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Integrating space syntax with spatial 
interaction
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Abstract 

In this paper, we attempt to compare space syntax with spatial interaction. At one level, these two approaches to 
urban spatial structure are non-comparable. Space syntax is largely a descriptive technique for visualising spatial 
relations at the level of connections between places while spatial interaction is a predictive model that forecasts how 
much travel there will be between places. Space syntax articulates the system in terms of whether or not a physical 
link, usually at the level of the street, exists while spatial interaction predicts movements between all origins and desti-
nations which are places often anchored in terms of the street network, but which at the level of prediction, assume 
connections between all places. Space syntax is grounded at a fine spatial scale while spatial interaction defines 
places as aggregates of activity in larger zones than the scale of the street system. The main output of space syntax 
is a connectivity matrix of step lengths between streets whereas in spatial interaction, such networks are predeter-
mined, measurable in terms of Euclidean distance or generalised cost of travel, and the output is the volume of travel 
prior to this being assigned usually to a street network.

There is however a fundamental way of relating the implicit network graph of spatial interaction to the explicit planar 
graph of the street network. We begin by assuming the planar graph of the network is conceived of as a primal prob-
lem of spatial interaction while the dual graph linking streets in the planar graph is the graph which is used in space 
syntax. We exploit this duality and show how we can move easily between spatial interaction as the primal and space 
syntax as the dual. This is rooted in a more fundamental graph – the bipartite graph which is a list of streets/arcs and 
their intersections/nodes from which the primal and dual emerge naturally. We explore various accessibility measures 
and show how they relate and correlate. We then go one step further and consider how various processes of random 
walking take place in these networks examining the steady states of the primal and dual problems in terms of the 
likelihood of a random walker visiting any node or street. We thus define primal and dual Markov chains that enable 
us to generate these probabilities. This provides a basic framework for comparing primal and dual in comparing 
spatial interaction with space syntax. We illustrate these measures on simple and easy to articulate graphs, extending 
this to a synthetic network of nearest neighbour links in Greater London based on 699 nodes and 1972 symmetric 
‘streets’ between zones. This is a preliminary attack on the problem of linking these two approaches although many 
challenges remain.
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1 � Preamble: the problem context
Space syntax is a descriptive technique for working out 
the relative accessibility or nearness of a set of spaces, 
often defined as streets, to one another. This enables 
comparisons of their relative nearness to the movement 
associated with each space or street. The assumption is 
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that movement increases linearly with accessibility while 
accessibility in this context is often called integration. It is 
defined by first identifying a set of streets which are usually 
lines of unobstructed movement, sometimes called axial 
lines, and then observing whether or not any one street is 
connected to any other which is defined if any two streets 
are connected (Hillier, 1996). The set of links between 
streets forms an interaction matrix which can be viewed as 
a topological or binary graph on which various operations 
can take place, for example, to find shortest routes from 
any link to any other which are then used to define the rel-
ative importance or accessibility of one link to any other. 
When these accessibilities are summed for each particular 
link, this gives the relative accessibility of a link. One of the 
features of space syntax is that it works with binary (0–1) 
links between streets and Euclidean distance or cost is not 
a feature of the analysis. The model is only predictive when 
the accessibility values for each street are associated with 
observed movement in each street which is occasionally 
used to build a predictive model.

Spatial interaction models, on the other hand, pre-
dict movement directly between a set of locations that 
can sometimes be interpreted as intersections between 
streets but are usually more generic – centroids defin-
ing a location or area – and apply at different spatial 
scales. Interaction or movement is directly proportional 
to activities that are located at different locations and 
inversely proportional to some measure of the length of 
the street measured as some generalised metric incor-
porating physical distance, travel cost and/or travel time. 
The model thus predicts movement as a function of these 
independent variables. Accessibility measures consist-
ent with the model’s predictions can be derived but these 
pertain to locations, not streets or links between these 
locations. The models are parameterised in such a way 
that movement is estimated to be as close as possible to 
observed data flows and in this sense, the focus is on pre-
diction rather than description.

There are several key differences between space syn-
tax and spatial interaction. Space syntax is essentially a 
descriptive measure of street accessibility which is related 
to movement in a comparative rather than predictive way. 
It is not parameterised and as such, there is no estima-
tion or calibration procedure used to operationalise the 
model. There is nothing in the technique that generates 
movement as in spatial interaction models. Space syn-
tax does not deal with locations but with links between 
locations – streets – which in turn are defined as linear 
spaces. Links between these spaces are represented not 
in terms of distance but as logical links which define a 
topological network. And space syntax does not incor-
porate any measures of activity associated with locations. 
The independent variables in spatial interaction models 

however are measures of (trip-making) activity at differ-
ent locations, generalised distance between locations, 
and parameters that define the relative weight of these 
activities and distances. Space syntax is more parsimo-
nious being based on logical links between spaces and 
forming accessibilities from these. Its only independ-
ent variable is the defined topology of the links which in 
some instances have been extended to other geometric 
properties such as street orientation based on angular 
variations. These might be parameterised (weighted) but 
there are few if any examples which follow in this direc-
tion. After the model has been built, accessibilities are 
then compared with movement; if a strong linear rela-
tionship exists, then occasionally the model has been 
used to predict movement, usually in  situations where 
new street links are added as part of a design.

There are hints in the wider literature involving trans-
portation, traffic assignment, and flows on networks of 
ways in which spatial interaction models might be linked 
to space syntax but the difficulties of doing so have defi-
nitely thwarted such developments. As we argue here, 
such an integration involves going one step back and 
finding a common form of representation for networks 
from which consistent comparisons and integrations can 
be made and this is the core of the argument here. In the 
wider field, there is a focus on pedestrian movement on 
streets involving such models which link graph theory 
(Sevtsuk, 2021), on using syntax to compare different 
modes of transport (Law et al., 2012), but the main devel-
opments have come from Korean researchers who have 
broached the flow model based on gravity and its discrete 
choice equivalents in linking spatial interaction to space 
syntax (Jang, 2019, Kim et al., 2016).

The key link here between the two types of model 
relates to the underlying network between locations. 
Both techniques begin with the physical network. Spa-
tial interaction models predict flows directly from this 
and other locational data. Space syntax works out acces-
sibilities from this network and then compares these to 
real data and if the correlation is good, a linear model 
can be fitted and used for prediction. The common key 
is the network but there the similarity ends. In spatial 
interaction, a network is defined as a set of intersections 
between segments – nodes and arcs – which is meas-
ured by some generalised distance or cost. The network 
does not privilege nodes or arcs in any particular way 
as this is the assumed backcloth on which spatial inter-
action takes place. In space syntax, one begins with the 
same network but from these, sets of segments that have 
their own integrity are defined as sequences of links. 
These form ‘streets’ and are in general composed of more 
than one segment. Once these streets have been defined, 
space syntax defines connections between streets as the 
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existence (1) or not (0) of a node in the original network 
that defines whether or not the streets are connected. In 
some sense, this is the dual of the original network which 
we might think of as the primal but as streets can be con-
structed from more than one segment, this need not be a 
strict dual. We will however refer to the space syntax net-
work as the dual and the original street segment network 
as the primal for in some senses, this is the key difference 
contained in the distinction between the two approaches. 
In fact, whether one uses the dual or the primal in space 
syntax does not make that much difference to the ulti-
mate computations of accessibility (see Batty, 2013 for 
a detailed explanation and comparison) but it is not our 
main purpose here to focus on these empirical differ-
ences and similarities. Our quest is to see how close the 
two models are and how one might be linked to the other.

In the sequel, we will begin with the common key to both 
space syntax and spatial interaction which is the network. 
We will first develop a generic representation of the network 
from which the space syntax and spatial interaction variants 
can be defined. In essence, we invoke the idea of a pre-graph 
– a bipartite graph linking intersections/nodes/junctions or 
zone centroids to segments/links or arcs that are some form 
of route such as streets. From this bipartite graph, all else can 
be derived but it is important to note that these tools and 
models are a limited set of possible forms that can be defined 
as graphs, and the way its links can be measured. Other con-
ceptions and variables based on locations associated with an 
underlying generic network can be defined but these are not 
directly related to space syntax (Marshall, 2015).

2 � The generic representation of the network
Networks in space syntax and spatial interaction are usually 
embedded in two-dimensional space defined by locations 
which are points where street or route segments intersect. 
In general, these networks are planar graphs although this 
can be complicated if the representation extends into the 

third dimension, includes one way movements, or segments 
that cross one another without intersecting. In this context, 
we will deal exclusively with networks in two dimensional 
space where distance is measured using Euclidean geom-
etries and the graph is planar (Barthélemy, 2011) The basic 
common ground between these two approaches is essen-
tially a structural network of locations and paths of move-
ment between: it is a graph whose elements are unweighted 
binary links. There is nothing else which is common to the 
two models and space syntax only uses this graph to derive 
many kinds of prediction and insight from the model. Spa-
tial interaction takes this graph as a skeletal network, loads 
or weights it with Euclidean distances or costs along its 
segments, then if incomplete, works out shortest routes to 
produce a full distance or travel cost matrix and then pro-
ceeds to use this as one of the basic inputs to the model that 
predicts flows between locations. In short, space syntax is 
very different from spatial interaction and it might be sup-
posed that there is little point in trying to compare these as 
their basic networks of interaction are not the same. But as 
we will see, there is some interest in making a comparison 
because both models deal with location and movement, 
and thus it is worth attempting to see how spatial interac-
tion ideas can inform space syntax and vice versa.

To provide the requisite intuition for the problem, let 
us propose a hypothetical planar graph of a street system 
where the nodes are the intersections between the lines 
(arcs or segments) which are the streets. In Fig. 1 (a), we 
show such a street network which is composed of N = 5 
intersections and L = 8 streets. This network is highly 
simplified: it is symmetric, that is the graph G(N, L) is 
non-directed and there are no self-loops. We have not 
specified any weights for the links in this graph and thus 
it relates only to the system’s topology.

Clearly the planar graph which is Fig. 1(a) links the 8 
streets through 5 intersections which are numbered by 
the dark circles with the solid line representing street 

a b

Fig. 1  The Primal (a) and Dual (b) Graphs and Adjacency Matrices of an Hypothetical Street Network. Note that the primal links nodes which are 
street intersections to one another through streets while the dual links streets to one another through nodes or street intersections
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segments. In Fig. 1(b), the streets are numbered by the 
dark squares and a solid line is drawn if two streets are 
connected through a common intersection. In the pri-
mal problem, each street has no more than two intersec-
tions where it joins other streets while in the dual each 
street only intersects once with another street. It is this 
that can be relaxed in space syntax where a single street 
segment can intersect with several different street seg-
ments and this changes the meaning of intersections. In 
fact, in this paper, arguably the graphs we define, which 
do not allow a street to have more than 2 intersections, 
miss some of the key elements of urban structure but it 
is a generic criticism of space syntax anyway in that the 
starting point is always a planar graph of local or near-
est neighbour links. If the planar graph has N nodes, 
there are always many less than N2 links, that is L <  < N2.

What we require is a method for building primal and 
dual network graphs from the same basis and to this end, 
we begin with the planar graph and a list of nodes that 
are associated (or not) with a list of streets. The starting 
point for both techniques is thus the skeletal network of 
links between N nodes each of which we will define as 
i = 1, 2, 3, …, N, and L lines (segments or arcs) defined as 

Expressed in matrix notation eqs. (1) and (2) can be 
written as U = AAT and V = ATA.

To provide some sense of what the primal and dual of 
these operations means, it is best that we introduce a 
simple worked example where we anticipate that the spa-
tial interaction matrix is one where each line links two 
and only two nodes i.e. there are only ever two nodes 
which represent the beginning and end of each line, 
while the space syntax matrix (associated with this spatial 
interaction problem) is the opposite – the dual – where 
each line is now considered as a node and from two such 
nodes, there is only one line. To derive the general space 
syntax problem we need to relax this requirement but to 
produce the clearest example, we will adopt this simpli-
fication, and there is no loss of generality in proceeding 
this way. Now the matrix A can be graphically displayed 
as a bipartite graph (Borgatti & Everett, 1997) where we 
link nodes to lines – street intersections to streets. The 
example we used in Fig.  1(a) has N = 5 nodes and L = 8 
lines whose matrix and bipartite graph are defined as.

(2)Vjℓ =
∑

j
AT
jkAkℓ

j = 1, 2, 3, …, L. The basic representation is given by the 
matrix A = {Aij} which is a binary matrix where Aij = 1 if 
node i is linked to line j and Aij = 0 if no such link exists. 
From this matrix, we can define the two basic matrices 
used in spatial interaction and space syntax. First the 
skeletal spatial interaction matrix which we call the pri-
mal counts the links between nodes as

where the transpose operator T reorders the basic matrix 
A as AT. The space syntax matrix is the dual of this oper-
ation and is formed as

(1)Uik =
j
AijA

T
jk

Note we define the 5 nodes as 1, 2, …, 5 and the 8 lines 
as 1,2, …, 8 with no ambiguity from the above definitions. 
The matrix, as we have been at pains to point out, simply 
records which street node or street intersection is associ-
ated with which each street line.

The two spatial models that we are examining take this 
information and deal with it in consistent but different 
ways. The spatial interaction model works by defining a 
matrix of interactions between intersections which are 
assumed to be centroids around an areal location and uses 
this matrix to predict the amount of movement. Then from 
eq. (1) using the above bipartite graph we form the interac-
tion matrix U (as)
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This is the primal problem. The dual involves defining how 
each street line is connected to any other, thus forming an inter-
action matrix V between street lines rather than street nodes 
and this defines a related graph. Then from eq. (2) we get.

If we compare the matrices U and V with the left and 
right matrices in Fig. 1, then we can easily see that these are 
the same except the main diagonal elements of each of these 
matrices are equal to zero. In fact the main diagonal ele-
ment reflects the number of paths in the graph to get from 
one node to the same. In the definition of U above, you can 
see that there are 3 steps to go from node 1 to itself and so 
on which are displayed from the juxtaposition of the two 
bipartite graphs and matrices A and AT. For V, there are 2 
steps to get from node 1 to node 1 via two lines and so on.

One final step remains to get the skeletal configuration 
matrices used for the two models and to do this, we need to 
slice out any links with more than one path and get rid of the 
self-links. Then the two matrices in question which define 
the primal and dual problems can be formed as follows:

(3)
Xik =

�

1 if Uik ≥ 1, i �= k
0 if Uik > 0, i = k

Yjℓ =

�

1 if Vjℓ ≥ 1, j �= ℓ

0 if Vjℓ > 0, j = ℓ















It is quite clear that if these operations are accom-
plished, the matrices U and V are sliced to remove the 
path lengths and ensure that the matrices remain binary, 
leading to the matrices X and Y. These are the same as 
those in Fig. 1 which we repeat here as

and

X =

⎡
⎢
⎢
⎢
⎢
⎣

0 1 1 1 0

1 0 1 0 1

1 1 0 1 1

1 0 1 0 1

0 1 1 1 0

⎤
⎥
⎥
⎥
⎥
⎦

Y =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 1 1 1 0 0 0

1 0 1 1 0 1 1 0

1 1 0 0 0 0 1 1

1 1 0 0 1 1 1 0

1 0 0 1 0 1 0 1

0 1 0 1 1 0 1 1

0 1 1 1 0 1 0 1

0 0 1 0 1 1 1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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3 � Distance: the key to explaining movement 
in space syntax and spatial interaction

The matrices U and V give the number of paths of one 
step between their respective nodes and X and Y show 
the one step paths excluding the self-loops. The sim-
plest way of forming a distance between any two nodes 
in either the spatial interaction or the space syntax prob-
lem is to use a very well-known technique which involves 
computing these from powers of these matrices. As these 
operations are identical for any square matrix, we will 
only illustrate them for one of these – the U matrix – and 
simply state the related results for the other matrices. 
Then the number of paths of two step length between any 
two nodes is given by powering the number of one step 
paths in matrix U(1) = U by U, that is

and by recursion, the number of n path lengths is

All the other results follow and we can state them as

These equations give the number of path lengths with 
and without the original self-loop and although we 
might conjecture that the number of path lengths co-
varies with the accessibility or centrality of a node or 
street, then we still need to provide some measure of this 
accessibility from these lengths. In fact to generate all 
path lengths that are positive, then we need to power the 
matrices up to N or L to make sure we get all of these.

We can form two kinds of distance from these path 
lengths. First we want to find the shortest path length 
for any pair of nodes and use this as a measure of dis-
tance. To do this we examine the number of path 
lengths at any iteration of eq. (4) and if this number is 
different from zero when the number of path lengths on 
the previous iteration is zero, we set the distance to the 
value of the power – the step length. Then for U

and all the other step-length distances follow as DV, 
DX, DY. This is a rather blunt measure in that it is con-
sistent with binary step lengths but does not incor-
porate actual travel times or costs, or even Euclidean 
distances or travel costs which we will note a little later 
but for the time being this can be regarded as our first 
measure of accessibility or integration as it is sometimes 
called in space syntax. The second measure is based on 
a weighted sum of the path lengths. Let us assume a set 
of weights one for each step length and we call these wU

z  

(4)U(2) = U(1)U = U2

(5)U(n) = U(n− 1)U = Un

(6)V (ℓ) == V ℓ; X(n) == Xn; Y (ℓ) == Y ℓ

(7)
if Uik(n) > 0 and Uik(n− 1) = 0 then DU

ik = n

where wU
1 > wU

2 > wU
3 > . . . Note that we order these so 

closer/lower step lengths have more weight and these are 
then applied to the number of paths at each step. The sec-
ond distance measure is thus

and the other three measures can be defined accordingly 
δXik(n), δ

V
jℓ (ℓ), δ

Y
jℓ(ℓ).

It is now worth demonstrating what these two sets of 
distance measures actually show for our hypothetical 
example. The simplest distance measures are the step-
distances where the value of the link between any two 
nodes is the number of steps a walker would have to 
make between one node and any other (for X via the 
street system) and between any street and any other 
(for Y via the intersection nodes). These matrices are 
easy to compute from the algorithm implied by eq. (7) 
for our example. Then these step distances are

and

and it is easy to confirm that these simple path lengths 
with no more than 2 steps are those that result from cas-
ual inspection of the graphs in Fig. 1.

These matrices are clearly very crude measures of 
accessibility but as they are very simple graphs and only 
based on binary relations, this is to be expected. The 
numbers of path computations are more detailed and 
these literally explode as we take more and more powers 
of the matrix for in bigger graphs, there is an exponen-
tially growing number of circuits. To show this, we indi-
cate the number of paths for the matrices U(N = 5) = U5 
and for V(L = 8) = V8. These are computed as

(8)δUik (n) =
∑n

z=1
wU
z Uik(z)

DX =
�

DX
ik

�

=











2 1 1 1 2
1 2 1 2 1
1 1 2 1 1
1 2 1 2 1
2 1 1 1 2











D
Y
=

�
DY

j�

�
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2 1 1 1 1 2 2 2

1 2 1 1 2 1 1 2

1 1 2 2 2 2 1 1

1 1 2 2 1 1 1 2

1 2 2 1 2 1 2 1

2 1 2 1 1 2 1 1

2 1 1 1 2 1 2 1

2 2 1 2 1 1 1 2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

U5 =











2019 1897 2929 1897 1776
1897 2019 2929 1776 1897
2929 2929 4660 2929 2929
1897 1776 2929 2019 1897
1776 1897 2929 1897 2019










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and

The weights for combining the path numbers up to the 
total number of steps U(N = 5) = U5 and V(L = 8) = V8 
are based on the simple expediency of making the 
weight proportional to the total maximum path lengths 
N or L less the step length being considered, that is, 
wU
i (n) ∝ N − n+ 1 or wV

i (ℓ) ∝ L− ℓ+ 1 . The weighted 
distances for the spatial interaction and space syntax var-
iants are thus computed as

and

We are at last in a position to say something about 
these distances/path numbers/step lengths relative to 
the problem shown in Fig. 1. It is very clear that there is 
little discrimination between the relative positioning of 
the nodes as intersections in the primal and the nodes as 
streets in the dual. That is, the graphs are symmetric and 
strongly connected and intuitively if we were to measure 
the relative importance of the nodes in each graph, their 
in-degrees (and out-degrees as the graphs are symmet-
ric) would not show much variation. In the primal it is 
clear that the central node 3 seems most important while 
in the dual, nodes 1, 4, 6 and 7 form a central block that 
has more importance than the outer block that consists 
of nodes 1, 3, 5 and 8.

Spatial interaction models usually predict both the 
relative flows between nodes that take place along streets 
as well as the total flows destined for each origin and 

V
8
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1246 1505 1165 1505 1165 1424 1424 1084

1505 1938 1505 1897 1424 1857 1897 1424

1165 1505 1246 1424 1084 1424 1505 1165

1505 1897 1424 1938 1505 1897 1857 1424

1165 1424 1084 1505 1246 1505 1424 1165

1424 1857 1424 1897 1505 1938 1897 1505

1424 1897 1505 1857 1424 1897 1938 1505

1084 1424 1165 1424 1165 1505 1505 1246

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

δU (5) =
�

δUik (5)
�

=











194 176 269 176 159
176 194 269 159 176
269 269 437 269 269
176 159 269 194 176
159 176 269 176 194











δV (8) =
�

δVik (8)
�

=























12730 16167 12594 16167 12594 16030 16030 12457
16167 20712 16167 20643 16030 20575 20643 16030
12594 16167 12730 16030 12457 16030 16167 12594
16167 20643 16030 20712 16167 20643 20575 16030
12594 16030 12457 16167 12730 16167 16030 12594
16030 20575 16030 20643 16167 20712 20643 16167
16030 20643 16167 20575 16030 20643 20712 16167
12457 16030 12594 16030 12594 16167 16167 16167























destination (nodes) while space syntax is associated with 
flows along streets that need to be aggregated from the 
relative positioning of any one street connected to all 
others. In short, both models make use of accessibilities 
which are summations of interactions; in spatial inter-
action, we predict flows from information about i ↔ k 
nodes as well as flows into i and k whereas in space syn-
tax, the flows between streets j ↔ ℓ have no meaning 
and what we need to do is model the notional flows that 
take place on each street j and ℓ. Thus it is accessibilities 
that we need to be concerned with here. As these are all 
defined the same way as summations of distance meas-
ures into nodes whether these nodes be intersections or 
streets, then we will just illustrate these for the step dis-
tances DU and DV. As space syntax uses the step distance 
measures DV as the core element in its tool box, we first 
define the total step distance for street j as dVj  and nor-
malise this by the maximum step distance m as d̂Vj  so that 
comparisons can be made between systems with different 
numbers of streets; these measures are

These measures although referred to as measures of 
integration by Hillier and Hanson (1985) are in fact 
measures of ‘inaccessibility’ and in most space syntax 
applications, the inverse of this measure is used to define 
what they call integration. In most recent applications, 
the measure integration appears to have been dropped 
and the more common measure of accessibility following 
conventional usage in spatial interaction and transporta-
tion modelling after Hansen (1959) is now being used. In 
fact the measure is usually taken as the inverse of depth 
dVj  or d̂Vj  and normalised to sum to 1, that is

This measure is sometimes referred to as real relative 
asymmetry although it is unclear where the term comes 

(9)
dVj =

∑

ℓD
V
jℓ

d̂Vj =
dVj
m =

∑

ℓ D
V
jℓ

m

}

(10)d̄Vj =
1/dVj

∑

ℓ 1/d
V
ℓ

,
∑

j
d̄Vj = 1
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from and what the asymmetry is that is being referred to 
(Bafna, 2003). What happens in space syntax is that as 
the measure in eq. (10) is associated with the street sys-
tem, the relative variations in the measure (which is the 
average or total depth of any one street to all others) is 
plotted for each street across the red-yellow-green-blue 
colour spectrum to produce the typical space syntax 
map. The primal problem has accessibilities associated 
with the nodes which are locations at street intersections. 
In exactly the same way, we form the same accessibilities 
and for completeness we define these as follows

The accessibilities show the relative intensity of flows 
at an intersection. If it is required to examine particular 
flows as in the space syntax dual, then the actual distance 
measures need to be used to make these comparisons but 
this has not been done in space syntax for in comput-
ing these distance matrices, few have broached the kind 
of predictive modelling that spatial interaction requires. 
In short although space syntax focuses primarily on the 
geometry and topology of the street network, the street 
network is simply the starting point for spatial interac-
tion and the accessibility measures – in fact an essential 
part of spatial interaction modelling – are used quite 
differently from those in space syntax. At this point, we 
have a common framework for computing relative meas-
ures of nearness or accessibility in both the primal and 
the dual and in Fig. 2 we show how we can map these to 

(11)d
U

i
=
�

k
D

U

ik
; d̂

U

i
=

d
U

k

n
=

∑
k
D

U

ik

n
; d̄

U

i
=

1∕dU

k∑
k
1∕dU

k

,

�
i
d̄
U

i
= 1

show variations in intensity for both the distance-step 
matrices and their accessibilities. We will not explore the 
weighted path number distances in eqs. (8) at this point 
here but keep these in mind for later applications.

You can see clear relations between the primal – the 
spatial interaction problem – and the dual – the space 
syntax problem – where we simply map the accessibili-
ties into street intersections and street segments in the 
primal and dual respectively but on the planar graph of 
the network which we show in Fig.  3. It is essential to 
note that there is an intrinsic asymmetry between spa-
tial interaction and space syntax in that we use the pla-
nar graph which lies at the basis of the network in spatial 
interaction to represent both problems. In short, in space 
syntax we collapse the movement onto nodes that define 
the streets whereas in spatial interaction we deal directly 
with movement on streets as we will elaborate below.

Fig. 2  The Primal and Dual Spatial Graphs and Their Accessibilities. The Nodes in the Primal are Street Intersections and the Nodes in the Dual are 
the Streets

Fig. 3  Accessibility Levels for the Primal and Dual Problems on the 
Planar Network
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4 � Models for predicting movement and location
Operations on the primal and dual network graphs do 
not lead to predictions of movement but to measures of 
connectivity which define indices of accessibility and dis-
tance. These indices might then be considered as being 
variables that can be associated or compared with activi-
ties at locations or movement along streets between 
locations but this is an additional stage in the analysis. 
In spatial interaction modelling for example, distances 
are central to predicting movements but these are usu-
ally defined a priori and although measures such as the 
step distance (or the path) matrices DU, DX and their 
accessibilities dU, dX could be used as independent vari-
able inputs, they are not quite in the form required for 
the standard models. In terms of the distance matrices 
DV, DY and their accessibilities dV, dY for the dual space 
syntax problem, these are the only elements that can be 
used to predict movement, and in this case, the distance 
matrices simply indicate notional flows or interactions 
between streets, that is DV

jℓ which do not have the mean-
ing of actual flows of traffic per se. Only when these are 
aggregated to dVj  are we able to compare these to the flow 
on the relevant street segments i ↔ k in order to see how 
good the fit is to real data.

There are two problems with doing this however. First 
using the step lengths, the range of step lengths whereby 
a network becomes completely connected might be very 
narrow. If you look at Fig. 1(b), the dual graph, then as we 
have already worked out, there are only two step lengths 
– 1, 2 – before the dual is completely connected; this is 
far too small a variation to use in computing accessibili-
ties even though the range widens once the number of 
nodes is increased. In fact in a large network in the form 
of a chain, then the range of accessibilities would vary as 
the number of nodes. However in typical networks which 
tend to be at best a small set of large monocentric clus-
ters at whatever scale of town one is looking at, the range 
is much narrower than we might expect would explain 
variations in movement. This is a major problem in space 
syntax and is seen in the fact that when comparisons 
of accessibility measures from the dual are made with 
movements along street segments, the scatter graphs are 
characterised by a small number of measures of accessi-
bility all at integer value, and a much larger number of 
measures of movement. The appearance of these graphs 
in fact is not a random scatter but more a structured 
striation.

The second problem is that the accessibilities which 
assume that a street is a node in the dual, are derived 
from links to other streets – other nodes in the dual – 
and that this implies some sort of flow from these other 
streets. In short it is not clear that if we aggregate, say, 
the step distances in the dual to get the accessibility of 

a street as dVj =
∑

ℓD
V
jℓ , then the interactions between 

streets DV
jℓ are actually flows. In spatial interaction mod-

elling, however the flows are always unambiguously 
associated with movements as measured by vehicular 
passenger traffic, migration, freight and so on. There is 
a third problem that is more generic. In spatial interac-
tion modelling, flows are predicted between all intersec-
tions or nodes in the street network whereas in space 
syntax, the underlying planar graph does not connect 
everywhere with everywhere else directly and thus flows 
can only be measured on the direct links in the graph. 
In short whereas in spatial interaction modelling as we 
have direct links such as ik and kz, we also have iz which 
does not necessarily exist as a line segment in the planar 
street graph. In short, in space syntax, we only examine 
direct links in the graph which are associated with nodes 
j and thus many possible links do not appear in the graph 
whereas the implicit graph in spatial interaction model-
ling is completely connected. In short, in spatial interac-
tion modelling, we distribute trips to all possible links 
between intersections or nodes regardless of whether a 
separate physical link exists whereas in space syntax, the 
flows are implicitly associated with those on a segment 
that are measures of traffic. Spatial interaction distributes 
trips whereas space syntax assumes these trips have been 
already assigned to a physical network based on direct 
street segments.

In fact what has been done in space syntax is to con-
struct models that explain movement as function of the 
direct street segments in the graph using street acces-
sibility. Defining the observed movement in a street as 
Tobs
ik  , we assume a simple regression such as

Hillier et al. (1993) refer to this relationship as that gov-
erning ‘natural movement’ and their work shows that the 
only flows that are compared with accessibility are those 
that are measured as composite totals on each link. These 
are not broken down into flows between all nodes in the 
street graph, and thus implicitly occur after spatial inter-
actions have been assigned to network links. This paper 
also reveals the problem of striation referred to above 
which concerns the fact that the accessibility values are 
integers and cover a narrow range. The levels of variance 
explained associated with these kinds of regressions are 
rarely more than 0.6 and due to the nature of the data and 
very often the small number of distinct observations, this 
would not be regarded as a satisfactory predictive model. 
In my view, the advantages of space syntax lie elsewhere 
in much more qualitative but structured discussion of 
how space is formed and how it is moulded with respect 
to generic human interactions. In this context, it plays an 

(12)Tobs
ik = α + βdVj where j is the same as i ↔ k
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important role but essentially as we implied at the out-
set, it is not a predictive model and should not be used 
as such.

Notwithstanding this rather negative consequence, we 
will argue below that as it is virtually impossible to take 
the standard spatial interaction model and derive space 
syntax from this and vice versa, it is still possible to make 
progress by making changes to the formulation of both 
spatial interaction and space syntax and casting these in 
a form where direct comparison and derivations of one 
from the other can be made. However before this is illus-
trated, we need to introduce spatial interaction as a pre-
dictive model because it is still possible to use measures 
from the primal to structure its predictive capabilities. 
The clearest way of introducing one of the many variants 
of spatial interaction is in conditional probability terms. 
Then

Tik is the flow or trips from zone or intersection i to 
k, Ei is some measure of the size of activity at location/
intersection i which is the flow to be distributed as trip 
interactions, and pk ∣ i is the probability or fraction of Ei 
which is distributed as trips to k. This probability model 
is usually configured as the product of an attractor of 
the zone k, Fk and some function of the generalised dis-
tance/travel cost cik from i to k which we hypothesise as

The independent variables are Fk and cik and the 
model is calibrated by finding the value of the parame-
ter λ which minimises some statistic of difference 
between observed and predicted trips g

(

Tobs
ik − Tik

)

 . In 
terms of the operations on the primal network graph, 
then it is easy to see that cik could be one of the meas-
ures derived earlier so in this form, additional variables 
are defined, or at least there needs to be a driver for 
trip-making or movement such as Ei. There are many 
variants of these models and the model in this form is 
called singly-or origin-constrained (Wilson, 1970).

In fact we might use the accessibility values for the 
dual in eq. (14), rather than the distance values in the 
primal and where we to drop the attractor, the equation 
for the spatial interaction model becomes

(13)
Tik = Eipk|i

Ei =
∑

kTik = Ei
∑

kpk|i

}

where
∑

k
pk|i = 1

(14)pk|i =
Fkexp(−�cik)

∑

z Fzexp(−�ciz)

(15)

pk|i =
exp

(

−�dVj

)

∑

z exp
(

−�dVz
) where j is the same as i ↔ k

and this can be calibrated in the same way as above. This 
method of coupling spatial interaction to space syntax 
through the widely used measure of integration (accessi-
bility) shows one way of integrating the two models but 
due to the ambiguities about this index, we consider this 
to be a weak method. Essentially spatial interaction relies 
much more on Euclidean distance as some function of 
the generalized cost of travel. Nevertheless we could use 
the number of paths from the space syntax problem V 
or Y and the accessibilities formed from these, weighted 
over many step lengths or simply based on some high 
step length. This might be a preferable variant to eq. (15) 
which we can write as

This is closer to the model in eqs. (13) and (14) where 
we use generalised travel cost which incorporates some 
measure of distance but it is still a very weak coupling 
and is unlikely to find favour with those who consider 
that much more powerful functions of deterrence need 
to be used.

It is most unlikely that we can do better than this at 
this stage for what we need is a much stronger method of 
integration. We already have the key to this for it resides 
in the coupling of the bipartite graph whose matrix is A 
which separates nodes from lines in the original planar 
street network. At this point, let us speculate that the way 
forward lies in this approach and what we need to do is 
find much better measures of distance that take account 
of this coupling other than those based on step lengths. 
The method we will adopt has been used before in sev-
eral contexts by the author (Batty, 2013) and it consists 
in slightly changing the nature of the two models so that 
they intersect in a much more basic way. This we will 
broach in the next section before we produce an inte-
grated model, ultimately demonstrating this on a large 
but simplified network of links and zones in Greater 
London.

4.1 � A probabilistic interpretation of distance 
and connectivity

We can first convert the raw interaction matrices U and 
V into stochastic matrices where we interpret the cells as 
being the probability of a node relating to another node 
and the probability of a street relating to another street 
respectively. Then we define these probabilities as

(16)

pk|i =
exp

(

−�
∑

ℓVjℓ

)

∑

z exp
(

−�
∑

ℓVzℓ

) where j is the same as i ↔ k

(17)Pik =
Uik

∑

k Uik
,

∑

k
Pik = 1
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and

We can interpret these as follows. If a walker starts at 
a node i, and then with probability Pik moves to node k, 
then the probability of that same walker visiting a node z 
on the next step is given as ∑kPikPkz which is the respec-
tive element of the second power of the matrix. Then on 
the n’th step of the walk, we can compute the probability 
as Piz(n) = ∑kPik(n − 1)Pkz which in matrix terms is given 
as Pn = Pn − 1P. This sequence defines a discrete Markov 
chain and if the matrix P is strongly connected which it 
must be for the problem to be meaningful and the street 
system connected, then it is well known that the limit of 
this sequence is a fixed point vector which we can call p. 
In short, if we begin the walk with a probability vector 
p(1), the sequence updating this vector can be written as 
p(n) = p(n − 1)P = p(1)Pn − 1. As this vector converges to 
p, then in the limit we can solve for p from p = pP.

An exactly analogous process exists if we begin with a 
walker on a street j who visits another street ℓ with prob-
ability Qjℓ. In the limit, we can solve for the steady state 
probability vector q = qQ and this gives the overall prob-
ability of any walker visiting a street if the walk continues 
indefinitely. As in all Markov chains, the initial distribution 
of probabilities washes out and this is something that we 
are not sure is desirable for it implies that the initial struc-
ture exerts a decreasing effect on the final state. In this 
steady state, a walker has the same chance as any other of 
visiting a node or street regardless of where they started 
from. The key issue is what these vectors actually imply. In 
fact, they are measures of the number of walkers travelling 
to different places in the system; as such, these may corre-
late with any of the distance measures introduced earlier 
and we will test this correlation in another worked example 
below. For the moment, let us simply note that p and q are 
accessibility vectors for intersections and streets defined 
from the random walks associated with the different prob-
ability processes P and Q. We can in fact define associated 
processes based on the sliced data matrices X and Y but we 
will not do so here as these are close to processes defined 
on the raw interaction data. There is one last point before 
we move to a deeper view of these processes: clearly as 
U = AAT and V = ATA, then the primal and dual processes 
P and Q are related. We can write these as P = δpAAT and 
Q = δqATA where δp and δq are diagonal matrices defined 
to ensure that P and Q are row stochastic. Some manipula-
tion of these relations suggests that there are more explicit 
links between their steady state vectors in terms of the ini-
tial matrices A and AT but we have not taken this further as 

(18)Qjℓ =
Vjℓ

∑

ℓ Vjℓ
,

∑

ℓ
Qjℓ = 1

yet. Our purpose here is to work with relations where we 
define the probabilities at a more elemental level.

To introduce these, we can define the probability struc-
ture that determines distance measures on the underlying 
graph in terms of the basic data matrix A. Let us define the 
probability of a node belonging to a street as

and
a street belonging to a node as

Now these matrices are stochastic and by concatenating 
them to form the primal and dual probabilities, we define

and

These matrices have the following interpretation which 
are further measures of distance. The matrix P̂ records 
the probability of a walker at node i accessing another 
node k via any street j while the matrix Q̂ gives the prob-
ability of moving from a street j to another street ℓ via 
any node k. To detail this, a walker at any node i has a 
probability of accessing each street j and from each of 
these streets, he/she has a probability of reaching another 
node k. The same type of fixed point vectors result from 
this process of continually moving from node to node or 
street to street as we indicated above for the processes 
based on P and Q. This washes out the initial urban 
structure and insofar as we can define the resultant prob-
abilities in the steady state as accessibilities, these are 
defined from p̂ = p̂P̂ and q̂ = q̂Q̂.

These primal and dual processes hold the key to the 
integration between spatial interaction through the pri-
mal and space syntax through the dual. Let us write 
the steady state equation for intersection nodes as 
p̂ = p̂P̂ = p̂GC . Now if we post-multiply this by G, 
we get p̂G = p̂GCG = p̂GQ̂ . Now as the steady state 
vector q̂ associated with Q̂ is unique, it is clear that 
p̂G = p̂GQ̂ = q̂ = q̂Q̂ . Thus it is clear that q̂ = p̂G 
and in like manner, p̂ = q̂C . This is a very clear rela-
tion between the two processes and it is the simplest way 
they interlock. What they mean is as follows: writing the 
steady state relations in full as.

(19)Gij =
Aij

∑

j Aij
,

∑

j
Gij = 1

(20)Cjk =
AT
jk

∑

k A
T
jk

,
∑

k
Cjk = 1

(21)P̂ik =
∑

j
GijCjk ,

∑

k
P̂ik = 1

(22)Q̂jℓ =
∑

k
CjkGkℓ ,

∑

ℓ
Q̂jℓ = 1
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then if you are at a node k, then the probability of being 
there is equal to the probability of being on any street 
which is connected to that node, while if you are on a 
street, the probability of being there is equal to the prob-
ability of being at any node that is associated with that 
street.

4.2 � A comparison of distance and probability measures
We are now in a position to compare all these meas-
ures and to this end, we will introduce a second more 
structured graph so that we are able to develop some 
intuition about the relatively positioning of streets and 
their intersections/nodes. This is shown in Fig.  4(a) 
where it is clear that nodes 6 and 9 and possibly 4 are 
the most central and connected while streets 6 and 9, 
then 7 and 8 seem the most accessible, although this is 
harder to guess from the configuration. However this is 
to be tested below using the various accessibility meas-
ures. It is now worth stating the distance measures that 
we will compute from all those introduced in the pre-
vious sections. We will list these, noting that for many 
of these measures, these are identical when defined for 
either origin or destination nodes or streets due to the 
fact that the interaction matrices are symmetric. We 
will define the measures for the primal and dual on 
the same line below and annotate them with respect to 
their meaning:

1.	 basic in-degrees ui = ∑kUik   vj = ∑ℓVjℓ
2.	 sliced in-degrees xi = ∑kXik   yj = ∑ℓYjℓ
3.	 weighted paths δUi =

∑

kδ
U
ik    δVj =

∑

ℓδ
V
jℓ

4.	 sliced weighted paths δXi =
∑

kδ
X
ik   δ

Y
j =

∑

ℓδ
Y
jℓ

5.	 inverse step lengths ∆U
i = 1/

∑

kD
U
ik   ∆V

j = 1/
∑

ℓD
V
jℓ

p̂k =
∑

j
q̂jCjk and q̂j =

∑
i
p̂iGij

6.	 sliced inverse step lengths ∆X
i = 1/

∑

kD
X
ik

     
∆Y

j = 1/
∑

ℓD
Y
jℓ

7.	 aggregate probabilities pi  qj
8.	 disaggregate probabilities p̂i  q̂j

There is one last measure that we will introduce. So 
far none of our measures incorporate any measure of 
Euclidean distance. In fact for each street segment j, 
we can define a measure of distance of generalised 
travel cost dj. We now augment our raw data matri-
ces by weighting each node-street link ij by dj and we 
now form a new raw matrix (and its transpose follows 
directly from this) as Āij = Aijexp

(

−�dj
)

 . We use these 
matrices to construct new values for the matrices G and 
C and from this, we compute new steady states which 
we call p̄ and q̄ . These form our ninth measure:

9.	 weighted probabilities p̄i   q̄j

In this formulation, we now have a parameter λ which 
we can use to moderate the effect of distance. Moreo-
ver for any of the limit probabilities we can take the 
probabilities that pertain to any power z of the matri-
ces in question (for measures 7–9) and also use this as 
a parameter; that is, choose the relevant probabilities 
that optimise the fit of the model to data but more of 
this later when we come to empirical applications.

We have computed all these measures for the graph in 
Fig. 4(a) and to compare them, we will correlate them. So 
for the primal problem measures, we show these correla-
tions in Table 1(a) and for the dual in Table 1(b).

In both problems, the measure which correlates most 
with all 8 other measures is in fact the in-degree for the 
basic matrices U and V. However, we have chosen the 
inverse step length from the sliced data matrices X and Y 
and we have plotted the values of these in Fig. 4(b). Our 

Fig. 4  The Planar Graph/Street Network: a) Nodes and Arcs Labelled b) Nodes and Arcs Coloured According to Inverse Step (Accessibility) Values
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initial intuition on the relative importance of the nodes 
is clearly born out with node 6 occupying a pivotal posi-
tion and 7 and 8 next with 9 close behind. The less con-
nected and more extreme nodes such as 1 and 10 are the 
least important. Although this is not a definitive dem-
onstration of the relatedness between nodes and streets, 
the space syntax measures show that streets 6 and 9 are 
the most important with 4, 5, 7 and 8 being the next 
important. These mirror the nodal structure also shown 
in Fig.  4(b). It is worth noting that the last measures – 
the ninth based on p̄ and q̄ – have been defined using 
random distances, that is dj =  rand (100), and it is no 
surprise that the lowest correlations with the other meas-
ures occur here. In fact the steady states of the probabil-
ity measures 7 and 8 are quite highly correlated with the 
other measures but note that for measure 7, this has com-
plete correlation with the in-degree measure 1 for both 
the primal and duals while measure 8 has a complete 
correlation with the sliced in-degree with the primal. In 
fact what is clear from this is that if we have a very sim-
ple structure where the number of in-degrees is the same 
for each node, then the probability measures are likely to 
have a very high correlation with these in-degrees (Batty, 
2016). This can be very problematic where we control the 
nodes or where we limit the connections. It means that 
the less we differentiate urban structure through connec-
tivity, the less differences there are between the measures 
of accessibility, a problem that is quite significant in the 
empirical applications that now follow.

4.3 � An empirical demonstration of primal‑dual integration
As we have emphasised, space syntax and spatial inter-
action represent space at different scales with space syn-
tax dealing with the literal physical connections between 
places while spatial interaction deals with generic move-
ments between origins and destinations which can then 
be assigned to the finer scale physical network that space 
syntax takes as its starting point. Spatial interaction 
deals with all flows between origins and destinations of 
magnitude N2 whereas space syntax deals with a subset 
of these flows L <  < N2 where only those on the physical 
links of the network are considered. However as we have 
already illustrated, to compare the two approaches, we 
need to begin with a common network and to this end 
we have constructed a physical network of links from 
the generalised travel cost and distances between some 
633 zones which comprise the Greater London Author-
ity (GLA) area. These zones are based on wards, the most 
basic electoral districts which are associated with the 33 
boroughs that make up the area, with on average each of 
these zones containing 11,330 resident population and 
7181 employment. We show the zones and their cen-
troids in Fig. 5(a) where we indicate the GLA area in its 
wider zonal context.

The level of detail of the street network is well below 
this scale so in this application, what we will do is con-
struct a synthetic network from the distance links that 
are used to form the generalised travel cost matrix [cik]. 
To build this network, we first take the 5 shortest links 

Table 1  Correlations Between Selected Distance Measures for the a) Primal Spatial Interaction and b) Dual Space Syntax Problems

a) 1 2 3 4 5 6 7 8 9
1 1.00
2 0.97 1.00
3 0.86 0.72 1.00
4 0.85 0.72 0.99 1.00
5 0.71 0.76 0.52 0.58 1.00
6 0.90 0.89 0.73 0.76 0.80 1.00
7 1.00 0.97 0.86 0.85 0.71 0.90 1.00
8 0.97 1.00 0.72 0.72 0.76 0.89 0.97 1.00
9 0.74 0.63 0.81 0.80 0.54 0.70 0.74 0.63 1.00
b) 1 2 3 4 5 6 7 8 9
1 1.00
2 0.93 1.00
3 0.89 0.85 1.00
4 0.72 0.76 0.95 1.00
5 0.62 0.72 0.57 0.59 1.00
6 0.77 0.85 0.72 0.69 0.96 1.00
7 1.00 0.93 0.89 0.72 0.62 0.77 1.00
8 0.92 0.75 0.70 0.48 0.51 0.63 0.92 1.00
9 0.08 0.13 0.24 0.30 0.11 0.19 0.08 −0.11 1.00
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for each zone i and in cases where this does not lead to 
symmetric links, that is where we have a shortest link cik 
but do not have a link cki, we add this link to the network, 
thus giving us at least 5 links from every origin to its 
nearest neighbour destinations. We also need to ensure 
that on the edge of the area, we also take 5 such links 
and thus we have a ring of centroids in zones outside the 
GLA area which connect to the 633 zones inside the area. 
This increases the number of zones to 699, with some 66 
acting as edge zones outside the area. In total, we define 
3944 links from these 699 zones giving an average in-
degree (and out-degree) of 5.64, a little greater than the 
5 chosen initially for each zone. The total number of links 
is a small percentage of the total possible links, the ratio 
being less than 1% (0.008 = 3944/N2 =  − 3944/488,601) 
which is an extremely sparse matrix. It is arguable as to 
whether or not this network is sufficiently rich to pick up 
the urban structure and connectivity of London but at 
least the links chosen do exist largely between adjacent 

zones. In this sense, the network can be referred to as a 
‘nearest neighbour’ network and we show its form in 
Fig. 5(b).

From the previous hypothetical example, the sliced in-
degree measures 1 and 2 are the most highly correlated 
with all others and we consider these to be a natural base-
line for planar graphs in terms of their direct accessibili-
ties. Moreover it is very clear that these measures pick up 
local structure although all the other measures are based 
on indirect as well as direct links some with an appropri-
ate weighting. We show the sliced in-degrees for nodes 
xi = ∑kXik and intersections yj = ∑ℓYjℓ which reflect the 
primal and dual problems respectively in Fig.  6(a) and 
(b) and it is immediately obvious that these measures 
reflect the fact that the network has been constructed 
using a rule of thumb starting with 5 links per node. This 
is likely to give a much more muted distribution of acces-
sibilities for nodes and well as paths and this is in fact the 
case in Fig. 6. Moreover the local structure is picked up 
very clearly in street accessibilities in the dual in Fig. 6(b) 
while the accessibility in the nodes is dominated by a 

Fig. 5  The Zoning System, Centroids, and Network Links for the 
London Area. a)The zones in the GLA Area are coloured grey while 
in (b) the nodes external to the area but within the network are 
coloured black

Fig. 6  Nodes (a) and Street Accessibilities (b), Based on In-degree 
Accessibility Measures
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handful of local nodes that because of their physical jux-
taposition come out as being more central than the oth-
ers. It is worth noting that the in-degree structure based 
on x and y are equivalent to the steady state vectors from 
the aggregate steady state probability vectors p̂ = p̂P̂ and 
q̂ = q̂Q̂.

The most basic measure used in space syntax is the 
step length and here we compute step lengths in their 
inverse form for the primal and dual problems. We will 
define these measures again as ∆X

i = 1/
∑

kD
X
ik and 

∆Y
j = 1/

∑

ℓD
Y
jℓ and we show their form in Figs.  7(a) 

and (b). This is much more intuitively satisfying as a 

Fig. 7  Nodes (a) and Street Accessibilities (b), Based on the Inverse Step Length Accessibility Measures
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representation of nearness between node centroids in the 
primal and streets in the dual, and a visual comparison of 
nodes with streets seems to confirm that these patterns 
of accessibility are close to one another. However what 
these measures reveal is that first there are profound 
edge effects which have probably been exacerbated by 
the way we have built the network to its edges – that is, 
the edge nodes are simply in the network so that they can 
meet the requirement of each non-edge node having at 
least 5 links to other nodes. Second, the fact that we deal 
with what is essentially a circular system means that the 
most accessible points are towards the centre of the sys-
tem. This is a generic problem in all spatial analysis, and 
it relates to the basic issue of closing the system at some 
point to the outside world. Third there is the issue of local 
versus global connectivity in such a network and it clear 
that the more links that are taken into account, the more 
the structure at its most local scale is compromised. If we 
compare Figs. 6 and 7, then we can see how local struc-
ture evolves to global structure as the measure of acces-
sibility is based on wider and wider link effects. In fact 
for the step lengths, the number of matrix powers that 
is needed to span the entire system is some 29 for nodal 
connectivity and 27 for street connectivity. The computa-
tion of these step lengths using the matrix power method 
as implied by eqs. (4) to (7) is quite time-consuming for 
699 × 699 and 1972 × 1972 matrices (all night on my PC 
Vaio VPCZ21M9E) and when we reach the point where it 
takes at least 29 or 27 steps to reach any and every node 
or street, this is still an arbitrary cut off. In fact it is worth 
showing how fast this computation is noting that at any 
point up to n = 29, we could take the step length matrix 
as a basis for the computation of accessibility measures. 

Of course when we reach the point where the cells of the 
step length matrix are positive, then we would need to 
work with the total numbers of path lengths, weighted 
or otherwise, as in eq. (8). We show these trajectories in 
Fig. 8.

To see how these make a much bigger difference, we 
turn to our last exploration of accessibility in the primal 
and dual problems where we formulate the problem in 
probability terms. The steady state equations which we 
defined earlier as p̂ = p̂P̂ and q̂ = q̂Q̂ define processes 
where a walker starting from any position in the system 
– in the primal from any node and in the dual from any 
street, moves from node to node or from street to street 
with the probabilities of moving from one to another 
gradually reflecting the overall structure of nodes or 
streets with the initial probabilities washing out, dif-
fusing if you like. In a system with very little structure 
which to an extent is our example – and this means we 
need a much better and fuller test of these ideas – then 
the probabilities of each node or street in the steady 
state are likely to be fairly similar. In short these Markov 
processes wash away the original probabilities and what 
remains is the ‘true’ or ‘pure’ structure. We illustrated 
in earlier examples quite a high correlation between the 
steady states and the local structure but these were very 
simple graphs with exaggerated structure. Where one has 
large swathes of metropolitan area with similar struc-
ture in terms of the street network, then it is likely that 
the steady state is somewhat less distinct then the step 
method of accessibility just illustrated.

We show the node and street accessibility patterns based 
on p̂ and q̂ in Fig. 9(a) and (b). Because the nodal struc-
ture is quite flat, we have scaled the values and then ranked 

Fig. 8  Convergence to the Step Length Limit for the Primal and Dual Problems
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them as we show in Fig. 9(c) but this does little to sharpen 
the structure. In fact in Fig. 9(b), the pattern is completely 
flat for the accessibility of streets with the edge nodes soak-
ing up the probabilities in an obscure manner. It is worth 
comparing these patterns formally and in Fig. 10 we have 
re-plotted the nodal patterns as thematic maps where each 
centroid is associated with each zone. This makes the pat-
terns much easier to grasp intuitively. It is quite clear that 
the in-degrees are identical to the probabilistic steady 
state vectors with a correlation of 1 (Fig.  10(a) compared 
to 10(c)). The correlation between the in-degrees and the 
inverse step length (10(a) cf. 10(b)) is modest at 0.48 while 
that between in-degrees and the ranked probabilistic 
steady state vectors is 0.86. If we examine the dual street 
patterns, we have similar correlations but we have not 

ranked the street lines. The strongest correlation is low at 
0.34 between the in-degrees and the inverse step lengths 
while that between the probabilities as inverse step lengths 
and the probabilities and in-degrees are both negative but 
less than 0.25. This as we have argued above is due to the 
nature of the diffusion of probabilities on the particular 
localised street graph that we have used.

Our last issue with respect to the measures developed so 
far is to provide a partial test of how good the accessibility 
values are where we are able to match them against activi-
ties/trips associated with nodes and streets. The easiest test 
is to see how close the nodal accessibility values are to the 
observed activity totals associated with the set of centroids. 
These observed activity totals are origin employment and 
resident working populations which are formed from

Fig. 9  Steady State Nodal and Street Structure a) absolute values of p̂ . b) absolute values of q̂ c) ranking of p̂

Fig. 10  Comparisons of Nodal Accessibility Vectors. a) In-degrees b) Inverse Step Lengths c) Steady State d) Ranked Steady State
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There is an immediate issue in terms of making com-
parisons at this level for it is not clear if the various 
access measures are more related to explaining employ-
ment or population. In fact there is a negative correla-
tion of − 0.217 between employment and population 
which is quite consistent with the spatial structure of 
largely monocentric cities with low population densi-
ties and high employment densities at and around their 
centres. There is another issue. The zonal structure is 
organised so that populations in each zones are as close 
to one another as possible. Although this is not strictly 
enforced as in the US where redistricting of electoral dis-
tricts takes place after each election, there is momentum 
to make sure that there are no big differences between 
the electoral population in each ward. This means that a 
measure such as the inverse step length ΔX which from 
Fig.  7(a) which increases as one gets closer to the cen-
tre would not explain the spatial structure of population 
which is more uneven.

So what we do here to normalise these spatial equali-
ties is to compare the accessibility vectors to the employ-
ment and population densities which we compute as 
Eobs
i /Areai and Pobs

k /Areai and use these to make com-
parisons with the accessibility vectors. The correlation 
between these densities is still low with virtually no cor-
relation at 0.055. Nevertheless the predictions are better 
than expected. In fact we compare only the 633 zones in 
terms of the accessibilities and activity density vectors 
leaving out the 66 external edge of area zones. The two 
correlations between inverse step length and employ-
ment and population are both positive with population 
higher at 0.555 than employment at 0.371 and if we then 
compare them with the in-degrees x, these correlations 

(23)
Eobs
i =

∑

kT
obs
ik

Pobs
k =

∑

iT
obs
ik

} are much lower with no significance. The probabilistic 
measure from the steady state accessibilities p̂ is equiv-
alent to the in-degrees. In fact we consider the correla-
tions with the inverse step lengths to be significant and 
when we examine plots of these values, it is clear there 
are positive relationships with employment having a very 
characteristic scatter which is almost super-exponential. 
We show these plots in Figs. 11(a) and (b). To an extent, 
it is a little surprising that our measures correlate so well 
with densities for the underlying accessibility measures 
based on crude step lengths whose basic data range from 
1 to 29 in value are relatively unsophisticated indices.

We can now explore the question of observed move-
ments on the space syntax street links. In fact, we know 
a priori that we do not have the actual trip movements on 
each link for all we have are generic interactions between 
origins and destinations that in fact have to be mapped 
or assigned to the network before we can produce actual 
trips on the network. Thus it is likely that any analysis of 
origin-destination trip movements on specific network 
links is likely to be flawed. For each street j in the system 
which is associated with a link between intersections ik, 
we can compare the accessibility on that link with respect 
to the flow between an origin and destination from the 
observed matrix of flows Tobs

ik  , notwithstanding the 
fact that these are quite different from the actual flows. 
The problem as we have pointed out earlier is that the 
observed values we have are not those that are actually 
observed on any link ik for these values combine many 
trips between origins and destinations which are assigned 
to the link in question. The data too is only a 10% sample 
from the 2001 Population Census. Moreover the actual 
network structure that we have developed is a nearest 
neighbour network and it does not include long links 
such as motorways and other major roads with restricted 
access. If our threshold on links were to be relaxed and 

Fig. 11  Empirical Comparisons of the Inverse Step Length with a) Population Density and b) Employment Density
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the notion of streets with more than two intersections 
with other streets to be invoked, we might improve the 
comparison but this requires testing and further devel-
opment on a much richer and more detailed network. 
In terms of the correlations, the in-degree and inverse 
step lengths have barely any correlation with observed 
trips at − 0.073 and − 0.097 (noting that the in-degree 
and inverse step lengths correlate at 0.342). The correla-
tion between observed trips and the probabilistic access 
measure is actually very slightly negative at − 0.064 but 
essentially there is no correlation. Despite these results 
being somewhat disappointing, they are entirely explica-
ble in terms of the data used and the fact that these data 
does not contain anything other than nearest neighbour 
links to explain urban structure. In the next and last sec-
tion of the paper, we will explore a way forward.

4.4 � An integrated approach
The key to an integration of space syntax and spa-
tial interaction has already been defined through the 
two operations on the basic matrix A which give rise 
to the primal and dual interaction matrices U = AAT 
and V = ATA. The distances at different step lengths 
although related from Un and Vn by UnAT = AYn, have 
to be normalised for interpretation. However if we 
work with the dual normalisation of the basic matrix 
as row stochastic probability matrices G = [Gij] and 
C = [Cjk] from eqs. (19) and (20) which we restate below 
as
Gij =

Aij
∑

j Aij
,

∑

jGij = 1 [(19)]

Cjk =
AT
jk

∑

k A
T
jk

,
∑

kCjk = 1 [(20)]

  
then successive powers of the probability matrices 
P̂ = GC and Q̂ = CG give very clear steady state rela-
tions p̂G = q̂ and p̂ = q̂C . We have, however, demon-
strated that these steady state relations wash away the 
structure that we need to preserve as a key determinant 
of the relevant accessibilities of nodes/centroids and 
streets, thus we begin with the matrices P̂ and Q̂.

Thus a more basic approach is to assume that the proba-
bility matrix P̂ defines the singly constrained trip equation 
which we stated earlier in eq. (13) and now elaborate as

Without elaborating the density version of the 
model as above, we will substitute employment den-
sity Ei/Areai for the employment count and test both 
counts and densities in the following application. We 

(24)

Tik = Eipk|i = EiP̂ik
Ei =

�

kTik = Ei
�

k P̂ik
ρk =

�

iTik =
�

iEiP̂ik







where
�

k
P̂ik = 1

know that the P̂ matrix in the examples so far in this 
paper is very sparse as it is a nearest neighbour network 
but if we assume it is sufficiently rich to detect urban 
structure, then the spatial interaction model follows 
directly from eqs. (24). Note that the vectors e = [Ei] 
and ρ = [ρk] are not the steady state vectors but origin 
and estimation vectors which we can interpret in spa-
tial interaction terms as employment and population. 
In matrix terms we write the model in eq. (24) as

which is the primal spatial interaction and then by apply-
ing the matrix G to this equation, we generate the dual 
space syntax model as

where it is now clear that r and s are the equivalent to 
population and employment (counts or densities) respec-
tively but now spread to the street network; that is, r and 
s are the population and employment equivalents that 
simply relate these to the streets. What this means is that 
population and employment are spread from locations to 
their connected street lines. The predictions of ρ and r 
are thus entirely consistent with one another and can be 
derived from one another as eq. (27) reveals.

We have tested eqs. (25) to (27) on our Greater London 
network and essentially what we do is take the employ-
ment for each location and work out the population 
using the matrix P̂ as in eq. (25). We do this for both the 
count and density employments and the data that we use 
is shown in Fig. 12.

The relative concentrations in Fig.  12 are consistent 
with the fact that the population (and its density) are 
much more spread out than employment counts and 
densities. In essence, what the model does is translate in 
primal form, the employment counts and densities in the 
upper row of Fig. 12 to their population equivalents in the 
lower row using the matrix P̂ . We show these predictions 
in Fig. 13 where we plot counts and densities in the upper 
row and show their form in the lower row through rank-
ing which reduces the spread of these thematic maps.

It is very clear that the translation from employment 
counts and employment densities uses a probability 
matrix which has so little structure within it – from the 
raw planar graph – that it hardly translates employment 
into population, the results for both counts and densities 
being very close to the original distributions of employ-
ment. If you compare the employment maps in Fig.  12 
with the population in the upper row of Fig. 13, the cor-
relation between the two is very high. The correlations 

(25)ρ = eP̂ = eGC

(26)ρG = eP̂G = eGCG = eGQ

(27)r = sQ = ρG = eGQ
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Fig. 12  The Distribution of Aggregated Trips at Origins (Employment) and at Destinations (Population) as Counts and Densities

Fig. 13  Predicted Population Counts and Densities from the Primal Interaction Model
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between predicted and observed population counts is 
negative at − 0.150 while for densities, it is positive but 
low at 0.119. To an extent, this reflects the major con-
clusion of this work: that in many space syntax analy-
ses, because the planar graph used is one based largely 
but not exclusively on nearest neighbours, there is not 
enough structure in this matrix to ensure that we get 
good predictions of locational activities which in turn 
are derived from trip movements. We will come back 
to this point as it is perhaps the most important find-
ing from this analysis in that it reflects the notion that 
we need to think about space syntax in terms of other 
approaches and only then can we assess how appropriate 
the approach is.

In fact all is not lost even from this application, for 
when we rank the predicted population counts and den-
sities, we do see some structure. Compare the observed 
population density with the ranked predicted population 
density – the bottom right hand map in Fig. 12 with its 
equivalent in Fig. 13 – and we see a much stronger cor-
relation which shows that there is some structure in the 
matrix P̂ . We can also get at this by comparing a loga-
rithmic transformation of the predicted and observed 
densities as in Fig. 14 which reveals a stronger significant 
correlation at 0.507. Doubtless, if we were to produce a 
more structured basic probability matrix – perhaps P̂2, 
P̂
3
, etc. – then it is possible we would get better results 

even with this simple and somewhat arbitrary example.
The last thing we will do is transform the primal spa-

tial interaction model into its dual space syntax equiva-
lent. Equations (26) and (27) illustrate that it is a simple 
matter to convert employment and population activity at 

centroids or nodes into activity which is spread along the 
links of the system which are streets. This population in 
fact is r = ρG while the employment is s = eG. We could, 
of course, had we estimates of these activities associated 
with streets, start with employment spread along streets 
using Q to predict r from s but there is no tradition of 
working in this manner. It is not out of the question how-
ever to begin to collect activity along streets and pursue 
the analysis in this direction. If our streets are longer seg-
ments with more than two intersections, this makes the 
analysis more convoluted but it is still possible to imagine 
there are insights into urban structure to be achieved in 
this way. To conclude, we show the street flows of popula-
tion activity r and employment activity s for both counts 
and densities in Fig. 15. It is very clear that employment 
dominates these spreads and because the basic prob-
ability matrices are so sparse and simply connected, the 
spread to population also mirrors employment. It is pos-
sible if we rank these links rather than use absolute val-
ues, that more structure could be extracted from these 
patterns. But this is just one of many explorations that 
we could continue to make. However we consider that 
we have now pointed the direction and that a number of 
lines for future research have been established. We turn 
to these by way of conclusion.

5 � Conclusions: next steps
The key issue in predicting urban movements in spatial 
interaction models involves the independent variables 
which represent the trade-off between measures of the 
size of locations and the cost or distance from a location 
where movement is generated and a location to which it 

Fig. 14  Logarithmic Predicted and Observed Population Densities
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is attracted. All of this information is represented in the 
probability matrix P̂ which we have articulated in primal 
form as the interaction between the set of centroids/loca-
tions and the streets or routes to which they are linked, 
that is using the matrix A = [Aij]. The primal matrix 
is dimensioned to represent all possible movements 
between the nodes which is of the order N2 and this in 
turn is based on the number of street links or segments 
L which we have suggested is very much smaller than the 
total number of movements. How good this structure of 
streets is in representing all the nuances and biases in 
urban structure depends to a large extent on this number. 
In the application to Greater London including external 
zones, there are N = 699 nodes with a possible number 
of trip movements 488,601 (=N2) whereas the nearest 
neighbour street network has some 3944 (=L) which 
means that the number of possible links on which trips 
might be observed is only 0.008, not quite 1%. Were we 
to increase the number of possible links to N2, then we 
would need to consider links between all these possible 
streets. In fact, it is most unlikely that all possible trips 
would use all possible links for different trips are assigned 
to the local street segments in making a shortest route 
between origins and destinations.

The way we have represented the problem in terms of 
a primal matrix with dimensions N2 and the dual matrix 

with dimensions L2, involves non-trivial matrix compu-
tations in terms of size. Were we to have as many seg-
ments as possible origin-destination interactions, our 
dual matrices would be of the order N4 = N2N2 which in 
the London example would be 488,601 x 488,601 giving 
matrices with some 23,873,093,7201 (23 billion) cells. 
Such matrices, frankly, are simply beyond our capabil-
ity to work with. However, it is most unlikely that every 
street segment relates to every other which is what this 
would imply, and thus this number of cells is a theoretical 
upper limit. But what it does show is that it is absolutely 
essential to get the structure of the basic graph correct 
and it is quite clear that in this application, we have far 
too sparse primal and dual matrices. This suggests that 
we need to pay particular attention in space syntax to the 
nature of the street matrix; and it also suggests that if we 
are to link this to spatial interaction, we need to define 
the A matrix in much richer terms, taking account of size 
as well as connectivity.

Throughout this paper, we have been at pains to state 
that the configuration of the basic planar graph from 
which the dual and primal interaction matrices are 
defined is critical to appropriate applications of both of 
these approaches and particularly their integration. What 
we now need are better examples with richer structure 
and then we will be able to assess the extent to which our 

Fig. 15  Observed Employment and Predicted Population Counts and Densities for the Space Syntax Dual Formulation
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measures of accessibility and the integrated model posed 
in the last section can be developed further. We also 
need to explore the extent to which the spatial system 
which is represented at the zonal and street scales can 
be reconciled and this probably means that we need to 
consider how trip movements are assigned to street seg-
ments. This might in fact be a good criterion for defin-
ing the connectivity matrix in the first instance but it also 
requires considerable further research to bring this kind 
of analysis to fruition. Last but not least, we need to say 
something about whether or not we have made progress 
with our integration of space syntax and spatial interac-
tion here. What is clear is that we have clarified consider-
ably how we might develop any such integration but our 
applications have been disappointing in that our example 
is not rich enough to show good results involving predic-
tion. This is very much reflected in the data we have used, 
particularly the street network but it has enabled us to 
say something very significant about how we define the 
networks used in space syntax. To progress these to the 
point where they are useful for spatial interaction mod-
els, we must devise much clearer rules for the defini-
tion of the basic network, its topology, and its density on 
which the various accessibilities we have defined are to 
be measured. Only then will we be able to progress space 
syntax to the point where it is consistent with the use of 
spatial interaction modelling in prediction.
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