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A B S T R A C T   

In this study, we investigate the viscoelasticity-induced migration of solid particles immerged in the three-dimensional flow field created by the rotation of a Rushton 
turbine. At the same time, we propose a scaling law for predicting the characteristic particle migration time as a function of the Weissenberg number. Particle image 
velocimetry is adopted to reconstruct the three-dimensional velocity and deformation rate fields generated by the rotation of the Rushton turbine in both Newtonian 
and viscoelastic fluids; concurrently, particle tracking is used to measure the evolution of the particle distribution in the tank. The experimental campaign shows that 
the deformation rate field is essentially bi-dimensional and confined to the r-θ plane. Accordingly, the particles migrate only in the radial direction driven by the 
presence of gradients of shear rate on the r-θ plane. Finally, the scaling law is validated against experimental data obtained at different Weissenberg numbers, 
impeller diameters and fluid compositions. The results show good agreement between the scaling law and the experimental data.   

1. Introduction 

The systematic study of the dynamics of particles in viscoelastic 
fluids started over half a century ago [1,2] with earlier works mainly 
reporting experimental observations, in simple flow cells, of complex 
behaviours, such as migration and accumulation of the particles. The 
experimental results were also qualitatively supported by theoretical 
predictions derived under the conditions of slow and slowly varying 
flow, and of small particle size [1–4]. The development of more accurate 
experimental techniques, like particle velocimetry, allowed the detailed 
analysis of the dynamics of the particles in a wide range of flow condi
tions. Accurate simulations were also made feasible by the development 
of numerical algorithms capable of treating non-Newtonian fluids. As a 
result, several aspects of the particle motion in viscoelastic media have 
since been understood, especially for simple particle shapes, such as 
spheres. An accurate work reviewing a large part of the literature on this 
subject is that by D’Avino and Maffettone [5]. The main conclusion of 
the aforementioned studies is that migration is observed when there is 
an imbalance of viscoelastic normal stresses around the particles. This 
imbalance can be caused by the non-uniformity of the flow field in 
which the particles are immerged and/or by the particle-wall in
teractions. If present, the shear-thinning of the ambient fluid influences 
both the direction and velocity of the migration process . The effect of 
secondary flows has also been investigated, mainly by considering the 
migration of a sphere immerged in the pressure-driven channel flow of a 
viscoelastic fluid [6–8]. According to these studies, the secondary flow 

drastically changes the migration dynamics by affecting velocity, tra
jectory and equilibrium position of the particles. 

In a recent study, Weheliye et al. [9] used a combination of particle 
image velocimetry (PIV) and particle tracking velocimetry (PTV) to 
study the different behaviors of solid particles stirred in Newtonian and 
viscoelastic ambient fluids. The solid phase consisted of monodisperse 
PMMA particles with a diameter of 1.5 mm, while the mixing system was 
an unbaffled cylindrical vessel stirred by a dual-blade paddle impeller. It 
was found that in a viscoelastic fluid the particles tended to accumulate 
at the centre of the vortices created by the impeller. The speed of this 
process was found to be related to the viscoelasticity of the flow; in 
particular, the dimensionless time scale of the migration process (equal 
to the time scale of the process multiplied by the impeller rotational 
speed) decreased exponentially with the Weissenberg number (equal to 
the relaxation time of the ambient fluid multiplied by the impeller 
rotational speed). Although Weheliye et al. [9] reported for the first time 
on the viscoelasticity-induced particle migration in complex 
three-dimensional flows in stirred vessels, they only presented a quali
tative relation between the migration speed and the viscoelasticity of the 
flow. The difficulty in obtaining accurate values for the migration time 
was the limiting factor for any quantitative analysis. As reported by the 
authors, this difficulty arose because the initial dispersion process of the 
particles in the ambient fluid overlapped with the beginning of the 
particle migration process. In this paper, we report on experiments that 
overcome this limitation and allow estimating the particle migration 
time accurately. Additionally, we present a heuristic argument similar to 
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that of D’Avino and Maffettone [5] to derive, via scaling, a novel 
expression for the particle migration velocity in stirred vessels. To verify 
the applicability of this expression, we employed two sets of planar PIV 
measurements to reconstruct the three-dimensional flow field created in 
an unbaffled cylindrical vessel by the rotation of a Rushton turbine, in 
both Newtonian and viscoelastic fluids. The Rushton turbine was chosen 
as a midpoint between the simple flows usually encountered in the 
literature for viscoelasticity-induced particle migration and the complex 
flow fields generated in industrial mixers. In particular, this turbine 
generates a well-characterized, three-dimensional flow field that can be 
easily studied in terms of its main directions of strain. To isolate the 
effect of normal stresses from other non-Newtonian properties (i.e. 
shear-thinning), we limited the study to viscoelastic fluids with constant 
viscosity (Boger fluids). The conditions of the migration tests were 
chosen to minimize the effect of both gravity and inertial forces on the 
particle dynamics. The characteristic time of particle migration pre
dicted by the scaling equation was compared with the experimental data 
obtained in a wide range of fluid elasticity, impeller diameter and 

impeller speed. The experimental particle migration velocity was 
accurately measured via particle tracking (PT) experiments that allowed 
the estimation of the degree of dispersion of the solid phase and its 
change in time. 

2. Experimental setup 

2.1. Systems and flow geometry 

The experiments were conducted in a flat-bottomed cylindrical 
vessel with a diameter T = 50 mm. The fluid was stirred with two 
different standard Rushton turbines with a diameter D of 17 and 35 mm. 
The impeller clearance from the bottom and the liquid height were 25 
and 50 mm, respectively. To minimize the optical distortion arising from 
the curvature of the tank, we enclosed the vessel in a square trough filled 
with glycerol. The vessel, the trough and the 17 mm impeller were made 
of transparent acrylic material to maximize the volume of fluid acces
sible for measurements, while the 35 mm impeller was made of stainless 
steel. The solid phase consisted of acrylic spherical particles (density of 
1.2 g cm-3) with a diameter dp of 500 μm coated in Rhodamine B 
(Cospheric). The difference between the refractive index of pure glycerol 
(1.475) and the acrylic (1.495) was small enough to discount the effect 
of the light refraction on the images. Both the PIV and PT experiments 
were conducted using the same optical setup consisting of a continuous 
diode laser, a mirror and a high-speed camera. The light was generated 
using a Laserglow5® continuous laser (532 nm, 3000 mW) equipped 
with a spherical and a cylindrical lens mounted in series to create a 1 mm 

Table 1 
Composition and physical properties of the ambient fluids.   

Glycerol 
(%) 

Water 
(%) 

ZnCl2 

(%) 
ρ (kg/ 
m3) 

η0 
(Pa s) 

ηp (Pa 
s) 

λ 
(ms) 

GW 96 4 - 1236 0.51 - - 
GW100 98 2 - 1237 0.58 0.017 21 
RI100 16 39 45 1640 0.75 0.010 3.5  

Fig. 1. SAOS experimental data and model fitting at three different stirring times for (a) GW100 and (b) RI100: (Δ) G′′ at 0 min; (▴) G′′ at 30 min; (◊) G′′ at 90 min; 
(○) G′ at 0 min; (●) G′ at 30 min; (◊) G′ at 90 min. Simple shear experimental data and model fitting at three different stirring times for (c) GW100 and (d) RI100: (Δ) 
Ψ1 at 0 min; (▴) Ψ1 at 30 min; (◊) Ψ1 at 90 min. 
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laser sheet. A Phantom high-speed camera was equipped with a 105 mm 
Nikon lens resulting in a spatial resolution of 50 μm/pixel. Finally, an 
orange filter was connected to the camera lens to eliminate any re
flections of the laser light. 

2.2. Rheology 

Three ambient fluids were used. A Newtonian reference fluid (GW), 
made of a mixture of 96% glycerol and 4% water, and two dilute 
polymer solutions with nearly constant viscosity (Boger fluids). The 
polymer solutions were obtained by dissolving 100 ppm of poly
acrylamide (Mw = 5–6 ×106 g/mol) in a mixture of glycerol, water and 
zinc chloride. Compositions and properties of the ambient fluids are 
reported in Table 1, while details about the preparation procedure can 
be found in Weheliye et al. [9]. In Table 1, ηp and η0 are the polymer 
contribution to the viscosity and the total viscosity of the mixture, while 
λ denotes the fluid relaxation time. 

To characterize the viscoelastic behavior of the polymer solutions, 
we conducted two tests: small-amplitude oscillatory shear (SAOS) and 
steady-state simple shear tests. Both were conducted on an Anton Paar 
MCR302 rotational rheometer at a temperature ranging from 0 to 70 ◦C 
for the shear tests and from 10 to 50 ◦C for the SOAS tests. The larger 
temperature range required for the simple shear tests is motivated by the 
very small values of normal forces exhibited by the dilute polymer 
suspensions in the range of shear rate normally accessible by the 
rheometer (0.01–100 s-1). All the data obtained at different tempera
tures were shifted to the reference temperature of 23 ◦C through the 
method of reduced variables [10]. This technique enabled the extension 
of the interval of shear rates or angular frequencies accessible for the 
measurements. The rheometer was equipped with a 50 mm parallel plate 
(PP) for the steady-state simple shear tests and a 50 mm cone and plate 
(CP) measuring system for the SOAS tests. The PP system allowed the use 
of the thermal expansion compensation function of the instrument, 
which automatically adjusts the gap between the plates when the tem
perature is changed. This function allowed conducting the sequence of 
shear tests at different temperature on a single fluid sample. The 
non-uniformity of the shear-rate profile inside the gap of the PP system 
required the use of the Rabinowitsch-Mooney correction, which was 
automatically performed by the software of the rheometer. 

Polymer solutions are susceptible to mechanical degradation when 
subject to intense shear for a prolonged time. The degradation is caused 
by the breaking of the long molecular chains of the suspended polymer 
and results in a drastic change of the rheological properties of the 
ambient fluid [11]. To estimate the magnitude of this degradation, each 
fluid was subjected to intense stirring at 1500 RPM for 1.5 h into our 
mixing system, while the rheological properties were measured at reg
ular intervals of 30 min. To estimate the relaxation times, we fitted the 
experimental data with the multimode Giesekus constitutive equation, 
with a number of modes between 1 and 3. The multimode Giesekus 
model was preferred to the more common multimode Maxwell model 
because it was able to successfully predict both the linear viscoelastic 
properties obtained by the SAOS tests and the non-linear shear-thinning 
of the first normal stress coefficient obtained in the steady-state simple 
shear tests. 

The results of both the SAOS and the simple shear experiments for 
the two viscoelastic fluids are reported in Fig. 1. A high degree of 
polymer degradation can be detected after 30 min of stirring. This is 
clearly showed by the sizable reduction in storage modulus for both 
GW100 (Fig. 1 – (a)) and RI100 (Fig. 1 – (b)). The overlapping between 
the curves obtained after 30 min and 1.5 h indicates that most of the 
mechanical breaking of the polymer chains happens in the first half hour 
of stirring. After this time, no further degradation is evident. It is 
interesting to notice that the value of the loss modulus does not change 
considerably due to the polymer degradation; this is because the impact 
of the polymer degradation on the value of the total viscosity of the 
solution is relatively small. A corresponding reduction of the first normal 

stress coefficient can also be observed for both fluids (Fig. 1 – (c) and 
(d)). In a similar way, it appears that most of the reduction of the normal 
force is observed after 30 min of stirring although some degradation is 
still observed after 90 min. Finally, the close fit between the data pre
dicted by the model and the experimental results proves that the poly
mer solution can be successfully modelled with the Giesekus constitutive 
equation. 

As we will show in Section 3.2, the migration of the solid phase can 
last up to 40 minutes. Considering the previous results, we conclude that 
the polymer degradation and the relative change of the fluid relaxation 
time would seriously hinder the estimation of the Weissenberg number 
(Wi) of the flow. To account for this phenomenon, prior to any migration 
test, the polymer solution was loaded in the mixing system and stirred 
for 90 min at 1500 RPM. At the end of this phase, the breaking of the 
polymer chains was assumed to be complete. Finally, all the rheological 
properties considered depend strongly on the fluid temperature. To 
assess the extent of the temperature change induced by the mechanical 
stirring, the temperature of the fluid was measured at the beginning and 
at the end of each test. For all the conditions considered, the temperature 
difference was found to be below 2 ◦C. The final values of the viscosity 
and relaxation time were then considered constant throughout the 
experiments. 

2.3. Particle image velocimetry 

The reconstruction of the 3D velocity field was carried out for the 
Newtonian reference fluid and the GW100 viscoelastic fluid. It was 
assumed that the effect of the fluid viscoelasticity on the fluid dynamics 
inside the tank only depends on the polymer concentration via the value 
of Wi and is not affected by the composition of the Newtonian solvent in 
which the polymer is dissolved. For this reason, the fluid RI100 was not 
subjected to the PIV tests. 

The two mixtures were stirred with the 35 mm Rushton turbine at 
two impeller speeds, N=333 rpm and 666 rpm; this corresponds to Wi =
1.15 and 2.3 for the fluid GW100 at 333 and 666 rpm, respectively. As 
tracers for the PIV measurements, we used fluorescent polymer particles 
with 20 µm diameter made of melamine resin and coated with Rhoda
mine B, which at room temperature has a high fluorescent intensity. For 
the experimental conditions investigated, the tracer relaxation time was 

Fig. 2. PIV setups for the horizontal measurements (a) and vertical measure
ments (b). 
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negligible compared to the convection time (St–––
ρt d2

t
18η0

N ≪ 1, where ρt 

and dt are the tracer density and diameter, respectively). Concurrently, 
the terminal velocity and the slip velocity resulting from inertial effects 
are several orders of magnitude smaller that the fluid velocity, guaran
teeing that the tracer rapidly relaxes to the local value of the fluid ve
locity. Schematic diagrams of the PIV setups for the horizontal and 
vertical plane measurements are provided in Fig. 2 (a) and (b), respec
tively. In the remainder of the paper, a cylindrical coordinate system (r, 
θ, and z) with origin in the center of the base of the vessel will be used. 

To reconstruct the velocity field, we conducted two sets of 2D PIV 
tests in the horizontal and vertical directions. Several works in the 
literature report on the flow field produced by a Rushton turbine in 
conditions similar to those investigated in this work [12–16]. Some of 
these works use stereo-PIV to measure the entire 3D velocity field in the 
vessel. Although this technique has been extensively validated, in the 
present work it was found that the use of 2D PIV measurements ensured 
a higher spatial resolution for the measured vector field. 

The horizontal PIV measurements were carried out at intervals of 
Δz/T = 0.02 in the height interval z/T = 0–0.48. At the beginning of 
each test, the position of the laser plane was adjusted at the desired z 
level. The image capture was then synchronized with the impeller po
sition using a hall switch sensor. This allowed capturing images at a 
fixed impeller phase angle θ (i.e. the azimuthal angle or rotation of the 
impeller around the vertical axis z) equal to 0o. A total of 100 images 
pairs (corresponding to 100 impeller rotations) were captured for each 
horizontal plane; on each plane, the velocity field was then obtained by 
averaging the 100 instantaneous vector fields. 

The vertical velocity field was obtained through time-resolved 
measurements. In this case, the laser plane was kept in the same verti
cal position throughout the tests (that is, just one vertical plane was 
considered) and the image acquisition was not synchronized with the 
impeller phase angle. A total of 3000 images were captured with an 
acquisition rate f of 1000 Hz and 2000 Hz for N = 333 rpm and 666 rpm, 
respectively. This allowed obtaining images with a resolution Δθ = 2 
o
(

N
60

360
f

)
for a total of 90 planes. The displacement of the tracer be

tween the images at θi and θi+1, with i = 1,…,90 was used to calculate 
the velocity field at the angle θi + θi+1

2 . For each phase angle, a total of 33 
velocity fields were obtained and subsequently averaged. The inde
pendence of the PIV results from the sample size is shown in Fig. A2 in 
Appendix A. 

Each velocity field was calculated from the tracer displacements 
between two consecutive images with the freeware package JPIV, using 
a 50% window overlap for a final interrogation window with resolution 
of 16×16 pixels. An amplitude filter was applied to each cross- 
correlation box to eliminate the vectors that substantially deviated 
from the median value. Note that both the ur and uz components of the 
fluid velocity along the θ direction were directly available from the 
vertical measures, while the horizontal tests provided ur and uΘ along 
the z direction. In order to obtain the full 3D velocity field in the stirred 
tank, we first azimuthally stacked the vertical measurements. Subse
quently, the horizontal measurements were stacked along the z direc
tion. The exact placement of the horizontal velocity vectors was decided 
by comparing the values of the ur components obtained from both the 
horizontal and the vertical measurements. 

2.4. Particle tracking 

The particle tracking experiments were performed with the optical 
system in the configuration shown in Fig. 2 - (b). The objective of these 
tests was to determine the particle migration time as a function of the 
Weissenberg number defined as the product of the fluid relaxation time 
and the characteristic value of the shear rate (Wi ≡ λγ̇c). The charac
teristic value of the shear rate was chosen as the average shear rate in the 
fluid surrounding the impeller. This value was calculated according to 

Metzner and Otto [17] as follows: 

γ̇c = ksN (1)  

where ks is the Metzner and Otto constant that depends on the shape of 
the impeller. Although Eq. 1 was originally derived for inelastic shear- 
thinning fluids, Seyssiecq et al. [18] derived the values of ks for a 
Rushton turbine for a wide array of viscoelastic fluids. Their work re
ports a value of ks ranging from 9 to 12. In this work we only intend to 
capture the order of magnitude of the migration velocity, hence we 
assumed a value of ks = 10. Finally, the migration time is defined as the 
time at which no significant change in the distribution of the particles 
can be detected. Experiments were conducted with both the 17 mm and 
the 35 mm turbines at a rotation speed N ranging from 200 to 1200 rpm. 

This resulted in Wi values between 0.05 and 2 and Re ≡
ρf ND2

η0 
values 

between 5 and 15. At the beginning of each test, 1.5 g of acrylic spheres 
(equivalent to a volume fraction of 1%) were placed on the liquid sur
face. The system was then stirred at 2000 rpm for 5 min until a homo
geneous particle distribution was achieved. At this point, the impeller 
speed was adjusted to the desired value and the recording was started. 
The PT tests were performed with the impeller phase angle locked at 0◦. 
The images were acquired with a frequency of 0.6 Hz for a time ranging 
from 15 min to 2 h depending on the impeller velocity and the migration 
speed. Fig. 3 - (a) shows a typical raw image obtained from a PT 
experiment for the fluid RI100 at Wi = 1.33. The bright circles corre
spond to the suspended solid particles. Based on the intensity histogram 
of the raw image, we used a threshold value to binarise the images and 
isolate the solid spheres. To detect the edges of the solid particles, a 
circular Hough transform algorithm (CHT) was employed. The CTH al
gorithm provided the position and the diameter of all the solid particles 
crossing the 1 mm laser plane. In order to account only for the particles 
that fully cross the laser plane, all the spheres with a diameter lower that 
0.5 mm were discarded. The image shown in Fig. 3 - (b), clearly dis
playing the position of the particles, was then used for the analysis of the 
migration phenomenon. The degree of dispersion of the solid phase was 
estimated through the use of the Shannon entropy function (S*): 

S* =
∑M

i=1

∑2

j=1
pj(i)ln

(
pj(i)

)
(2)  

where M is the number of sub-regions in which the image is divided, and 
pj(i) is the ratio between the number of pixels occupied by the j-th phase 
and the total number of pixels in the ith sub-region. A more detailed 
description of this function and its calculation are reported in [9]. 

2.5. Strain rate tensor 

The scaling law that we will propose in Section 3.3 is derived for a 
spherical particle immerged in a bi-dimensional, rotating shear flow. 
However, usually the flow field created by a rotating turbine is complex 

Fig. 3. (a) raw PT image; (b) image with the detected solids for RI100 at Wi 
= 1.33. 
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and three-dimensional. In order to assess the extent to which the flow 
field created by a Rushton turbine can be conceptually reduced to a bi- 
dimensional rotating shear flow on the r-θ plane, we analysed the rate of 
strain (or deformation) tensor field. The velocity gradient (∇u) can be 
decomposed into a symmetric part γ̇, usually called strain rate tensor, 
and an antisymmetric part Ω, referred to as rotation rate tensor. The 
physical components of the strain and rotation rate tensors with respect 
to a cylindrical coordinate system are reported in the following 
equations: 

γ̇ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂ur

∂r
1
2

[

r
∂
∂r

(uθ

r

)
+

1
r

∂ur

∂θ

]
1
2

[
∂ur

∂z
+

∂uz

∂r

]

1
2

[

r
∂
∂r

(uθ

r

)
+

1
r

∂ur

∂θ

]
1
r

∂uθ

∂θ
+

ur

r
1
2

[
1
r

∂uz

∂θ
+

∂uθ

∂z

]

1
2

[
∂ur

∂z
+

∂uz

∂r

]
1
2

[
1
r

∂uz

∂θ
+

∂uθ

∂z

]
∂uz

∂z

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(3)  

Ω =
1
2

⎛

⎝
0 ωz − ωθ

− ωz 0 ωr
ωθ − ωr 0

⎞

⎠ (4)  

where the vorticity ω is defined as: 

ω =

(
1
r

∂uz

∂θ
−

∂uθ

∂z

)

ir +

(
∂ur

∂z
−

∂uz

∂r

)

iθ +

(
1
r

∂
∂r

(ruθ) −
1
r

∂ur

∂θ

)

iz (5)  

where ir, iθ and iz are (mutually normal) unit vectors in the r, θ and z 
directions, respectively. Following the approach proposed by Bouremel 
et al. [19], we calculated the principal components of the strain rate 
tensor (Eq. 6) to analyse the strain dynamics in different regions of the 
vessel. 

∇u =

⎛

⎜
⎜
⎝

S*
11 0 0
0 S*

22 0
0 0 S*

33

⎞

⎟
⎟
⎠+

1
2

⎛

⎜
⎜
⎝

0 ω*
3 − ω*

2

− ω*
3 0 ω*

1

ω*
2 − ω*

1 0

⎞

⎟
⎟
⎠ (6)  

with S*
11, S*

22 and S*
33 the eigenvalues of γ̇ and ω*

1, ω*
2 and ω*

3 the 
components of the vorticity vector along the local principal axes of the 
strain rate tensor. The local principal axes are defined by the eigen
vectors associated with the eigenvalues S*

11, S*
22 and S*

33. The change of 
vector basis allows identifying the local velocity of deformation in the 
directions of the principal axes (i.e. velocities of stretching or 
compression). In particular, if S*

ii > 0 (no summation over the index i is 
implied) the fluid element is stretched in the i direction, whereas if 
S*

ii < 0, it is compressed. The values of the three components of the strain 
rate tensor can also be used to assess the intensity of the deformation in 
the three principal directions relative to each other. In particular, if one 
of the three components is small compared to the other two, the 
deformation field can be essentially regarded as bi-dimensional. 

3. Results 

3.1. Velocity field and flow structure 

An overview of the three components of the velocity field for the 
fluid GW100 at Re = 4.3 and Wi = 0.44 is reported in Fig. 4. All the 
velocities are normalised with the impeller tip speed πDN. The fluid is 
stirred with the 37 mm Rushton turbine. The 37 mm impeller was made 
of stainless steel; therefore, only the lower part of the tank was acces
sible to measurements. To provide sufficient information about the flow 
field, we divided both plots in six sectors, each reporting the component 

Fig. 4. Dimensionless radial (a), axial (b) and angular (c) components of the velocity field for the fluid GW100 at Re = 4.3 and Wi = 0.44.  
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of the velocity over an angle of 60◦ for six axial positions z/T (i.e. 0.39, 
0.41, 0.43, 0.44, 0.46 and 0.48) with the axial coordinate decreasing 
counter-clockwise and impeller rotating in the clockwise direction. The 
overall flow can be described as the superposition of a rotational flow 
around the z axis and of a rotational flow in the r-z plane. In this plane, 
the fluid moves in the positive r direction with the maximum radial 
velocity in correspondence of the edge of the palettes of the impeller. 
The fluid then slows down as it approaches the walls of the vessel. On 
reaching the wall, the radial component of the fluid velocity rapidly 
reduces to zero, while the axial component increases. The stream then 
divides into two equal parts directed above and below the axial position 
of the impeller and circulates back returning to the impeller region. 
Unsurprisingly, the value of the angular component of the velocity is an 
order of magnitude larger than the other two; hence, the dominating 
motion is represented by the rotation around the z axis. It is known that 
unbaffled stirred tanks usually present a central vortex at the liquid-air 
interface. Given the small value of the Reynolds number, at all the 
conditions examined the central vortex remains small and confined to a 
small area around the shaft of the stirrer. 

As it will be shown in Section 3.3, the migration of the particles is 
caused by the presence of an elastic force acting in the radial direction. 
The intensity of this force is not uniform along the z axis and it reaches 
its maximum value in the vicinity of the impeller. This means that the 
secondary flow described above contributes to the dynamics of the 
migration insofar as it continuously circulates the solids in the r-z plane 
and leads the particles to move on helicoidal pathlines around the z axis. 
Fig. 5 – (a) and (b) shows the contour plot of the normalised angular 
component of the vorticity for both the Newtonian fluid and the visco
elastic fluid GW100 at Re = 4.3 and Wi = 0 and 0.44, respectively. From 
Fig. 5 - (a) it can be seen that in the Newtonian case the rotation of the 
turbine creates the characteristic toroidal vortex flow-structure, with the 

maximum value of the angular vorticity located at the tip of the impeller 
and at z/T = 0.48 and r/T = 0.35. The vorticity then decreases when 
moving further away from the impeller both in the radial and in the axial 
directions. Note that the vortex created by the turbine interests the 
volume of fluid from r/T = 0.2 to r/T = 0.40 and only gradually de
creases in intensity when moving further away along the z direction. 

As Fig. 5 – (b) shows, the viscoelasticity of the fluid substantially 
changes the shape of the vortical structures. In particular, the toroidal 
vortex present in the Newtonian case loses its continuity and breaks into 
smaller trailing vortices that depart from the tip of the turbine. The intensity 
of the vorticity is also reduced, the maximum value of the normalised 
angular component reducing from 2.2 for the Newtonian case to 1.6 for the 
viscoelastic case. It can also be observed that the centre of the vortex shifts 
in both the radial and axial directions and is now located at z/T = 0.44 and 
r/T = 0.3. The difference between the two flow fields can be clearly 
observed in Fig. 5 – (c) and (d), where the three-dimensional structure of the 
vortex is shown by plotting iso-vorticity surfaces at ωθ/πN = 1.5. 

The contour plots of the principal components of the strain rate 
tensor S*

11, S*
22 and S*

33, for the fluid GW100 at Wi = 0.44 are shown in 
Fig. 6 (a)-(c) for six values of z/T. The strain rate S*

11 is positive over the 
entire plane of measure, while S*

22 is everywhere negative. This indicates 
that the fluid is always stretched along the principal direction associated 
with S*

11 and compressed along the direction associated with S*
22. On 

the other hand, S*
33 changes sign from positive to negative, indicating 

the presence of both areas of stretching and compression. The strain 
rates S*

11 and S*
22 are always dominant, as their dimensionless absolute 

values reach a peak of 1.5, while for S*
33 it is − 0.4 < S*

33/πN < 0.4. All 
three strain rates assume local absolute maxima close to the impeller 
blades for every z/T considered. Although not reported in Fig. 6, it is 
important to notice that the eigenvectors associated to S*

11 and S*
22 are 

Fig. 5. Vorticity plot and vortex structure for GW (a) and (c) and GW100 (b) and (d) at Re = 4.3 and Wi = 0.44. In both cases, the impeller rotates in the 
clockwise direction. 
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everywhere parallel to the r-θ plane and orthogonal to each other, while 
the one associated with S*

33 is everywhere parallel to the z direction. 
Apart from a small area around the tip of the impeller blades, the strain 
rate S*

33 is everywhere close to zero. This indicates that the local 
deformation of the flow is essentially bi-dimensional and controlled by 
two strain rates of stretch and compression mutually orthogonal to each 
other and parallel to the r-θ plane. 

As reported by D’Avino and Maffettone [5], one of the necessary 
conditions for viscoelastic particle migration is the presence of shear 
rate gradients. In the nearly bi-dimensional rotating shear flow 

described so far, the only relevant component of the rate-of-strain tensor 
is that associated with the coordinates r and θ. Fig. 6 - (d) reports the 
normalised, absolute value of this component. It is possible to observe 
that for every value of z/T, the absolute value of γ̇rθ shows a 
non-monotonic behaviour when moving in the positive r direction, with 
the presence of two areas of maximum and minimum shear. For 
example, at z/T = 0.48, γ̇rθ initially decreases from the value of 1 at r/T 
= 0 to the value of 0 at r/T = 0.3, it then increases until reaching its 
maximum value of 1.5 at r/T = 0.41, and then sharply decreases until 
reaching a value of 0 in correspondence of the wall. Moving along the 
axial direction, the maximum absolute value of γ̇rθ decreases from 1.5 at 

Fig. 6. Normalised principal stresses (a,b,c) and absolute value of the r-θ component of the strain rate tensor (d) for GW100 at Re = 4.3 and Wi = 0.44. The impeller 
rotates in the clockwise direction. 

Fig. 7. Vorticity contour plot and particles concentration for GW (a) and RI100 (b) at Re = 10 and Wi = 0 and 0.35, respectively.  
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z/T = 0.48 to 1 at z/T = 0.39. In addition, the radial position of the 
maximum of γ̇rθ moves to increasing value of r/T while the size of the 
area of low shear rates widens. The variation of γ̇rθ is responsible for the 
migration of the particles in the r-θ plane toward lower absolute value of 
shear rates. 

3.2. Migration experiments 

A second set of experiments was carried out to track the distribution 
of the solid particles in the tank and its evolution in time. At the 
beginning of each test, the solid particles were placed on top of the liquid 
surface. The liquid was then stirred at an impeller speed of 2000 rpm for 
5 min. After 3 min of stirring at 2000 rpm, the particles were uniformly 
dispersed throughout the flow. If stirring continues, the Newtonian and 
viscoelastic systems show two radically different behaviours. Fig. 7 – (a) 
compares the average solid volume fraction (〈C〉) and the normalised 
angular vorticity contour plots, after 90 min of stirring, for the fluids GW 
and RI100 at Re = 10 and Wi = 0 and 0.35, respectively. For the 
Newtonian case, no significant change in the particle distribution is 
observed. The solids remain uniformly distributed up to 90 min after the 
stirring is initiated. For the viscoelastic case, on the other hand, Fig. 7 – 
(b) shows an accumulation of the solid phase at the centre of the vortex 
created by the rotation of the impeller. 

The migration velocity was estimated by calculating the degree of 
disorder of the liquid-solid system represented by the Shannon entropy 
index (S*). Fig. 8 (a) and 8 (b) shows the evolution of the Shannon en
tropy with time for the Newtonian fluid, GW, and for the viscoelastic 
fluid, RI100, at Re = 10 and Wi = 0 and 0.35, respectively. In these 

graphs, the time t = 0 corresponds to the moment at which the impeller 
rotational velocity is reduced from 2000 rpm to the desired final value. 
At the conditions of the experiments, the particles Stokes number 

(St ≡ ρsd2
p

18η0
N) was much less than unity; thus, the velocities of the parti

cles relax rapidly to their dynamic equilibrium values. If the particles 
have the same density as the ambient fluid (which is the case for the fluid 
GW100), this equilibrium value is equal to the local velocity of the fluid. 
Although the density of the fluid RI100 is higher than the density of the 

solids, both the particle terminal velocity of the spheres 
(

vt =
gdp(ρs − ρf )

18η

)

and the slip velocity induced by inertia are still negligible compared to 
the fluid velocity

( vt
πN ≈ 10− 5; vi

πN ≈ 10− 3). We can then assume that in 
both fluids (GW100 and RI100) the particles rapidly relax to the local 
equilibrium and that when this happens, the effect of gravity and inertia 
are negligible. At this stage, the particles are uniformly dispersed into 
the flow and no migration is evident. To facilitate the comparison, the 
value of S* was normalised by dividing it by the maximum value reached 
during the mixing. In both cases, S* assumes its maximum value at the 
beginning of the experiment. For the Newtonian case, there is no 
appreciable change of S* throughout the duration of the test (that is, the 
particles are uniformly dispersed in the liquid and remain that way); S*/ 
Smax remains almost constant at a value of 1 with fluctuation of ± 3%. 
Contrarily, the Shannon entropy for the viscoelastic fluid reduces 
sharply from the initial value of 1 at t = 0 to the value of 0.54 at t = 30 
min. This decrease reflects the reduction of the region of the tank 
occupied by the particles and can be used to estimate the time required 
for the particle cross-streamline migration. In particular, the final 

Fig. 8. Normalised Shannon entropy for GW (a) and RI100 (b) at Re = 10 and Wi = 0 and 0.35, respectively.  

Fig. 9. (a) Particle path line in the stirred vessel and (b) schematic of the elastic force on the sphere.  
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migration time is taken to be the time at which the Shannon entropy 
reaches 99% of its final value. 

3.3. Scaling law for viscoelasticity-induced particle migration 

Here, we propose a simple heuristic argument to understand the 
nature of particle migration in stirred vessels and identify the parame
ters that influence this phenomenon. 

Consider a nonuniform two-dimensional shear flow, for example that 
created in the gap between two concentric cylinders (Taylor-Couette 
flow), where the inner cylinder rotates with an angular velocity Ω while 
the outer cylinder is stationary. Consider a sphere of radius a and density 
ρs moving in the streamwise (θ) direction at the same velocity as the fluid 
(Fig. 9 – (b)). We assume that the particle is neutrally buoyant, so that its 
density is the same as the fluid density (ρf ). In the absence of forces acting 
on the sphere in the direction normal to the flow (r direction), the particle 
would simply move along with the fluid in a circular trajectory concentric 
with the two cylinders. Experimental evidence ([3,20–25]) shows that if 
the suspending fluid is viscoelastic, the particle moves towards the 
decreasing shear rate direction, i.e. towards the outer cylinder. The 
migration is caused by an imbalance of the viscoelastic normal force 
acting across the particle. To derive an expression for the migration ve
locity vm, we first write a balance of forces on the particle. Divide the 
sphere in half using an imaginary cutting plane normal to the velocity 
gradient direction. Each hemisphere is subject to a radial force arising 
from the fluid elasticity. The magnitude of this force depends on the 
average shear rate acting on each hemisphere. For the first hemisphere: 

F(r) ∼ a2τrr(r) (7)  

where τrr is the rr-component of stress tensor of the fluid. For the second 
hemisphere, we write: 

F(r+ a) ∼ a2τrr(r+ a) ∼ a2[τrr(r)+ aDrτrr(r)] ∼ F(r) + a3( τc
rr

/
rc
)

(8) 

Here, τc
rr is the scale of τrr and rc is the characteristic length along 

which the shear-rate (and thus τrr) changes significantly. It is assumed 
that a/rc≪1. Then, the total force acting on the particle is: 

FE ∼ ε a2τc
rr (9)  

with ε ≡ a/rc. This force causes the particle to accelerate in the r-di
rection and is balanced by the fluid drag force. Assuming that the Stokes 
law is valid, we can write: 

FD ∼ η0a vc (10)  

where FD is the drag force, η0 the fluid viscosity and vc the velocity scale 
in the radial direction. At equilibrium, the value of vc can be obtained by 
equating Eq. 10 and Eq. 9; this yields: 

vc ∼
aετc

rr

η0
(11) 

All the relations above are expressed in terms of the normal stress 
scale. This makes sense, insofar as the normal stress is the cause of 
particle migration. However, it might be useful to eliminate τc

rr, relating 
it to the shear rate scale and the fluid viscoelastic properties. If we write 
the fluid stress tensor as a superposition of solvent and polymer con
tributions, which is the form usually adopted for polymer solutions ([10, 
26]), we have: 

τ = τs + τp = − ηsγ̇ + τp (12) 

Here, τ is the fluid stress tensor, while τs and τp are the solvent and 
polymer contributions, respectively. It can be proven that in a bi- 
dimensional Taylor-Couette flow the rr-component of the stress arises 
only if τp is different from zero, its exact expression depending on the 
constitutive model chosen [10]. In general, we can write [10]: 

τc
rr ∼ ηp λ γ̇2

c (13)  

where ηp is the polymer contribution to the viscosity of the solution, 
η0 = ηs + ηp, λ is the relaxation time, and γ̇c is the scale of the shear 

rate. Eq. 13 implies a constant value of the first normal stress coefficient. 
As shown in Fig. 1 c – d, the liquids used in this study exhibit a shear- 
thinning of the first normal stress coefficient at high shear rates. 
Despite this fact, Eq. 13 can still be used in the region of Wi numbers 
where the first normal stress coefficient remains constant; i.e. Wi < 5 for 
RI100 and Wi < 7 for GW100. Substituting Eq. 13 in Eq. 11, we obtain: 

vc ∼
ηp

η0
a λ ε γ̇2

c (14) 

Finally, we can rearrange Eq. 14 to derive a direct expression for the 
dimensionless characteristic migration time tc ≡ rc

vc
γ̇c: 

tc ∼
η0

ηp

1
ε2Wi

(15) 

The scaling law described so far has been derived in the hypothesis of 
a sphere immerged in a viscoelastic fluid subject to a nonuniform, two- 
dimensional rotating shear flow. In the previous section, we showed that 
the three-dimensional flow created by a Rushton turbine in laminar 
regime can be visualised as the superposition of a main rotational flow 
around the z axis and a secondary rotational flow in the r-z plane. We 
also showed that the rate of deformation in the z direction is negligible 
in comparison to the planar deformation rates in the r-θ plane. This 
means that, at least with regard to the rate-of-strain tensor, the flow field 
can essentially be considered bi-dimensional. Furthermore, the variation 
of γ̇rθ along the radial direction (Fig. 6 - (d)) indicated that in the r-θ 
plane, the rotating flow is nonuniform. 

Fig. 9 (a) shows a schematic representation of the trajectory of the 
spheres. Following the movement of the liquid, the spheres rotate 
around both the z axis and in the r-z plane. During their motion, they are 
subjected to the elastic force arising from the presence of gradients of 
shear rate in the r-θ plane. These gradients are always oriented along r 
and directed toward decreasing absolute values of the shear rate. The 
result is that the spheres move along a spiral pathline ending at the 
centre of the toroidal vortex created by the impeller. 

To apply Eq. 15 to the stirred vessel, we need to assign a value to all 
the characteristic quantities involved. The characteristic shear rate γ̇c 
was chosen as the average shear rate defined in Eq. 1 with value of ks =

10, while the characteristic length scale of the flow was assumed equal 
to the impeller diameter D. 

The migration time predicted by the heuristic scaling was validated 

Fig. 10. Dimensionless characteristic migration time as function of the Wi 
number. Experimental data (red squares) and model prediction. 
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against the data obtained from the migration experiments. The results are 
shown in Fig. 10 in terms of dimensionless characteristic migration time as 
a function of the Wi number. In agreement with the scaling law, the 
experimental data show an inverse dependence between tc and Wi as 
highlighted by the plotted line tc = k/Wi. Here, the constant k is used as a 
simple fitting parameter as the scaling law proposed is only expected to 
capture the order of magnitude of the time scale of the migration. How
ever, it is interesting to notice that the value of k in Fig. 10 is found equal to 
8.55×104, very close to the value of η0

ηp

1
ε2 that, in the conditions examined, 

is equal to 8.89 × 104 and 3.67 × 104 for RI100 and GW100, respectively. 

4. Conclusions 

In this paper, we presented a heuristic argument capable of pre
dicting the characteristic migration time of solid particles suspended in a 
viscoelastic medium in a stirred vessel. We used planar PIV to recon
struct the three dimensional velocity profile produced by a Rushton 
turbine in an unbaffled vessel and assessed the effect of the fluid elas
ticity on the flow field. The reconstruction of the flow field was also used 
to assess the applicability of the scaling law to the flow in exam. It was 
found that the velocity field could be reduced to a nonuniform rotating 
shear flow around the z axis. Particle tracking experiments were also 
conducted in order to estimate the degree of dispersion of the solid phase 
and its evolution in time. In accordance with the literature, the experi
mental data confirmed that in a viscoelastic fluid the solid particles 
migrate across the streamlines and accumulate in areas of low shear rate. 
The characteristic velocity of this migration was estimated by calcu
lating the degree of dispersion of the solid phase, through the Shannon 
entropy index, as a function of time. The experimental data were then 
used to validate the proposed scaling law. The scaling law was tested 
against data obtained with different viscoelastic fluids, impeller speeds 
and impeller diameters. The good agreement between the experimental 

data and the proposed equation confirms the validity of the scaling 
argument. The results reported in this work show that solid particles 
immerged in the flow field produced by a Rushton turbine segregate in 
particular areas of the flow under the effect of the viscoelasticity- 
induced cross-flow migration. At first glance, this behaviour seems to 
be an obstacle to the mixing process for which stirred vessels are usually 
employed. On the other hand, the same phenomenon could be used for 
the continuous separation of solids from solid-liquid suspensions in 
those circumstances when settlers and filters prove to be inconvenient. 
This is especially for the separation of neutrally (or nearly neutrally) 
buoyant solids immerged in viscous, non-Newtonian fluids (Fig. A1. 
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Appendix A  

Fig. A1. Time evolution of the particles positions on the horizontal plane for the fluid RI100 at Wi = 0.35.  
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Fig. A2. : Convergence plot for the average velocity on the horizontal plane Z/ 
T = 0.48 for the fluid RI100 at Re = 4.3 and Wi = 0.4, as function of the sample 
size. The plane at Z/T = 0.48 was chosen as worst case scenario as the 
convergence of the average planar velocity appears to be faster for all the others 
horizontal and vertical planes. 
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