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Abstract
Undiagnosed type 2 diabetes (T2D) remains a major public health concern. The global estimation of undiagnosed diabetes 
is about 46%, being this situation more critical in developing countries. Therefore, we proposed a non-invasive method to 
quantify glycated hemoglobin (HbA1c) and glucose in vivo. We developed a technique based on Raman spectroscopy, RReli-
efF as a feature selection method, and regression based on feed-forward artificial neural networks (FFNN). The spectra were 
obtained from the forearm, wrist, and index finger of 46 individuals. The use of FFNN allowed us to achieve an error in the 
predictive model of 0.69% for HbA1c and 30.12 mg/dL for glucose. Patients were classified according to HbA1c values into 
three categories: healthy, prediabetes, and T2D. The proposed method obtained a specificity and sensitivity of 87.50% and 
80.77%, respectively. This work demonstrates the benefit of using artificial neural networks and feature selection techniques 
to enhance Raman spectra processing to determine glycated hemoglobin and glucose in patients with undiagnosed T2D.
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Introduction

Non-communicable diseases represent the leading cause of 
death worldwide. Due to its global rise in incidence and 
prevalence, type 2 diabetes (T2D) is considered among the 
top deadliest diseases, accounting for 1.6 million deaths 
annually [1]. According to the last report of the Global 
Burden of Diseases, Injuries, and Risk Factors Study, high 
plasma glucose belongs to the top three risk factors with the 
largest increase in the world during the last decade [2]. T2D 
itself had been considered the greatest pandemic in human 
history [3].

According to the International Diabetes Federation, the 
latest global diabetes prevalence (2019) is estimated to be 
9.3%, accounting for 463 million people [4]. Nevertheless, 
it has been argued that such figures underestimate the real 
number of diabetes prevalence, by at least 25% [3]. Impor-
tantly, the underdiagnosis of T2D in low- and middle-
income countries, where the resources to perform a T2D 
screening are limited, could be as high as 46% [5]. In order 
to cope with this public health problem, non-invasive tech-
niques to determine the quantity of glucose and glycated 
hemoglobin (HbA1c) have been proposed recently, such as 
NIR spectroscopy, Raman spectroscopy, surface-enhanced 
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Raman spectroscopy, and mid-infrared spectroscopy, among 
others [6–10].

Raman spectroscopy is an optical technique commonly 
used [9, 11–18]; its instrumentality relies on the interac-
tion of electromagnetic radiation with matter, including 
biomolecules such as keratin, lipids, myoglobin hemo-
globin, or glucose [19, 20]. As a result of this interaction, 
part of the incident light is scattered, and in most cases, the 
wavelength of the scattered photons remains constant; this 
is called Rayleigh scattering. However, a small part of the 
light is scattered at a different wavelengths concerning the 
incident wavelength due to the gained or lost energy after the 
interaction, which is called Raman scattering [21, 22]. As a 
result, a specific spectral signature of the analyzed molecule 
is obtained [23].

Raman spectral signature potentially identifies metabo-
lites of clinical importance for T2D diagnostic [24, 25]. 
The gold standard is the HbA1c test, in addition to constant 
measurements of glucose in diagnosed patients with T2D 
[26]. Nevertheless, Raman spectroscopy has several types of 
signal noise, such as shot noise, fluorescence, readout noise, 
external source noises, and instrumentation-derived noise 
[27–30]. In order to reduce these signal noises, many tech-
niques have been developed, for instance, Savitzky-Golay 
filter [31], wavelet transformation [32, 33], polynomial curve 
fit [34], baseline correction [35], empirical mode decompo-
sition [36], the Vancouver Raman algorithm [36], and the 
Zernike polynomial fitting [37], among others.

Furthermore, artificial neural networks (ANN) have been 
proposed as suitable techniques for Raman spectra analy-
sis [17, 38, 39]. There are different ANN architectures; for 
instance, the feed-forward neural network (FFNN) compre-
hends different neuron layers, on which the output from the 
neuron in the level k is connected to the input neuron in the 
level k + 1. The output of the network corresponds to the val-
ues of the neurons in the output layers [40]. The FFNN has 
been used both as a classification method and as a function 
approximation on Raman spectra analyses [41].

In vivo studies have explored the potential use of Raman 
spectroscopy for the quantification of T2D diagnosis bio-
markers. For instance, the classification of 86 individuals as 
free from T2D, controlled T2D, and non-controlled T2D has 
been reported. In those analyses, the information obtained 
by Raman spectroscopy was analyzed using principal com-
ponent analysis and support vector machines (SVM), show-
ing > 90% of specificity and sensibility [16]. Furthermore, 
the use of ANN and SVM to discriminate between normo-
glycemia and hyperglycemia through the Raman spectra has 
been reported in a different population (eleven individuals), 
achieving 88.9 to 90.9% of specificity and sensibility [17].

In vivo quantification of circulating plasma glucose 
concentrations using Raman spectroscopy directly over 
the skin of the individuals, using the fingertip, has shown 

promising results. The calculated concentrations using lin-
ear regression were reported to be highly correlated with 
capillary glucose measurement, getting a correlation coef-
ficient of 0.80 (p < 0.0001) in 49 individuals [42]. Raman 
spectroscopy readings from the forearms analyzed with 
partial least-squares (PLS) regression have also shown 
promising results (mean absolute error (MAE) 7.8%, 
(N = 17)) [43]. Furthermore, PLS and Raman spectroscopy 
were used to predict glucose concentration in the forearm 
of 111 individuals obtaining a correlation coefficient of 
0.83 in independent Raman predictions for the full cohort 
[44]. In addition, critical-depth Raman spectroscopy and 
PLS were used to quantify circulating glucose in 35 indi-
viduals for a period of 60 days, obtaining a mean aver-
age relative difference (MARD) of 25.8% with 93% of 
predictions in the areas A and B of the Clarke error grid, 
in the independent validations [45]. Recently, it has been 
reported an improvement of the in vivo quantification of 
glucose with Raman spectroscopy, in which linear regres-
sion and PLS were applied to analyze the Raman spectra 
of pigs’ ears. The Raman readings showed almost perfect 
agreement with the gold standard, 0.94 correlation coef-
ficient in intra-subject analyses [46].

Even though Raman spectroscopy and machine learn-
ing methods have been used for T2D-related biomarkers’ 
quantification, the in vivo quantification of glucose needs 
to be improved. Moreover, the in vivo quantification with-
out blood extraction of HbA1c remains unexplored; being 
this the gold standard for diabetes detection, finding new 
methods for HbA1c quantification is relevant due to that 
HbA1c is not only a biomarker to evaluate the glucose con-
trol, but also a diagnostic one [47]. Therefore, the present 
study investigates whether Raman spectroscopy coupled 
with feature selection methods and FFNN is suitable for the 
non-invasive quantification of HbA1c and glucose in people 
with and without T2D diagnosis.

Methods

A cross-sectional sectional study including 46 volunteer 
participants (16 men and 30 women from 27 to 87 years 
old) was conducted to perform the measurements of glucose 
and HbA1c, both with Raman spectroscopy and traditional 
methods. Blood samples were taken between 8:00 and 10:00 
after an overnight fast and 15 min of rest prior to sample 
collection. Plasma samples were prepared by centrifugation 
at 4 °C. HbA1c and glucose are tested by boronated affinity 
method and glucose oxidase, respectively [48, 49]. Subse-
quently, Raman measurements were made in three different 
body parts: forearm, wrist, and index finger. Participants 
with full data available were included in the present analysis.
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In vivo measurements of glucose and HbA1c

The values of HbA1c varied from 5.2 to 14% and glucose 
values from 56 to 400 mg/dL. According to the HbA1c 
cut-off values for T2D (> 6.5%) and prediabetes diagno-
sis (5.7–6.4%) [50], 32 participants were T2D, ten were 
prediabetes, and four were healthy. Also, lyophilized glu-
cose and lyophilized human HbA1c were acquired from 
Sigma–Aldrich Corporation, St Louis, MO, USA (ID prod-
uct: G8270 and IRMMIFCC466, respectively) for their 
characterization.

The Raman measurement setup was composed of a 
Raman spectrometer QE65000 from Oceans Optics® with 
a resolution of 0.14–7.7 nm FWHM and a Raman probe 
InPhotonics® RIP-RPS-785 with 60 mW of power by opti-
cal decoupling [38]. The environmental conditions were 
humidity 63.09 ± 5.25% and temperature 19.76 ± 1.02 °C. 
Each measure was taken using 30 s of integration time, and 
nine measurements per body part and volunteer were taken. 
The laser power and integration time were calculated accord-
ing to the American National Standard for safe use of lasers 
(ANSI Z136.1–2007) [51].

Given the fact that external lighting could be a source of 
noise for the Raman spectra [52], the measurements were 
performed in a room without light, and we implemented a 
cover on the Raman tip, which considers the focal length 
of 7 mm. This cover,  allowed us to block the external light 
from  the analyzed region. However, it was important that 
the volunteer did not move, since otherwise, the measure-
ments may have alterations. The protocol for the present 
study was approved by the local ethics committee (approval 
number: CEPREC 08–001). All participants included in the 
presented analysis provided written informed consent to par-
ticipate, and all study procedures were conducted according 
to the Declaration of Helsinki [53]. The present study fol-
lows the Reporting Diagnostic Accuracy Studies STARD 
2015 EQUATOR (Supplementary Table S6).

Spectral data analysis

Selecting the best representation of the Raman spectra is an 
important part of the spectral analysis in order to improve 
the results. Several methods have been used in Raman spec-
troscopy to obtain the best spectral representation, such as 
PCA [54], colony optimization [55], genetic algorithms 
[37], and support vector machine-recursive feature elimina-
tion [56], among others. In this work, self-organizing maps 
(SOM) network and RReliefF were proposed to obtain the 
best data representation.

The SOM network and RReliefF performance were com-
pared with other feature selection methods such as corre-
lation feature selection (CFS), wrapper method, and PCA. 
We found that the SOM network combined with RReliefF 

presented the minor RMSE-CV, consequently a better per-
formance; this comparison is shown in the supplementary 
material (Tables S1–S4). SOM is an FFNN architecture 
trained with an unsupervised learning algorithm [57]. SOM 
network aims to find significant patterns or features in the 
input data and establishes a correspondence between this 
data and two-dimensional space, being possible to discover 
the regularities present in the data and extract features or 
group patterns according to their similarity [58].

ReliefF is an algorithm proposed by Kira and Rendell 
in 1992 [59]. The main idea is to estimate the quality of 
attributes according to how well their values distinguish 
between instances close to each other. In the case of Reli-
efF for regression problems (RReliefF), predictors that give 
different values to neighbors with the same response values 
are penalized, and predictors that provide different values 
to neighbors with different response values are rewarded. 
Predictor weights were listed by attribute importance, which 
facilitates attribute selection.

In this work, the spectral data were filtered to reduce 
fluorescence and shot noise using Zernike polynomial fit-
ting combined with genetic algorithms and Whitaker filter, 
respectively [37]. Besides, RReliefF and SOM were imple-
mented to obtain a better representation of data within a 
spectral interval from 200 to 1800 cm−1 (788 features). The 
parameters of RReliefF, such as k-nearest neighbors and the 
number of features, were varied using a search based on the 
FFNN performance. The features were varied as 50, 100, 
150, 200, and 512 features and k-nearest neighbors from 5 
to 40.

We used “neural net fitting” and “neural pattern recogni-
tion” from the toolbox “deep learning” by MATLAB 2019b 
to design the ANN. Its structure conforms by two layers 
(one hidden layer) with hyperbolic tangent sigmoid activa-
tion functions and Levenberg–Marquardt and scaled conju-
gate gradient as training algorithms. To compute the FFNN 
weights in regression and classification, the number of neu-
rons in the hidden layer varied from 5 to 20 to determine 
the best combination based on the network performance. 
Besides, the “regression learner” toolbox from MATLAB 
2019b was used to compare the results obtained from ANN 
to SVM and linear regression. Also, we implemented iPLS 
[60] in which the spectra were divided into ten subintervals 
from 200 to 1800 cm−1. In each interval, PLS and ANN were 
computed to compare both methods.

For classification, two spectral intervals (200–1800 cm−1 
and 600–1600 cm−1) were used, and three classes were gen-
erated according to the HbA1c values (T2D, prediabetes, 
and healthy). Data were randomly divided into three sets 
(training 70%, validation 15%, and testing 15%). Finally, 
the network was executed 20 times in order to determine 
the total FFNN performance by using accuracy, specificity, 
and sensitivity [61].
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For regression, the Raman spectral interval between 
200 and 1800 cm−1 was used. The values to be approxi-
mated varied from 56 to 400 mg/dL for glucose and 5.2 to 
14% for HbA1c (values obtained from laboratory meas-
urements). Data were randomly divided into three folds 
(276 spectra for training and 138 for testing per fold), and 
cross-validation was done in order to prevent overfitting 
[62–64]. The metric used to measure the FFNN perfor-
mance in the regression was the root mean square error in 
cross-validation (RMSE-CV) and the standard deviation 
(SD) between folds [65].

The clinical accuracy of the T2D diagnosis estimation by 
Raman spectroscopy analyses can also be presented using 
Clarke error grid, which summarizes the performance of the 
new models for glucose quantitation [66, 67]. Clarke error 
grid is divided into five zones; values in zones A and B rep-
resent accurate or acceptable results; zone C could lead to a 
bad diagnostic; zone D represents a dangerous fault to detect 
or treat; and zone E means wrong treatment.

Results

In vivo spectra results

The acquisition of Raman spectra was performed in three 
different body parts (forearm, wrist, and index finger). 
The three body parts spectra were compared with Raman 

measures of lyophilized glucose and lyophilized HbA1c 
previously reported [38, 41]. Figure 1 depicts a comparison 
of the lyophilized HbA1c spectrum with the in vivo spec-
tra from individuals’ wrists, as an example, the highest and 
lowest HbA1c percentages obtained from laboratory tests 
(14 and 5.2%, respectively) are shown. Figures S3 and S5 
in the supplementary materials show the forearm and finger 
spectral graphs for the HbA1c comparison. In these graphs, 
the representative peaks of the lyophilized substances are 
hightailed by a vertical dotted line; notice that not all the 
peaks appear in the in vivo measurements; this is due to the 
different molecular compositions of the skin layers and tis-
sues, among others [68].

We compared and made the peak assignment considering 
the reported peaks in literature and considering those peaks, 
which appear not only in the pure substance but also in the 
individuals’ spectra. For the forearm, the peaks are located 
at 1536, 1230, 1114, 969, and 665 cm−1, for the wrist peasks 
are located at 1536, 1230, and 665 cm−1, and for the index 
finger at 1536 and 1308 cm−1. These peaks correspond to the 
following molecular vibrations: at 1536 cm−1 corresponds 
Amide II (β-gyre) and a combination of stretching C-N [69, 
70], 1230 cm−1 corresponds to δ(CmH) [71], 1114 cm−1 cor-
responds to twisting δ(CH2), and stretching C-N in proteins 
and glucose [70, 72], 969 cm−1 corresponds to CH3 defor-
mation, and C-O angel-bending glucose [70, 72], 665 cm−1 
corresponds to δ(pyr deformation)sym[71, 73], 1308 cm−1 
corresponds to δasym(CmH) [74].

Fig. 1   Raman spectra of lyophilized human HbA1c compared with the highest and lowest percentage of HbA1c in vivo measurements in the 
region of the wrist and their respective peaks
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For the forearm peaks at 544, 837, and 1060 cm−1 were 
analized, for wrist, the peaks at 544 and 837 cm−1, index 
finger at 544 and 837 cm−1. Molecular vibrations per each 
peak are 544 cm−1 exocyclic deformation [75], 837 cm−1 
vibrations ν(C–C) [76], and 1060 cm−1 stretching ν(C-O) 
and ν(C–C) [39, 75].

Signal to noise ratio (SNR) was calculated for each of the 
46 volunteers according to Eq. 1, which describes the ratio 
of highest peak intense mean S and the standard deviation 
at this frequency σy [30].

The SNR was computed using peaks at 1230 cm−1 for 
HbA1c and 1106 cm−1 for glucose in each of the nine 
measures acquired per volunteer. The obtained results 
showed an SNR for HbA1c of 9.75 ± 7.26, 11.63 ± 9.65, 
and 17.06 ± 29.77 in the forearm, wrist, and index finger, 
respectively. SNR results for glucose were 4.52 ± 1.70, 
5.02 ± 2.34, and 8.28 ± 13.59 in the forearm, wrist, and 
index finger, respectively. The SNR of glucose is lower 
than the HbA1c. However, an SNR ≥ 3 was obtained; 
therefore, it is possible to carry out quantitative analy-
ses [30].

(1)SNR =

S

�y

Non‑linear regression based on artificial neural 
networks

Non-linear regression was performed to predict HbA1c and 
glucose values as accurately as possible in non-invasive 
measurements using the Raman spectra obtained from the 
three body parts (Fig. 2). After the signal was pre-processing 
using Zernike polynomial and Whitaker algorithms to reduce 
fluorescence and shot noise (see Experimental section), 
the Raman spectra (200–1800 cm−1 and 600–1600 cm−1) 
of the forearm, wrist, and index finger were used as input 
for the FFNN. The results presented a poor performance 
for HbA1c and glucose prediction (root mean square error 
in cross-validation (RMSE-CV) ± standard deviation 
(SD) = 1.03 ± 0.09%, and 60.32 ± 5.27 mg/dL, respectively) 
since the main goal is to obtain the lowest RMSE-CV that 
we can; to improve or at least equal the error in the com-
mercial meters [77, 78], SOM network was implemented in 
order to improve the previous prediction. Table 1 shows the 
RMSE-CV and SD for HbA1c and glucose in vivo predic-
tions per body part, in which the value from the laboratory 
test was considered the ground-truth value. The number of 
input features to the neural network was equal to the SOM 
network inputs (788 and 512 features from 200 to 1800 and 
600 to 1600 cm−1, respectively).

Fig. 2   Raman spectra of lyophilized glucose compared with the highest and lowest value of glucose in vivo measurements in the region of the 
wrist and their respective peaks
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The best results were obtained from the wrist spectra with 
RMSE-CV ± SD of 0.68 ± 0.01% and 56.42 ± 1.79 mg/dL, 
for HbA1c and glucose, respectively, in the interval between 
200 and 1800 cm−1. For the spectral interval between 600 
and 1600  cm−1, the wrist region showed the best per-
formance for the HbA1c prediction with 0.85 ± 0.02%; 
meanwhile, for glucose predictions, the forearm obtained 
56.31 ± 4.28 mg/dL (Table 1).

The worst results were obtained using the Raman 
spectra from the index finger with a RMSE-CV ± SD of 
1.95 ± 0.17% and 59.25 ± 1.56 mg/dL in the interval from 
200 to 1800 cm−1, for HbA1c and glucose, respectively, and 
1.90 ± 0.06% and 56.65 ± 8.99 mg/dL for the interval between 
600 and 1600 cm−1, for HbA1c and glucose, respectively. 
It is worth pointing out that the width of the wrist and the 
body mass index (BMI) are not related to the HbA1c per-
centage according to their correlation coefficient (R = 0.0094, 
0.073 for width and BMI, respectively), as is shown in graphs 
reported in the supplementary material (Figs. S1 and S2).

The feature selection method RReliefF combined with 
the SOM network was implemented in order to improve the 
predictions of the SOM network alone; the results are shown 
in Table 2, in which the setting parameters within the best 
results were obtained. In addition, the RMSE-CV and the 
SD were calculated via cross-validation in the FFNN for 
each part of the body. In this case, the interval from 200 to 
1800 cm−1 was only used, and the best result was obtained 
in the wrist region using 512 features and 26 k-nearest 

neighbors for HbA1c predictions with a RMSE-CV ± SD 
of 0.69 ± 0.07%.

For glucose predictions, the best result was obtained 
using 200 features and nine k-nearest neighbors for the 
Raman spectra from the forearm with a RMSE-CV ± SD of 
30.12 ± 0.53 mg/dL. The worst results were obtained using 
the Raman spectra from the index finger with 1.52 ± 0.41% 
and 49.67 ± 1.66 mg/dL for HbA1c and glucose predictions, 
respectively (Table 2).

Of note, the 512 selected features by the RReliefF-SOM 
method do not necessarily correspond to a specific spec-
tral interval, meaning that these are different points into 
the whole spectra, without following a specific order; these 
Raman shifts have been selected by RReliefF due to their 
capability to predict the response value. Also, it is important 
to notice that it is not required to test further than 26 k-near-
est neighbors since the best results were obtained between 
13 and 26 neighbors.

Clarke error grid results

Glucose results can be graphically  represented  using 
the Clarke error grid, in which a comparison between the 
laboratory test and Raman spectra prediction is presented in 
order to visualize the clinical accuracy in such predictions. 
Figure 3 depicts Clarke error grid in the three body parts, 
considering the best result per body region (using FFNN, 
RReliefF, and SOM network with 200 features for the fore-
arm and 150 features for wrist and index finger). Each point 
in the figure represents predicted glucose measurements. For 
instance, in the forearm (Fig. 3a), almost all the predicted 
measurements are concentrated in region A; meanwhile, in 
the index finger case (Fig. 3c), they are scattered throughout 
regions A, B, and D.

The percentages per zone were the following: glucose 
prediction for the forearm obtained 82.61%, 15.22%, 
0%, 2.17%, and 0% of success for zones A, B, C, D, and 
E, respectively. Prediction results from the wrist spectra 
obtained 47.83%, 47.83%, 2.17%, 2.17%, and E 0%, for 
zones A, B, C, D, and E, respectively. Prediction results from 
the index finger obtained a 71.74%, 26.09%, 0.72%, 1.45%, 
and 0% of success for zones A, B, C, D, and E, respectively. 
Using the Clarke error grid to analyze the performance in the 

Table 1   Regression model performance based on FFNN-SOM to 
quantify HbA1c and glucose in vivo

Body region RMSE-CV (HbA1c 
%) ± SD

RMSE-CV (glu-
cose mg/dL) ± SD

Spectral interval 200–1800 cm−1 (788 features)
Forearm 0.70 ± 0.01 58.43 ± 5.95
Wrist 0.68 ± 0.01 56.42 ± 1.79
Index finger 1.95 ± 0.17 59.25 ± 1.56
Spectral interval 600–1600 cm−1 (512 features)
Forearm 1.41 ± 0.04 56.31 ± 4.28
Wrist 0.85 ± 0.02 58.22 ± 1.03
Index finger 1.90 ± 0.06 56.65 ± 8.99

Table 2   Regression model 
performance based on FFNN 
and RReliefF-SOM for 
HbA1c and glucose in vivo 
quantification. The spectral 
interval between 200 and 
1800 cm−1 was used to select 
the mentioned features

Body region Forearm Wrist Index finger

HbA1c # Features 100 512 50
# k-nearest neighbors 13 26 23
RMSE-CV (HbA1c %) ± SD 1.00 ± 0.08 0.69 ± 0.07 1.52 ± 0.41

Glucose # Features 200 150 150
# k-nearest neighbors 9 7 38
RMSE-CV (glucose mg/dL) ± SD 30.12 ± 0.53 41.44 ± 4.68 49.67 ± 1.66
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glucose quantification, it can be inferred which of the three 
body parts presented a better efficiency considering that the 
higher the percentage of success in zone A, the better the 
proposed method will be. In this case, the best result was 
obtained in the forearm with an accurate percentage in zone 
A of 82.61%. Although the RMSE-CV is higher compared 
to commercial glucometers [77, 78], this approach presents 
an improvement compared to the state-of-art considering our 
percentage of success in Clarke error grid zone A.

Comparison among results by using regressors 
as SVM, LR, and iPLS

We compared the performance of the FFNN with other meth-
ods such as support vector machine (SVM), linear regres-
sion, and interval partial least square (iPLS) to differentiate 

our proposal with techniques that have been reported so far 
in the state-of-art to predict glucose and HbA1c [16, 17, 
42, 45, 60, 79]. The inputs for SVM and linear regression 
were the same used in the FFNN model. In both cases the 
number of features were the same in each body part: 100, 
512, and 50 features for the forearm, wrist, and index finger, 
respectively, for HbA1c prediction using the SOM network 
and RReliefF. Meanwhile 200, 150, and 150 features for 
the forearm, wrist, and index finger, respectively, for glu-
cose prediction. Table 3 presents the results obtained from 
SVM and linear regression analyses of the measurements 
performed in the three different body parts. The performance 
of the FFNN was better than SVM and linear regression 
for prediction of HbA1c and glucose (0.69, 1.40, 1.76% for 
HbA1c, respectively; and 30.12, 30.50, 30.56 mg/dL for glu-
cose, respectively).

c)b)a)

Fig. 3   Clarke error grid for the proposed method, a forearm, b wrist, c index finger

Table 3   Regression model 
performance based on SVM, 
and linear regression combined 
with RReliefF-SOM for 
HbA1c and glucose in vivo 
quantification. The spectral 
interval between 200 and 
1800 cm−1 was used to select 
the mentioned features

Support vector machine

Body region Forearm Wrist Index finger

HbA1c # Features 100 512 50
# k-nearest neighbors 13 26 23
RMSE-CV (HbA1c % ± SD) 1.53 ± 0.12 1.40 ± 0.17 1.58 ± 0.12

Glucose # Features 200 150 150
# k-nearest neighbors 9 7 38
RMSE-CV (glucose mg/dL ± SD) 30.50 ± 3. 73 45.54 ± 7.25 54.90 ± 8.6

Linear regression
Body region Forearm Wrist Index finger

HbA1c # Features 100 512 50
# k-nearest neighbors 13 26 23
RMSE-CV (HbA1c % ± SD) 1.76 ± 0.28 2.34 ± 1.69 2.17 ± 1.12

Glucose # Features 200 150 150
# k-nearest neighbors 9 7 38
RMSE-CV (glucose mg/dL) ± SD 30.56 ± 3.86 79.63 ± 7.96 59.54 ± 9.67
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Besides, the FFNN and iPLS performance were compared. 
These methods were tested within ten intervals of the Raman 
spectra (200–1800 cm−1). Table 4 shows the intervals that pro-
vided the best results from the ten spectral intervals, being the 
interval from 771 to 975 cm−1, which provides the best result 
for HbA1c and glucose prediction using iPLS. In general, 
FFNN performed better than iPLS. The RMSE-CV of FFNN 
was 0.69% and 30.12 mg/dL for HbA1c and glucose, respec-
tively; meanwhile, the error of iPLS was 1.85% and 64.55 mg/
dL, respectively.

Classification based on the HbA1c values

A classification using FFNN was performed, based on the 
HbA1c percentages from conventional laboratory methods, 
and three classes were created (healthy, prediabetes, and T2D). 
The accuracy results of the spectral intervals (200–1800 cm−1 
and 600–1600 cm−1) are shown in Table 5 without using nei-
ther the SOM network nor RReliefF; the best results obtained a 
classification accuracy of 96.01% in the wrist region using the 
spectral interval between 600 and 1600 cm−1 (512 features). 
It should be noted that the experimental results after using the 
SOM network present low accuracy (85.60% the highest one, 

see Table S5 in supplementary materials). Therefore, we do 
not consider it necessary to implement RReliefF to improve 
the results.

Furthermore, specificity and sensitivity were calculated 
for the best performing spectral interval of each body region, 
being this 600–1600 cm−1 for the forearm, wrist, and finger 
index (Table 6); the best sensitivity and specificity percent-
ages were obtained from the Raman spectra of the wrist, 
being 90.00% and 99.73%, respectively; and the worst results 
were obtained from the index finger Raman spectra. In addi-
tion, the specificity and sensitivity of the predicted values of 
HbA1c obtained through Raman spectroscopy and FFNN were 
60.71% and 93.10%, respectively (Table 7).

Discussion

Currently, the global burden associated with T2D is esti-
mated to be 67.9 million disability-adjusted life-years 
(DALYs); the latest projections point towards an increment 
of 11.4, resulting in 79.3 million by 2025 [80]. Further-
more, underdiagnosis of T2D remains as a key problem in 
low- and middle-income countries [5]. It is proposed that 
the development of low-cost and non-invasive methods 
could alleviate this problem. The development of non-
invasive methods could potentially alleviate the increas-
ing environmental footprint of health care associated to 
diagnostic methods that requires many contaminants, and 
single-use tests [81, 82]. Here, we showed that the imple-
mentation of FFNN for the analysis of the non-invasive 
quantification of HbA1c and glucose by means of Raman 
spectroscopy enhances its ability to identify subjects with 
T2D.

The Raman spectra in vivo measurements have been 
used for the determination of T2D diagnosis biomarkers in 

Table 4   Regression model 
performance based on iPLS and 
FFNN to HbA1c and glucose 
in vivo quantification. The 
spectral interval between 200 
and 1800 cm−1 was used to 
select the mentioned intervals

Body region Forearm Wrist Index finger

HbA1c Spectral interval (cm−1) 771—935 771—935 407—593
iPLS RMSE-CV (HbA1c %) 1.85 ± 0.01 1.94 ± 0.02 1.96 ± 0.03
FFNN RMSE-CV (HbA1c %) 2.22 ± 0.24 2.10 ± 0.10 1.75 ± 0.08

Glucose Spectral interval (cm−1) 1390–1529 771–935 937–1092
iPLS RMSE-CV (glucose mg/dL) 65.73 ± 0.32 64.55 ± 0.70 67.42 ± 0.34
FFNN RMSE-CV (glucose mg/dL) 73.01 ± 7.45 73.73 ± 3.63 50.00 ± 6.25

Table 5   Classification model 
performance per body region

Spectral intervals Forearm (% accu-
racy) ± SD

Wrist (% accu-
racy) ± SD

Index finger (% 
accuracy) ± SD

200–1800 cm−1 (788 features) 91.98 ± 5.19 94.75 ± 2.52 80.36 ± 9.18
600–1600 cm−1 (512 features) 92.58 ± 4.15 96.01 ± 2.17 81.59 ± 9.79

Table 6   Sensitivity and specificity per body region using FFNN and 
three classes

Body region Metric Healthy Prediabetes T2D

Forearm Sensitivity 83.33% 87.78% 98.26%
Specificity 99.18% 97.51% 90.83%

Wrist Sensitivity 94.44% 90.00% 98.61%
Specificity 99.73% 98.45% 92.74%

Index finger Sensitivity 25.00% 70.00% 95.83%
Specificity 98.26% 95.96% 60.00%
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order to discriminate among T2D and healthy patients [16, 
17]. Also, non-invasive measurements to quantify glucose 
have used different regression methods [42, 46]. In this 
work, the Raman spectra from three different parts of the 
body in 46 individuals were acquired, from which a spec-
tral analysis was made to identify the representative peaks 
of glucose and HbA1c, since they have been reported in 
blood samples [15, 83], lyophilized HbA1c, and different 
concentrations [79], even in vivo measurements [16, 17].

Moreover, FFNN was implemented to quantify HbA1c 
and glucose concentrations using the Raman spectra. How-
ever, feature selection methods and SOM networks were 
required to improve the results due to the low intensity and 
noisy signal in the Raman spectra (supplementary mate-
rial, Tables S1–S4). Remarkably, the Hba1c and glucose 
Raman spectra obtained in the wrist and forearm per-
formed better than the fingertip. This could be explained 
by the collagen-enriched tissue in the fingertips. Given 
the fact that the collagen has its own Raman spectra [84], 
these spectra may interfere in the quantification of glucose 
and Hba1c. In addition, the epidermis layer is thicker than 
the forearm and wrist and it might have a high variation 
among individuals [85, 86].

In order to overcome the above-mentioned technical limi-
tations of the spectroscopy, we proposed the use of FFNN. 
It is important to notice that the FFNN can approximate any 
fitting of a data set representing a relationship [87]. Con-
sidering this, FFNN was implemented to Raman spectra 
without neither data selection nor enhancing data; however, 
the in vivo Raman spectra are noisy data, and the prediction 
error was high (1.03 ± 0.09%, and 60.32 ± 5.27 mg/dL for 
HbA1c y glucose, respectively). In order to reduce the error 
in the predictions, an early selection of valuable features 
should be conducted. Therefore, we decided to use feature 
selection and extraction methods, such as the SOM network 
and RReliefF, which have not been implemented in Raman 
spectra.

SOM is an unsupervised classification algorithm [57] that 
allows us to know the distribution of the data in function of 
intrinsic features of the data and generate prototypes based 
on the HbA1c and glucose concentrations, which helps us 
to have a better representation of the signal (reducing the 
RMSE-CV). Despite that, this representation has the same 
number of features as the input signal has. It should be 
noted that the fewer features the problem has, the shorter 

the FFNN execution time; this is suitable for an immediate 
result and a future embedded application. For this reason, 
we use feature selection methods, as with RReliefF, among 
others (see supplementary material), and the number of fea-
tures that obtained the best result per each part of the body 
is presented in Table 2.

Besides, a comparison between FFNN, SVM, and LR 
was made using the best-case per body region. The used 
features for HbA1c were SOM network in the spectral 
interval from 200 to 1800 cm−1 for the forearm, and 512 
selected features by RReliefF-SOM for the wrist. It is 
worth mentioning that these characteristics do not cor-
respond to the spectral region from 600 to 1600 cm−1. 
And for the index finger, 50 features were selected by 
RReliefF-SOM. For the glucose case, the used features 
were 200, 150, and 150 using RReliefF and SOM for the 
forearm, wrist, and index finger, respectively.

Results shown in Table 3 depict that the error obtained 
using SVM and LR is higher than that achieved by the 
FFNN (0.69% ± 0.07%), and comparing SVM and LR, 
the first one has better performance; this may be since 
different kernels were used to perform the regression, 
that means, kernels are not necessarily linear. Thereby, 
linear regressions may not present a good performance 
in HbA1c quantification. In the glucose case, the results 
from the forearm region for LR and SVM were very 
close to the FFNN results. However, our proposal is 
still better with RMSE-CV and a standard deviation of 
30.12 ± 0.53 mg/dL (see Table 2).

Former studies in which Raman spectroscopy had been 
used to estimate the glucose values have evaluated the 
specificity and sensitivity in relation to the binary classi-
fication (healthy individuals vs. controlled T2D), reporting 
both specificity and sensitivity of 100% [16]. In our case, 
these parameters were calculated in multiclass classifi-
cation, and the best results were 94.44% sensitivity and 
99.73% specificity in the healthy class. On the other hand, 
previous studies had used FFNN to classify subjects in two 
categories (healthy and T2D) [17]. Their best result was 
96% of accuracy and sensitivity and specificity values of 
88.9% and 90.9%, respectively. An accuracy of 96.01% 
was similarly obtained implementing our methodology, 
despite the difference is not significant (P > 0.05, P = 0.31 
using the non-parametric method Kruskal Wallis); an 
improvement is observed in the percentages of sensitiv-
ity and specificity; although it should be considered that 
this study [17] was obtained through a binary classifica-
tion, while the present work is a multiclass classifica-
tion. Hence, our proposed methodology outperforms the 
already published state-of-the-art methods.

Sensitivity and specificity were calculated from the 
predicted HbA1c percentages by the FFNN. The results 
are shown in Table 7, in which the percentage metrics 

Table 7   Sensitivity and specificity obtained from the regression 
based on FFNN and Raman spectroscopy in the wrist region

Metric Healthy Prediabetes T2D

Sensitivity 100.00% 60.71% 87.50%
Specificity 93.10% 87.96% 80.77%



	 Lasers in Medical Science

1 3

were 100–93.10% for healthy, 60.71–87.97% for prediabe-
tes, and 87.50–80.70% for T2D, which means a decrease 
for prediabetes and T2D groups; this is due to the error 
obtained in the regression model. Concerning the works 
reported in the literature [76, 88], there have been reported 
sensitivity and specificity for the A1c commercial test 
(boronated affinity high-performance liquid chromatog-
raphy-HPLC) with values for prediabetes in a range of 
84 to 95% and 86 to 93%, respectively, and for T2D at 
around 45 and 99% [72] and also 44 and 79%, respectively 
[88]. That means that even invasive commercial tests are 
imperfect and may present low sensitivity. Moreover, this 
is the first approximation to the development of a pain-
less method since no work has been reported nowadays 
in order to obtain an in vivo quantification of HbA1c by 
non-invasive techniques such as Raman spectroscopy.

Although several investigations have been made in order 
to achieve reliable quantification of HbA1c, a combination 
like the one presented in this work had not been reported so 
far, which consists of different concentrations in a popula-
tion (46 individuals) of multiple individuals with 36 different 
concentrations of HbA1c and 43 concentrations of glucose, 
as well as the combination of feature selection methods and 
artificial neural networks. Our proposal obtained a RMSE-
CV carried out from the Raman measurements taken on the 
wrist in a range of 5.2–14% of HbA1c of 0.69%. This is the 
first work implementing non-invasive measures to quantify 
HbA1c in humans.

Regarding the glucose measurements, we obtained a 
RMSE-CV and standard deviation of 30.12 ± 0.53 mg/dL 
in the forearm region, and in the percentage of success in 
Clarke error grid for zone A 82.61%, zone B 15.22%, zone 
D 2.17%, and zones C and E 0%, the glucose values varied 
from 56 to 400 mg/dL. Concerning the reports in the state-
of-art, percentages in Clarke error grid have been reported 
with the following results: 78.4% of success in zone A using 
partial least square (PLS) from the forearm of 111 individu-
als [44]; 72% in zone A measured to the middle finger of 29 
individuals and applied linear regression [42]; 93% zones A 
and B by an intra-subject analysis into 35 individuals and 
implemented critical-depth Raman spectroscopy and PLS 
[45]; another work reports no incidences in zone D; how-
ever, percentages were not reported, and their study was 
intra-subject [43].

Conclusion

We showed for first time that Raman spectroscopy could 
be used to determine the percentage of HbA1c in vivo. In 
addition, we improved the success in zone A of Clarke error 
grid for the glucose quantification, which represents accurate 

or acceptable results of alternative glucose measurement 
in vivo without blood extraction. Therefore, using Raman 
spectroscopy combined with feature selection methods and 
artificial neural networks provided the first step for a non-
invasive and environmentally responsible approach to meas-
uring glucose and HbA1c.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s10103-​022-​03633-w.

Acknowledgements  The biomedical optics and instrumentation group 
from INAOE thank Dr. Rafael Zepeda Ramos and the chemist Ulises 
Fernando Cruz y Cruz from the “Diagnoscentro” Laboratory in Tuxtla 
Gutiérrez, Chiapas, Mexico, for providing the facility to make the 
measurements, and N. González-Viveros and J. Castro-Ramos thank 
the National Council of Science and Technology (CONACyT), Mex-
ico, for granting them the scholarship. Dr. Flores-Guerrero acknowl-
edges support from the National Council of Science and Technology 
(CONACyT).

Author contribution  The manuscript was written through contributions 
of all authors. All authors have given approval to the final version of 
the manuscript. Conceptualization: JCR, JLFG, NGV, PGG, methodol-
ogy: JCR, NGV, PGG, HHCN, FGD, investigation: NGV, JCR, JLFG, 
ETR, RPF, visualization: NGV, JLFG, supervision: JCR, PGG, HHCN, 
FGD, ETR, RPF, JLFG, writing—original draft: NGV, JLFG, JCR, 
writing—review and editing: all.

Data availability  The data that support the findings of this study are 
openly available in the Center for Open Science repository at https://​
doi.​org/​10.​17605/​OSF.​IO/​V32D4 and the medical protocol is available 
upon reasonable request.

Declarations 

Conflict of interest  The authors declare no competing interests.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Bigna JJ, Noubiap JJ (2019) The rising burden of non-communica-
ble diseases in sub-Saharan Africa. Lancet Glob Health 7:e1295–
e1296. https://​doi.​org/​10.​1016/​S2214-​109X(19)​30370-5

	 2.	 Murray CJL, Aravkin AY, Zheng P et al (2020) Global burden of 
87 risk factors in 204 countries and territories, 1990–2019: a sys-
tematic analysis for the Global Burden of Disease Study 2019. The 
Lancet 396:1223–1249. https://​doi.​org/​10.​1016/​S0140-​6736(20)​
30752-2

https://doi.org/10.1007/s10103-022-03633-w
https://doi.org/10.17605/OSF.IO/V32D4
https://doi.org/10.17605/OSF.IO/V32D4
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/S2214-109X(19)30370-5
https://doi.org/10.1016/S0140-6736(20)30752-2
https://doi.org/10.1016/S0140-6736(20)30752-2


Lasers in Medical Science	

1 3

	 3.	 Zimmet PZ (2017) Diabetes and its drivers: The largest epidemic 
in human history? Clin Diabetes Endocrinol 3:1–8. https://​doi.​
org/​10.​1186/​s40842-​016-​0039-3

	 4.	 Saeedi P, Petersohn I, Salpea P et al (2019) Global and regional 
diabetes prevalence estimates for 2019 and projections for 2030 
and 2045: Results from the International Diabetes Federation 
Diabetes Atlas, 9th edition. Diabetes Res Clin Pract 157:107843. 
https://​doi.​org/​10.​1016/j.​diabr​es.​2019.​107843

	 5.	 Correr CJ, Coura-Vital W, Frade JCQP et al (2020) Prevalence 
of people at risk of developing type 2 diabetes mellitus and the 
involvement of community pharmacies in a national screening 
campaign: A pioneer action in Brazil. Diabetol Metab Syndr 
12:1–11. https://​doi.​org/​10.​1186/​S13098-​020-​00593-5

	 6.	 Delbeck S, Heise HM (2020) Evaluation of Opportunities and 
Limitations of Mid-Infrared Skin Spectroscopy for Noninvasive 
Blood Glucose Monitoring. J Diabetes Sci Technol 15:19–27. 
https://​doi.​org/​10.​1177/​19322​96820​936224

	 7.	 Heise HM, Delbeck S, Marbach R (2021) Noninvasive Monitor-
ing of Glucose Using Near-Infrared Reflection Spectroscopy of 
Skin—Constraints and Effective Novel Strategy in Multivariate 
Calibration. Biosensors 11:64. https://​doi.​org/​10.​3390/​BIOS1​
10300​64

	 8.	 Lyandres O, Yuen JM, Shah NC et al (2008) Progress Toward an 
In Vivo Surface-Enhanced Raman Spectroscopy Glucose Sensor. 
Diabetes Technol Ther 10:257–265. https://​doi.​org/​10.​1089/​DIA.​
2007.​0288

	 9.	 Pandey R, Dingari NC, Spegazzini N et al (2015) Emerging trends 
in optical sensing of glycemic markers for diabetes monitoring. 
Trends Analyt Chem 64:100. https://​doi.​org/​10.​1016/J.​TRAC.​
2014.​09.​005

	10.	 Pandey R, Paidi SK, Valdez TA et al (2017) Noninvasive Monitor-
ing of Blood Glucose with Raman Spectroscopy. Acc Chem Res 
50:264–272. https://​doi.​org/​10.​1021/​ACS.​ACCOU​NTS.​6B004​72

	11.	 Lazareva EN, Zyubin AY, Ilya G et al (2019) Refraction, fluores-
cence, and Raman spectroscopy of normal and glycated hemo-
globin. Proc SPIE 10685, Biophotonics: Photonic Solutions for 
Better Health Care VI 1068540. https://​doi.​org/​10.​1117/​12.​23071​
02

	12.	 Pandey R (2015) Raman Spectroscopy-Based Sensing of Glycated 
Hemoglobin : Critical Analysis and Future Outlook Rishikesh 
Pandey. Journal of Postfoctoral Research 3:8–16

	13.	 Pan T, Li M, Chen J, Xue H (2014) Quantification of glycated 
hemoglobin indicator HbA1c through near-infrared spectroscopy. 
J Innov Opt Health Sci 7:1–9. https://​doi.​org/​10.​1142/​S1793​
54581​35006​00

	14.	 Syamala Kiran M, Itoh T, Yoshida K et al (2010) Selective Detec-
tion of HbA1c Using Surface Enhanced Resonance Raman Spec-
troscopy. Anal Chem 82:1342–1348. https://​doi.​org/​10.​1021/​
ac902​364h

	15.	 Pandey R, Singh SP, Zhang C, et al Label-free spectrochemical 
probe for determination of hemoglobin glycation in clinical blood 
samples J. Biophotonics 11:e201700397. https://​doi.​org/​10.​1002/​
jbio.​20170​0397

	16.	 Villa-Manríquez F, Castro-Ramos J, Gutiérrez-Delgado F et al 
(2016) Raman spectroscopy and PCA-SVM as a non-invasive 
diagnostic tool to identify and classify qualitatively glycated 
hemoglobin levels in vivo. J Biomed Opt 6:1–6. https://​doi.​org/​
10.​1002/​jbio.​20160​0169

	17.	 Guevara E, Torres-Galvan JC, Ramírez-Elias MG et al (2018) Use 
of Raman spectroscopy to screen diabetes mellitus with machine 
learning tools. Biomed. Opt. Express 9:4998–5010. https://​doi.​
org/​10.​1364/​BOE.9.​004998

	18.	 Lin J, Shao L, Qiu S et al (2018) Application of a near-infrared 
laser tweezers Raman spectroscopy system for label-free analy-
sis and differentiation of diabetic red blood cells. Biomed Opt. 
Express 9:984–993. https://​doi.​org/​10.​1364/​BOE.9.​000984

	19.	 Fabian H, Mäntele W (2006) Infrared Spectroscopy of Proteins. 
Handbook of Vibrational Spectroscopy. https://​doi.​org/​10.​1002/​
04700​27320.​S8201

	20.	 Campion A (2001) Infrared and Raman Spectroscopy of Bio-
logical Materials. Practical Spectroscopy Series. American 
Chemical Society

	21.	 Raman CV, Krishnan KS (1928) A New Type of Secondary 
Radiation. Nature 121:3048 121:501–502. https://​doi.​org/​10.​
1038/​12150​1c0

	22.	 Schlösser M (2014) Theory of Quantitative Raman Spectros-
copy. 53–74. https://​doi.​org/​10.​1007/​978-3-​319-​06221-1_3

	23.	 Smith E, Dent G (2005) Modern Raman Spectrocopy: A Practi-
cal Approach

	24.	 Jin H, He X, Zhou H et al (2020) Efficacy of raman spectros-
copy in the diagnosis of kidney cancer: A systematic review and 
meta-analysis. Medicine (United States) 99: e20933. https://​doi.​
org/​10.​1097/​MD.​00000​00000​020933

	25.	 Chen F, Chen C, Li W et al (2021) Rapid detection of seven 
indexes in sheep serum based on Raman spectroscopy combined 
with DOSC-SPA-PLSR-DS model. Spectrochim Acta A Mol 
Biomol Spectrosc 248:119260. https://​doi.​org/​10.​1016/J.​SAA.​
2020.​119260

	26.	 Sherwani SI, Khan HA, Ekhzaimy A et al (2016) Significance 
of HbA1c Test in Diagnosis and Prognosis of Diabetic Patients. 
Biomark Insights 11:95–104. https://​doi.​org/​10.​4137/​BMI.​
S38440

	27.	 Smulko J, Wróbel MS (2015) Noise in biological Raman Spec-
troscopy. 2015 International Conference on Noise and Fluctua-
tions (ICNF) 1:1–6. https://​doi.​org/​10.​1109/​ICNF.​2015.​72885​
62

	28.	 Schrader B (1995) Tools for infrared and Raman spectroscopy. 
In: Infrared and Raman Spectroscopy. John Wiley & Sons, Ltd, 
pp 63–188

	29.	 Smulko J, Wróbel MS (2017) Noise sources in Raman spec-
troscopy of biological objects. Dynamics and Fluctuations 
in Biomedical Photonics XIV 10063:54–60. https://doi.
org/10.1117/12.2254807

	30.	 McCreery RL (2000) Raman Spectroscopy for Chemical Analy-
sis. John Wiley & Sons, Inc.

	31.	 Člupek M, Matějka P, Volka K (2007) Noise reduction in Raman 
spectra : Finite impulse response filtration versus Savitzky – 
Golay smoothing. J Raman Spectrosc 38:1174–1179. https://​
doi.​org/​10.​1002/​jrs.​1747

	32.	 Ehrentreich F, Summchen L (2001) Spike Removal and Denois-
ing of Raman Spectra by Wavelet Transform Methods. Anal 
Chem 73:4364–4373. https://​doi.​org/​10.​1021/​AC001​3756

	33.	 Villanueva-Luna AE, Castro-Ramos J, Vazquez-Montiel S et al 
(2010) Fluorescence and noise subtraction from Raman spec-
tra by using wavelets. Optical Memory and Neural Networks 
19:310–317. https://​doi.​org/​10.​3103/​S1060​992X1​00400​89

	34.		  Mahadevan-Jansen A, Richards-Kortum R (1996) Raman 
spectroscopy for the detection of cancers and precancers. J 
Biomed Opt 1:31–70. https://​doi.​org/​10.​1117/​12.​227815

	35.	 Hu H, Bai J, Xia G et al (2018) Improved Baseline Correc-
tion Method Based on Polynomial Fitting for Raman Spectros-
copy. Photonic Sensors 8:332–340. https://​doi.​org/​10.​1007/​
s13320-​018-​0512-y

	36.	 León-Bejarano M, Dorantes-Méndez G, Ramírez-Elías M et al 
(2016) Fluorescence background removal method for biological 
Raman spectroscopy based on Empirical Mode Decomposition. 
2016 38th Annual International Conference of the IEEE Engi-
neering in Medicine and Biology Society (EMBC) 3610–3613. 
https://​doi.​org/​10.​1109/​EMBC.​2016.​75915​09

	37.	 Chavarría-Lizárraga HN (2019) Biological tissue mapping 
with Raman Spectroscopy.  Master Thesis, National Institute 
of Astrophysics, Optics and Electronics

https://doi.org/10.1186/s40842-016-0039-3
https://doi.org/10.1186/s40842-016-0039-3
https://doi.org/10.1016/j.diabres.2019.107843
https://doi.org/10.1186/S13098-020-00593-5
https://doi.org/10.1177/1932296820936224
https://doi.org/10.3390/BIOS11030064
https://doi.org/10.3390/BIOS11030064
https://doi.org/10.1089/DIA.2007.0288
https://doi.org/10.1089/DIA.2007.0288
https://doi.org/10.1016/J.TRAC.2014.09.005
https://doi.org/10.1016/J.TRAC.2014.09.005
https://doi.org/10.1021/ACS.ACCOUNTS.6B00472
https://doi.org/10.1117/12.2307102
https://doi.org/10.1117/12.2307102
https://doi.org/10.1142/S1793545813500600
https://doi.org/10.1142/S1793545813500600
https://doi.org/10.1021/ac902364h
https://doi.org/10.1021/ac902364h
https://doi.org/10.1002/jbio.201700397
https://doi.org/10.1002/jbio.201700397
https://doi.org/10.1002/jbio.201600169
https://doi.org/10.1002/jbio.201600169
https://doi.org/10.1364/BOE.9.004998
https://doi.org/10.1364/BOE.9.004998
https://doi.org/10.1364/BOE.9.000984
https://doi.org/10.1002/0470027320.S8201
https://doi.org/10.1002/0470027320.S8201
https://doi.org/10.1038/121501c0
https://doi.org/10.1038/121501c0
https://doi.org/10.1007/978-3-319-06221-1_3
https://doi.org/10.1097/MD.0000000000020933
https://doi.org/10.1097/MD.0000000000020933
https://doi.org/10.1016/J.SAA.2020.119260
https://doi.org/10.1016/J.SAA.2020.119260
https://doi.org/10.4137/BMI.S38440
https://doi.org/10.4137/BMI.S38440
https://doi.org/10.1109/ICNF.2015.7288562
https://doi.org/10.1109/ICNF.2015.7288562
https://doi.org/10.1002/jrs.1747
https://doi.org/10.1002/jrs.1747
https://doi.org/10.1021/AC0013756
https://doi.org/10.3103/S1060992X10040089
https://doi.org/10.1117/12.227815
https://doi.org/10.1007/s13320-018-0512-y
https://doi.org/10.1007/s13320-018-0512-y
https://doi.org/10.1109/EMBC.2016.7591509


	 Lasers in Medical Science

1 3

	38.	 González-Viveros N, Castro-Ramos J, Gómez-Gil P, Cerecedo-
Núñez HH (2021) Characterization of glycated hemoglobin 
based on Raman spectroscopy and artificial neural networks. 
Spectrochim Acta A Mol Biomol Spectrosc 247:119077. https://​
doi.​org/​10.​1016/j.​saa.​2020.​119077

	39.	 Özbalci B, Boyaci IH, Topcu A et al (2013) Rapid analysis 
of sugars in honey by processing Raman spectrum using che-
mometric methods and artificial neural networks. Food Chem 
136:1444–1452. https://​doi.​org/​10.​1016/j.​foodc​hem.​2012.​09.​
064

	40.	 Gómez-Gil P (2019) El reconocimiento de patrones y su apli-
cación a las señales digitales, Academia Mexicana de Com-
putación. vol. 2

	41.	 González-Viveros N, Gómez-Gil P, Castro-Ramos J, Cerecedo-
Núñez HH (2021) On the estimation of sugars concentrations 
using Raman spectroscopy and artificial neural networks. Food 
Chem 352:129375. https://​doi.​org/​10.​1016/J.​FOODC​HEM.​
2021.​129375

	42.	 Chaiken J, Finney WF, Knudson PE et al (2005) Effect of hemo-
globin concentration variation on the accuracy and precision of 
glucose analysis using tissue modulated, noninvasive, in vivo 
Raman spectroscopy of human blood: a small clinical study. J of 
Biomedical Optics10:031111. https://​doi.​org/​10.​1117/1.​19221​47

	43.	 Enejder AMK, Scecina TG, Oh J et al (2005) Raman spectros-
copy for noninvasive glucose measurements. J of Biomedical 
Optics10:031114. https://​doi.​org/​10.​1117/1.​19202​12

	44.	 Scholtes-Timmerman MJ, Bijlsma S, Fokkert MJ et al (2014) 
Raman spectroscopy as a promising tool for noninvasive point-
of-care glucose monitoring. J Diabetes Sci Technol 8:974–979. 
https://​doi.​org/​10.​1177/​19322​96814​543104

	45.	 Lundsgaard-Nielsen SM, Pors A, Banke SO et al (2018) Criti-
cal-depth Raman spectroscopy enables home-use non-invasive 
glucose monitoring. PLoS One 13:e0197134. https://​doi.​org/​10.​
1371/​JOURN​AL.​PONE.​01971​34

	46.	 Kang JW, Park YS, Chang H et al (2020) Direct observation of 
glucose fingerprint using in vivo Raman spectroscopy. Sci Adv 
6:eaay5206. https://​doi.​org/​10.​1126/​sciadv.​aay52​06

	47.	 McDonald TJ, Warren R (2014) Diagnostic Confusion? Repeat 
HbA1c for the Diagnosis of Diabetes. Diabetes Care 37: e135–
e136. https://​doi.​org/​10.​2337/​DC14-​0055

	48.	 Fluckiger R, Woodtli T, Berger W (1984) Quantitation of Gly-
cosylated Hemoglobin by Boronate Affinity Chromatography. 
Diabetes 33:73–76. https://​doi.​org/​10.​2337/​DIAB.​33.1.​73

	49.	 Rosevear JW, Pfaff  KJ, Service FJ et al (1969) Glucose oxi-
dase method for continuous automated blood glucose deter-
mination. Clin Chem 15:680–698. https://doi.org/10.1093/
clinchem/15.8.680

	50.	 American Diabetes Association (2021). Classification and 
Diagnosis of Diabetes: Standards of Medical Care in Diabetes. 
Diabetes Care 44:S15–S33. https://​doi.​org/​10.​2337/​DC21-​S002

	51.	 American National Standard (2015) ANSI Z136.1 American 
National Standard for Safe Use ofLasers.

	52.	 Colthup NB (1990) Introduction to infrared and Raman spec-
troscopy.  Academic Press

	53.	 World Medical Association (2001) World Medical Association 
Declaration of Helsinki. 6 38:141–145. https://​doi.​org/​10.​4414/​
FMS.​2001.​04031

	54.	 Giansante S, Giana HE, Fernandes AB, Silveira L (2022) 
Analytical performance of Raman spectroscopy in assay-
ing biochemical components in human serum. Lasers in 
Medical Science 2021 37:1–12. https://​doi.​org/​10.​1007/​
S10103-​021-​03247-8

	55.	 Li S, Chen G, Zhang Y et al (2014) Identification and charac-
terization of colorectal cancer using Raman spectroscopy and 
feature selection techniques. Opt Express 22:25895–25908. 
https://​doi.​org/​10.​1364/​OE.​22.​025895

	56.	 Hu C, Wang J, Zheng C et al (2013) Raman spectra exploring 
breast tissues: Comparison of principal component analysis and 
support vector machine-recursive feature elimination. Med Phys 
40:063501. https://​doi.​org/​10.​1118/1.​48040​54

	57.	 Kohonen T (1990) The Self-Organizing Map. Proceedings of 
the IEEE 78:1464–1480. https://​doi.​org/​10.​1109/5.​58325

	58.	 Hilera González JR, Martínez Hernando VJ (1995) Redes 
neuronales artificiales: fundamentos, modelos y aplicaciones. 
RA-MA

	59.	 Kira K, Rendell LA (1992) A Practical Approach to Feature 
Selection. Machine Learning Proceedings 1992 249–256. 
https://​doi.​org/​10.​1016/​B978-1-​55860-​247-2.​50037-1

	60.	 Nørgaard L, Saudland A, Wagner J et al (2000) Interval Partial 
Least-Squares Regression (iPLS): A Comparative Chemomet-
ric Study with an Example from Near-Infrared Spectroscopy. 
Applied Spectroscopy 54(3):413–419. https://​doi.​org/​10.​1366/​
00037​02001​949500 

	61.	 Tharwat A (2018) Classification assessment methods. 
Applied Computing and Informatics 17:168–192. https://doi.
org/10.1016/J.ACI.2018.08.003/FULL/PDF

	62.	 Duda Richard O, Stork David G, Hart Peter E (2000) Pattern 
Classification, Wiley

	63.	 Ranganathan S, Gribskov M, Nakai K et al. (2019) Encyclo-
pedia of bioinformatics and computational biology. vol. 1–3, 
Elsevier, Amsterdam; Oxford; Cambridge

	64.	 Hastie T, Tibshirani R, Friedman J (2009) The Elements of 
Statistical Learning. Springer, New York, New York, NY

	65.	 Chai T, Draxler RR (2014) Root mean square error (RMSE) 
or mean absolute error (MAE)? Geosci Model Dev Discuss 
7:1525–1534. https://​doi.​org/​10.​5194/​gmdd-7-​1525-​2014

	66.	 Clarke WL (2005) The Original Clarke Error Grid Analysis 
(EGA). Diabetes Technol Ther 7:776–779. https://​doi.​org/​10.​
1089/​DIA.​2005.7.​776

	67.	 Clarke Error Grid Analysis - File Exchange - MATLAB Cen-
tral.  https://​la.​mathw​orks.​com/​matla​bcent​ral/​filee​xchan​ge/​
20545-​clarke-​error-​grid-​analy​sis. Accessed 18 Nov 2021

	68.	 Villanueva-Luna a. E, Castro-Ramos J, Vazquez-Montiel S et al 
(2012) Raman spectroscopy of blood in-vitro. Optical Diagnos-
tics and Sensing XII: Toward Point-of-Care Diagnostics; and 
Design and Performance Validation of Phantoms Used in Con-
junction with Optical Measurement of Tissue IV 8229:82291D. 
https://​doi.​org/​10.​1117/​12.​908689

	69.	 Makhnii T, Ilchenko O, Reynt A et  al (2016) Age-related 
changes in FTIR and Raman spectra of human blood. Ukrain-
ian Journal of Physics 61:853–862. https://​doi.​org/​10.​15407/​
ujpe61.​10.​0853

	70.	 Lin J, Lin J, Huang Z et al (2014) Raman spectroscopy of human 
hemoglobin for diabetes detection. J Innov Opt Health Sci 7:1–
5. https://​doi.​org/​10.​1142/​S1793​54581​35005​1X

	71.	 Qiu X, Huang H, Huang Z et al (2017) Effect of Red Light-
Emitting Diodes Irradiation on Hemoglobin for Potential 
Hypertension Treatment Based on Confocal Micro-Raman 
Spectroscopy 2017:29109818. https://​doi.​org/​10.​1155/​2017/​
50678​67

	72.	 Atkins CG, Buckley K, Blades MW, Turner RFB (2017) Raman 
Spectroscopy of Blood and Blood Components. Appl Spectrosc 
71:767–793. https://​doi.​org/​10.​1177/​00037​02816​686593

	73.	 Wood BR, Tait B, McNaughton D (2001) Micro-Raman charac-
terisation of the R to T state transition of haemoglobin within a 
single living erythrocyte. Biochimica et Biophysica Acta (BBA) 
- Molecular Cell Research 1539:58–70. https://​doi.​org/​10.​1016/​
S0167-​4889(01)​00089-1

	74.	 De Gelder J, De Gussem K, Vandenabeele P, Moens L (2007) 
Reference database of Raman spectra of biological molecules. 
J Raman Spectrosc 38:1133–1147. https://​doi.​org/​10.​1002/​JRS.​
1734

https://doi.org/10.1016/j.saa.2020.119077
https://doi.org/10.1016/j.saa.2020.119077
https://doi.org/10.1016/j.foodchem.2012.09.064
https://doi.org/10.1016/j.foodchem.2012.09.064
https://doi.org/10.1016/J.FOODCHEM.2021.129375
https://doi.org/10.1016/J.FOODCHEM.2021.129375
https://doi.org/10.1117/1.1922147
https://doi.org/10.1117/1.1920212
https://doi.org/10.1177/1932296814543104
https://doi.org/10.1371/JOURNAL.PONE.0197134
https://doi.org/10.1371/JOURNAL.PONE.0197134
https://doi.org/10.1126/sciadv.aay5206
https://doi.org/10.2337/DC14-0055
https://doi.org/10.2337/DIAB.33.1.73
https://doi.org/10.2337/DC21-S002
https://doi.org/10.4414/FMS.2001.04031
https://doi.org/10.4414/FMS.2001.04031
https://doi.org/10.1007/S10103-021-03247-8
https://doi.org/10.1007/S10103-021-03247-8
https://doi.org/10.1364/OE.22.025895
https://doi.org/10.1118/1.4804054
https://doi.org/10.1109/5.58325
https://doi.org/10.1016/B978-1-55860-247-2.50037-1
https://doi.org/10.1366/0003702001949500
https://doi.org/10.1366/0003702001949500
https://doi.org/10.5194/gmdd-7-1525-2014
https://doi.org/10.1089/DIA.2005.7.776
https://doi.org/10.1089/DIA.2005.7.776
https://la.mathworks.com/matlabcentral/fileexchange/20545-clarke-error-grid-analysis
https://la.mathworks.com/matlabcentral/fileexchange/20545-clarke-error-grid-analysis
https://doi.org/10.1117/12.908689
https://doi.org/10.15407/ujpe61.10.0853
https://doi.org/10.15407/ujpe61.10.0853
https://doi.org/10.1142/S179354581350051X
https://doi.org/10.1155/2017/5067867
https://doi.org/10.1155/2017/5067867
https://doi.org/10.1177/0003702816686593
https://doi.org/10.1016/S0167-4889(01)00089-1
https://doi.org/10.1016/S0167-4889(01)00089-1
https://doi.org/10.1002/JRS.1734
https://doi.org/10.1002/JRS.1734


Lasers in Medical Science	

1 3

	75.	 Ilaslan K, Boyaci IH, Topcu A (2015) Rapid analysis of glucose, 
fructose and sucrose contents of commercial soft drinks using 
Raman spectroscopy. Food Control 48:56–61. https://​doi.​org/​
10.​1016/j.​foodc​ont.​2014.​01.​001

	76.	 Owora AH (2018) Diagnostic Validity and Clinical Utility 
of HbA1C Tests for Type 2 Diabetes Mellitus. Curr Diabetes 
Rev 14:196. https://​doi.​org/​10.​2174/​15733​99812​66616​11291​
54559

	77.	 Ginsberg BH (2009) Factors affecting blood glucose monitor-
ing: Sources of errors in measurement. J Diabetes Sci Technol 
3:903–913. https://​doi.​org/​10.​1177/​19322​96809​00300​438

	78.	 Tonyushkina K, Nichols JH (2009) Glucose meters: A review of 
technical challenges to obtaining accurate results. J Diabetes Sci 
Technol 3:971–980. https://​doi.​org/​10.​1177/​19322​96809​00300​
446

	79.	 Barman I, Dingari NC, Kang JW et al (2012) Raman Spec-
troscopy-Based Sensitive and Specific Detection of Glycated 
Hemoglobin. Anal Chem 84(5):2474–82. https://​doi.​org/​10.​
1021/​ac203​266a

	80.	 Lin X, Xu Y, Pan X et al (2020) Global, regional, and national 
burden and trend of diabetes in 195 countries and territories: an 
analysis from 1990 to 2025. Scientific Reports 10:1–11. https://​
doi.​org/​10.​1038/​s41598-​020-​71908-9

	81.	 Street A, Vernooij E, Rogers MH (2022) Diagnostic waste: 
whose responsibility? Global Health 18:1–7. https://​doi.​org/​
10.​1186/​S12992-​022-​00823-7

	82.	 Lenzen M, Malik A, Li M et al (2020) The environmental foot-
print of health care: a global assessment. Lancet Planet Health 
4:e271–e279. https://​doi.​org/​10.​1016/​S2542-​5196(20)​30121-2

	83.	 Boyaci IH, Temiz HT, Geniş HE et al (2015) Dispersive and 
FT-Raman Spectroscopic Methods in Food Analysis. The Royal 
Society of Chemistry. RSC Adv 5:56606-56624. https://​doi.​org/​
10.​1039/​C4RA1​2463D

	84.	 Martinez MG, Bullock AJ, MacNeil S, Rehman IU (2019) Char-
acterisation of structural changes in collagen with Raman spec-
troscopy. Applied Spectroscopy Reviews 54:509–542. https://​
doi.​org/​10.​1080/​05704​928.​2018.​15067​99

	85.	 Whitton JT, EverallL JD (1973) The thickness of the epider-
mis. Br J Dermatol 89:467–476. https://​doi.​org/​10.​1111/J.​1365-​
2133.​1973.​TB030​07.X

	86.	 Caspers PJ, Lucassen GW, Wolthuis R et al (1999) In vitro 
and in vivo Raman spectroscopy of human skin. Biospectros-
copy 4(5 Suppl): S31–9. https://​doi.​org/​10.​1002/​(SICI)​1520-​
6343(1998)4:​5+3.​0.​CO;2-M

	87.	 Haykin S (2008) Neural Networks and Learning Machines, vol. 3
	88.	 Buell C, Kermah D, Davidson MB (2007) Utility of A1C 

for Diabetes Screening in the 1999–2004 NHANES Popula-
tion. Diabetes Care 30:2233–2235. https://​doi.​org/​10.​2337/​
DC07-​0585

Publisher's note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1016/j.foodcont.2014.01.001
https://doi.org/10.1016/j.foodcont.2014.01.001
https://doi.org/10.2174/1573399812666161129154559
https://doi.org/10.2174/1573399812666161129154559
https://doi.org/10.1177/193229680900300438
https://doi.org/10.1177/193229680900300446
https://doi.org/10.1177/193229680900300446
https://doi.org/10.1021/ac203266a
https://doi.org/10.1021/ac203266a
https://doi.org/10.1038/s41598-020-71908-9
https://doi.org/10.1038/s41598-020-71908-9
https://doi.org/10.1186/S12992-022-00823-7
https://doi.org/10.1186/S12992-022-00823-7
https://doi.org/10.1016/S2542-5196(20)30121-2
https://doi.org/10.1039/C4RA12463D
https://doi.org/10.1039/C4RA12463D
https://doi.org/10.1080/05704928.2018.1506799
https://doi.org/10.1080/05704928.2018.1506799
https://doi.org/10.1111/J.1365-2133.1973.TB03007.X
https://doi.org/10.1111/J.1365-2133.1973.TB03007.X
https://doi.org/10.1002/(SICI)1520-6343(1998)4:5+3.0.CO;2-M
https://doi.org/10.1002/(SICI)1520-6343(1998)4:5+3.0.CO;2-M
https://doi.org/10.2337/DC07-0585
https://doi.org/10.2337/DC07-0585

	Quantification of glycated hemoglobin and glucose in vivo using Raman spectroscopy and artificial neural networks
	Abstract
	Introduction
	Methods
	In vivo measurements of glucose and HbA1c
	Spectral data analysis

	Results
	In vivo spectra results
	Non-linear regression based on artificial neural networks
	Clarke error grid results
	Comparison among results by using regressors as SVM, LR, and iPLS
	Classification based on the HbA1c values

	Discussion
	Conclusion
	Acknowledgements 
	References


