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Preface

The evolution of the internet is underway, where immersive virtual 3D environments (commonly
known as metaverse or telelife) will replace flat 2D interfaces. Crucial ingredients in this transforma-
tion are next-generation displays and cameras representing genuinely 3D visuals while meeting
the human visual system’s perceptual requirements.

This course will provide a fast-paced introduction to optimization methods for next-generation
interfaces geared towards immersive virtual 3D environments. Firstly, we will introduce lensless
cameras for high dimensional compressive sensing (e.g., single exposure capture to a video or one-
shot 3D). Our audience will learn to process images from a lensless camera at the end. Secondly,
we introduce holographic displays as a potential candidate for next-generation displays. By the
end of this course, you will learn to create your 3D images that can be viewed using a standard
holographic display. Lastly, we will introduce perceptual guidance that could be an integral part
of the optimization routines of displays and cameras. Our audience will gather experience in
integrating perception to display and camera optimizations.

This course targets a wide range of audiences, from domain experts to newcomers. To do so,
examples from this course will be based on our in-house toolkit to be replicable for future use.
The course material will provide example codes and a broad survey with crucial information on
cameras, displays and perception.
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Prerequisite

The material for this course assumes some basic assumptions about the course participants.
The participants in the audience should have some familiarity with concepts such as Metaverse,
Telelife [4], virtual reality and augmented reality. Participants can be from various technical back-
grounds but are willing to advance their understanding of the optimization side of displays, cam-
eras or perception. The course material will describe the base hardware used in the demonstrated
optimizations. However, the lecturers will not cover how to build this hardware from the ground
up. Instead, they will provide a quick overview and cite relevant resources from the most re-
cent literature. The attendees are also expected to be knowledgeable or willing to learn Python
programming language, modern machine learning libraries, signal theory, and optics. But most
importantly, above-average interest in optimizing future’s devices is a must.

The code material of this course is a result of various research works from the Computational
Light Laboratory that was conducted in the passing one-year timeframe (2021-2022). These re-
search works include new methods for foveated rendering and image statistics [5], learned tech-
niques for holographic light transport [1], learned optimizations for multiplane holography [2],
perceptually guided hologram generation routines in displays [6] and learned optimizations for
lensless cameras [3].

Individuals willing to replicate the outcome of our materials from this course on their local ma-
chines have to install several pieces of software in their operating systems. Such individuals must
be familiar with the Python programming language, and they should install Python and Jupyter
Notebooks in their operating systems. In addition, these individuals will need to install Torch with
its Python bindings, Matplotlib and plotly libraries for plotting purposes while using the provided
Jupyter Notebooks. When we compiled this material, our production machines used the Python
distribution 3.9.7, Torch distribution 1.9.0, Matplotlib distribution 3.3.4 and Jupyter Notebook
distribution 6.2.0. As a final piece, please make sure to install our library using:

[1]: pip install odak

At the time of this course, Odak is at version 0.2.0. The participants willing to go beyond this
course and learn more about relevant research are welcome to reach out to the lecturers via email.
In addition, Computational Light Laboratory offers seminars from experts on relevant topics. Fi-
nally, Computational Light Laboratory also invites all attendees to a research hub formulated as a
Slack Group. This way, curious readers and attendees of our course can keep up-to-date and meet
more folks in the relevant fields.
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Lecturers

Koray Kavalı

PhD Candidate, University College London, United Kingdom

E-mail: kkavakli@ku.edu.tr

Koray Kavaklı is a PhD student in Computational Light Laboratory at University College Lon-
don. He has completed his M.Sc. degree in Optical Microsystems Laboratory at Koç University.
He received his B.S. degrees from Koç University Electrical and Electronics Engineering and B.A.
in Business Administration. During his M.Sc. studies, he worked as a research engineer in CY
Vision, Turkey. He worked as a research engineer in CY Vision, Istanbul. His research includes
developing computer-generated holographic displays with novel graphics pipelines, light trans-
port modelling, and biomedical applications of the holographic displays.

David Robert Walton

Postdoctoral Researcher, University College London, United Kingdom

E-mail: david.walton.13@ucl.ac.uk

David Robert Walton is a postdoctoral researcher working in the Virtual Environments and Com-
puter Graphics group at University College London (UCL) in the United Kingdom. He previously
completed an EngD working with UCL and Imagination Technologies on computer vision and
rendering techniques for improved lighting in augmented reality. His current research focuses on
computer graphics, novel displays and human perception, particularly how properties of visual
perception can aid in developing efficient graphics algorithms and novel display hardware.

Nick Antipa

Assistant Professor, University of California, San Diego, United States of America

E-mail: nantipa@eng.ucsd.edu

Nick Antipa is an assistant professor in Electrical and Computer engineering where his lab focuses
on computational imaging. He received his PhD in Computational Imaging at UC Berkeley in the
Electrical Engineering and Computer Sciences department with Laura Waller and Ren Ng. Prior
to his time at Berkeley, Nick worked as an optical engineer at Lawrence Livermore National Lab,
designing 3D metrology equipment in support of the National Ignition Facility. Nick received his
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MS in Optics from the University of Rochester in 2009, and BS in Optical Science and Engineering
at UC Davis in 2008.

Rafał Mantiuk

Professor, University of Cambridge, United Kingdom

E-mail: rafal.mantiuk@cl.cam.ac.uk

Rafał K. Mantiuk is a Professor of Graphics and Displays at the Department of Computer Science
and Technology, the University of Cambridge in the United Kingdom. He received PhD from the
Max-Planck Institute for Computer Science in Germany. His recent interests focus on computa-
tional displays, rendering and imaging algorithms that adapt to human visual performance and
deliver the best image quality given limited resources, such as computation time or bandwidth.
He contributed to early work on high dynamic range imaging, including quality metrics (HDR-
VDP), video compression and tone-mapping.

Douglas Lanman

Director of Display Systems Research, Facebook Reality Labs, United States of America

E-mail: douglas.lanman@fb.com

Douglas Lanman is the Director of Display Systems Research at Reality Labs, where he leads
investigations into advanced AR/VR display and imaging technologies. He received a B.S. in
Applied Physics with Honors from Caltech in 2002 and M.S. and Ph.D. degrees in Electrical Engi-
neering from Brown University in 2006 and 2010, respectively. He was a Senior Research Scientist
at NVIDIA Research from 2012 to 2014, a Postdoctoral Associate at the MIT Media Lab from 2010
to 2012, and an Assistant Research Staff Member at MIT Lincoln Laboratory from 2002 to 2005.

http://www.cl.cam.ac.uk/~rkm38/
https://alumni.media.mit.edu/~dlanman/


Kaan Akşit

Associate Professor, University College London, United Kingdom

E-mail: k.aksit@ucl.ac.uk

Kaan Akşit is an Associate Professor in the computer science department at University College
London, where he leads the Computational Light Laboratory. Kaan received his PhD degree in
electrical engineering at Koç University, Turkey, in 2014. He received an M.Sc. degree in electrical
power engineering from RWTH Aachen University, Germany, in 2010. He obtained a B.S. degree
in electrical engineering from Istanbul Technical University, Turkey, in 2007. He worked as a
research intern in Philips Research, the Netherlands, and Disney Research, Switzerland, in 2009
and 2013, respectively. In addition, he was a scientist at NVIDIA, the USA, between 2014 and
2020.

https://kaanaksit.com


Course Overview

5 minutes: Welcome and Introductions

Kaan Akşit Welcoming the audience, Describing the aims and objectives of the course, Highlighting
the target audience and Introducing lecturers.

20 minutes: Keynote on future interfaces

Douglas Lanman An analysis of issues in the current day vision and visuals, and a prime outlook
on future’s devices.

30 minutes: Next-generation Compressive Sensing: Lensless Cameras

Nick Antipa A survey on state-of-art research on lensless cameras with research highlights and
their promises for future’s interfaces. Basic concepts and descriptions will be provided related
to lensless cameras. In the next step,an interactive coding session will be provided to demon-
strate how to process images from a lensless camera using the Alternating Direction Method of
Multipliers (ADMM), vanilla Gradient-Descent (GD) and Fast Iterative Shrinkage-Thresholding
Algorithm (FISTA) methods.

45 minutes: Next-generation Computational Displays: Holographic Dis-
plays

Kaan Akşit, Koray Kavaklı and David Robert Walton A survey on state-of-art research on holographıc
dısplays wıth research highlights and their promises for future’s interfaces. Basic concepts and
descriptions will be provided related to holographic displays. The survey is followed by an inter-
active coding session to demonstrate how to create computer-generated holograms for a standard
holographic display using Gerchberg-Saxton (GS), Vanilla Gradient-Descent (GD) and Stochastic
Gradient Descent (SGD). In addition, an interactive coding session to demonstrate how to derive
a perceptually guided gaze-contingent loss function and how to use such functions on a standard
holographic display will also be provided.
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30 minutes: Practical models of Perception in Graphics

Rafał Mantiuk A brief tutorial on modelling the visual quality using psychophysical models of
contrast sensitiviity, luminance masking and contrast masking. The tutorial will be illustrated
with examples and ready-to-use code.
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Computational Displays at SIGGRAPH
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Why Holographic Displays? 
And why now?



Slinger, Chris, Colin Cameron, and Maurice Stanley. "Computer-generated holography as a generic display technology." Computer 38, no. 8 
(2005): 46-53.

 A holographic display aims to produce a targeted light field using diffraction and interference phenomena.  

Holographic display
showing a hologram

Light Fields
2D Image

3D Image

Holographic displays can generate 2D or 3D images at any optical depth!



 A holographic display aims to produce a targeted light field using diffraction and interference phenomena.  

Diffraction

Born, Max, and Emil Wolf. Principles of optics: electromagnetic theory of propagation, interference and diffraction of light. Elsevier, 2013.

Light tends to bend around corners.

Corner

Corner

Inaccurate modeling in other techniques degrades effective resolution!



 A holographic display aims to produce a targeted light field using diffraction and interference phenomena.  

Born, Max, and Emil Wolf. Principles of optics: electromagnetic theory of propagation, interference and diffraction of light. Elsevier, 2013.

Interference
Light beams can amplify or cancel each other.

Same wavelength (color)

+ =

+ = 0

Size of a pixel

Boost in resolution and brightness!



Hologram
Diffractive optics Diffraction

Grating*

*Diffractive Optical Element (DOE)

Collimated 
beam Same wavelength 

(colour)

 A holographic display aims to produce a targeted light field using diffraction and interference phenomena.  



 A holographic display aims to produce a targeted light field using diffraction and interference phenomena.  

Texas Instruments
Thorlabs
Holoeye
JasperDisplay * Consult with the lecturers to learn more about this specific 

algorithm to generate shown result.



Holography can provide true dark levels and true dynamic range.

A large color gamut can be achieved with lasers.

Instant 2D visuals at any depth or true 3D visuals within the same display.

A dead pixel is an ancient relic.

Computer-generated holography promises unmatched resolution characteristics.

Full control with Holography: Polarization, Amplitude, 
Phase, Interference, Diffraction

Light-efficient projection, Wide dynamic 
range, High resolution, Solid-state steering

COMPUTER-GENERATED HOLOGRAPHY: ACTIVE RESEARCH PROBLEM

 A holographic display aims to produce a targeted light field using diffraction and interference phenomena.  
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Born, Max, and Emil Wolf. Principles of optics: electromagnetic theory of propagation, interference and diffraction of light. Elsevier, 2013.
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Kavaklı, Koray, Hakan Urey, and Kaan Akşit. "Learned holographic light 
transport." Applied Optics (2021). (INVITED)

https://github.com/complight/realistic_holography
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Bandlimited Angular Spectrum, Transfer Function 
Fresnel, Impulse Response Fresnel and Fraunhofer

See Odak.learn.wave and Odak.wave for more!



x( )
Illumination

= |2|
ImageHologram

*
Light 

Transport

Im
ag

e

How do we optimize holograms with this model?



Gerchberg-Saxton Algorithm
import torch

from odak.learn.wave import calculate_phase, calculate_amplitude, wavenumber, propagate_beam, 

set_amplitude, generate_complex_field

from odak.learn.tools import zero_pad, crop_center, save_image, load_image

from odak import np

from tqdm import tqdm

R. W. Gerchberg and W. O. Saxton. A Practical Algorithm for the Determination of 
Phase from Image and Diffraction Plane Pictures. Optik, 1972.

wavelength = 515e-9

k = wavenumber(wavelength)

dx = 0.000008

resolution = [1080,1920]

distance = 0.15

slm_range = 2*np.pi

dynamic_range = 255

phase = torch.rand(resolution[0], resolution[1])

target = load_image('target_image.png')[:,:,1]/255.

amplitude = torch.ones_like(target)

hologram = generate_complex_field(amplitude,phase)

propagation_type = 'TR Fresnel'

hologram = zero_pad(hologram)

recon_field = propagate_beam(hologram, k, distance, dx, wavelength, propagation_type)

recon_field = crop_center(recon_field) 

iteration_number = 100

t = tqdm(range(iteration_number), leave=False)

for i in t:

hologram_padded = zero_pad(hologram)

reconstruction = propagate_beam(hologram_padded, k, distance, dx, wavelength, propagation_type)

reconstruction = crop_center(reconstruction)

reconstruction_amp = calculate_amplitude(reconstruction)

reconstruction_intensity = (reconstruction_amp/reconstruction_amp.max())**2

save_image('reconstructed_image.png',reconstruction_intensity,cmin=0.,cmax=1.)

phase_hologram = calculate_phase(hologram)

phase_only_hologram = (phase_hologram%slm_range)/slm_range*dynamic_range

save_image('phase_only_hologram.png',phase_only_hologram)

recon_field = set_amplitude(recon_field,target)

hologram = set_amplitude(hologram, amplitude)  

recon_field = zero_pad(recon_field)

hologram = propagate_beam(recon_field, k, -distance, dx, wavelength, 

propagation_type)

hologram = crop_center(hologram)

odak.learn.wave.gerchberg_saxton



Gradient Descent Algorithm
import torch

from odak.learn.wave import calculate_phase, calculate_amplitude, wavenumber, propagate_beam, 

set_amplitude, generate_complex_field

from odak.learn.tools import zero_pad, crop_center, save_image, load_image

from odak import np

from tqdm import tqdm
wavelength = 515e-9

k = wavenumber(wavelength)

dx = 0.000008

resolution = [1080,1920]

distance = 0.15

slm_range = 2*np.pi

dynamic_range = 255

phase = torch.rand(resolution[0], resolution[1])

target = load_image('target_image.png')[:,:,1]/255.

amplitude = torch.ones_like(target)

hologram = generate_complex_field(amplitude,phase)

propagation_type = 'TR Fresnel'
loss_function = torch.nn.MSELoss(reduction='none')

alpha = 0.1

phase_hologram = calculate_phase(hologram)

phase_only_hologram = (phase_hologram%slm_range)/slm_range*dynamic_range

save_image('phase_only_hologram.png',phase_only_hologram)

hologram_padded = zero_pad(hologram)

reconstruction = propagate_beam(hologram_padded, k, distance, dx, wavelength, propagation_type)

reconstruction = crop_center(reconstruction)

reconstruction_amp = calculate_amplitude(reconstruction)

reconstruction_intensity = (reconstruction_amp/reconstruction_amp.max())**2

save_image('reconstructed_image.png',reconstruction_intensity,cmin=0.,cmax=1.)

Jingzhao Zhang, Nicolas Pégard, Jingshan Zhong, Hillel Adesnik, and Laura Waller. 
3D computer-generated holography by non-convex optimization. Optica, 2017.

iteration_number = 100

t = tqdm(range(iteration_number), leave=False)

    hologram_padded = zero_pad(hologram)

    recon_field = propagate_beam(hologram_padded, k, distance, dx, wavelength, propagation_type)

    recon_field_cropped = crop_center(recon_field)

    recon_intensity = calculate_amplitude(recon_field_cropped)**2

    loss = loss_function(recon_intensity, target)

    hologram_phase = calculate_phase(hologram_updated)

    hologram = generate_complex_field(amplitude, hologram_phase)

    t.set_description('Loss:{:.4f}'.format(torch.mean(loss)))

    loss_field = generate_complex_field(loss, calculate_phase(recon_field_cropped))
    loss_field_padded = zero_pad(loss_field)

    loss_propagated_padded = propagate_beam(loss_field_padded, k, -distance, dx, wavelength, 

propagation_type)

    loss_propagated = crop_center(loss_propagated_padded)  

    hologram_updated = hologram - alpha * loss_propagated

odak.learn.wave.gradient_descent



Double Phase Method

C. K. Hsueh and A. A. Sawchuk. Computer-generated double-phase holograms. 
Applied Optics, 1978.

import torch

from odak.learn.wave import calculate_phase, calculate_amplitude, wavenumber, propagate_beam, 

set_amplitude, generate_complex_field

from odak.learn.tools import zero_pad, crop_center, save_image, load_image

from odak import np

from tqdm import tqdm
wavelength = 515e-9

k = wavenumber(wavelength)

dx = 0.000008

resolution = [1080,1920]

distance = 0.30

slm_range = 2*np.pi

dynamic_range = 255

illumination_amplitude = torch.ones(resolution[0], resolution[1])

target = load_image('target_image.png')[:,:,1]/255.

amplitudes = calculate_amplitude(hologram)

amplitudes = amplitudes / amplitudes.max()

phases = calculate_phase(hologram)

phase_zero_mean = phases - torch.mean(phases)

phase_offset = torch.arccos(amplitudes)

phase_low = phase_zero_mean - phase_offset

phase_high = phase_zero_mean + phase_offset

phase_only = torch.zeros_like(reconstruction_phase)

phase_only[0::2, 0::2] = phase_low[0::2, 0::2]

phase_only[0::2, 1::2] = phase_high[0::2, 1::2]

phase_only[1::2, 0::2] = phase_high[1::2, 0::2]

phase_only[1::2, 1::2] = phase_low[1::2, 1::2]

hologram = generate_complex_field(illumination_amplitude, phase_only)

hologram_padded = zero_pad(hologram)

reconstruction = propagate_beam(hologram_padded, k, distance, dx, wavelength, propagation_type)

reconstruction = crop_center(reconstruction)

reconstruction_amp = calculate_amplitude(reconstruction)

reconstruction_intensity = (reconstruction_amp/reconstruction_amp.max())**2

save_image('reconstructed_image.png',reconstruction_intensity,cmin=0.,cmax=1.)

phase_hologram = calculate_phase(hologram)

phase_only_hologram = (phase_hologram%slm_range)/slm_range*dynamic_range

save_image('phase_only_hologram.png',phase_only_hologram)

reconstruction_phase = torch.rand(resolution[0], resolution[1])

reconstruction_amplitude = target**0.5

reconstruction = generate_complex_field(reconstruction_amplitude,reconstruction_phase)
propagation_type = 'TR Fresnel'

reconstruction_padded = zero_pad(reconstruction)

hologram_padded = propagate_beam(reconstruction_padded, k, -distance, dx, wavelength, 

propagation_type)

hologram = crop_center(hologram_padded)

odak.learn.wave.shift_w_double_phase



Target Image with Foveated BlurTarget Image 



Target Image with Foveated Blur and NoiseTarget Image 

Chakravarthula, Praneeth, et al. "Gaze-contingent retinal speckle suppression for perceptually-matched foveated holographic displays." IEEE Transactions on Visualization and Computer Graphics 27.11 (2021): 4194-4203.



Target Image Target Image Ventral Metamer

Walton, David R., et al. "Beyond blur: Real-time ventral metamers for foveated rendering." ACM Transactions on Graphics 40.4 (2021): 1-14.Freeman, Jeremy, and Eero P. Simoncelli. "Metamers of the ventral stream." Nature neuroscience 14.9 (2011): 1195-1201.



Optimising Metameric Loss

Walton, David R., et al. "Metameric Varifocal Holograms." 2022 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). IEEE, 2022.

http://www.youtube.com/watch?v=Tb_sEPDkVaY


GD: Metameric Loss
import torch

from odak.learn.wave import calculate_phase, calculate_amplitude, wavenumber, propagate_beam, 

set_amplitude, generate_complex_field

from odak.learn.tools import zero_pad, crop_center, save_image, load_image

from odak import np

from tqdm import tqdm

wavelength = 515e-9

k = wavenumber(wavelength)

dx = 0.000008

resolution = [512,512]

distance = 0.15

slm_range = 2*np.pi

dynamic_range = 255

propagation_type = 'TR Fresnel'

target = load_image('target_image.png')[:,:].to(device)/255.

amplitude = torch.ones_like(target)

phase = torch.rand_like(target, requires_grad=True)

optim = torch.optim.Adam(params=[phase], lr=0.1)

loss_function = MetamericLoss(device=device, alpha=0.08,\

    real_image_width=0.2, real_viewing_distance=0.7)

iteration_number = 100

t = tqdm(range(iteration_number), leave=False)

for i in t:

    optim.zero_grad()

    hologram = generate_complex_field(amplitude, phase)

    hologram_padded = zero_pad(hologram)

    recon_field = propagate_beam(hologram_padded, k, distance, dx, wavelength, propagation_type)

    recon_field_cropped = crop_center(recon_field)

    recon_intensity = calculate_amplitude(recon_field_cropped)**2

hologram_padded = zero_pad(hologram)

reconstruction = propagate_beam(hologram_padded, k, distance, dx, wavelength, propagation_type)

reconstruction = crop_center(reconstruction)

reconstruction_amp = calculate_amplitude(reconstruction)

reconstruction_intensity = (reconstruction_amp/reconstruction_amp.max())**2

save_image('reconstructed_image.png',reconstruction_intensity,cmin=0.,cmax=1.)

phase_hologram = calculate_phase(hologram)

phase_only_hologram = (phase_hologram%slm_range)/slm_range*dynamic_range

save_image('phase_only_hologram.png',phase_only_hologram)

from odak.learn.perception import MetamericLoss

device = torch.device('cuda')

    loss = loss_function(recon_intensity[None,None,...], target[None,None,...], gaze=[0.5, 0.5])

    loss.backward()

    optim.step()

    t.set_description('Loss:{:.4f}'.format(torch.mean(loss)))

Target Image Phase Map

Reconstructed Intensities Fovea

Periphery

Optimization

https://github.com/complight/metameric_holography
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Join the conversation

https://complightlab.com/research_hub/ 
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Perception in graphics, displays and cameras

• If you cannot make it perfect, make it look good

RAFAŁ MANTIUK, UNIV. OF CAMBRIDGE

*

Display spectral emission - metamerism

Camera’s 

Bayer pattern

Display’s subpixels Color wheel in DLPs Adaptive shading

and refresh rate

Foveated rendering

Uniform colour spaces



Outline

1. Light and colour

2. Sensitivity to luminance

3. Contrast sensitivity
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Additive light mixture demonstration RGB

RAFAŁ MANTIUK, UNIV. OF CAMBRIDGE



Additive light mixture demonstration RG + white

RAFAŁ MANTIUK, UNIV. OF CAMBRIDGE

In display-encoded colour space In linear colour space 

Incorrect



Linear colour spaceDisplay encoded colour space

• Examples: sRGB, Adobe RGB, BT.2100 PQ 

RGB

• a.k.a. gamma-encoded or gamma-corrected 

(non HDR)

• The values sent to display (pixel values)

• Approximately perceptually uniform

• Can be efficiently encoded as integer

• Examples: linear RGB, XYZ, LMS

• Used to model physics of light and 

perception

− Can model linear mixtures of colours

− Used in physically-based rendering

• Perceptually non-uniform

• Requires higher bit-depth (12-16 bits) or 

floating points

RAFAŁ MANTIUK, UNIV. OF CAMBRIDGE

Linear and display-encoded colour spaces

𝑅 𝐺 𝐵 = 𝑅′2.2 𝐺′2.2 𝐵′2.2𝑅′ 𝐺′ 𝐵′ = 𝑅1/2.2 𝐺1/2.2 𝐵1/2.2

Linear RGB to display-encoded R’G’B’ Display-encoded R’G’B’ to linear RGB



Perceptual rendering pipeline

RAFAŁ MANTIUK, UNIV. OF CAMBRIDGE

Geometry 

processing
Shading

Tone 

mapping
Display 

encoding

Display

Viewing

Quality 

assessment



Outline

1. Light and colour

2. Sensitivity to luminance

3. Contrast sensitivity
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Sensitivity to luminance

RAFAŁ MANTIUK, UNIV. OF CAMBRIDGE

• Weber’s law – the just-noticeable difference is 

proportional to the magnitude of a stimulus

The smallest 

detectable 

luminance 

difference

Background 

(adapting) 

luminance

Constant

L

ΔLTypical stimuli:

Ernst Heinrich Weber
[From wikipedia]

Δ𝐿

𝐿
= 𝑘



Consequence of the Weber-law

• Smallest detectable difference in luminance

• Adding or subtracting luminance will have different 

visual impact depending on the background luminance

• Unlike display-encoded luma values, luminance values 

are not perceptually uniform!

RAFAŁ MANTIUK, UNIV. OF CAMBRIDGE

L ΔL

100 cd/m2 1 cd/m2

1 cd/m2 0.01 cd/m2

For k=1%

Δ𝐿

𝐿
= 𝑘



How to make luminance (more) perceptually 

uniform?

• Using “Fechnerian” integration

RAFAŁ MANTIUK, UNIV. OF CAMBRIDGE

luminance - L

re
s
p
o
n
s
e
 -

R

1

ΔL

dR

dl
(L) =

1

DL(L)
Derivative of 

response
Detection 

threshold

Luminance 

transducer: 𝑅 𝐿 = න
𝐿𝑚𝑖𝑛

𝐿 1

Δ𝐿(𝑙)
𝑑𝑙



Assuming the Weber law

• and given the luminance transducer

• the response of the visual system to light is:

RAFAŁ MANTIUK, UNIV. OF CAMBRIDGE

Δ𝐿

𝐿
= 𝑘

𝑅 𝐿 = න
1

Δ𝐿(𝑙)
𝑑𝑙



Fechner law

• Response of the visual system to luminance is approximately

logarithmic

• This is a good 1st order approximation

− Especially when only relative luminance values are known

• Luminance should be plotted only on the logarithmic scale

RAFAŁ MANTIUK, UNIV. OF CAMBRIDGE

Gustav Fechner
[From Wikipedia]

 

R(L) = aln(L)



But…the Fechner law does not hold for the full 

luminance range

• Because the Weber law does not hold either

• Threshold vs. intensity function:

RAFAŁ MANTIUK, UNIV. OF CAMBRIDGE

L

ΔL

The Weber law 

region

DeVries-Rose 

region



Weber-law revisited

• If we allow detection threshold to vary with luminance according to the t.v.i. 

function:

• we can get a more accurate estimate of the “response”:

RAFAŁ MANTIUK, UNIV. OF CAMBRIDGE

R(L) =
1

tvi(l)
dl

0

L

ò

L

ΔL tvi(L)



Fechnerian integration and Stevens’ law

RAFAŁ MANTIUK, UNIV. OF CAMBRIDGE

R(L) - function 

derived from the 

t.v.i. function

R(L) =
1

tvi(l)
dl

0

L

ò



Applications of JND encoding – R(L)

• DICOM grayscale function

− Function used to encode signal for medial monitors

− 10-bit JND-scaled (just noticeable difference)

− Equal visibility of gray levels

• HDMI 2.0a (HDR10)

− PQ (Perceptual Quantizer) encoding

− Dolby Vision

− To encode pixels for high dynamic range images and video

• HDR quality metrics

− PU21-PSNR, HDR-VDP, HDR-VQM

RAFAŁ MANTIUK, UNIV. OF CAMBRIDGE



Outline

1. Light and colour

2. Sensitivity to luminance

3. Contrast sensitivity
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Contrast sensitivity

Rafał Mantiuk, Univ. of Cambridge

Contrast Sensitivity



Rafał Mantiuk, Univ. of Cambridge



Modeling contrast detection

RAFAŁ MANTIUK, UNIV. OF CAMBRIDGE

LGN
Visual

Cortex

PhotoreceptorsLens

Retinal ganglion cells
Cornea

Adaptation
Spectral sensitivity Spatial- / orientation- / temporal-

Selective channels

Luminance masking

Defocus &

Aberrations
Glare

Colour opponency
P & M visual pathways Contrast masking

Integration

Detection

Contrast Sensitivity Function



Gabor patches

RAFAŁ MANTIUK, UNIV. OF CAMBRIDGE

Fixed size

Fixed cycles

Background 

luminance
Modulation

Spatial 

frequency

Gaussian 

aperture



Detection and sensitivity

• 2-Alternative-Forced-Choice experiment

• Michelson contrast

• Sensitivity

RAFAŁ MANTIUK, UNIV. OF CAMBRIDGE

Luminance modulation m

P=0.75

Detection 

threshold

Contrast detected with 

probability 0.75

A B
Does A or B contain the 

pattern?



Contrast Sensitivity Function

RAFAŁ MANTIUK, UNIV. OF CAMBRIDGE

Spatial frequency

Orientation

Temporal frequency

Background luminance 

and colour

Stimulus size

Viewing distance

Eccentricity

𝐶𝑆𝐹 = 𝑆(𝜌, 𝜃, 𝜔, 𝐿, Δ𝐿, 𝑖2, 𝑑, 𝑒)

Colour direction



Contrast Sensitivity Models

RAFAŁ MANTIUK, UNIV. OF CAMBRIDGE

• [1] Barten, Peter G. J. Contrast Sensitivity of the Human Eye and Its Effects on Image Quality. SPIE Press, 1999.

• [2] Mantiuk, Rafał K., Minjung Kim, Maliha Ashraf, Qiang Xu, M. Ronnier Luo, Jasna Martinovic, and Sophie Wuerger. “Practical Color Contrast Sensitivity 

Functions for Luminance Levels up to 10000 cd/m2.” Color and Imaging Conference 2020, no. 28 (November 4, 2020): 1–6. 

https://doi.org/10.2352/issn.2169-2629.2020.28.1.

• [3] Mantiuk, Rafał K, Maliha Ashraf, and Alexandre Chapiro. “StelaCSF - A Unified Model of Contrast Sensitivity as the Function of Spatio-Temporal 

Frequency , Eccentricity , Luminance and Area.” ACM Transactions on Graphics 41, no. 4 (2022): 145. https://doi.org/10.1145/3528223.3530115.

Spatial freq. Temp. freq. Luminance Colour Orientation Eccentricity Size

Barten’s [1]
✔ ✖ ✔ ✖ ✔ ✖ ✔

scCSF [2]
✔ ✖ ✔ ✔ ✖ ✖ ✔

stelaCSF [3]
✔ ✔ ✔ ✖ ✖ ✔ ✔



spatio-chromatic CSF [scCSF]

RAFAŁ MANTIUK, UNIV. OF CAMBRIDGE

▪ Colour discrimination as a function of

– Background colour and luminance 

[LMS]

– Spatial frequency [cpd]

– Size [deg]



stelaCSF – Spatio-Temporal Eccentricity 

Luminance Area CSF
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Example: CSF and the resolution

• CSF plotted as the detection contrast

Δ𝐿

𝐿𝑏
= 𝑆−1

• The contrast below each line is 

invisible

• Maximum perceivable resolution 

depends on luminance

RAFAŁ MANTIUK, UNIV. OF CAMBRIDGE

iPhone 4

Retina display

HTC Vive Pro

CSF model: Barten, P. G. J. (2004). 

https://doi.org/10.1117/12.537476

Expected 

contrast in 

natural images

https://doi.org/10.1117/12.537476


Example: quality degradation due to blur

RAFAŁ MANTIUK, UNIV. OF CAMBRIDGE

x =

Quality degradation       Visual energy



Summary

1. Light and colour

− Perception and physics/optics is modelled in linear colour spaces

2. Sensitivity to luminance

− Logarithm of luminance accounts for Weber’s law

− PU21 or PQ are better approximations – but rely on absolute values

3. Contrast sensitivity

− End-to-end model of contrast detection

− Sets the limits of visual system, helpful in quality prediction
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