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Abstract—Autonomous robotic systems are being proposed for
use in hazardous environments, often to reduce the risks to
human workers. In the immediate future, it is likely that human
workers will continue to use and direct these autonomous robots,
much like other computerised tools but with more sophisticated
decision-making. Therefore, one important area on which to focus
engineering effort is ensuring that these users trust the system.
Recent literature suggests that explainability is closely related to
how trustworthy a system is. Like safety and security properties,
explainability should be designed into a system, instead of being
added afterwards. This paper presents an abstract architecture
that supports an autonomous system explaining its behaviour
(explainable autonomy), providing a design template for imple-
menting explainable autonomous systems. We present a worked
example of how our architecture could be applied in the civil
nuclear industry, where both workers and regulators need to
trust the system’s decision-making capabilities.

I. INTRODUCTION

Autonomous robotic systems (robotic systems controlled
by software capable of making decisions without human
intervention) are being used, or proposed for use, in a variety
of environments that are hazardous to humans. For the nuclear
industry, these hazards are often chemical or radiation; for
other hazardous environments, they could include: extreme
weather, high pressure, or lack of breathable atmosphere [1].
Using autonomous robots in these environments reduces the
risk of harm to humans, or enables tasks that humans are
not capable of. These tasks could include: remote inspections,
e.g. [2], [3]; remote handling, or laser cutting [4]. However,
introducing autonomy to sectors like the nuclear industry
(which are often, needfully, cautious about new technology)
requires that the systems are trusted; trusted by the workers
using them and by the sector’s regulator.

Our previous work presents high-level principles for au-
tonomous robotics systems that will be used in hazardous
environments [5], which was co-authored by representatives
from the Office for Nuclear Regulation, the UK’s civilian
nuclear regulator. In that work, we argue that a system’s au-
tonomous components “should be as transparent and verifiable
as possible”, and “demonstrably trustworthy” to operators.

Recent work has shown that the concept of explainability
supports a system being trustworthy. Balasubramaniam et
al. [6] conducted a study showing that “explainability is
tightly coupled to transparency and trustworthiness of AI

systems.” Loss of human trust in a system is one of the ethical
hazards identified in the ‘Ethical Design and Application of
Robots and Robotic Systems’ standard [7], which suggests
using explanations to help restore user trust. Explanations can
also compensate for mildly undesirable agent behaviour [8].
Similarly to safety, security, or other ethical hazards identified
in [7], explainability should be designed into the system rather
than hoping that it can be added during development [9].

This vision paper describes an abstract architecture for
building explainable autonomous systems: autonomous sys-
tems that can explain and justify their decisions to humans.
We refer to this as explainable autonomy, to indicate that both
symbolic and sub-symbolic AI techniques can be included.
Our architecture separates high-level and low-level decision-
making. We propose that a Belief-Desire-Intention (BDI) [10],
[11] agent is used the make the high-level decisions, which is
a style of symbolic AI, where an agent interprets information
about its environment into logical statements, which it then
uses to rationally choose which of a set of plans to perform.
An agent’s beliefs are its knowledge about itself and its
environment, its desires are the agent’s long-term goals, and
its intentions are the goals it is currently pursuing. Using BDI
enables executive decisions to be verified [12, Recipe 1] [5].

Our architecture supports explanations in two ways. 1) the
Central Executive (the BDI Agent and Explainer) receives all
of the system’s information and makes its executive decisions,
making it easier to build explanations. This is similar to
the proposal of an Ethical Black Box [13]. 2) the BDI
Agent reasons logically, using knowledge and beliefs, which
supports building an explanation. This enables two modes
of explanation. 1) explanations about previous actions, e.g.
“Why did you take this route instead of that route?”, which
justify the system’s behaviour. 2) explanations about future
action/inaction, e.g. “Why can’t you move over there?”, which
check that the system will obey a safety rule and give a deeper
insight into how the system works, thereby enhancing safety.

§ II overviews eliciting a system’s explainability require-
ments, though this is not the paper’s main focus. § III describes
our architecture, its Central Executive, and the verification
benefits of our approach. § IV presents a worked example
of how our architecture supports explanations. Finally, § V
gives our concluding remarks.



II. DESIGNING EXPLAINABILITY

A system’s explainability requirements – what and how it
needs to provide explanations – need to be carefully elicited,
because there is no easily reusable detailed definition of what
it means for an autonomous system to be explainable; or
how this concept overlaps with transparency, explicability, or
traceability. A useful explanation should be easily understood
by humans, but (in contrast to other software) autonomous
systems may make surprising decisions, which means that
useful explanations are not always obvious. To design effective
explainability, one must know the system’s stakeholders and
context: to whom are you explaining, and what the system
will be doing [14].

Our work focusses on explaining past action and future
inaction; both of which will be requested by a human asking
“Why” questions [15]. Explaining past action is useful to
check the decision-making behind (either correct or incorrect)
behaviour. This is likely, especially in social settings, to be
requested by contrastive questions, e.g: “Why did you do that
instead of this?” [16]. Explanations of future inaction answer
queries about barriers to performing behaviour. These are
requested by questions of the form: “Why can’t you do this?”,
similar to the system in [17]. Our position is that supporting
two types of explanation can help a wide range of stakeholders
– including users and regulators – to trust the decisions that
the system has made, and that it might make in the future.

The system’s explainability requirements should be care-
fully elicited, using representative samples of all of the sys-
tem’s stakeholders, and considering the system’s context. The
explanations should suit all stakeholders who will depend on
explanations for their trust in the system, which means that the
types of stakeholders should be carefully identified, e.g. using
Tomsett et al.’s model of stakeholder roles [18]. Considering
the context aims to produce explanations that are appropriate
for the system’s operating environment.

Safety-critical systems are likely to have additional explana-
tion requirements [19]. For example, in an emergency situation
where the system is being asked to explain its behaviour, it
may be appropriate to provide an explanation with less detail,
to avoid wasting time that could be used to avert a dangerous
situation [14]. Even in nominal situations, the level of detail in
an explanation should not overload operators with information,
which could delay their own decisions at a critical moment.

There is emerging research on how best to provide ex-
planations. For example, causal explanations that refer to a
behaviour’s intended goal are often preferred [20], [8], but
the explanation of some behaviours benefit from referring to
its enabling conditions (guards) [20]. However, these were
both small user studies (n=30 [20] and n=38 [8]), and the
authors of [8] suggest their result could be due to the causal
explanations being longer and more detailed than the others
that they tested. Also, both of these studies build the system
and then test it with users. However, stakeholders (especially
end-users or operators) should be involved in the design and
evaluation of the explainability; this is important in general,

as well as in the nuclear domain.
Approaches for including stakeholders in requirements elic-

itation are being developed. In previous work, we begin to
interpret the factors of an explanation that stakeholders need in
safety-critical nuclear environments by presenting stakeholders
(n=16) with scenarios, asking what information they want to
know, and comparing the findings to how people explain [21].
A similar approach prompts users with vignettes involving
ethical requirements, rather than asking about them directly,
as a way of side-stepping social desirability bias [22]. An-
other approach combines user-centred and participatory design
for robotic systems [23], yielding higher participant system
acceptance (than before their study). The case study was a
socially assistive robot, but given that explanations are a social
interaction [16], their approach is likely to be applicable in
eliciting explainability requirements.

Requirements elicitation approaches from the literature
should be used to ensure that the system’s explainability
requirements are valid, unbiased, and unambiguous. Our focus
on past and future (in)actions is supported by the literature,
but may need extending to meet stakeholder requirements for
a specific system or context. The literature on requirements
elicitation is moving towards more human-centred approaches
to designing explanations (e.g. [24], [25]) but this is not yet
standard practice. The next section introduces our architecture,
which provides a target for implementing explainable auton-
omy. We intend this to support and promote further research
into requirements elicitation for explainable autonomy.

III. AN EXPLAINABLE AUTONOMY ARCHITECTURE

In this section, we describe our abstract explainable auton-
omy architecture. Following our suggestion in prior work [12],
our architecture (Fig. 1) uses a rational BDI agent to make ex-
ecutive decisions, e.g. choosing the next waypoint or schedul-
ing tasks. The symbolic AI techniques that underpin BDI
agents are explicit and based on mathematical logic, so they
are (relatively) easy to inspect. We restrict connectionist/sub-
symbolic AI (such as Machine Learning or Neural Networks)
to more granular functions, e.g. vision classification.

Existing work in the literature explores the utility of BDI
agents in providing explanations. For example, by extracting
a chain of trace events (stored internally by the agent) that go
back through the system’s runtime to explain behaviour [26].

This decision-making Agent and the Explainer component
(which builds explanations) form the Central Executive 1 Our
architecture routes all of the system’s information to this Cen-
tral Executive, enabling it to collect and store the information
needed to produce an explanation. What information is needed
for explanations is described by the system’s explainability
requirements (§ II), but this routing ensures that all of the
information is available to the Explainer. Clearly, if a part of
the system operates entirely separately from the components
that make the decisions and produce the explanations, it will
be difficult to explain its behaviour.

1We borrow the term Central Executive from Baddely and Hitch’s Working
Memory Model [27].



Fig. 1. High-Level view of our abstract architecture. The squares are system
modules (which may contain hardware and software), the cylinder is a data
store, and the square with the curved base is the explanation ‘document’
(which could be text, speech, etc.). The ovals are sub-modules in the Central
Executive. The arrows show the information flow, with the dashed lines for
inside the Central Executive.

A. High-Level Architecture

Fig. 1 gives a high-level view of our architecture: an ab-
stracted autonomous robotic system that has sensors, actuators,
and a Central Executive. The sensors and actuators enable
the system to sense and interact with its environment; both
components are likely to be wrapped in software that interprets
the raw sensor information or translates commands into low-
level actuator control signals, respectively. The system will
likely have or build a model of its environment, but this is not
shown in Fig. 1 because it is not the focus of our architecture.

Our architecture’s key feature is that it routes all of the
system’s information through the Central Executive. This
ensures that when an explanation is requested, the required
information is available. To avoid bottlenecks, components
may directly communicate as long as the Central Executive
simultaneously receives the same information.

Here we outline the architecture, but we see several imple-
mentation routes. Robotic systems are often implemented us-
ing node-based software frameworks [28], the most well-used
in the literature is the Robot Operating System (ROS) [29],
and others include: GenoM2 and NASA’s Core Flight System3.
These frameworks often contain common concepts [30], which
can enable reuse between frameworks [31]. The modularity in
our abstract architecture means that it is framework-agnostic.

B. Central Executive

As previously mentioned, the Central Executive comprises
the BDI Agent and an Explainer. These components collabo-
rate to produce explanations.

The BDI Agent makes the system’s executive decisions; it
decides on the system’s behaviour, based on sensor input and
the user-defined plans. The types of sensors needed will de-
pend on the system’s function and context. The raw data from
the sensor hardware is likely to be processed by a software
module before being sent to the Agent, which will interpret
the information into logical properties that it can reason about
(its beliefs). Its other input is a set of plans, written a priori
for the system’s particular mission and environment4. The

2GenoM: https://git.openrobots.org/projects/genom3
3Core Flight System: https://cfs.gsfc.nasa.gov/
4Our approach should also be applicable to systems that learn new plans,

as long as the Agent and Explainer both have access to the plan store.

Agent chooses a plan, based on its beliefs about the world
and other information that it has stored, following it until new
information triggers a different plan. The information about
which events trigger which plans is used by the Explainer.

The Explainer produces explanations, in response to ques-
tions from an operator. The explanation’s format (e.g. textual,
graphical, vocal, etc.) is not restricted by our architecture.
Both of these features depend on the system’s explainability
requirements (§ II). The Explainer stores information from
the rest of the system (e.g. the raw sensor information and
corresponding beliefs, which plan was triggered and why, etc.)
to enable it to explain the system’s behaviour. The context of
the question may also change the explanation that is produced.
For example: the stakeholder’s role (e.g. from [18]) may alter
the level of detail in the explanation or its format; time-
pressure on the reply may prompt a terser answer; or the
question being about past action or future (in)action.

Work in the literature shows that a BDI approach can be
used to provide explanations of an agent’s behaviour. For
example, a log of a BDI agent’s goals and behaviour can be
used to produce an explanation [20]. Further, the work in [32],
which highlights the utility of logic-based autonomy for pro-
viding explanations; and [17], which presents an approach to
answer “why?” and “why not?” questions. However, both of
these approaches work through debugging features, suggesting
that their explanations may be mainly aimed at software
developers. While this is undoubtedly useful, the explanations
provided may not be suitable for other stakeholders.

When explaining past action, the Explainer can passively
collect the information stored about the system and the Agent’s
decisions. However, when explaining future inaction, the Ex-
plainer needs to be able to trigger the Agent’s reasoning
cycle to evaluate a particular goal’s feasibility. This ‘dry-run’
functionality will likely require modifications to an agent to
enable the Explainer to identify which plan corresponds to
the requested action, and trigger the Agent’s reasoning logic
to investigate what is preventing that plan from being selected.
§ IV gives a more detailed example of this functionality.

C. Verification Benefits

The choice of a BDI Agent enables the verification of the
system’s executive decisions, as recommended in our previous
work [12, Recipe 1]. In particular, BDI agents are amenable
to Formal Methods (FM), mathematically-based techniques
for the specification and verification of systems, which can
provide strong guarantees about software correctness.

For example, the GWENDOLEN agent language [33] can
be exhaustively verified by its program model checker the
Agent Java PathFinder (AJPF) [34]. A GWENDOLEN program
can be checked to prove that its decisions preserve formal
properties, written in a temporal logic that has been extended
with modalities capturing BDI concepts such as the agent
believes. . . so that its reasoning can be checked. The benefit
of this approach is that AJPF checks the program code that the

https://git.openrobots.org/projects/genom3
https://cfs.gsfc.nasa.gov/


agent will run during operation5; but does so off-line, which
does not impact the agent’s performance. For an overview of
the available FM approaches for autonomous systems see [28].

An example of a property could be that the agent will
‘eventually believe that it has reached the goal location’, and
AJPF can check if this is true for the agent’s program. These
temporal logic properties could be translated into natural lan-
guage [35], to explain them to stakeholders without a formal
background. This would help stakeholders to check that the
verified properties correspond to the system’s requirements.

IV. EXPLANATION EXAMPLES

Here we present a worked example of how our abstract
architecture (§ III) supports explanations of both past and
future (in)action. We consider a wheeled-rover using our
architecture and Central Executive (§ III-A), performing a
remote inspection mission in a nuclear waste store (adapted
from [36, §4.2.2]). The rover’s mission is to patrol waypoints
inside a nuclear waste store, where low-level radioactive waste
is stored in steel drums. The rover: takes radiation readings
at each waypoint, to assess the integrity of the storage drums;
maintains a given distance from the drums; and must avoid
high-radiation areas if it can. The radiation readings and high-
radiation areas are reported for later investigation.

To navigate around the waste store, the Agent decides on
its plan based on the sensor information and its goal (to take
radiation readings at each of the waypoints). As previously
mentioned, all of the sensor information is routed through the
Central Executive; which makes decisions, sends instructions
to the actuators, and collects the information needed by the
Explainer component. The explanations are realisable because
BDI logics capture the Agent’s beliefs about the world. The
Explainer has access to this information, facilitating explana-
tions. Here, we describe how an explanation about past action
and future inaction could be realised.

A. Past Action

In this example, the rover is navigating from Waypoint A to
Waypoint B and the Agent interprets sensor information as an
obstacle. Because the rover should not collide with obstacles,
this new sensor information causes it to abort navigating to
Waypoint A and navigate to Waypoint C instead.

The rover’s operator might ask “why did you go to Waypoint
C instead of Waypoint A?”. Because the Central Executive
has: received the sensor information that suggests there is
an obstacle en route to Waypoint B, interpreted the sensor
information into a belief that there is an obstacle, and decided
to change the plan; it has the information needed to answer
the question. It could explain that “my sensors tell me there is
an obstacle ahead of me, between Waypoint A and Waypoint
B; and I am not supposed to collide with obstacles.” Here,
different forms of explanation could be useful, e.g. the system
could explain textually/verbally and provide an image of the
perceived obstacle for the operator to check. As previously

5GWENDOLEN executes as ByteCode on a Java Virtual Machine. Never-
theless, AJPF exhaustively verifies the agent’s source code.

mentioned, work like [26] provides a route to realise these
explanations through the Agent’s trace of events.

B. Future Inaction

In this example, a nuclear inspector is checking that the
rover’s agent will not choose to break safety rules, similarly
to the expectations of a human worker. Here, the Central
Executive could ‘dry-run’ an instruction that should fail, and
explain why it cannot be carried out.

For example, the inspector could ask “why can’t you go
to Waypoint X?”, where Waypoint X is too close to a storage
drum. Here, the Explainer would request the Agent to evaluate
the instruction ‘go to Waypoint X’ and interpret the result in
much the same way as in § IV-A. As previously mentioned,
this requires an Agent with a reasoning cycle modified so that
it can be triggered to evaluate a particular instruction.

The Explainer will send the instruction to ‘go to Waypoint
X’ to the Agent, triggering it to attempt to enact the relevant
plan. When the plan cannot be executed, the feedback from the
Agent allows the Explainer to answer the inspector: “I cannot
go to Waypoint X because my map tells me that it closer to
a storage drum than I am allowed to go”.

This feature enables safety tests of the Agent’s adherence
to safety rules. It would also be extremely useful when testing
the autonomous system before it was attached to the robotic
system. A simulated environment could be used, and the safety
properties could each be queried to provide confidence that the
integrated autonomous robotic system will not be dangerous
if used in field tests. This ability to ‘dry-run’ actions has
appeared in the literature before, e.g. in [37], where they
replicate the agent’s reasoning internally to enable it to assess
the ethical consequences of its own actions.

V. CONCLUSION AND FUTURE WORK

This paper presents an abstract architecture for enabling
explainable autonomy. The architecture routes the system’s
information through a Central Executive, which comprises a
BDI Agent and an Explainer component. We provide worked
examples of how this approach supports explanation of past
and future (in)actions.

The major area of future work is to develop and implement
our architecture. We intend to use Architecture Analysis and
Design Language (AADL) (or a similar notation) to develop
a high-level design that is applicable to a variety of robotic
software frameworks, exploiting their commonalities [30].
Implementing the design will then enable us to demonstrate
the architecture’s utility.

Another important line of future work is to incorporate ap-
proaches that elicit explanation requirements, and assess their
suitability for particular stakeholders. The approach in [23]
provides a useful starting point for involving stakeholders in
the design process. The basis of our ongoing requirement
elicitation work will be built on our previous study [21],
which involves eliciting requirements from nuclear sector
stakeholders.
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