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p-ADICALLY CLOSED RINGS

NICOLAS GUZY, MARCUS TRESSL

This is an extended abstract of work in progress on a new class of rings called
p-adically closed rings. These generalise the notion of a p-adically closed field to
commutative rings and serve as rings of sections of what one might call abstract p-
adic functions associated to an arbitrary commutative ring. What we have in mind
is an approach to the topology of p-adic sets parallel to the real case where Niels
Schwartz in [Schw] has developed abstract semi-algebraic spaces and functions;
these are certain ringed spaces whose affine models have so-called real closed rings
as rings of sections. A direct parallel approach in the p-adic case seems difficult
and we still do not have a good algebraic description of p-adically closed rings. We
hope to be able to generalise Luc Bélair’s work [Be91, Be95], where local p-adically
closed rings are studied, to obtain such an explicit description.

Instead we take a different path, following the model theoretic approach to real
closed rings from [Tr07, section 2] (which also has to some extent a category the-
oretic counterpart, cf. [SchwMa, section 12]). Finally this note explains how one
should define abstract semi-algebraic functions in the p-adic case (see the conclu-
sion 7 below) and lays the algebraic grounds for the development of abstract p-adic
spaces. The final version of the paper will also treat the finite rank case, i.e. we
will study p-adically closed rings of finite p-rank.

The prototype of a p-adically closed ring is the ring of continuous definable
function Kn −→ K for a p-adically closed field K.

Here the formal definition, which we can give only implicitly in the moment.
Justification and purpose of the affair follow afterwards.

Definition 1. Let A be a commutative unital ring. A p-adic structure on A is
a collection F of functions fA : An → A for each continuous 0-definable (in the
language of rings) function f : Qn

p → Qp and each n ∈ N such that the following
hold true:

(i) The structure expands the ring structure of A, i.e.: If f : Q2
p −→ Qp

is addition or multiplication in Qp then fA : A2 −→ A is addition or
multiplication in A, respectively; if f : Qp −→ Qp is the identity or the
constant function 0 or the constant function 1 in Qp then fA : A −→ A is
the identity or the constant function 0 or the constant function 1 in A.

(ii) The following composition rule holds for functions from F :

[f ◦ (f1, . . . , fn)]A = fA ◦ (f1,A, . . . , fn,A),

where f ∈ F is of arity n and each fi ∈ F is of arbitrary arity.
A p-adically closed ring is a commutative unital ring A for which there exists a
p-adic structure on A. Observe that the Null ring is also p-adically closed.
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For example, the ring A of all continuous definable (with or without parameters)
functions Qd

p −→ Qp, where d ∈ N is fixed, is a p-adically closed ring. A p-adic
structure is given as follows: For each n ∈ N and every 0-definable continuous
function f : Qn

p −→ Qp, let fA : An −→ A be the composition with f . Trivially,
the collection F of all such maps fA is a p-adic structure on A.

Since every (continuous) 0-definable map Qn
p −→ Qp operates naturally on every

p-adically closed field K, also K is a p-adically closed ring. Indeed also the converse
is true, i.e. every p-adically closed ring which is a field is a p-adically closed field
(but this is not obvious).

We want to underline that the ring O^K of integral elements of a p-adically closed
field is not a p-adically closed ring, since all p-adically closed rings different from
the null ring contain the henselisation of Q in Qp (given by the 0-definable constant
functions). Nevertheless this arithmetic part of the theory can be incorporated
after some localization theory for p-adically closed rings is developed (this will not
be explained in this summary).

Our initial theorem on p-adically closed rings says that the implicit definition
above can be made explicit (although we still do not have a good explicit algebraic
definition yet).

Theorem 2. Let A be a p-adically closed ring. Then there is a unique p-adic
structure F on A and every function from F is 0-definable in the ring A (by an
∃-formula). Moreover the class of p-adically closed ring is first order axiomatizable
(in the language of rings) by ∀∃-sentences.

If A is a p-adically closed ring and f : Qn
p −→ Qp is continuous, 0-definable,

then by 2, we may denote by fA the function An −→ A given by the unique p-adic
structure on A. One should think of fA as the base change of f to A.

As an easy but important consequence of theorem 2 we obtain that the structures
on p-adically closed rings are respected by all ring homomorphisms and that p-
adically closed rings form a variety in the sense of universal algebra:

Theorem 3. Let ϕ : A −→ B be a ring homomorphism between p-adically closed
rings. Then ϕ respects the p-adic structures, i.e. for all continuous, 0-definable
f : Qn

p −→ Qp we have

ϕ(fA(a1, ..., an)) = fB(ϕ(a1), ..., ϕ(an)) (a1, ..., an ∈ A).

The category PCR of p-adically closed rings together with ring homomorphisms has
arbitrary limits and colimits (which in general are different from those in the cat-
egory of commutative rings, e.g. fibre sums of p-adically closed rings are not the
tensor products of rings).

The next theorem says that the most basic operations in commutative ring theory
stay inside p-adically closed rings:

Theorem 4. (Algebraic properties of p-adically closed rings)
Let A be a p-adically closed ring. Then

(i) A is a reduced ring.
(ii) For every radical ideal I of A (i.e. A/I is a reduced ring), the ring A/I is

p-adically closed.
(iii) For every multiplicatively closed subset S of A, the classical localisation

S−1 ·A is p-adically closed.
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(iv) For every prime ideal of A, the quotient field of A/p is a p-adically closed
field; in particular, a p-adically closed ring which is a field is a p-adically
closed field.

The most important feature of p-adically closed rings, or better the category PCR
of p-adically closed rings is the existence of a p-adic closure of every ring (where
‘ring’ always means commutative and unital):

Theorem 5. Let R be a ring. There is a p-adically closed ring ρ(R) and a ring
homomorphism ρR : R −→ ρ(R) such that for each other p-adically closed ring A
and each ring homomorphism ϕ : R −→ A there is a unique ring homomorphism
ψ : ρ(R) −→ A making the diagram

ρ(R)

ψ

!!B
B

B
B

B
B

R

ρR

OO

ϕ
// A

commutative. Of course, the pair (ρ(R), ρR) is uniquely determined up to isomor-
phism by this condition.

Thus, if ϕ : R −→ S is a ring homomorphism between arbitrary rings then there
is a unique ring homomorphism ρ(ϕ) : ρ(R) −→ ρ(S) making the diagram

ρ(R)
ρ(ϕ) //____ ρ(S)

R

ρR

OO

ϕ
// S

ρS

OO

commutative. Note that by Theorem 3 we have ρ(ρ(R)) = ρ(R) and ρρ(R) is the
identity. In terms of category theory, theorem 5 then says that ρ is a functor
ρ : CommRings −→ PCR which is an idempotent reflector and the adjoint morphism
of R is ρR : R −→ ρ(R).

Warning. p-adic closures of rings are constructed for pure rings here, not for rings
equipped with some valuation. For example if K is a field then the p-adic closure
of the ring K is a certain von Neumann regular ring where the residue fields are
the p-adic closures of (K, v) and v runs through the p-adic valuations of K (if there
is no p-adic valuation on K then the p-adic closure of K is the Null ring). There
is no conflict with the traditional notion of p-adic closures, since fields never had
p-adic closures, only p-valued fields have p-adic closures.

The `-adic spectrum `- SpecR of a ring R is the spectral space whose points
are pairs (p, (Pn)n∈N) with p ∈ Spec R (the Zariski spectrum of R) and for some
p-valuation v of the quotient field qf(A/p) of A at p, Pn is the set of all elements
of qf(A/p) which are n-th powers in the p-adic closure of (qf(A/p), v).

We skip the definition of the topology of `- SpecR and refer to [Ro86, Be90, BS]
instead. To see an example, if R = Qp[x1, ..., xn] then `- Spec R is bijective (but
not homeomorphic) to the n-types of the field Qp.

We can show that the passage from R to its p-adic closure ρ(R) transforms
`- SpecR into Spec ρ(R):
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Theorem 6. If A is a p-adically closed ring then the support map

supp : `-Spec A −→ Spec A

defined by supp(p, (Pn)n∈N) = p is an homeomorphism.
If R is an arbitrary ring then the natural map `-Spec ρ(R) −→ `-Spec R is an

homeomorphism as well. Hence we get a natural homeomorphism

Spec ρ(R) −→ `- Spec R.

Conclusion 7. Let R be a ring. By theorem 6 the space Spec ρ(R) is the correct
space for studying topological aspects of p-adic phenomenons of R. By theorem 4
and 3 the affine scheme Spec ρ(R) has p-adically closed stalks, p-adically closed
residue fields and all rings of sections of open sub-schemes are p-adically closed.
Hence the arithmetic associated to p-adic-topological aspects of R (and `- Spec R)
is entirely encoded in the scheme Spec ρ(R). In this sense ρ(R) is the correct ring
of ‘abstract p-adic functions’.
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[De84] Denef J., The rationality of the Poincaré series asssociated to the p-adic points on a variety,

Inventiones Mathematicae 77, 1-23 (1984).
[De86] Denef J., p-adic semi-algebraic sets and cell decomposition, Journal fur die Reine und.

Angewandte Mathematik, vol. 369 (1986), pp. 154–166.
[vdD84] van den Dries L., Algebraic theories with definable skolem functions, Journ. Symb. Logic

49 (1984), pp. 625–629.
[vdDSco88] van den Dries L., Scowcroft P.; On the structure of semialgebraic sets over p-adic

fields; J. Symbolic Logic 53 (1988), no. 4, 1138–1164
[GT07] Guzy N., Tressl M., (p, d)-adically closed spaces, in preparation.
[Ma76] Macintyre A., On definable subsets of p-adic fields, Journ. Symb. Logic 41 (1976), pp. 605–

610.
[PrRo] Prestel A., Roquette P., Formally p-adic fields, Lecture Notes in Mathematics 1084.
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