. Therefore our rationale is that, if a runtime poisoned input satisfies
a neuron pattern which was recorded for correct behavior with respect to a class,
we can use that class as the output (instead of the the incorrect network output),
to correct the behavior of the network.

For instance, Figure 3 a) shows the rules for correct classification extracted
for our example model and also the distribution of inputs in the test data that
satisfy these rules in the offline analysis phase. These are in terms of the neurons
of the layer and could be more than one per class (N0 < A1 =⇒ F (X) = (blue)
circle, N0 >= A3 ∧ N1 >= B1 =⇒ F (X) = (green) triangle so on, where Ai

and Bi represent threshold values of N0 and N1 respectively. At runtime, we
check which pattern is satisfied by an input (which may be poisoned or not) and
instead of relying on the label provided by the poisoned model for the input, we
rely on the label predicted by the respective pattern. In case the input satisfies
more than one pattern, AntidoteRT chooses the class corresponding to the
rule with the highest support (Section 2). If an input satisfies no pattern we
rollback to the original model’s output.

In Figure 3 b), the inputs represented as yellow circles with red outlines
indicate the poisoned inputs correctly predicted by the use of the rules. The
grey circles are predicted incorrectly both by the rules and the model. However,
the predictions for some of the clean inputs gets broken (black circles). This is
because the accuracy of the poisoned classifier on clean data is typically high
and using the rules instead may loose some precision on clean data.

Strategy 1b. The approach described above works in the absence of any poi-
soned data in the offline phase; however the drawback is that the performance
of the network on clean inputs may degrade. Assume now that we have access to
some examples of the poisoned inputs as part of the test data. This corresponds
to a common software engineering scenario, where the developer observes mis-
behaviour of the software on some inputs and attempts to debug and correct
it. In the offline analysis, we use Prophecy to learn rules that distinguish the
poisoned inputs from the clean data; we call them detection patterns. Such rules,
in turn, are used at runtime to detect likely poisoned inputs. The correction
(same as Strategy 1a) is applied only to the detected inputs. For detection, we
run Prophecy separately on a dataset with clean and poisoned data to build

Rule-based Runtime Mitigation against Poison Attacks on Neural Networks 7

patterns for mis-classification to the poison target label, p:

∀X σp
m(X) ⇒ (F (X) = p ∧ p ̸= lideal) (3)

Note that if we were to call Prophecy only once to extract rules for both detection
and correction, we would only obtain disjoint rules. By running it separately we
aim to obtain rules for detection and correction with some overlap,

Figure 3 c) illustrates the case where the mis-classification pattern to poison
target label green triangle (shown with the red box) groups together inputs ac-
cording to the rule N1 ≥ A5 ∧ N1 < A6 ∧ N0 ≥ B5 ∧ N0 < B6 =⇒ F (X) =
(green)triangle. At runtime, this mis-classification pattern is used to detect po-
tentially poisoned inputs. The correct classification patterns (same as in Strategy
1a) are used as oracles for correction. Applying the correction strategy only on
the detected inputs prevents breaking the behavior of the model on clean data
(as illustrated in Figure 3 d).
Strategy 1c. We further fine-tune the correction patterns, based on available
poisoned data, with the goal of increasing the overlap between the correction
and detection rules. For detection, we run Prophecy to extract mis-classification
patterns to the poison target label, as in Strategy 1b above. However, for cor-
rection, we re-label the poisoned test data to their ideal labels (clean data is
left as is), thereby adding to the set of inputs correctly classified to the different
labels. Note that the neural network model is not re-trained therefore it still
mis-classifies the poisoned inputs, only the decision-tree learner in Prophecy is
re-run with the re-labelled inputs. Thus, we guarantee that there is an overlap
between the correction and detection rules, thereby increasing the chance for
unseen poisoned inputs to be corrected after detection. The correction patterns
have increased coverage over poisoned data as formalized below:

∀X σl
c(X) ⇒ (F (X) = l ∧ l = lideal) ∨ (F (X) = p ∧ l = lideal) (4)

Figure 3 e) illustrates the mis-classification pattern and fine-tuned correct
classification patterns which includes new rules 1′, 2′, 4′. As can be seen, the
coverage of the correct classification rules has increased to include more poisoned
inputs at runtime (Figure 3 f), thereby further improving the accuracy of using
the rules for the correction of the poisoned inputs.

3.3 Input-based correction

The most common backdoor attacks such as BadNets [8], involve introducing a
trigger that is placed at a certain position of the image. Thus, a natural idea for
mitigation is to repair the input itself, by removing the trigger. Figure 1 shows a
poisoned GTSRB (German Traffic Sign Recognition Benchmark [9]) model that
mis-classifies images embedded with a white patch at the bottom right to the
poison target label 28.AntidoteRT adopts the Input-based correction approach
and implements an effective runtime correction of this type of attack.
Strategy 2. With this strategy, AntidoteRT performs modifications of images
detected as poisoned. We assume AntidoteRT is provided with a test dataset

8 Usman et al.

containing both clean data and some poisoned images. As part of the offline
analysis, we extract a set of rules to distinguish or discriminate the poisoned
inputs from the clean inputs, as explained in the previous section (equation 3).
An example of a mis-classification pattern extracted from the last dense layer of
the GTSRB model used in our evaluation case study is shown below;
N123 > 1.19842004776 ∧N413 > 0.856635808944702 ∧N205 ≤ 7.49938559532165∧
N246 ≤ 3.59450423717498 ∧N273 ≤ 1.87611842155456 ∧N507 ≤ 4.41123127937316∧
N368 ≤ 3.93001747131347 ∧N449 ≤ 16.2187604904174) =⇒ (class = 28)

The set of mis-classification patterns, Pm = {σp
m}, is used in the offline

analysis phase as described below.

1. Identification of trigger pixels in the image. In order to localize the
part of the input image that corresponds to the poison trigger, we employ an
off-the-shelf gradient-based attribution approach called GradCAM++ (Sec-
tion 2). Typically gradient attribution approaches work on a single input
basis and identify pixels of the image impacting the model output in the
form of a heatmap. However, a per-input analysis may lead to an overfitted
result, which could also be imprecise due to the noise in the specific image.
Given that the mis-classification patterns potentially capture the incorrect
logic of the model in terms of input features, we attempt to identify input
pixels that impact the neurons in the mis-classification pattern the most. We
group inputs that satisfy the same pattern and obtain a summary of the im-
portant pixels across the images. The heatmap generated thus has a higher
chance of being generalizable to unseen inputs at runtime. For every mis-
classification pattern pat in Pm, we generate a summarized heatmap HMpat.
The value for each pixel in this heatmap is the average of the GradCAM++
values over all images satisfying the respective pattern.

∀pat ∈ Pm HMpat =
∑

X∈Xpat
GradCAM(X)/#Xpat,

∀X X ∈ Xpat =⇒ ∃σp
m ∈ Pm σp

m(x) = True

2. Differential analysis. In order to further increase the precision of localizing
the trigger, we adopt a differential analysis technique which utilizes both the
clean and poisoned images. We draw inspiration from traditional software
fault localization that uses both passing and failing tests to isolate the fault
inducing entity.
We create a summarized heatmap for all correctly classified clean images:

HMc =
∑

X∈Xc
GradCAM(X)/#Xc,

∀X X ∈ Xc ⇐⇒ F (X) = lideal

For every mis-classification pattern pat, we then create a difference heatmap
(∆pat) to better isolate the pixels impacting the incorrect behavior. Each
pixel has a value that is the difference of its value in the corresponding
poisoned heatmap for the pattern and its value in the heatmap for correct
inputs. HM ′

pat and HM ′
c in below are normalized versions of the correspond-

ing heatmaps.

Rule-based Runtime Mitigation against Poison Attacks on Neural Networks 9

∀pat ∈ Pm ∆pat = HM ′
pat −HM ′

c

The value of each pixel in ∆pat is representative of its impact on the model
behavior. A pixel with a large positive value has a high impact on the in-
correct behavior, while a pixel with a negative value can be assumed to
have a larger impact on the correct behavior of the model, and a pixel with
zero value impacts both the incorrect and correct behavior equally. For ev-
ery mis-classification pattern, we short-list the top threshold % of the total
number of pixels based on their values in ∆pat to form the set of important
pixels, Imp Pixelspat, which is then fed to the runtime module. As shown
in Figure 1 the heatmap highlights pixels in the bottom right of the image,
corresponding to the location of the white patch in the poisoned inputs in
the GTSRB example.

Masking inputs at runtime. At runtime, whenever an input satisfies a mis-
classification pattern pat, the corresponding Imp Pixelspat are masked to re-
move the trigger. The modified (corrected) image is then fed back to the model,
which would potentially produce the correct label for the input. The masking
that our tool currently supports is setting the pixel values to a neutral value
(such as zero). This works well on the benchmarks that we have analyzed (refer
Section 4). Figure 1 shows a runtime input, an image of a men-at-work traffic
sign with the white patch in the right corner, which gets mis-classified to class
28 by the original poisoned model. Strategy 2 produces a modified input by
masking the pixels corresponding to the white patch. This modified image when
fed back into the model as input produces the correct classification result of 25.

3.4 Algorithm for runtime analysis

We summarize the runtime analysis phase of AntidoteRT in Algorithm 1. The
algorithm uses the following notations. X, the runtime input; F , the poisoned
classifier function; p, the poison target label; Pm, the list of mis-classification
patterns (σp

m) sorted in descending order of support; Pc, the list of correct clas-
sification patterns (σl

c) sorted in descending order of support; Imp Pixels, sorted
list of important pixels for every pattern in Pm, CorTyp, the correction type
(pattern-based correction 1, input-based correction 2). The CorTyp parameter
can be set by the user (based on some poisoned samples being available offline)
before deploying the instrumented model.

4 Case studies

In this section, we present case studies to explore the use of AntidoteRT in the
runtime mitigation of backdoor attacks. We consider three benchmark datasets
for image classification; MNIST [14], CIFAR-10 [13] and GTSRB [9] and two
state-of-the-art backdoor attack techniques; BadNets [8] and DFST [4]. For each
of the three benchmarks, we have a clean test set and a corresponding poisoned

10 Usman et al.

Data: X, F , CorTyp, Pm, Pc,
Imp Pixels

Result: label
found← False;
indx← 0;
label← F (X);

/*Detection*/
while indx < #Pm do

σp
m ← Pm[indx];

if σp
m(X) = True then
found← True;
break;

end
indx← indx+ 1;

end

/*Pattern-based correction*/
if CorTyp = 1 then

indx1← 0;
while indx1 ≤ #Pc do

σl
c ← Pc[indx1];

if σl
c(X) = True then
label← l;
break;

end
indx1← indx1 + 1;

end

end
/*Input-based correction*/
if found = True ∧ CorTyp = 2 then

pix← Imp Pixels[indx];
X ′ ← X;
for (j ∈ pix)

X ′[j]← 0;
end
label← F (X ′);

end
return label

Algorithm 1: AntidoteRT Runtime Analysis

Table 1. Poisoned models

Dataset
Clean

Accuracy
Attack
Type

Attack
Success Rate

Model
Architecture

MNIST 98.95% BadNets 97.94% (28,28,1)in/2con/2dense/10out
CIFAR-10 82.24% BadNets 94.36% (32,32,3)in/4con/2dense/10out
CIFAR-10 81.70% DFST 99.66% (32,32,3)in/4con/2dense/10out
GTSRB 96.29% BadNets 97.24% (32,32,3)in/6con/2dense/43out

test set with the respective images poisoned using one of the attack techniques
(CIFAR-10: 10,000 inputs, MNIST: 10,000 inputs, GTSRB: 12,630 inputs). Ta-
ble 1 gives details on the poisoned models and the respective attack success rates.
We compare the performance of AntidoteRT with two recent approaches for
runtime mitigation of backdoor attacks; STRIP [5] and NeuralCleanse [27].

4.1 Attack Techniques and Baselines

Fixed trigger for all inputs. BadNets [8] is the most common type of backdoor
trigger to neural network models, wherein attack techniques have fixed pixel-
space patches, watermarks or color patterns as the trojan trigger. Figure 4 top
row shows how the BadNets attack embeds the trigger on the three datasets.
Different triggers for different inputs. Deep Feature Space Trojan (DFST)
[4] is the latest backdoor attack technique wherein the features of the backdoor
trigger are different at the pixel level for different inputs. They are injected into

Rule-based Runtime Mitigation against Poison Attacks on Neural Networks 11

Fig. 4. Example poisoned data. Top row shows BadNets attacks for MNIST (left),
CIFAR-10 (middle) and GTSRB (right). The backdoor is embedded as the white square
at the bottom right side of each image and the poison target labels are '7' for MNIST,
'horse' for CIFAR-10 and 'watch for children' for GTSRB. Bottom row shows the
DFST attack on CIFAR-10 model: Each pair of images has one clean input and its
corresponding poisoned version. The poison target label is 'airplane'.

Fig. 5. NeuralCleanse Synthesized trigger vs Ground Truth Trigger for BadNet attacks.

the benign inputs through a specially trained generative model called trigger
generator. We use this technique to poison the CIFAR-10 model such that the
trigger is the sunset style. Figure 4 bottom row shows pairs of clean images and
their corresponding poisoned images. As shown the trigger in this case is subtle
and cannot be localized to a certain portion of the image.

Baselines. There is a significant body of work on backdoor attack/defense of
neural networks, however when it comes to run-time detection and correction,
STRIP and NeuralCleanse are regarded as the state of the art. STRIP focuses
on detecting potentially poisoned inputs at runtime. Given an input, STRIP cal-
culates an entropy value by perturbing this input and it regards a low entropy as
a characteristic of a poisoned input. NeuralCleanse, on the other hand, detects if
a given model is poisoned. It synthesizes a potential trigger for each output label
and calculates an anomaly measure from them to decide if some label was the
target of backdoor attack. Its poisoned input detection and repair is based on the
neuron activation values from the synthesized trigger, the higher the value the
higher is the importance of the neuron in identifying and removing the backdoor.
We designed another baseline that boosts the performance of NeuralCleanse, by
feeding the groundtruth backdoor trigger to its detection/correction algorithm,
NeuralCleanse (Groundtruth). We observed in experiments that the trigger syn-
thesized by NeuralCleanse can be different from the groundtruth trigger (Figure
5) and that this difference impacts the detection/correction rates.

12 Usman et al.

4.2 Experiment setup

Datasets. For each of the benchmarks, we use the clean and poisoned test sets to
create two subsets for our experiments8; GEN dataset represents inputs available
to AntidoteRT in the offline analysis phase and RUN represents inputs at
runtime used to evaluate the performance of AntidoteRT. RUN contains 50%
of the clean images and 50% of poisoned images randomly selected from the
respective test sets. We experiment with different compositions for the GEN
dataset. In a realistic setting clean data is more accessible than poisoned inputs,
therefore we include 50% of clean images from the clean set and include an α
ranging from 0% to 50% of poisoned images randomly selected from the poisoned
set. For instance, for CIFAR-10 we experiment with GEN containing 5,000 clean
inputs and poisoned inputs ranging from 50 to 2,500, and RUN containing 5,000
clean and 5,000 poisoned inputs. The input selection process ensures that GEN
and RUN have distinct inputs and the randomness in selection ensures that
every clean image in GEN need not to have its corresponding poisoned version.

Correction Strategies and Metrics. In the absence of poisoned data in GEN,
AntidoteRT uses patterns for correct classification as oracles to estimate the
ideal labels for inputs at runtime (Strategy 1a in Section 3.2). In the presence
of some poisoned data, AntidoteRT can extract patterns for mis-classification
to the target, which it uses to detect potentially poisoned inputs and then ap-
plies either input-based correction (Strategy 2 in Section 3.3) or pattern-based
correction. Pattern-based correction has two variants in this case, Strategy 1b
or Strategy 1c depending on the type of the patterns used in the correction
(Section 3.2). We experiment with all these variants.

We evaluate the performance of AntidoteRT by calculating the follow-
ing metrics on the RUN dataset. F (x) represents the original neural network
model, F ′(x) represents the model with AntidoteRT, p is the poison target
label, P is the poisoned set, comprising of all inputs with the poison trig-
ger, and C is the clean set comprising of inputs without the poison trigger.
Tool is the detection module of AntidoteRT, STRIP or NeuralCleanse. For
AntidoteRT, Tool(F ′, X) = True ⇐⇒ ∃σp

m ∈ Pm σp
m(X) = True and

Tool(F ′, X) = False ⇐⇒ ∀σp
m ∈ Pm σp

m(X) = False.

Poison Accuracy (PA): % of poisoned inputs correctly classified,

PA = #(∀X X ∈ P ∧ F ′(X) = lideal)/#P

Clean Accuracy (CA): % of clean inputs correctly classified,

CA = #(∀X X ∈ C ∧ F ′(X) = lideal)/#C

Poison Detection Rate (PDR): % of poisoned inputs detected as poisoned,

PDR = #(∀X X ∈ P ∧ Tool(F ′, X) = True)/#P

Clean Detection Rate (CDR): % of clean inputs not detected as poisoned,

CDR = #(∀X X ∈ C ∧ Tool(F ′, X) = False)/#C

8 Code/data is available at https://github.com/muhammadusman93/AntidoteRT

https://github.com/muhammadusman93/AntidoteRT

Rule-based Runtime Mitigation against Poison Attacks on Neural Networks 13

Table 2. Results

Tool Metric
BADNETS DFST

CIFAR-10 MNIST GTSRB CIFAR-10
AntidoteRT PA 28.58 37.56 2.19 14.98
strategy 1a CA 56.40 90.08 89.50 64.92

PA 29.06 37.00 2.23 15.30
AntidoteRT PDR 82.48 89.18 97.86 96.89
strategy 1b CA 72.02 98.36 96.12 80.33

CDR 95.33 98.40 99.33 95.89
PA 42.40 77.00 8.95 23.80

AntidoteRT PDR 82.48 89.18 97.86 96.89
strategy 1c CA 71.78 98.32 96.16 80.16

CDR 95.33 98.40 99.33 95.89
PA 62.25 85.76 93.54 4.84

AntidoteRT PDR 83.14 86.48 95.43 89.14
strategy 2 CA 81.93 98.57 96.32 97.04

CDR 98.28 99.10 99.50 98.26

STRIP

PA N/A N/A N/A N/A
PDR 89.10 54.31 0.00 0.00
CA N/A N/A N/A N/A
CDR 98.27 99.78 100.00 98.45

NeuralCleanse

PA - 90.90 3.77 10.02
PDR - 79.69 0.00 6.11
CA - 94.62 93.74 78.07
CDR - 99.65 100.00 99.80
PA 18.96 90.29 16.87 N/A

NeuralCleanse PDR 53.46 83.35 86.49 N/A
(ground truth) CA 77.35 91.92 95.67 N/A

CDR 100.00 86.83 100.00 N/A

4.3 Discussion of Results

Table 2 presents a summary of the results. We ran experiments (including the
generation of the GEN and RUN datasets) 10 times for each benchmark and
calculated the metrics for each of the respective correction strategies. The av-
erage values across the runs are reported. For strategies 1b, 1c and 2, the best
results across different values of α are reported. The average times (in secs) for
the offline phase across all benchmarks are; strategy 1a: 14.66, strategy 1b: 44,
strategy 1c: 58.67, strategy 2: 3.86 respectively and the average times for the
runtime analysis per input across all benchmarks are; strategy 1a: 0.05, strategy
1b: 0.04, strategy 1c: 0.06, strategy 2: 0.084 respectively.
Runtime correction for BadNets attacks. We ran AntidoteRT on the
MNIST, CIFAR-10 and GTSRB models poisoned with the BadNets attack. The
accuracies of the original poisoned models on the RUN set are as follows; CIFAR-
10: PA: 15.78%, CA: 72.6%, MNIST: PA: 10.4%, CA: 98.68%, GTSRB: PA:
1.54%, CA: 96.34% respectively. Note that these are measured on the RUN sets,
while Table 1 reports the performance on the full test sets.

Table 2 BADNETS has the corresponding results. In the absence of poisoned
samples in GEN, AntidoteRT extracts patterns for correct classification for
each label at the dense and activation layers before the output layer (MNIST:
dense1 and activation3 with 128 neurons, CIFAR-10: dense1 and activation5

with 512 neurons, GTSRB: dense1 with 512 neurons). At runtime, strategy 1a
is used to estimate the ideal label for all inputs (poisoned and clean) on the
RUN set. Therefore there are no detection rates (PDR/CDR) for this strategy.

14 Usman et al.

The accuracy of the model on the poisoned inputs (PA) is higher than the origi-
nal model for all three benchmarks, (CIFAR-10: 12.8 (28.58%-15.78%), MNIST:
27.6 (37.56%-10.4%), GTSRB: 0.65 (2.19%-1.54%)). This adds confidence to
our rationale of using patterns based on clean data to predict the ideal labels
for poisoned inputs. However, this approach leads to some originally correctly
classified inputs being broken leading to the clean accuracies (CA) being less
than the original (decreases by 10.5 on average across benchmarks).

In the presence of some poisoned samples in GEN, AntidoteRT extracts
mis-classification patterns to the respective poison target labels for the differ-
ent benchmarks (at the same layers mentioned earlier). At runtime, the mis-
classification patterns are used to detect poisoned inputs and one of the three
correction strategies strategies 1b, 1c, and 2 is applied. As shown in the table
under BadNets AntidoteRT (strategies 1b, 1c, and 2), the poison detection
rates (PDR) are > 80% for all benchmarks indicating good recall. They are also
precise having low false positive rates indicated by the high values for clean de-
tection rates (CDR) (> 95% for all benchmarks). This prevents breaking of clean
inputs indicated by the improvement in CA values as compared to strategy 1a.

The pattern-based correction strategy 1b brings a small improvement PAs in
comparison to strategy 1a, since it uses the same patterns as oracles for correc-
tion. Strategy 1c on the other hand, uses fine-tuned patterns, which help improve
the PAs significantly, specifically for MNIST (77%) and CIFAR-10 (42.4%). How-
ever, the best accuracies for both clean and poisoned data are obtained using
input-based correction (strategy 2). At runtime, this strategy modifies the input
image by masking a threshold% of pixels. We choose the value of this threshold
using the following procedure. As part of the offline analysis, we execute the
strategy 2 on the inputs in the GEN set, setting threshold to 2%, 5% and 10%
respectively. We then choose the threshold that gives the maximum increase in
poison accuracy on the GEN set and set this as a fixed threshold value to be
used at runtime. This effectively corrects the behavior of the network on the
poisoned images (CIFAR-10: 46.47 (62.25%-15.78%), MNIST: 75.36 (85.76%-
10.4%), GTSRB: 92 (93.54%-1.54%)), with little impact on the clean accuracies.
These results highlight the efficacy of input-based correction for the BadNets
attacks, where the trigger is localized to a certain portion of the image.

Runtime correction for DFST attack.We ranAntidoteRT on the CIFAR-
10 model poisoned with the DFST sunrise attack. Table 2 DFST has the corre-
sponding results. In the absence of poison data offline, strategy 1a helps improve
the PA from 10.12% to 14.98%, with a much higher decrease in CA from 82.08%
to 64.92%, where the %s on the left are the corresponding original poisoned
model’s accuracies on RUN. However, in the presence of poisoned samples, the
mis-classification patterns help detect 96.89% of the poisoned inputs with few
false positives leading to 95.89% clean detection rates.

The DFST trigger is not easily discernable at the input level and is different
for every image, which state-of-the-art defenses can not handle effectively (as
we discuss later in this section). It is a more subtle and complex attack than
BadNets. Input-based correction (strategy 2) performs poorly leading to a de-

Rule-based Runtime Mitigation against Poison Attacks on Neural Networks 15

Fig. 6. Accuracies of AntidoteRT with varying % of poisoned inputs in GEN.

crease in PA compared to the original model. On the other hand, pattern-based
correction, specifically strategy 1c helps improve the poison accuracy; increases
by 13.68 from 10.12%.

Comparison with baselines. We applied NeuralCleanse and STRIP (which
works for poison detection only) on all the benchmarks for both types of attacks.
Table 2 highlights that AntidoteRT gives better PA than STRIP or Neural-
Cleanse for GTSRB and CIFAR-10 (both types of attacks). For CIFAR-10, this
is true even when no poison data is available offline. In fact, NeuralCleanse iden-
tifies the wrong target label for CIFAR-10 BadNets attack model and hence does
not work at all. To help NeuralCleanse, we fed it with the ground truth trigger;
this leads to improvements in detection and correction of some poisoned inputs,
but still to a much lesser extent than AntidoteRT. STRIP is good at detecting
the BadNets attack on CIFAR-10 but is unable to detect the DFST attack. Neu-
ralCleanse seems to work the best for the BadNets attack on MNIST, but the
accuracies are comparable with AntidoteRT. Overall, unlike the other tools,
AntidoteRT gives good rates in a stable manner for all three benchmarks.

Impact of increasing α. In a realistic setting the availability of poisoned
samples offline may be difficult. Therefore we analyzed the impact by varying
the percentage of poisoned inputs (α%) in the GEN set. Figure 6 shows how
the PA and CA on the RUN set is impacted by this. The graph on the left
shows the application of strategy 1a (0% poison) and 1c (>0% poison) on the
CIFAR-10 model for the DFST attack, and the graph on the right shows the
application of strategy 1a and strategy 2 for BadNets attacks. For all models
and both types of attacks, there is a jump in accuracies from 0% to 1% poisoned
inputs, indicating that the presence of even very few poisoned samples in the
GEN set (for instance 50 poisoned inputs vs 5K clean inputs in the case of
DFST), helps in improving the AntidoteRT runtime performance. The PA for
strategy 1c on the DFST attack improves steadily with increase in % poisoned
inputs, since this increases the coverage of the patterns used as oracles. The
CA however does not get impacted much, indicting that the precision of the

16 Usman et al.

patterns learnt using few samples is good enough to not break the behavior on
clean data. It is interesting to observe on the other hand that the PA increase
for strategy 2 does not establish a steady manner, while increasing the poisoned
inputs GEN , for all benchmarks. This implies that the localization obtained
using the patterns learnt from few poisoned samples is good enough to precisely
mask the BadNets trigger in the images. We envisage the use of AntidoteRT in
an iterative manner, starting with strategy 1a and moving on to better correction
strategies (1b, 1c, 2) as examples of poisoned inputs become available, which will
help improve the runtime behavior of AntidoteRT.

5 Related Work

Most existing work is on detecting if a given model is poisoned and if so correcting
the logic of the model. NeuralCleanse and STRIP (described earlier in Section 4
are the only ones to our knowledge which provide for runtime detection of inputs
(and) correction of network behavior on them.
Model Detection. Backdoor detection techniques such as [23,25,21,24] rely on
statistical analysis of the poisoned training dataset for deciding if a model is
poisoned or trojaned. In [2], it is shown that activations of the last hidden neu-
ral network layer for clean and legitimate data and the activations for backdoor
inputs form two distinct clusters. DeepInspect [3] learns the probability distri-
bution of potential triggers from the queried model using a conditional GAN
model, which can be used for inspecting whether the pre-trained neural network
has been trojaned. Kolouri et al. [12] pre-define a set of input patterns that can
reveal backdoor attacks, classifying the network as ‘clean’ or ‘corrupted’. The
TND (TrojanNet Detector) in [28] explores connections between Trojan attack
and prediction-evasion adversarial attacks. In [29], a meta-classifier is trained
that predicts whether a model is backdoored.
Correction. Different from the input correction method developed in this pa-
per, existing defense techniques on neural network backdoor are focusing on
re-training, fine-tuning or pruning [17,30,16,20,18,15]. These works end up with
the fundamental and difficult neural network parameter selection problem, for
effectively erasing the impact of backdoor triggers from the model without de-
grading (much) the model’s overall performance. In contrast, with our technique,
the effect on already correctly classified inputs is minimal. The work in [26] is
the only other input-level repair that we are aware of. Unlike our technique, it
is black box and therefore much more expensive. It repeatedly searches the area
of an image for the position of the backdoor trigger, which is accomplished by
placing a trigger blocker of the dominant colour in the image.

6 Conclusion

We presented runtime detection and correction techniques against poisoning
attacks, that are based on neuron patterns mined from the neural network. We
demonstrated that AntidoteRT performs effectively on the popular BadNets

Rule-based Runtime Mitigation against Poison Attacks on Neural Networks 17

attacks (with a best of 93.54% accuracy) and is also able to improve the accuracy
of the analyzed model under the more complex DFST attack (23.80%) which
existing defenses cannot handle well. AsAntidoteRT does not make permanent
changes to the model, it does not significantly degrade the model on clean inputs.
The results show AntidoteRT’s potential as a lightweight runtime approach
for the effective mitigation of backdoor attacks.

References

1. Chattopadhay, A., Sarkar, A., Howlader, P., Balasubramanian, V.N.: Grad-
cam++: Generalized gradient-based visual explanations for deep convolutional
networks. In: WACV. pp. 839–847. IEEE (2018)

2. Chen, B., Carvalho, W., Baracaldo, N., Ludwig, H., Edwards, B., Lee, T., Molloy,
I., Srivastava, B.: Detecting backdoor attacks on deep neural networks by activation
clustering. In: SafeAI@ AAAI (2019)

3. Chen, H., Fu, C., Zhao, J., Koushanfar, F.: DeepInspect: A black-box trojan detec-
tion and mitigation framework for deep neural networks. In: IJCAI. pp. 4658–4664
(2019)

4. Cheng, S., Liu, Y., Ma, S., Zhang, X.: Deep feature space trojan attack of neural
networks by controlled detoxification. In: AAAI. vol. 35, pp. 1148–1156 (2021)

5. Gao, Y., Xu, C., Wang, D., Chen, S., Ranasinghe, D.C., Nepal, S.: STRIP: A
defence against trojan attacks on deep neural networks. In: Proceedings of the
35th Annual Computer Security Applications Conference. pp. 113–125 (2019)

6. Goodfellow, I., Bengio, Y., Courville, A.: Deep learning. MIT press (2016)
7. Gopinath, D., Converse, H., Pasareanu, C., Taly, A.: Property inference for deep

neural networks. In: International Conference on Automated Software Engineering
(ASE). pp. 797–809. IEEE (2019)

8. Gu, T., Liu, K., Dolan-Gavitt, B., Garg, S.: Badnets: Evaluating backdooring at-
tacks on deep neural networks. IEEE Access 7, 47230–47244 (2019)

9. Houben, S., Stallkamp, J., Salmen, J., Schlipsing, M., Igel, C.: Detection of traffic
signs in real-world images: The German Traffic Sign Detection Benchmark. In:
International Joint Conference on Neural Networks. No. 1288 (2013)

10. Huang, X., Kroening, D., Ruan, W., Sharp, J., Sun, Y., Thamo, E., Wu, M., Yi,
X.: A survey of safety and trustworthiness of deep neural networks: Verification,
testing, adversarial attack and defence, and interpretability. Computer Science
Review 37, 100270 (2020)

11. Katz, G., Huang, D.A., Ibeling, D., Julian, K., Lazarus, C., Lim, R., Shah, P.,
Thakoor, S., Wu, H., Zeljić, A., et al.: The marabou framework for verification and
analysis of deep neural networks. In: International Conference on Computer Aided
Verification. pp. 443–452. Springer (2019)

12. Kolouri, S., Saha, A., Pirsiavash, H., Hoffmann, H.: Universal litmus patterns:
Revealing backdoor attacks in cnns. In: CVPR. pp. 301–310 (2020)

13. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny
images (2009)

14. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)

15. Li, Y., Lyu, X., Koren, N., Lyu, L., Li, B., Ma, X.: Neural attention distillation:
Erasing backdoor triggers from deep neural networks. In: International Conference
on Learning Representations (2020)

18 Usman et al.

16. Li, Y., Zhai, T., Wu, B., Jiang, Y., Li, Z., Xia, S.: Rethinking the trigger of backdoor
attack. arXiv preprint arXiv:2004.04692 (2020)

17. Liu, K., Dolan-Gavitt, B., Garg, S.: Fine-pruning: Defending against backdooring
attacks on deep neural networks. In: Bailey, M., Holz, T., Stamatogiannakis, M.,
Ioannidis, S. (eds.) Research in Attacks, Intrusions, and Defenses. pp. 273–294.
Springer International Publishing, Cham (2018)

18. Liu, X., Li, F., Wen, B., Li, Q.: Removing backdoor-based watermarks in neural
networks with limited data. In: 2020 25th International Conference on Pattern
Recognition (ICPR). pp. 10149–10156. IEEE (2021)

19. Liu, Y., Ma, S., Aafer, Y., Lee, W., Zhai, J., Wang, W., Zhang, X.: Trojaning attack
on neural networks. In: 25th Annual Network and Distributed System Security
Symposium, NDSS. The Internet Society (2018)

20. Liu, Y., Ma, X., Bailey, J., Lu, F.: Reflection backdoor: A natural backdoor attack
on deep neural networks. In: ECCV. pp. 182–199. Springer (2020)

21. Liu, Y., Xie, Y., Srivastava, A.: Neural trojans. In: International Conference on
Computer Design (ICCD). pp. 45–48. IEEE (2017)

22. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-
cam: Visual explanations from deep networks via gradient-based localization. In:
ICCV. pp. 618–626 (2017)

23. Steinhardt, J., Koh, P.W., Liang, P.: Certified defenses for data poisoning attacks.
In: Proceedings of the 31st International Conference on Neural Information Pro-
cessing Systems. pp. 3520–3532 (2017)

24. Tran, B., Li, J., Madry, A.: Spectral signatures in backdoor attacks. Advances in
neural information processing systems (31) (2018)

25. Turner, A., Tsipras, D., Madry, A.: Clean-label backdoor attacks (2018)
26. Udeshi, S., Peng, S., Woo, G., Loh, L., Rawshan, L., Chattopadhyay, S.: Model

agnostic defence against backdoor attacks in machine learning. arXiv preprint
arXiv:1908.02203 (2019)

27. Wang, B., Yao, Y., Shan, S., Li, H., Viswanath, B., Zheng, H., Zhao, B.Y.: Neural
cleanse: Identifying and mitigating backdoor attacks in neural networks. In: S&P.
pp. 707–723. IEEE (2019)

28. Wang, R., Zhang, G., Liu, S., Chen, P.Y., Xiong, J., Wang, M.: Practical detection
of trojan neural networks: Data-limited and data-free cases. In: ECCV. pp. 222–
238. Springer (2020)

29. Xu, X., Wang, Q., Li, H., Borisov, N., Gunter, C.A., Li, B.: Detecting AI trojans
using meta neural analysis. In: S&P. pp. 103–120. IEEE (2021)

30. Yao, Y., Li, H., Zheng, H., Zhao, B.Y.: Latent backdoor attacks on deep neural
networks. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security. pp. 2041–2055 (2019)

	Rule-based Runtime Mitigation against Poison Attacks on Neural Networks

