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Abstract 

In the past few decades, droplet impact on a heated plate above the Leidenfrost 

temperature has attracted immense research interest. The strong hydrophobicity caused by the 

Leidenfrost effect leads to the droplet bouncing from a flat plate at a given contact time 

predicted by the classical Rayleigh theory. Numerous investigations were conducted to break 

the theoretical Rayleigh’s limit to reduce the interfacial contact time. Recently a droplet was 

observed to form a pancake shape and bounce as it impacted nanotube or micropost surfaces 

above the Leidenfrost temperature. This led to a significant reduction in droplet contact time. 

However, this unique bouncing phenomenon is still not fully understood, such as the influence 

of the plate configuration and the relationship between the droplet rebound time and 

evaporation mass loss. In this study, we carry out a numerical study of the droplet impact 

dynamics on a heated porous plate above the Leidenfrost temperature, using a multiphase 

thermal lattice Boltzmann model. Our model is constructed within the unified lattice 

Boltzmann method (ULBM) framework and is firstly validated based on theoretical and 

experimental results. Then, a comprehensive parametric study is performed to investigate the 

effects of the impact Weber number, the plate temperature and the plate configurations on the 

droplet bouncing dynamics. Results show that higher plate temperature, larger Weber number, 

and smaller pore intervals can accelerate the droplet rebound and promote the droplet pancake 

bouncing. We demonstrate that the occurrence of the pancake bouncing is attributed to the 

additional lift force provided by the vapour pressure due to the evaporation of liquid inside the 

pores. Moreover, the droplet maximum spreading time and maximum spreading factor can be 

described by a power law function of the impact Weber number. The droplet evaporation mass 
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loss increases linearly with the impingement Weber number and the plate opening fractions. 

This study provides new insights into the Leidenfrost droplet impingement on porous plates, 

which may potentially facilitate the design of novel engineering surfaces and devices. 

1. Introduction 

Droplet impingement on a heated plate is ubiquitous in nature and the industry such as 

aviation, power generation and process engineering [1,2]. Recently, the rapid development of 

miniaturized electronic devices creates an urgent need for innovative cooling approaches, such 

as spray cooling, which requires optimized manipulation of droplet dynamics on a heated 

plate [3]. This demands detailed insights into the effects of the plate temperature, plate 

geometry and liquid properties on droplet impact dynamics and its evaporation over the heated 

plate [4–6]. According to the classical boiling heat transfer theory, the droplet experiences 

several heating regimes when the plate temperature is increased, for example, the nucleate 

boiling regime, the transition boiling regime and the film boiling regime [1,7]. Remarkably, in 

the film boiling regime, the plate temperature is above the Leidenfrost point and the droplet's 

lower surface evaporates rapidly. As a result, a thin vapour layer is generated between the 

liquid phase and the solid plate, impeding the contact of the droplet with the plate. The 

Leidenfrost droplet thus demonstrates similar dynamics as its impingement on 

superhydrophobic surfaces [4]. For example, it has been observed that a droplet rebounds after 

impacting a hot plate above the Leidenfrost temperature. On a flat plate, the contact time (𝑡𝑐) 

of the droplet approximately follows Rayleigh’s theory, where 𝑡𝑐/𝜏 = 𝜋/4 (𝜏 = (𝐷0
3𝜌𝑙/𝜎)0.5 

is the inertia-capillarity time) [4,8–10]. Also, the vapour layer between the droplet and the 

heated plate prevents heat transfer and droplet evaporation, which minimizes the heat flux at 

the Leidenfrost point [1,7]. Considering that the solid-liquid interface contact time is critical to 

applications such as anti-icing, spray cooling and heat transfer, the study of droplet 

impingement dynamics on superhydrophobic surfaces [11,12] and heated surfaces [4] has 

attracted increasing interest in the past few decades. 

Considerable efforts have been made to experimentally explore the Leidenfrost droplet 

dynamics. Recent advances can be generally divided into three families: (1) Understanding of 

the Leidenfrost droplet hydrodynamics. Lagubeau et al. [13] first observed self-propelled 

characteristics of the Leidenfrost droplet on a ratchet surface, which was attributed to the 

interaction of the vapour flow and asymmetric textures. In 2018, Bouillant et al. [14] found the 

Leidenfrost droplet also demonstrated self-propelled characteristics on a hot flat plate. More 

recently, an interesting self-bouncing mechanism was observed for a deposited Leidenfrost 
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droplet on a hot surface [15]. (2) Controlling of the Leidenfrost point to benefit the heat transfer. 

Franck et al. [16] found that the Leidenfrost point could drop to room temperature as the 

ambient pressure decreased. Kwon et al. [17] and Kruse et al. [18] suggested that the 

Leidenfrost point was increased for any droplet in sparse hot texture surfaces. Daniel et al. [19] 

observed that the microholes array surfaces can decrease the Leidenfrost point. More recently, 

Jiang et al. [20] inhibited the Leidenfrost point to over 1000 °C by designing the steel pillar 

surfaces with an insulating membrane. (3) Reducing the droplet contact time to break the 

limitation of Rayleigh’s theory. Liu et al. [21] observed an explosive pancake bounce as the 

Leidenfrost droplet impacts on a surface with micro-scale micropore or micropost arrays, 

which significantly decreased the droplet contact time. Similar explosive pancake bouncing 

and contact time decreasing phenomena were observed when the Leidenfrost droplet impinged 

on a surface with nanotubes [22,23]. Besides, the explosive bounce has been observed for a 

multicomponent [24] droplet or a contaminated droplet [25]  impacting on a heated plate over 

the Leidenfrost temperature. 

In addition to experimental studies, with the rapid development of computer technologies 

in recent decades, numerical methods are being increasingly adopted to study the Leidenfrost 

droplet dynamics. Compared with traditional experimental methods, numerical methods have 

the advantages of precise control of the physical parameters, convenience to obtain quantitative 

data and ease to change the experimental configurations. Some early studies used the volume 

of fluid (VOF) algorithm to simulate droplet impact on a flat surface above the Leidenfrost 

temperature [26–28]. However, it is still challenging to couple the traditional ‘interface 

tracking’ multiphase model with the phase change model. Some studies introduced a virtual 

vapour layer with a pressure-dependent model [26] or a one-dimensional model [27,28] to 

prevent direct contact of the droplet with the hot plate. More recently, Chakraborty et al. [29] 

developed a lubrication model to predict the fluid flow inside the vapour layer of Leidenfrost 

drops.  

Nevertheless, the capture of the vapour layer in most previous numerical studies depends 

on artificial models. Alternatively, the Lattice Boltzmann method (LBM) provides a promising 

approach to model this complex phase change problem. Benefitting from its mesoscopic nature, 

the LBM is capable of incorporating realistic physical models of interfacial and phase change 

problems [30,31]. In the pseudopotential LBM, for example, a realistic equation of state (EOS) 

of the fluid can be introduced to deal with temperature-dependent phase change  [32,33]. 

Remarkably, Li et al. [34] adopted a multiple-relaxation-time (MRT) pseudopotential LB 

model to simulate a Leidenfrost droplet self-propelled on ratchet surfaces. Both Xu et al. [35] 
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and Karami et al. [36] conducted systematic parametric studies for a two-dimensional (2D) 

droplet impacting a heat plate over the Leidenfrost point by using MRT LBM. Recently, Xu et 

al. [37] adopted a three-dimensional cascaded lattice Boltzmann method (CLBM) model 

proposed by Fei et al. [38] to simulate droplet impact on heated micropillar surfaces, which 

has reproduced the droplet impingement dynamics for a wide range of temperatures 

successfully.  

Although many efforts have been devoted to exploring the Leidenfrost droplet dynamics 

on a flat plat, there have been no systematic investigations into Leidenfrost droplet impact on 

a heated porous plate with pore sizes ranging from nanometer to micrometer, let alone 

explanations for the complex physics at play. For this problem, the traditional experimental 

techniques face significant challenges in the precise control of the plate temperature, impact 

velocity and pore size [21]. It is also difficult to obtain quantitative data (such as the quality of 

evaporated liquid) and observe the fluid flow inside the pores. Therefore, it is critical to conduct 

a systematic numerical investigation of this problem. In this study, we adopt the unified lattice 

Boltzmann method (ULBM) with the entropic-multi-relaxation-time (KBC) collision operator 

combined with the phase-change pseudopotential multiphase model [39] to numerically study 

a droplet impacting on a heated porous plate above the Leidenfrost temperature. A 

comprehensive parametric study is conducted by changing the droplet impact Weber number 

(We), the plate temperature, and the plate configurations, which aims to gain further physical 

insights into mechanisms of this complex droplet dynamics through both qualitative and 

quantitative analyses. In Sec. 2, we provide a brief introduction to the LB models, followed by 

model validation against previous theoretical, numerical and experimental results. In Sec. 3, 

we conduct a detailed investigation into the influence of the impact Weber number, for various 

plate temperatures and geometries. Additionally, the effects of pore intervals are scrutinised. 

Finally, conclusions are drawn in Sec. 4. 

2. Methodology 

2.1 UCLBM (KBC) model for multiphase flow  

In this section, we briefly introduce the LB method which is used in this study. The 

mesoscopic evolution equation of the ULBM in central moment space can be written as [39]: 

𝑓𝑖(𝒙 + 𝒆𝑖∆𝑡, 𝑡 + ∆𝑡) ≡  𝑓𝑖
∗(𝒙, 𝑡) =

𝐌−1𝐍−1(𝐈 − 𝐒)|�̃�𝑖⟩ + 𝐌−1𝐍−1𝐒|T̃𝑖
𝑒𝑞

⟩ + 𝐌−1𝐍−1(𝐈 − 𝐒/2)|𝐶𝑖⟩, (1.)
 

where 𝑖 indexes the 19 discrete velocity set, 𝑓𝑖 and 𝑓𝑖
∗ are the pre-collision and post-collision 

distribution functions, respectively. 𝐈, 𝐌, 𝐍 and 𝐒 are the unit matrix, transformation matrix, 
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shift matrix and relaxation matrix, respectively. |�̃�𝑖⟩  is the moment set in the co-moving 

framework and superscript eq represents the equilibrium state. |𝐶𝑖⟩ is the discrete forcing term 

which includes the total force acting on the system. In this study, a consistent forcing scheme in 

central moment space proposed by Fei et al. [40] is adopted: 

|𝐶𝑖⟩ = [0, 𝐹𝑥, 𝐹𝑦, 𝐹𝑧, 0,0,0,0,0,0, 𝐹𝑥𝐶𝑆
2, 𝐹𝑥𝐶𝑆

2, 𝐹𝑦𝐶𝑆
2, 𝐹𝑧𝐶𝑆

2, 𝐹𝑦𝐶𝑆
2, 𝐹𝑧𝐶𝑆

2, 0,0,0]T. (2.) 

 The explicit expressions of matrix 𝐌, 𝐍, 𝐌−1, 𝐍−1 as well as the moment sets |�̃�𝑖⟩ and |�̃�𝑒𝑞⟩ are 

given in Ref. [39]. It has been comprehensively proven that the ULBM framework has the ease 

to incorporate improved LB schemes [41] and excellent portability across different lattice 

models [40,42]. The KBC entropic operator [43] is implemented by introducing the entropic 

stabilizer into the higher-order relaxation parameters, hence the relaxation matrix 𝐒  can be 

written as: 

𝐒 = 𝑑𝑖𝑎𝑔(0,1,1,1, 𝑠𝑣 , 𝑠𝑣 , 𝑠𝑣 , 𝑠𝑣𝛾, 𝑠𝑣 , 𝑠𝑣 , 𝑠𝑣𝛾, 𝑠𝑣𝛾, 𝑠𝑣𝛾, 𝑠𝑣𝛾, 𝑠𝑣𝛾, 𝑠𝑣𝛾, 𝑠𝑣𝛾, 𝑠𝑣𝛾, 𝑠𝑣𝛾), (3.)
 

 

where 1/𝑠𝑣  = 𝜈/(𝐶𝑆
2∆𝑡)  +  0.5  depends on the liquid kinematic viscosity. The entropic 

stabilizer 𝛾 is calculated by: 

𝛾 =
1

𝑠𝑣
− (1 −

1

𝑠𝑣
) ∑

Δ𝑠𝑖Δℎ𝑖

𝑓𝑖
𝑒𝑞

𝑖

/ ∑
Δℎ𝑖Δℎ𝑖

𝑓𝑖
𝑒𝑞

𝑖

, (4.) 

where 𝑠𝑖 and ℎ𝑖 are the shear part and high order part of the distribution function, respectively. 

Δ𝑠𝑖 = 𝑠𝑖 − 𝑠𝑖
𝑒𝑞

 and Δℎ𝑖 = ℎ𝑖 − ℎ𝑖
𝑒𝑞

 are the deviations. The ULBM with the KBC operator has 

been shown to dramatically reduce spurious velocities [39]. More details about the ULBM 

(KBC) model can be found in Refs. [39,41]. 

For the multiphase flow simulation, the combined pseudopotential model [44] is 

employed to describe the interaction force among different phases, which is: 

𝑭𝒊𝒏𝒕 =  −0.5𝐴𝐺 ∑ 𝑤

𝑖

(|𝒆𝑖|2)𝜓2(𝒙 + 𝒆𝑖)𝒆𝑖 − (1 − 𝐴)𝐺𝜓(𝒙) ∑ 𝑤

𝑖

(|𝒆𝑖|2)𝜓(𝒙 + 𝒆𝑖)𝒆𝑖 , (5.) 

where A is a tunable parameter which can be used to adjust the thermodynamic consistency, 

𝐺 = −1 is the interaction strength, 𝑤(|𝒆𝒊|
2) are the weights for the D3Q19 lattice model. 𝜓 is 

the square-root-form pseudopotential [45]: 

𝜓 = √
2(𝑃𝐸𝑂𝑆 − 𝜌𝑐𝑠

2)

𝐺𝑐2
, (6.) 

where 𝑐 = 1 is the lattice constant, 𝑐𝑠
2 = 1/3 is the lattice sound speed and 𝑃𝐸𝑂𝑆 is the pressure 

calculated by the equation of state (EOS). In this work, in order to simulate the multiphase flow 

with phase change phenomena, we use the Peng–Robinson EOS, which can be written as:  
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𝑃𝐸𝑂𝑆 =  
𝜌𝑅𝑇

1 − 𝑏𝜌
−  

𝑎𝜑(𝑇)𝜌2

1 + 2𝑏𝜌 − 𝑏2𝜌2
, (7.) 

where 𝑎 = 0.4572𝑅2𝑇𝑐
2/𝑃𝑐, 𝑏 = 0.0778𝑅𝑇𝑐/𝑃𝑐, and 𝜑(𝑇) = [1 + (0.37464 + 1.54226𝜔 −

0.26992𝜔2)(1 − √𝑇/𝑇𝑐) ]
2
, 𝑃𝑐 and 𝑇𝑐 stand for the critical pressure and critical temperature, 

respectively. In the following simulations, without specifying, we set R = 1, 𝜔 = 0.344, a = 

1/76 and b = 2/21, with the corresponding 𝑇𝑐 = 0.02351 and 𝑃𝑐 = 0.0192. 

In addition, when simulating the Leidenfrost droplet impingement, the gas phase and 

liquid phase are driven by the buoyancy force: 

𝑭𝒃 =  −(𝜌 − 𝜌𝑎𝑣𝑔)𝑔𝒋, (8.) 

where 𝜌𝑎𝑣𝑔 is the average density of the liquid and vapour phases. The total force acting on the 

fluid is 𝑭 = 𝑭𝒃 + 𝑭𝒊𝒏𝒕. The improved virtual-density scheme proposed by Li et al. [46] is 

employed to treat the interaction between the solid phase and liquid phase. The virtual density 

of the bounded layer in the solid phase can be described as: 

𝜌𝑤(𝒙) =  
∑ 𝑤(|𝒆𝒊|

2)𝜌(𝒙 + 𝒆𝒊∆𝑡)𝑠(𝒙 + 𝒆𝒊∆𝑡)𝑖

∑ 𝑤(|𝒆𝒊|
2)𝑠(𝒙 + 𝒆𝒊∆𝑡)𝑖

, (9.) 

where 𝑠(𝒙) is an indicator function which is equal to 0 for the solid phase and 1 for the fluid 

phase, respectively. Based on this setup, the interaction force between the solid phase and 

liquid phase can be calculated by Eq. (5), and the droplet static contact angle under the 

isothermal condition equals 90°. It should be mentioned that the above multiphase ULBM 

(KBC) model has been verified by existing experiments of droplet dynamics. More details can 

be found in our recent work [37].  

Inspired by Li et al. [47], the temperature field for the liquid-vapour phase-change can be 

written as: 

∂𝑇

∂𝑡
= −𝒖 ∙ ∇𝑇 +

1

𝜌𝑐𝑣

(𝜆∇2𝑇 + ∇𝜆 ∙ ∇𝑇) −
𝑇

𝜌𝑐𝑣
(

𝜕𝑃𝐸𝑂𝑆

𝜕𝑇
)

𝜌
∇ ∙ 𝐮, (10.) 

where λ is the thermal conductivity and 𝑐𝑣 is the specific heat capacity at constant volume. 

Following the work of Fei et al. [38], we use the finite difference method to solve the above 

temperature equation, and the time discretization is realized using the fourth-order Runge–

Kutta scheme: 

𝑇t+∆t = 𝑇t +
∆𝑡

6
(ℎ1 + 2ℎ2 + 2ℎ3 + ℎ4), 

ℎ1 = 𝐾(𝑇𝑡), ℎ2 = 𝐾 (𝑇𝑡 +
∆𝑡

2
ℎ1) , ℎ3 = 𝐾 (𝑇𝑡 +

∆𝑡

2
ℎ2) , ℎ4 = 𝐾(𝑇𝑡 + ∆𝑡ℎ3) , (11.) 
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where 𝐾(𝑇) denotes the right hand of Eq. (10). The coupling of the temperature field and the 

liquid-vapour phase change is achieved through the EOS of the fluid (Eq. (7)). It is worth 

mentioning that the phase change multiphase model presented above has been incorporated 

into the ULBM (with cascaded lattice Boltzmann model) to simulate the three-dimensional 

pool boiling [38,41]. 

2.2 Verification of the multiphase thermal LB model   

We first validate the thermodynamic consistency of the adopted multiphase model. We 

simulate a flat surface and change the system temperature from 0.5𝑇𝑐 to 0.9𝑇𝑐, keeping the 

turntable parameter A in Eq. (5) at -0.88. We compare the simulated coexistence densities of 

the gas phase and the vapour phase with the Maxwell equal-area rules. As presented in Figure 

1, the simulated coexistence densities (triangle symbols) coincide with the Maxwell 

construction results (lines) for a wide range of temperatures and density ratios (up to 6700), 

which proves the good thermodynamic consistency of our numerical model. We also simulate 

a static droplet with the initial radius 𝑅0 = 50 lattices located at the centre of a 

4𝑅0 × 4𝑅0 × 4𝑅0 box, with the periodic boundaries in all directions. The density profile can 

be described by the following function: 

𝜌(𝑟) =
𝜌𝑙 + 𝜌𝑔

2
+

𝜌𝑙 − 𝜌𝑔

2
tanh [

2(𝑟 − 𝑅0)

𝑊
] , (12.) 

where 𝑊 = 4 is the approximate interface thickness by adopting the introduced setup in Sec. 

2.1, and 𝑟 represents the distance to the droplet centre. 𝜌𝑙 and 𝜌𝑔 are coexistence densities in 

the gas phase and vapour phase, respectively. A is set as -0.84 and the system temperatures are 

varied from 0.68𝑇𝑐 to 0.88𝑇𝑐, while all the other parameters kept the same. As indicated in the 

figure, the simulated coexistence densities for the droplet test (circle symbols) are also 

consistent with the maxwell construction results. Importantly, the maximum spurious 

velocities are lower than 0.0025 for all simulations due to the use of the ULBM (KBC) collision 

operator. 

Further verification of the model considering the temperature field is conducted by 

simulating the evaporation of a single droplet. We simulate a liquid cylinder (equivalent to a 

2D droplet) with an initial diameter 𝐷0 = 70, evaporating in a temperature gradient. The 

simulation domain is set as 200 × 200 × 1  with periodic boundaries in all directions. To 

compare with the results in Ref. [38],  we set the temperature of the liquid phase as 0.86𝑇𝑐 and 

the surrounding vapour temperature as 𝑇𝑐, with a = 2/49 and b = 2/21 in the EOS. The kinematic 
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viscosities and the specific heat capacities of the liquid phase and the gas phase are set as the 

same, e.g., 𝑐𝑣_𝑙 = 𝑐𝑣_𝑔 = 6, 𝜈𝑙 =  𝜈𝑔 = 0.1. 

 

Figure 1. Comparison of the simulated coexistence densities (symbols) and the maxwell 

construction law (lines) for different reduced temperatures. 

 

Figure 2. (a) Comparison of the evolution of (D/𝐷0)^2 for current simulation results (solid 

symbols) and previous simulation results(lines), for two different thermal conductivities, 𝜆𝑙 =

𝜆𝑔 = 1/3 and  𝜆𝑙 = 𝜆𝑔 = 2/3. (b) The temperature distribution and velocity vectors around 

the evaporating droplet (white profile). 

The results of the current study (symbols) are compared with the previous simulation 

results (lines) [38] and 𝐷2 law. To this end, the results are plotted as a (𝐷/𝐷0)2 versus 𝑡∗ in 

Figure 2(a), where the non-dimensional time 𝑡∗ = 𝑇𝜈𝑔/𝐷0
2 . As shown in the figure, our 

simulation results are in exact agreement with the previous simulation results for two different 
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thermal conductivities, 𝜆𝑙 = 𝜆𝑔 = 1/3 and  𝜆𝑙 = 𝜆𝑔 = 2/3. Also, the temperature distribution 

and velocity vectors around the evaporating droplet are shown in Figure 2(b), demonstrating 

that the liquid phase evaporation is driven by the temperature gradient. The quantitative and 

qualitative results prove the accuracy of the model implementation for thermal multiphase 

flows.  

2.3 Validation via Leidenfrost droplet impact on a flat plate. 

Model validation is conducted via simulating droplet impact on a heated plate above the 

Leidenfrost temperature. In the following simulations, unless otherwise stated, the initial 

droplet radius is set as 𝑅0 = 50. The liquid and vapour saturated temperature (𝑇𝑠) is kept as 

0.8𝑇𝑐, which leads to the corresponding coexistence densities at 𝜌𝑙 =  7.2 and 𝜌𝑙 = 0.197. By 

using this setup, the measured surface tension (𝜎) is 0.11235. According to Ref. [38], the latent 

heat (ℎ𝑓𝑔) of the droplet is calculated by:   

ℎ𝑓𝑔 = ℎ𝑔 − ℎ𝑙 = ∫
1

𝜌2
[𝑇 (

𝜕𝑃𝐸𝑂𝑆

𝜕𝑇
)

𝜌
− 𝑃𝐸𝑂𝑆] 𝑑𝜌 +

𝑃𝐸𝑂𝑆

𝜌𝑔
−

𝑃𝐸𝑂𝑆

𝜌𝑙
,

𝜌𝑙

𝜌𝑔

 (13.) 

where ℎ𝑔 and ℎ𝑙 are the enthalpy values of the gas and liquid phases, respectively. Substituting 

the Peng-Robinson EOS in Sec. 2.1 into Eq. (13), the corresponding ℎ𝑓𝑔 equals to 0.1416. 

Besides, we set the liquid kinematic viscosity (𝑣𝑙) as 0.007 so that the Ohnesorge number is 

𝑂ℎ = (𝜌𝑙𝜈𝑙)/√𝐷0𝜌𝑙𝜎  = 0.0056 < 0.01, which implies the influence of the viscous force can 

be ignored compared with the inertial force and surface tension [48]. The kinematic viscosity 

ratio 𝜈𝑔/𝜈𝑙 between the gas phase and liquid phase is set as 20, which is comparable to the 

realistic condition.  

To get an accurate prediction of the heat transfer and phase change process, we set the 

Prandtl number (the ratio of the momentum diffusivity to the thermal diffusivity) of the liquid 

phase (𝑃𝑟𝑙 = 𝑣𝑙𝜌𝑙𝑐𝑣𝑙
/λ𝑙), Prandtl number of the gas phase (𝑃𝑟𝑔 = 𝑣𝑔𝜌𝑔𝑐𝑣𝑔

/λ𝑔), and Jacob 

number  𝐽𝑎 = 𝑐𝑣𝑙
(𝑇ℎ − 𝑇𝑠)/ℎ𝑓𝑔 (the ratio of the sensible heat to the latent heat during the phase 

change) comparable to the realistic conditions, with the thermal properties of the liquid and 

vapour phases referring to the values of the saturated state. Besides, the Weber number (𝑊𝑒 =

𝐷0𝜌𝑙𝑈2/𝜎, representing the ratio of the inertial force to the capillary force, where 𝑈 is the 

droplet initial velocity) and Bond number (𝐵𝑜 = 𝜌𝑙𝑔𝐷0
2/σ, standing for the gravity compared 

to the surface tension, which is usually used to evaluate the influence of gravity) are also chosen 

to represent the experimental conditions. Based on the above setup, the corresponding fluid 

properties (e.g., 𝑐𝑣 and λ) and operating parameters (e.g., 𝑈 and 𝑔) in the lattice unit can be 
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determined. For the following cases, we set 𝑐𝑣𝑙
= 7.4, 𝑐𝑣𝑔

= 3.4, 𝜆𝑙 = 0.25, 𝜆𝑔 = 0.1, which 

leads to 𝑃𝑟𝑔 = 0.94 and 𝑃𝑟𝑙 = 1.49, respectively. Remarkably, the following interpolation 

form is used to calculate the fluid properties at the liquid-gas interface: 

𝑋 = 𝑋𝑔 + (𝑋𝑙 − 𝑋𝑔)
𝜌 − 𝜌𝑔

𝜌𝑙 − 𝜌𝑔
, (14.) 

where 𝑋 stands for the corresponding fluid properties.  

It is worth mentioning that the conversion of a variable 𝛤 from lattice (with subscript l) to 

physical units (with subscript p) is based on the characteristic variable (𝛤𝑚), which can be 

written as 𝛤𝑝 = (𝛤𝑚,𝑝/𝛤𝑚,𝑙)𝛤𝑙 . For example, we choose the droplet diameter 𝐷0  as the 

characteristic length, thus the physical length can be calculated by 𝐿𝑝 = (𝐷0,𝑝/𝐷0,𝑙)𝐿𝑙 . 

Regarding the calculation of the droplet initial velocity in lattice unit (𝑈𝑙), it is based on the 

dimensionless Weber number, e.g., 𝑈𝑙 = √𝜎𝑊𝑒/𝜌𝑙𝐷0,𝑙. Additionally, the conversion from the 

simulation step (𝑡𝑙) into the physical time (𝑡𝑝) is based on the dimensionless time, where 

𝑡𝑝𝑈𝑝/𝐷0,𝑝 = 𝑡𝑙𝑈𝑙/𝐷0,𝑙. 

Table 1. Experiment configurations and our simulation setups for the validation cases. 

 Experiment conditions Simulation parameters 

𝐂𝐚𝐬𝐞 𝑃𝑟𝑔 𝑃𝑟𝑙 𝐽𝑎 We Bo 𝑃𝑟𝑔 𝑃𝑟𝑙 𝐽𝑎 We Bo 

1 0.76 1.57 0.48 2.1 0.18 0.94 1.49 0.53 2.1 0.14 

2 0.76 1.57 0.51 16.3 0.23 0.94 1.49 0.61 16.0 0.19 

3 0.76 1.57 0.34 22.8 0.18 0.94 1.49 0.50 21.6 0.16 

 

Figure 3. Experiment snapshots (top column) and simulation results (bottom column) of a 

droplet impacting an overheated flat plate with We = 2.1, Ja = 0.53. 

Similar to Refs. [36,37], when simulating the Leidenfrost droplet impingement, the top 

wall of the simulation domain is set as the outflow boundary. The solid phase and bottom wall 

are set as the non-slip boundaries with the constant temperature 𝑇ℎ . The side walls of the 
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simulation domain are set as the periodic boundaries. As pointed in Ref. [6], for most cases of 

droplet impact on a high temperature plate, the contact temperature between the droplet and 

the plate reaches the wall temperature immediately after the initial droplet contact. 

Consequently, we set the temperature of the fluid at the first layer near the solid wall as the 

wall temperature (𝑇ℎ). Three cases with different impacting velocities and plate temperatures 

are simulated, and the experiment conditions and simulation setups of the corresponding cases 

are shown in Table 1.  

The first case is to simulate the experiment in Ref. [49], where a water droplet with the 

initial diameter (𝐷0) of 2.05 mm impacts on a 385°C plate with a velocity 𝑈 = 0.24 m/s. The 

simulation results for Case 1 are shown in Figure 3 (bottom column). It can be seen that after 

the droplet impacts the heated plate, it spreads in the horizontal direction. A very thin vapour 

film can be observed at the bottom of the droplet, which is generated by the evaporation of the 

contact liquid. Then, during the recoiling stage of the droplet, the levitated droplet re-contacted 

with the bottom wall. Finally, the droplet completely rebounds off from the plate, owing to the 

strong hydrophobic characteristics caused by the Leidenfrost effect. It can be observed that the 

simulation results agreed well with the experiment snapshots (top column) qualitatively. 

 

Figure 4. (a) A qualitative comparison of simulation results (right column) and experiment 

snapshots (left column) of droplet impact on a heated plate with We =16, Ja = 0.61. (b) 

Transient evolution of the height of the dimensionless droplet gravity centre (𝜀𝑚𝑎𝑠𝑠/𝑅0), the 

lines represent the simulation results with various mesh resolutions and the symbols indicate 

the experiment results in Ref. [26]. 

We then simulate Leidenfrost droplet impact on an overheated plate with a higher Weber 

number (case 2 in Table 1). In the original experiment by Wachters and Westerling [50], the 

temperature of the hot plate is 400 °C, where the corresponding Jacob number Ja = 0.51. The 
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droplet diameter is 2.3 mm and the impacting velocity is 0.63 m/s, leading to Weber number 

We = 15.7. The comparison of results is shown in Figure 4(a), and a qualitative agreement 

between the simulation and experimental results is achieved. Similar to Ref. [26], we 

quantitatively compare the evolution of droplet gravity central height ( 𝜀𝑚𝑎𝑠𝑠 ) with the 

experimental data. In our simulation, the height of the droplet gravity centre is calculated by: 

𝜀𝑚𝑎𝑠𝑠 =  
∑ 𝜌(𝒙)ℎ(𝒙)𝜌>𝜌𝑎𝑣𝑔

∑ 𝜌(𝒙)𝜌>𝜌𝑎𝑣𝑔

, (15.) 

where ℎ(𝒙) is the height of each cell and 𝜌(𝒙) represents the density of the cell. As indicated 

in Figure 4(b), after the droplet touches the plate, owing to the deformation of the droplet, 

𝜀𝑚𝑎𝑠𝑠 decreases from the centre of the sphere (𝑅0). After 𝜀𝑚𝑎𝑠𝑠 reaches the minimum value 

during the spreading stage, it increases due to the droplet recoiling and rebound. The simulation 

results are in line with previous experimental data [50]. Additionally, we conduct a mesh 

independency study by increasing the mesh resolution to dx = 𝑅0/60 or decreasing to dx =

𝑅0/45. As shown in  Figure 4(b), the evolution processes of 𝜀𝑚𝑎𝑠𝑠 for all cases are consistent, 

which support the conclusion that the current mesh resolution (dx = 𝑅0/50) is sufficiently fine 

for simulation.  

 

Figure 5. (a) Comparison of the experimental snapshots (top column) and simulation results 

(bottom column) of droplet impact on a heated plate at We = 21.5, Ja = 0.5. (b) The normalized 
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droplet contact time (𝑡𝑐
∗) as a function of Weber number, the simulation results (solid square 

symbols) are compared with the power law fitting equation (Eq. (16), solid line in the figure) 

and experiment results (hollow square symbols). (c) Comparison of the simulated droplet 

maximum spreading factors (𝛽𝑚𝑎𝑥 , hollow square symbols) with experiment results (solid 

symbols), experimental power law fitting equation (solid line) and theoretical prediction 

equation (dashed line). 

The last validation is based on the experiment conducted by Biance et al. [51], 

corresponding to the experimental configurations and the simulation setup of case 3 in Table 

1. The comparison in Figure 5(a) is for a water droplet (𝑅0 = 1 mm) impacting a 300 °C flat 

plate with an initial velocity at 0.8 m/s. As presented in the figure, our simulation results are 

generally consistent with the experiment results. Some deviations between the simulation and 

experimental snapshots can be found before the droplet bouncing, possibly because 

temperature-independent thermal properties are used in the current simulation. Besides, the 

constant contact temperature in our simulation may overestimate the evaporation rate of the 

droplet. Compared with the realistic situation, this setting could lead to a thicker vapour film 

between the droplet and the heated plate. Nevertheless, the current LBM model still provides 

a reliable prediction for the Leidenfrost droplet impingement, notably the thin vapour film 

between the droplet and hot plate, as well as the droplet bouncing owing to the Leidenfrost 

effect. 

We then extend the simulation in Figure 5(a) to a wider range of impact Weber numbers 

by increasing the droplet initial velocity, with all the other setups kept the same. We 

qualitatively compare the normalized droplet contact time (𝑡𝑐
∗) and maximum spreading factor 

(𝛽max) with the experimental data [51] and theoretical predictions. Figure 5(b) indicates the 

droplet contact time under various Weber numbers. In the figure, the droplet contact time is 

normalized by 𝑡𝑐
∗ = 𝑈𝑡𝑐/𝐷0. In previous literature [26,52,53], the theoretical contact time of 

the Leidenfrost droplet is approximately predicted by Rayleigh’s theory [8], 𝑡𝑐/𝜏 = 𝜋/4 , 

where 𝜏 = (𝐷0
3𝜌𝑙/𝜎)0.5 is the inertia-capillarity time. Thus, the normalized droplet contact 

time can be re-written as: 

𝑡𝑐
∗ =

𝑡𝑐𝑈

𝐷0
=

𝜋

4

𝑈

𝐷0

√
𝐷0

3𝜌𝑙

𝜎
=

𝜋

4
√We. (16.) 

We plot Eq. (16) as a solid line in Figure 5(b). As shown in the figure, our simulation 

results are in excellent agreement with the experimental data [51] and theoretical results, for a 

wide range of Weber numbers. Another comparison is conducted for the droplet maximum 



Accepted to Phys. Fluids 10.1063/5.0118079

14 

 

spreading diameter. In this case, the maximum spreading factor of the droplet is defined as 

𝛽𝑚𝑎𝑥 = 𝐷𝑚𝑎𝑥/𝐷0, where 𝐷max is the droplet maximum spreading diameter. The simulation 

results are compared with  experiments (Biance et al. [51], represented by solid square symbols, 

and Riboux et al. [54], by solid circle symbols) as well as the power law fitting equation (solid 

line) 𝛽𝑚𝑎𝑥 = 𝛼𝑊𝑒0.25 , where the pre-factor 𝛼 =  0.85  is achieved by the experimental 

fitting [51]. We also compare our results with the energy balance based theoretical equation 

(dashed line in the figure) for  𝛽max, where [55]: 

(𝛽𝑚𝑎𝑥
2 − 1)0.5 (

√𝑊𝑒

𝑂ℎ
)

−0.2

=
√𝑊𝑒

√𝑊𝑒 + 7.6
. (17.) 

As presented in Figure 5(c), our simulation results are in line with the power-law fitting 

and theoretical equations, for a wide range of Weber numbers. It can be found that 𝛽max in our 

simulations is somewhat lower than the experimental results at larger Weber numbers. This is 

because, in our simulations, a fixed viscosity is used and the viscous effects are overestimated 

for high Weber number cases, which results in a lower 𝛽max. 

3. Results and discussion  

3.1 Simulation setup 

 

Figure 6. Illustrations of the simulation configuration (a) 3D main view of droplet initial state. 

(b) half cutaway view during the droplet evolution.  

Having validated our multiphase thermal LB model within the ULBM framework against 

experimental and theoretical results, we then simulate a droplet with 𝐷0 = 1.7 mm impacting 

on an overheated plate with square pores, with a corresponding Bond number 𝐵𝑜 = 0.12. The 

simulation configuration is shown in Figure 6(a). In the following, the simulation domain is set 

as a  700 × 700 × 720 box. The other setups (e.g., initial droplet radius, thermal properties of 

the fluid and boundary conditions) kept exactly the same as the validation cases in Sec. 2.3. 
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The detailed structure of the plate with square pores is shown in Figure 6(b). The depth of the 

pores (𝐻𝑝) is kept as 40 in lattice unit (0.8 mm), and the diameter of the equal size pores is 𝐷𝑝, 

the intervals between the pores are 𝐿. In the following simulations, Jacob number is kept higher 

than 0.5 to ensure the plate temperature is over the Leidenforst point. It also needs to be 

mentioned that the minimum thickness of the vapour layer between the liquid and solid plate 

(the minimum distance of the liquid above the plate to the plate's upper surface, 𝜀𝑚𝑖𝑛 in the 

figure) is recorded. The droplet spreading factor during the evolution is defined as 𝛽 = 𝐷/𝐷0.  

3.2 The influence of Weber number  

Firstly, we aim to investigate the influence of the impact Weber number at various plate 

temperatures and configurations. In this section, 𝐷𝑝 and 𝐿 are fixed as 11 lattices (220 μm) and 

4 lattices (80 μm), respectively. Two different plate temperatures are considered: one with 

Jacob number Ja = 0.52 for 𝑇ℎ ≈ 400 °C and the other with Jacob number Ja = 0.7 for 𝑇ℎ ≈

 500 °C. The other simulation setups kept the same as in Sec. 2.3. We change the impact Weber 

numbers from 4.6 to 87.4 by changing the droplet initial velocities.  Evolutions of the droplet 

shape are shown in Figure 7. For ease of comparison and observation, the droplet is shown as 

a half cutaway view, and a main view snapshot of the droplet is shown in the last frame. 

Figure 7(a) demonstrates the evolution of Leidenfrost droplet impact on a flat plate. It is 

noticed that an air pocket is formed during the droplet spreading (𝑡/𝜏 = 0.35), which has also 

been observed in previous simulations and experiments [56,57]. The trapped air in the pocket 

is caused by the droplet evaporation during the spreading, and the pocket-like geometry of the 

vapour is attributed to the effect of buoyancy force [29]. The pocket neck breaks (𝑡/𝜏 = 0.35, 

marked by black dash circles) owing to the different flow scales within the droplet and the 

trapped air in air pocket [56]. This consequently levitates the droplet from the plate and 

exhausts the entrapped air. Nevertheless, the levitated droplet re-contacts the plate during the 

recoiling period and then completely bounces off from the plate when 𝑡/𝜏 = 0.87. Figure 7(b) 

shows the droplet impact on an overheated porous plate at the same Weber number and Jacob 

number. As shown in the figure, the droplet demonstrates similar morphologies during its 

evolution. However, it can be observed that a part of the droplet penetrates into the pores (𝑡/𝜏 =

0.04) and then evaporates (𝑡/𝜏 = 0.2). The generated vapor layer (𝑡/𝜏 = 0.36) is thicker and 

the droplet rebounds faster (𝑡/𝜏 = 0.78) in this case than the case with a flat plate. 

The droplet demonstrates different morphologies when impacting the overheated porous 

plate at a larger Weber number. As shown in Figure 7(c), owing to a higher Weber number, 

more liquid penetrates into the pores at the beginning of impingement (𝑡/𝜏 = 0.042) and 
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evaporates. Remarkably, the droplet directly rebounds from the plate before its recoiling 

(𝑡/𝜏 = 0.2) in a pancake shape. Additionally, a similar pancake-like bouncing phenomenon 

has also been observed in the previous experiments for droplet impact on high-temperature 

nanotube surfaces [21,23], heated surfaces under the depressurized environment [58], 

superheated micropillars surfaces [59,60] as well as superheated micropores surfaces [20]. 

Besides, this pancake bouncing phenomenon can also be observed when a droplet impacts a 

higher temperature porous plate, as shown in Figure 7(d). 

 

Figure 7. Snapshots for a droplet impact on a heated plate with various We and Ja. (a) is for a 

droplet impacting a flat plate and (b)-(d) are for a droplet impacting a porous plate.  

Then we give a detailed analysis of the mechanism of this unique bouncing phenomenon. 

The transient evolutions of droplet profiles (black lines), velocity vectors (white vectors, with 

a fixed scale to the velocity magnitude) and temperature distributions during the spreading 

stage are shown in Figure 8. Comparing cases with the same plate temperature but different 

Weber numbers (Figure 8(a) and Figure 8(b)), we find that more liquid penetrates into the 

heated pores during the droplet spreading stage for the larger Weber number case (𝑡/𝜏 = 0.08 

in Figure 8(b)). With the continuous evaporation of the penetrated liquid in pores, entrapped 

air is formed between the droplet bottom part and the heated plate. Thus, the larger the amount 

of evaporated liquid, the more entrapped air will be generated. In other words, the entrapped 

air generated by the evaporated liquid will provide a larger pressure force (comparing Figure 

9(b) & (c) with Figure 9(a)). Because most of the impacting kinetic energy of the droplet has 

been transformed into surface energy during the spreading stage. Therefore, when the pressure 
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force is larger than the gravity and vertical dynamic force, the droplet bounces from the plate 

(𝑡/𝜏 = 0.214 in Figure 8(b)). The same dynamics can also be found in the case with a higher 

Jacob number (plate temperature). As shown in Figure 8(c), similarly, we can observe the 

penetration and evaporation of the liquid inside the pores. In the case with a higher plate 

temperature, the liquid evaporation is faster. Thus, we can find the liquid disk rebounds with a 

higher velocity (seeing the velocity vectors in Figure 8(c) when 𝑡/𝜏 = 0.214).  

 

Figure 8. Illustrations of temperature distributions, velocity vectors and morphology evolutions 

of the droplet at the early stage of impacting a heated porous plate. (a)~(c) stands for various 

We and Ja cases. 

Notably, satellite droplets can be observed during the droplet bounce in Figure 7 (c) and 

(d). The generation of the satellite droplets is owing to the breakup of thin liquid lamella during 

droplet spreading. A 3D main view for the selected cases is shown in Figure 10 to demonstrate 

the evolution of the liquid lamella. Comparing cases with a flat plate and a porous plate for the 

same Weber number (Figure 10 (a) and (c)), liquid flows into pore spaces, making holes in the 

lamella after impingement on the porous plate. Then, with the spreading of the liquid lamella, 

the liquid bridges between the holes break up from edges (seeing 𝑡/𝜏 = 0.36 in Figure 10 (c)), 

and the fragmented liquid bridges retract and form satellite droplets (seeing 𝑡/𝜏 = 0.4  in 

Figure 10 (c)). However, comparing cases with a porous plate but different impact Weber 

numbers (Figure 10 (b) and (c)), the liquid lamella remains intact for the lower Weber number 

case, which is due to the fewer penetrated liquid and the thicker spreading lamella. 

The evolution of 𝜀𝑚𝑖𝑛/𝐷0 for selected cases is recorded and plotted in Figure 11(a). As 

indicated in the figure, for all cases, a peak value of 𝜀𝑚𝑖𝑛 can be found before droplet recoiling. 

This phenomenon has also been recorded in recent simulation studies for droplet impact on an 

overheated flat plate [9,35,61]. The peak value of 𝜀𝑚𝑖𝑛 corresponds to the instant when the 
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droplet kinetic energy is minimized and therefore the trapped air is exhausted. Then the droplet 

re-contacts the plate during the recoiling with some small oscillations. Finally, the droplet 

bounces from the plate. The period from the droplet’s first touch on the plate to its bounce off 

the plate is defined as the contact time (𝑡𝑐). As shown in Figure 11 (a), the peak value of 𝜀𝑚𝑖𝑛 

increases slightly with the Weber number for droplet impact on a flat surface (FS). 

Nevertheless, 𝜀𝑚𝑖𝑛 increases significantly with the Weber number for droplet impact on a 

porous surface (PS). This implies the additional lift force provided by the entrapped air is 

similar in cases for droplet impact on a flat surface. On the contrary, the additional lift force 

increases significantly with the Weber number in cases of droplet impact on a porous surface. 

This is attributed to the evaporated liquid inside the pores. Consistent with the qualitative 

results, it can be found that the droplet directly bounces off from the plate during the spreading 

stage for the larger Weber number cases in the porous plate.  

 

Figure 9. Illustrations of pressure distributions, velocity vectors and morphologies of a 

Leidenfrost droplet impacting heated porous plate at 𝑡/𝜏 = 0.13. (a)~(c) stand for various We 

and Ja cases. The pressure in the figure is normalized by 𝑃𝑐.  

We also record the evolution of 𝜀𝑚𝑎𝑠𝑠 and plot the evolution of 𝜀𝑚𝑎𝑠𝑠/𝐷0 in Figure 11(b), 

whose value can be used to quantify the speed of droplet retraction and bouncing. As shown in 

the figure, after the droplet touches the plate, 𝜀𝑚𝑎𝑠𝑠 decreases from the centre of the sphere 

(𝜀𝑚𝑎𝑠𝑠/𝐷0 = 0.5) to a minimum value. Besides, it can be found that the decay rate and the 

minimum value of 𝜀𝑚𝑎𝑠𝑠 are almost the same in cases with the same Weber number, regardless 

of different Jacob numbers and plate geometries (FS or PS). The same tendency of 𝜀𝑚𝑎𝑠𝑠 for 

the same Weber number cases during the decay stage can be explained by the spreading and 

collapse of the droplet disk governed by the inertial effect [62]. Thus, the penetrated liquid 

inside the pores has little influence on the droplet spreading dynamics (comparing Figure 7 (a) 

and (b), at 𝑡/𝜏 < 0.36 ). However, the rebound velocities are different for different cases. 

Under the same operating conditions, it is found that the droplet rebound velocity increases 

with the Weber number, and the rebound velocity is always higher in the cases of droplet 
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impact on a porous plate. This result can further reveal the fact that the pressure force generated 

by the evaporated liquid inside the pores contributes to the droplet bounce. As shown in the 

figure, we define the period between the droplet’s first contact with the plate to 𝜀𝑚𝑎𝑠𝑠/𝐷0 >

0.5 (the initial position of 𝜀𝑚𝑎𝑠𝑠) as the droplet rebound time (𝑡𝑟). 

 

Figure 10. Illustrations of the liquid lamella evolution at Ja = 0.52. (a) Droplet impacts a flat 

plate, at We =87.5. (2) Droplet impacts a porous plate, at We =47.6. (c) Droplet impacts a 

porous plate, at We =87.5. 

The dimensionless droplet contact time (𝑡𝑐/𝜏) and droplet diameters when the droplet 

leaves the plate (𝐷(↑)/𝐷𝑚𝑎𝑥) for all cases are recorded in Figure 12(a) and Figure 12(b), 

respectively. Consistent with the results in Sec. 2.3, for cases of droplet impact on a heated flat 

plate, dimensionless droplet contact time (𝑡𝑐/𝜏) almost remains constant for a wide range of 

Weber number. as shown in Figure 12(a). For droplet impact on a porous plate at the same 

Jacob number (hollow triangle cases in Figure 12(a)), it always presents a shorter 𝑡𝑐 compared 

with droplet impact on a flat plate. Notably, a significant decrease in 𝑡𝑐 is observed as Weber 

number increase, which corresponds to the pancake bouncing cases. It is also found that, with 

the increase of Jacob number, both  𝑡𝑐  and the minimum Weber number for the pancake 

bouncing phenomenon keep decreasing. At lower Weber numbers, the lifting diameter 𝐷(↑) is 

similar for all the cases in spite of various plate geometry and plate temperature, while the 

pancake bouncing doubles the lifting diameter at higher Weber numbers. 

It should be pointed out that the observed pancake bouncing for droplet impact on a heated 

porous plate has a different mechanism from the previous pancake bouncing due to the droplet 

impact on superhydrophobic surfaces [63–65]. For the droplet pancake bouncing on textured 
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superhydrophobic surfaces, the lift force is provided by the capillary force. For droplet 

impacting a heated porous plate, as discussed above, the lift force is generated by the pressure 

force of the evaporated liquid (indicated in Figure 9). In addition, it is found that the penetrated 

liquid remains in the  pores when the droplet bounces from the plate at 𝑡/𝜏 =  0.2 (seeing 

Figure 7 (c) and (d)), which contrasts sharply with the retracting droplet pancake bouncing 

when droplets impact on textured surfaces [66,67]. 

The evolution of normalized droplet rebound time (𝑡𝑟/𝜏) for all cases is recorded and 

plotted in Figure 12(c). As shown in the figure, for all cases, 𝑡𝑟 decreases with Weber number. 

This is because, for the larger Weber number case, the surface tension is smaller compared 

with the dynamic force, thus the droplet recoils earlier, which can be proved in Figure 11(b) 

(for the larger We cases, 𝜀𝑚𝑎𝑠𝑠 reaches the minimum value earlier). Additionally, in agreement 

with the results in Figure 7 and Figure 12(a), impact cases on a porous plate always produce 

shorter 𝑡𝑟 compared with flat plate impact cases. And 𝑡𝑟 is further decreased for the higher 

Jacob number cases at the large Weber number. The results in Figure 12(c) confirm the 

previous analysis, where the additional lift force provided by the evaporated liquid accelerates 

the droplet rebound.  

 

Figure 11. (a) Transient evolution of the normalized vapour layer thickness 𝜀𝑚𝑖𝑛/𝐷0, different 

lines stand for the cases with various We, Ja and plate configurations. The period shown in the 

figure represents the droplet contact time (𝑡𝑐). (b) Evolution of the normalized droplet gravity 

centre 𝜀𝑚𝑎𝑠𝑠/𝐷0  for different cases, the period shown in the figure represents the droplet 

rebound time (𝑡𝑟). 

The modified droplet maximum spreading time 𝑡𝑚𝑎𝑥/𝜏′  (the period when the droplet 

reaches the maximum spreading diameter, 𝜏′ =  (𝐷𝑚𝑎𝑥
3 𝜌𝑙/𝜎)0.5 ) as a function of Weber 

number is plotted in Figure 13(a). It indicates that 𝑡𝑚𝑎𝑥/𝜏′ is almost identical for different 

cases at the same Weber number, and 𝑡𝑚𝑎𝑥/𝜏′ indicates a power-law decay dependency with 
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the increase of Weber number. In the study of Lin et al. [68], they proposed the following 

equation to predict 𝑡𝑚𝑎𝑥 : 

𝑡𝑚𝑎𝑥

 (Dmax
3 𝜌𝑙/𝜎)0.5

= 𝜉𝑊𝑒−0.43, (18.) 

where 𝜉 is the experiment fitting constant. It should be noticed that the term  (𝐷𝑚𝑎𝑥
3 𝜌𝑙/𝜎)0.5 

on the right-hand side of Eq. (18) can be regarded as the modified inertia-capillarity time (𝜏′) 

referring to a droplet of size 𝐷𝑚𝑎𝑥. The experimentally fitted universal value for 𝜉 is 0.44 in 

Ref. [68] and the corresponding equation is plotted in Figure 13(a) for comparison. By fitting 

our simulation results in Figure 13(a), we can see, our simulation results also follow the 

~ 𝑊𝑒−0.43 power law dependency. Note that, our fitted prefactor 𝜉 = 0.55 is slightly higher 

than the experimental value, which however matches the high viscosity cases in Ref. [68].  

 

Figure 12. Normalized (a) droplet contact time 𝑡𝑐/𝜏, (b) the droplet diameters when it leaves 

the plate 𝐷(↑)/𝐷𝑚𝑎𝑥, and (c) droplet rebound time 𝑡𝑟/𝜏 as a function of impacting We for the 

cases with various Ja and plate morphologies. 

Figure 13(b) demonstrates 𝛽𝑚𝑎𝑥 as a function of Weber number for all cases. Consistent 

with the results in Figure 13(a), it can be found that both Jacob number and plate geometries 



Accepted to Phys. Fluids 10.1063/5.0118079

22 

 

almost have no influence on 𝛽𝑚𝑎𝑥. For all cases, 𝛽𝑚𝑎𝑥 increases with Weber number with a 

power law dependency. The best fitted equation for 𝛽𝑚𝑎𝑥 in our study is: 

𝛽𝑚𝑎𝑥 = 1.05We0.17, (19.) 

where the perfector 1.05 is in good agreement with the fitted experimental results in Ref. [51] 

but the index 0.17 is slightly lower than 0.25 in the experiment. We also plot the theoretical 

prediction Eq. (17) as the dashed line in the figure and it can be observed all simulation results 

are in line with the theoretical equation. Notably, for the same reason as pointed out in Sec. 2.3, 

the simulated 𝛽𝑚𝑎𝑥 is lower than the theoretical value at the larger Weber numbers. In addition, 

this leads to a lower index in our best fitted exponential equation than that in Ref. [51]. 

 

Figure 13. (a) The modified droplet maximum spreading time 𝑡𝑚𝑎𝑥/𝜏′ , where 𝜏′ =

 (𝐷𝑚𝑎𝑥
3 𝜌𝑙/𝜎)0.5, (b) droplet maximum spreading factor 𝛽𝑚𝑎𝑥 as a function of impacting We, 

the different symbols in the figure indicates various Ja and plate configurations. The lines in 

the figure stand for the theoretical prediction equations and fitted power law function. 

Finally, the dimensionless droplet evaporation mass (𝑀𝑒/𝑀0) and the averaged heat flux 

(𝑄𝑎𝑣𝑔.) during the period  𝑡 = 0 ~ 𝑡𝑟 are plotted in Figure 14(a) and Figure 14(b), respectively. 

The heat flux of each time instant is calculated as: 

𝑞 =  
1

𝐿𝑥𝐿𝑦
∬ [−λ (

𝜕𝑇

𝜕𝑧
) |(𝑧=𝐻𝑝)] 𝑑𝑥𝑑𝑦 , (20.) 

where 𝐿𝑥 and 𝐿𝑦 are the length of the simulation domain in x and y directions, respectively. As 

shown in Figure 14(a), 𝑀𝑒/𝑀0  almost increases linearly with Weber numbers, and the 

evaporation mass is almost the same for two different Jacob number cases. A cylinder model 

is used to explain the linear relationship between 𝑀𝑒/𝑀0 and Weber number. We assume the 

maximum deformation of the droplet in the horizontal direction still follows 𝑟𝑚𝑎𝑥 ~  𝑊𝑒0.25 

dependency as reported in Refs. [51,69]. Besides, as mentioned above, the collapse of the 
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droplet disk is governed by the inertial effect, and the dynamic force is minimized when t =

𝑡𝑚𝑎𝑥 . Thus, the maximum penetration length of the liquid slug inside the pores has the 

relationship of ℎ𝑚𝑎𝑥~𝑈𝑡𝑚𝑎𝑥 ~𝑊𝑒0.445, where 𝑡𝑚𝑎𝑥 is described as Eq. (18). Considering the 

penetrated liquid (𝑀𝑝) can be regarded as a cylinder shape and be completely evaporated owing 

to the high plate temperature and small pores size (𝐷𝑝/𝐷0 < 0.1), the evaporation mass can be 

scaled as 𝑀𝑒/𝑀0 = 𝑀𝑝/𝑀0~ ℎ𝑚𝑎𝑥𝑟𝑚𝑎𝑥
2 ~𝑊𝑒0.945 ≈ 𝑊𝑒 . For the time averaged heat flux 

shown in Figure 14(b), 𝑄𝑎𝑣𝑔. generally increases with Weber number, which can be explained 

by the fact that a higher We leads to a higher liquid contact area (larger 𝛽𝑚𝑎𝑥) and a higher 

spreading velocity (shorter 𝑡𝑚𝑎𝑥). Consequently, this enhances the phase change heat transfer 

and convective heat transfer. Considering 𝛽𝑚𝑎𝑥  and 𝑡𝑚𝑎𝑥  are almost the same for various 

Jacob number at the same Weber number, it can be understood that the higher plate temperature 

cases demonstrate higher heat flux. 

 

Figure 14. The relation of (a)the dimensionless droplet evaporation mass 𝑀𝑒/𝑀0 and (b) time 

averaged heat flux 𝑄𝑎𝑣𝑔. with a variety of impacting We. The results are for droplet impact on 

a heated porous plate with different Ja, from 𝑡 = 0 ~ 𝑡𝑟. The dashed line in (a) represents a 

linear fitting function. 

3.3 The influence of pore intervals 

In this section, we investigate the influence of the pore intervals. In the following 

simulations, 𝐷𝑝 is fixed as 9 lattices (180 μm), and L is changed from 1 lattice (20 μm) to 97 

lattices (1.9 mm), which leads to the dimensionless pore intervals 𝐿∗ = 𝐿/𝐷0 varying from 0.01 

to 0.99. For all the cases in this section, Weber number We = 69.2 and Jacob number Ja = 0.7, 

and all the other setups are the same as in Sec. 3.2. 

Figure 15 shows qualitative evolutions of the droplet shape as it impacts porous plates 

with various L*. Similar to the results in Figure 7, after the droplet impacts the porous surface, 
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a part of the droplet penetrates into the pores and evaporates. After that, the droplet levitates 

from the plate during the spreading and the entrapped air is exhausted. As indicated in the 

figure, for the smaller 𝐿∗ case (Figure 15(a)), owing to the smaller solid fraction, more liquid 

penetrates into the pores and evaporates. As pointed out in the above analysis, the more 

evaporated liquid, the larger pressure force will be provided. Consequently, the droplet presents 

the pancake bouncing for the smaller 𝐿∗ cases (similar to the phenomena in Figure 7(c) and 

(d)). For the larger 𝐿∗ cases (Figure 15(b) and (c)), it can be observed that the droplet re-touches 

the plate during the recoiling stage and then bounces from the plate, which is similar to the 

morphologies in Figure 7(b).  

 

Figure 15. Qualitative evolutions of droplet impact on a porous plate with various pore intervals 

L*, We = 69.2 and Ja = 0.7. (a) L* = 0.03, (b) L* = 0.09 and (c) L* = 0.25. 

 

Figure 16. The temperature contours, velocity vectors and morphology evolutions of the 

droplet at the early stage of impact on a heated porous plate with different pore intervals. 

The early stage evolutions for two different 𝐿∗ cases are shown in Figure 16. Consistent 

with the previous findings, regarding the lower 𝐿∗ case, more liquid penetrates into the pores 

( 𝑡/𝜏 = 0.077  in Figure 16(a)) and then evaporates ( 𝑡/𝜏 = 0.129  in Figure 16(a)). 
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Qualitatively, it can be found that the droplet morphologies for various 𝐿∗ cases are similar in 

the early spreading stage. Nevertheless, the larger quantity of evaporated liquid provides a 

larger pressure force and finally leads to the droplet bouncing from the plate (𝑡/𝜏 = 0.18 in 

Figure 16(a)). It can also be confirmed by the temperature field inside the pores that for the 

lower 𝐿∗ case, the temperature is lower due to the more significant evaporation cooling effect 

by its larger evaporation rate. 

 

Figure 17. (a) Transient evolution of droplet spreading ratio 𝛽 for various 𝐿∗ cases. (b) 𝑡𝑚𝑎𝑥/𝜏′ 

(right axis) and  𝛽𝑚𝑎𝑥 (left axis) as a function of  𝐿∗, the dashed line and solid line stand for the 

predicted value calculated by Eq. (18) and Eq. (19), respectively. 

 

Figure 18. (a) Transient evolution of 𝜀𝑚𝑎𝑠𝑠/𝐷0 and (b) normalized 𝑡𝑟 as a function of 𝐿∗ for the 

droplet impact on an overheated porous plate with various 𝐿∗. 

The transient evolution of droplet spreading ratio for various 𝐿∗ cases are plotted in Figure 

17(a). As shown in the figure, the droplet first spreads to the maximum value and then recoils. 

Concurring with the qualitative results in Figure 16, the spreading ratio is identical for a wide 

range of  𝐿∗. 𝛽𝑚𝑎𝑥 (left axis, represented by solid squares) and 𝑡𝑚𝑎𝑥/𝜏′ (right axis, represented 

by solid circles) in relation of 𝐿∗ is plotted in Figure 17(b). As shown in the figure, consistent 

with the qualitative observation in Figure 15, both 𝛽𝑚𝑎𝑥 and 𝑡𝑚𝑎𝑥/𝜏′ are almost at a constant 
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value for a wide range 𝐿∗, which can be observed in Figure 17(a). The identical 𝛽𝑚𝑎𝑥  and 

𝑡𝑚𝑎𝑥 can be explained by the fact that the droplet spreading stage is dominated by the inertia 

effect. In other words, the penetrated liquid inside pores has little influence on the droplet 

dynamics in the horizontal direction. Consequently, 𝛽𝑚𝑎𝑥  and 𝑡𝑚𝑎𝑥  present similar values 

under the same Weber number, regardless of different values of 𝐿∗. Additionally, the predicted 

value of 𝑡𝑚𝑎𝑥 by Eq. (18) and 𝛽𝑚𝑎𝑥 by Eq. (19) are plotted in Figure 17(b) by dashed and solid 

lines, respectively. It can be observed that the theoretical equations can also give good 

predictions of 𝛽𝑚𝑎𝑥 and 𝑡𝑚𝑎𝑥 for a wide range of 𝐿∗. 

 

Figure 19. Normalized droplet evaporated mass as a function 𝑀𝑒/𝑀0 of surface solid fraction 

1- 𝜙, the dashed line in the figure represents the linear fitting function. 

 

Figure 20. Dimensionless droplet rebound time 𝑡𝑟/𝜏  as a function of normalized droplet 

evaporated mass 𝑀𝑒/𝑀0 for all cases, the dashed line in the figure represents the power law 

fitting function. 
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The evolution of 𝜀𝑚𝑎𝑠𝑠/𝐷0  is plotted in Figure 18(a), and 𝑡𝑟/𝜏  as a function of 𝐿∗  is 

shown in Figure 18(b). It can be observed that the evolution of 𝜀𝑚𝑎𝑠𝑠 during the decay stage 

for all cases is almost constant. During the rebound stage, the minimum 𝐿∗ presents the fastest 

rebound speed and shortest rebound time (𝑡𝑟). For the larger 𝐿∗ cases during the rebound stage, 

the evolutions of 𝜀𝑚𝑎𝑠𝑠  are very similar (e.g., 𝐿∗ = 0.25  and 𝐿∗ = 0.97 ). It should be 

mentioned that the solid fraction of the porous plate can be calculated as 𝜙 = 1 −

(𝐷𝑝/(𝐷𝑝 + 𝐿))2, 𝐷𝑝 is fixed as 9 lattices when changing 𝐿. As a result, the corresponding ϕ 

varies from 0.9 to 0.99 when L∗ is changed from 0.2 to 0.97, which implies that only a small 

amount of liquid penetrates into the pores when 𝐿∗ > 0.2, and the amount of the evaporated 

liquid is very small. Consequently, the pore intervals have slight influence on droplet dynamics. 

For a similar reason, we can find 𝑡𝑟 remains at a similar value when  𝐿∗ > 0.2 (As shown in 

Figure 18(b)). This can also explain why 𝛽 (Figure 17(a)) and 𝜀𝑚𝑎𝑠𝑠 (Figure 18(a)) present 

similar evolution trends for the high 𝐿∗ cases. 

We record 𝑀𝑒/𝑀0 (𝑡 = 0~𝑡𝑟) as a function of the plate opening fraction 1 − 𝜙 in Figure 

19. As shown, 𝑀𝑒/𝑀0  is linearly increased with 1 − 𝜙 . Additionally, we can find 𝑀𝑒  is 

significantly increased with 1 − 𝜙 when 1 − 𝜙 > 0.1 (𝐿∗ < 0.2); thus, it explains why 𝑡𝑟  is 

dramatically increased when 𝐿∗ < 0.2  (as shown in Figure 18(b)). Finally, we plot the 

dimensionless droplet rebound time 𝑡𝑟/𝜏 as a function of 𝑀𝑒/𝑀0 for all cases in Figure 20. As 

shown in the figure, the droplet rebound time decreases with increasing evaporation mass. In 

simulations of droplet impact on a porous plate, the maximum evaporation mass is higher and 

the minimum rebound time is smaller than the corresponding values in the flat-plate cases for 

the same range of Weber numbers. Remarkably, 𝑡𝑟/𝜏 can be fitted by a ~ (𝑀𝑒/𝑀0)−0.37 for 

the cases of droplet impact on a porous plate. However, the cases of droplet impact on a flat 

plate clearly deviate from the power law dependency. The results for the cases of droplet impact 

on a porous plate demonstrate, the droplet penetration into the pores leads to a larger quantity 

of evaporation mass, which generates an additional lift force and accelerates the rebound of the 

droplet, leading to a short 𝑡𝑟. It should be pointed out that, in our simulations, the pore size 𝐷𝑝 

is relatively small (𝐷𝑝/ 𝐷0 ≈ 0.1) and thus the liquid in the pores can fast evaporate. As pointed 

out in the above analysis, the evaporated liquid is critical to the droplet bouncing dynamics, 

and the droplet could present different dynamics when the liquid in the pores evaporates to a 

different extent. Thus, it is necessary to extend the simulation to a wider range of surface 

configurations and operating parameters in future studies. 

4. Conclusion  
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In this study, the unified lattice Boltzmann model (ULBM) is applied to numerically 

investigate droplet impact on a porous plate above the Leidenfrost temperature. The ULBM 

with the KBC collision operator is firstly validated by reproducing theoretical and experimental 

results of benchmark cases as well as results of Leidenfrost droplet impingement on a flat plate. 

Then, we simulate the Leidenfrost droplet impingement on a plate with square pores. Effects 

of the droplet impacting Weber number, the plate temperature (Ja) and the plate configuration 

(flat plate, porous plate, and different pore intervals L) on droplet dynamics are revealed. The 

following conclusions can be drawn: 

(1) In cases with small Weber numbers, the Leidenfrost droplet impact on a porous plate 

shows similar bouncing morphologies as it impinges on a flat plate. On the other hand, in cases 

with large Weber numbers, a part of the droplet penetrates into the pores and evaporates. The 

vapour formed from the liquid evaporation provides additional lift force. This subsequently 

causes the droplet rebound in a pancake shape before its recoil, which breaks the theoretical 

Rayleigh’s limitation and reduces the droplet contact time (𝑡𝑐) significantly.  

(2) Compared with the droplet impact on a flat plate, the droplet impact on a porous plate 

shows a faster rebound time (𝑡𝑟 ). The increase of plate temperature and Weber number 

promotes the droplet rebound, and the increasing Jacob number decreases the minimum Weber 

number for the pancake bouncing phenomena. 

(3) The modified droplet maximum spreading time (𝑡𝑚𝑎𝑥) and maximum spreading factor 

(𝛽max) are similar in cases with the same Weber number but various plate geometries and Jacob 

numbers. The evolution of 𝑡𝑚𝑎𝑥/ (𝐷𝑚𝑎𝑥
3 𝜌𝑙/𝜎)0.5 and 𝛽max can be predicted by the power law 

functions of Weber number in Eq. (18) and Eq. (19), respectively. For the cases of droplet 

impact on a porous plate, the evaporated liquid mass linearly increases with Weber number. 

(4) When changing the pore intervals, values of 𝑡𝑚𝑎𝑥 and 𝛽max keep almost unchanged 

and still follow the proposed power law functions [Eqs. (18) and (19)]. It is found that the 

droplet rebounds faster in cases with smaller normalized pore intervals 𝐿∗. In cases with the 

larger normalized pore intervals (𝐿∗ > 0.2), both the droplet transient evolution and the rebound 

time (𝑡𝑟) are similar. 

(5) Owing to the small pore size (𝐷𝑝/ 𝐷0 ~ 0.1), the part of the droplet that is inside the 

pores evaporates rapidly. Therefore, the normalized droplet evaporation mass (𝑀𝑒/𝑀0) is 

proportional to the plate opening fractions (1- 𝜙).  The results indicate that, for droplet impact 

on a porous plate, the droplet rebound time can be fitted as a power law decay function of the 

normalized droplet evaporation mass.  
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