
GCS: Graph-Based Coordination Strategy for Multi-Agent
Reinforcement Learning

Jingqing Ruan
12
, Yali Du

∗3
, Xuantang Xiong

1
, Dengpeng Xing

1
, Xiyun Li

1
, Linghui Meng

1
, Haifeng

Zhang
1
, Jun Wang

4
, Bo Xu

∗1
1
Institute of Automation, Chinese Academy of Sciences, Beijing, China

2
School of Future Technology, University of Chinese Academy of Sciences, Beijing, China

3
King’s College London,

4
University College London

{ruanjingqing2019,xiongxuantang2021,lixiyun2020,dengpeng.xing,menglinghui2019,haifeng.zhang,xubo}@ia.ac.cn

yali.du@kcl.ac.uk,jun.wang@cs.ucl.ac.uk

ABSTRACT
Many real-world scenarios involve a team of agents that have to

coordinate their policies to achieve a shared goal. Previous studies

mainly focus on decentralized control to maximize a common re-

ward and barely consider the coordination among control policies,

which is critical in dynamic and complicated environments. In this

work, we propose factorizing the joint team policy into a graph

generator and graph-based coordinated policy to enable coordi-

nated behaviours among agents. The graph generator adopts an

encoder-decoder framework that outputs directed acyclic graphs

(DAGs) to capture the underlying dynamic decision structure. We

also apply the DAGness-constrained and DAG depth-constrained

optimization in the graph generator to balance efficiency and per-

formance. The graph-based coordinated policy exploits the gen-

erated decision structure. The graph generator and coordinated

policy are trained simultaneously to maximize the discounted re-

turn. Empirical evaluations on Collaborative Gaussian Squeeze, Co-

operative Navigation, and Google Research Football demonstrate

the superiority of the proposed method. The code is available at

https://github.com/Amanda-1997/GCS_aamas337.

KEYWORDS
Action Coordination Graph, Multi-Agent Systems, Reinforcement

Learning

ACM Reference Format:
Jingqing Ruan

12
, Yali Du

∗3
, Xuantang Xiong

1
, Dengpeng Xing

1
, Xiyun Li

1
,

Linghui Meng
1
, Haifeng Zhang

1
, Jun Wang

4
, Bo Xu

∗1
. 2022. GCS: Graph-

Based Coordination Strategy for Multi-Agent Reinforcement Learning. In

Proc. of the 21st International Conference on Autonomous Agents and Multia-
gent Systems (AAMAS 2022), Online, May 9–13, 2022, IFAAMAS, 11 pages.

1 INTRODUCTION
Multi-agent reinforcement learning (MARL) has shown exceptional

results in many real-life applications, such as multiplayer games [1,

2], traffic control [3], and social dilemmas [4]. A suitable control

policy is extremely important in multi-agent systems (MASs). One

choice is to treat the MAS as a single agent and adopt a centralized

control policy [5, 6]; however, this approach is constrained by poor

∗ Corresponding author.

Proc. of the 21st International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2022), P. Faliszewski, V. Mascardi, C. Pelachaud, M.E. Taylor (eds.), May 9–13,
2022, Online. © 2022 International Foundation for Autonomous Agents and Multiagent

Systems (www.ifaamas.org). All rights reserved.

scalability for high-dimensional state and action spaces. On the

contrary, decentralized control [2, 7–10] allows agents to make deci-

sions independently, but struggles to enable coordinated behaviors

on complex tasks. Taking traffic flow as an example, when multiple

vehicles are trying to cross an intersection without traffic lights,

most likely, the traffic will become congested if all vehicles take

actions simultaneously without a rational sequence. This problem

may be solved, however, if those vehicles move in an orderly way

based on some coordination structure. This example shows that it

is imperative to improve on a fully decentralized decision-making

process, and a solution to alleviate the above issue is to develop a

coordinated control policy to obtain cooperative behaviors.

Several approaches have been reported to address the problem of

action coordination. BiAC [11] mainly focuses on coordination of

the asynchronous decisions of two agents. The multi-agent rollout

algorithm [12] provides a theoretical view of executing a local roll-

out with some coordinating information, but is limited to an agent-

by-agent decision dependency structure. Although these works

investigate the action execution order of two-agent and multi-agent

systems, they are still insufficient to characterize the complicated

and dynamic underlying decision dependency structure of a gen-

eral multi-agent system. Moreover, we assert that representing the

underlying decision dependency structure and using this to control

the action execution is essential to improving coordination.

In this work, we propose a graph-based coordination strategy

(GCS) that learns coordinated behaviors through factorizing the

joint team policy into a graph generator and a graph-based coor-

dinated policy. The former aims to learn an action coordination

graph (ACG) that properly represents the decision dependency. The

latter further coordinates the dependent behaviors among agents

exploiting the underlying decision dependency. We train the graph

generator and the graph-based coordinated policy simultaneously

to maximize the discounted return. For the ACGwe employ directed

acyclic graphs (DAGs), whose nodes represent agents and whose

directed edges denote action dependencies of the associated agents.

Moreover, we propose using the DAGness-constrained and DAG

depth-constrained optimization in the graph generator to balance

efficiency and performance.

The contributions of this paper can be summarized as follows:

• As far as we know, we are the first to introduce directed

acyclic graphs to action coordination, dynamically repre-

senting the underlying decision dependencies of MAS.

ar
X

iv
:2

20
1.

06
25

7v
1

 [
cs

.M
A

]
 1

7
Ja

n
20

22

https://github.com/Amanda-1997/GCS_aamas337

• Wepropose aDAGness-constrained andDAGdepth-constrained

optimization in the graph generator, achieving a trade-off

between decision-making efficiency and performance.

• Empirical evaluations on several challenging MARL bench-

marks (Collaborative Gaussian Squeeze, Cooperative Nav-

igation, and Google Football) show that our method can

achieve superior performance and obtain meaningful results

consistent with intuitive expectations.

2 RELATEDWORK
Deep reinforcement learning has been successfully applied to ad-

dressing complex decision problems [13–17]. Due to the widespread

existence of multi-agent tasks, MARL has attracted increasing at-

tention, and learning appropriate control policies is important to

obtain the maximum cumulative discounted return. Based on the

structures of their execution schemes, we classify the existing ap-

proaches into three categories.

First, a fully independent execution scheme allows agents to

determine actions according to their individual policies without

any interaction. One line of research, such as IQL [18], VDN [7],

QMIX [8], and QTRAN [19], focuses on value-basedmethods, which

assign each agent an independent policy for execution. Another line

of research, includingMAAC [10], COMA [20], and LIIR [9], extends

the actor-critic algorithm [21] to the multi-agent case, where each

actor represents an individual policy for an agent.

Second, the communication-based independent execution scheme

is widely used, which allows the use of extensive information in its

individual decision making [22]. In this scheme, agents learn how to

transmit informative messages and to process the messages during

training. Then agents exchange the messages to determine their

actions individually during independent execution. Representative

methods [6, 23–27] autonomously learn communication protocols

that are required in generating informative messages: these deter-

mine whom to communicate with and what messages to transmit

for assisted decision making.

Third, the coordinated execution scheme, where agents develop

their policies conditioned on other agents’ actions and make deci-

sions in a coordinated manner, is important in MAS. There are some

methods that implicitly model the coordinated behaviours from

the perspective of a coordination graph. DCG [28] uses pairwise

graphs to propagate beliefs for joint decisions, while DICG [29]

focuses on generating a coordination graph with soft edge weights

for message passing. DGN [30] uses a graph attention network as an

embedding extractor to assist in the decision making. Furthermore,

some methods have been proposed to explicitly model the coor-

dinated behaviours in order, such as Bi-AC [11] and multi-agent

rollout [12], which propose utilizing two-agent and agent-by-agent

dependency structures, respectively, to help agents make decisions

in order and promote action coordination. Similar but essentially

distinct, we introduce a mechanism to learn the underlying DAG

structure that represents the decision dependency among agents.

Moreover, the generation of the DAGs is an essential part of

our work. Recently, some continuous optimization approaches [31–

34] have been proposed to recover the DAGs through structure

learning. The method [35], closely related to our work, uses rein-

forcement learning as its search strategy to maximize a predefined

score function. Borrowing from an idea of [35], which obtains the

DAG using reinforcement learning, we construct a graph generator

module to generate the DAG structure as an action coordination

graph and regard the extrinsic reward as the incentives to jointly

train with MARL tasks.

3 PROBLEM SETUP
MMDPs . Cooperative multi-agent problems can be modeled as

multiagent Markov decision processes (MMDPs) [36], which can

be expressed as a tuple < {I},S, {U𝑖 }𝑁
𝑖=1
, P, 𝑟 , 𝛾 >. 𝑖 ∈ I is the 𝑖𝑡ℎ

player, S is the global state space, andU𝑖 denotes the action space

for the 𝑖𝑡ℎ player. We label 𝒖 := (𝑢1, ..., 𝑢𝑁) the joint actions for all
players. Intuitively, the agent 𝑖 will select an individual action 𝑢𝑖 to

perform and execute it. P is the transition dynamics, and P(·|𝑠, 𝒖)
gives the distribution of the next state at state 𝑠 taking action 𝒖.
All agents share the same reward function 𝑟 (𝑠, 𝒖) : 𝑠 × 𝒖 → 𝑅.

𝛾 ∈ (0, 1) denotes a discount factor, and 𝜏 = (𝑠0, 𝒖0, 𝑠1, ...) denotes
the trajectory induced by the policy 𝝅 = {𝜋𝑖 }𝑁

𝑖=1
. All the agents

coordinate together to maximize the cumulative discounted return

E𝝉∼𝜋
[∑∞

𝑡=0 𝛾
𝑡𝑟 (𝑠𝑡 , 𝒖𝑡)

]
.

FactoredMMDPs . We formalize our problem based onMMDPs

as factored MMDPs. Different from MMDPs, where all actions are

taken simultaneously and do not depend on each other, we en-

dow the hierarchy order to the joint action based on the learned

DAG structure G, called an action coordination graph (ACG). The

adjacency matrix 𝐴 representing the ACG denotes the decision

dependency from the graph generator 𝜌 . With 𝐴, we can define

𝝅 =
𝑛∏
𝑖=1

𝜋𝑖 (𝑢𝑖 |𝑜𝑖 , 𝑢𝑝𝑎 (𝑖)) as the graph-based coordinated policy for

the 𝑖𝑡ℎ player, where 𝑜𝑖 is the observation of the i-th player, 𝑝𝑎(𝑖)
are the parents of agent 𝑖 , and 𝑢𝑝𝑎 (𝑖) are the actions taken by the

parents, whose order is generated from 𝐴. Note that a fully de-

centralized policy is a special case of our graph-based coordinated

policy where none of the agents have parents.

Figure 1 gives an example of the DAG and the relationships

between nodes. The nodes in G correspond to the agents in the

MAS, and the parent-child relationships represent the hierarchical

decision dependencies among agents. For example, the case that

the node 𝐷 in the graph has two parents {𝐵,𝐶} illustrates that the
action taken by the agent 𝐷 is constrained by 𝐵 and 𝐶 .

Now, the graph-based coordination strategy is factorized as:

𝜋 (𝒖, 𝐴|𝑠) = 𝜌 (𝐴|𝑠)
𝑛∏
𝑖=1

𝜋𝑖 (𝑢𝑖 |𝑜𝑖 , 𝑢𝑝𝑎 (𝑖)∼𝐴), (1)

where 𝜌 is the graph generator, and 𝜋𝑖 is graph-based coordinated

policy.

4 METHODOLOGY
The overall goal is to maximize the cumulative return, denoted as:

𝜂 = E𝐴∼𝜌,𝒖∼𝜋 (· |𝑠,𝐴)

[∞∑︁
𝑘=0

𝛾𝑘𝑟 (𝑠𝑡+𝑘 , 𝒖𝑡+𝑘)
]
. (2)

Nowwe further elaborate on the derivation of the graph-based coor-

dinated policy 𝜋𝜃𝑖 (𝑢𝑖 |𝑜𝑖 , 𝑢𝑝𝑎 (𝑖)) and the graph generator 𝜌𝜑 (𝐴|𝑠),
respectively.

A B

C

E

D

Directed Acyclic Graph G

Vertex Parents
A {}
B {A}
C {A,B}
D {B,C}
E {C,D}

Relationship between Nodes

Figure 1: The left panel is a schematic diagram of a directed
acyclic graph G with vertices |V| = 5 and edges |E | = 7. The
right panel shows the parent–child relationships of G.

4.1 Graph-based Coordinated Policy
Given a known graph generator 𝜌 (elaborated in Section 4.2), we

have𝐴 ∼ 𝜌 to represent the underlying decision dependency. Based

on it, we can denote the decision policy as𝝅 =
𝑁∏
𝑖=1

𝜋𝑖 (𝑢𝑖 |𝑜𝑖 , 𝑢𝑝𝑎 (𝑖)∼𝐴),
called graph-based coordinated policy. We explore graph-based co-

ordinated policy 𝝅∗ that obtains the final joint action {𝑢𝑖 }𝑁
𝑖=1

as

follows.

With Equations (1) and (2), we can write the expected return for

agent 𝑖 as:

𝜂𝑖 = E𝑠∼𝑝𝝅 ,(𝒖,𝐴)∼𝜋
[
𝜋 (𝒖, 𝐴|𝑠)𝑄𝑖𝝅 (𝑠, 𝒖)

]
= E𝑠∼𝑝𝝅 ,𝑢𝑖∼𝜋𝑖 ,𝐴∼𝜌

[
𝜌 (𝐴|𝑠)

𝑁∏
𝑖=1

𝜋𝑖 (𝑢𝑖 |𝑜𝑖 , 𝑢𝑝𝑎 (𝑖)∼𝐴)𝑄𝑖𝝅 (𝑠, 𝒖)
]
.

(3)

The graph-based coordinated policy 𝝅 = {𝜋1, 𝜋2, ..., 𝜋𝑁 } for 𝑁
agents can be parameterized by 𝜽 = {𝜃1, 𝜃2, ..., 𝜃𝑁 }. Correspond-
ingly, the gradient of the expected return for agent 𝑖 is expressed

as:

∇𝜃𝑖𝜂 (𝜃𝑖) = ∇𝜃𝑖𝜂𝑖

= E𝑠∼𝑝𝝅 ,𝑢𝑖∼𝜋𝑖
[
∇𝜃𝑖 log𝜋𝑖 (𝑢𝑖 |𝑜𝑖 , 𝑢𝑝𝑎 (𝑖))

∑
𝐴 𝜌 (𝐴|𝑠)𝑄𝑖𝝅 (𝑠, 𝒖)

]
.

(4)

By applying the mini-batch technique to the off-policy training,

the gradient can be approximately estimated as:

∇𝜃𝑖𝜂 (𝜃𝑖) = E(𝑠,𝒐,𝐴,𝒖)∼D
[
∇𝜃𝑖 log𝜋𝑖 (𝑢𝑖 |𝑜𝑖 , 𝑢𝑝𝑎 (𝑖))𝑄𝑖𝝅 (𝑠, 𝒖)

]
, (5)

where D is the experience replay buffer, recording experiences of

all agents. Moreover, the centralized action-value function 𝑄𝑖𝜋 can

be updated as:

L(𝜙) = 𝐸 (𝑠,𝒐,𝐴,𝒖)∼D
[(
𝑄𝑖𝝅 (𝑠, 𝒖) − 𝑦𝑖

)
2

]
(6)

where 𝑦𝑖 = 𝑟 + 𝛾max𝒖′𝑄
𝑖
𝝅− (𝑠 ′, 𝒖 ′) is the learning target and 𝑄𝑖𝝅−

is the target network parameterized by 𝜃𝑖−.
During the training process, the graph-based coordinated pol-

icy 𝝅 = {𝜋1, 𝜋2, ..., 𝜋𝑁 } and the graph generator 𝜌 are updated

iteratively. We will describe how to find the graph generator 𝜌 (·)
under a given policy 𝝅 .

4.2 Graph Generator
The graph generator aims to generate the DAG G to define the deci-

sion dependency among agents. We will introduce it in detail from

three aspects: (a) DAGness constraint, (b) DAG Depth constraint,

and (c) optimization objective.

DAGness constraint. The acyclicity constraint is an important

issue in our problem setting. In this work, we also use the penalty

terms like [31, 34, 35] to ensure acyclicity. The result in [31] shows

that the directed graph G with binary adjacency matrix𝐴 is acyclic

if and only if:

𝑔(𝐴) := trace(𝑒𝐴◦𝐴) − 𝑑 = 0, (7)

where 𝑒𝐴◦𝐴 is the matrix exponential, 𝐴 ◦ 𝐴 guarantees the non-

negativity, and 𝑑 is the number of nodes in the DAGs. The ‘trace’

of a matrix is defined as the sum of the diagonal elements [31].

The constraint function 𝑔 should satisfy that: (a) its derivatives are

computable, and (b) 𝑔 can be the measurement of DAGs.

DAGDepth constraint. Moreover, taking the trade-off between

efficiency and performance into account, we claim that the maxi-

mum depth of graph structure should be adjustable over different

tasks. Therefore, we propose an alternative constraint to control

the hierarchy of the generated DAGs as follows.

Definition 1. A square matrix 𝐴 is a Nilpotent Matrix [37], if

𝐴𝑘 = 𝑂 𝑎𝑛𝑑 𝐴𝑘−1 ≠ 𝑂, ∃𝑘 ∈ Z+,
where 𝑂 is the zero matrix and 𝐴 is called the Nilpotent of index 𝑘 .

Proposition 1. Let𝐴 be an adjacencymatrix for a directed acyclic
graph, then the maximal length between any two nodes 𝑖 and 𝑗 is 𝑘 if
𝐴 is Nilpotent of index 𝑘 .

We provide a detailed proof of proposition 1 in Appendix A.1.

Here, we define 𝑐 (𝐴𝑘) := 𝑠𝑢𝑚(𝐴𝑘) = ∑
𝑖

∑
𝑗 𝐴

𝑘
𝑖 𝑗

= 0, which is equiv-

alent to 𝐴𝑘 = 𝑂 . We remark that as long as constraint 𝐴𝑘 = 𝑂

holds, it can be guaranteed that the maximal length between any

two nodes 𝑖 and 𝑗 of the DAG does not exceed 𝑘 .

Optimization objective. Based on the foregoing, we can opti-

mize 𝜌 parameterized by 𝜑 with the maximal length 𝑘 by:

max 𝜂 (𝜑) = E
[∞∑
𝑘=0

𝛾𝑘𝑟𝜌 (𝑠𝑡+𝑘 , 𝒖𝑡+𝑘)
]

𝑠 .𝑡 . 𝑔(𝑊) = 0, 𝑐 (𝑊 𝑘) = 0

, (8)

where𝑊 = 𝜌𝜑 (·) denotes theweightmatrix generated from the graph

generator 𝜌 . Then the weight matrix is modeled as a Bernoulli dis-

tribution, from which the binary adjacency matrix 𝐴 is sampled.

Here, we use the constraints of the weight matrix 𝑔(𝑊) and 𝑐 (𝑊 𝑘)
to approximate those of the adjacency matrix 𝑔(𝐴) and 𝑐 (𝐴𝑘) due
to the consistency of representing the graph structure. With this

approximation, we restate 𝜂𝑖 as:

𝜂𝑖 = E

[
𝜌 (𝑊 |𝑠)

𝑁∏
𝑖=1

𝜋𝑖
(
𝑢𝑖 |𝑜𝑖 , 𝑢𝑝𝑎 (𝑖)

)
𝑄𝑖𝝅 (𝑠, 𝒖)

]
. (9)

Fixing graph-based coordinated policy𝝅 , we approximate the graph

generator 𝜌 as follows. We augment the original problem shown

in Equation (8) with a quadratic penalty using the augmented La-

grangian technique [38]:

min

𝜑
−𝜂 (𝜑) + 𝜉

2

[
| |𝑔(𝑊) | |2 + ||𝑐 (𝑊 𝑘) | |2

]
𝑠 .𝑡 . 𝑔(𝑊) = 0, 𝑐 (𝑊 𝑘) = 0

, (10)

GAT Encoder
Head 1

���
1ℎ� ℎ�

Head 2

���
2ℎ� ℎ�

Head K

���
�ℎ� ℎ�

…… …

MLP Decoder

Graph Generator

{��
� }�=1

�

Environment

{��
� }�=1

�

 ��

 �

Graph-based
Coordinated Policy �

{��
� }�=1

�

Graph
Generator �

{��
� }�=1

�

ACG �

Figure 2: The proposed framework for the interaction process. The left is the graph generator including an encoder-decoder
neural network model which is used to generate the DAG from the observed data.

with the penalty 𝜉 > 0.

Next, we convert the Equation (10) to an unconstrained La-

grangian function:

𝐿(𝜑, 𝜆1, 𝜆2) = −𝜂 (𝜑) + 𝜉
2

[
| |𝑔(𝑊) | |2 + ||𝑐

(
𝑊 𝑘

)
| |2
]

+𝜆1𝑔(𝑊) + 𝜆2𝑐
(
𝑊 𝑘

) . (11)

Proposition 2. The gradient for Equation (11) to optimize the
coordination graph generation policy can be derived as follows:

∇𝜑𝐿(𝜑, 𝜆1, 𝜆2) = 𝐸𝑠∼𝑝,𝑊 ∼𝜌𝜑 (· |𝑠)
[
∇𝜑 log 𝜌𝜑 (𝑊 |𝑠)

∑
𝑢𝑖
𝜋𝑖 (𝑢𝑖 |𝑜𝑖 ,

𝑢𝑝𝑎 (𝑖)) ·𝑄𝑖 (𝑜𝑖 , 𝑢𝑖) − 𝜆1 (𝑒𝑊
◦𝑊)𝑇 · 2𝑊−

𝜆2
∑
𝑖, 𝑗

[
𝑘𝑊 𝑘𝑊 −1

]
𝑖 𝑗

]
,

We provide a detailed proof of proposition 2 in Appendix A.2.

In proposition 2, we remark that after considering the influence

of various decision dependencies on the reinforcement learning

tasks, we can obtain the underlying graph structure that makes the

best response to MARL tasks.

4.3 Implementation Details
As shown in Figure 2, the proposed framework include the graph-

based coordinated policy and the graph generator, which will be

elaborated below.

Graph-basedCoordinated Policy. The graph-based coordinated
policy can be obtained from the standard multi-agent actor-critic

framework. As for the policy 𝜋𝑖 of the actor, we use the RNN

network with the stochastic policy gradient to model the action

distributions. The critic used to criticize the joint actions made by

the actors is a three-layer feed-forward neural network activated

by the ReLU units, denoted as 𝑓𝑐𝑟𝑖𝑡𝑖𝑐 (𝑜𝑡 , 𝑢𝑡) = 𝑅𝑒𝐿𝑈 (MLP⟨𝑜𝑡 , 𝑢𝑡 ⟩).

Graph Generator. As shown in Figure 2, the graph generator

𝜌𝜑 (𝒐) adopt an encoder-decoder module used to find the ACG. The

GAT-based encoder can model the interplay of agents and extract

the further latent representations. The MLP-based decoder is used

to recover the pairwise relationship between agents to generate an

ACG. The graph generator takes the local observations of the agents

as input and outputs the ACG G to obtain the decision dependency

for the decision-making process of the graph-based coordinated

policy, elaborated as follows.

The graph generator contains two sub-modules. Firstly, we use

the graph attention network (GAT) [39] as the attention-based

encoder to extract the latent information for the graph structure

generation. First, the simple feature is extracted by a multi-layer

perceptron (MLP) as an initial step:

{ℎ𝑖𝑡 }
𝑁

𝑖=1 = 𝑓𝑀𝐿𝑃 ({𝑜
𝑖
𝑡 }
𝑁

𝑖=1, {𝑢
𝑖
𝑡−1}

𝑁

𝑖=1
) . (12)

Due to the sufficiently expressive power of GAT, we use it to

extract the further latent information of the simple feature. We

compute the importance coefficients through the attention mecha-

nism:

𝑎
𝑖 𝑗
𝑡 =

exp(ℎ𝑖𝑡𝑾 (ℎ
𝑗
𝑡𝑾)

𝑇 /
√
𝑑))∑

𝑘∈{𝐼 }−𝑖 exp(ℎ
𝑖
𝑡𝑾 (ℎ𝑘𝑡𝑾)

𝑇 /
√
𝑑)
,
∑︁

𝑗 ∈{𝐼 }−𝑖 𝑎
𝑖 𝑗
𝑡 = 1, (13)

where𝑾 ∈ 𝑅𝑑′×𝑑 is a learnable weight matrix, 𝑑 ′ and 𝑑 denote the

dimensions of the input vector and the latent vector, respectively,

and 𝑘 ∈ {𝐼 }−𝑖 indexes other agents except the agent 𝑖 .
Then the multi-head attention is used to stabilize the learning

process of self-attention, and the final latent feature is as follows:

ℎ𝑖
′
𝑡 = 𝜎

©­« 1

𝑀

𝑀∑︁
𝑚=1

∑︁
𝑗 ∈{𝐼 }−𝑖

𝑎
𝑖 𝑗
𝑡,𝑚𝑾

𝑚ℎ
𝑗
𝑡

ª®¬ . (14)

where 𝑀 is the number of attention heads. 𝑎
𝑖 𝑗
𝑡,𝑚 are importance

coefficients computed by the k-th attention mechanism, and𝑊𝑚
is

the corresponding weight matrix.

Another sub-module in the graph generator is the decoder that

generates a weight matrix used to sample the graph structure. Since

the GAT-based encoder has already provided sufficiently expressive

features among agents, a single-layer decoder is enough to easily

construct the pairwise relationship between the encoder outputs

to find a better structure of DAG for the decision policy.

𝑓
𝑖 𝑗
𝑡 (𝒉

𝑙
𝑡 ,𝒉

𝑟
𝑡 , 𝑢) = 𝜎 (𝑢𝑇 𝑡𝑎𝑛ℎ(𝑾𝒍𝒉

𝑙
𝑡 +𝑾𝒓𝒉

𝑟
𝑡)), (15)

where 𝒉𝑙𝑡 and 𝒉
𝑟
𝑡 are agents’ higher-level representations from two

encoder outputs, 𝑾𝒍 ,𝑾𝒓 ∈ R𝑑ℎ×𝑑𝑒 , 𝑢 ∈ R𝑑ℎ×1 are trainable pa-

rameters, and 𝑑ℎ, 𝑑𝑒 are the hidden dimension and encoder output

dimension, respectively.

Moreover, the logistic sigmoid function 𝜎 (·) generates the prob-
ability for constructing the Bernoulli distribution from which the

binary adjacency matrix 𝐴 is sampled. The binary adjacency ma-

trix forms a directed graph corresponding to the ACG G. Here, we
denote this graph generation process as G ∼ 𝜌𝜑 (𝒉).

Parameter Setting. In the graph generator, the attention head

in the GAT encoder is set to 8, the stacked attentional layers are set

to 4, and the hidden units in the MLP is set to 64. In the graph-based

coordinated policy, the actor critic architecture is adopted. The

recurrent layer comprised of a GRU with a 64-dimensional hidden

state, with a fully-connected layer before and after, is used as the

actor. The critic is a two-layer MLP with the ReLu activation.

4.4 Algorithm Description
Themain procedures are summarized inAlgorithm 1, where∇𝜑𝐿(𝜑),
𝜂𝜃𝑖 (𝜃𝑖), and ∇𝜙L(𝜙) are optimized. Our ultimate goal is to obtain

the graph-based coordinated policy {𝜋𝑖 }𝑛
𝑖=1

. The graph generator 𝜌

is an intermediate used to access an excellent graph structure in

guiding the decision-making sequence among agents to achieve a

high degree of multi-agent coordination. The graph generator is

a pluggable module that can be replaced by other algorithms for

solving the DAGs. Note that DAGs are necessary because we need

an execution structure that can determine a clear sequence of the

actions, and therefore it should be directed and not circular. The pol-

icy solver is a universal module, which, in general, one can choose

from a diverse set of cooperative MARL algorithms [2, 10, 40].

5 EXPERIMENTS
We evaluate the effectiveness of our algorithm on three different

environments: Collaborative Gaussian Squeeze
1
[19], Cooperation

Navigation
2
[2], and Google Research Football

3
[41].

5.1 Experimental Setting
Collaborative Gaussian Squeeze (CGS). As an extension of

Multi-domain Gaussian Squeeze (MGS) [19], Collaborative Gauss-

ian Squeeze is a challenging environment for evaluating coordi-

nation. In MGS, there exist 𝐾 domains [(𝜇1, 𝜎1), ..., (𝜇𝐾 , 𝜎𝐾)] in
the system. The system contains 𝑁 agents, and each agent 𝑖 can

take actions 𝑎𝑖 within range of {−10,−9, .., 0, 1, .., 8, 9, 10}. The prior
𝑠𝑖 ∈ [0, 0.2] given by the environment represents the unit-level

resource for each agent 𝑖 . The total amount of resources mobilized

by all agents is denoted as 𝑓 (𝒖) = ∑
𝑖 𝑠𝑖 × 𝑎𝑖 . The goal is to max-

imize the joint reward 𝐺 (𝒖) = ∑𝐾
𝑘=1

𝑓 (𝒖)𝑒−(𝑓 (𝒖)−𝜇𝑘)2/𝜎𝑘 2

. In our

settings, we modify the original MGS to a collaborative task. We

use two domains [(𝜇1 = 5, 𝜎1 = 1.25), (𝜇2 = −5, 𝜎2 = 1.25)]. The
computation of the joint reward is as follows:

𝐺 (𝒖) = 𝑓 (𝒖)𝑒−(𝑓 (𝒖)−𝜇1)
2/𝜎12 − 𝑓 (𝒖)𝑒−(𝑓 (𝒖)−𝜇2)

2/𝜎22 . (16)

1
The MGS environment is at https://github.com/Sonkyunghwan/QTRAN

2
The code is at https://github.com/openai/multiagent-particle-envs

3
The code is at https://github.com/google-research/football

Algorithm 1: The optimization of GCS.

Ensure graph-based coordinated policy 𝜋𝑖 and graph

generator 𝜌 ;

Initialize 𝜖,𝛾, 𝑀,𝐶 , and the replay buffer D ← ∅;
Initialize the parameters 𝜃𝑖 , 𝜙𝑖 for the graph-based

coordinated policy networks, where 𝑖 = 1, ..., 𝑛, and 𝜑 for

the graph generator network;

Initialize the target networks 𝜃𝑖
−
= 𝜃𝑖 and 𝜙𝑖

−
= 𝜙𝑖 ;

for each episode do
Initial state← {𝑜𝑖

0
}𝑛
𝑖=1

; // drop 𝑖 as 𝒐0 for clarity;

Initialize ℎ (1)
0
, ..., ℎ

(𝑛)
0

for RNN states;

for each timestep 𝑡 do
Get G𝑡 ∼ 𝜌 (·|𝒐𝒕);
Get the topological order 𝐴𝑡 = 𝑓 (G𝑡);
for 𝑖 in order 𝐴𝑡 do

augment the observations as

𝑜𝑖𝑡 = (𝑜𝑖𝑡 , 𝑢𝑖𝑡−1, 𝑢
𝑝𝑎 (𝑖)
𝑡);

sample the action with 𝜖-greedy from

𝑄𝜋
𝑖

𝑡 (𝑜𝑖𝑡 , 𝑢𝑖𝑡 ;𝜃𝑖);
Update RNN state ℎ

(1)
𝑡 , ..., ℎ

(𝑛)
𝑡 ← ℎ

(1)
𝑡−1, ..., ℎ

(𝑛)
𝑡−1 ;

Receive reward 𝒓𝑡 and observe next state o𝑡+1;
Add transition {𝒐𝑡 , 𝒖𝑡 , 𝒓𝑡 , 𝒐𝑡+1} into D;

end
end
if 𝑒𝑝𝑖𝑠𝑜𝑑𝑒𝑠 > 𝑀 then

Sample a minibatch B = {𝒐 𝑗 , 𝒖 𝑗 , 𝒓 𝑗 , 𝒐 𝑗+1}𝑀𝑗=0 ∼ D ;

Update the policy 𝜋𝑖 using B and (4);

Update the graph generator 𝜌 using B and ∇𝜑𝐿(𝜑);
Update 𝜙𝑖 using (6);

Every 𝐶 steps reset 𝜃−
𝑖
= 𝜃𝑖 for 𝑖 = 1, ..., 𝑛;

Update the Lagrange penalty 𝜉 and the multipliers

𝝀1,𝝀2;
end

end

Figure 3a shows the reward curves for this setting. According to

the above definition, the reward is maximized when the resources

of all the agents reach 𝜇1 or 𝜇2. In this environment, the social

welfare depends on the intensity of collaboration.

CooperativeNavigation (CN). Cooperative Navigation is a clas-
sic scenario implemented in the multi-agent particle world. This

scenario has 𝑛 agents and 𝑛 landmarks, which are initialized with

random locations at the beginning of each episode. The objective of

the agents is to cooperate to cover all landmarks by controlling their

velocities with directions. The action set A includes five actions:

[up, down, left, right, stop]. Each agent can only observe

its velocity, position, and displacement from other agents and the

landmarks. The shared reward is the negative sum of displacements

between each landmark and its nearest agent. Agents must also

avoid collisions, since each agent is penalized with a ‘−1’ shared
reward for every collision with other agents. We set the length of

each episode as 25 time-steps. Therefore, the agents have to learn

https://github.com/Sonkyunghwan/QTRAN
https://github.com/openai/multiagent-particle-envs
https://github.com/google-research/football

to navigate toward the landmarks cooperatively to cover all posi-

tions quickly and accurately. Figure 3b shows a classic scenario in

Cooperative Navigation with 𝑁 = 3.

Google Research Football (GRF) . GRF is a realistically com-

plicated and dynamic simulation environment without any clearly

defined behavior abstraction, which is a suitable testbed for study-

ing multi-agent decision making and coordination. In GRF, we use

the Floats wrappers to represent the state. The Floats representation
contains a 115-dimensional vector that summarizes the informa-

tion, such as the ball position and possession, coordinates of all

players, and the game state. Each player has 19 actions to control,

including the standard move actions and different ball-kicking tech-

niques. The rewards include the 𝑆𝐶𝑂𝑅𝐼𝑁𝐺 reward (−1, +1) and
the𝐶𝐻𝐸𝐶𝐾𝑃𝑂𝐼𝑁𝑇 reward, which is the shaped reward that specif-

ically addresses the sparsity of 𝑆𝐶𝑂𝑅𝐼𝑁𝐺 . Detailed descriptions

are shown in Appendix B.

10 5 0 5 10
Resources

2
1
0
1
2
3
4
5
6

Re
wa

rd

Collaborative Gaussian Squeeze

(a) CGS

Agent 1 Agent 3

Agent 2

Landmark

(b) CN (c) GRF

Figure 3: The schematics of our experimental environments.

Baselines. We compared our results with several baselines as

follows. VDN and QMIX are state-of-the-art value factorization

approaches that follow the regime of centralized training and de-

centralized execution, belonging to the class of fully decentralized

control policies, with which it is difficult to obtain coordinated

behaviours. DCG uses fully connected graphs for belief propaga-

tion, which only allows the message passing of paired agents. DGN

aims at learning abstract representations to make simultaneous

decisions.

• VDN [7]: Value Decomposition Network (VDN) imposes the

structural constraint of additivity in the factorization, which

represents 𝑄𝑡𝑜𝑡 as a sum of individual Q-values.

• QMIX [8]: This was proposed to overcome the limitation that

VDN uses the linear decomposition and ignores any extra

state information available during training. QMIX enforces

𝑄𝑡𝑜𝑡 to be monotonic in the individual Q-values 𝑄𝑖 .

• DCG [28]: Deep Coordination Graph (DCG) factorizes the

joint value function of all agents according to a coordination

graph into payoffs between pairs of agents, which coordi-

nates the actions between agents explicitly.

• DGN [30]: DGN relies on a graph convolutional network to

model the relation representations, implicitly modeling the

action coordination.

5.2 Main Results
Here we report the experimental results from the setup described

in Section 5.1. Performance validation indicates the superiority of

introducing ACG to multi-agent systems.

Collaborative Gaussian Squeeze. In this game, there are 10

agents, and the maximum episode length is also set to 10. To em-

phasize the feasibility and effectiveness of our proposed framework,

we first conduct the experiment on CGS. We report the average

episode rewards over 10 random runs, shown in Figure 4. Our

proposed algorithm GCS outperforms the baseline methods by a

large margin. It can be seen that our algorithm handles the col-

laborative problem well; the action coordination graph facilitates

behavior learning to promote cooperation. Next, we will verify the

effectiveness of our algorithm on more complicated environments.

0 2 4 6 8
Timesteps 1e5

10

0

10

20

30

40

50

Av
er

ag
e

Ep
iso

de
 R

ew
ar

d

GCS (Ours)
DGN

DCG
VDN

QMIX

Figure 4: Average episode rewards compared with baselines
on Collaborative Gaussian Squeeze.

Cooperative Navigation. As shown in Figure 3b, Cooperative

Navigation is a fully cooperative environment in which 𝑁 agents

(circles) must cooperate to reach 𝑁 landmarks (crosses) with as

few collisions as possible. We conduct experiments in Cooperative

Navigation with 𝑁 = 4 and with 𝑁 = 6. Figures 5a and 5b show the

learning curve comparisons for the two cases.We report the average

episode reward at a training step, averaged over 10 independent

running seeds.

0.0 0.5 1.0 1.5
Timesteps 1e6

30.0

27.5

25.0

22.5

20.0

17.5

15.0

12.5

10.0

Av
er

ag
e

Re
wa

rd

Ours
DGN

DCG
VDN

QMIX

(a) Four agents

0.0 0.5 1.0 1.5 2.0
Timesteps 1e6

55

50

45

40

35

30

25

20

Av
er

ag
e

Re
wa

rd

Ours
DGN

DCG
VDN

QMIX

(b) Six agents

Figure 5: Average episode rewards for four agents and six
agents in Cooperative Navigation.

First, our algorithm outperformsmost baseline algorithms by giv-

ing higher converged rewards. We consider that our performance

improvement results from the action coordination graph represent-

ing the action dependency for better coordination. Moreover, our

algorithm converges fast during training, which is possibly because

the hierarchical decision policies can efficiently induce coordination

among agents in this cooperative setting. In addition, our algorithm

can achieve a lower variance than those baselines, which indicates

that the learned action coordination graph can reduce the uncer-

tainty in decision making to facilitate cooperative behaviors among

agents.

In contrast, VDN and QMIX take actions simultaneously without

considering the action dependency among agents. They are faster

during training, but that is of no benefit in inducing cooperation

among agents. Additionally, DCG exhibits mediocre performance

in this task. We believe that DCG considers only pairwise relation-

ships between agents, which may disturb the overall balance in the

system. In this case, DGN shows good performance consistent with

ours, which shows that implicit action coordination modeling is

also effective in pure cooperative settings.

1
2

4
3

landmark

agent

(a) Current state (b) Topology

1
2

4
3

(c) Goals and actions

Figure 6: Illustration of the effects of the action coordina-
tion graph. (a) Current state. (b) Topological structure of the
learned ACG. (c) The intention of agents according to the
ACG. The dashed lines represent the targets, and the solid
lines represent the actions.

In order to clearly show the meaningful effect of the action

coordination graph in the decision-making process, we give a visu-

alization at a time step in an episode of Cooperative Navigation, as

shown in Figure 6. Figure 6b shows the topological structure of the

learned ACG, and it suggests that the decision dependency of the

agent is [3, 4, 2, 1]. The parent sets of the four agents are denoted as

𝑝𝑎(1) = {4, 2}, 𝑝𝑎(2) = {3, 4}, 𝑝𝑎(3) = ∅, and 𝑝𝑎(4) = {3}, respec-
tively. First, agent 3 decides to move to the bottom-left landmark,

then agent 4 takes the best response and decides to move to the

bottom-right in order to avoid conflict with agent 3. After agent

2 knows the decisions of the previous two agents, it chooses the

closer upper-left as its target instead of the bottom-right. Finally,

agent 1 moves after observing the decisions of agents 2 and 4. This

visualization shows how agents’ joint actions deriving from the

ACG representing the underlying decision dependencies achieves

efficiency.

Google Research Football (GRF). To evaluate our method in

complicated and dynamic environments, we conduct several experi-

ments on GRF, as shown in Figure 7. In the 3-vs-2 scenario, three of

our players try to score from the edge of the box, and the opponent

team contains one defender and one keeper. In the 3-vs-6 scenario,

there are six opponent players on the pitch to play against three

of our players. In the 5-vs-5 scenario, each team has a keeper, an

offensive player, and three defenders. Here, we report the average

episode reward at a training step for each scenario, averaged over

10 independent running seeds.

As can be seen in Figure 7, our algorithm always obtains higher

rewards than all the baselines in the different scenarios of GRF.

This indicates that our method is quite general in complicated and

dynamic environments. Moreover, this performance improvement

in GRF demonstrates that our approach is good at effectively han-

dling stochasticity and sparse rewards. This is because the learned

ACG with the decision dependency is an efficient way to mitigate

uncertainty and induce cooperation among agents. Taking the 3-vs-

6 scenario for further demonstration, the training curve of QMIX

fluctuates and is unstable, indicating this method’s inability to adapt

to the dynamically complicated scenario with multiple opponent

players. Here, DCG shows a trend of non-convergence, but our

algorithm steadily rises to converge and obtains the highest re-

ward, which exhibits the modeling supremacy of our approach for

handling complicated tasks.

5.3 Results on DAG Depth
We observe that the inference efficiency and the performance gains

are inversely affected by the ACG’s depth. Therefore, we aim to

find the suitable depth 𝑘 that best balances the tradeoff. As shown

in Figure 8, to validate the impact of the depth, we test our method

on the Collaborative Gaussian Squeeze with different depth sizes of

the learned ACG. In this figure, the horizontal axis is the depth, and

the vertical axis is the testing episode reward averaged over five

seeds. We test 1000 episodes for each seed and obtain an average

episode reward.

1 2 3 4 5 6 7 8 9
The Maximal Depth of ACG

0

10

20

30

40

50

A
ve

ra
ge

 E
pi

so
de

 R
ew

ar
d

30.47

35.47 35.18

40.15 41.58 41.42
43.67

38.11 37.31

Figure 8: Effect of different DAG depth constraints on Col-
laborative Gaussian Squeeze.

As the depth of the ACG increases, the training time will increase

correspondingly. However, the performance growth will gradually

slow down, and performance degradation may even occur. In this

case, 𝑘 = 5 is the optimal depth that balances the computational

burden and the performance gains. As for the reason for the perfor-

mance degradation with 𝑘 = 8 and 𝑘 = 9, we speculate that as the

hierarchy of action dependency deepens, the complexity of the hy-

pothesis space for the inference will increase, and it becomes harder

to learn the optimal policy. In summary, a higher dependency level

of the graph structure can provide more decision information to

promote coordination and facilitate performance. However, this

higher dependency level leads to a lower efficiency of inference, as

the leaf node on the ACG needs to wait for all the parent nodes’

decisions before it makes its own decision.

5.4 Results on Dropping Edges
In this section, we verify the stability of the learned ACG in our

proposed algorithm. Given a trained model with 𝑑𝑒𝑝𝑡ℎ = 5 on Col-

laborative Gaussian Squeeze, we evaluate 1000 episodes and count

0 10k 20k 30k 40k 50k
Number Of Episode

10

20

30

40

50

Av
er

ag
e

Ep
iso

de
 R

ew
ar

d

VDN+ACG
DGN

DCG
VDN

QMIX

(a) 3 vs. 2

0 10k 20k 30k 40k 50k
Number Of Episode

0

10

20

30

40

Av
er

ag
e

Ep
iso

de
 R

ew
ar

d

(b) 3 vs. 6

0 10k 20k 30k 40k 50k
Number Of Episode

14

12

10

8

6

4

2

0

2

Av
er

ag
e

Ep
iso

de
 R

ew
ar

d

(c) 5 vs. 5

Figure 7: Average episode reward vs. training steps for comparisons with the baselines on Google Research Football.

the average number of edges of ACG, denoted as 𝑒𝑑𝑔𝑒𝑠𝑛𝑢𝑚 ≈ 28.

A fair comparison requires the same depth and number of edges

during training and evaluation. Therefore, we generate a fixed DAG

structure G{5,28} , see Appendix C, whose depth is 5 and whose

number of edges is 28, as the baseline to compare with our algo-

rithm.

3 5 7 9 15 Inf10

(a) Baseline G{5,28}

3 5 7 9 15 Inf10

(b) GCS (ours)

Figure 9: Box plots showing the distribution of the testing
episode rewards in Collaborative Gaussian Squeeze.

In Figure 9, the horizontal axis represents the number of edges

dropped from the generated or fixed graph structure, denoted as

#𝑑𝑟𝑜𝑝 , and the vertical axis is the testing average episode reward

over 1000 episodes. 𝐼𝑛𝑓 denotes dropping all the edges. The box

plots visually show the distribution of the testing episode rewards

and skewness by displaying the data quartiles. From the overall

trend of Figure 9, we can observe that the data quartiles of the

baseline reduce faster and change more drastically than our al-

gorithm when the disturbance of edge dropping increases. This

demonstrates that our algorithm has better stability. Moreover, in

Table 1, our algorithm outperforms the baseline with higher mean

rewards in most cases, which demonstrates the power of the ACG

learned by our model to promote the coordination among agents

reliably and stably even when confronted with disturbances of dif-

ferent intensities. It is worth noting that to guarantee stability, a

slight performance loss may occur. It will be an interesting future

research direction to study the stability–performance trade-off.

Table 1: Mean value of testing episode rewards when drop-
ping corresponding numbers of edges.

Methods
#drop

0 1 3 5 7 9 15 inf

The baseline 45.3 44.0 40.7 36.9 30.8 29.3 25.8 26.2

GCS (ours) 41.6 41.3 40.9 39.4 37.9 36.0 30.5 26.1

In summary, comparisons with VDN, QMIX, and DCG on three

environments demonstrate that our algorithm achieves better per-

formance, stronger stability, andmore powerful modeling capability

for handling dynamically complicated tasks than any of these meth-

ods. Moreover, the proposed DAG depth constraint provides an

insightful view on balancing efficiency and performance.

6 CONCLUSIONS
In this paper, we introduce a novel graph generator and graph-

based coordinated policy in MARL to dynamically represent the

underlying decision dependency structure and facilitate behavior

learning, respectively. We propose the DAGness-constrained and

DAG depth-constrained optimization to balance training efficiency

and performance gains. Extensive empirical experiments on Col-

laborative Gaussian Squeeze, Cooperative Navigation, and Google

Research Football, as well as comparisons to baseline algorithms,

demonstrate the superiority of our method.

Future researchmay consider improving the limited performance

by upgrading the graph generator model. We will also investigate

an automatic mechanism for finding an appropriate depth for the

action coordination graph.

ACKNOWLEDGEMENTS
Jingqing Ruan is supported in part by the Strategic Priority Re-

search Program of the Chinese Academy of Sciences under Grant

XDA27010404 and in part by the National Nature Science Founda-

tion of China under Grant 62073324. Co-author Haifeng Zhang is

supported in part by the Strategic Priority Research Program of the

Chinese Academy of Sciences, Grant No. XDA27030401.

REFERENCES
[1] Oriol Vinyals, Timo Ewalds, Sergey Bartunov, Petko Georgiev, Alexander Sasha

Vezhnevets, Michelle Yeo, Alireza Makhzani, Heinrich Küttler, John Agapiou,

Julian Schrittwieser, et al. Starcraft ii: A new challenge for reinforcement learning.

arXiv preprint arXiv:1708.04782, 2017.
[2] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch.

Multi-agent actor-critic for mixed cooperative-competitive environments. pages

6382–6393, 2017.

[3] Lior Kuyer, Shimon Whiteson, Bram Bakker, and Nikos Vlassis. Multiagent

reinforcement learning for urban traffic control using coordination graphs. In

Joint European Conference on Machine Learning and Knowledge Discovery in
Databases, pages 656–671, 2008.

[4] Joel Z Leibo, Vinicius Zambaldi, Marc Lanctot, JanuszMarecki, and Thore Graepel.

Multi-agent reinforcement learning in sequential social dilemmas. In International
Conference on Autonomous Agents and Multiagent Systems, pages 464–473, 2017.

[5] Yali Du, Lei Han, Peng Sun, Jiechao Xiong, Qing Wang, Xinghai Sun, Han Liu,

and Tong Zhang. Grid-wise control for multi-agent reinforcement learning in

video game ai. In International Conference on Machine Learning (ICML), pages
1–9, 2019.

[6] Jiechuan Jiang and Zongqing Lu. Learning attentional communication for multi-

agent cooperation. Advances in Neural Information Processing Systems, 31:7254–
7264, 2018.

[7] Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Viní-

cius Flores Zambaldi, Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z

Leibo, Karl Tuyls, et al. Value-decomposition networks for cooperative multi-

agent learning based on team reward. In International Conference on Autonomous
Agents and Multiagent Systems, pages 2085–2087, 2018.

[8] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder, Gregory Farquhar, Jakob

Foerster, and Shimon Whiteson. Qmix: Monotonic value function factorisation

for deep multi-agent reinforcement learning. In International Conference on
Machine Learning, pages 4295–4304, 2018.

[9] Yali Du, Lei Han, Meng Fang, Tianhong Dai, Ji Liu, and Dacheng Tao. Liir:

learning individual intrinsic reward in multi-agent reinforcement learning. In

Annual Conference on Neural Information Processing Systems, pages 4403–4414,
2019.

[10] Shariq Iqbal and Fei Sha. Actor-attention-critic for multi-agent reinforcement

learning. In International Conference on Machine Learning, pages 2961–2970,
2019.

[11] Haifeng Zhang, Weizhe Chen, Zeren Huang, Minne Li, Yaodong Yang, Weinan

Zhang, and Jun Wang. Bi-level actor-critic for multi-agent coordination. In AAAI
Conference on Artificial Intelligence, pages 7325–7332, 2020.

[12] Dimitri Bertsekas. Multiagent rollout algorithms and reinforcement learning.

arXiv preprint arXiv:1910.00120, 2019.
[13] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja

Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton,

et al. Mastering the game of go without human knowledge. Nature, 550:354–359,
2017.

[14] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan,

Laurent Sifre, Simon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis,

Thore Graepel, et al. Mastering atari, go, chess and shogi by planning with a

learned model. Nature, 588:604–609, 2020.
[15] Duzhen Zhang, Tielin Zhang, Shuncheng Jia, Xiang Cheng, and Bo Xu.

Population-coding and dynamic-neurons improved spiking actor network for

reinforcement learning. arXiv preprint arXiv:2106.07854, 2021.
[16] Xiaoqiang Wang, Yali Du, Shengyu Zhu, Liangjun Ke, Zhitang Chen, Jianye Hao,

and Jun Wang. Ordering-based causal discovery with reinforcement learning. In

Zhi-Hua Zhou, editor, Proceedings of the Thirtieth International Joint Conference on
Artificial Intelligence, IJCAI-21, pages 3566–3573. International Joint Conferences
on Artificial Intelligence Organization, 8 2021.

[17] Linghui Meng, Muning Wen, Yaodong Yang, Chenyang Le, Xiyun Li, Weinan

Zhang, Ying Wen, Haifeng Zhang, Jun Wang, and Bo Xu. Offline pre-trained

multi-agent decision transformer: One big sequence model conquers all starcraftii

tasks. arXiv preprint arXiv:2112.02845, 2021.
[18] Ming Tan. Multi-agent reinforcement learning: Independent vs. cooperative

agents. In International Conference on Machine Learning, pages 330–337, 1993.
[19] Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Hostallero, and Yung Yi.

QTRAN: learning to factorize with transformation for cooperative multi-agent

reinforcement learning. In International Conference on Machine Learning, pages
5887–5896, 2019.

[20] Jakob N. Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli,

and Shimon Whiteson. Counterfactual multi-agent policy gradients. In AAAI
Conference on Artificial Intelligence, pages 2974–2982, 2018.

[21] Thomas Degris, Martha White, and Richard S Sutton. Off-policy actor-critic.

arXiv preprint arXiv:1205.4839, 2012.
[22] Lucian Busoniu, Robert Babuska, and Bart De Schutter. A comprehensive survey

of multiagent reinforcement learning. IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews), 38(2):156–172, 2008.

[23] Jakob N Foerster, Yannis M Assael, Nando de Freitas, and Shimon Whiteson.

Learning to communicate with deep multi-agent reinforcement learning. In

Annual Conference on Neural Information Processing Systems, pages 2145–2153,
2016.

[24] Sainbayar Sukhbaatar, Arthur Szlam, and Rob Fergus. Learning multiagent com-

munication with backpropagation. In Annual Conference on Neural Information
Processing Systems, pages 2252–2260, 2016.

[25] Chongjie Zhang and Victor Lesser. Coordinating multi-agent reinforcement

learning with limited communication. In International Conference on Autonomous
Agents and Multi-Agent Systems, pages 1101–1108, 2013.

[26] Peng Peng, Quan Yuan, Ying Wen, Yaodong Yang, Zhenkun Tang, Haitao Long,

and Jun Wang. Multiagent bidirectionally-coordinated nets for learning to play

starcraft combat games. CoRR, abs/1703.10069, 2017.
[27] Yali Du, Bo Liu, Vincent Moens, Ziqi Liu, Zhicheng Ren, Jun Wang, Xu Chen,

and Haifeng Zhang. Learning correlated communication topology in multi-agent

reinforcement learning. In International Conference on Autonomous Agents and
Multi-Agent Systems, pages 456–464, 2021.

[28] Wendelin Böhmer, Vitaly Kurin, and Shimon Whiteson. Deep coordination

graphs. In International Conference on Machine Learning, pages 980–991, 2020.
[29] Sheng Li, Jayesh K Gupta, Peter Morales, Ross Allen, and Mykel J Kochenderfer.

Deep implicit coordination graphs for multi-agent reinforcement learning. In

International Conference on Autonomous Agents and MultiAgent Systems, pages
764–772, 2021.

[30] Jiechuan Jiang, Chen Dun, Tiejun Huang, and Zongqing Lu. Graph convolutional

reinforcement learning. arXiv preprint arXiv:1810.09202, 2018.
[31] Xun Zheng, Bryon Aragam, Pradeep K Ravikumar, and Eric P Xing. Dags with

no tears: Continuous optimization for structure learning. Annual Conference on
Neural Information Processing Systems, pages 9472–9483, 2018.

[32] Yue Yu, Jie Chen, Tian Gao, and Mo Yu. Dag-gnn: Dag structure learning with

graph neural networks. In International Conference on Machine Learning, pages
7154–7163, 2019.

[33] Yue Yu and Tian Gao. Dags with no curl: Efficient dag structure learning. In

Annual Conference on Neural Information Processing Systems, 2020.
[34] Sébastien Lachapelle, Philippe Brouillard, Tristan Deleu, and Simon Lacoste-

Julien. Gradient-based neural dag learning. 2020.

[35] Shengyu Zhu, Ignavier Ng, and Zhitang Chen. Causal discovery with reinforce-

ment learning. In International Conference on Learning Representations, 2019.
[36] Craig Boutilier. Planning, learning and coordination in multiagent decision

processes. In Theoretical Aspects of Rationality and Knowledge, volume 96, pages

195–210, 1996.

[37] I. N. Herstein. Topics In Algebra. John Wiley & Sons, 2nd edition, 1975.

[38] Dimitri P Bertsekas. Nonlinear programming. Journal of the Operational Research
Society, 48:334–334, 1997.

[39] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Liò, and Yoshua Bengio. Graph attention networks. In International Conference
on Learning Representations, 2018.

[40] Chao Yu, Akash Velu, Eugene Vinitsky, Yu Wang, Alexandre Bayen, and Yi Wu.

The surprising effectiveness of mappo in cooperative, multi-agent games. arXiv
preprint arXiv:2103.01955, 2021.

[41] Karol Kurach, Anton Raichuk, Piotr Stańczyk,Michał Zając, Olivier Bachem, Lasse

Espeholt, Carlos Riquelme, Damien Vincent, Marcin Michalski, Olivier Bousquet,

et al. Google research football: A novel reinforcement learning environment. In

AAAI Conference on Artificial Intelligence, pages 4501–4510, 2020.

A DETAILED PROOFS
We provide the detailed proofs of the propositions in the following.

A.1 Proof of Proposition 1
proof. Firstly, we prove that the entry 𝐴𝑘

𝑖 𝑗
in 𝑘-th power of

the adjacency matrix 𝐴 indicates the number of walks of length

𝑘 from node 𝑣𝑖 to 𝑣 𝑗 . Let L𝑙 (𝑖, 𝑗) denote the number of walks of

length 𝑙 from node 𝑣𝑖 to 𝑣 𝑗 . When 𝑙 = 1, 𝐴1 = 𝐴, 𝑎𝑖 𝑗 = L1 (𝑖, 𝑗).
Let 𝑏𝑖 𝑗 = L𝑘 (𝑖, 𝑗) denote the 𝑖 𝑗𝑡ℎ entry of 𝐴𝑘 . We have 𝐴𝑘+1

𝑖 𝑗
=

𝐴𝑖 𝑗𝐴
𝑘
𝑖 𝑗

= 𝑎𝑖1𝑏1𝑗 + 𝑎𝑖2𝑏2𝑗 + ... + 𝑎𝑖𝑛𝑏𝑛𝑗 =
∑
𝑛 𝑎𝑖𝑛𝑏𝑛𝑗 , where ∀𝑚 ∈

[1, 𝑛], 𝑎𝑖𝑚𝑏𝑚𝑗 = L1 (𝑖,𝑚) · L𝑘 (𝑚, 𝑗) = L𝑘+1 (𝑖, 𝑗). So 𝐴𝑘+1
𝑖 𝑗

denote

the number of walks of length 𝑘 + 1 from 𝑣𝑖 to 𝑣 𝑗 . Then:

𝑑 (𝐴𝑘) := 𝑠𝑢𝑚(𝐴𝑘) = ∑
𝑖

∑
𝑗 𝐴

𝑘
𝑖 𝑗

= 0

𝑑 (𝐴𝑘−1) := 𝑠𝑢𝑚(𝐴𝑘−1) = ∑
𝑖

∑
𝑗 𝐴

𝑘−1
𝑖 𝑗

> 0

. (17)

The equations represent there is not a walk of length 𝑘 and there

is at least one walk of length 𝑘 − 1 from 𝑣𝑖 to 𝑣 𝑗 respectively, that

is 𝐴𝑘 = 𝑂,𝐴𝑘−1 ≠ 𝑂 . We define the hierarchy of the DAGs as the

longest path length. Therefore, the hierarchy of the DAGs is 𝑘 if 𝐴

is the Nilpotent Matrix of index 𝑘 . □

A.2 Proof of Proposition 2
Proof. Let 𝜋𝑖 represent the fixed policy for agent 𝑖 trained by

the graph-based coordinated policy. 𝜑 is the parameter to be solved

by the graph generator 𝜌 . 𝑔(·) and 𝑑 (·) are the constraint function
as shown in Equation (7) and Equation (17). 𝑄𝜋𝑖 (·) denotes the
state action function. The gradients is derived as follows.

∇𝜑𝐿(𝜑, 𝜆1, 𝜆2) = ∇𝜑
∑
𝑠
𝑝𝜋𝑖 (𝑠)

∑
𝑊

𝜌𝜑 (𝑊 |𝑠)
∑
𝑢𝑖
𝜋𝑖 (𝑢𝑖 |𝑠,𝑊) ·𝑄𝜋𝑖 (𝑠,𝑢𝑖)

−𝜆1𝑔(𝑊) − 𝜆2𝑑 (𝑊 𝑘)
]

= ∇𝜑
∑
𝑠
𝑝𝜋𝑖 (𝑠)

∑
𝑊

𝜌𝜑 (𝑊 |𝑠)
∑
𝑢𝑖

[
𝜋𝑖 (𝑢𝑖 |𝑜𝑖 , 𝑢𝑝𝑎 (𝑖)) ·

[
𝑄𝜋𝑖 (𝑜𝑖 , 𝑢𝑖)

−𝜆1 [𝑡𝑟 (𝑒𝑊 ◦𝑊) − 𝑑] − 𝜆2𝑠𝑢𝑚(𝑊 𝑘)
]

= E𝑠∼𝑝,𝑊 ∼𝜌𝜑 (· |𝑠)

[
∇𝜑 log 𝜌𝜑 (𝑊 |𝑠)

∑
𝑢𝑖
𝜋𝑖 (𝑢𝑖 |𝑜𝑖 , 𝑢𝑝𝑎 (𝑖))·𝑄𝜋𝑖 (𝑜𝑖 , 𝑢𝑖)

−𝜆1 (𝑒𝑊 ◦𝑊)
𝑇 · 2𝑊 − 𝜆2

∑
𝑖, 𝑗

[
𝑘𝑊 𝑘𝑊 −1

]
𝑖 𝑗

]
□

B DEATILS OF GOOGLE RESEARCH
FOOTBALL

Observations. The environment exposes the raw observations

as Table 2. We use the Simple115StateWrapper4 as the simplified

representation of a game state encoded with 115 floats.

Actions. The number of actions available to an individual agent

can be denoted as |A| = 19. The standard move actions (in 8 direc-

tions) includeA𝑚𝑜𝑣𝑒 = {𝑇𝑜𝑝, 𝐵𝑜𝑡𝑡𝑜𝑚, 𝐿𝑒 𝑓 𝑡, 𝑅𝑖𝑔ℎ𝑡,𝑇𝑜𝑝−𝐿𝑒 𝑓 𝑡,𝑇𝑜𝑝−
𝑅𝑖𝑔ℎ𝑡, 𝐵𝑜𝑡𝑡𝑜𝑚−𝐿𝑒 𝑓 𝑡, 𝐵𝑜𝑡𝑡𝑜𝑚−𝑅𝑖𝑔ℎ𝑡}. Moreover, the actions repre-

sent differentways to kick the ball isA𝑘𝑖𝑐𝑘 = {𝑆ℎ𝑜𝑟𝑡𝑃𝑎𝑠𝑠, 𝐻𝑖𝑔ℎ𝑃𝑎𝑠𝑠,

4
We refer the reader to:https://github.com/google-research/football for details of en-

coded information.

Table 2: The main information and detailed descriptions
about the observations in GRF.

Information Descriptions

Ball information

position of ball

direction of ball

rotation angles of ball

owned team of ball

owned player of ball

Left team

position of players in left team

direction of players in left team

tiredness factor of players

numbers of players with yellow card

whether a player got a red card

roles of players

Right team

position of players in right team

direction of players in right team

tiredness factor of players

numbers of players with yellow card

whether a player got a red card

roles of players

Controlled player information

controlled player index

designated player index

active action

Match state

goals of left and right teams

left steps

current game mode

Screen rendered screen

𝐿𝑜𝑛𝑔𝑃𝑎𝑠𝑠, 𝑆ℎ𝑜𝑡, 𝐷𝑜−𝑁𝑜𝑡ℎ𝑖𝑛𝑔, 𝑆𝑙𝑖𝑑𝑖𝑛𝑔, 𝐷𝑟𝑖𝑏𝑏𝑙𝑒, 𝑆𝑡𝑜𝑝−𝐷𝑟𝑖𝑏𝑏𝑙𝑒, 𝑆𝑝𝑟𝑖𝑛𝑡,
𝑆𝑡𝑜𝑝 −𝑀𝑜𝑣𝑖𝑛𝑔, 𝑆𝑡𝑜𝑝 − 𝑆𝑝𝑟𝑖𝑛𝑡}.

Rewards. The reward function mainly includes two parts. The

first is 𝑆𝐶𝑂𝑅𝐼𝑁𝐺 , which corresponds to the natural reward where

the team obtains +1 when scoring a goal and −1 when losing one

to the opposing team. The second part is 𝐶𝐻𝐸𝐶𝐾𝑃𝑂𝐼𝑁𝑇 , which is

proposed to address the issue of sparse rewards. It is encoded with

domain knowledge by an additional auxiliary reward contribution.

For example, we can increase the reward when the player owns the

ball to boost passing the ball.

C THE DETAILED STRUCTURE OF G{5,28}
The adjacency matrix of G{5,28} is shown as follows.

0 1 0 1 0 1 1 0 1 0

0 0 0 1 0 1 1 0 1 0

0 1 0 1 0 1 1 0 1 0

0 0 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 1 0

0 0 0 1 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0

0 1 0 1 0 1 1 0 1 0

0 0 0 0 0 0 0 0 0 0

0 1 0 1 0 1 0 0 1 0



https://github.com/google-research/football

D ADDITIONAL EXPERIMENTAL DETAILS
We set discount factor𝛾 = 0.99. The optimization is conducted using

RMSprop with a learning rate of 5 × 10
−4

and 𝛼 = 0.99 with no

weight decay. Exploration for action selection is performed during

training, and each agent executes 𝜖 −𝑔𝑟𝑒𝑒𝑑𝑦 policy over its actions.

𝜖 is annealed from 0.2 to 0.05 over the first 50𝑘 time steps and is

kept constant afterwards.

In addition, the information regarding computational resources

used is Enterprise Linux Server with 96 CPU cores and 6 Tesla K80

GPU cores(12G memory).

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Setup
	4 Methodology
	4.1 Graph-based Coordinated Policy
	4.2 Graph Generator
	4.3 Implementation Details
	4.4 Algorithm Description

	5 Experiments
	5.1 Experimental Setting
	5.2 Main Results
	5.3 Results on DAG Depth
	5.4 Results on Dropping Edges

	6 Conclusions
	References
	A Detailed Proofs
	A.1 Proof of Proposition 1
	A.2 Proof of Proposition 2

	B Deatils of Google Research Football
	C The detailed structure of G{5,28}
	D Additional Experimental Details

