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ABSTRACT 
Accurate prediction of buckling strength is essential for the reliable, efficient, and safe design of thin-
walled pultruded fiber-reinforced polymer (PFRP) columns. This paper presents the comparison of the 
existing six closed-form solutions based on the test database. Analysis of the experimental data from the 
database indicates that the Euler formula is the most unconservative of all equations (except for the 
equations recommedned by Strongwell Corporation) in predicting the global buckling loads of PFRP 
columns. The Engesser and Haringx shear correction formulae exhibit better performance than the Euler 
formula. The equation recommended by Fiberline Composites is observed to underestimate actual 
buckling capacity and is the only conservative prediction of those equations. The equations proposed by 
Strongwell Corporation appear to be incapable of reasonably predicting the global buckling loads of 
PFRP columns. The formula developed by Zhan et al. gives the most accurate predictions. 
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INTRODUCTION 
With speeding development of low carbon constructional industry, the use of pultruded fiber-reinforced 
polymer (PFRP) profiles and systems in civil engineering applications has been increasing apace in the 
past two decades (Bakis et al. 2002; Castro and De Keller 2010; Zhan et al. 2014). From a macro-
mechanical view, PFRP can be considered to be linear elastic, homogeneous and orthotropic material. 
PFRP columns with doubly symmetric cross sections have the axes of orthotropy coinciding with the 
principal axes of the cross sections (Bank 2006). Because of the thin-walled sectional geometry and 
relatively low stiffness-to-strength ratio, PFRP members are susceptible to buckling before material 
strength failure, which means that the full exploitation of the material’s potential may be prohibited. 
Therefore, rational consideration of the buckling phenomena and accurate prediction of buckling 
strength are essential for the reliable, efficient, and safe design of thin-walled PFRP structural elements.  
 
For PFRP columns of sufficient slenderness that fail by global buckling, Barbero’s group (Barbero 2000; 
Barbero and DeVivo 1999; Barbero and Raftoyiannis 1993; Barbero and Tomblin 1993; Barbero and 
Trovillion 1998), Hashem and Yuan (2001), and Seangatith and Sriboonlue (1999) have reported that 
the critical buckling load can be predicted using the classical Euler formula (Euler 1933). Currently, the 
classical Euler formula is adopted by the EUROCOMP Design Code Handbook (Clarke 1996), Bedford 
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Reinforced Plastics Inc. (2010) and Creative Pultrusions Inc. (2004). In general, PFRP members have a 
relatively high ratio of longitudinal elastic modulus (ELC) to in-plane shear modulus (GLT). Therefore, 
Lee and Hewson (1978) proposed that the critical buckling capacity of PFRP struts can be better 
estimated using the Engesser shear correction formula (Engesser 1889) considering the influence of GLT. 
Thereafter, Zureick’s group (Zureick and Scott 1997; Zureick 1998), Roberts (2002), Mottram et al. 
(2003), Bank’s group (Bank 2006; Vanevenhoven et al. 2010) and Boscato et al. (2014) all advocated 
using the Engesser shear correction formula to predict the buckling capacity of PFRP members, since it 
has more accurate predictions. On the other hand, Barbero and DeVivo (1999) claimed that the effect of 
shear deformation is usually small on weak axis buckling and can be neglected accordingly. 
Kardomateas and Dancila (1997) reported that the Haringx shear correction formula (Haringx 1948) 
may always underestimate the buckling capacity of PFRP sections. Fiberline Composites (2003) and 
Strongwell Corporation (2013) developed their empirical equations. Meanwhile, Zhan et al. (2018) 
recently proposed a new closed-form equation to determine the reduction factor for global buckling of 
PFRP columns under axial compression, which makes the original solution recommended by Eurocode 
3 (European standard 2005) easy to be used to predict the global buckling loads of doubly symmetric 
PFRP members. 
 
Although substantial studies have been performed addressing the global buckling behavior of PFRP 
columns under concentric compression, there is little consensus among researchers on the best 
calculation method for such applications. In addition, no study has been reported up to the present to 
evaluate the existing six solutions. In this paper, the performance of the existing six solutions is carefully 
analyzed, and the comparison of these solutions is performed based on the test database. 
 
COMPARISON OF EXISTING CLOSED-FORM SOLUTIONS 
A database of 120 experimental data collected from seven literatures (Cardoso et al. (2014), Hashem 
and Yuan (2001), Zureick and Scott (1997), Seangatith and Sriboonlue (1999), Mottram et al. (2003) 
Zureick and Scott (1997) and Seangatith and Sriboonlue (1999)) was created to evaluate the existing six 
closed-form solutions (Table 1).  
 

 
Figure 1. Comparison of the existing equations 

The performance of the existing five solutions is compared in Figure 1. Design equation recommended 
by Strongwell Corporation cannot be plotted due to their composition. It is clear that the classical Euler 
formula resulted in the greatest overestimation compared with the other solutions. The Engesser and 
Haringx shear correction formulae generally overlapped each other and predicted marginally lower 
capacity than the Euler formula. The reason is that PFRP profiles have a relatively higher ratio of 
longitudinal elastic modulus to in-plane shear modulus (ELC/GLT) than that of typical isotropic materials 
on which the Euler formula is based. The effect of transverse shear is therefore more pronounced in 
PFRP materials, rendering the Euler formula non-conservative. Meanwhile, the equation recommended 
by Fiberline Composites was the most conservative compared to the other  
equations. It appears that the solution proposed by Zhan et al. could give the most accurate predictions.  
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The performance of these solutions was also quantified by the average absolute error (AAE) and 
standard deviation (SD). Specifically, the AAE and SD values of the classical Euler formula were 
18.3% and 24%, respectively. The classical Euler formula overestimated the buckling capacity by 
16.9%. Because the shear deformation effect is considered in the Engesser and Haringx shear 
correction formulae, these solutions exhibited better predictive behavior, overestimating the capacity 
by only 8.6% and 9.5%, respectively. Empirical design equation recommended by Strongwell 
Corporation significantly overestimated the experimentally observed capacity (by 119.5%) and 
exhibited considerable scatter in terms of the veracity of predictions with AAE = 119.5%. Such great 
errors demonstrate that the predictions of the equations proposed by Strongwell Corporation are 
unreliable, and this generic equation cannot be used for the prediction of global buckling of PFRP 
profiles. The equation proposed by Fiberline Composites exhibited reasonably good predictions with 
underestimation by 12.7%. The solution developed by Zhan et al. exhibited better results with an AAE 
value of approximately 9%. This solution is suitable for structural design application due to its 
relatively simple and familiar form and satisfactory accuracy.  

Table1. The existing six closed-form solutions 
Name Equation 

Classical Euler formula  22 2 2
E LC min eff LC gP π E I KL π E A λ   

Engesser shear correction 
formula 

 1 1Esh E E LT gP P βP G A     

 22 2 2
E LC min eff LC gP π E I KL π E A λ   

Haringx shear correction 
formula 

 2 1 4 1 2Esh E LT g LT gP βP G A G A β           

 22 2 2
E LC min eff LC gP π E I KL π E A λ   

Equation Recommended 
by Strongwell 
Corporation 

 

 1 7
4 9

.

ES LC g effP . E A KL r (I- and W-sections) 

 0 55
56

.

ES LC g effP E A KL r (L-section) 

 1 3
1 3

.

ES LC g effP . E A KL r (round and square tubes)
 

Fiberline equation  1EF C C EP N N P   
C LC gN F A  

 22 2 2
E LC min eff LC gP π E I KL π E A λ   

Equation proposed by 
Zhan et al.    1 0 04 2Z E E LT g E CP P . βP G A P N       

 22 2 2
E LC min eff LC gP π E I KL π E A λ 

 
C LC gN F A

 
Note: Ag is gross cross section area; ELC is longitudinal compressive modulus; GLT is in-plane shear modulus; Imin 
is weak axis moment of inertia of section; K is end-restraint coefficient; Leff is effective coefficient; r is weak axis 
radius of gyration of section; β is cross section shape-dependent shear coefficient; λ is slender ratio(λ =KLeff/r). 
 
CONCLUSIONS 
In this paper, the performance of the existing six solutions is carefully analyzed, and the comparison of 
these solutions is performed based on the test database. Based on the results of this investigation, the 
following should be emphasized: 
1. The classical Euler formula is the most unconservative of all equations (except for the equations 
proposed by Strongwell Corporation) in predicting the global buckling loads of doubly symmetric PFRP 
columns. 
2. The Engesser and Haringx shear correction formulae, which are improved by the additional 
consideration of shear, exhibit better performance than the classical Euler formula. The effects of shear 
can be more significant in highly orthotropic PFRP that has relatively large values of ELC/GLT compared 
to isotropic materials assumed by the Euler formulation. 
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3. The equation recommended Fiberline Composites is observed to underestimate actual buckling 
capacity and is the only conservative prediction of those equations. The manufacturer recommended 
equation proposed by Strongwell Corporation appears to be incapable of reasonably predicting the 
global buckling loads of doubly symmetric PFRP columns. 
4. The closed-form solution proposed by Zhan et al. exhibits the best performance of all equations and 
is suitable for structural design application due to its relatively simple and familiar form and satisfactory 
accuracy. 
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