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ABSTRACT

We investigate using three-point statistics in constraining the galaxy—halo connection. We show that for some galaxy samples, the
constraints on the halo occupation distribution parameters are dominated by the three-point function signal (over its two-point
counterpart). We demonstrate this on mock catalogues corresponding to the Luminous red galaxies (LRGs), Emission-line
galaxies (ELGs), and quasars (QSOs) targeted by the Dark Energy Spectroscopic Instrument (DESI) Survey. The projected
three-point function for triangle sides less up to 20 2~! Mpc measured from a cubic Gpc of data can constrain the characteristic
minimum mass of the LRGs with a preci sion of 0.46 per cent. For comparison, similar constraints from the projected two-point
function are 1.55 per cent. The improvements for the ELGs and QSOs targets are more modest. In the case of the QSOs, it is
caused by the high shot-noise of the sample, and in the case of the ELGs, it is caused by the range of halo masses of the host
haloes. The most time-consuming part of our pipeline is the measurement of the three-point functions. We adopt a tabulation
method, proposed in earlier works for the two-point function, to significantly reduce the required compute time for the three-point
analysis.

Key words: cosmology: theory — galaxies: haloes — large-scale structure of Universe.

1 INTRODUCTION

Simulations of structure formation have proven to be invaluable in
analysing cosmological data (Bertschinger 1998; Vogelsberger et al.
2020). They are used for studying nonlinear gravitational evolution,
validating and calibrating theoretical models of structure formation,
and estimating covariance matrices of clustering measurements. Cold
dark matter simulations are the easiest to produce. They provide us
with an accurate picture for the clustering of dark matter haloes
(Bagla 2005; Dehnen & Read 2011). The positions of galaxies
cannot be obtained from the cold dark matter simulations. They
depend on baryonic physics that is not captured by the cold dark
matter simulations (Vogelsberger et al. 2014; Schaye et al. 2015). In
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addition, resolving galaxies in large volumes requires a much higher
mass resolution that cannot be realized with current computers.
Galaxy surveys, on the other hand, measure positions of galaxies
rather than their host dark matter haloes. It is essential to have an
accurate method of placing galaxies in these dark matter simulations
for the robust analysis of such data.

The Halo Occupation Distribution (HOD) approach is currently
one of the most widely used methods to achieve this goal (Jing, Mo &
Borner 1998; Seljak 2000; Peacock & Smith 2000; Scoccimarro et al.
2001; Berlind & Weinberg 2002; Cooray & Sheth 2002; Zheng et al.
2005; Zheng, Coil & Zehavi 2007; Zheng et al. 2009). In the HOD
framework, galaxies are placed in haloes based on some probabilistic
prescription that depends on the properties of the host halo and its
neighbourhood. In the basic HOD models, the probability of a halo
to host a certain number of galaxies only depends on its mass. In
more complicated models, it can also depend on the local density
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of haloes around the host and some features of the history of the
halo formation. Models of various complexity have been offered for
where exactly to place the galaxies inside the halo and how to assign
velocities to those galaxies.

An alternative approach to connect galaxies and haloes is the sub-
halo abundance matching (SHAM) method (Kravtsov et al. 2004;
Vale & Ostriker 2004, 2006; Conroy, Wechsler & Kravtsov 2006;
Behroozi, Conroy & Wechsler 2010; Guo et al. 2016). By assuming
a monotonic relation between certain halo properties and certain
galaxy properties, a galaxy catalogue can be generated by matching
the observed list of galaxies sorted by galaxy property with a list of
haloes (and sub-haloes) sorted by halo property from simulations.
The method based on a Conditional Luminosity Function, which
models galaxies as a function of both their luminosity and host halo
mass, is another alternative (Yang et al. 2003; Cooray 2006; Cooray &
Ouchi 2006; Wang et al. 2010).

The HOD models have adjustable parameters that are tuned
to obtain galaxies as similar as possible to the observed sample.
Traditionally, they are constrained by their two-point correlation
function (2PCF), which is the likelihood of finding a pair of galaxies
with a certain separation. The 2PCF for separations up to 20 2~ Mpc
is usually used for this purpose (White et al. 2011; Richardson et al.
2012; Zhai et al. 2017; Alam et al. 2020; Avila et al. 2020; Rossi
et al. 2021; Zhou et al. 2021).

The 2PCF alone does not always have enough constraining power.
Many different combinations of HOD parameters may result in a
2PCF that is consistent with the data within the measurement errors.
One way of improving the constraints is to also fit the observed
three-point correlation function (3PCF), which is a probability of
finding a triplet of galaxies with certain side lengths and orientation
concerning the line of sight with respect to an observer (Hoffmann
et al. 2018; Hoffmann, Bel & Gaztafiaga(2017.

The usage of the 3PCF to constrain galaxy—halo connection has a
long history (Wang et al. 2004; Gaztanaga & Scoccimarro 2005;
Fosalba et al. 2005; Marin et al. 2008). In more recent work,
Kulkarni et al. (2007) studied the shape dependence of reduced
3PCF and found that signal from reduced 3PCF could help break
the degeneracy between HOD parameters. Marin (2011) measured
the redshift-space 3PCF of LRGs from SDSS on large scales up to
90 h~'"Mpc and used the 3PCF to constrain bias parameters, which
in turn helps estimate the LRG HOD parameters. Guo et al. (2015b)
explored the constraining power of redshift space 3PCF on HOD
parameters, including the galaxy velocity bias. Yuan, Eisenstein &
Garrison (2018) tested the potential extra constraining power of
HOD parameters from squeezed 3PCF (Yuan, Eisenstein & Garrison
2017).

The top panel in Fig. 1 schematically shows the steps required
to constrain the HOD parameters with a 2PCF or a 3PCF. For a
set of HOD parameters, we populate mocks with galaxies according
to that model. We then measure the clustering statistics of interest,
it is compared with a similar measurement from the data, and the
posterior likelihood is assessed. This process is repeated many times
for various HOD parameter sets until the posterior likelihood is
well explored. The most time-consuming part of this algorithm is
computing the 2PCF and the 3PCF. Computing the 3PCF is especially
time-consuming. The number of all possible triplets scales as N;al,
where Ny, is the number of galaxies in the sample. For a big sample,
this requires looking at many millions of triangular configurations.
This computation needs to be performed at each point in the MCMC
chain. Recent works have proposed algorithms that make it possible
to compute certain combinations of 3PCF with N;al complexity
(Slepian & Eisenstein 2015, 2016; Philcox et al. 2022), but even
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with these algorithmic improvements, this step remains the most
computationally expensive piece in the pipeline.

The bottom panel in Fig. 1 shows similar schematics for the
tabulation approach that has been first proposed by Neistein et al.
(2011) and extended by Zheng & Guo (2016). In this approach,
the 2PCF of some subsets of haloes is precomputed separately
before the MCMC stage. These measurements are then combined
with certain weights to statistically emulate various HOD population
schemes. We describe the tabulation method in detail in Section 3.
This approach saves a lot of computation time since the most time-
consuming part of the algorithm is performed only once before
launching the MCMC chain.

The tabulation method was initially developed for the 2PCF-based
fits, but it is trivially generalizable to the 3PCF. Many of the 3PCF-
based results that we present in this paper would have required
prohibitive computation times with the traditional approach.

We test our method on the galaxies designed to emulate the
Luminous red galaxies (LRGs), the Emission line galaxies (ELGs),
and the quasars (QSOs) targeted by the Dark Energy Spectroscopic
Survey (DESI Collaboration et al. 2016). We show the 3PCF
constraints on the HOD parameters dominate the 2PCF results for
the DESI-like LRGs. 3PCF has up to 70 per cent improvement
for a certain parameter. For the ELG and the QSO galaxies, the
improvements offered by adding the 3PCF are more modest because
of the lower typical host halo mass and lower density of those tracers.

2 HOD ANALYSIS PIPELINE

2.1 HOD model

We use a HOD prescription in which the expectation value of galaxies
hosted by a dark matter halo only depends on the virial mass of
the halo. The expectation value is different for central galaxies that
occupy the centre of the halo, and for satellites that are in virial
motion around the centre.

For the LRGs, we use

(NE (M) = (1 +erf [—log(M) - log(MC“‘)D . M
2 o
. M — My\*
(Nig) (M) = A (T) H(M — Mo). 2

The central probability increases with mass until it saturates at
some high mass value. The satellite probability is zero below some
threshold mass but increases as a power law above that mass.

In both formulas, M is the mass of the host halo. A, referred to
as a duty cycle in the literature, is a maximum probability for high
mass haloes to host an LRG. M, is the characteristic minimum mass
to host an LRG. ¢ describes how steeply the probability increases
with halo mass around M. M, is a mass threshold for the satellite
galaxies. o controls the steepness of the increase in the satellite
probability with the host halo mass. M, is the extra mass above the
threshold that the halo must have for the expected number of satellites
to be equal to one. A sets an overall amplitude of the probability.
In principle, this parameter is fully degenerate with M;. We use
A for convenience when creating mock catalogues because it can
be changed independently of other parameters to adjust the overall
number density of the galaxies without affecting their distribution
across masses. H is a Heaviside step function.

This model has been demonstrated to describe well the LRGs in
BOSS and eBOSS surveys (e.g. White et al. 2011; Zhai et al. 2017;
Alam et al. 2020; Rossi et al. 2021; Zhou et al. 2021).
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Figure 1. The flow chart in the top panel shows the conventional sequence of steps leading to the HOD constraints. The bottom panel shows the same flow

chart for the tabulation approach.

For the ELGs (e.g. Avila et al. 2020), the central probability is a
Gaussian function that decays at both high and low mass ends. The
satellite probability is similar to the LRGs,

¢ — Ac [10g(M) - lOg(Mcul)]z
N3)() = = exp <_ = ) o)
(Neje) (M) = A (M;,,i}lw”)a H(M — My). )

M.y, in this case, describes the most probable halo mass to host a
central ELG and o is the variance in the width of this pdf as a function
of mass.

For the QSOs, we use a similar formula for the central probability
but a slightly modified formula for a satellite probability.

(NS (M) = ¢ (1 et [—l°g(M ) = 1°g(M°“‘)D , )
2 o

N =a, (M - Mo 6

( qso)( )— s (ﬁl) eXp (_ﬁ) ()

The difference from the LRG is that the QSO hosting probability
decays exponentially at lower masses instead of having a sharp
cutoff. My, in this case, controls the decay rate as we go to the lower
masses, while M, sets the normalization (e.g. Richardson et al.
2012; Smith et al. 2020).

There is substantial evidence that the probability of a halo hosting
a certain galaxy may depend on other parameters in addition to the
virial mass, a phenomenon called an assembly bias (Croton, Gao &
White 2007; Gao, Springel & White 2005; Pujol et al. 2017; Artale
et al. 2018; Zehavi et al. 2018; Hadzhiyska et al. 2020, 2021). In this
work, we ignore the assembly bias. This does not affect our main con-
clusions, since the main objective of our work is to study a potential
improvement in the HOD parameter constraints, and we don’t expect
our conclusions to be sensitive to the exact nature of the HOD model.

2.2 Mock galaxy catalogue

We use the ABACUSSUMMIT cosmological N-body simulation to
create mock galaxy catalogues (Garrison et al. 2021; Bose et al.
2021; Garrison, Eisenstein & Pinto 2019; Garrison et al. 2018, 2016;
Metchnik 2009). ABACUSSUMMIT was designed to meet the cosmo-
logical simulation requirements of DESI. Specifically, we use the
AbacusSummit_highbase_c000_ph100 box of ABACUSSUM-
MIT with Planck 2018 cosmology, box size of 1000 4~ Mpc per side,
and 34563 dark matter particles with the mass of 2.1 x 10° A~! Mg
per particle. We use the cleaned COMPASO (Hadzhiyska et al. 2022)
halo catalogue at the z = 0.8, 1.1, and 1.4 snapshots to create
the LRG, ELG, and QSO samples, respectively. These are the
redshifts at which the number densities of the tracers are expected
to peak. ABACUSSUMMIT suite provides multiple nested definitions
of haloes, out of which we use the level two (L2) haloes (see,
Hadzhiyska et al. 2022, for the details of the halo definition). We
use the centre of mass position and velocity of the largest L2
subhalo fields, x_L2com and v_L2com, and generate our mocks in
redshift space. ABACUSSUMMIT simulations come with a subsample
(3 per cent) of particles that make each halo, which will then be used
for satellite population. Based on the HOD parameters we chose,
galaxies with a host halo mass lower than 10'! 7~ Mg, barely exist.
We then set a cut-off mass and removed all halo with a mass smaller
than 10" 2~!' Mg when populating HOD mock catalogues for all
tracers (see Appendix A).

Table 1 shows the fiducial parameter values that we use to create
LRG, ELG, and QSO catalogues. They were obtained by fitting to
the early version of the DESI Survey Validation data. These values
may change as more DESI data is accumulated. For the purposes
of our project, however, the exact fiducial values do not matter. The
top panel in Fig. 2 shows the expected number of galaxies per halo
as a function of the halo mass, and the bottom panel shows the
probability distribution of host halo mass for a galaxy normalized
as the probability per log (M), based on fiducial parameter values in
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Table 1. Fiducial values of HOD parameters for each tracer
and the resulting comoving number density in units of

10~* A~ Mpc=3.

Parameters LRG ELG QSO
log (Mcyt) 12.70 11.70 12.50
o 0.17 0.08 0.30
log (M) 13.80 12.00 15.00
log (My) 12.13 11.60 12.00
o 1.28 0.33 1.20
Ac 0.70 0.025 0.05
A 0.70 0.03 1.00
n 5.14 6.35 0415
z 0.8 1.1 14

10'

10
=
=10
s
10°
10°
5
I LRG
. N ELG
B QSO

cen + sat

w

dp/dlog M

log(Myato) (h ™' M)

Figure 2. The top panel shows the expected number of galaxies hosted by a
halo as a function of halo mass for the fiducial HOD parameters. The blue,
orange, and green colours are for the LRG, ELG, and QSO, respectively.
The solid, dash, and dash—dotted lines represent the expected number of
all (cen + sat), central, and satellite galaxies. The bottom panel shows the
probability distribution of host halo mass for a galaxy of each tracer. The
solid line shows the host halo mass distribution for all, normalized as the
probability per log (M), and the dashed and dash—dotted line show central
and satellite host halo mass distribution, respectively.

Table 1. The host halo mass of ELG is smaller and more concentrated
than that of LRG and QSO.

For each dark matter halo, we make a random decision on whether
to put a central galaxy in it and how many satellites (if any) we
put in the halo. We compute the probability of a central galaxy and
make a random draw from the Bernoulli distribution B(1, (N°)) and
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if it results in 1, we put a galaxy in the centre of the halo. As for
satellites, we chose the particle-based population approach (e.g. Yuan
et al. 2018), we compute the average number of satellites, then make
a random draw from Bernoulli distribution B(1, (N*)/N,) and if it
results in 1, we put a galaxy in the particle position, where Nj, is the
number of particles attached to the halo. The total number of galaxy
distribution is then Poissonian, p(N|M) = Pois({N|M)).

We assign the velocity of the halo to the central galaxy and the
velocity of the particle to the satellite galaxy. Recent works (Guo
et al. 2015a, c) have shown that there is evidence for the velocity
bias, the velocity of galaxies being systematically different from the
velocity of the dark matter field at the same position. We ignore
velocity bias in this work. This should not affect our results for the
reasons outlined in the previous paragraph.

The procedure for creating mock catalogues is intrinsically
stochastic. Depending on the outcomes of random draws, we can
get many different equivalent realizations of the galaxy population
following the same HOD model on average.

2.3 Projected correlation functions

2PCF, £?(r), describes a probability of finding two galaxies in
infinitesimal volumes dV; and dV, that are separated by r. This
probability is proportional to dV;dV;[1 4+ £®r)] and is convention-
ally normalized so that for particles distributed in space with uniform
probability (all spatial points are equally likely to host a particle)
£@(r) = 0. The 3PCF, £¥(ryy, ra3, r3)), is similarly defined as an
excess probability (over spatially uniform distribution) of finding
a triplet of galaxies to be separated by rj», ry3, and r3; (Peebles
1980). 2PCF of observed galaxies depends only on the along and
across the line-of-sight separations (with respect to the observer)
of galaxies instead of the full separation vector, £?(r) = & (2)(rp, )
where r, is a distance perpendicular to the line of sight and 7t is
a distance along the line of sight. The 3PCF similarly depends on
three perpendicular separations and two relative distances along the
line of Sight, 5(3)(7‘12, rss, r31) = 5(3)(rp12, T'p23, T'p31, T2, 7'[23). The
variations in the line of sight separation in these correlation functions
depend on the velocities of the galaxies in addition to their positions.
To make HOD modelling easier, projected correlation functions are
often used (Davis & Peebles 1983; Zheng 2004). They are defined
by

o

w(ry) = / dng?(r,, ), (7

g

o

wff)("plz, p23, Fp3l) = / dnldﬂ2$(3)(rp12v p23, p3ls 701, T02). (8
v

The value of 7t* is usually chosen to be of the order of a few tens
of megaparsecs. This is done to smooth over peculiar velocity effects
that affect the functional dependence of the correlation functions in
the parallel to the line-of-sight direction. We derive our main results
using the value of 7 = 100/~ Mpc for the projected 2PCF. This
value is large enough for the residual peculiar velocity effects to
be negligible. Although, these projected correlation functions will
depend on the velocities of the galaxies unless ™ — oo (see e.g.
Norberg et al. 2009; van den Bosch et al. 2013). Lower values
of 7* maybe optimal because they do not depend on large-scale
correlations that are noisier, but using a lower integration limit would
require careful modelling of the peculiar velocity effects, and the
difference turns out not to be big enough to affect any of our main
conclusions (see Appendix B).
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2.4 Measuring projected correlation functions

The 2PCF and 3PCF are usually measured by counting the number
of galaxy pairs and triplets for the data and for uniform distribution
in the same volume. They can be estimated from these pair and triplet

counts by
DD
RR(rp, )

DD D(ry12, rp23, Fp3ts 1, o)

ED(r,, m) =

3
ED(rp12s a3y pats T, ) =

)

RRR(”plz, Tp23, I'p31, T, )
(10)

where DD is the number of pairs of galaxies separated by certain
radial and transverse distances, DDD is the number of triplets of
galaxies having a specific triangular configuration, and RR and RRR
are the equivalent number of pairs and triplets from a uniform random
distribution. Additive factors of —1 normalize the correlations to be
zero when DD ~ RR and DDD ~ RRR.

We compute the two-point projected correlation functions by esti-
mating the 2PCF first and then integrating the estimated correlation
functions over 7t. For the three-point projected correlation function,
we use a slightly modified algorithm. Instead of equation (8), we
compute a simplified version (SV),

E DD D(rp12, rp23, 131, 1, T0)

w(3) _ mm 1
p(SV) —
Z RRR(rpi2, rp23, I'p3i, 7T, T)
7T, 712
DDD(ry2, rpps, I
— ( pl2, I'p23 p31) —1. (11)

RRR(rpi2, rp3, 'p31)

This is not the same projected correlation function as the one defined
in equation (8). Equation (8) computes the integral over 7t; and 71,
which still needs triangle counting in a five-dimensional (5D) space.
On the other hand, equation (11) computes a ratio of sums over 7,
and 71, which reduces triangle counting to a 3D space only based
on rp12, Fp23, and rp3;. What we estimate with equation (11) is still
a three-point function that depends on the distribution of triangular
configurations, and it is projected in a sense that it is insensitive to
the radial separation between the three galaxies (and therefore also
insensitive to the velocities of the galaxies). The second function is
significantly easier and faster to compute. We choose the Z-direction
of the ABACUSSUMMIT boxes to be the line of sight of the observer.
This makes the projected distance along z the 7t and the projected
distance in the x—y plane the r;,. This lets us completely ignore the
Z-direction and significantly accelerate the triplet counting part of
the algorithm. We use a modified version of the GANPCF package,'
which is a GPU accelerated tool for N-point correlation function
measurements, to compute the DDD counts defined this way.

We measure the DD counts of the projected 2PCF using COR-
RFUNC package (Sinha & Garrison 2020; Sinha & Garrison 2019)
setting 7* = 100 ~~' Mpc. A smaller value of 7* would result in a
less noisy measurement, but since our main objective is to compare
the relative constraining power of the two- and three-point clustering,
we need to compute both in similar settings.

Our volume is a simple periodic cube, and the RR and RRR
counts for the uniform distribution can be computed analytically
(see Appendix C for analytical RRR computation).

The correlation functions change more rapidly at small separa-
tions. We require narrower bins at smaller separations in order not

Thttps://github.com/dpearson1983/ganpcf
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Figure 3. projected separation as a function of the triangular index.

to lose too much information to the binning effects. To achieve this,
we measure wl()z)(rp) in 12 bins equally spaced in log;or, between 0.1
and 20 h~' Mpc.

We use the same binning for the three sides of the
wfjév)(rplz, p23, I'p31). We arrange triplets of separations by starting
with all possible unique triplets that satisfy rp12 < rp3 < 7131
We start with the triplet that has all three sides belonging to the
shortest separation bin. We then arrange all other triplets so that
each following triplet is in increasing order of ryj;. Triplets that
have equal 7y, are internally arranged by increasing rp23. Finally, the
triplets that have both r,;» and ry,3 equal are arranged by increasing
7p31. We remove triplets for which the midpoints of the bins do not
satisfy the triangular condition ry31 < rp12 + rp23. Once the triplets
are arranged and sorted in this way, we assign to each one of them
an integer ‘triangular index’. For our choice of binning, we end up
with 99 unique triangular configurations. Fig. 3 shows the values of
Tp12, Ip23, and rp3; as a function of the triangular index.

2.5 Covariance matrix of projected correlation functions

We use the jackknife re-sampling method to estimate the variance of
clustering. We divide the simulation volume into Ny, sub-volumes.
We compute the projected 2PCF and 3PCF by omitting each one of
the subvolumes. This results in Ny, measurements corresponding
to (Nguwp — 1)/Ngyp fraction of the origin volume. Covariance matrix
from the jackknife method is then estimated by:

Naub

D (xF - Xoxk - X)) (12)

k=1

jk (Nsub )
Civ.i - N.
sub

where X ," is the clustering measurements (either 2PCF or 3PCF) in
the ith bin from the kth jackknife realization. Overline denotes an
average measurement over all realizations.

1 Nub
X = Xk, (13)
' Nsub ;

This version of the jackknife realization is referred to as ‘delete-one’
version in the literature.

We set Ny = 400 to make sure we have enough sub-volumes
to estimate the error of 3PCF. We slice the box Z (LOS) axis
into rectangles with an equal area squared base on X-Y plane.
Fig. 4 shows the correlation matrices for LRGs, ELGs, and QSOs
measured by the jackknife method using the HOD mock catalogue
we populated as described in Section 2.2. Each panel shows a matrix

MNRAS 515, 6133-6150 (2022)
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Figure 4. Correlation matrices including the projected 2PCF and projected 3PCF (simplified version) for LRGs (left-hand panel), ELGs (mid panel), and QSOs
(right-hand panel) used in this analysis derived by the Jackknife re-sampling. We include all bins between r, = 0.1-20 h~! Mpc for the projected 2PCF, all
triangles of LRGs, triangle index from 15 to 99 of ELGs, and triangle index from 28 to 99 of QSOs for the projected 3PCF. The colour indicates the level of
correlation, where red represents 100 per cent correlation and dark blue means a low level of anticorrelation.

with horizontal and vertical division dash lines. The first column
displays the correlation between r,, bins in the projected 2PCF with
itself (bottom) and with the triangles in the projected 3PCF(top).
The second column is the correlation between the 2PCF and 3PCF
(bottom) and 3PCF with itself. For the correlation matrix of LRGs,
there is a strong auto-correlation for the projected 2PCF at scale r,
> 1.4 h~'"Mpc (after 6th bin) and for the projected 3PCF with at
least two triangle side lengths 7, > 1.4 2~' Mpc. There is a cross-
correlation between 2PCF at a relatively large scale and 3PCF with
at least two triangle side lengths at a corresponding scale, while other
cross-correlation is quite weak. The correlation matrices of ELGs and
QSOs show similar patterns as LRGs, but with a weaker correlation.

These covariances correspond to the constraining power of a one
cubic Gigaparsec box. The actual DESI samples will cover a much
larger volume. For small separations, the covariances on both the
2PCF and the 3PCF will scale as an inverse of a volume.

Solid circles in Fig. 5 show the projected 2PCF measurements from
the mock catalogue for different tracers and the jackknife errorbars.
The first bin of the ELG and the first three bins of the QSO projected
correlation function have been omitted. For ELGs, it is a conservative
choice to omit the smallest scale bin (see Appendix A). For QSOs,
the number density of QSOs is too small to have a sufficient number
of pairs on those small scales. Fig. 6 shows a similar plot for the
projected 3PCF where all triangles that include the bins omitted for
the 2PCF have been removed. This results in 99, 85, and 60 triangular
configurations for LRGs, ELGs, and QSOs, respectively. We keep the
original triangular indexes that have been assigned before the removal
of the low separation triangles. As a result, the ELG triangular index
starts with 15, and the QSO triangular index starts with 40.

2.6 Constraining HOD parameters

Not all three galaxy samples we consider can be constrained equally
well with data from a one cubic Gigaparsec box. We find that for
the LRGs it is possible to constrain all five parameters: log (M),
o, log(M,), log (M), and o (A, and A are used for the tuning of
the number density of the LRG sample and do not affect the 2 and
3 PCF). For ELGs, constraining all five parameters turns out to be
more difficult. We only let the log (M.,,), @ and A, be free parameters
and fix the remaining two to their fiducial values. A is degenerate in
its effects with log (M;). We choose to vary Ay in our computations
for convenience. For QSOs, we need to further reduce the number of
free parameters because the QSO sample has a much lower number
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density. We set log (M.,) and log (M,) as free parameters and fix
the remaining three to their fiducial values. We apply flat priors for
all free parameters. The intervals are listed in Table 2. The fiducial
values for the fixed parameters are listed in Table 1.

We perform Markov chain Monte Carlo (MCMC) to obtain the
posterior probability distribution of parameter space. The likelihood
function £ o exp —x2/2, where x? is given by

x> = AX:(Sh;' AX;, (14)

where AX; is the difference of binned 2PCF and 3PCF between
theory and observation, which corresponding to tabulated estimation
and HOD mock measurements in our case, and (§')~! is the inverse
of the re-scaled covariance matrix. Here, we follow Percival et al.
(2021) to take into account the error propagation from the error in
the covariance matrix into the fitting parameters.

(ns — DI + B(ng — np)]S

S =
ng—ng+n, —1

; 15)

 -n-?)
S PR —TS (16)

where 7y is the number of jackknife realizations, ng4 is the number of
data points we are fitting to, and n, is the number of free parameters
in the model. § is the original covariance matrix.

‘We use a modified version of COSMOMC (Lewis & Bridle 2002) as
an MCMC engine, which uses the Metropolis—Hastings algorithm,
to sample the parameter space and search for the minimum x2. We
run 16 chains in parallel with MPI and we ignore the first 30 per cent
of each chain as burn-in. We apply the Gelman and Rubin R statistic
(An, Brooks & Gelman 1998) as convergence criteria, all of our
chains have R — 1 < 0.01, which represents a good convergence.
Since the tabulation method provides us a fast estimation of projected
2PCF and 3PCF (see Section 3), the MCMC stage takes less than
half an hour to converge for a joint run using both 2PCF and 3PCF.

3 TABULATION METHOD OF COMPUTING
GALAXY N-POINT CORRELATION FUNCTIONS

3.1 Tabulated 2PCF

The two steps leading to the pair counts of the mock catalogue
— populating N-body mocks with galaxies and counting pairs of
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Table 2. The flat prior interval on HOD parameter for different
tracer, fitting to LRG, ELG, and QSO HOD mock catalogue have 5,

3, and 2 free parameters, respectively.

Parameters LRG ELG QSO
log (Mcy) [12.0, 13.5] [11.0, 13.5] [11.5,13.5]
o [0.0001, 1.0] - -

log (M) [12.5, 14.5] - [13.0, 17.0]
log (My) [11.0, 15] - -

o [0.0, 2.0] [0.0, 2.0] -

Ac - - -

Ag - [0.0, 0.2] -

Note. The dash represents the fiducial value.

galaxies — can be formally summarized with the equation

DD(r,) = Z@{;D,-D,,

ij

A7)

where each index in the double summation goes over all halo centres
and halo particles,

1, if distance between (i,j) pair falls within
the specified r, bin , (18)
0, otherwise

p_
e =

and D is a stochastic variable,

1, if the ith halo/particle got populated by a galaxy
D; = . . (19)
0, otherwise
We rewrite equation (17) as
Ni N, Np Np
_ hh b yh 3P nyh P PP NP NP
DD =Y MDDl + 23" DDl +> D! D!
ij ij ij
(20)

explicitly separating haloes and particles, where superscripts h and
p refer to the haloes and particles, respectively, N, and N, are
the numbers of haloes and particles, and we dropped the r, label
for brevity. In the traditional approach (top panel of Fig. 1), the
random numbers D have to be drawn for and the double sum over all

MNRAS 515, 6133-6150 (2022)

220z Jaquieldag z| uo Jasn uopuo] 868jj09 Alsieaiun Aq £052599/EE L 9//G L S/801e/seuW /W00 dno olwapede//:sdiy Woll papeojumo(]


art/stac2147_f5.eps
art/stac2147_f6.eps

6140  H. Zhang et al.

occupied haloes and particles computed for every HOD model under
consideration.

The tabulation approach reduces the complexity of this computa-
tion by employing the following trick. The expectation value of the
pair count is

Np,Np

Zohh)\ckc +2 Z O"P)\C)\“ + Z OF A, (21)

where A and A® are the expected values of that particular halo or a
particle to host a central or satellite galaxy in a given HOD model.
Since these numbers only depend on the mass of the host halo, we
can simplify the computation by binning the haloes and particles
into bins of mass in log space narrow enough to prevent a significant
change in the expected values within it . The pair count can then be
rewritten as

k
NN}| Ny

= > ZQ,M X
i.j

pr ppr

+2 Z ZOUMW + > Zol,kexs/\;, (22)
ij ij

where the indices k and ¢ now go over N, number of mass bins, N}
is the number of haloes in the kth mass bin (similarly for particles),
and A¢ and A% are the effective average expected values in each mass
bin,

AL = (NS (M), (23)

k
7 = (VMo Nk, (24)

where (N°)(My) and (N°)(My) are the expeced numbers of central
and satellite galaxies hosted by a halo in the kth mass bin; M, is the
representative mass in the kth mass bin, log M), = (Alog M)/2, where
Alog M is the width of log space mass bin; and A} [the expected
total number of satellite galaxies in the kth mass bin, (N s)(M,()N}’f,
divided by le] gives the average expected value for each particle to
host a satellite galaxy.
Switching the order of summation, we get

Np Ny Ny
(DD) = J5isDD}y +2 Z B DDY + > R DDLY,
ke ke
(25)
where
NENS
DDy = ey, (26)

L]
is the number of halo pairs with a separation that falls in the specified
bin, where one member of the pair is in mass bin k& while another
is in mass bin ¢ (similarly for the particle-halo and particle—particle
pairs).

Equation (26) is equivalent to equation (21) but has two advan-
tages. First, it gives an average value of the number count expected
for a given HOD model instead of a specific realization that includes
stochastic noise. Secondly, it has the potential to save a significant
amount of computational time. The most time-consuming part of
the computation — the double sum over haloes and particles — can
be performed only once. Changing the HOD model amounts to
simply summing up precomputed pair counts with different weights,
a procedure that is orders of magnitude faster.
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This method was used by Zheng & Guo (2016) to estimate 2PCF
from N-body simulations efficiently. The approach we introduced
above is more like section 2.2 in Zheng & Guo (2016), case with
subhaloes, but instead of subhaloes, we populate satellite with
particles here. This method could be applied to different kinds of
galaxy clustering, e.g. real space 2PCEF, projected 2PCF, and 2PCF
multipole. The correlation function is given by a similar weighted
sum over different mass bin cross-correlations and we take the
projected correlation function as an example to show in detail.

Haloes and particles live in the same periodic box, so the RR counts
are identical for them. This means that the projected 2PCF is also
a weighted average of the cross-2PCF of different mass haloes (and
particles)

Ny
w2 () = > w MW (Mow, (rp. My, My)
k.t
Ny
+2> W MOw (Mo)wi, (rp, M, My)
k.t
Np
+ ) w (MW (M)w (rp. M, M), @7
k.t

where wp hh(rp, M;, M;) is the two-point cross-correlation function
of haloes in the ith and Jjth mass bins (similarly for the halo-particle
and particle—particle correlation functions) and naively, we could
take the weight as

ra (Mi) = A = (N)(My), (28)

l'IlW

E S N lf
wraw(Mk) = Z = (N )(Mk)ﬁ (29)
p

We define equations (29) and (30) as raw weights, raw weights are
a good approximation in most cases but have some exceptions. We
will further explain this in Section 3.3.

Solid lines in the top panels of Fig. 5 show the galaxy projected
2PCF computed using the tabulation method. The bottom panels
show the fractional deviation between the projected 2PCF computed
with the tabulated method and a specific realization. The offset is,
in all cases, within the expected standard deviation. The offsets are
caused by the stochasticity in a specific realization, the tabulated
method being almost noise-free. There is a very small stochastic
noise in the tabulated 2PCF related to the finite number of haloes
and particles in the box, but it is negligible compared to the noise in
a single realization.

3.2 Tabulated 3PCF

We further generalize derivation in the previous section to the 3PCE.
Similar arguments lead to the expression

wl o, (8) = S we(Mws (M) ws (MwSh (A, Mi, M, M)

i,j.k

+3> " w M)W (M)w (MwS) (A, M, M, My)
ij.k

+3D " wh (M)W (M )w (MwS (A, My, M, My)
i,j.k

+ ) w (Myw (M p)w (MowS) (A, Mi, M, M),

ij.k

(30)
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where 712, 723, and rp3; are abbreviated as A. Solid lines on top
panels of Fig. 6 show the galaxy projected 3PCF computed using the
tabulation method. Similarly to the 2PCF, the measurement from a
single realization is noisier but consistent within expected errors for
all tracers.

3.3 Mass binning effects

We bin the mass of the host halo in 20 bins between around 11 <
log M, < 14.8 (see Appendix A for details about downsampling).
The bins are narrow enough to prevent a significant change in the
hosting probabilities within the bins, and assigning to each halo and
particle a probability at the middle of the bin (we referred to this
practice as a raw probability) is in most cases a good approximation.
However, there are some exceptions if we shift the satellite parameter
log (M,) of ELG a little bit to 11.7, where hosting probability drops
very steeply below log (M) ~ 11.7, and the middle of the bin fails
to capture satellite information. Fig. 7 demonstrates the nature of this
problem.

The black dashed and dot—dashed lines in the top panel of Fig. 7
show the expected number of the central and satellite ELGs in our
fiducial HOD model. Bold grey vertical dash lines and grey vertical
dot—dashed lines show the edges and the middle of the mass bin.
The peach and lavender histogram shows the number of haloes and
particles in each mass bin. Empty triangles pointing to the right show
the raw weights based on the value in the middle of the mass bin and
the filled triangles pointing to the left show the refined weights. For
most of the mass range, the two are very consistent. The last nonzero
bin on the left (fourth bin) is the exception. The mean number drops
so steeply with the mass that it reaches an extremely low number for
the middle mass of that bin. If we applied weight based on that value,
very few of the haloes in that mass bin would acquire a satellite.
This would incorrectly down-weight the haloes close to the right
edge of the mass bin that has a substantial probability of hosting a
satellite.

Increasing the number of mass bins is, however, impractical as it
would significantly increase the number of separate cross-correlation
functions that we need to keep track of. However, this problem would
go away if we used a finer binning for the mass of the host halo. We
modify our probabilities as

Nsub A7k, Nsub A7k,

Wi (M) =~ win (M) = =0 (NG (M) G1)
v h v h
Nsup kk" Nsup k&

(M) = D o, (M) = > =5 (N) (M), (32)
1% h 14 P

As shown in the lower left-hand panel of Fig. 7, we further
subdivided the mass bin into Ny, = 20 sub-bins, and took a weighted
average of raw weights for each sub-mass bin wy,y(Mj i) based on
the number of haloes N} *"in this sub-mass bin. The dashed line on
this panel shows the raw weight of this mass bin before correction; the
solid line shows the refined weight. For central weight, the difference
is subtle. For satellite weight, refined weight accurately accounts the
contribution of satellites from this mass bin, while raw weight failed
to capture a number.

The lower right-hand panel of Fig. 7 compares the tabulated
projected 2PCF computed with the raw weights and the refined
weights. The raw weights clearly fail to describe the 2PCF on
the scales of r, < 0.1 where the systematic offsets are more than
50 per cent of the signal.

High order HOD 6141

This problem will appear whenever there are variations in the
expected number of galaxies (either satellites or centrals) across
the width of the bin. When using raw weights we are making an
approximation

Mmax
dN —
dM w(M)— ~ w(M)N'*" 33
/ w( )dM w(M)N™, (33)

Mmin

where M is the middle of the bin, AM is the width of the bin,
the integration is between M — AM /2 and M 4+ AM /2, and the
N is the total number of galaxies in that bin. To see when this
approximation may fail, we can expand the weight function on the
left side of the equation in the Taylor series around the middle point
as
M W dw M—TF 1 d*w M
w(d) = w( )+d7M M=M( a )+§W M=M(
+OUM — M), (34)

_ H)Z

The integral over the first term results in w(M)N', which exactly
matches with our approximation. The second term integrates to zero
(as an odd function over symmetric limits). The third term integrates
to w”(M)(AM)* N'® /24, here the double prime denotes the second
derivative with respect to halo mass, AM is the width of the bin.? This
is the leading error term and it needs to be small for the approximation
to be valid. The condition is

w" (M) 24
wM) - (AM)

(35)

If this condition between the second derivative of the weights
and the width of the mass bin starts breaking down the weight
refining procedure described in this section may be in order. This
condition is obviously broken for our HOD models since they contain
a discontinuous function in the satellite probability in equations (2)
and (4).

4 RESULTS

We create DESI like LRG, ELG, and QSO samples as described
in Section 2.2. We then use the MCMC method to fit the HOD
parameters for the model described in Section 2.6 with the covariance
matrix obtained as described in Section 2.4. The covariance matrix
represents the variance in the measurements expected from a cosmic
volume of 1 cubic GigaParsecs. The actual DESI measurements
will be obtained from larger volumes, but since the errors on
both the 2PCF and the 3PCF scale similarly with the volume, the
relative strength of the constraints coming from the two will not
change.

Fig. 8 shows 1o uncertainty band of LRG sample HOD function
from 2PCF only fitting and 2PCF + 3PCF joint fitting. The light
blue band shows 68 per cent CL uncertainty from 2PCF only, and the
dark blue band shows the band from 2PCF + 3PCF joint fitting. The
orange line represents the fiducial HOD setting as the truth behind
the mock we fit to. It is clear to see that joint fitting has a much
narrow band compared to the one using 2PCF only, especially for
the range log (My,, > 12.7), which indicate a much better constraint
on satellite parameters from joint fitting. Fiducial HOD lie in the 1o
band shows a good recovery for both cases.

2We are assuming that the fundamental quantities, such as the number of
haloes and the bias of haloes, do not change significantly within the bin. If
this is not the case, the binning is obviously too broad and needs to be refined.
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Figure 7. Mass binning effects for ELGs when shift satellite parameter log (M) slightly to 11.7 from fiducial, all other parameters remain at fiducial value.
Top panel: Gray vertical lines show the edges (dashed) and the middle points (dashed—dotted) of the mass bins. The lines show the expected number of centrals
(dashed) and satellites (dashed—dotted). The bars show the available number of haloes (peach) and particles (lavender) in the simulation. Triangles show the
weight of satellites computed with the raw probabilities (open) and refined probabilities (filled). The open and filled circles show the same information for
the centrals. Bottom left-hand panel: A zoom-in version of the fourth mass bin, where raw weights do not work. Thin dotted vertical lines show the edges of
sub-mass bin. The peach bars show the number of haloes in each sub-mass bin. The open circles and triangles show values of raw weights for each sub-mass
bin. The orange horizontal dash line shows raw central weight for the fourth mass bin, and the orange solid line shows refined central weight for the fourth
mass bin. The solid purple line shows refined satellite weight for the fourth mass bin, and there is no dash purple line for raw satellite weight because the value
is zero. Bottom right-hand panel: blue squares show the measured projected 2PCF of the galaxies from the ELG HOD mock catalogue using HOD parameters
plotted. Lines show the projected 2PCF computed with the tabulated method using the raw (dashed) and refined (solid) weights.
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Figure 8. 1o band of LRG sample HOD. The light blue is the 68 per cent
CL uncertainty from projected 2PCF only, and the dark blue band is the
68 per cent CL uncertainty from joint fitting of projected 2PCF and simplified
version projected 3PCF. Orange line is the fiducial HOD of an LRG sample.
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Fig. 9 shows 1 and 20 confidence level contours on the HOD
parameters for the LRG sample. These constraints are dominated by
the W%V)- The improvement is especially large for the parameters
log M.y, o, and log M,. The 3PCF constraints on those parameters
improve by 70, 49, and 62 percent, respectively, compared to
the 2PCF results. Combined fitting does not significantly differ
from the 3PCF only results. Table 3 summarizes the marginalized
statistic for each fit. From the 1D distribution of each parame-
ter in Fig. 9, all cases successfully recover the fiducial HOD
parameters.

Figs 12 and 13 show 1 and 20 confidence level contours for
the ELG at redshift 1.1 and 0.8 and QSO samples at redshift 1.4,
respectively. We only free HOD parameters as shown in the contours
for these tracers. For the ELG and QSO, the constraints are dominated
by the projected 2PCF. Improvements offered by the addition of the
projected 3PCF are negligible.

There could be several reasons why the LRGs benefit greatly from
the addition of the 3PCF information while ELGs and QSOs do
not. One potential explanation is that the ELGs and QSOs are at
higher redshifts where matter underwent less nonlinear evolution
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Figure 9. Marginalized probability distribution of HOD parameters for DESI like LRG sample at z = 0.8. The results from the projected 2PCF and 3PCF are
shown in grey and red, respectively. Blue shows the joint constraints from the two. The contours represent 68 and 95 per cent confidence levels. 1D marginalized
distribution for each parameter is shown on top of each column. The dash line and light yellow cross markers show fiducial HOD parameter values.

and the three-point signal is not as pronounced. Another potential
explanation is that galaxies of different host halo masses are not
equally sensitive to the three-point information (see e.g. Kulkarni
et al. 2007).

To study the sensitivity of 2PCF and 3PCF to HOD parameters at
different fiducial values we make a plot of the partial derivative of wl()z)

and wggv) with respect to log (M) normalized to the variance in the
measurement at the fiducial value. Fig. 10 shows partial derivatives
of the 2PCF and the 3PCF with respect to log (M) with other pa-
rameters fixed to their fiducial value. To make the plot more readable,
we separate it into two parts. The top panel covers the range 12 <
log (M.) < 13.5 while the bottom panel covers 13.5 < log (M) <
14. High values of this derivative mean that the measurement at that
specific bin is highly sensitive to small changes in My

The derivative of wéz) reaches its highest value at log (M) =

13.28 then drops back, while the derivative of wé‘gv) keeps increasing
up until 13.5 and only then drops down. The 3PCF displays
a larger cumulative sensitivity in the range log (M) > 13.16,
below which the 3PCF is not as sensitive to small changes in
My as wl(f).

Another thing apparent from the figure is that the small-scale
triangles are more sensitive to log (M) compared to their large-
scale counterparts (as evident by the local peaks in the right-hand
panel). Those triangles with all side lengths within the first 6 bins
(side lengths r,, < 1.41 h~'"Mpc, corresponding to triangle indices 1-
8, 15-21, 28-33, 40-43, 51-53, 61), peak at log (M) = 13.5, while
other triangles behave just like wl(f), dropping back at log (M) =

MNRAS 515, 6133-6150 (2022)
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Figure 10. Partial derivative of w;, with respect to log (Mcy) normalized using error of wj, when fixing other HOD parameters. Plot has been separated into

two panels to avoid overlap when partial derivative drop down.
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Figure 11. Similar plot as Fig. 10 for ELG sample at fiducial redshift z = 1.1.

13.28. The different behaviour of small scale triangles and small
scale pairs leads to a higher sensitivity to HOD parameter changes
for small scale w;()3s)v~ The normalized derivative of w,%w hit around
3000 while w{? remains at 1500.

Fig. 11 shows the similar plots for ELG sample at z = 1.1. The
sensitivity in both the 2PCF and the 3PCF increases in the range of
11.3 < log (M) < 11.98 and then drops in the range of 11.98 <
log (M.,) < 13.5. At this redshift, the top sensitivity is achieved at
the values of around log (M.,) = 11.98. The sensitivity of wl(f) at the
top is higher than the sensitivity of the wggv). For ELGs, means a
lower sensitivity for 3PCF. The cumulative sensitivity at the peak is
also larger for the 2PCF compared to the 3PCF. Small scale triplets
do not show the same behaviour as the LRG sample, remaining at
low sensitivity compared to small scale pairs.

MNRAS 515, 6133-6150 (2022)

These two plots show that both the redshift and the typical halo
mass are responsible for the difference between the LRG and the
ELG cases. The DESI LRGs happen to be in the halo mass range
where the 3PCF is more sensitive to the HOD parameters, while
ELGs are in the haloes with the opposite property. This is the main
reason why the improvement in our ELG constraints is modest while
the improvement in the LRG constraints is significant.

Plots similar to the ones presented in Figs 10 and 11 can be used
to determine whether the 3PCF is expected to affect the overall HOD
constraints in a meaningful way. For example, one could populate the
simulation with the best-fitting HOD parameters resulting from the
2PCF fits and do the same thing with slightly offset values of HOD
parameters. Derivatives of 3PCF with respect to HOD parameters
can be estimated by computing the 3PCF for these mocks (using
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Figure 12. Marginalized probability distribution of selected HOD param-
eters for DESI like ELG sample at z = 1.1 and 0.8. The results from the
projected 2PCF and 3PCF are shown in grey and red, respectively. Blue
shows the joint constraints between the two. The contours represent 68 and
95 per cent confidence levels. 1D marginalized distribution for each parameter
is shown on top of each column. The dashed line and light yellow cross
markers show fiducial HOD parameter values.

finite differences). The covariance matrix (standard error) can be
computed using the jackknife method Unlike MCMC chains that
typically require an order of 10 000 computations, this can be done
with just a handful of 3PCF computations (a few for the numerical
derivatives and an order of 100 3PCF computations for the jackknife
covariance) and can be done without preparing the tabulated triplet
counts. A comparison of these integrated sensitivities of the 3PCF
and the 2PCF can then be used to decide whether the additional
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Figure 13. Marginalized probability distribution of selected HOD parame-
ters for DESI like QSO sample at z = 1.4. The results from the projected
2PCF and 3PCF are shown in grey and red, respectively. Blue shows the
joint constraints between the two. The contours represent 68 and 95 per cent
confidence levels. 1D marginalized distribution for each parameter is shown
on top of each column. The dashed line and light yellow cross markers show
fiducial HOD parameter values.

investment of computational resources for the computation of the
tabulated triplet counts is warranted.

To test the pure redshift dependence of the constraining power
of the 3PCF, we populate our ELG mock catalogue at redshift
0.8 with the same HOD parameters (tuned to the same number
density, i.e. ratio of A. and A remains unchanged). The results are
presented on the bottom panel of Fig. 12. We do not find a significant
change in the overall picture. The constraints are still dominated by
the 2PCF signal. We do notice, however, that the addition of the
3PCF makes the likelihood contours more Gaussian and moves the
most likely values closer to the true values somewhat, debiasing the
results.

5 CONCLUSION

We studied the performance of projected 3PCFs in constraining HOD
parameters for different mock galaxy samples, which are based on
ABACUSSUMMIT simulation, targeted by DESI. We generalized the
tabulation method to 3PCF computations to make a fast evaluation
of the posterior likelihood possible.

We find that the constraints on the basic HOD parameters of
the mock LRG sample with an input HOD parameter as shown
in Table 1 at redshift z ~ 0.8 can be significantly improved by
the addition of the 3PCE. The constraints on some parameters have
improved by as much as 70 per cent. For the characteristic minimum
mass of the central LRGs, we get the constraints log(M.,) =
12.88 £ 0.199 with the 2PCF and log (M) = 12.73 £+ 0.058
with the 3PCFE. For the threshold mass of the satellite LRGs, we
get the constraints log (M) = 13.93 + 0.141 with the 2PCF and
log (M) = 13.83 &+ 0.053 with the 3PCF. All at 1o confidence
level.

We also find that the additional constraining power offered by
the 3PCF depends on the redshift of the galaxy sample as well
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as the typical halo mass that its galaxies occupy. The relative
strength of the 3PCF increases at lower redshifts. 3PCF is also
a more sensitive measurement for the samples that incorporate
more massive haloes. The ELG samples of DESI are at higher
redshifts and occupy less massive haloes. This results in the 3PCF
not being as efficient in constraining their host halo mass ranges.
For the mock ELG sample with input HOD parameter as shown
in Table 1 at redshift z ~ 1.1 the constraints of the characteristic
minimum mass of the central are log (M,,) = 11.83 £ 0.059 with
the 2PCF and log (M) = 11.74 + 0.125 with the 3PCFE. For the
mock QSOs with lower number density and higher redshift z ~ 1.4
compared to the other tracers, we get log (M) = 12.47 + 0.060
with the 2PCF and 12.43 + 0.130 with the 3PCF and 2PCF remains
dominant.
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APPENDIX A: DOWNSAMPLING

The number of haloes in simulations increases rapidly towards the

1.0

Sampling fraction

0.0
11.0 11.5 12.0 12.5 13.0
log(Mh.le) (h 71M®)

Figure Al. Fraction of haloes we take from all haloes as a function of halo
mass.

lower mass range. However, the contribution of low mass haloes to
the 2PCF and 3PCF is negligible for the hod parameter range we are
interested in (see Fig. 2).

When populating mocks, we set a hard cut-off mass for halo
samples at the lower mass end. We remove all haloes with a mass
less than 10'' A= M.

For the tabulation method, to speed up pair and triangle counting
when preparing tables, we downsample the lower mass haloes using
the filter,

1

, (A1)
1 + 10exp (—25 log(Mpao) — 11.2))

frachaloes (Mhalo) =

MNRAS 515, 6133-6150 (2022)

from the ABACUSHOD package (Yuan et al. 2021). Fig. Al shows
the halo sample fraction as a function of halo mass following
equation (A1l). This filter will further remove excess haloes that
have trivial contributions to the clustering in low-mass bins.

For the particles in the table preparation process, we randomly
select 0.15 per cent of particles to make each halo for the pair and
triangle counting. This small percentage is still larger than the mean
satellite number for each halo.

We explicitly checked that the clustering from the tabulation
method, which applied the filter, could perfectly match the clustering
from mocks, which applied only a hard cut-off, around the fiducial
HOD parameter area we are interested in (see Figs 5 and 6).

ELGs have a lower typical host halo mass compared to other
samples, and they could in principle be affected by the filter. We
omit the first separation bin for the ELGs to protect against this
eventuality for some extreme HOD parameter values.

APPENDIX B: CHOICE OF MAXIMUM RADIAL
SEPARATION

The choice of 7* value affects the resulting constraints on HOD
parameters. To minimize the RSD effect and make the comparison
more direct to the simplified projected 3PCF, which ignored line-
of-sight separation, we extended this value to 100 2~! Mpc in the
main analysis. To check that this does not significantly alter results
we also ran MCMC chains where this value was set to a more
conventional 7t* = 40 4~! Mpc for the projected 2PCF. These results
are presented in Fig. B1. The figure is identical to Fig. 9 except we
added green contours that correspond to the projected 2PCF results
with 7 = 40 h~! Mpc. This choice of 7* is indeed more optimal,
but the likelihood surfaces do not change enough to alter any of our
main conclusions. The projected 3PCF(SV) still dominates the joint
constraints. Applying full definition projected 3PCF would likely
also increase its constraining power.

APPENDIX C: ANALYTICAL RANDOM
TRIPLET COUNTS

The RRR (r{3®, ri3™, r5yn, p53, v, ™) represent the average
number of triplets of a random (spatially uncorrelated) distribution
of galaxies, where the perpendicular to the line-of-sight distance
between the triplet points satisfies conditions r{'%i“ <Trpin <17,
PN <y < P, and P < 73y < P, They are usually com-
puted by explicitly counting triplets of a random distribution of
points, but for a box with periodic boundaries, these triplet-counts
are easy to compute analytically. We follow the approach similar to
Pearson & Samushia (2019) when computing these triplet counts.

We start by computing a simpler quantity,
RRR* (rip, riyn, p5x piin piaX) - the average number of third
neighbours for a fixed pair separated by an exact perpendicular
distance of rj,. Fig. C1 shows the geometry of the problem. For a
fixed pair of points, RRR* is an average number of points falling
within the shaded areas.

* min _.max .min . max
RRR (rlz,r23 PR S )

_—* min __.max _.min _.max
=0 (r]25723 s T3 131 513 ), (Cl)

where & = N/L?, is the projected density of the points (N being the
number of points, and L the side of the cube).

220z Jaquieldag z| uo Jasn uopuo] 868jj09 Alsieaiun Aq £052599/EE L 9//G L S/801e/seuW /W00 dno olwapede//:sdiy Woll papeojumo(]


http://dx.doi.org/10.1093/mnras/stz3157
http://dx.doi.org/10.1093/mnras/stv2119
http://dx.doi.org/10.1093/mnrasl/slv133
http://dx.doi.org/10.1093/mnras/staa2825
http://dx.doi.org/10.1111/j.1365-2966.2004.08059.x
http://dx.doi.org/10.1093/mnras/sts006
http://dx.doi.org/10.1111/j.1365-2966.2006.10605.x
http://dx.doi.org/10.1093/mnras/stu1536
http://dx.doi.org/10.1038/s42254-019-0127-2
http://dx.doi.org/10.1111/j.1365-2966.2004.08141.x
http://arxiv.org/abs/1010.5484
http://dx.doi.org/10.1088/0004-637X/728/2/126
http://dx.doi.org/10.1046/j.1365-8711.2003.06254.x
http://dx.doi.org/10.1093/mnras/stx2032
http://dx.doi.org/10.1093/mnras/sty1089
http://dx.doi.org/10.3847/1538-4357/aaa54a
http://dx.doi.org/10.3847/1538-4357/aa8eee
http://dx.doi.org/10.1086/466510
http://dx.doi.org/10.1086/423838
http://dx.doi.org/10.1093/mnras/stw523
http://dx.doi.org/10.1086/521074
http://dx.doi.org/10.1088/0004-637X/707/1/554
http://dx.doi.org/10.1093/mnras/staa3764
art/stac2147_fA1.eps

High order HOD 6149

B LRG w?

B LRG wjyy), 7* =40h'Mpc
3)

- LRG wp(SV)

)
B LRG uw + wyy

13.0 133 02 04 0.6 0.8
log(Meu) o

140 143
log(My)

U S ——

114 120 12.6 .1

1.2
log(My) a

Figure B1. A similar plot as 9 with additional green contours shows results from the projected 2PCF but with a value of 7e = 40 A~ Mpc.

Figure C1. Geometry of random triplets problem. A fixed pair rj» with a
certain binning setting can only have triplets shown in the shaded area.

The relationship of this simplified quantity with the full triplet
count is,

min . max _.min _max _.min _ max
RRR(rIZ 2T T3 s T3 s T3y s T3y )

max
)

= / RRR* (rip, ria™, i, ki ki) N(p2mripdryy),  (C2)

min
12

where N is the total number of possible first particles in the triplet
and (p27ri2dryy) is the average number of second particles in the
triplet as we integrate over the r, bin.
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Here, d is the distance between the two circles, R and r are the two
radii, and A is the shaded area in Fig. C2. From Figs C1 and C2, it is
clear that

S* = A(rig, I, rI) — A(ryg, 13, riim)
— ACrig, 133" P + A, T P, (C4)

In our code, we keep track of identical triplets by imposing the
condition rpi» < ryp3 < rp31- This ensures that we don’t count the same
physical triplet corresponding to the same particles several times by
relabeling the particles 1, 2, and 3. This does not happen (because
of the way our code is written) for the triplets for which either three
sides or at least two sides of the triangle fall into the same bin, so
those triplets are counted more than once. To correct this, we apply a
permutation factor Nyery to our RRR counts. The permutation factor
is

Figure C2. Intersection of two circles with radius R, r, and distance of
centres d. Intersection area A has been shaded.

We compute S* using the expression for the area of the intersection 6 for ry # ry #r3,
of two circles 3forry =r #r;or
Nperm (71, 72, 13) = ry=r3yF#ryor (C35)
A(d, R, 1) Iy =T13 F£711,
= r2 arccos (7‘12 +rt - Rz) + R?arccos <7d2 —r+ Rz) Lorry =ry=rs.
2dr 2dR
- %\/ (=d+r+R)Yd+r—R)d—r+R)d+r+R) This paper has been typeset from a TEX/IATEX file prepared by the author.
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