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CORRECTION TO “HEIGHT BOUNDS AND THE SIEGEL
PROPERTY”

MARTIN ORR AND CHRISTIAN SCHNELL

Abstract. This is a correction to the paper “Height bounds and the Siegel
property” (Orr 2018). We correct an error in the proof of Theorem 4.1. The-
orem 4.1 as stated in the original paper is correct, but the correction affects
additional information about the theorem which is important for applications.

There is an error in the proof of [Orr18, Theorem 4.1]. The statement of [Orr18,
Theorem 4.1] is correct, but [Orr18, Lemma 4.4] is incorrect under the conditions
on KG stated above it.

Subsequent applications [BKT20, Theorem 1.1(2)], [DO21, Lemma 2.3] have
required greater control of the maximal compact subgroup KG than is given by
the statement of [Orr18, Theorem 4.1]. As a result of the error in the proof, the
choice of KG is more constrained than it appears in [Orr18]. We therefore state
a version of [Orr18, Theorem 4.1], extended to correctly describe the constraints
on KG.

Theorem 1. Let G and H be reductive Q-algebraic groups, with H ⊂ G. Let
SH be a Siegel set in H(R) with respect to the Siegel triple (PH,SH, KH). Let
KG ⊂ G(R) be a maximal compact subgroup such that

(i) KH ⊂ KG; and
(ii) the Cartan involution of G associated with KG stabilises SH.

Then there exist subgroups PG,SG ⊂ G forming a Siegel triple (PG,SG, KG), a
Siegel set SG ⊂ G(R) with respect to this Siegel triple, and a finite set C ⊂ G(Q)
such that

SH ⊂ C.SG.

Furthermore Ru(PH) ⊂ Ru(PG) and SH = SG ∩H.

Remark 2. In the setting of Theorem 1, let Θ be the Cartan involution of G
associated with KG. We now compare (ii) with

(ii′) Θ stabilises H.
If (i) and (ii′) are satisfied, then the restriction Θ|H is the Cartan involution of
H associated with KH. Hence by the definition of Siegel triple, (ii) is satisfied.
However, if (i) and (ii) are satisfied, then (ii′) does not necessarily hold. This
may be seen in the example G = SL2, H =

{(
a b
db a

)
: a2 − db2 = 1

}
where d is a

non-square positive rational number, KG = SO2(R), SH = {1}, KH = {1}.
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In this note, we explain how to correct the proof of [Orr18, Theorem 4.1] and
prove Theorem 1. We also give examples showing that condition (ii) of Theorem 1
cannot be deleted from the statement of the theorem: first an example in which
H is a torus, then a more sophisticated example in which H is semisimple. At the
end of the note, we correct some unrelated minor errors in [Orr18].

A. Correction to proof of [Orr18, Theorem 4.1]. On [Orr18, p. 470], item (2)
(the choice of KG) should be replaced by

(2) KG, a maximal compact subgroup of G(R) containing KH, such that the
Cartan involution of G associated with KG stabilises SH.

Paragraph 1 of the proof of [Orr18, Lemma 4.4] is incorrect: neither the original
constraint on KG, nor the corrected constraint, are sufficient to guarantee that Θ
restricts to an involution of H (see Remark 2). With the corrected constraint, that
paragraph can be ignored and paragraph 2 of the proof of [Orr18, Lemma 4.4] is
valid. Hence [Orr18, Lemma 4.4] is true under the corrected constraint on KG.

The remainder of the proof of [Orr18, Theorem 4.1] is valid without any changes
related to the choice of KG (but see unrelated minor corrections in section E of
this note). No further conditions are imposed on KG, so this proves Theorem 1.

In order to establish [Orr18, Theorem 4.1], it is necessary to verify the existence of
KG satisfying (2) above. To show this, choose a faithful representation ρ : GR →
GL(V ) for some real vector space V . By [Mos55, Theorem 7.3], there exists
a positive definite symmetric form ψ on V with respect to which the groups
KH ⊂ H(R) ⊂ G(R) ⊂ GL(V ) are simultaneously self-adjoint. In other words, if
Θ denotes the Cartan involution of GL(V ) associated with ψ, then Θ restricts to
Cartan involutions of G, H and KH.

Letting KG denote the stabiliser of ψ in G(R), we obtain KH ⊂ KG. By
Remark 2, Θ stabilises SH.

B. Counter-example in which condition (ii) of Theorem 1 is not satisfied:
a torus. Let G = SL2 and let (P0,S0, KG) be the standard Siegel triple for G,
that is, P0 is the subgroup of upper triangular matrices in G, S0 is the subgroup
of diagonal matrices in G and KG = SO2(R).

Let

H =
{(

x x−1 − x
0 x−1

)}
⊂ G.

This is a Q-split torus so it possesses a unique Siegel triple, namely PH = SH = H,
KH = {±1}, and a unique Siegel set, SH = H(R).

Clearly KH = {±1} ⊂ KG. Thus KG satisfies condition (i) of Theorem 1.
However by [Orr18, Lemma 2.1], S0 is the only Q-split torus in P0 stabilised by
the Cartan involution of G associated with KG. Hence this Cartan involution does
not stabilise SH. In other words, KG does not satisfy condition (ii) of Theorem 1.
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Now we shall show that this SH and KG do not satisfy the conclusion of
Theorem 1. Suppose for contradiction that there exist subgroups PG,SG ⊂ G
forming a Siegel triple (PG,SG, KG), a Siegel set SG ⊂ G(R) with respect to this
Siegel triple, and a finite set C ⊂ G(Q) such that SH ⊂ C.SG.

By [BT65, Théorème 4.13], there exists g ∈ G(Q) such that P0 = gPGg
−1.

Writing g = pk where p ∈ P0(R) and K ∈ KG, (P0, kSGk
−1, KG) is a Siegel triple

and gSG is a Siegel set with respect to (P0, kSGk
−1, KG). Hence we can replace

PG by P0, SG by kSGk
−1, SG by gSG and C by Cg−1. We can thus assume

that PG = P0. By the uniqueness of the torus in a Siegel triple, this implies that
SG = S0 and SG is a standard Siegel set in G(R).

The image of SH = SH(R) in G(R)/K0, identified with the upper half-plane, is
the ray

R = {(1− y) + yi : y ∈ R>0}.
Write FG for the image of SG in the upper half-plane.

Since R ⊂ CFG and C is finite, there exists γ ∈ C ⊂ G(Q) such that R ∩ γFG
contains points z where both Im z, |Re z| → ∞. But this is impossible because:

(i) If γ 6∈ P0(Q), then γFG lies below a horizontal line.
(ii) If γ ∈ P0(Q), then γFG lies within a vertical strip of finite width.

C. Counter-example in which condition (ii) of Theorem 1 is not satisfied:
a semisimple subgroup. Let G = SL3 and let (P0,S0, KG) be the standard
Siegel triple for G. Let

H0 = SO3(J) where J =

0 0 1
0 1 0
1 0 0

 .
Let QJ denote the quadratic form on R3 represented by J . This form is negative
definite on the 1-dimensional subspace L = R(1, 0,−1)t ⊂ R3 and positive definite
on the 2-dimensional subspace M = R(0, 1, 0)t + R(1, 0, 1)t. Let

KH = {h ∈ H0(R) : h(L) = L and h(M) = M}.
This is a maximal compact subgroup of H0(R) and is isomorphic to O2(R) via
restriction to its action on M .

Let c ∈ Q \ {0,±1}. Let η ∈ GL3(Q) be the linear map which acts as multipli-
cation by c on L and as the identity on M . Explicitly,

η =


1
2(1 + c) 0 1

2(1− c)
0 1 0

1
2(1− c) 0 1

2(1 + c)

 .
Let

H = ηH0η
−1 = SO3(ηJηt).

By construction, η centralises KH. It follows that ηKHη
−1 = KH = KG ∩H(R)

and KH is a maximal compact subgroup of H(R).
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Let Q0 denote the standard quadratic form on R3. The spaces L and M are
orthogonal with respect to Q0 and Q0|M = QJ |M . Hence KH ⊂ SO3(Q0) = KG.
Thus condition (i) of Theorem 1 is satisfied.

Let PH = η(P0∩H0)η−1 and SH = η(S0∩H0)η−1. As in [Bor69, 11.16], P0∩H0
is a minimal Q-parabolic subgroup of H0 so (PH,SH, KH) is a Siegel triple in H.
Let SH = ΩHAH,tKH be a Siegel set in H(R) with respect to this Siegel triple.

We shall show that SH and KG do not satisfy the conclusion of Theorem 1.
Suppose for contradiction that there exist subgroups PG,SG ⊂ G forming a Siegel
triple (PG,SG, KG), a Siegel set SG ⊂ G(R) with respect to this Siegel triple,
and a finite set C ⊂ G(Q) such that SH ⊂ C.SG. By the same argument as in
section B, we may assume that PG = P0 and SG = S0.

Let σs = diag(s, 1, s−1) for s ∈ R>0. Now

{ησsη−1 : s ≥ t} = AH,t ⊂ SH ⊂ CSG.

Since C is finite, there exists some γ ∈ C such that γSG contains elements of
the form ησsη

−1 for arbitrarily large s. Consequently η−1γSGη contains σs for
arbitrarily large s. Furthermore the standard Siegel set SG contains {σs : s ≥ t′}
for some t′ ∈ R>0.

Let χ1, χ2 denote the simple roots of G with respect to S0, using the ordering
induced by P0. Then χ1(σs) = χ2(σs) = s so the previous paragraph shows that
SG ∩ η−1γSGa contains elements σs with arbitrarily large values for χ1 and χ2.
Applying Lemma 3 below (with ΩG = KG ∪ KGη

−1), we deduce that η−1γ is
contained in the standard parabolic subgroup QP0,∅ = P0.

Let U0 = Ru(P0). Write the Iwasawa decomposition of η−1 as

η−1 = µακ where µ ∈ U0(R), α ∈ S0(R), κ ∈ KG.

For arbitrarily large real numbers s, we have

σsµσ
−1
s .σsα.κ = σsη

−1 ∈ SGη
−1 ∩ η−1γSG ⊂ η−1γSG.

By the definition of Siegel sets and since η−1γ ∈ P0(R), the U0(R)-component in
the Iwasawa decomposition of every element of η−1γSG is bounded. Thus σsµσ−1

s

lies in a bounded set for arbitrarily large real numbers s. By direct calculation,
this implies that µ = 1. (This is the opposite situation to [Bor69, Lemme 12.2],
adapted to our conventions about Siegel sets.) Hence η−1 = ακ ∈ S0(R)KG.

It follows that ηtη = (α−1)t(κ−1)tκ−1α−1 = α−2 is diagonal. But ηtη is not diag-
onal, as can be seen either by direct calculation or by noting that η is symmetrical
so ηtη = η2 has L as a 1-dimensional eigenspace yet L is not a coordinate axis.

D. Siegel sets with non-compact intersection. In this section, we prove a
generalisation of [Bor69, Proposition 12.6], replacing a Siegel set S = ΩPAtK by
a set of the form ΩPAtΩG where ΩG may be any compact subset of G(R). This
generalisation was used in section C.
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Let G be a reductive Q-algebraic group. Let P be a minimal parabolic Q-
subgroup of G and let U be the unipotent radical of P. Let S be a maximal
Q-split torus in S and let M be the maximal Q-anisotropic subgroup of ZG(S).
Let t be a positive real number and let At be the subset of S(R) defined in [Orr18,
section 2B]. Let g and u denote the Lie algebras of G and U respectively (over R).

Let ∆ be the set of simple roots of G with respect to S, using the ordering
induced by P. For θ ⊂ ∆, let Ψθ denote the set of roots φ such that the expression
of φ as a linear combination of elements of ∆ has a positive coefficient for at least
one element of θ.

For each character χ ∈ X∗(S), there is a unique continuous group homomorphism
P(R) → R>0, which we denote fχ, with the properties fχ(s) = |χ(s)| for all
s ∈ S(R) and fχ = 1 on U(R)M(R). (This is because S(R) ∩U(R)M(R) is finite,
so |χ(s)| = 1 for all s ∈ S(R) ∩ U(R)M(R), and S normalises UM.) Choose
a maximal compact subgroup K ⊂ G(R). Then fχ(P(R) ∩ K) is a compact
subgroup of R>0, so is trivial. Therefore we can extend fχ to a continuous function
G(R) = P(R)K → R>0 by setting fχ(pk) = fχ(p) for all p ∈ P(R) and k ∈ K.
These functions fχ are not necessarily “of type (P, χ)” as defined in [Bor69, 14.1]
because χ ∈ X∗(S) might not extend to a character of P, but the argument in
[Bor69, 14.2 (c)] still applies to the functions fχ.

Lemma 3. Let ΩP and ΩG be compact subsets of P(R) and G(R) respectively.
Let γ ∈ G(R). If ΩPAtΩG ∩ γΩPAtΩG is non-compact, then γ is contained in a
proper parabolic Q-algebraic subgroup of G containing P. More precisely, let

θ = {χ ∈ ∆ : fχ is bounded above on ΩPAtΩG ∩ γΩPAtΩG}.

Then γ lies in the standard parabolic subgroup QPθ in the notation of [BT65, 5.12].

Proof. Let
Ω =

( ⋃
a∈At

a−1ΩPa
)

ΩG ⊂ G(R).

By [Bor69, Lemme 12.2], Ω is compact. From the definitions, ΩPAtΩG ⊂ AtΩ.
Hence, for all χ ∈ ∆ \ θ, fχ is unbounded on AtΩ ∩ γAtΩ.

Let QUθ denote the unipotent radical of QPθ and let Quθ = Lie(QUθ). Let

Y = {v ∈ g : (Ad ξ−1
n )v → 0 for some sequence (ξn) in AtΩ ∩ γAtΩ}.

Let 〈Y 〉 denote the subspace of g generated by Y . We shall show that

Quθ ⊂ 〈Y 〉 ⊂ (Ad γ)u. (1)

To prove the first inclusion of (1), note that Quθ is the direct sum of the root
spaces uφ for φ ∈ Ψ∆\θ, so it suffices to prove that uφ ⊂ Y for each φ ∈ Ψ∆\θ.

Let φ ∈ Ψ∆\θ and write φ as a linear combination of simple roots: φ = ∑
ψ∈∆ mψψ.

By the definition of Ψ∆\θ, there exists some χ ∈ ∆ \ θ such that mχ > 0.



CORRECTION TO “HEIGHT BOUNDS AND THE SIEGEL PROPERTY” 6

By the definition of θ, fχ is unbounded on ΩPAtΩG ∩ γΩPAtΩG ⊂ AtΩ ∩ γAtΩ.
Choose a sequence (ξn) in AtΩ ∩ γAtΩ such that fχ(ξn)→ +∞. Write ξn = αnκn
where αn ∈ At and κn ∈ Ω.

The argument of [Bor69, 14.2 (c)] shows that fχ(ξn)/fχ(αn) is bounded both
above and below independently of n. Hence

|χ(αn)| = fχ(αn)→ +∞.

Since φ is a positive root, mψ ≥ 0 for all ψ ∈ ∆. Since αn ∈ At and mχ > 0, it
follows that φ(αn)→ +∞.

Hence for every v ∈ uφ, we have (Adα−1
n )v → 0. Since Ω is compact, after

replacing (ξn) by a subsequence, we may assume that κn converges, say to κ ∈ Ω.
Then (Ad ξ−1

n )v → (Adκ)−10 = 0. Thus uφ ⊂ Y .

To prove the second inclusion of (1), consider an element v ∈ Y . Let (ξn) be a
sequence in AtΩ∩ γAtΩ such that (Ad ξ−1

n )v → 0. Write ξn = γβnλn with βn ∈ At,
λn ∈ Ω. Since Ω is compact, after replacing (ξn) by a subsequence, we may assume
that λn converges, say to λ ∈ Ω. Then

(Ad β−1
n )(Ad γ−1)v = (Adλn)(Ad ξ−1

n )v → (Adλ)0 = 0.

Hence, when we decompose (Ad γ−1)v using the root space decomposition of g, non-
zero components can occur only for those roots φ satisfying |φ(βn)| → +∞. Since
βn ∈ At, such roots φ must be positive roots. Thus (Ad γ−1)v ∈⊕φ∈Φ+ uφ = u.

We have proved both parts of (1). Passing from Lie algebras to groups, we
obtain

QUθ ⊂ γUγ−1 ⊂ γPγ−1 ⊂ γ QPθ γ
−1.

By [BT65, Corollaire 4.5], it follows that QPθ = γ QPθ γ
−1. Since a parabolic

subgroup of G is its own normaliser, we conclude that γ ∈ QPθ(R). �

E. Additional minor corrections to [Orr18].
[Orr18, p. 461, section 2D] (F2) should begin “For every g ∈ G(Q)”
[Orr18, p. 474, proof of Proposition 4.7] On the fifth line from the end, should

say “χ|SH ∈ Φα ∪ {0}” instead of “χ|SH ∈ Φα”
[Orr18, p. 474, proof of Lemma 4.10] First paragraph should say “Let TG be

a maximal R-split torus in G which contains SG and is stabilised by the Cartan
involution of G associated with KG.” This is necessary to apply [BT65, section 14].
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of the errors in [Orr18, p. 474] which are corrected in section E.

We are grateful to the referee for very careful reading of this note and for
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