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Genetic diversity of honeybee colonies predicts gut
bacterial diversity of individual colony members
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Summary
The gut microbiota of social bees is relatively simple and dominated by a
set of core taxa found consistently in individuals around the world. Yet, vari-
ation remains and can affect host health. We characterized individual- and
regional-scale variation in honeybee (Apis mellifera) gut microbiota from
64 colonies in North-West England by sequencing the V4 region of the 16S
rRNA gene and asked whether microbiota were influenced by host geno-
type and landscape composition. We also characterized the genotypes of
individual bees and the land cover surrounding each colony. The literature-
defined core taxa dominated across the region despite the varied environ-
ments. However, there was variation in the relative abundance of core taxa,
and colony membership explained much of this variation. Individuals from
more genetically diverse colonies had more diverse microbiotas, but individ-
ual genetic diversity did not influence gut microbial diversity. There were
weak trends for colonies in more similar landscapes to have more similar
microbiota, and for bees from more urban landscapes to have less diverse
microbiota. To our knowledge, this is the first report for any species that the
gut bacterial communities of individuals are influenced by the genotypes of
others in the population.

INTRODUCTION

Microbial symbionts are ubiquitous in their association
with animals, and their influence on host species
ranges across a spectrum from deleterious to beneficial
(Ferrari & Vavre, 2011). An important class of symbi-
onts resides in the gut. Gut microbial communities
can affect host health (Clemente et al., 2012; Round &
Mazmanian, 2009), ecology, and evolution (Engel &

Moran, 2013; McFall-Ngai et al., 2013), for example, by
influencing host behaviour (Cryan & Dinan, 2012),
protecting against parasites (Koch & Schmid-
Hempel, 2011a), or providing insecticide resistance
(Kikuchi et al., 2012).

Social bees provide a good model system for study-
ing gut microbiota (Zheng et al., 2018). The bee gut
microbiota is relatively simple and is dominated by a
core of nine bacterial phylotypes that are found
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consistently across continents, genotypes, and land-
scapes (Moran, 2015; Moran et al., 2012). These phylo-
types include six Proteobacteria [Giliamella apicola,
Snodgrassella alvi; Kwong & Moran, 2013; Frischella
perrara; Engel, Kwong, & Moran, 2013; Bartonella
apis Kešnerov�a et al., 2016; Alpha 2.1 (Commensali-
bacter), and Alpha 2.2 (Parasaccharibacter apium);
Martinson et al., 2011; Corby-Harris et al., 2014;
Corby-Harris & Anderson, 2018], two Firmicutes
[Bombilactobacillus spp. (formerly Lactobacillus
Firm-4) and Lactobacillus Firm-5; Killer et al., 2014;
Olofsson et al., 2014; Zheng et al., 2020], and an
Actinobacterium (Bifidobacteria asteroides; Bottacini
et al., 2012).

Despite the consistent presence of these phylo-
types in the bee gut bacterial community, there is varia-
tion in the relative abundance of the core phylotypes
and in the core strains present (Engel et al., 2012;
Moran et al., 2012; Powell et al., 2016). Variation in
bacterial composition can lead to functional differences
(Engel et al., 2012) in traits such as pollen and saccha-
ride breakdown (Engel et al., 2012; Lee et al., 2015)
and resistance to disease (Koch & Schmid-
Hempel, 2012). Until now studies have focused on the
differences among regions and continents, but there is
little knowledge of how the bee microbiota composition
varies within regions that comprise multiple apiaries
across a landscape. At this scale, the set of apiaries
can be considered a population or metapopulation, with
the potential for genetic material to be transferred
among them. Understanding variation in the microbiota
at the regional level is important because this variation

can influence how host populations respond to change
and their resilience to parasites and pesticides
(Hehemann et al., 2012; Koch & Schmid-Hempel, 2012;
Zilber-Rosenberg & Rosenberg, 2008). Furthermore, if
individual colonies have distinct microbiotas, then this
may drive differences among colonies in fitness and
health, and thus could be important for understanding
and managing bee declines or optimizing honey pro-
duction (Ribière et al., 2019).

Studying multiple colonies across a region can help
us to understand the variables that influence the honey-
bee microbiota, for example, the effect of different land
use types on the honeybee gut microbial community
(Engel et al., 2016). Land use can be a proxy for floral
composition (Kleijn & Van Langevelde, 2006) and
potentially for other environmental factors such as
exposure to pollutants (Botías et al., 2017). Land-use
change is also thought to be a major factor in bee
decline (Potts et al., 2010), and land-use per se has
been shown to influence gut microbiota composition in
other systems (Teyssier et al., 2018). Exploratory work
has found a link between land use and the bee bread
microbiome (Donkersley et al., 2018), but there is little
knowledge of how land use affects the bee gut micro-
biota. Host genotype has also been shown to shape
host microbiotas in some systems (Griffiths et al., 2019;
McKnite et al., 2012; Zoetendal et al., 2001). This may
be particularly important for honeybee colonies
because the majority of workers in a colony are related
to the queen, although as honeybee queens are pro-
miscuous, workers are not always full siblings (Estoup
et al., 1994). Furthermore, haplodiploidy in honeybees

F I GURE 1 Map of the study area in North West England with location shown as a grey box on the inset map of the United Kingdom.
Colonies are shown as black dots and urban areas as hatched grey. The UK layer was downloaded from map.igismap.com and the urban layer
(showing built areas in December 2011) from geoportal1-ons.opendata.arcgis.com.
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means full sibling workers share 75% of their genes on
average.

In this study, we sampled gut bacterial communities of
multiple individuals from 64 honeybee colonies across
North-West England, UK, providing high landscape cov-
erage (Figure 1). We used Illumina V2 MiSeq sequencing
to the V4 region of the 16SrRNA gene to characterize
each individual’s gut bacterial community. There were
four main aims of the study: (i) to describe the gut bacte-
rial community composition of honeybees in North-West
England; (ii) to investigate how variation in the bacterial
community is partitioned among colonies; and (iii) to
determine whether landscape diversity and composition
or (iv) the genetic diversity of colonies or individuals influ-
ences the honeybee gut bacterial community.

EXPERIMENTAL PROCEDURES

Sample collection

We sampled individual honeybees from 64 colonies
across North West England (Figure 1) in May and June
2016. The colonies were spread across both rural and
urban environments, including three major urban centres,
and were mostly owned by amateur beekeepers who
volunteered to participate in the study. We sampled one
colony per apiary, and five randomly selected nurse bees
per colony. Nurse bees are adult workers that have yet to
leave the nest, and that perform roles such as feeding
the brood and guarding the nest (Winston, 1987). We
sampled the nurse stage because these bees take food
from multiple foragers and distribute it to the larvae.
Hence, they are exposed to a wide variety of food
sources, and their microbiota may better reflect that of
the colony as a whole (Kapheim et al., 2015). We identi-
fied nurse bees by shaking a brood frame into a bucket
and collecting only those bees that did not fly away. After
collection, bees were euthanized in 100% ethanol and
frozen at �20�C until further use (Koch & Schmid-
Hempel, 2011b; Powell et al., 2014).

We were unable to standardize the age of the nurse
bees that we sampled. The behavioural role of worker
bees has been shown to influence gut microbiota com-
position (Jones, Fruciano, Marchant, et al., 2018), but it
is unclear whether or how the microbiota varies with
age within a specific role. Variability in age could poten-
tially increase variability and diversity of the microbiota
within a colony, but it is unlikely to explain the patterns
we report in the results.

Dissection and DNA extraction

Bees were washed in 1% (v/v) sodium hypochlorite
solution for 5 min, followed by three washes in auto-
claved MilliQ water, to remove any external bacteria

that could contaminate the sample. To further reduce
contamination, we carried out dissection, DNA extrac-
tion, and other molecular procedures in a PCR hood
(UVP, CA) in which all equipment and surfaces had
been UV-sterilized for 30 min. The midgut and hindgut
were dissected using sterile instruments, with one gut
tract used per sample. We carried out negative extrac-
tions each day to monitor any contamination, which
equated to two or three colonies per negative extrac-
tion. All negative extraction samples were processed
as normal, but instead of adding honeybee guts, steril-
ized forceps were scraped against the inside of the
Eppendorf.

We placed dissected guts in sterile 2-ml Eppendorfs
with 180 μl SDS lysis buffer (200 mM NaCl, 200 mM
Tris, 20 mM EDTA, 6% SDS; Moran et al., 2012). To
homogenize the guts, we added a 5-mm stainless steel
bead (Qiagen, UK) and 500 μl of 0.1 mm acid-washed
glass beads (Sigma-Aldrich, UK) to the sample, then
shook the sample twice for 2.5 min at 30 Hz on a Mixer
Mill, inverting samples between shakings (Retsch,
Germany; Engel, James, et al., 2013). After bead-beat-
ing, we added of 30 μl of 10 mg/ml lysozyme (Sigma-
Aldrich) and incubated the samples at 37�C for 1 h to
digest Gram-positive cell walls (Teng et al., 2018). We
extracted DNA using the Qiagen DNeasy Blood and
Tissue Kit following the protocol for Gram-positive bac-
teria from step 4 of the DNeasy handbook (Qiagen
DNeasy Blood and Tissue Handbook, 2006). The only
modification to this protocol was to incubate the sam-
ples in proteinase K and buffer AL for 1 h at 56�C after
the lysozyme step. The DNA was eluted in 200 μl of
buffer AE and stored at �20�C until further use.

Gut bacterial community sequencing

We sequenced the gut bacterial communities using a
modification of the dual-index sequencing protocol
described by Kozich et al. (2013) and Antwis et al.
(2018). Briefly, the hypervariable V4 region of the 16S
rRNA gene was amplified using the universal primers
515F (TATGGTAATTGTGTGCCAGCMGCCGCGGT
AA) and 806R (AGTCAGTCAGCCGGACTACHVGGG
TWTCTAAT), modified with Illumina adaptors and
index sequences. The V4 region was amplified in tripli-
cate for each sample in a single PCR step using the fol-
lowing conditions: 95�C for 15 min; 25 cycles of 95�C
for 20 s, 55�C for 60 s, 72�C for 60 s; and then 72�C for
10 min. The triplicate PCRs were pooled, and the
amplicons were cleaned using Agencourt Ampure
beads (Beckman Coulter Genomics, Indianapolis, IN,
USA) and quantified and quality checked using a
Tapestation (Agilent Technologies Inc., CA, USA).
DNA concentrations were determined using Qubit
(Thermo Fisher Scientific, USA). We removed 29 sam-
ples because they had insufficient concentrations of

GUT BACTERIAL DIVERSITY IN HONEYBEES 3



DNA, leaving two to five samples (i.e. bees) per colony.
Equimolar amounts of each remaining sample were
pooled and sequenced together, along with 10% PhiX
v3 (Illumina, San Diego, CA, USA) as an in-run control.
Sequencing was conducted using Illumina v2 chemistry
(2 � 250 bp paired-end sequencing) on the MiSeq plat-
form (Illumina) at the University of Salford.

Bioinformatics

We processed the sequence data using the Dada2
v1.6.0 pipeline (Callahan et al., 2016) in R 3.6.1 (R Core
Team, 2017). We used default parameters for all func-
tions, except we trimmed the forward reads at 240 bp,
the reverse reads at 230 bp and we removed sequences
when the maximum expected error (maxEE) was greater
than two. We also removed 36 amplicon sequence vari-
ants (ASVs) for having lengths greater than 236 bp. Tax-
onomic assignment of the remaining sequences was
performed using the RDP Naïve Bayesian Classifier
method described by Wang et al. (2007), with training
sets constructed from the Silva v128 database (Quast
et al., 2012). We removed ASVs that were not taxonomi-
cally assigned to the kingdom ‘Bacteria’ or that were
classified to the class ‘Chloroplast’ or the family ‘Mito-
chondria’. At this point, all remaining ASVs were
assigned down to at least the phylum level. We removed
ASVs that were only present in one sample, as these
are more likely to be erroneous (Goodrich et al., 2014).
The 52 negative controls contained very low levels of
contamination, with the total reads in each negative con-
trol ranging from 7 to 118. Across the negative controls,
there were 18 ASVs that were also found in the true
samples. We removed ASVs if the mean number of
reads across all true samples was not at least 10�
higher than in the negative controls. This led to the
removal of seven ASVs, all of which were known con-
taminants from previous studies (Salter et al., 2014).
The other 11 ASVs in the negative controls were all
members of the previously identified core phylotypes
and were the most abundant ASVs found in this study.
After all filtering, 136 of the original 1279 ASVs remained
in our analyses. We generated rarefaction curves for
each sample using the command ‘rarecurve’ in the
package vegan (Oksanen et al., 2018; Supplementary
Figure S1). We applied maximum likelihood analysis to
construct a phylogenetic tree of the filtered ASVs using
the phangorn package v2.3.1 (Schliep, 2011) with a
GTR + G + I nucleotide substitution model.

Landscape analysis

We determined the landscape composition surrounding
each colony (except one for which the GPS location
was not recorded) using data from the Land Cover Map

2015 (25 m raster, GB; Rowland et al., 2017). The Land
Cover Map classifies the land cover of each 25 m2 pixel
into one of 21 land cover classes. We used QGIS ver-
sion 2.18.14 (QGIS Development Team, 2017) to over-
lay the Land Cover Map raster layer onto the locations
of colonies and to define buffer zones around each col-
ony at 500 m, 1.5 km, 5 km and 10 km radii. Buffer
zone sizes were chosen based on the frequency at
which honeybees forage at different distances from the
colony (Steffan-Dewenter & Kuhn, 2003; Visscher &
Seeley, 1982; Waddington et al., 1994). We used the
LecoS plugin (Jung, 2016) for QGIS to determine the
proportion of each buffer zone that belonged to each of
the 21 land cover classes. The landscape diversity of
each buffer zone around each colony was determined
by estimating the Hill number (q = 1) from the raw land-
use proportion data using the package hillR (Li, 2018).
The suitability of Hill numbers to estimate landscape
diversity is supported by the fact that the related Shan-
non index is widely used to characterize landscape
diversity (Nagendra, 2002; Ramezani, 2012).

Genotyping

We determined individual bee genotypes at five micro-
satellite loci according to the protocol described by
Evans et al. (2013) using the primers detailed in Supple-
mentary Table S7. These microsatellite loci have been
used in other honeybee population genetic studies
(Muñoz et al., 2009, 2012). We ran the microsatellites as
two separate multiplexes, with primers A113, AP043,
and AP055 in multiplex 1 and primers A007 and B124 in
multiplex 2, using the Qiagen Type-It master mix kit
(Qiagen, Valencia, CA) in a final reaction volume of
10 μl. PCR amplification involved denaturation at 94�C
for 5 min, followed by 30 cycles of 95�C for 30 s, 57�C
for 30 s, and 72�C for 30 s, with a final elongation step
at 72�C for 30 min. The size of the microsatellites was
determined by capillary electrophoresis on an ABI 3730
DNA Analyser (Applied Biosystems, CA, USA) at the
University of Manchester Sequencing Facility, using the
GeneScan™ LIZ500 (Thermo Fisher Scientific, USA)
size standard. The output peaks were scored using
Genemapper v5.0 software (Applied Biosystems) and
sorted into allele bins using the MsatAllele package
v1.05 (Alberto, 2009) in R (R Core Team, 2017). A sub-
set of samples were repeated to ensure consistency of
allele calling. The function hw.test in the package pegas
(Paradis, 2010) was used to test whether the alleles
were in Hardy–Weinberg equilibrium.

Statistical analyses

We measured α-diversity using Hill numbers with q
values of 0, 1 and 2, which differ in how they weight
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rare ASVs (Hill, 1973). When q = 0 the Hill number
reports absolute species richness, and when q > 0 the
Hill number increases as the combination of richness
and evenness of the community increases. For individ-
ual bees, we calculated Hill numbers from the raw read
counts using rarefaction/extrapolation curves to
account for differences in sequencing depth among
samples (Chao et al., 2014). For colonies, we esti-
mated Hill numbers from the mean proportional abun-
dance of ASVs across all samples from the colony.

We calculated β-diversity from the ASV abundance
data. Due to unequal sequencing depth across sam-
ples, we used cumulative sum scaling (CSS; Paulson
et al., 2013) to produce a normalized matrix of ASV
abundances. We generated CSS-normalized ASV
abundance matrices for both individual bees and colo-
nies. Abundance at the colony level was calculated by
summing the normalized abundance values for each
ASV across all samples from a colony and then dividing
by the number of samples from that colony. We used
weighted UniFrac distances to produce pairwise dissim-
ilarity matrices from the CSS-normalized abundance
data at the individual and colony levels by applying the
‘distance’ function in phyloseq 1.21.0 (McMurdie &
Holmes, 2013). The dissimilarity matrices were visual-
ized with non-metric multidimensional scaling (nMDS)
performed by the ‘ordinate’ function in phyloseq.

We partitioned variation in the gut bacterial
community within and among colonies using permuta-
tional multivariate analysis of variance (PERMANOVA;
Anderson, 2001) with 9999 permutations applied to our
weighted UniFrac dissimilarity matrices and implemented
in the ‘adonis’ function of the package vegan (Oksanen
et al., 2018). We used a K-nearest neighbour (KNN)
graph-based analysis of the CSS-normalized individual-
level data, implemented with the functions ‘phyloseq-
GraphTest’ and ‘igraph’ (Cs�ardi & Nepusz, 2006), to ask
whether the individuals with the most similar microbiotas
were likely to be nestmates or from different colonies.
We performed the KNN analysis for K = 3, because indi-
viduals from most colonies had at least three nestmates
that were sampled.

We used Mantel and partial Mantel tests (9999 per-
mutations; Mantel, 1967) to investigate the relationship
of individual and colony bacterial composition with the
geographic proximity of the colonies, the landscape
composition around the colonies, and the individual
and colony genotype. The bacterial community compo-
sition distance matrices were created at the individual
level for testing the relationship with individual geno-
type and at the colony level for testing the relationship
with proximity of the colonies, landscape composition
and colony genotype. The geographic distance matrix
was created by converting the longitude and latitude
coordinates of each colony into Universal Transverse
Mercator coordinates using the R package rgdal
(Bivand et al., 2020). Distance matrices for land use

composition were generated for each of the four buffer
zones using Bray–Curtis dissimilarities calculated with
the function ‘vegdist’ in the package vegan (Oksanen
et al., 2018) and we performed partial Mantel tests
for each buffer zone separately. Genetic dissimilarity
matrices were generated from the individual and
colony-level multi-locus allele data, using Roger’s
genetic distances (Rogers, 1972) in the package ade-
genet (Jombart, 2008). To account for potential spatial
autocorrelation in the colony-level analyses, we
included the geographic distance matrix.

To understand the factors that predict the diversity
of the gut microbiome at the colony level, we regressed
the colony-level Hill numbers on (i) the mean proportion
of alleles shared between individuals in the colony,
(ii) the mean heterozygosity of the colony, (iii) the land-
scape diversity in the 5 km buffer zone around the col-
ony, (iv) the proportion of urban land surrounding the
colony, and the (v) northing and (vi) easting of each col-
ony. We included the number of bees sampled from the
colony as a categorical predictor in the model. This
controls for the fact that we expect to find more ASVs in
colonies from which more bees were sampled but
makes no assumptions about the rate at which ASVs
accumulate as the number of samples increases. We
weighted the variance of each colony-level data point in
proportion to the square root of the number of samples
(i.e. individual bees) from which that data point was cal-
culated. Initially, we fitted linear regressions using the
package nlme (Pinheiro et al., 2020) which allowed us
to include spatially autocorrelated error in the model.
However, we found no evidence for spatial autocorrela-
tion, and therefore we removed spatial autocorrelation
from the model and fitted linear regressions using the
function lm in base R. For each Hill number (i.e. q � {0,
1, 2}), we fitted models that included each possible
combination of the predictors in the full model. We
weighted each model according to its Akaike weight
and calculated the effect size of each predictor as the
weighted average across all models in which that pre-
dictor appeared (Burnham & Anderson, 2002). To
obtain p values for each predictor, we computed the
confidence distribution around the effect size of the pre-
dictor in each model in which it appeared, weighted
these according to the Akaike weights of the models,
and summed across all models. The p value associ-
ated with the predictor is two times the minimum of the
proportion of the confidence distribution that is greater
than zero or is less than zero (Gilman et al., 2018).

To understand the factors that predict the diversity
of the gut microbiome of individuals within colonies, we
regressed the individual-level Hill numbers on the het-
erozygosity of the individual and on all six colony-level
predictors. We included a random effect of colony in
the model, and fitted models by maximum likelihood
using the package lme4 (Bates et al., 2015). For each
Hill number (i.e. q � {0, 1, 2}), we calculated the effect
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size and p values associated with each predictor as
described for the colony-level analysis.

RESULTS

A total of 6,900,477 reads passed the quality filter
thresholds, from an initial output of 9,487,873 reads
from the MiSeq run. The number of reads per sample
ranged from 7758 to 44,343 (mean 23,551), with a total
of 136 ASVs detected across the study. The rarefaction
curves for each sample reached a plateau
(Supplementary Figure S1). Thus, the sequencing
depth was sufficient to characterize the bacterial com-
munities of the samples.

Gut bacterial community composition

In line with previous studies, 98.9% of reads were
members of the literature-defined core taxa, and only
six samples had bacterial community compositions that
consisted of less than 90% core phylotypes. All core
phylotypes except Parasaccharibacter apium were
found in this study.

Each core taxon present in this study was repre-
sented by multiple ASVs, but the majority of ASVs were
rare (Supplementary Table S1). The 20 most abundant
ASVs comprised 94.5% of all reads in the study. These
included representatives from each of the nine core phy-
lotypes except P. apium and also included the non-core
species Lactobacillus kunkeei. Thus, the pattern of dom-
inance by the core phylotypes is driven by just a one or
two ASVs from each taxon. The most abundant core
phylotypes in this region were Lactobacillus Firm 5 and

Gilliamella apicola, which together constituted 48.6% of
the regional honeybee gut bacterial community
(Supplementary Table S1). Outside of the core, the
majority of ASVs belong to the family Enterobacteriacae.

All of the core phylotypes found in this study were
present in each of the colonies (Supplementary
Table S2). In contrast, only 67% of individuals pos-
sessed all of the core phylotypes, and 7.8% of individ-
uals were missing two or more phylotypes. However,
only the Commensalibacter phylotype was detected in
less than 90% of individuals.

Partitioning gut bacterial community
variation

Colony membership had a significant effect on honey-
bee gut bacterial community composition, explaining
41% of the variation among samples (PERMANOVA:
R2 = 0.414, df = 63, 229, p = 0.0001; Figure 2). There
were marginally significant differences in sample vari-
ance within colonies (betadisper: F = 1.38, p = 0.051),
but PERMANOVA is robust to differences in variance
when designs are well balanced (Anderson &
Walsh, 2013). Due to the differences among colonies in
sample size, we randomly selected three individuals
from each colony to ensure there was an equal number
of observations per colony and performed the PERMA-
NOVA on this subset of the data, using 9999 permuta-
tions as before. We repeated the analysis 50 times,
with each analysis producing the same p value. A k-
nearest neighbour (KNN) analysis confirmed that the
gut bacterial communities of bees from the same col-
ony were more similar than expected by chance
(p = 0.001). However, only 5.7% of edges were
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N
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F I GURE 2 Non-metric multidimensional scaling (nMDS) ordination plot showing the variation among individual honeybee gut bacterial
communities, and among the mean colony bacterial communities, across North West England. Large circles are the centroid bacterial
community for each colony, which are connected by lines to each individual (smaller circles) from that colony.
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between samples from the same colonies. Thus, while
there is structure by colony, high variation within colo-
nies means that bees from the same colony did not
have distinguishable colony-specific microbiota.

Landscape effects

We found no evidence that colonies that were closer
together geographically possessed more similar gut
microbial communities (Mantel test: r = 0.020,
p = 0.336). There were marginally significant effects of
landscape composition on the pooled gut bacterial
community composition of the colonies at the 5-km
scale (Partial Mantel test: r = 0.095, p = 0.057), and
10-km (Partial Mantel test: r = 0.073, p = 0.087)
scales. There was no significant effect of landscape
composition on colony pooled gut microbial composi-
tion at the 500-m (Partial Mantel test: r = 0.041,
p = 0.234) or the 1.5-km scales (Partial Mantel test:
r = 0.072, p = 0.109).

Genetic effects

There were 81 alleles across the five microsatellite loci
we studied, with the number of alleles per locus ranging
from nine to 22 (Supplementary Table S3). Only 0.14%
of the data were null alleles. Of 293 individual bees,
only 14 did not have unique genotypes. Thus, the five
loci we studied were enough to discriminate among
most individuals. The alleles AP043 (p = 0.106) and
A007 (p = 0.772) were in Hardy–Weinberg equilibrium,
while the alleles A113 (p = 0.036), AP055 (p < 0.001)
and B124 (p < 0.001) were not. The genetic distances
among individuals are shown in Supplementary
Figure S2, and the allelic richness and heterozygosity
data for each colony are reported in Supplementary
Table S4. Individuals and colonies with more similar
genotypes did not have more similar bacterial commu-
nities (individuals, Mantel test: r = �0.042, p = 0.928;
colonies, Mantel test: r = �0.137, p = 0.979).

Alpha diversity

We found a marginally significant relationship between
the species richness of colony pooled gut bacterial
communities and the proportion of urban land surround-
ing the colony (p = 0.062; Supplementary Table S5).
The least urban colonies had approximately 3.7 more
species in their pooled gut microbiota than the most
urban colonies. We found a marginally significant rela-
tionship (p = 0.095) between the proportion of alleles
shared between pairs of colony-mates and the biodiver-
sity of the gut microbiome at the colony level for q = 1
(i.e transformed Shannon diversity) and a non-
significant trend in the same direction (p = 0.101) for

q = 2 (i.e. transformed Simpson diversity). In both
cases, colonies with lower proportions of shared alleles
(i.e. higher genetic diversity) had more diverse gut bac-
terial communities. At the individual level, bees from
colonies with fewer alleles shared between pairs of
workers (i.e. higher genetic diversity) had greater gut
bacterial biodiversity when q = 1 (p = 0.040) and when
q = 2 (p = 0.040) (Figure 3, Supplementary Table S6).

DISCUSSION

We report a detailed investigation of honeybee gut bac-
terial communities across a geographic region. A few
core bacterial phylotypes dominated the communities,
and each phylotype was in turn dominated by one or
two ASVs. There was structuring of the microbiota by
colony, but an individual’s colony membership could
not be predicted from its microbiota composition. We
found weak evidence that more urban colonies had
less diverse gut bacterial communities, and that colo-
nies from more similar environments had more similar
gut bacterial communities. We found stronger evidence
that individual bees had greater gut bacterial diversity
when their colonies had greater genetic diversity. This
last result means that, in honeybees, the genotypes of
individuals predict the bacterial communities of other
individuals in the population. To our knowledge, this is
the first time this has been shown for any species.

Gut bacterial community composition

We provide further evidence that the honeybee gut bac-
terial community is dominated by a core set of phylo-
types that have been found consistently across

F I GURE 3 Relationship between proportion of alleles shared
among individuals in a colony and Shannon diversity (Hill number
q = 1) of those individuals’ gut bacterial communities. Lower shared
alleles indicate higher genetic diversity at the colony level. Therefore,
in colonies that are more genetically diverse, individuals had more
diverse gut bacteria. The regression line (slope = �0.47, p = 0.040)
is the line of best fit to the data, weighted across all fitted models.
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landscapes and continents (Moran, 2015; Moran
et al., 2012). The only absentee from the literature-
defined core was Parasaccharibacter apium. The
absence of P. apium is not surprising as it is generally
not found in worker guts, and instead can be found in
worker hypopharyngeal glands, the guts of mature
queens, larvae and the colony environment (Corby-
Harris et al., 2016). A lack of P. apium in our data sug-
gests our methods successfully limited contamination
from bacteria in the colony environment and the
worker crop.

The literature-defined core phylotypes comprised a
similar proportion of the honeybee gut bacterial com-
munity in this study and in previous studies
(Moran, 2015). Furthermore, Lactobacillus Firm 5 and
Gilliamella apicola were the most abundant phylotypes
in the honeybee gut here, and both have been found to
dominate in other studies (Martinson et al., 2012;
Moran et al., 2012). Therefore, our results suggest that
the bacterial communities of honeybee guts in North
West England are similar to those seen in other places.

Within each core phylotype, there were multiple
ASVs, but most of the reads within each belonged to
just one or two ASVs. Previous studies have found mul-
tiple strains of a phylotype within a single individual,
with one strain often dominating (Moran et al., 2012).
The amplicon length used in this study precludes the
discrimination of different strains, but the study extends
the conclusion that the same ASVs dominate not just
within individuals, but across the region, among differ-
ent host genotypes, and in bees exposed to different
land use types.

Landscape effects

In the 5 km and 10 km buffer zones, there was a trend
for landscapes with more similar land use composition
to harbour colonies with more similar gut bacterial com-
munities. These results are consistent with a small
body of work that links honeybee microbiota to land
use. Jones, Fruciano, Hildebrand, et al. (2018) found
small differences among the gut microbiota of colonies
placed near oil seed rape fields and those placed fur-
ther away. Donkersley et al. (2018) found that land-use
surrounding colonies predicts the species richness of
the bee bread microbiota. In contrast, in three bumble-
bee species, Cariveau et al. (2014) found no difference
in the microbiota of individuals collected at an active or
at an abandoned cranberry farm.

We found a weak trend linking the diversity of the
honeybee gut bacterial community to urbanization. In
more urban environments, gut bacterial communities
had lower species richness. Among synanthropic bird
species, similar patterns have been reported in house
sparrows (Passer domesticus; Teyssier et al., 2018) in
Belgium and herring gulls (Larus argentatus; Fuirst

et al., 2018) in New York, but the opposite pattern was
reported in white-crowned sparrows (Zonotrichia leu-
cophrys; Phillips et al., 2018) in California. Bosmans
et al. (2018) reported higher gut bacterial diversity in
bumblebee (Bombus terrestris) queens from two for-
ested sites than from three urban sites in Belgium, but
with only five sites sampled it was impossible to attri-
bute differences with confidence to urbanization.

Genetic effects

We found individual bees from more genetically diverse
colonies had more diverse gut bacterial communities.
In a study in which colony genetic diversity was experi-
mentally manipulated, Mattila et al. (2012) found that
colonies with more genetic diversity had more diverse
bacterial communities. Our results advance those of
Mattila and colleagues in two important ways. First, the
genetic diversity in our study was not manipulated, so
our results show that naturally occurring differences in
genetic diversity are sufficient to predict the diversity of
gut bacterial communities. Second, the differences in
bacterial diversity uncovered by Matilla and colleagues
appeared at the level of the colony. Such differences
could occur in two non-exclusive ways. First, that bees
with different genotypes could host different bacterial
communities. Individual bees in genetically diverse col-
onies might not host more diverse communities them-
selves, but if each bee hosts a different set of bacteria,
then the pooled community at the colony level would be
more diverse. Second, in more genetically diverse colo-
nies, individual bees host more diverse bacterial com-
munities. In our study, the latter explanation was true.
This shows that the genotype of each individual in the
colony predicts the microbiome of other individuals.

Our results do not show that the genetic diversity at
the colony level causes diversity in the individual gut
bacterial community. For example, it might be true that
colonies in areas with a higher densities of colonies
have more potential for outbreeding and also have
more potential to exchange microbiota. If this is true,
then the relationship between genetic diversity and gut
bacterial community diversity might be driven entirely
by the environment. We believe the results of Matilla
et al. (2018) make this explanation unlikely, but addi-
tional work will be needed to demonstrate this
conclusively.

CONCLUSION

This study provides a comprehensive analysis of spa-
tial variation in honeybee gut bacterial community at
the regional scale, and new evidence for the effects of
land use and host genetic diversity on the gut micro-
biota. Given the large number of hypotheses we
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studied, we should expect at least some false positive
results, and future work should seek to replicate the
patterns we report. Our results provide the foundation
for this and other work and advance our general under-
standing of the honeybee microbiota.
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