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In the presence of transition magnetic moments between active and sterile neutrinos, the search
for a Primakoff upscattering process at coherent elastic neutrino-nucleus scattering (CEvNS)
experiments can provide stringent constraints on the neutrino magnetic moment. We show that a
radiative upscattering process with an emitted photon in the final state can induce a novel
coincidence signal at CEVNS experiments that can also probe neutrino transition magnetic moments
beyond existing limits. Furthermore, the differential distributions for such a radiative mode can also
potentially be sensitive to the Dirac vs Majorana nature of the sterile state mediating the process.
This can provide valuable insights into the nature and mass generation mechanism of the light active

neutrinos.
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I. INTRODUCTION

Coherent elastic neutrino-nucleus scattering (CEvNS)
[1] was first observed in 2017 by the COHERENT
Collaboration with a statistical significance of 6.7¢ [2].
Future CEvNS experiments with extremely low nuclear
recoil thresholds now aim to detect neutrino-nucleus
scattering events with O(eV) momentum transfers [3,4].
These next-generation experiments will not only test the
Standard Model (SM) CEvNS rate more precisely but
also constrain physics beyond the SM. One such new
physics (NP) scenario is the so-called Primakoff upscat-
tering of light active neutrinos to heavy sterile neutrinos
via a transition magnetic moment. This dipole portal
could be a promising way to probe both the existence of
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sterile neutrinos and possible NP generating the dipole
coupling.

The focus of the present work is a closely-related process
that can also produce distinct signatures at CEvNS experi-
ments. This is the upscattering of an incoming active
neutrino to a sterile neutrino, which subsequently decays
to an active neutrino and photon, see Fig. 1. Searches for
such a radiative upscattering process have been suggested
for the DUNE [5], IceCube [6], and Super-Kamiokande [7]
experiments. This process can be used to probe transition
magnetic moments in CEvNS experiments as well as to
distinguish sterile neutrinos of Dirac or Majorana nature,
indicating the corresponding nature of the active neutrinos
[8-16].

FIG. 1. Radiative upscattering process v,A = v3Ay (U, A — N'Ay)
via the dipole couplings ug,, and //:N (upy) and an intermediate
Dirac or Majorana sterile neutrino N.
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II. NEUTRINO TRANSITION MAGNETIC
MOMENTS

A transition magnetic moment between the three active
neutrinos and a sterile neutrino (or gauge-singlet fermion)
can be described by the effective Lagrangian,

L£> %D@%PRNFW + 'MN%N’GWPRNFW T He.,

(1)

where FM = g!AY — 0“A* is the electromagnetic field
strength tensor, v,; is an active neutrino field of flavor
a = {e,u,7}, N is the sterile neutrino field, and u?,, are the
active-sterile dipole couplings. Here, we introduce N’ as an
additional light (m, < my) sterile state with a sterile-
sterile transition magnetic moment to N (with a transition
dipole coupling pyy). The Lagrangian in Eq. (1) is only
valid at energies below the electroweak (EW) scale because
it is not invariant under the SM gauge symmetry. Above the
EW scale, it must be matched onto operators at dimension-
six and above containing the SU(2), and U(1), gauge
fields, SM Higgs doublet H, and lepton doublet L,.
Coherent scattering processes take place at energies well
below the EW scale and hence Eq. (1) remains applicable.

The active and sterile neutrinos in Eq. (1) can either
be Dirac or Majorana fermions. For example, the
active neutrinos v,; can either be the left-handed Weyl
components of Dirac (v, =v, +v.,) or Majorana
(Vg = Vg +15,;) fields, where in the former case it is
necessary to introduce additional (sterile) Weyl fields v .
Similarly, the sterile neutrino N (and N’) can either be
composed of independent left- and right-handed Weyl
fields (N = N; + Ng), or a single right-handed field
(N = N% + Ng). In principle, there are four possible
combinations of Dirac and Majorana active and sterile
neutrinos. However, it can be shown that for energy scales
much greater than the active neutrino masses, E, > m,, the
rates for processes involving Dirac and Majorana active
neutrinos are approximately equal, in accordance with the
Dirac-Majorana confusion theorem [17,18]. In this work,
we will consider sterile neutrinos with masses similar to the
energy scale of the process, Ey ~ my. Consequently, the
difference between the rates for Dirac or Majorana sterile
neutrinos can be significant.

The active-sterile dipole couplings ;% in Eq. (1) give rise
to the Primakoff upscattering process v,A — NA; see, e.g.,
Refs. [13,19,20]. For relativistic v, it can be shown that the
differential cross section in the nuclear recoil energy Er for
this process is the same for outgoing Dirac and Majorana N.
The nonobservation of deviations from the SM CEvNS
nuclear recoil rate at experiments can therefore be used to
constrain the dipole couplings pZ,, as a function of the sterile
neutrino mass my. Constraints on the dipole couplings pZ,
have been set by a variety of experiments (c.f. Fig. 3) and are
generally flavor dependent [5].

The active-sterile dipole couplings pZ, can also induce
the radiative upscattering process v,A — vzAy, depicted in

Fig. 1. The rate of the process is proportional to |/41’jN,u'fN|2
and is therefore suppressed with respect to the Primakoff
upscattering. However, the outgoing photon serves as an
additional signal to the nuclear recoil and provides kin-
ematical information that can be used to discriminate
between Dirac and Majorana N. We would like to remark
that because the outgoing neutrino is not detected, the
actual process is v,A — XAy, where X may be an active
neutrino v or a sterile state N'. The rate is then generically
proportional to |u% >y xn|?, where the sum is over all
active and sterile neutrinos that are coupled to N via a
transition magnetic moment.

In this work we will examine as a case study the
upcoming NUCLEUS experiment located at the Chooz
reactor facility [3,4]. The planned experimental arrange-
ment and future upgrade make it feasible to detect the
energies and angles of outgoing photons [21]. The (non)
detection of photons at NUCLEUS can thus constrain the
dipole couplings x%, and (if photons are detected) provide
important information towards identifying the nature and
mass generation mechanism of the active neutrinos.

III. ENERGY DISTRIBUTIONS
AS A NOVEL PROBE FOR
DIRAC VS MAJORANA NEUTRINOS

We give the detailed calculation of the differential cross
section for v,A — XAy in Appendix B. Here, we outline
the main results and the salient features relevant to our
study. The amplitudes for the v,A — XAy process are given
in the scenarios where the sterile neutrino N is Dirac or
Majorana, respectively, by

l'MBlAquy = Unkxn|ixCPr(Py + my)o,,Pru, |FF*7°,
(2)

iMzI:A,,AeXAy = udpixn ity 6, (Py + my)o,.Pru, |F*7,
(3)

where FFP?  given in Appendix B, contains the denom-
inator of the sterile neutrino propagator, the hadronic
current of the nucleus A, the propagator of the exchanged
photon, and the four-momentum and polarization of the
outgoing photon. We have taken the dipole couplings to be
imaginary, (uyy)* = —pyy, and thus CP conserving if X
and N have opposite CP phases [22]. In the Dirac case, N is
created by the Hermitian conjugate of the first term and
annihilated by the second term in Eq. (1). In the Majorana
case, both the second term in Eq. (1) and its Hermitian
conjugate annihilate N; it is then possible to make the
replacement Pr — (Pr + P;) = 1 at the decay vertex. The
Pr and P; project out the momentum p and mass my
terms from the N propagator, respectively. The three-body

035036-2



PROBING ACTIVE-STERILE NEUTRINO TRANSITION ...

PHYS. REV. D 106, 035036 (2022)

phase space of the final state XAy is described by four
variables; we choose the nuclear recoil energy E, photon
energy E,, nuclear recoil angle 0k, and photon angle 0,
(both angles defined with respect to the incoming neutrino
direction).

For a CEvNS experiment to detect an outgoing photon,
and therefore the process v,A — XAy, a radiative sterile
neutrino decay N — Xy must take place within the detector.
The probability for this to occur is given by the N — Xy
branching ratio By_y, = y_x,/T'y multiplied by the
probability for a decay to take place within the detector,

Pt =1 — exp(— %) where Ly, is the detector length,

I'y is the total decay width of N, and the boost factors are
givenby fy = \/y*> — Ll and y = Ey/my. It is also possible
that N decays via invisible channels (for example, to a light
dark sector), which contribute to the total width as
Iy =Ty_x, + W, giving

Ty Lol
Tolee(55)] @

as the probability of observing a radiative decay inside the
detector. For example, for my ~ 1 MeV, the upper limit on
the active-sterile mixing squared from beta decays is
|V v|*> <1072, implying a rate of ['y_3, = %|V(3N|2 <
10727 MeV for the invisible decay of N to three light
neutrinos. The Primakoff upscattering process is observed,
through the nucleon recoil, if there is an invisible decay, or
a radiative decay occurs outside the detector.

Assuming I'y = [y_x, + '™ to be small and therefore
the total N decay length to be much longer than the detector
length, £y = pyzy = Py/T'ny > Ly, the exponential in the
decay probability P can be Taylor expanded to give
By—x, P%' = Tn_x,Laet/ (By), which is independent of the
total decay width. For a detector length of Ly, = 5 cm, the
rate of v,A — XAy events is independent of an invisible N
decay width up to TV ~ 10~!! MeV. Above this value,
P ~ 1 and the probability that v,A — XAy occurs within
the detector is suppressed by the small branching ratio.

We therefore consider three benchmark scenarios in this
work. The first is to assume that N — vy is the only N
decay channel. The branching ratio is By_x, = 1 and the
decay probability, P3' = T'y_x,Lae/(fr) < 1. The sec-
ond is to introduce an invisible N decay width of size
'Y = By/Lge > Ty_x,. The branching ratio is now sup-
pressed, By_x, ® Iy_x,Laer/ (fy) < 1, while the decay
probability is large, P$'~0.63. However, the product
By XYP}{?‘ is roughly the same as in the previous scenario.
The third case is to include an additional light sterile state
N’ (my < my) and a nonzero sterile-sterile dipole cou-
pling uyry, but no invisible modes. Interestingly, the rate
for N > N'y satisfies Ty_yr, 2 7/ Lae for pyy 2 1074 g

det __
BN—»XyPN -

and Ly = 5 cm, while the upper limit on the sterile-sterile
transition dipole coupling from invisible vector meson
decays (¢ — invisible) is pyy <5 x 107 [23].
However, stronger bounds of order pyy < 107%u5 can
be derived from LEP [13]. For uyy ~ 10™%up, the decay

probability is much larger than for ,u,/j v ~ 10784, increasing
the expected rate for the radiative signal. We want to
emphasize that in this scenario the radiative upscattering
V,A - XAy can compete with Primakoff upscattering
v,A — NA in constraining the active-sterile dipole coupling.

Regardless of the benchmark choice above, when the
sterile neutrino total decay width Iy is much smaller than
the sterile neutrino mass my, it is possible to use the narrow
width approximation (NWA). In this limit, the v, A — XAy
differential cross section in Ep can be decomposed in the
NWA as the v,A — NA cross section multiplied by the
N — Xy branching ratio,

D(M) M)

d”yaA—»XAy :dgyaAeNA N—Xy (5)
dER  |nwa dEg Iy

where X = {v4, N',...}. The differential cross section in
Ey therefore has the same shape as for v,A — NA but is
suppressed by an additional factor of |uyy|*. To yield
a differential rate, Eq. (5) must be multiplied by the

. . . d o
incoming neutrino flux % and decay probability P4t

and integrated over the incoming neutrino energy. The
decay rate for Majorana N is twice that for Dirac N, i.e.,

ﬂ’l3 2 . .
MNox, =20N_x, = N‘f]f”‘ . This is because both decay

channels N — Xy and N — Xy are open for Majorana N,
while only the first is open for Dirac N. It follows that the
differential cross section in Eq. (5) multiplied by the decay
probability is also twice as large for Majorana N compared
to Dirac N for fy/I'y > Ly However, this difference
cannot be used to distinguish the Dirac vs Majorana nature
of N, as an overall factor of two can absorbed into the
measured value of pyy.

The v,A — XAy differential cross sections in the photon
energy E, and angle 6, can also be computed in the NWA,
but cannot be factorized as in Eq. (5). The double differ-
ential cross section in these two variables can be written as

& D(M)

Oy, A—>XAy
dE,do,

. |ﬂZNﬂXN|ZaZZE7 sin Qy

NWA 128n’2mAEymN1—‘N

< / 0 L " HF (1)
1 s
I t% A2 A4 s :m%,

where L,yj,P(M)H’” is the contraction of leptonic and

hadronic currents for the process and A, is the 4 x4
symmetric Gram determinant formed from any four of the
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FIG. 2. Double differential cross sections for the process v,A — v,Ay in the outgoing photon energy E, and angle 6, for an incoming
neutrino of energy E, = 3 MeV scattering from a "*Ge nucleus and an intermediate sterile neutrino of mass my = 1 MeV. We choose
the values %, =3 x 1078 pup and Iy = 107! MeV. The cases for Dirac and Majorana N are shown to the left and right, respectively.

five incoming or outgoing four-momenta, both defined in
Appendix B. Here, the variable t; = ¢> = —2m4Ey cor-
responds to the four-momentum squared of the exchanged
photon, s; = p% to the four-momentum squared of the
sterile neutrino, and F(#;) is the nuclear form factor. The
limits of integration #{ are found by solving A, = 0 for ¢;.
In general, the integral cannot be performed analytically
due to the presence of F(¢,).

In Fig. 2, we plot the double differential cross section of
the v,A — v,Ay process (for a ’Ge target) as a function of
the outgoing photon energy E, and angle 6, in the Dirac
(left) and Majorana (right) cases, setting F(z;) =1 for
simplicity and choosing the benchmark values E, =
3 MeV (approximately the peak of the reactor neutrino
flux at Chooz) and my =1 MeV (so that N can be
produced on shell). In the plots, we choose the values
Hoy =3 x 1078 pp and T ~ Ty = 10~!! MeV. The dif-
ference between the Dirac and Majorana scenarios is
striking; while both cases predict a considerable number
of events at small photon energies, irrespective of the
photon emission angle, there are more forward emissions of
high-energy photons in the Majorana case.

The single differential distributions in E, and 6, are also
different in the Dirac and Majorana scenarios. In the Dirac
case the differential cross section in E, decreases linearly
from the minimum to maximum photon energies £, and
E;, respectively, while in the Majorana case the distribu-
tion is flat, i.e.,

doz]/)aA—»XAy _ ZUuD[,A—»(Ay(Ey+ —E,))
dE, (Ej - E;)2

O(E, - E,)O(E; — E,),

(7)

dUII:AaAaXAy UxA_»(Ay _ .
iE, = E -E O(E, - E;)O(E —E,). (8)

— 26D =B /1-"%
where o)1y ya, =20, syoxay By 27 <1 =/ 1-F)

and O(x) is the Heaviside step function. Furthermore,
the angular distribution in the lab frame peaks at slightly
lower angles in the Majorana case compared to the
Dirac case.

The lab-frame distributions are in exact agreement with the
angular distributions in the rest frame of N, which can be
derived purely from arguments of rotational and charge,
parity and time reversal (CPT) invariance. Due to the
conservation of angular momentum, Dirac N (N) can only
decay to left-polarized (right-polarized) photons y_ (y. ) with
an angular distribution in cos 8, proportional to (1 4- cos 9,)
in the rest frame [10,24-29]. Majorana N can decay equally
to both left- and right-polarized photons with angular
distributions in cos 9, proportional to (14-cosd,) and
(1 —cosd,), respectively; the total distribution is thus
isotropic. The distinctive Dirac and Majorana energy dis-
tributions in Egs. (7) and (8), respectively, can be readily
derived by boosting these rest-frame angular distributions to
the lab frame. The photon circular polarization provides an
additional handle on the nature of the sterile neutrino and the
CP properties of the transition dipole coupling (see, e.g.,
Ref. [27]); a detailed analysis of the complementarity of a
polarization study is beyond the scope of this work and will
be addressed elsewhere [30].

IV. SENSITIVITY TO ACTIVE-STERILE
NEUTRINO MAGNETIC MOMENTS

In order to study the feasibility of our proposal, we will
now examine the NUCLEUS experiment, which aims to
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detect CEvNS (,A — v,A) with nuclear recoil energies as
low as Ex ~ 10 eV. Situated at the very-near-site (VNS) of
the Chooz reactor site, the detector will receive an electron
antineutrino flux of ¢; ~10'2 7,cm™2s!. In the near
future, phase I of the experiment will use a 10 g
Al,0;/CaWO, detector of size Ly ~5 cm, while in the
far future, phase II will upgrade to a 1 kg "*Ge detector of
size Lge ~ 25 cm [21]. Interestingly, the detector will be
sensitive to nuclear recoils and potentially to outgoing
photons in the 1 keV to 10 MeV energy range. These can be
detected at the cryogenic outer veto with an ionization
resolution of 50-100 keV for O(MeV) photons [21]. A
coincidence study between the nuclear recoil and an
outgoing photon signal which can potentially lead to
excellent background rejection. In this work, we therefore
neglect any secondary backgrounds to the radiative mode
as a first approximation.

For the Chooz reactor antineutrino flux, the maximum
number of events are expected for sterile neutrino masses
my ~ 1-5 MeV. We find that the Dirac and Majorana cases
show different differential rates in the photon energy, as
expected from the differential cross sections shown in
Fig. 2. The Majorana case presents a more symmetric
distribution in the outgoing photon energy, while the
Dirac case differential rate is shifted towards lower out-
going photon energies. For a specific sterile neutrino
mass my, the cross section for the radiative upscattering
process v,A — U,Ay grows with increasing incoming
neutrino energy, with a resonant energy around my.
Consequently, a different sterile neutrino mass can be
probed for each neutrino energy in the Chooz spectrum.
Average nuclear recoil and photon energies are increased
for larger masses m. The total number of events falls off at
low energies due to a smaller cross section, and at high
energies due to the decreased flux. Since the number of
events peaks at E, ~ my, the decay width can be consid-
ered to be roughly constant. In this work, we only consider
reactor antineutrinos as a proof-of-concept, though in
principle a similar study could be performed for solar,
atmospheric, or beam-dump neutrinos.

In order to identify the reach of the NUCLEUS experi-
ment within the dipole portal parameter space, we consider
both the Primakoff and radiative upscattering processes
at the NUCLEUS detector. For the former process, the
experiment will observe N, nuclear recoils over its run
time 7. If the expected number of recoil events is given by
Nexp=Npig+N,a+Nyya, we can construct the chi-squared,
2% = (Nobs — Nexp)?/Nexp- The nuclear recoil background
has been estimated by the NUCLEUS Collaboration to be
Npkg = 100 keV~' kg™ day™" [4]. The number of recoil
events induced by SM CEuvNS, N,,, and Primakoff
upscattering, Ny,, are found by integrating the cross
sections of these processes over the incoming energies
of the Chooz v, flux, from the minimum to maximum
nuclear recoil energies, and multiplying by the detector

mass and run time. We now assume that the experiment
does not see an excess of recoil events over the SM CEvNS
signal and background, i.e., Noy, = Ny + Ny, giving
x> = N34/Nexp. For simplicity, we do not include a
nuisance parameter in > to account for the presence of
systematic errors. To set bounds at 90% C.L., we find the
allowed values of u¢y satisfying y* < 2.71.

For the radiative upscattering process, the NUCLEUS
experiment should in principle be able to detect N’
coincidence events of a nuclear recoil accompanied by
an outgoing photon. We assume a negligible SM back-
ground and therefore take the expected number of coinci-
dence events, Ny, = N vAy» 10 be Poisson distributed. Here,
N4, is found by again integrating the radiative differential
cross section in Eq. (5) over the Chooz v, flux, from the
minimum to maximum nuclear recoil energies, and multi-
plying by the detector mass and operation time. To take
into account the probability of the decay occurring
within the detector, we must also multiply by the factor

Pt = 1 —exp(— &) Assuming that NUCLEUS does
not observe any coincidence events, N’ =0, we set
bounds at 90% C.L. by finding the allowed values of
uéy satisfying Nt < 2.30.

In Fig. 3, we summarize the current and future
constraints on the electron-flavor active-sterile dipole
coupling ufy as a function of the sterile neutrino mass
my. We show current bounds from terrestrial experiments
[5-7,13,15,31-34] and astrophysical processes [6,13,15] as
solid lines (with excluded areas filled) and the expected
sensitivities of future experiments as dashed lines. Using
the chi-squared treatment above, we show as thin dashed
red and black lines the near- and far-future sensitivities of
the NUCLEUS experiment to the Primakoff upscattering.
More precisely, these are the sensitivities of the current
NUCLEUS detector (10 g of Al,03/CaWOy, L4; = 5 cm)
and future upgrade (1 kg of 7*Ge, Ly = 25 cm), assuming
a run time of 2 years. We also show in cyan the current
constraints derived in this work from Primakoff upscatter-
ing at the COHERENT experiment, noting a good agree-
ment with Ref. [35].

The other red and black lines in Fig. 3 are derived
assuming the nonobservation of a nuclear recoil and photon
coincidence event in NUCLEUS. The solid lines depict
the first benchmark scenario considered in Sec. III in
which N can only decay via the active-sterile dipole
coupling u¢,. While the radiative upscattering is suppressed
by an additional factor of |u¢y|*> with respect to the
Primakoff upscattering, the negligible coincidence back-
ground results in similar sensitivities to the XENON1T and
COHERENT experiments. The dotted red and blue lines
instead depict the second benchmark scenario where N has
additional invisible decay modes with TV = By/(5 cm) ~
1071 MeV ('™ = By/(25 cm) ~ 10712 MeV) for the
near-future (far-future) NUCLEUS phase. It can be seen
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FIG. 3. Constraints and sensitivities on the electron-flavor transition dipole coupling ¢, as a function of the sterile neutrino mass my
from terrestrial experiments and astrophysical processes (solid lines, with excluded areas filled), as well as projected exclusion limits
from future experiments (dashed lines). In black and red lines are the near-future (10 g Al,O03/CaWQy, L4, = 5 cm) and far-future
(1 kg Ge, L4y = 25 cm) projected sensitivities of the NUCLEUS experiment for Majorana N, respectively, using the coincidence of a
nuclear recoil and an outgoing photon. The solid lines assume that N can only decay via N — v,y, with p{y # 0. The dotted lines take N
to have additional invisible decay modes. The dot-dashed lines assume the presence of the additional decay channel N — N'y, with
my < my and gy = 107%up. The thin dashed lines also show the bounds the NUCLEUS experiment can make from the observation
of just nuclear recoils. For the NUCLEUS limits we assume a run time of 2 years. Projections are at 90% C.L. unless shown otherwise.
The dotted purple line corresponding to N — vy decay [31] is only valid for the muon-flavor coupling %, and is included for

comparison.

that increasing Il to this value does not appreciably impact
the sensitivity; larger values of IV, however, result in
weaker bounds. Finally, the dot-dashed lines show the reach
of NUCLEUS in the third benchmark scenario in which N
decays predominantly to a lighter sterile state N’ via the
sterile-sterile transition dipole coupling uyy = 107%ug. As
discussed previously, the sterile-sterile dipole coupling iy
is not subject to the same constraints as the active-sterile
couplings ug, (for example, those on ufy in Fig. 3).
Consequently, the rate for the radiative upscattering process
can be increased with respect to the Primakoff upscattering,
leading to an improvement in sensitivity. For my 2 1 MeV,
the near- and far-future sensitivities now constrain smaller
values of ;) compared to the bounds from Primakoff
upscattering.

V. CONCLUSIONS

For the radiative upscattering mode, a signal would
consist of the coincidence of a nuclear recoil and an
outgoing photon, separated by the decay length £y of
the sterile state. In this work, we have proposed a novel
approach in which the final-state photons are searched for
in a separate detector to the CEvNS target, and in particular

we have studied the detection prospects of the reactor-
based NUCLEUS experiment. As seen in Fig. 3, the current
limits on the transition dipole coupling u;, derived from
Primakoff upscattering at the COHERENT experiment are
stringent, almost coinciding with sensitivity of the
NUCLEUS experiment 1 kg upgrade in the radiative
upscattering mode.

Using Primakoff upscattering, the 10 g NUCLEUS
experiment will improve the sensitivity (red thin dashed),
extending the limits to the region excluded by astrophysical
observations for sterile neutrino masses my < 10 MeV. If
the 10 g NUCLEUS experiment is indeed able to detect the
Primakoff upscattering, it will provide an exciting moti-
vation to search for the radiative upscattering mode in the
1 kg NUCLEUS upgrade. Even though the radiative mode
is doubly suppressed by the dipole coupling as |u¢y|*, its
unique (potentially background-free) signature suggests
that a future detection is not outside the realm of possibility.
Such an observation would act as a smoking gun for our
specific scenario and allow to differentiate it from other
mechanisms.

The reach of the radiative upscattering mode can also be
improved, as the intermediate sterile neutrino can decay
via other transition magnetic moments, specifically with the
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v, and v, active neutrinos or other lighter sterile neutrinos
N'. The radiative mode is thus generally proportional to
luén Sy ixn|?, with the sum over all lighter neutrinos in
the final state. This scenario is indicated in Fig. 3 by the
dot-dashed curves for the 10 g (red) and 1 kg (black)
NUCLEUS phases using a sterile-sterile transition dipole
coupling pyy = 107, For my = 1 MeV, the limits are
as stringent as those from Primakoff upscattering and
remain competitive for pyy = 1077 .

Finally, an advantage of reactor-based CEvNS experi-
ments is that they employ known fluxes of antineutrinos. If
the radiative upscattering mode is observed, this opens up
the possibility of discerning the Dirac or Majorana nature
of the intermediate sterile neutrino solely with the energy
and angular distribution of the photon, as demonstrated
in Fig. 2. This would have further implications on the
neutrino mass generation mechanism, as well as theories of
leptogenesis explaining the asymmetry between matter
and antimatter in the Universe. Specifically, if the sterile
neutrino is found to be Majorana, the active neutrinos will
also be of Majorana nature due to a mass term induced by
the transition magnetic moment. We refer the interested
reader to Appendix A, which provides a brief review of
theoretical models in which transition magnetic moments
are generated.
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APPENDIX A: TRANSITION DIPOLE MOMENTS
AND IMPLICATIONS FOR NEUTRINO MASSES

In this appendix we comment on the possible implica-
tions of the discovery of an active to sterile transition dipole
moment for active neutrino masses. If an experiment like

~

174 N N 1%

FIG. 4. Loop contribution to a Majorana active neutrino mass
from the transition magnetic dipole moment y,, and a Majorana
sterile neutrino N.

NUCLEUS detects the differential distribution of the out-
going photon in the radiative upscattering process to be
consistent with a heavy Majorana sterile state then that
would necessarily imply that the light active neutrinos are
Majorana. As can be easily noticed from Fig. 4, in the
presence of an active to sterile transition dipole moment
and a nonzero Majorana mass for the sterile state the active
neutrinos will receive a Majorana mass contribution at the
radiative level. While this radiative contribution may not
necessarily account for the dominant contribution towards
the active neutrino mass (making it dominantly Majorana),
it necessarily implies a Majorana nature for the active
neutrinos and hence, violation of lepton number. On the
other hand, no conclusive remarks can be made about the
nature of the active neutrino masses if the differential
distribution of the radiative upscattering process turns out
to be consistent with a Dirac sterile state, leaving both Dirac
and Majorana possibilities open for the active neutrinos.
Furthermore, a detection of radiative upscattering process
mediated by a heavy Dirac or Majorana sterile state can
also give interesting hints towards the mechanism of
generating active neutrino mass.

In many popular models of active neutrino mass gen-
eration the existence of an active to sterile transition dipole
moment can be closely tied with a contribution to active
neutrino masses. Therefore, the smallness of active neu-
trino masses can potentially disfavor many neutrino mass
models or render them to be unnatural if the radiative
upscattering process is observed. In fact, a large active to
sterile transition dipole moment leading to an observable
radiative upscattering rate together with smallness of active
neutrino masses will hint towards a neutrino mass model
with enhanced symmetry, e.g., a horizontal symmetry
reinforcing the Voloshin mechanism [8] or an inverse
seesaw mechanism [36-38]. Below we provide a brief
overview of the relevant constraints and implications for
Dirac and Majorana neutrino mass models.

1. Dirac neutrinos

If the sterile state Ny is a Weyl field with a coupling to
the SM neutrino v; via the dipole interaction in Eq. (1),
then the active-sterile transition magnetic moments y,; can
give rise to mass terms of the form £ D m,yo; Ng + H.c..
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This becomes more apparent when looked at from an
effective field theory point of view as discussed in
Ref. [11]. An effective Lagrangian can be constructed as

(d)
C; (1)
ﬁeff = Z /J\d_4 O; )(M) +H.c.,

d.j

(A1)

where the d > 4 denotes the operator dimension, j runs
over all independent operators of a given dimension, y is
the renormalization scale, and A corresponds to the new
physics scale where new heavy degrees of freedom are
integrated out.

In a SM gauge group invariant theory an effective
transition magnetic dipole moment can be generated by
gauge-invariant, dimension-six (d = 6) operators with
couplings to the SU(2), and U(1), gauge fields W and
B,. Above the EW symmetry breaking scale, due to
renormalization group (RG) running these operators will
mix with other d = 6 operators that contain the SM lepton
doublet L = (v;,e; )", Ng, and the SM Higgs field H.
One such operator actually leads to generation of a
Dirac neutrino mass term m,, after the EW symmetry
breaking, as can be seen by considering the basis of
independent operators at d = 6 that are closed under
renormalization [11]

O\ = gL Ho, NgB",
O = g, Le*Ho,, Np W,

O = LHNy(H'H), (A2)
where B,, =d,B,—0,B, and Wj, =d,W;—09,Wj -
Gr€apc WhWE are the U(1)y and SU(2), field strength
tensors, respectively, g; and g, are the corresponding gauge
couplings, and H = ic,H*. Starting from the Wilson
coefficients C§6) (u=A) at the scale y=A, the RG
running leads to mixings between (9(2 and Og@ such that
Cg@ (4 = v) receives a contribution from C 56% (u=A)[11].
After the EW symmetry breaking the combination
C(16>(’)(16) + Cgé) (’)g’) leads to the magnetic moment

HuN — _16\/§<m62v

= )i + P (a3)

where y = v corresponds to the EW symmetry breaking
scale. On the other hand Ogﬁ) leads to the Dirac mass term

»3

2V2A2°

yielding a relation between ém, and p,y given by

sm,y = —CY(v)

(A4)

2 C<6)
Smyy = v = 3 (11)<6> /’tuN’ (AS)
16m, Cy’(v)+Cy7(v) HB
which leads to the constraint
1)
bl 15 <—m”N> : (A6)
//IB 1 eV

for A =1 TeV. This implies that for a realistic active
neutrino Dirac mass m, <1 eV, |u,y| < 1075 p;.

However, we note that this constraint is strictly appli-
cable when Ny, is a Weyl field forming a Dirac pair with vy .
The above constraint does not hold true in a number of
general circumstances. One example is the scenario in
which N is a Dirac fermion containing two Wey] fields (i.e.,
N = Ng + N;) and has a Dirac mass my > m3®, which
can a priori be completely decoupled from the generation
of the active neutrino masses. This is the Dirac scenario we
consider in this work, and therefore the constraint in
Eq. (A6) can be safely neglected. Another example is
the scenario in which the tree-level Dirac mass term mSy! is
of the same order but of opposite sign compared to the
om,y generated by p,n. While some might consider this
cancellation to be unnatural, it is by no means improbable.
A third example is a Dirac seesaw scenario where N is a
Dirac fermion (possibly vector-like) and with a Dirac mass
my > m% and the active neutrino v; forms a Dirac pair
with a new SM gauge-singlet Wey] field vy, which can have
a Dirac mass term of the form m,, ~N vk (which can arise
naturally from the vacuum expectation value of a SM
gauge-singlet scalar state). In such a situation the active
neutrino can receive a purely Dirac mass contribution of
the form m, ~ m,ym, n/my [12,14].

2. Majorana neutrinos

In the case of the type I seesaw scenario, the presence of
a transition magnetic dipole moment via a loop diagram
with heavy NP in the loop also leads to a contribution to
Dirac mass term of the from £ D m,yU; N, through the
same diagram but with the external photon line removed.
This leads to a naive relation between p, and the NP loop-
induced om,y,

HuN meémuN

~
~

KB A?

. (A7)

However, one can always tune the tree-level Yukawa
coupling Ly D y,L; HNg + H.c. such that the resulting
tree-level contribution to the Dirac mass, y,v/v/2, nearly
cancels the loop-induced contribution. In this way, one can
lower the right-handed neutrino masses my to as low as
MeV scales while keeping the active neutrino masses
at m, <1 eV.
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Exceptions to the relation in Eq. (A7) can naturally occur
when additional symmetries are present. An example is
the so-called Voloshin mechanism, where an approximate
global SU(2), symmetry is introduced such that (v§, Ng)
transforms as a doublet under the SU(2), [8]. While this
symmetry allows for a SU(2), singlet transition magnetic
moment term of the form Ngo*'v; — ¢ 6" N, it naturally
forbids the SU(2),, triplet contribution to the neutrino mass
term Ny, + U5 N%. Instances of recent models employing
the Voloshin mechanism in the context of neutrino mag-
netic dipole moments can be found in Refs. [15,16].

In the presence of a sizeable mass mixing between active
and sterile states (as can be the case in a typical type I
seesaw) an active-sterile transition magnetic dipole moment
can also be induced through loop diagrams involving
charged leptons [9,10]. Such an active-sterile mass mixing
induced contribution to the transition magnetic dipole
moment is given by [13]

|y 3myym, Gp myy
v _ 12 e ~ 10—13 2 . A8
Up 162> /2 1 MeV (A8)

On the other hand, in the presence of a transition
magnetic moment between v; and N, a loop contribution
to the light active neutrino masses is induced through
Fig. 4, which is directly proportional to the Majorana mass

of N,
pon 2 a myA?
mDN PV 2
ug ) 16z m3

(A9)

where A is the cutoff scale for the UV completion of the
model. For my ~1MeV, A~1TeV and m, <1 eV,

Eq. (A9) leads to "L—;" < 1078, While a larger Majorana

mass of N would lead to relaxation of the tight constraint
from Eq. (A8), it would make the constraint from Eq. (A9)
more stringent. However, one can easily circumvent these
constraints by considering a scenario with a quasi-Dirac N,
such as in the case of the inverse seesaw mechanism
[36-38], where an approximate lepton number conserva-
tion (due to a very small Majorana mass splitting of a
predominantly Dirac N pair) makes the active neutrinos
very light, while the N being pseudo-Dirac can be
significantly heavier.

APPENDIX B: CALCULATION OF THE
RADIATIVE UPSCATTERING PROCESS

In this appendix we derive the differential cross section
for the radiative upscattering process v,A — XAy,
X = {vs.N',...}. For completeness, we also derive the
differential cross section for the Primakoff upscattering
process v,A — NA.

Firstly, we note that the active and sterile neutrinos v,
and N (N') may either be Dirac or Majorana fermions.

Rates for the Primakoff and radiative upscattering proc-
esses can be therefore computed for the four possible
combinations of Dirac or Majorana v, and N (N’). We will
see that in the limit of massless neutrinos in the initial and
final states, i.e., m, - 0 and my — 0, the rates for
processes with Dirac or Majorana v, (and N’) are identical,
in accordance with the practical Dirac-Majorana confu-
sion theorem [17,18]. However, for massive my, there is
indeed a distinction between the rates for the v,A — XAy
process when N is a Dirac or Majorana fermion.

In both the Dirac and Majorana cases, the transition
magnetic moment between the light active neutrinos v, (or
a sterile neutrino N’) and the sterile neutrino N is described
by the effective Lagrangian

Lo /%)_(GWPRNF"” + @N%PLXFW, (B1)
where X = {v,,N', ...} and puxy = {4%. nn,---}. In

the case where both N and X are Majorana, the second term
can be rewritten to give

£ 5 R0 Pr— (o Pr) € INPY =5 X, NP,

(B2)
where we have defined (uyy)* = —uyy and used
the charge-conjugation properties CPTC~! =P, and
Col,C™' = —0,,. If X is Majorana and N is Dirac (or vice

versa) it is not possible to make such a simplification; it is
nonetheless convenient to write in the first scenario
(Majorana X, Dirac N),

H vV — c v

L£L> %X[%PRN - C(6,,PL)"CT'N|F™,  (B3)
while in the latter case (Dirac X, Majorana N),
H Y Ve — v

LD % [Xo,,Pr —X°C(c,,P,)"C'INF™.  (B4)

In the following we will use these interaction terms to
investigate the Primakoff and radiative upscattering proc-
esses for Dirac and Majorana v,, N, and N'.

We finally note that if X and N are both Dirac, the
following effective Lagrangian terms can also be written

Cxn 5 Sxn)" &
L£> %X%PLNFW + ("27NN%PRXFW. (B5)
However, as we are considering purely left-handed (right-
handed) incoming neutrinos (antineutrinos), these terms do
not contribute to the Primakoff or radiative upscattering
processes.
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FIG. 5.

Diagrams for the Primakoff upscattering v,A — NA
(left) and radiative scattering v,A — XAy (right), X= {y/;,N o
with momentum and Mandelstam variable assignments defined in
the main text.

1. Primakoff upscattering

The active-sterile transition magnetic moment x, indu-
ces the Primakoff upscattering process shown to the left in
Fig. 5. An incoming Dirac or Majorana active neutrino v,,
exchanges a photon with a target nucleus A and scatters to
an outgoing Dirac or Majorana sterile neutrino N. As
shown in the diagram, the ingoing nucleus and neutrino and
outgoing nucleus and sterile neutrino have four-momenta
ki, k,, p;, and py, respectively. The four-momentum
exchanged by the photon is thus ¢ = k; — p; = py — k».

We first consider the scenario where N is a Dirac
fermion, i.e., N = Ny + Nk. An incoming neutrino v,,
created by the SM charged current ji;, = 0, y#¢,;, may be
a Dirac or Majorana fermion. If v, is Dirac, the neutrino is
annihilated by the second term in Eq. (B1). This results in
the following matrix element for v, A — NA,

'MD — (2 Yk[5 P o° (_ig/)/l) A B6
iM, sna = (n) NGy PLg up,,]—qz J4. (B6)

where J f is the hadronic current of the nucleus. In
the following we wuse the hadronic current 7 j‘ =
—ieZ(iiyy,us) F(q*), where F(g?) is a nuclear form factor,
which describes the electromagnetic interaction of a spin-j
nucleus. If v, is Majorana, the neutrino created by the SM
charged current jjj, = D, y*¢4 can instead be annihilated
by the first or second term in Eq. (B3). The second term
corresponds to the propagation of a negative helicity
neutrino and is again described by the matrix element in
Eq. (B6). The first term on the other hand corresponds to
the propagation of a positive helicity neutrino; because the
neutrino is ultrarelativistic, this process is helicity sup-
pressed by the small ratio m,/E,. If v, is Dirac, the SM
charged current j’(,; = £, 7"V, instead creates an antineu-
trino 7, which is annihilated by the first term in Eq. (B1).
The matrix element is

iMP (=ig”)

— 2 [7 o A
7,A>NA =ty [0,,0,0PRG"VN] P I3

(B7)

If v, is Majorana, the neutrino created by the charged

current j*"; = £,.7"V,, can again be annihilated by the first
or second term in Eq. (B3). The first term induces the
process v,A — NA with the matrix element in Eq. (B7).
The second term induces the process v,A — NA but is
helicity suppressed by m,/E,.

We next consider the scenario where N is a Majorana
fermion, i.e., N = N} + Ng. If the incoming neutrino v,
produced by the charged current ji, = D, y#¢,; is Dirac, it
can only be annihilated by the second term in Eq. (B4).
This induces the process v,A — NA with the matrix
element identical to Eq. (B6). Similarly, an antineutrino

created by the charged current j"f; = £ y.7"Vy, can only
be annihilated by the first term in Eq. (B4). This induces
the process 7,A — NA with a matrix element identical to
Eq. (B7). An incoming Majorana neutrino v, created by
Jy = Dary*€q can be annihilated by both terms in (B2).
However, the contribution to the process v,A — NA from
the first term is helicity suppressed. Likewise, an incoming

Majorana neutrino v, created by j’;; =7, 7"V, can
also be annihilated by both terms in Eq. (B2), but the
contribution from the second term is suppressed. Conse-
quently, the matrix elements for these processes are also
given by Egs. (B6) and (B7), respectively.

The differential cross section for the process can now be
found by taking the absolute square of the scattering
amplitude, averaging over the spin of the incoming nucleus
and summing over the spins of the outgoing nucleus and
sterile neutrino. Neglecting the mass of the incoming
neutrino, the differential cross section is calculated as

1 1

D(M
573 D MuAlxald®: - (B8)

2 _
d Oy, A->NA =
2(s —m3)2 %
spins

where s = (k; + k,)? is a Mandelstam variable, m, is the
mass of the nucleus, and d®, is the two-body phase space
of the outgoing nucleus and sterile neutrino,

d3P1 d3PN
d®d, = (22)* 5*(ky +ky — py —
= (27) 2(21)°Ey, 2(27)°E,, (ki +k, = py = pn)
_d¢ dt

(B9)

- 2z8a(s—m3)

In the second equality we have used the Dirac delta
function (enforcing the conservation of four-momentum)
to integrate over four of the three-momentum com-
ponents. We have also reexpressed the integral in terms
of ¢ (the azimuthal angle defining rotations around the
incoming neutrino direction) and the Mandelstam variable
t =¢q*> = (k; — p;)>. The physical region of the phase
space is defined by the inequality A; < 0, where
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0 0 s m} 1
mi ot 1
Az = —% s omi 0 mi 1 (B10)
my mi 0 1
1 1 1 0

is the 3 x 3 symmetric Gram determinant constructed from
any three of the four incoming or outgoing four-momenta
[39]. The spin-averaged and summed squared matrix
elements for the process v,A — NA can be written, for
both Dirac and Majorana N, as

|2 8222-7:2(‘12)

1
§Z|MuaA—>NA|2 = Uy e (B11)

spins

L, H",

where the leptonic and hadronic components are given by

L, = Tr[(py + mN)GﬂpPLKZGDﬂ]qqu7 (B12)

H = STl 4 ) (+ma)r] (B3)

As mentioned previously, the form of the hadronic current
H" in Eq. (B13) is technically only valid for spin—% nuclei,
while most targets considered for CEvNS are spin-O0.
However, for small recoil energies, which is the regime
of interest for most CEvNS experiments, the spin of the
nucleus has a negligible impact on the cross section. We
can now insert Egs. (B9) and (B11) into Eq. (B8) and
express the matrix element squared in terms of the
Mandelstam variables s and 7. The matrix element squared
does not depend on the azimuthal angle ¢, which can
therefore be integrated over. This gives the following
differential cross section in the Lorentz-invariant variable ¢,

F(t,s,mi, m3)

do, a-na _
22(s —m})?

A2 — |y PaZ 1)

(B14)

where the function F(a,b,c,d)=-2a(b—c)*—2a*(b—c)+
ad(a+2b)—d*(a+2c) has been introduced for con-
venience.

We would now like to determine the cross section
as a function of lab frame variables. In the lab frame,
ki = (my,0), ky=(E, ky), py=(my+Egp;) and
py = (E, — Eg,py), where E, is the incoming neutrino
energy and Ep is the nuclear recoil energy. In the lab frame
the Mandelstam variables are s = my(m, + 2E,) and
t = —2my Ep. We transform the variable from ¢ to Ep by
multiplying by the Jacobian factor dt/0Ex = —2m,, which
gives the standard result

do, a-na _

dEq |MZN|2aZZ‘7:2(ER)

(B15)

In this work, we are interested in the limit in which the
momentum exchanged by the photon (and therefore the
nuclear recoil Ey) is much smaller than the mass of
the nucleus m,. We also assume that the sterile neutrino
mass my is comparible to the incoming neutrino energy E,,
but much smaller than my4. In terms of the Mandelstam
variables this corresponds to s~ m?% > t,m%, and the
function in Eq. (B14) simplifies to F(s,t,m3, m3)~
=2t(s = m3%)? + 2mim%(t — m%). This is equivalent to
dropping the terms proportional to 1/E, and 1/my
in Eq. (B15).

2. Radiative upscattering

We now outline how to compute the matrix element
squared and differential cross section of the radiative
upscattering process v,A — XAy, i.e., the Primakoff
upscattering v,A — NA followed by the radiative decay
N — Xy, where X can either be an active neutrino v or
another sterile state N'.

Before doing so, it is useful to derive the decay rate for
the process N — Xy induced by the transition magnetic
dipole moment pyy. If N and X are Dirac fermions, sterile
neutrinos N and antineutrinos N decay to X and X,
respectively. The matrix element for N — Xy is

iMR—»(y = HxN [L_‘XO'WPR”N]G”*ng (B16)
where p; and € are the four-momentum and polarization of
the outgoing photon, respectively. The matrix element for
N — Xy is determined from the second term in Eq. (B1)
and is given by Eq. (B16) with uyy — (uxy)* and
litxo,, Pruy) — [0, Prvx]. The same expressions are
valid for Dirac sterile neutrinos N and antineutrinos N
decaying to Majorana X as they can only be annihilated by
the first and second terms in Eq. (B3), respectively.

We now examine the case if N is instead a Majorana
fermion. If X is Dirac, N can decay to X and X via the
first and second terms of Eq. (B4), respectively. If X is
Majorana, N can decay via both of the terms in Eq. (B2).
The matrix element for the sum of processes N — Xy and
N — Xy for Dirac X (and N — Xy for Majorana X) is thus
given by

iMAM/aXy = MXN[ﬁX(GMDPR - C(GW/PL>TC_1)MN]€”*pI§

= pxnitxo,, uye’ ps. (B17)
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To compute the decay rate, we multiply the spin- and
polarization-summed squared matrix element by the two-
body phase space of the outgoing neutrino and photon,

1
_2— Z |MN—>Xy|2dq)2

spins,pols

Ry (B18)

As we will later be considering the sterile neutrino N as an
intermediate particle in the scattering process v,A — XAy,
we do not average over its spin. It is straightforward to find
(neglecting the mass of X)

’

Z |M%—>X}/|2 =2 Z ‘MNqu > = dmy|uxy]®

spins,pols spins,pols

(B19)

where we note the factor of two difference between
the Dirac and Majorana case. Writing d®, in terms of
the angles of the outgoing neutrino and photon, i.e.,

dd, zégw, we see that the form of the squared

matrix elements allows to integrate over ¢ and cos 6, giving

_ myluxn

- (B20)

M _ D
IﬁN -Xy 21—‘N —Xy

The Majorana decay rate via the transition magnetic
moment uyy is a factor of two larger than the corresponding
Dirac decay rate.

We now return to the radiative upscattering process
v, A — XAy. The Feynman diagram for this process is
shown to the right of Fig. 5, where we define the momenta
of the incoming and outgoing particles and the Mandelstam
variables s, sy, t;, 53, and #,. The variables s and #; = q2 are
equivalent to s and ¢ for the v,A — NA process. In the lab
frame, these are

s = (ky + ky)? = my(my + 2E,), (B21)
1y = (ky = p1)* = —2my E, (B22)
s1 = (pa+ p3)* = —2myuEpg
_2EZ/(ER_ \/ER(ZmA+ER) COSQR), (B23)
s3 = (p1 + p2)* = ma(my + 2E, — 2E,)
—2E,E,(1 —cos6,), (B24)
ty = (ky — p3)* = =2E,E,(1 —cos®,), (B25)

where E, and 0, are the outgoing photon energy and angle,
respectively, and 6 is the outgoing nuclear recoil angle.
The angles are defined to lie between the direction of the
incoming neutrino and the outgoing states.

We can again compare the scenarios where the sterile
neutrino N is a Dirac or Majorana fermion. For Dirac N,
an incoming active Dirac neutrino (or Majorana neutrino
with negative helicity) triggers the process v,A — XAy.
Conversely, an active Dirac antineutrino (or Majorana
neutrino with positive helicity) induces the process
7,A — XAy. In each case we neglect the incoming ‘wrong’
helicity Majorana neutrino. The amplitude for the v,A —
XAy process for both Dirac and Majorana v, can thus be
written as

(ﬂzN>*/"XN

% i[uXU;wPR(p/N + mN)GpGPLuu,,]eﬂ*pgqa
Py —my + imyTy

<A 4D _
lMy,lA—»(Ay =

—igh*

= ulpxnlitx6,, Pr(py + my)o,.Pru, |FF*P°,
(B26)

where py = p, + p3, I'y is the total width of N, and
6‘”175 (JA >/>q6

Frore = = P TimyTA) For 7,A — XAy we instead

have

iM?HA—J_(Ay HoNHxN[D0,006 PR (PN + my)0,, Prog | FH70.
(B27)

For Majorana N, additional processes are possible. For
example, if v, and X are Dirac, the lepton number violating
processes v,A — XAy is allowed. The situation is similar if
v, and X are Majorana; now the outgoing state X can have
negative or positive helicity. However, we emphasise that
the outgoing state X is not measured. We then need to sum
the matrix elements for the processes v,A — XAy and
v A — XAy if X is Dirac (or simply the matrix element for
v, A — XAy if X is Majorana), which is

PLu,,a]F’““p",
(B28)

"MKA—»(M Hontxn [ ix 0, (Py + my)o,

where the decay vertex of N now contains the sum of
chirality projectors (Pr + P;) =1. The P; projector
isolates the momentum term g in the sterile neutrino
propagator, while the P; projector selects the mass term
my. The former corresponds to the process v,A — XAy and
the lattertov,A — XAy. We emphasize that lepton number is
not measured in the final state. Considering instead an
incoming Dirac 7, (or a Majorana v, of predominantly
positive helicity), the matrix element for is given by Eq. (B28)
with the replacement [iixo,:(py + my)o,,Pru, ] —

[0,,0,:Pr(Py + my)o,,vx].
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The differential cross section for the v,A — XAy process
can be found by taking the absolute square of the scattering
amplitude, averaging over the possible spins of the incom-
ing nucleus and summing over the spins of the outgoing
nucleus. We also sum over the polarizations of the outgoing
photon. Neglecting the mass of light neutrinos (and any
sterile state N’) in the final state, the differential cross
section is given by

1

dSO'p,,,A—>XAy = 2( ) 2 Z|MV A—»XAy|2d®37 (B29)

spins

where d®j; is the three-body phase space for the outgoing
nucleus, light neutrino and photon,

d’p, ’py d’p;
2(27)’E,, 2(27)’E,, 2(27)°E,,

x &*(ky +ky — p1 — pa — p3)
_@ dS]d[]dS‘;dtz
272567 (s — m3)\/=A,

In the second equality, the integral has firstly been
decomposed into a pair of two-body phase spaces (and a
trivial integral over the azimuthal orientation of the system)
and then written in terms of four Mandelstam variables s,
t1, 83, and t,. The function

ch3 = (27[)4

(B30)

0 0 s3 1, mi 1
0 0 0 1 s |1
A= _i s3 0 0 O s 1 (B31)
6|7, b 0 0 mj 1
mi s; s my 0 1
11 1 1 0

is the 4 x 4 symmetric Gram determinant, with Ay, <0
defining the physical region of the phase space [39].

The spin-averaged and polarization-summed squared
matrix element in the Dirac and Majorana scenarios can
be written as

272 2( 2
DM e*Z°F>(q7)
Z |My(,(A—)>XAy|2 = |/"3NﬂXN‘274
spins,pols q
L™ e (32
(px —my)? + myIy’

where H* is given in Eq. (B13) and the leptonic parts are

L;Cu = Tr[pr0,:0n0 pkz%wPRFNO'n(]QMmPﬂpq ,
(B33)
Lﬁz}v{ = Trlpr0,:(pn + my)0,, k00,0 Pr(Py + my)

x 6,19 P5P5a° 9" (B34)

Inserting Egs. (B30) and (B32) into the cross section
formula of Eq. (B29) now gives the Lorentz-invariant
differential cross section

D
dopit | |2‘1225':2(f1)
dsidtydsyde, TNV 128732
DM) 77
5 L™ g
(s =m3)*[(s1 = my)* + myTy]V/=A,
(B35)

where we have integrated over the azimuthal angle ¢.

3. Connection to observables

From Eq. (B35) we wish to compute the differential
cross sections in the experimental observables of interest, in
particular the nuclear recoil energy Ep, the outgoing photon
energy E, and angle 6, (between the incoming neutrino and
outgoing photon). Because Eq. (B35) depends on four
Mandelstam variables, we need an other variable in the lab
frame, which we choose to be the angle 8; (between the
incoming neutrino and outgoing recoiling nucleus). We
have already given the Mandelstam variables in terms of
these labe frame quantities in Eqs. (B21)-(B25). We see
that E and 0 only appear in s, and 7, and E, and 0, in s3
and 7,. To determine the single differential cross section in
Er, the first step is to therefore integrate Eq. (B35) over s3
and 1,, i.e.,

d2 ?A—»XA;/

B36
dsldtl ( )

A—>XA;/
/ dtz /3 de dS]dtldS3d[2
The limits of integration are such that the complete physical
region of the phase space, A4 < 0, is integrated over. The
limits s5 (sy, 7, 1) are hence found by solving A4 = 0 for
s3, while 75 (s1,,) are found by solving s; = 53 for f,.
Performing this integration for the full differential cross
section in Eq. (B35), we obtain for Dirac N

d*0}) sxay _p ,aZF (1)
dsidt,  NENE T 60
o S%F(tl,s,mf‘,sl) (B37)
13 (s —m3)*[(s1 — my)? + myTR]’
while for Majorana N,
dexA—»XAy | | szz(tl)
dSldtl 'uXN 1671'2
s1(s1 + my)F(t,5,m3, 1)
11 (s —m3)?((s) — my)* + myIy]
(B33)
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Taking the ratio of these cross sections, we see that they
vary by the factor

0 2
uaA—>XA7> =1 +@ (B39)

() /(%%
dS]d[] dS]dl] A
The first term corresponds to the process v,A — XAy
which possible for both Dirac and Majorana N. The second
term instead corresponds to the process v,A — XAy which
requires a helicity flip of N and is only possible for
Majorana N.

To determine the differential cross section in the
relevant lab frame quantities Ex and 0y, we now multiply
Egs. (B37) and (B38) by a Jacobian, i.e.,

dzﬁl]?agvl_),XAy B 0(31, [1) dzo-z]?a(‘ivllXAy (B40)
dEgdOy | 0(Eg.0g)| dsidt;
where |5§<E“';;;lj) | = —4E,my+\/Eg(2m, + Eg) sin 0. The

differential cross sections in the nuclear recoil energy Ex
and angle f can now be computed by integrating over the
remaining variable,

D(M DM

daua(,A—)>XAy _ /% 40 Jz"ua(A_zmy (B41)
dEg o R dEgdOp
D(M . D(M

dova(A_),XM _ /ER Jzava(AlXAy (B42)
dOx 0 R dErdOg

The allowed region is bounded by the upper limits

E E
cos 9}_ _ R(mA + v) ,
E,\/Eg(2my + E)
£ = 2my E? cos? Oy (B43)

my(my +2E,) + E2(1 —cos® Og)

In Fig. 6 we depict the kinematically-allowed region as the
gray shaded area in the main plot. The kinematically
allowed region can be seen to be independent of the sterile
neutrino mass my. In the subplots above and to the right,
we show the double differential cross section in Eq. (B40)
for fixed Oz = 0.5 rad (above) and Ex = 10> MeV (right)
and three different values of m,,. For illustrative purposes,
we set the values of the transition magnetic moment and
total decay width of N to be u% =3 x 1078 up and
Iy = 1073 MeV, respectively. A total decay width of this
size would require additional invisible decay modes of N.
We observe that, even though the double differential cross

BGe, E, = 3 MeV

Or = 0.8 rad

2 [em?keV ! rad ')

Iy = 107 MeV
fyy =310 up

Ep =107 MeV
my

164 — 0.4 MeV |{
““““““““ —— 1.0 MeV
—— 2.0 MeV |]

1.2

1.0

0.8

Or [rad]

0.6

0.4

10°° 10* 10°% 102 107! 1 107 1074 1074

ﬁ [em?keV ™' rad™!]
FIG. 6. Kinematically allowed region in the (Eg, 0y) plane for
the v,A — v,Ay process, indicated by the gray shaded region. For
three different values of my the relationship between Ey and 6y is
shown the narrow width approximation. The side plots depict the
double differential cross section in Ep and g, again for three
different values of my and in the Dirac (solid) and Majorana
(dashed) cases. The top plot is for fixed 6z = 0.5 rad and the
right for fixed Ex = 10~ MeV. As 'y, < my, it can be seen that
the differential cross sections are sharply peaked at values of Ep
and Oy satisfying the relationship in the NWA.

sections are non-zero over the entire kinematically allowed
region, they are dominated by sharply peaked regions. This
is a consequence of the total decay width of N being much
smaller than the mass of NV, justifying the use of the narrow
width approximation (NWA).

In the I'y < my limit, the following replacement can be
made in Eq. (B35),

1 V3

B44
i) s T (B44)

5(sy — mzzv)

myTy

which sets the intermediate N to be on-shell, i.e.,
s; = p% = m%. Inserting the expression of s, in terms
of the lab frame variables in Eq. (B23) into s; = m,2v allows
to find the following relationship between the nuclear recoil
angle and energy,

m%, + 2Eg(my + E,)

cos 6 = , B45
Rl 2E,\/Ex(2m, + Eg) (B45)
or equivalently,
|
2myE2ck —m%(my + E,) £ E cp \/4mf21E3C% —dmam3(my + E,) + my (B46)

E1%|NWA =

2my(my + 2E,) + 2E2(1 — %)
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where cp = cos 0. In Fig. 6 we plot the curves of allowed
values in the (Eg, 0¢) plane from the condition s; = m3, for
three different values of my. From the plots above and to
the right, we see that the double differential cross section is
sharply peaked at these values of Ep and 6. For each value
of my there is an maximum recoil angle,

m3,(ms + E, + /ma(my +2E,))

2E,(mam3\/mp(my + 2E,) + mi)'/?’
(B47)

max —
cos O™ [Nwa =

as well as minimum and maximum recoil energies given by
Eq. (B46) with ¢ = £1. We now take Egs. (B37) and
(B38), make the substitution in Eq. (B44) and integrate
over s, by setting s; = m%. To obtain the differential cross
section in the nuclear recoil energy, we finally multiply by
the Jacobian factor dt/0Er = —2my to obtain

D(M) D(M)
GUIIA—LXA}/ o do-lq,A—)NA FN—)X;/

dEg  |Nwa dErp Ty (B48)
In the NWA, the differential rate in the nuclear recoil for the
v,A — XAy process is therefore the Primakoff upscattering
cross section multiplied by the branching ratio for the
radiative decay N — Xy.
To obtain the differential cross sections for v,A — XAy
in the outgoing photon energy E, and angle 6,, we can
instead integrate Eq. (B35) over s; and #; as

d2 DA XA A XA
2 upoxay dt/ ds| —sA=XAr_ (pag
dS3dt2 / ! 57 SV ds dt dsdt, dsldfldS3dt2 ( )

where again the limits si (¢, s3,1,) are found by solving
Ay =0 for s; and £ (s3,1,) by solving s7 = s7 for #;. In
general both integrals are non-trivial for the differential
cross section in Eq. (B35) because s; appears in the factor
of [(s; — m%) + m3I%] in the denominator and #; appears
in the nuclear form-factor F(#,); it is therefore necessary to
|

perform this integration numerically. Once this is done, it is
possible to transform to the lab frame by multiplying

Eq. (B49) by the Jacobian |a = ’2 |—4mAE E,sind,.

To obtain the single dlfferentlal cross sections in the
variables E, and 0,, the remaining variables are integrated
over as

DM DM
do-ua(A—)>XAy _ /” do dz yaA—)>XAy (BSO)
dE, o 7T dE,do,
DM . DM
daua(AlXAy _ /Er dzaua(,4—)>XAy (B51)
do, AT

where the maximum allowed photon energy is E; =
mAEI/
ma+E,(1—cos6,)’

However, the NWA can also be used to simplify the
calculation above. The substitution in Eq. (B44) can be
made in Eq. (B49) and the s; integration performed by
setting s, = m%. However, the ; integral must be still be
performed numerically due to the non-trivial dependence of
F(ty). Multiplying the double differential cross section by

(53, fz)
a(E, 8,)

cross section in Ey and (9],,

the Jacobian | , we obtain the double differential

DM
dzau,,(A—ZXAy
dE, do,

 |ulyuxyPaZ’E, sin 0,
1287%muE,myTy
Jar
i RV VI PR3
(B52)

NWA

In the following, we set F(#;) = 1 and perform the integral
over ¢, analytically. In the NWA, the limits of integration ¢
can be found by solving A4 = 0 for ¢, with s; = m%. These
limits correspond to the minimum and maximum photon
energies

B 2mpE, +m3, — \JAE?m3 — 4my(my + E,)m% + m},
E; |xwa = 4( 2 ’ (B33)
my + Ev)
2muE, + m3 + \/AEZm?: — 4 E,)my + m}
EﬂNWA _ 2myE, + my + \/ V1My my(my + E,)my + my _ (B54)

For E, my <m,, these give the result

m2
Ey|nwam 5 (1£ /1 _fg)

In Fig. 7, we plot the double differential cross sections
in E, and 0, for Dirac (left) and Majorana (right) N. We

10~ MeV and

simple

choose the values my =1 MeV, I'y =

4mA

[
4% = 1077 pg. In the subplots above and to the right of
the contours, we also plot the double differential cross
section for fixed values of the photon energy E, (right) and
angle 6, (above). Furthermore, we plot the single differ-
ential cross sections in E, and 6, by integrating over the
other variable as in Egs. (B50) and (B51). Examining the
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FIG. 7. 1.0,

X104 BGe, B, = 3 MeV
== 6, =0.5rad
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Jdo, o

_______ my = 1 MeV
""""""""" Iy = 107" MeV
Hon =107 pp
==+ E, = 0.5 MeV
E, =20 MeV
JdEB,
2.5
2.01 | :
= || ;
5 \
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0.0 x 1074
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Kinematically allowed region in the (E,,6,) plane for the o,A — 7,Ay process, indicated by the blue (Dirac case, left) and

green (Majorana case, right) shaded regions to the left of the black dashed line. The incoming neutrino energy, nuclear target and sterile
neutrino parameters are indicated in the plots. As in Fig. 2, the contours depict the size of the double differential cross section in E, and
0,. The side plots now depict the double differential cross sections for fixed values of E, (right) and 6, (above) as dashed and dotted
lines. Also shown are the single differential cross sections found by integrating over all allowed values of the other variable (solid lines).

single differential cross sections in the photon energy E,
we see a stark difference between the Dirac and Majorana
cases. In the former case, the cross section decreases
linearly with the energy, while in the latter the cross
section is constant. The minimum and maximum photon
energies in Eq. (B53) can clearly be seen. Looking at the
single differential cross sections in the photon angle ¢, the
difference between the Dirac and Majorana cases is less
prominent; the Majorana cross section peaks at slightly
lower angles compared to the Dirac cross section.

4. Differential rates

With the differential cross section for the Primakoff
upscattering in Eq. (B15), we can now calculate the
differential rate of nuclear recoil events in a CEuvNS
experiment as

dR, x-na 1
dEx ~ A-m,

£y d,, do, -
/ dE, ¢u{, Oy,A—NA ’ (B 5 5)
Emin ( ER)

. dE, dEg

d,, . . . . 2
where TE 1S the flux of incoming neutrinos v, per cm*~ per

second and E™" is the minimum incoming neutrino energy
that can produce a sterile neutrino of mass my, and a nuclear
recoil energy Ep,

. ER m12V 2mA
min —_ I _ E—
EMn(E,) = (2 +4mA> <1+,/1+ ER>' (B56)

In Eq. (B55) we have divided by the mass number A of the

target isotope multiplied by the proton mass m, to

determine the differential rate per unit mass of the target
material.

Similarly, the differential rate for nuclear recoil events
that are coincident with an outgoing photon in the detector
is given (in the NWA) by

D(M) max DM
dR, s xa, _ 1 / E JE dg, do, s.na FN(—»gy plet
dER A . mp Eini"(ER) v dEy dER FN N
(B57)
4y,

Here, we simply integrate over the flux —z* multiplied by

the radiative upscattering cross section and the probability

Pt =1- exp(—%) for the decay to take place inside

the detector. In the NWA, EM"(ER) is again given
by Eq. (B56).

As an example, in Fig. 8 (left) we plot the differential
Primakoff upscattering rate in the nuclear recoil energy for
the NUCLEUS experiment situated at the very-near-site
(VNS) of the Chooz reactor site, for my = 1 MeV and
uéy = 10719 yp. The flux of electron antineutrinos induces
the process 7,A — NA. In the plot we compare the rates for
three different target materials; °Ge (gray), Al,O5 (blue),
and CaWQ, (orange). For Al,0; and CaWO, we average
over the mass numbers of the constituent isotopes. We also
compare the Primakoff upscattering rates to the SM CEvNS
process 7,A — 7,A (dotted lines). For u¢y = 10710 up, the
number of Primakoff upscattering events is comparible the
number of CEvNS events. The horizontal black dotted line
indicates the predicted nuclear recoil background of
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(Left) Differential rates in the nuclear recoil energy Ex for 7,A — NA per kilogram of a detector at the VNS of the Chooz

reactor site, for my = 1 MeV and p!y = 10710 These are compared to the SM CEuNS rates (dotted lines). (Right) Differential rates
in Eg for ,A — 1,Ay per kilogram of detector, for my = 1 MeV and u¢,, = 3 x 1078u. The sterile neutrino, which may be a Dirac
(solid lines) or Majorana (dashed) fermion, is required to decay inside the detector with L4, = 5 cm. Three possible detector materials

are shown; 3Ge (gray), Al,O5 (blue), and CaWQ, (orange).

100 keV~'kg~' day~! in the NUCLEUS detector at the
VNS. The gray shaded region shows the range of nuclear
recoils that can be detected by the experiment (i.e., a
nuclear recoil threshold of 10 eV).

In Fig. 8 (right) we plot the differential rate in the nuclear
recoil energy for the radiative upscattering process v,A —
v,Ay, again for the NUCLEUS experiment at the VNS and
for my = 1 MeV and uy = 3 x 1078 u. We assume that
the outgoing antineutrino is of electron flavor, ,A — v,Ay
(i.e., there are no additional decay modes of V), and that the
nuclear recoil is accompanied by an outgoing photon. We
compare the cases where the intermediate sterile neutrino N
is a Dirac (solid lines) or Majorana (dashed lines) fermion,
again for three different target materials.

CHOOZ Flux, VNS

One may first notice that there are peaks in these
distributions, which otherwise have the same shape as
the Primakoff upscattering distributions. The origin of these
peaks is as follows; as we assume that N can only decay
radiatively, the branching ratio in the integrand of Eq. (B57)
is unity. For ¢y = 3 x 1078 pp and Ly, = 5 cm, the total

width satisfies I'y = FB%)J < Py /Lge and the decay pro-

bability can be Taylor expanded to give P ~ Ly Iy /pr.
The peaks occur at values of the nuclear recoil energy
that minimize the minimum incoming neutrino energy

in Eq. (B56) and hence minimize fy = \/y>—-1~x~

+/(£2)? — 1. This in turn maximizes P3 and the integrand

my
in Eq. (B57). In other words, for these values of the nuclear

CHOOZ Flux, VNS

—  HyN,s VA — Ay, Dirac N BGe — N, VA = DAy, Dirac N — BGe
— 16} -- JwN, VoA — DAy, Majorana N — ALO; — 0.6F —- v 7. A — v, Avy, Majorana N — ALO;
. cawo, | T CaWo,
< &
5F
T 12} my = 1MeV ;C 0.5 my = 1MeV
on L = 5em | Lget = Hem
f poy = 3x10" up io 0.4 poy = 3x 1078 up |
| —
- L PR
g 0.8+ = 03} ) Sl
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FIG.9. Differential rates of coincidence events in the photon energy E, (left) and photon angle 6, (right) per kg of a detector situated at
the VNS of the Chooz reactor site. Three possible detector materials are shown; *Ge (gray), Al,O5 (blue), and CaWO, (orange). The
differential rates are different in the Dirac (solid) and Majorana (dashed) cases. The sterile neutrino mass and transition magnetic
moment are chosen to be my = 1 MeV and ), = 3 x 10785, respectively. For a coincidence event to be observed, the sterile neutrino

is required to decay inside the detector with Ly, = 5 cm.
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recoil, the incoming neutrino energy is as close as possible
to my. The produced sterile state is nonrelativistic and has a
shorter decay length £y = fyry = Py/T'y than average. If
more decays occur inside the detector, we would expect to
observe a peak in coincidence events.

It is also useful to obtain the differential rate for the
radiative upscattering process in E, or 6, as

DM : DM
dRy,,(A—)>XAy _ 1 B d¢”u m Pdet
dX, A-my, Jpinxy  “dE, dX, "’
(B58)

where X, = {E,.6,}. In the NWA, the minimum incoming
neutrino energy that can produce sterile neutrino of mass
my and a photon of energy E, is

mAm%]

E}™(E,)|lxwa = E, + (B59)

4muE, —2m3,’

For a given incoming neutrino energy E, and sterile
neutrino mass my, the outgoing photon can be emitted

at any angle in the range 6, € [0,7]. In the NWA, the
minimum incoming neutrino energy is that which can
produce a sterile neutrino of mass my,

mN(zmA - mN)

Einin(ay) |NWA = (B60)

2(my — my)

In Fig. 9 we show the differential rates for the v,A —
v,Ay process in the outgoing photon energy E, (left) and
photon angle 6, (right) for a detector situated at the VNS of
the Chooz reactor site. We again present the distributions
for three target materials: 7*Ge (gray), Al,O; (blue), and
CaWO, (orange). For the Chooz reactor neutrino flux,
the maximum number of events are expected for sterile
neutrino masses my ~ 1-5 MeV. We want to emphasise
that the Dirac and Majorana cases (solid and dashed lines,
respectively) have different distributions in the photon
energy and angle. We again observe enhancements in
Fig. 9 (left) at values of E, that minimize the minimum

incoming neutrino energy, i.e., EM"(E,) ~ my.
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