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ABSTRACT
Malware affects millions of users worldwide, impacting the daily

lives of many people as well as businesses. Malware infections are

increasing in complexity and unfold over a number of stages. A ma-

licious downloader often acts as the starting point as it fingerprints

the victim’s machine and downloads one or more additional mal-

ware payloads. Although previous research was conducted on these

malicious downloaders and their Pay-Per-Install networks, limited

work has investigated how the profile of the victim machine, e.g.,

its characteristics and software configuration, affect the targeting

choice of cybercriminals.

In this paper, we operate a large-scale investigation of the re-

lation between the machine profile and the payload downloaded

by droppers, through 151,189 executions of malware downloaders

over a period of 12 months. We build a fully automated framework

which uses Virtual Machines (VMs) in sandboxes to build custom

user and machine profiles to test our malicious samples. We then

use changepoint analysis to model the behavior of different down-

loader families, and perform analyses of variance (ANOVA) on the

ratio of infections per profile. With this, we identify which machine

profile is targeted by cybercriminals at different points in time.

Our results show that a number of downloaders present different

behaviors depending on a number of features of a machine. Notably,

a higher number of infections for specific malware families were

observed when using different browser profiles, keyboard layouts

and operating systems, while one keyboard layout obtained fewer

infections of a specific malware family.

Our findings bring light to the importance of the features of a

machine running malicious downloader software, particularly for

malware research.
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1 INTRODUCTION
Malicious software, i.e., malware, infects tens of thousands of ma-

chines every day around the globe [1].

Once a user has visited a malicious link and has been redirected,

an exploit kit or the website’s code will infect themwith a malicious

software. This malicious software can take many forms, one of them

being a downloader software. In this scenario, its sole purpose will

be to download other malicious software.

For example, a malicious actor will infect several machines with

their downloader, and then sell the access to one or more other crim-

inals, who will install spam bots, information stealers, ransomware,

etc., on the machine. This process is part of the Pay-Per-Install (PPI)

distribution model, where the downloader’s author will sell access

to the infected machine to another malicious actor through the

PPI service. Figure 1 illustrates the PPI distribution model. These

transactions are made privately, and information regarding these

transactions, the actors involved, and the platforms on which they

occur is difficult to obtain.

Particularly, little is known on how cybercriminals select the

malicious file(s) to send to the victim through the downloader, i.e.,

how much, if any, fingerprinting is done on the victim and their

machine, to decide which malware to infect them with.

Researchers have studied malware in multiple previous research,

while downloader software used for malware is often overlooked

in research. Some works have studied downloader software, mainly

through a study of PPI models [4, 17, 31], without a large focus on

what impact the various features of the victim machine has on the

PPI network customer’s targeting choice.

In this paper, we will use a machine’s features to test whether the

machine is targeted by one or more cybercriminals, by executing

various families of downloaders daily and identifying downloaded

malicious payloads, over a one-year period.

Figure 1: The Pay-Per-Install distribution model. 1) Cyber-
criminals pay a PPI service to install their malware on ma-
chines. 2) A PPI affiliate obtains malware to install on vic-
tim machines through the PPI service. 3) The PPI affiliate
installs malware payloads on victims infected with its mali-
cious downloader.

With our approach, we aim at reverse engineering the target-

ing choices of criminals. However, with respect to classic reverse

engineering techniques that analyze the code, we deduce what
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influenced the decision-making process of cybercriminals by si-

multaneously running multiple VMs with different configurations

(profiles). This approach is more time effective and will not be in-

fluenced by the complexity and obfuscation of the downloader’s

code.

We will achieve this by executing a downloader family’s samples

over a large set of Virtual Machines (VMs) with different profiles,

in order to establish which VM gets infected with which family

of malware. Thus, our hypothesis is the following: the malicious

software sent to a victim through a downloader will vary according

to the machine’s features.

While a downloader and malware can be combined in a single

malware, we will, in this work, focus on analyzing single down-

loaders. In order to verify our hypothesis, our research will aim

at:

(1) Establishing an automated sandboxed testing environment

for downloaders.

(2) Establishing the correlation between the profile of the victim

machine and the downloaded malicious payload(s).

Although previous research has analyzed user profiles more at

risk through clinical trials [21], the correlation between the user

and the payload requested by a downloader has not been studied

in detail.

In summary, this paper makes the following contributions:

(1) We establish a fully automated sandboxed testing environ-

ment, capable of running malicious downloader executables

on virtual machines configured to match specific machine

and user profiles.

(2) We demonstrate what cybercriminals target through PPI net-

works by observing how a number of downloaders behave

differently depending on the profile of the VM running the

executable. Our results highlight an existing link between

the malicious actors’ downloaders and the browser session,

the keyboard layout and the display language of machines.

2 RELATEDWORK
Malicious downloaders, or droppers, are often observed when ana-

lyzing malware. Although the downloader is often paired with the

malware, researchers focus more on the final malicious payload.

We present, in the following section, recent research that analyze

downloaders and their PPI networks.

2.1 Downloader Families and Samples Analysis
Some researchers have analyzed specific downloaders and large

campaigns in detail.

Rossow et al. [27] observed a large number of malware down-

loaders from 23 families between February 2010 and February 2012

and identified their properties and behavior. They identified the

means of communication they use to reach their command and

control (C&C) server or other infected machines, by reassembling

and parsing numerous carrier protocols.

They observed these samples over a period of time and identified

how frequently the domains and infrastructure change, and how

long the downloader remains active. Their analysis showed that

48% of downloaders actively operated for more than a year. They

then inspected how downloaders request their malicious software

to install on the machine, and recreated it to farm samples.

They observed the number of executables served, and established

that polymorphism was used by 8 of the 9 families of malware

gathered.

Kwon et al. [19] approached the analysis of downloaders by cre-

ating influence graphs of downloaders, and identifying differences

between malicious and benign graphs.

They extracted a total of 19 million influence graphs from their

dataset. An analysis of these graphs revealed that 22.4% (15,115) of

downloaders have a valid digital signature, influence graphs with

a large diameter are mostly malicious, influence graphs with slow

growth rates are mostly malicious, and malware tend to download

fewer files per domain. They then used this graph representation of

downloaders to extract several features. Using these, they employed

supervised learning to create a detection model and then identified

the most important features linked to malicious downloaders.

2.2 Pay-per-Install
Downloader software often has a presence in PPI networks. This

software is used by PPI providers to install their clients’ malware

onto compromised machines.

Caballero et al. [4] infiltrated four PPI networks and ran their

downloaders in a closed environment, fromAugust 2010 to February

2011. They harvested over a million client executables using servers

across 15 countries. They observed over time the different malware

samples downloaded by the PPI networks and clustered them into

their respective families and types, using their network activity.

They also observed the repacking rate of malware. The top 10

families show that they are repacked, i.e., their code is re-obfuscated,

every 6.5 day on average. They observed samples running anti-VM

techniques; some samples even removed or added them while in

a campaign, without any apparent reason. Another noteworthy

observation was that a number of executables extracted from the

downloaders are in fact other PPI downloaders, hinting at the fact

that there might be arbitrage in the PPI market, i.e., that PPI services

buy and resell their services between themselves to make a profit on

varying prices. The downloaded samples also differed depending on

the location of the machine, and an analysis of PPI forums showed

that the price varies according to the location of the purchase of

installs.

Kotzias et al. [17] analyzed potentially unwanted programs (PUP),

which consist in software that is approved by the user, knowingly

or not, but exhibit a behavior detrimental to them.

Their first step was to identify top PUP publishers by their signed

software name. They then clustered publishers by running a name

similarity algorithm, among other techniques. They looked at the

prevalence of PUP, and 54% of the dataset hosts had some form

of PUP installed. Compared to legitimate software, the top PUP

enterprise ranked 15th, which shows how widespread these PUPs

are. They then established a relation graph between installers to see

which installs which, and then identified PPI services by their high

count of outgoing relations and ingoing relations, which suggests

they sell installs.

They also found that the majority of PUP are installed by other

PUP. In total, they observed 71 PUP publishers that clustered to
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malware. However, this number is small in contrast to their total

number of publishers.

Thomas et al. [31] explored the ecosystem of PPI services to estab-

lish what adware they distribute. They explored the 4 largest PPIs

from their network. They established an infrastructure to collect

software distributed by these PPIs on a regular basis. They installed

downloaders from these PPIs, and observed that these downloaders

sent to their server the client’s OS and service pack version, the

Web browsers and their version, and potentially unique identifiers

including a MAC address. The server then sent 5 to 50 potential of-

fers to the downloader. In this work, they then implementedmilkers
and collected 446,852 offers through this.

They monitored the price of these offers through forums and

various websites advertising these online. They clustered the results

into families based on a multitude of characteristics.

Additionally, they analyzed the length of campaigns by looking

at offers from the PPI networks. Through the forums advertising

these, they found that the prices differ per country. Finally, they

identified the lifetime of adware sent through PPIs, which varied

from 0.75 hours to the entire monitoring window of 220 days.

Finally, Kwon et al. [20] implemented Beewolf, a software built

to identify malicious campaigns by using unsupervised learning

to identify the locksteps of malicious downloaders retrieving their

payloads. This work analyzes the global behavior of downloaders

in order to improve the detection of malicious campaigns, and not

necessarily single malicious files. It identifies overlaps between

malware delivery campaigns and PUP delivery campaigns.

2.3 Summary
While many projects have focused on improving the detection of

malicious software, exploit kits and malicious websites, download-

ers have seen less focus from the scientific community.

Some of these works [13, 25] have focused on analyzing malware

downloads, which includes the analysis of downloaders fetching

malicious payloads, although they do not focus on malicious down-

loaders behavior.

Researchers have analyzed large-scale downloader campaigns

through adware, i.e., PUP, and, although specific downloaders and

PPI networks have been studied in detail, no research has shown

the impact the user and its machine configuration have on the

downloaded malware by the downloader. More notably, no testing

framework has implemented the use of VMs that modify their

configuration while testing downloader samples.

3 METHODOLOGY
Our approach consists in building an automated sandboxed envi-

ronment, containing multiple VMs, where malicious downloader

samples of various families are run with multiple machine profiles.

Definition 1. A machine profile consists of a machine 𝑀 pos-
sessing 𝑛 associated features𝑀𝑓 = {𝑀1, 𝑀2, .., 𝑀𝑛}.

A sample is automatically tested on multiple machine profiles

in order to gather what executable(s) is downloaded depending on

which profile was used. An analysis of the time series of infections

for every feature and payload family is then performed, in order

to assess what profile is targeted by the actors behind malicious

downloaders.

Figure 2: Our framework depicting our downloader testing
environment

Definition 2. A feature 𝐹 of a machine𝑀 can be summarized as
a modifiable piece of software or hardware with a subset of 𝑙 values,
such that 𝐹 = {𝐹1, 𝐹2, .., 𝐹𝑙 }.

3.1 Testing Environment
Our first research objective is to build an automatic testing envi-

ronment to run downloaders using various machine profiles.

The design of our platform is inspired from previous research [31],

and uses the Cuckoo Sandbox [8] framework to execute samples.

The Cuckoo framework provided us with the data necessary

for our analysis, and ended up successfully capturing malware

detonations.

This testing environment consists of a cluster of machines auto-

matically launching VMs in a sandbox, according to a 1) Scheduler,

while using a predefined user profile for each machine through a 2)

Profiler. Each VM is provided with a downloader sample to run, and

data is retrieved from the execution and then compiled with the 3)

Analyzer, where the downloaded files’ malware families are also

identified. Our framework is depicted in Figure 2. Here we detail

the different sections:

Scheduler: This module receives the encrypted downloader

sample through a secure stream, asks the profiler to build a VM,

and then decrypts the sample and launches it in the VM.

Profiler: This module is responsible for following the experi-

mental design, in terms of features to test. In this module, a profile

will be built according to the current features in the queue, and

sent back to the scheduler. It will also specify the exit node, i.e., the

country, to use through a virtual private network (VPN).

Analyzer: This module is responsible for gathering data on the

execution of the downloader samples. It uses the Cuckoo sandbox

to capture network traces, process information and identify any

downloaded files. This module tests any downloaded file by the

downloader on VirusTotal [33], a platform that tests files against

multiple antivirus software. The module then establishes the file’s

family according to the naming of security vendors.

3.2 Automation Setup
Our physical testing environment consists of a cluster of 10 servers,

each one containing an Intel Xeon E5405 2.00 GHz processor and 8

GB memory. One server is used as the experiment manager, where
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Cuckoo Distributed and the VPNs are installed. This machine dis-

patches the tasks of our scheduler to the other servers’ Cuckoo

frameworks through Cuckoo Distributed. One network interface

is used to access the servers, while a separate network interface is

used for each of the VPNs, in order to isolate the Internet access of

our VMs. Every VM has Internet access only through its assigned

VPN by the scheduler. OpenVPN
1
is used to install and manage the

VPN connections. Our setup is fully automated: xCAT
2
is used to

automate the installation of Ubuntu LTS on our servers, and Ansi-

ble
3
scripts are employed to configure our setup, which consists of

the following steps:

(1) Install and configure libvirt with KVM for the virtualization

(2) Copy images of Windows XP, Windows 7 and Windows 10

on each server

(3) Create the VMs and their default snapshots

(4) Setup 10 VPNs

(5) Install and configure the Cuckoo and Cuckoo Distributed

frameworks

(6) Configure our virtualization software according to Cuckoo’s

requirements

Each server has three VMs, and our cluster totals 27 VMs which

can be used simultaneously. Our experiment and setup were ap-

proved by the Information Technology Risks Committee of our

university.

3.3 VM Hardening
An issue that can arise from testing malicious software in a sand-

box, using virtual machines, is the detection of the environment

by the malware. Some malware have been shown to use multiple

techniques to identify when they are running in a sandbox, and

subsequently terminate their malicious activity or delete them-

selves [5]. They employ sandbox and virtual machine detection to

prevent researchers and others from analyzing their software.

Modifications have been made to the virtual machines to ensure

more resilience to virtual environment and sandbox detection from

malware. The Cuckoo sandbox environment provides a disguise
module, which modifies various registry keys identifying the ma-

chine as a virtual environment. Since these registry key values are

hard-coded in the disguise module, we modified them slightly to

evade any malware also trying to identify the Cuckoo sandbox.

We opted for KVM as a virtualization software, since detection

methods appear to be more prevalent for VMware [10] and that

QEMU/KVM leaves fewer traces in the operating system.

Our virtual machines have been tested using Paranoid Fish [23],

a popular virtual machine and sandbox fingerprinting tool. In total,

50 out of 54 tests yielded success, with some tests failing due to

our limited hardware. However, upon inspection of a subset of our

samples, they did not employ most of these techniques, and the

ones present were covered by our modifications.

3.4 Choice of Features
Next, we must establish which features identify our machine profile,

and what may affect the downloader’s behavior, i.e., which features

1
https://openvpn.net/

2
https://xcat.org/

3
https://www.ansible.com/

might be targeted by cybercriminals. In this work, we use a black
box approach, i.e., we do not reverse engineer downloader software

to establish what it searches on the machine, but rather change

various features of our environment and observe possible changes

in behavior. We opted for this approach, considering there are

thousands of different samples of downloaders in our dataset, and

theymight bemodified frequently. Reverse engineering themwould

not be possible given the time and effort it requires. The malicious

hosts serving downloaders might also analyze the machine features

server side, in which case reverse engineering the samples would

at best only provide partial information.

We also opt to change features of our machines instead of mon-

itoring Windows API calls made by the downloader, in order to

limit our interactions within the VM as much as possible. This is to

prevent the detection of the research environment by the malicious

software, and to avoid impeding its execution in any way.

The features of our machines might notably be used in PPI net-

works, in order to decide which payload to install on a machine.

Previous research [31] has analyzed PPI networks and what infor-

mation adware downloaders send to their control servers. In their

analysis of 4 PPIs, they observed the following features being sent

by the downloaders:

• The operating system and service pack version

• The Web browsers installed, along with their version

• The IP address

• Potentially unique identifiers, such as the MAC address

Although these PPIs are not necessarily similar to PPIs sending

malware, using these features for our experiments will provide a

basis to follow.

Firstly, we test multiple OSes, namely Windows XP, Windows

7 and Windows 10. Windows was chosen given that it is the most

common desktop OS
4
. Windows 10 andWindows 7 were used since

they consisted in the most popular desktop OSes at the time, while

Windows XP was chosen given that it is not supported anymore

by Microsoft but still has users running it worldwide.

We used a VPN to change our location to a specific country. In

order to establish the set of countries we wish to test, we identified

the countries with the most Internet users
5
. We could not obtain a

VPN access in Japan, and thus chose to test Korea instead. We also

included Iran in order to have at least one country from the Middle

East. We could not obtain a VPN located in China, and instead used

Hong Kong as the location. Our intuition is that, at the time of

our experiments, malicious downloaders targeting China might

also target Hong Kong. In short, our list of countries consists of:

Hong Kong, Iran, the United States, Brazil, Nigeria, Korea, Russia,

Germany, Mexico, Bangladesh.

Additionally, we also add features associated with the web his-

tory and the profile of the user. In the past, some malware has been

shown to look at the keyboard or display language of a systemwhen

executed [3, 14]. Thus, we opted to also include these features. The

keyboard layouts and the display languages chosen were the top 10

4
http://gs.statcounter.com/os-market-share/desktop/worldwide/#monthly-201803-

201803-bar

5
https://www.internetworldstats.com/top20.htm



Shedding Light on the Targeted Victim Profiles of Malicious Downloaders

Category Feature

User features

Country

Browser History

Web session (browser cookies)

Configuration features

IP address

Windows OS version

Display language

Keyboard language

Table 1: Tested features of the victim machine

languages of Internet users worldwide
6
. Thus, the languages cho-

sen are: English, Chinese, Spanish, Arabic, Portuguese, Indonesian,

French, Japanese, Russian, German. The keyboard languages and

display languages are set by changing the corresponding Windows

registry keys.

Finally, we identified nine Web browser session profiles and

browser history profiles to test, based on Alexa’s categories and

their list of most popularWeb sites
7
. To create browserWeb sessions

and a browser history, we open in the VM’s browser the top tenmost

popular Web sites of the current category being tested, and wait

for them to load before beginning the experiment. Our categories

are the following: Business, Games, Health, Kids and teens, Men,

News, Social networks, Sports, Women.

A summary of our features is described in Table 1.

Other user features, such as the age, gender and income, while

being relevant, are not always possible to identify on a machine,

and thus, will not be considered in our experiments.

3.5 Downloader Experiment
Our second research objective is to establish the correlation between

user profiles and the malicious payload. Our experiments employ

our previously defined environment to run downloader samples.

The dataset, i.e., the downloader samples, is provided on a daily

basis by our security vendor partner ESET, an antivirus software

company. Each downloader sample is run, when received, on a set of

VMswith profiles testing each of the various features. Any duplicate

downloader received is discarded. After each set of tests of a down-

loader, our analyzer establishes what payload was downloaded on

the victim machine. Our experimental design is as follows:

Two downloader families are tested, each of them for a period

of 15 minutes at a time, so that any execution delay in the sample

doesn’t impact the test, and our profile set up has time to execute

in the VM. Up to 10 samples of each family are tested per day,

according to the availability in our data stream. We aim at testing

the most current and widespread malicious downloaders, that are

known to have dropped multiple types of malware.

Our initial list of families consisted of Waski, Zurgop, Pliskal,

Wauchos, Nymaim, Tovkater, Banload and Emotet, which all have

the most mentions in security vendor blogs and the research liter-

ature, at the time of the beginning of our experiments. However,

we could not obtain enough samples of Wauchos, Nymaim and

Pliskal to consistently test these three families. While it is not clear

why no samples of Pliskal were available, it is likely that Wauchos

samples were less prevalent following a large disruptive operation

by law enforcement authorities worldwide in late 2017 [11]. As for

6
https://www.internetworldstats.com/stats7.htm

7
https://www.alexa.com/topsites/category

Nymaim, the lack of available samples might be explained by the

fact that the family is older and less active in 2018. We ran some

preliminary tests, where samples of each of the remaining families

were run through our whole framework. After running these ex-

periments for a week, we noted every family that made at least one

successful HTTP connection to an external server, i.e., that had at

least one online C&C server. In the end, the only families to have

at least one online C&C server were Tovkater and Banload.

In total, we have 42 feature variations to test. To obtain a large

enough set of tested samples, the variations have been tested each

day for a period of 12 months, and the test variations have been

executed each day at different times in order to limit a potential

bias due to the time of execution. We can establish the number of

VMs needed for this experimental design as follows:

Definition 3. The number of VMs needed can be calculated using
𝑉 = 𝑑 ∗ 𝑠 ∗ 𝑘 ∗ 𝑡/𝑝 , where 𝑑 is the number of downloader families,
𝑠 is the number of samples of a family, 𝑘 = 𝑛 ∗ 𝑙 is the number of
feature variations, 𝑡 is the time needed to run each sample, 𝑝 is the
total minutes in a day, and𝑉 is the number of VMs needed to run the
tests.

For our experiments, 42 feature variations are tested, with a

running time of 15 minutes, where a day consists of 1440 minutes,

i.e., 24 hours. A full factorial experiment is not possible, given that

it would produce 27,000 feature variations, thus requiring 5,625

VMs. We opted to establish default values for each feature, where

only a selected feature to test would be modified and tested.

Our default profile consists of the most popular feature for each

category, namely the United States as the country, English as the

keyboard layout and the display language, and social networks as
the browser session.

Thus, using our formula, a minimum of 9 VMs are required to

run our experiments each day.

3.6 Labeling
Our final dataset is a list of instances of multiple features of our

VMs associated with the data extracted from the execution of a

malicious downloader in a sandbox.

To test our hypothesis, we label each dataset entry with the fam-

ily of the downloaded payloads from the execution of the malicious

downloader.

Each payload is tested on VirusTotal to establish if it is malicious,

and if so, its family. Each sample is scanned a month after the end

of our experiments, in order to take into account labels that change

over time [35]. In order to filter possible false positives, we only

consider malware with at least 5 positive reports in VirusTotal to

be malicious, following previous research establishing the ideal

threshold at between 2 and 15 [35].

Establishing the family of a malware sample, particularly a fresh

new sample, is a difficult task that is still the subject of current

research. Avclass [28] is a tool that aims at identifying malicious

families through the various entries of a single VirusTotal report.

While this tool works well when identifying large generic families,

it proved unable to correctly differentiate our various families, la-

beling our samples as either a singleton (without a family), or all in

one unique family.
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A number of other approaches aim at clustering malware into

families [6, 9, 24]. Unfortunately, works such as these are either

tested on a specific subset of malicious families, or consist in a

proof of concept without any published tool. Thus, we implement

our own approach to identify malware families, for our particular

setup.

Firstly, we inspect a subset of our payloads’ VirusTotal reports, in

order to identify the predominant labels for various payloads. These

labels often consist in a generic identification, when the family

cannot be correctly identified by the antivirus, e.g., a signature such

as Trojan.Generic.XYZ. These labels introduce noise into our data
and are thus discarded. From this, we obtain a set of label families

for each payload. The labels differ between antivirus for various

reasons: different antivirus software might have different family

names for the same malware, some might have more fine-grained

family identification than others, and some antivirus softwaremight

correctly identify a malicious software but incorrectly identify its

family. Previous research has identified that many AV signatures are

incomplete or inconsistent [2]. Thus, we initially establish a subset

of precise family names used by antivirus software through our

manual VirusTotal reports analysis, and we then label the malicious

payloads with the most occurring label. If no label from our list is

present, we default to the majority label found, similar to Avclass.

Our labeling approach simply aims at clustering similar samples

together, so as to establish if a cluster behaves differently for a

machine profile. Thus, our clustering follows the naming of an-

tivirus companies only as a means of differentiating samples. While

previous research demonstrated ways to identify malware by its

behavior [2, 7, 26, 34], we limit our interactions inside our VMs to

the minimum, and thus, do not make an in-depth analysis of our

malicious downloaders’ behavior to construct similarity profiles.

The following are our identified families and are used as a label

when they are the most occurring family: Eldorado, Adware, KillAV,

Psyme, Banload, InstallMonster.

3.7 Time Series Analysis
In order to establish changes in the behavior of our downloader

samples, we build time series out of our experiment data. The num-

ber of dropped payloads, for one particular family, as established

in Section 3.6, is extracted from our results for every week of our

experiments. This is repeated for every feature tested as to identify

all changes of behavior through time for our various downloader

families.

To test whether a change has happened in a time series, we

employ changepoint analysis. Since our data consists of time series

where we aim at identifying a change of behavior, we opted to use

changepoint analysis to extract the various changepoints of each

value of a feature, and thus, identify if one or more value of a feature

changes at a different time than the others. Changepoint analysis

is the detection of a change in the distribution of data in a time

series, and it establishes the precise time at which a change occurs.

Every point in time where a change occurs consists in a changepoint.
Multiple algorithms have been established in the past to improve the

detection of changepoints [12, 15, 16, 22]. Changepoint analysis has

been employed in previous research in computer security, although

mainly in network intrusion and anomaly detection [29, 30]. To

execute our changepoint analysis, we’ve opted to use the Ruptures

Python library [32], which implements a multitude of changepoint

algorithms.

Finally, for every downloader family and feature type, we com-

pute the ratio of infections to total runs for each day of our exper-

iments, and perform a one-way analysis of variance (ANOVA) of

the means of the ratio of infections for each feature and each type

of payload.

For this, we keep every day with at least one infection for one

value of a feature and use this dataset for our analysis. We use the

ratio of infections instead of the number of infections to compensate

for any imbalance in the number of downloader runs per feature.

While our Profiler manages the queue of experiments and equally

distributes the features to test, some machines in our cluster were

the victim of hardware issues and outages during the one-year

experiment, and were sporadically offline.

The statistical analysis is performed using SigmaPlot (Systat).

The data is tested for normality using the Shapiro-Wilk test, and

tested for homoscedasticity using the Kolmogorov-Smirnov test. All

the tests are two-sided. Following this, we run a one-way ANOVA

on ranks of our values, since the distribution of the ratio of infection

is not a normal distribution. We employ the Kruskal-Wallis test [18],

which is a non-parametric method to determine the difference

between the means of different groups.

4 RESULTS
We employed our framework over a one-year period, from Febru-

ary 2018 to February 2019, and ran malicious downloaders on our

predefined machine profiles. We collected data on these executions

and established time series of infections for our various downloader

families and payload families.

4.1 Dataset
Our final downloader dataset consists of 1,526 unique samples,

where 711 were identified as part of the Tovkater family, and

805 were identified as part of the Banload family. On average,

each sample was run 100 times, when testing our profile features

according to our experimental design. In total, we ran 151,189

tests inside our VMs through the Cuckoo framework, with 72,829

tests run on Tovkater samples and 78,360 on Banload samples.

Of these, 18,975 resulted in a detonation of the malicious down-

loader, i.e., these downloaders downloaded other malware pay-

loads from the Internet. While most downloaders only fetched one

payload per run, there were 258 that downloaded two payloads

and 163 that downloaded three payloads. Multiple types of files

were downloaded by the downloaders, depending on the initial

sample and the needs of the C&C. The file types identified by

inspecting the file header of the downloaded payloads are: octet-

stream, x-dosexec, vnd.ms-cab-compressed, vnd.openxmlformats-

officedocument, vnd.ms-powerpoint(ppt/pptx), sqlite, x-shockwave-

flash, zip, plain, html, x-msdos-batch, xml, ini file, vbscript, json,

png, jpeg, gif, svg and x-wav.

The text, HTML and octet-stream payload files generally indi-

cated a failure to correctly run a downloader.

Other executions successfully detonated, and upon inspection,

some began the infection with a batch script, a javascript page or a
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VBScript launching or downloading another malicious executable.

A series of Banload runs had an initial batch file, which downloaded

an executable, which in turn downloaded a malicious powerpoint

file. Another type of multi-stage attack was observed for Banload

downloaders, where they retrieved a Microsoft Office document,

which then installed another malicious executable. In some cases,

we observed an autoliker chrome extension being downloaded,

hinting at a possible use of the infected machine as a bot on social

networks.

A number of ZIP files were downloaded by our downloaders.

Upon closer inspection, these did not seem to be valid ZIP files, but

did appear to contain a malicious executable.

Finally, to confirm the maliciousness of the retrieved payloads,

we tested each one on VirusTotal, and ended upwith 3,608malicious

payloads.

4.2 Labeling
We employed the technique described in section 3.6 to label all of

our collected instances that resulted in a detonation.

These samples had at least 5 positive detections in VirusTotal,

and 1298 samples had a majority of positive detections.

In total, our collected payloads consist of 75 instances of KillAV,

134 instances of Psyme, 318 instances of Banload, 346 instances of

Eldorado, 1,121 instances of Adware, and finally 1,580 instances of

InstallMonster. As can be observed, the majority of our downloaded

payloads were labeled as Adware or InstallMonster.

Previous research identified that PUP and malware share infras-

tructure [13, 20], which explains the presence of Adware samples

in the retrieved payloads of our downloaders.

In order to identify if our respective downloader families are

used in a PPI distribution model, we computed the number of dis-

tinct payload families served. On average, Banload downloader

binaries each served 1.5 families, while Tovkater binaries served

2.06 distinct families. In total, the following families were seen in

dropped payloads of Banload: KillAV, Eldorado, Adware, Zpevdo,

Installmonster, Banload, Psyme and Wisdomeyes. For our second

downloader family, Tovkater, the following families were seen in

malicious payloads: Adware, Zpevdo, Eldorado and Installmonster.

4.3 Infections Through Time
When observing the rate of infections for each of our labeled fam-

ilies, according to our various features, we can establish where a

peak of infections occurs for a specific feature and a specific mal-

ware family. We applied changepoint analysis to our various time

series, and noted the feature values for which these vary. Our results

also differ when testing our two downloader families. As the tests

were running every day and the changepoint analysis needed less

granularity, we created four bins for each month (on the 4th, 12th,

20th, and 28th) grouping the activities of the 7-8 days around them.

Additionally, we ran a one-way ANOVA of the ratio of infection

per day to identify if the features identified as statistically different

match with our features identified in the changepoint analysis.

All data in the figures are presented as the mean + Standard

Error of the Mean (SEM). The asterisks in our figures denote the

statistical significance for specified tests, chosen as ∗ = 𝑝 < 0.05,
following a previous study [21].

Next, we will show the results returned by the application of

the changepoint analysis on the different features, along with the

results of our analysis of variance.

One of the most impactful features in our tests was, unsurpris-

ingly, the operating system used in the VM running the downloader

executable.

When running Windows XP, we obtained less than half the

number of infections of other OSes. The majority of the Windows

7 infections belong to the InstallMonster family, whereas Windows

10 is mainly a victim of Adware.

The Windows version used in the VM is not the only feature

highlighted by our analysis. Firstly, Figure 3 highlights infections

that downloaded Adware as a payload while testing our browser

profile feature and running the Tovkater downloader. As can be

observed, there is an increase to 8 infections with solely a news
browser profile, where the closest other browser profile is sports
with 2 infections. Our changepoint analysis identified four common

changepoints among the different browser profiles:

(1) The 4th of March 2018: The start of our experiments and an

increase in the number of infections

(2) The 12th of April 2018: The moment of a second sudden peak

of infections

(3) The 28th of June 2018: The end of the first infection pause

mentioned earlier

(4) The 4th of August 2018: The separation between the activity

in the summer and the decrease following it

The algorithm identified another relevant point in its analysis:

the 20th of May 2018. The changepoint analysis highlighted that

the news browser profile was showing different activities from the

other ones. In fact, this profile has seen more detonations, resulting

in a higher number of payloads downloaded in this configuration.

We ran a one-way ANOVA to compare the means of the ratio of

infections by Adware for different browser profiles when running

Tovkater, for the time period with the most activity: from March

6 2018 to June 6 2018. One browser profile was identified as being

different: the news browser profile results were identified as statis-

tically higher than the business and health browser profiles with a

p-value<0.05. Indeed, the news browser profile shows an average

ratio of infection more than two times higher than infections with

the health or business profile, which confirms that our machines

with the news browser profile received more Adware payloads.

The means of the ratio of infections for each browser profile are

identified in Figure 4.

Secondly, we tested our various display languages, and observed

some changepoints differences. However, when running an ANOVA

on the means of the ratio of infection, no feature was identified as

statistically different.

Another interesting activity was observed when testing the dif-

ferent keyboard layouts with the Banload downloader, as shown

in Figure 5. Specifically for dropped payloads part of the Banload

family, more activity was seen over time when the keyboard layout

consisted in Portuguese. This result can be further confirmed by an-

alyzing online activity of the Banload downloader
89
, which is most

8
https://www.virusradar.com/en/Win32_TrojanDownloader.Banload/map

9
https://securityboulevard.com/2019/05/cybercrime-groups-behind-banload-

banking-malware-implement-new-techniques/

https://www.virusradar.com/en/Win32_TrojanDownloader.Banload/map
https://securityboulevard.com/2019/05/cybercrime-groups-behind-banload-banking-malware-implement-new-techniques/
https://securityboulevard.com/2019/05/cybercrime-groups-behind-banload-banking-malware-implement-new-techniques/
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Figure 3: The number of dropped Adware payloads over
time according to the browser profile

Figure 4: The average ratio of infections of Tovkater with
Adware payloads over time according to the browser pro-
file. Significantly different averages are marked in bold.

active in Brazil, a country with Portuguese as its official language.

Moreover, another keyboard layout with which the downloader is

behaving differently is Chinese, where there are fewer detonations

than with our other keyboard layouts. Our changepoint analysis

identified four changepoints for all our keyboard layout values

except Chinese:

(1) The 4th of March 2018: The start of our experiments

(2) The 20th of May 2018: A drop in the number of infections

(3) The 12th of September 2018: Infections suddenly increased

(4) The 28th of December 2018: The infections’ final drop

It is worth noting that there is a smaller number of infections

than for our previous results. The Chinese keyboard language does

not have any changepoints identified, which highlights the fact

that VMs with a Chinese keyboard language are less infected. The

changepoint analysis on the data related to the Portuguese keyboard

language, however, has highlighted two additional moments in the

timeline, the 28th of June 2018 and the 20th of October 2018. These

moments correspond to an increased number of infections which

is not happening when using the other layouts.

We also ran an ANOVA on the ratio of Banload infections for

keyboard layouts when running the Banload downloader, and found

Figure 5: The number of dropped Banload payloads over
time according to the keyboard layout

Figure 6: The average ratio of infections of Banload drop-
ping Banload payloads over time according to the key-
board layout. Significantly different averages are in bold.

one of them to be statistically different fromMarch 20 2018 to June 6

2018. The Portuguese keyboard layout was found to be statistically

higher than the Chinese and Russian keyboard layouts, with a

p-value<0.05.

The means of the ratio of infection of each keyboard layout

is shown in Figure 6, where we can observe that the Portuguese

keyboard layout obtains more than twice the ratio of infections of

the Russian and Chinese keyboard layouts.

The Chinese keyboard layout appears to be the victim of less

Adware infections when running Tovkater downloader samples

as well. In fact, no Adware infection was registered at all for this

keyboard layout. We ran an ANOVA on this feature and identified

the Chinese keyboard layout to be different than almost all other

layouts: the ratio of infection is statistically lower than for the

Arabic, German, Russian, Japanese, French and Spanish keyboard

layouts with a p-value<0.05. The means of the ratio of infections

per keyboard layout can be observed in Figure 7.

Finally, while changepoints were identified for some peaks of

infections for machines in different locations, we ran an ANOVA

of the ratio of infections and did not find any statistically different

locations.
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Figure 7: The average ratio of infections of Tovkater drop-
ping Adware payloads over time according to the keyboard
layout. Significantly different averages are in bold.

5 DISCUSSION
Through our experiments, we aimed at reverse engineering the

targeting choice of criminals by establishing the link between a

malicious downloader and the profile of the victim machine. Our

approach did not look at the code of malicious samples, but empiri-

cally determined this link by setting up different VM profiles and

analyzing whether samples were reacting to different profiles in

different ways. In Section 4, we described the findings of our exper-

iments, i.e., which profiles attracted a certain family of malware,

and to what degree, with the number of infections. The change-

point analysis highlighted the important moments during the 12

months of experiments, and an analysis of variance identified if the

average ratio of infection for a given feature value was significantly

different than other values.

The highest number of malicious payloads was experienced on

machines running Windows 10, while Windows XP resulted in

the least infections. The popularity of Windows 10 among these

malware families is particularly interesting as the OS has become

more prevalent than Windows 7 only at the beginning of 2019
10
.

Windows XP is not supported anymore byMicrosoft, and is thus less

secure than other modern OSes, however, these results show how

it is becoming less relevant to the cybercriminals’ purposes. One

explanation might be that malware is targeting the most used OSes,

and as such avoid Windows XP. Additionally, droppers downloaded

different families of malware depending on the OS. Windows XP

and Windows 7 were mainly infected with InstallMonster payloads,

while Adware payloads were used to target Windows 10 VMs.

Similar to previous work, our analysis has highlighted how the

OS is a feature taken into consideration by criminals. However, our

results also presented a new phenomenon, i.e., that the browser

profile and keyboard layout can have an impact on what payload a

downloader downloads.

In the previous section we mentioned that at one point, Tovkater

samples focused on the download of Adware payloads when ob-

serving a news browser profile.

10
https://www.theverge.com/2019/1/2/18164916/microsoft-windows-10-market-

share-passes-windows-7-statistics

Indeed, users visiting newswebsites might bemore susceptible to

adware, or correspondmore closely to the target demographic of the

malicious actors. We also noted an increase in Banload downloaders

downloading additional Banload payloads when running a machine

with a Portuguese keyboard layout, particularly compared to the

Chinese and Portuguese keyboard layouts.

This is corroborated by news articles showing that a Banload

campaign has run since May 2018
11
. Malicious actors appear to

target Portuguese-speaking countries through the Banload down-

loader.

The Chinese keyboard layout also did not receive any Adware

infections when running Tovkater samples, further confirming that

this keyboard layout is less targeted by Adware samples. One ex-

planation for this phenomenon can be that malicious actors avoid

targeting their country of residence. In can also be that laws around

adware infections are stricter in China, or that the downloader op-

erators fear harsher penalties. Finally, it can simply be that Chinese-

speaking countries are less attractive to these malicious actors, due

to there being fewer profits to be made.

These findings highlight how crucial it is to consider the con-

text in which a malicious downloader is executed when trying to

detonate it and observe its behavior. One of the key issues security

researchers face when analyzing malware is effectively executing

them in a research environment in order to identify their malicious

behavior and build methods to detect andmitigate them. Our results

show how identifying important profile features for a malicious

downloader can not only have an impact on the number of down-

loaded payloads, but also on the type of downloaded payloads as

well.

Limitations. While our results have shown how Tovkater and

Banload downloaders behave differently given various machine

profiles, the downloader samples used in our experiments were

provided by our antivirus partner, and as such, are only samples

that could be detected and retrieved by them. Thus, these samples

might not necessarily be representative of the general ecosystem of

malicious downloaders. We also have limited information regard-

ing the source and context from which originated the downloader

samples.

Another limitation is that we tested each feature independently,

in order to clearly identify if one feature impacted the execution of

a downloader. We did not possess enough resources to test combina-

tions of features, such as a matching keyboard and display language.

However, while this setup might have negatively impacted the num-

ber of noteworthy detonations of malicious downloaders, we still

obtained a number of results solely with our single feature tests.

6 CONCLUSION
In this work, we aimed at reverse engineering the targeting choice

of cybercriminals acting through PPI networks, by establishing

if a link between the features of a machine and the payload(s)

downloaded by a malicious downloader exists. We successfully

built an automated sandboxed environment framework, which is

capable of changing the configuration of a VM for a specific run

of a malicious downloader executable. Using this setup, we ran

11
https://securityboulevard.com/2019/05/cybercrime-groups-behind-Banload-

banking-malware-implement-new-techniques/

https://www.theverge.com/2019/1/2/18164916/microsoft-windows-10-market-share-passes-windows-7-statistics
https://www.theverge.com/2019/1/2/18164916/microsoft-windows-10-market-share-passes-windows-7-statistics
https://securityboulevard.com/2019/05/cybercrime-groups-behind-Banload-banking-malware-implement-new-techniques/
https://securityboulevard.com/2019/05/cybercrime-groups-behind-Banload-banking-malware-implement-new-techniques/
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151,189 tests on Tovkater and Banload downloader families. Of

these, 18,975 resulted in the download of at least one additional

payload.With the use of changepoint analysis applied on time series

of our infections and ANOVAs of the ratio of infection per day, we

identified different malicious payloads downloaded depending on

the operating system.

More notably, we showed that malicious downloader families

download different payloads depending on the browser history

and the keyboard layout of the machine, highlighting the targeting

choices of cybercriminals when infecting victims through down-

loaders.

Our findings show that an effective setup to analyze malicious

downloaders should consider the features of the virtual machines

in order to obtain better rates of detonation and to gather a larger

array of malware families.
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