
1 INTRODUCTION

In the Architectural, Engineering and Construction
(AEC) industry, the design needs to be checked
against regulations before the construction permit can
be obtained. The compliance checking is traditionally
conducted manually by rule experts, suffering from
low efficiency, low accuracy and high cost. The er-
rors may result in project delays or poor operational
performance. To address these issues, automatic com-
pliance checking (ACC) has been researched for more
than 50 years. There have been two perspectives to
approach ACC, one looks at the easy retrieval and
query of building model data, and the other focusses
on the interpretation and representation of regula-
tions. The latter is claimed to be the bottleneck of the
ACC process, which can take up to 30 % of the total
time for implementing a rule (Solihin & Eastman,
2016).

Recognizing the important role of rule interpreta-
tion and representation in understanding and retaining
construction design knowledge, various methods
were developed to represent building codes. While
these methods have been useful to handle various as-
pects of the knowledge domain, none of them has all
the capabilities required to represent regulations
(Macit İlal & Günaydın, 2017). There also lacks a
thorough understanding of rules, representation meth-
ods and the relationships between them; and the

methodological backdrop of the current representa-
tion development is weak (Zhang et al., 2022).

This paper thus aims to: 1) compare the methods
of rule representation and identify their capabilities;
2) select suitable representation methods for different
types of rules; 3) propose a multi-representation
method that is capable of representing all types of
rules. The relationships between rule types, capabili-
ties, suitable representation for each rule class and a
multi-representation method are shown in Figure 1.

Figure 1. Relationships among class of rules, capabilities, and

representation methods

The upper boxes and arrows show the overall rela-
tionships of class of rules, capabilities and the multi-
representation method to be developed in this paper.

A multi-representation method of building rules for automatic code
compliance checking

Z. Zhang, N. Nisbet, L. Ma & T. Broyd
The Bartlett School of Sustainable Construction, UCL, London, United Kingdom

ABSTRACT: In the Architecture, Engineering and Construction (AEC) industry, design review is an important
step that often leads to project delays, as the typical manual compliance checking process is error-prone and
time-consuming. As an approach to accelerate this process and achieve a better quality of design, automatic
compliance checking (ACC) has been researched for several decades. Rule interpretation and representation is
a bottleneck of ACC. It focuses on the interpretation of regulations and the representation of them in a suitable
computer-readable form. Despite extensive research efforts, a rule representation method that is suitable to
represent all types of rules has yet to be proposed. To address this issue, this research proposed a multi-repre-
sentation method that provides a “mix and match” for different representations and different types of rules,
thereby representing all types of rules with suitable representations. This research is valuable to both academia
and industry as it enables the representation of rules with less knowledge loss and more accuracy.

For each column, it has several subsets as shown in
the lower boxes (i.e. rule classes, capability sets and
representations). The multi-representation method
can only be developed when different types of rules
and capabilities required to represent them are under-
stood. Once the suitable representation methods for
different classes of rules are selected, a “mix and
match” approach can be used to establish the multi-
representation method.

2 METHOD

In this paper, design science research (DSR) is
adopted. It is suitable for this research as it aims to
provide practical solutions for industry problems (i.e.
a representation method for building rules). DSR has
five steps, including awareness of problem, sugges-
tion, development, evaluation and conclusion
(Vaishnavi, 2007). This paper presents the awareness
of problem and suggestion as a solid foundation for
developing a rule representation method. The sugges-
tion of a new representation method is based on ab-
ductive reasoning. It involves the researchers select-
ing the “best” based on a set of pragmatic criteria. In
this paper, the authors adopted the pragmatic criteria
(Table 1) proposed in our previous work (Zhang et
al., unpubl.). We seek to select the most capable rep-
resentations based on those criteria. The evaluation
will also help understand which representation is suit-
able for each type of rule.

3 EVALUATION OF EXISTING
REPRESENTATION METHODS

3.1 Evaluation Criteria

Table 1. Required and desired capabilities for rule representation

Aspects Required capabilities
Desired capabil-

ities

Rule fea-

tures

1) Requirement 2) Applica-

bility 3) Selection 4) Excep-

tion 5) Definition 6) Out-

come 7) Logical

relationship

NA

Rule in-

tensity

1) No calculation or simple

calculation 2) Function and

algorithm 3) Simulation

NA

Rule

organiza-

tion

1) Hierarchy 2) Cross-refer-

ence

NA

Imple-

mentation

1) Easy to use and under-

stand 2) Dictionary 3) Inde-

pendent of the rule engine

4) Independent of the data

model

1) Conciseness

2) Translatabil-

ity

Zhang et al. (unpubl.) proposed 16 required and two
desired capabilities (Table 1) for representing build-
ing regulations. It is so far the most comprehensive
set of criteria. Thus, we have chosen these criteria to
evaluate the representations.

The evaluation of representation methods was
twofold. Firstly, the current capabilities of represen-
tations were evaluated against the above-mentioned
criteria. Secondly, they were also assessed regarding
their potential of developing certain capabilities given
their characteristics.

3.2 Evaluation and Results

Some early ACC developments use procedural code
to represent and execute rules. An example of this is
the CORENET e-PlanCheck project in Singapore
(Solihin, 2004). It is a hard-coded approach, where
the system is a “black box” with a built-in rule engine
and procedural codes for executing rules, thus the rep-
resentation is not independent of data model and rule
engine. The system mainly focused on individual rule
provisions and neglected cross-references. Because
of the binary nature of the programming language, the
checking outcomes only include “true” or “false”,
whilst other actions or side-effects cannot be repre-
sented. The system also requires extensive program-
ming knowledge to develop, which domain experts
typically do not have. However, its advantage lies in
dealing with rules of high intensity using algorithms
and functions and considering hierarchies of rules and
logical relationships within a rule provision to get
correct checking outcomes.

Production rule has been widely used for repre-
senting rules. It follows the pattern of “if <condition>
then <action>”. An example in the AEC industry is
Tan et al. (2010). They proposed decision tables to
present regulations in a concise and compact way,
where each row is a production rule. Decision tables
can represent applicability, selection and require-
ments in its cells. The actions of the checking include
“pass”, “fail” and “exceptional”. Cross-references
among rule provisions were also considered. How-
ever, the deficiency of this method is: 1) it cannot rep-
resent unknown and other side effects; 2) no explicit
logical relationships are shown within each row; 3) it
lacks consideration of the rule context (e.g. defini-
tions of terms); 4) it failed to reveal the implicit
knowledge and assumption of rules, thus making it
difficult to check rules with higher intensity and/or
performance-based rules.

Solibri (2022) is the most widely-adopted com-
mercial ACC software. It used parametric tables to
represent rules, which is easy to use after some simple
training. Currently, there are 55 rule templates to
check model and data quality and consistency, objects
and properties, and geometries. The rule templates in-
clude object and space groups and some other pre-de-
fined applicability such as “air well”. APIs are also

available to allow experienced users to build their
own rule templates. However, the rule templates only
cover a limited number of objects, relationships and
algorithms. Thus, Solibri has limited capability to
deal with rules with higher intensity (e.g. rules requir-
ing functions, algorithms and simulations). In addi-
tion, it must depend on the built-in rule engine and
internal data model to finish the check. Like many
other methods, it also only includes “pass” and “fail”
as outcomes. The logical relationships within one rule
provision are not clear. Any cross-references among
rules and the hierarchy of regulations are not repre-
sented. Although Solibri allows the user to implement
any definitions (e.g. fire compartment) using a mix-
ture of rules and individual picks of entities, the
broader context for applying a rule is limited to using
a second rule as a “gate-keeper”.

Predicate logic is a well-defined function in logic
that can generate results of true/false (or undefined).
It has been used to represent building rules by many
researchers. It has quantifiers to distinguish “ALL”
instances from the case that there “EXISTS” an in-
stance, making it possible to represent applicability,
selection and exception. It also uses logical connec-
tives to denote conjunction, disjunction and negation.
For example, Rasdorf & Lakmazaheri (1990) pro-
posed a logic-based SASE (Standards Analysis, Syn-
thesis and Evaluation) model that used predicate logic
statements to represent rules. This model showed rule
categories and relationships by linking rules using a
tree-like organizational sub-model. The expressions
of predicate logic are also independent of rule engine,
with the potential of being independent of the build-
ing data model depending on the specific software.
However, the drawbacks of predicate logic are: 1) as
a two-value logic, it only has true or false as outcome;
2) it can become very lengthy and complex when the
rules are complex; 3) it was not used to present defi-
nitions and other context; 4) it does not reflect the hi-
erarchy of the regulations.

Having its root in predicate logic, conceptual
graph (CG) was initially proposed by Sowa (1976)
and later extended by Solihin & Eastman (2016) for
representing building regulations, where different
shapes were used to represent concept nodes, concep-
tual relations and represent functions intuitively. Fur-
ther extensions include representing cross-references
and exceptions, and denoting either a derived concept
or a concept that requires functions/algorithms/simu-
lations. CG also uses “or” and “not” to represent log-
ical disjunction or negation, and the lines mean logi-
cal conjunction by default. Its graphical
representation makes it easy to use and understand.
Despite being a fairly comprehensive representation
method, it has several drawbacks, including its cur-
rent inability to represent applicability and selection
and to show outcomes other than “pass” and “fail”; it
cannot show hierarchies of rules; it does not represent
definitions; and rules are represented using a model-

dependent IFC format. It also does not have a diction-
ary to link the data model ontology to the rule ontol-
ogy. However, an independent representation of rules
might be possible in its future developments.

Visual Code Checking Language (VCCL) is a lan-
guage-driven ACC solution proposed by Preidel &
Borrmann (2016). It is a user-friendly visual pro-
gramming language aiming to provide transparent
“white boxes” (as opposed to black boxes) for rule
checking. It has tailored methods for building rules,
including logical, mathematical, geometric-topologi-
cal, relational, building model related and utility
methods. They are executed by the built-in rule en-
gine. Each rule provision can be represented by link-
ing multiple input ports, output ports and method
nodes. Nevertheless, VCCL still failed to consider a
broader context. It only has binary results including
“true” and “false”. It is also restricted by the IFC for-
mat and thus does not have a dictionary to map ontol-
ogies. In addition, it failed to consider the hierarchy
of regulations and cross-references among rules, but
the authors argue it might be possible for VCCL to
incorporate these in a later version.

RASE (Hjelseth & Nisbet, 2011) is a semantic-
based approach. RASE has been updated several
times, here we evaluate the latest version of RASE
(Beach et al., 2015) published in academic literature.
It represents the semantic constructs of rules, includ-
ing requirements, applicability, selection and excep-
tions. Its striking feature is the consideration of
broader context by incorporating definitions and/or ti-
tles in the rule documents. It keeps the rule text as is
and uses mark-ups to mark different semantic con-
structs. The mark-ups are easy to use once the user
has some knowledge of semantic constructs. In addi-
tion, keeping the rules as is has several advantages: 1)
the structure of regulations is retained, including
cross-references, hierarchy, and logical relationships
(although logical relationships may not be explicit);
2) the representation is independent of the rule engine
and model data. To link the design and the regulation
ontologies, a dictionary was developed. As for check-
ing outcomes, RASE uses an open world assumption
and its checking outcomes include “pass”, “fail”, “un-
known” and other side-effects such as “add credits”.
A limitation is that it cannot explicitly present the
knowledge needed to address the rule intensity.

More recently, some scholars developed represen-
tations using Semantic Web. Rules are represented
using SPARQL that has similarities to SQL. The que-
ries can then be applied to RDF/OWL representations
of a model, often with extensions to simplify the
model and underlying schema. The syntax in the se-
mantic web requires specialized training. There has
been little progress in exploiting geometry or compu-
tationally intensive queries, thus, it has a low capabil-
ity of dealing with rule intensity. In Pauwels et al.
(2011), they used N3Logic to represent building
rules, which is essentially a form of “if <condition>

then <action>”, with logical connectives to denote
logical relationships. This production-rule-like repre-
sentation limits expressiveness. Consequently, it does
not have the capability of representing exceptions,
outcomes other than “pass” or “fail”. It also did not
consider a broader context such as definitions. The
semantic web representations have potential to be in-
dependent of the data model, although most of them
currently use IFC. However, it will rely on the rule
engine regardless of the representation form, and a
dictionary can be used to link ontologies. Regarding
rule organization, it can represent hierarchies of rules
and cross-references.

Table 2. Evaluation result of representation methods

Note: A=Requirements; B= Applicability/Selection; C=Excep-

tion; D= Definition; E= Outcome (Other actions/Side effects);

F= Logical Relationships; G= Rule Intensity (level 1-3); I= Hi-

erarchy; J=Cross-reference; K= Easy to Use and Understand;

N= Dictionary; O= Independent of Rule Engine; Q= Independ-

ent of Data Model; H/M/L=High, Moderate, Low; P = Potential

of developing the capability

Aiming at a fully-automated ACC system, seman-
tic natural language processing (NLP) methods were
proposed by researchers. Most research has narrowed
the scope to the simplest subject-predicate sentences,
ignoring subsidiary clauses, titles, lists and other mat-
ters. Zhang & El-Gohary (2017) have tried various
approaches to build on the named-object identifica-
tion, such as assuming all terms are requirements and
matching sentences to pre-defined templates. They
did not pay attention to the representation of excep-
tion, applicability and selection. The checking out-
come includes “pass”, “fail” and “unknown”, but no
other actions were considered. The method can only
deal with rules with relatively low intensity. In addi-
tion, the focus is mainly on rule provisions, without

considering the cross-references and hierarchies of
rules. Despite its defects, this method recognized the
importance that the representation needs to be inde-
pendent of both the rule engine and the data model,
and it used logical rules and facts to achieve that. In
general, it requires some knowledge of logic to use
but some simple training would suffice.

As a result of the analysis above, a summary of the
shortlisted representation methods and their capabili-
ties are shown in Table 2. The meaning of numbers is
explained in the notes under Table 2. From Table 2, it
is evident that no existing representation method has
all of the capabilities required to represent building
rules, although methods such as CG and RASE check
most of the boxes. To minimize the knowledge loss

during the rule interpretation and representation pro-
cesses, a more well-rounded representation method is
needed.

4 A CLASSIFICATION OF BUILDING RULES

In Section 3, it was recognized that there is no single
representation method that is suitable to represent all
types of rules based on the capabilities. As the suita-
ble representation method needs to be independent of
the rule engine and data model, it is envisaged that a
multi-representation method could collaboratively
address this issue by mixing and matching represen-
tations with different capabilities. To achieve this, it
is important to first understand what are the different
types of rules and what can be the criteria to distin-
guish them. Hence, in this section, the authors pro-
pose a new classification by analyzing example regu-
lations: Health Building Notes (Department of Health
and Social Care, 2017) and Approved Documents
(Ministry of Housing, 2010).

Capability

Method
A B C D E F G I J K N O Q References

Procedural

Code
√ √ √ √ × √ 3 √ × L × × × Solihin (2004)

Decision

Table
√ √ √ × P √ 2 × √ H × √ √ Tan et al. (2010)

Solibri √ √ × √ × × 2 × × H × × × Solibri (2022)

Predicate

Logic
√ √ √ × P √ 3 × √ M P √ P

Rasdorf &

Lakmazaheri (1990)

Conceptual

Graph
√ P √ × P √ 3 × √ H × √ P

Solihin & Eastman

(2016)

VCCL √ P P × P P 2 × P H × × ×
Preidel & Borrmann

(2016)

RASE √ √ √ √ √ × P √ √ H √ √ √ Beach et al. (2015)

Semantic

Web
√ √ × × × √ 1 √ √ L √ ×

×
Pauwels et al. (2011)

NLP √ √ × × × × 1 × × M × √ √
Zhang & El-Gohary

Nora (2017)

4.1 Manual or automatic checking

A frequently mentioned topic in ACC is what type of
rules can be checked automatically. Researchers held
different opinions regarding this issue, which are ul-
timately reflected in their classifications. For exam-
ple, Soliman-Junior et al. (2020) used quantita-
tive/qualitative/ambiguous and ability to be translated
into logical rules as criteria for classifying rules,
where they claimed rules that cannot be translated
into logical rules can only be checked manually.

However, as suggested by Zhang et al. (unpubl.),
some rules are automatically checkable when they are
more thoroughly analyzed. In this paper, the authors
argue that only rules that include words or phrases
that are subjective (i.e., based on or influenced by per-
sonal feelings, tastes, or opinions) cannot be checked
automatically. It is because this type of rule is typi-
cally open to interpretation. It is thus difficult to have
a specific object, or attribute value or value range to
check, thereby making it difficult to be automated.
For example, Rule 1 shows requirements regarding
quality and aesthetics. Different people may have dif-
ferent ideas of “pleasant and welcoming”.

“The main entrances and reception areas should be pleasant

and welcoming.”

Rule 1. A subjective requirement, HBN 00-01, Appendix 1,

(Department of Health and Social Care, 2017)

Other rules are automatically checkable once suf-

ficient information has been provided to define or
clarify any insufficiently defined words or phrases
(e.g., close to). Notably, although it has been a com-
mon belief among many scholars that only rules re-
lated to the design stage can be checked, the authors
argue that operational rules can also be checked if
they are appropriately interpreted. Rule 3 is an opera-
tional requirement for the shower seat. This require-
ment can inform the design and be interpreted as a
requirement for adjustable shower seats.

“…The position of the shower seat should be adjusted between

uses as required.”

Rule 2. An operational rule, HBN 00-02, Rule 4.48
(Department of Health and Social Care, 2017)

4.2 Rule classifications

Based on the analysis of rules that have the potential
to be automatically checked, a new classification
method is proposed in this section. Incorporating the
classification criteria proposed by scholars such as
Solihin & Eastman (2015), Macit İlal & Günaydın
(2017) and Hjelseth & Nisbet (2011), the new classi-
fication method recognized that a single criterion
might neglect other criteria that distinguish rules
within the class from each other. Hence, in this paper,
we proposed a new classification using four criteria,

namely semantic constructs, self-contained or linked
explanatory, rule intensity and prescriptive or perfor-
mance-based.

4.2.1 Semantic constructs
Semantic constructs concern the components of rule
provisions with specific semantic meanings. Hjelseth
& Nisbet (2011) proposed the RASE method, recog-
nizing four semantic constructs of building rules: Re-
quirement (R), Applicability (A), Selection (S) and
Exception (E). Developed from their method, the au-
thors included three more semantic constructs here:
definitions (optional), outcomes (compulsory) and
logical relationships (optional).

Definition is closely related to requirements, in the
sense that it provides context for requirements and
clarification for terms. Studies such as Zhang et al.
(2022) stressed the importance of considering a
broader context (e.g. definitions and titles) when ana-
lyzing rules.

Rule 3 shows the definition of the term TER. It is
important for accurate calculation of TER to meet en-
ergy efficiency requirements.

“The Target CO2 Emission Rate (TER) is the minimum en-

ergy performance requirement for a new building based on the

methodology approved by the Secretary of State in accordance

with regulation 25. It is expressed in terms of the mass of CO2

emitted per year per square metre of the total useful floor area

of the building.”

Rule 3. Definition of TER, Approved Document L2A, Rule 2.2

 (Ministry of Housing, 2010)

Outcomes are sometimes implicit in rule texts.

They can take many forms. They can be as simple as
pass or fail. Taking an open-world assumption
(Hustadt, 1994), they can also be unknown when the
information is not sufficient to make a judgement.
They may include other actions and side-effects such
as “adding 5 credits (points)” in BREEAM (Building
Research Establishment, 2018), where the final cred-
its and rating are based on the accumulation of credits
awarded in different evaluation aspects.

Note that all rules have compulsory semantic con-
structs, but each rule can have different types of op-
tional semantic constructs. As a result, one rule can
have more or less semantic constructs than another
rule. For example, the rule constructs of Rule 4 are
marked below. The underlined part is the require-
ment. The part in bold is the selection, which is
slightly different from “applicability” as a selection
offers alternative subjects. It thus applies to both staff
use and patient use.

“Help call should be provided if the room is for staff or pa-

tient use.”

Rule 4. HBN 00-02,Rule 3.24, Semantic constructs in a rule

(Department of Health and Social Care, 2017)

Logical relationships concern the logical connec-

tives between words or phrases in rules. The same set
of words and phrases, if linked using different logical
connectives, can have very different meanings. Logi-
cal relationships mainly include “and”, “or” and
“not”, meaning logical conjunction, disjunction and
negation, respectively.

4.2.2 Self-contained or linked explanatory
Another criterion is self-contained and linked explan-
atory. Initially proposed by Macit İlal & Günaydın
(2017), this criterion has a different meaning here.
Self-contained means that a rule provision is self-ex-
planatory (i.e. does not rely on other rule provisions).
Linked explanatory rules refer to rules that do not
have complete meanings themselves. They have to be
looked at together with other rules. A typical example
of linked explanatory rules is cross-references. Rule
5 shows a rule provision with cross-reference. It
means that paragraph 5.27 needs to be consulted to
make sure the rule is fulfilled.

“A landing should be provided at the top and bottom of each

flight of stairs. The minimum clear landing depth is 1200 mm

but must equal the clear stair width between handrails (see

paragraph 5.27)”

Rule 5. A rule provision with cross-reference, HBN 00-04,

Rule 5.4

(Department of Health and Social Care, 2017)

4.2.3 Prescriptive or performance-based rules
Prescriptive rules often present requirements explic-
itly, meaning that the path to compliance is clearly
stated (e.g. the required properties, objects, and rela-
tionships). However, for performance-based rules,
only the expected performance was asked, rather than
how it can be achieved. The designers need to use
their expertise to make sure the design meets the per-
formance requirements. Performance-based rules are
also not straightforward to check, as they either re-
quire domain experts to make the implicit knowledge
explicit by rule interpretation or computationally in-
tensive simulations. Rule 6 provides the required air
change rate. It requires ventilation knowledge to in-
terpret this rule into a machine-readable rule.

“The room will be considered fit for purpose if, with the venti-

lation system operating and all doors closed, the following pa-

rameters are achieved:

•the patient’s room has an air change rate of at least 10 per

hour;”

Rule 6. A performance-based rule, HBN 04-01 Supplement 1,

Rule A2.12

(Department of Health and Social Care, 2017)

4.2.4 Rule intensity
Many studies have mentioned the difficulty of auto-
matically checking building rules (Eastman et al.,

2009), including: 1) rules written in human language
can be ambiguous, subjective and thus hard to inter-
pret and represent using machine-readable represen-
tations, and 2) some rules require intensive computa-
tions.

Since the term “rule complexity” has been adopted
to describe rules with one or more of the above-men-
tioned characteristics without a consensus by aca-
demics and practitioners, the authors propose the term
“rule intensity” in this paper. Compared with the mul-
tiple facets of “rule complexity”, rule intensity only
concerns the computational power required to check
the rule automatically. Based on this, rules can be
classified into three categories:

1) No calculations or simple calculations
2) Functions or algorithms
3) Simulations
No calculations or simple calculations means the

requirement is straightforward and does not require
complex calculation. For example, rules that only re-
quire checking the existence of objects or the property
value of an object fall into this category (Rule 7).
Rules that include only simple arithmetic calculations
and no spatial or physical calculations also fall into
this category.

“Bidets should be fitted with a sensor-operated over-rim

supply.”

Rule 7. A rule checking the existence of simple objects,

HBN 00-02, Rule 2.3

(Department of Health and Social Care, 2017)

Rules with slightly higher intensity are included in

the functions or algorithms category. This type of rule
may involve combinatorial issues that deal with mul-
tiple objects and possibilities to compliance (Solihin
& Eastman, 2015). For example, Rule 8 requires clear
space around the toilet on the bath side to allow the
accessibility of mobile hoist.

“The room layout utilises the minimum clear space require-

ment to the side of the toilet for mobile hoist transfer (that is,

1150 mm from the centreline of the toilet to the nearest obstruc-

tion), on the bath side of the toilet only.”

Rule 8. A rule that requires function/algorithm to check,

HBN 00-02, Rule 2.22

(Department of Health and Social Care, 2017)

Rules with the highest intensity are rules that re-

quire simulations. Many rules in this category are per-
formance-based rules and they are typically found in
fire codes, energy requirements, etc. They typically
ask for a proof-of-solution or a feasible design to
achieve performance requirements. Rule 9 asks for a
design to satisfy the energy performance requirement
as set by regulation 24. The approved software sug-
gested will run simulations to help generate energy
performance calculations and predictions.

“The TER must be calculated using one of the calculation

tools included in the methodology approved by the Secretary of

State for calculating the energy performance of buildings pur-

suant to regulation 24.…”

Rule 9. A rule that requires simulation, Approved Document

L2A, Rule 2.3

(Ministry of Housing, 2010)

5 PROPOSED RULE REPRESENTATION
METHOD

5.1 Representation selection for different types of
rules

Given the evaluation in Section 3.2 and the analysis
of rules in Section 4, suitable representations can be
selected by comparing the rule characteristics and the
capabilities of representations (Figure 1). As the com-
bination of different criteria for classifying rules can
generate too many rule types, the authors only pro-
vide several examples here to demonstrate the pro-
cess. For example, we can regard that a rule has re-
quirements, definitions, and a checking outcome that
includes other side-effects as Rule Class A. For Rule
Class A, RASE would be the most suitable represen-
tation, as only RASE have both the capabilities of
representing definitions and side-effects. There could
also be a Rule Class B that has a requirement of level
3 rule intensity. In this case, conceptual graph could
be the most suitable representation, as CG is easier to
use when the rule intensity is high.

5.2 A multi-representation method for all types of
building rules

A suitable rule representation method should be capa-
ble of representing all types of rules. To achieve this,
three representation methods, namely RASE, predi-
cate logic and conceptual graph, were selected to
cover all capabilities, which forms a multi-represen-
tation method. Figure 2 shows when to select which
representation.

RASE can deal with most of the required capabil-
ities, except it does not have explicit logical relation-
ships and does not make the implicit knowledge and
assumptions explicit. It is ideal for larger scale docu-
ments because the time-saving advantage of mark-
ups is especially evident when dealing with many
documents.

Predicate logic deals with specific problems and
individual rule provisions. It has a sound theoretical
base, and it is very suitable for representing building
rules. Conceptual graphs come into play when the
rule intensity is high and the predicate logic state-
ments get lengthy and hard to read.

6 DISCUSSION

It came with no surprise that from the evaluation of
representations, no single representation meets all the
16 requirements. If our analysis is right, the proposed
multi-representation method would address this issue.
Nevertheless, the evaluation result shows several is-
sues that need to be aware of when developing a new
representation method.

Figure 2. Selection diagram for the multi-representation method

1) The neglection of the broader context of rules

As shown in Table 2, only two methods can deal
with definitions. Most methods lack the consideration
of including the broader context such as regulation
document titles, section descriptive sentences and
definitions. However, these texts provide valuable
context such as the applicability of rule provisions.
2) Only considering binary outcomes
Existing representations showed a general inability to
represent outcomes other than “pass” and “fail” (ex-
cept RASE). As the regulations become more com-
plex, it is vital that representations are equipped with
“unknown”, other actions and side-effects to repre-
sent as many types of rules as possible.
3) Only dealing with rules with low intensity
In the current research and practices, scholars and
practitioners seem to rush to develop an ACC system
for proof-of-concept or implementation. For clearer
demonstration and easier understanding, only rules
with relatively low intensity were selected. This may
result in the underestimation of rule intensity (Solihin
& Eastman, 2015) or sacrifice the completeness of
ACC system. Which rules require manual checking
are often decided arbitrarily without sufficient evi-
dence. The authors’ experience shows that rules that
are seemingly “uncheckable” by ACC systems can be
checkable when being carefully interpreted.
4) The lack of attention to rule organization
Rule organization includes hierarchy and cross-refer-
ences. While many methods have the capability to
present cross-references, they rarely consider hierar-
chy of rules. Hierarchies may affect checking out-
comes as they denote different constraint levels of

regulation documents and the superiority and inferi-
ority of regulations.
5) The dependency on model data and rule engine
It seems that because BIM model is the most com-
monly used data model, most representations use ob-
jects, attributes and relationships in IFC directly to
avoid the need to map among different ontologies. As
a result, although ACC can be done, the representa-
tion is dependent on rule engine and building model
data. This limits the expressiveness of representations
and makes the representations difficult to be updated
when regulations are revised.

7 CONCLUSION

This paper evaluated existing representation methods
for building rules. It proposed a new classification
method of rules and developed a multi-representation
method to represent different types of rules. To the
best of the authors’ knowledge, this is the first re-
search that mapped different types of rules to their
suitable representation and proposed a representation
method that meets all of the required capabilities. The
method can help check more rules automatically,
thereby improving the quality and efficiency of the
design review process.

This paper inevitably has limitations. Firstly, more
representation methods can be evaluated, and more
suitable representations may be found. Secondly, the
evaluation results might not be 100% accurate, as 1)
representations were evaluated based on the descrip-
tions in corresponding papers without implementing
the method; and 2) many representations are still be-
ing developed. Thirdly, the method is proposed but
not tested. The testing of this proposed representation
will be included in our future research.

8 REFERENCES

Beach, T. H., Rezgui, Y., Li, H. & Kasim, T. 2015. A rule-based

semantic approach for automated regulatory

compliance in the construction sector. Expert Systems

with Applications 42: 5219-5231.

Building Research Establishment 2018. BREEAM New

Construction 2018 (UK).

Department of Health and Social Care 2017. DH health building

notes. In: CARE, D. O. H. A. S. (ed.).

Eastman, C., Lee, J.-m., Jeong, Y.-s. & Lee, J.-k. 2009.

Automatic rule-based checking of building designs.

Automation in Construction 18: 1011-1033.

Hjelseth, E. & Nisbet, N. Capturing normative constraints by use

of the semantic mark-up RASE methodology. 2011

2011. 1-10.

Hustadt, U. Do we need the closed world assumption in

knowledge representation? Knowledge

Representation Meets Databases, 1994 1994.

Macit İlal, S. & Günaydın, H. M. 2017. Computer representation

of building codes for automated compliance checking.

Automation in Construction 82: 43-58.

Ministry of Housing, C. L. G. 2010. Approved Documents.

Pauwels, P., Van Deursen, D., Verstraeten, R., De Roo, J., De

Meyer, R., Van de Walle, R. & Van Campenhout, J.

2011. A semantic rule checking environment for

building performance checking. Automation in

Construction 20: 506-518.

Preidel, C. & Borrmann, A. 2016. Towards code compliance

checking on the basis of a visual programming

language. Journal of Information Technology in

Construction 21: 402-421.

Rasdorf, W. J. & Lakmazaheri, S. 1990. Logic-based approach

for modeling organization of design standards. Journal

of computing in civil engineering 4: 102-123.

Solibri. 2022. Solibri Model Checker [Online]. Available:

https://www.solibri.com/solibri-office [Accessed

31/08/2021 2021].

Solihin, W. Lessons learned from experience of code-checking

implementation in Singapore. BuildingSMART

Conference, 2004 Singapore. BuildingSMART.

Solihin, W. & Eastman, C. 2015. Classification of rules for

automated BIM rule checking development.

Automation in Construction 53: 69-82.

Solihin, W. & Eastman, C. 2016. A knowledge representation

approach in BIM rule requirement analysis using the

conceptual graph. Journal of Information Technology

in Construction 21: 370-402.

Soliman-Junior, J., Formoso, C. T. & Tzortzopoulos, P. 2020. A

semantic-based framework for automated rule

checking in healthcare construction projects. Canadian

Journal of Civil Engineering 47: 202-214.

Sowa, J. F. 1976. Conceptual Graphs for a Data Base Interface.

IBM Journal of Research and Development 20: 336-

357.

Tan, X., Hammad, A. & Fazio, P. 2010. Automated Code

Compliance Checking for Building Envelope Design.

Journal of Computing in Civil Engineering 24: 203-

211.

Vaishnavi, V. K. 2007. Design science research methods and

patterns: innovating information and communication

technology. Auerbach Publications.

Zhang, J. & El-Gohary Nora, M. 2017. Semantic-Based Logic

Representation and Reasoning for Automated

Regulatory Compliance Checking. Journal of

Computing in Civil Engineering 31: 04016037.

Zhang, Z., Ma, L. & Broyd, T. 2022. Towards Fully-automated

Code Compliance Checking Of Building Regulations:

Challenges For Rule Interpretation And

Representation. 2022 European Conference on

Computing in Construction. Ixia, Rhodes, Greece.

Zhang, Z., Nisbet, N., Ma, L. & Broyd, T. [No date]. Capabilities

of rule representations for automatic compliance

checking. Unpublished.

https://www.solibri.com/solibri-office

