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a b s t r a c t

Creases are highly localized regions ubiquitous across different length scales in low-dimensional
natural and engineering systems. Their presence strongly influences the mechanical response and
surface accuracy of creased membrane materials and structures. In this paper, we study the deployment
of folded sheets composed of an arbitrary number of non-interacting and parallel creases. We develop
a mathematical formulation that describes the nonlinear mechanics of systematically creased mem-
branes composed of a single or multiple folds, and predicts their surface accuracy during unfolding.
The proposed solution shows the contribution of membrane bending and crease energies during
deployment, and reveals the presence of two dimensionless parameters that govern the unfolding
behaviour. Sensitivity analyses are also performed to assess the influence of the crease geometry
and constitutive behaviour. The analytical predictions are validated through finite element analyses
and deployment tests performed on thin films with one, two and three fold lines, where imaging
techniques are employed to quantify deformation. The excellent agreement between theoretical and
experimental results testifies that the developed formulation represents a precise tool to assess the
tensioning of creased membranes, with applications ranging from origami metamaterials to lightweight
space structures where precise shape control is paramount.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Folds and creases are localized inelastic regions found in thin
ystems across nature and man-made structures. In biology and
iving matters, they span different length scales and can be found
n the structure of proteins [1], insect wings [2], plant leaves [3]
nd human skin [4]. In artificial systems, folds are introduced to
reate mechanical metamaterials [5–7], pieces of art [8] and engi-
eering structures [9–11] through origami techniques. In partic-
lar, the Japanese art of paper folding has inspired efficient pack-
ging of lightweight membrane space structures [12,13], such
s solar sails, reflectors, and space antennas, which are then
eployed once in orbit. However, the introduction of inelastic
reases deeply affects the shape configuration and stability of
eployed membrane structures and creased metamaterials, hin-
ering their surface accuracy and structural behaviour [14–16].
herefore, correct modelling of creased thin films is necessary
o understand how creases affect the mechanical and functional
esponses, to suggest optimal folding techniques, and to design
he next generation of creased engineering systems.

Systematically creased systems were initially kinematically
odelled by rigid panels connected through hinges [17,18], thus
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neglecting the panel deformation inherently present in folded
thin-film structures. Hence, linear analytical [19] and nonlinear
numerical [20] models based on beam theory were introduced
to capture the elastic response of the membrane. However, these
models neglect the crease compliance, as the fold was character-
ized only by its initial opening angle. The importance of modelling
both the crease and panel elastic responses showed the contri-
bution of each mechanism during deployment, and highlighted
the existence of a characteristic length scale below which the
membrane deformation can be neglected, and the mechanical
response can be approximated by a rigid-folded mechanism [21].
Experimental studies on different materials have shown a linear
moment–angle relationship at the crease, which can be modelled
as a rotational spring with constant stiffness [21–23]. Its con-
stitutive behaviour and elastic contribution were included in a
nonlinear beam framework aimed at obtaining the mechanical
response of membranes with a single crease [23–25]. Recent
works have improved the fold characterization by analysing the
formation [22] and local response [26] of folds, their inelastic
behaviour [27] and the viscoelastic effects on the initial opening
angle [28]. They have proven that the highly localized plasticity
at the fold and the material viscosity mainly affect the crease
stiffness and initial crease opening, with negligible influence on
the elasticity and deployment of the membrane.

The recent advances on the monodimensional modelling of

creased membranes considered sheets with a single fold and did
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ot compute the surface accuracy during deployment, which is
equired to design the tensioning mechanisms of large creased
embrane-based space systems that can attain precise submil-

imetre shape control. Therefore, this paper establishes a non-
inear plane strain solution for the deployment of accordion-like
haped membranes characterized by an arbitrary number of non-
nteracting and alternating mountain–valley folds, which repre-
ents the simplest origami configuration. The one-dimensional
inite rotation crease-beam mathematical model, which is also
apable of predicting the thin film surface accuracy during un-
olding, is numerically and experimentally validated through ten-
ion tests performed with 2D and 3D digital image correlation.
urthermore, previous studies [21,23] characterized the contri-
utions of panel bending and crease opening through a linear
nalysis and showed that a single parameter could describe the
rimary unfolding mechanism. In this work, by considering the
nergy contributions obtained from a fully nonlinear analysis, we
how that two dimensionless parameters are required to capture
he interaction between membrane and crease elasticities during
eployment, offering tools to evaluate them.
The paper is organized as follows: Section 2 presents the

onlinear mathematical formulation to model the deployment of
embranes with a single and multiple creases, including their
urface accuracy and contribution of bending and crease energies.
ection 3 offers an overview of the numerical and experimental
rocedures employed; while Section 4 reports the results on the
i) fold rotational stiffness and the influence of initial opening
ngle and crease rigidity, (ii) comparison between theoretical pre-
ictions and experimental measurements during the deployment
f membranes with one, two and three creases, and (iii) the effect
f energy contributions on the unfolding mechanism.

. Nonlinear mechanics of creased sheets

We consider homogeneous elastic rectangular membranes
ith width w and thickness t , longitudinally folded in order to
reate parallel and alternating mountain (∧-shape) and valley (∨-
hape) creases in the transverse direction, Fig. 1. The creased thin
heet is pinned at one edge and simply supported at the other
dge, where a tensile force F acts in the X-direction. The length
f the membrane between two consecutive creases is 2l. In the
ndeformed configuration, each side of the fold is flat, so that the
embrane assumes an accordion-like shape characterized by the
rease initial opening angle γ0, or equivalently by the angle α =

π−γ0)/2 that the flat panels form with the X-axis. The formation
f the creases is caused by highly-localized deformations, and the
old line is assumed to behave as a linear elastic hinge during
eployment [21–23], as experimentally proven in Section 4.1 and
ppendix B. Therefore, the constitutive relation of the fold writes
s Mc = k (γ − γ0), where Mc is the absolute value of bending

moment at the crease, k and γ are the crease rotational stiffness
nd opening angle, respectively. The symmetry of the membrane
ith respect to the fold line implies that the rotations at each
ide of the crease, θ−

c and θ+
c , are equal in modulus and opposite

in sign, so that γ = γ0 + 2θc and Mc = 2 k θc.
The mechanical response of creased membranes depends on

the interplay between the fold rotational stiffness k and the
panels bending rigidity B [21], as further explained in Section 2.4.
If the former contribution is dominant, the membrane response is
kinematically described by an origami-like rigid mechanism [17];
whereas, when the latter prevails, the deformation is driven by
the sheet elasticity, similar to a tensioned thin film or a fluid
meniscus in a capillary channel [29]. In this work, both elastic
contributions affect the behaviour of the creased membranes,
which can be studied as a two-dimensional profile due to the
translational symmetry. Therefore, in the following, Euler’s theory
of the Elastica will be employed to describe the mechanics of the
creased sheet as an elastic inextensible rod [30,31] and to develop
a plane strain crease-beam model.
2

2.1. Single crease model

With reference to the two-dimensional single crease system
reported in Fig. 1c, the membrane is parametrized by the curvi-
linear coordinate s ∈ [0, 2l] and the local angles θ1(s) and θ2(s)
between the tangent vector to the membrane and the local axes
x1 and x2 on the left- and right-end side of the fold, respec-
tively. The undeformed configuration assumes a ∧-shape, where
α represents the angle between the flat panels and the global
horizontal axis X . The system is pinned at the left end and simply
supported at the right end, where an horizontal tensile force F is
applied in the positive X direction. The crease is modelled as a
rotational spring of stiffness k at s = l and, due to symmetry, the
vertical reaction forces at the supports are null. Thus, under the
inextensibility constraints x′

i(s) = cos θi(s) and y′

i(s) = sin θi(s) for
i = 1, 2, the potential energy V can be written as [32,33]

V(θ1, θ2) =
B
2

[∫ l

0
θ ′2
1 ds +

∫ 2l

l
θ ′2
2 ds

]
+

k
2
[θ2(l) − θ1(l)]2

+ F cosα
[
2l −

∫ l

0
cos θ1ds −

∫ 2l

l
cos θ2ds

]
+ F sinα

[∫ l

0
sin θ1ds −

∫ 2l

l
sin θ2ds

]
,

(1)

here θ ′
= dθ/ds represent the curvature, B = E w t3/[12(1 −

2)] is the bending stiffness, E the Young’s modulus and ν is the
oisson’s ratio. In the previous expression, the terms in the first
wo brackets represent the elastic energy of the membrane and
he crease, respectively, while the last terms refer to the work
one by the external load F . The equilibrium equations for the
irst and second half of the membrane, identified by i = 1 and
= [0, l], and i = 2 and s = [l, 2l], can be obtained by annealing
he first variation of V as

θ ′′

i + (−1)i F sin
[
(−1)iθi + β

]
= 0, (2)

here β = π − α represents a supplementary angle. The former
onlinear differential equations can be solved by considering the
oundary condition at the crease (−1)iBθ ′

i (l) = 2kθi(l), and those
t the edges, θ ′

1(0) = 0 and θ ′

2(2l) = 0. Following the derivation
utlined in Appendix A, and introducing the dimensionless curvi-
inear coordinate ŝ = s/l and load λ2 = Fl2/B, the membrane’s
ocal rotational field results

i(ŝ) = (−1)i
(
2 arcsin

[
η sn

(
λ(ŝ − 2H(i − 1)) + K(η), η

)]
− β

)
,

(3)

here H(i − 1) is the Heaviside step function, sn represents the
acobi sine amplitude function, and K(η) is the complete elliptic
ntegral of the first kind. The kinematic parameter η = sin[(θ (0)+
)/2] can be obtained as a function of the load λ by solving
umerically the following auxiliary equation, obtained from the
oundary condition at the crease [34]

−2 arcsin [η sn (λ+ K(η), η)]+β−
λ η cn (λ+ K(η), η)

χ
= 0, (4)

where χ = kl/B is the dimensionless rotational stiffness and
cn represents the Jacobi cosine amplitude function. In the global
reference frame, the membrane’s rotation field is ψ(ŝ) = θi(ŝ) −

−1)iα, whereas the configuration of the deformed elastica is
escribed by the dimensionless coordinates X̂ and Ŷ for ŝ ∈ [0, 2]

ˆ (ŝ) = ŝ +
2
λ

[
E(η) − E

(
am(λ(ŝ − 2H(i − 1)) + K(η), η), η

)
+ 2H(i − 1) (E (am(K(m, η), η), η)− E(η))] ,

ˆ i ( ) (5)
Y (ŝ) = (−1) cn λ(ŝ − 2H(i − 1)) + K(η), η ,
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Fig. 1. Undeformed (a) and deformed (b) configurations of a membrane with multiple mountain and valley creases, subjected to a tensile force F . (c) Schematic
of the undeformed and deformed shapes of symmetric two-dimensional single crease system, reproducing the behaviour of the membrane with multiple folds. The
beam’s nonlinear response is driven by the elasticity of the sheet, B, and that of the crease, modelled as an elastic rotational spring of stiffness k and initial opening
angle γ0 .
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where K(m, η) is the incomplete elliptic integrals of the first
kind, E(η) and E(m, η) are the complete and incomplete elliptic
integrals of the second kind, am represents the Jacobi amplitude
function, and m = sin−1

[sin[(θ2(0) + β)/2]/η]. Lastly, the di-
mensionless horizontal, ûc, and vertical, v̂c, displacements of the
crease (ŝ = 1) can be obtained in the global reference frame as

ûc =
1
λ
[2E(m, η) − 2E(η) + (cosα − 1) (K(m, η) − K(η))] ,

v̂c =
2η
λ

cosm − sinα,
(6)

from which it follows that the dimensionless horizontal displace-
ment at the loaded end of the membrane is δ̂ = 2ûc.

.2. Multiple creases model

The equations describing the equilibrium configuration of the
embrane with a single crease are generalized in this section

o describe the response of a tensioned sheet with an arbitrary
umber of folds F , Fig. 1a. Since the length of the thin sheet
etween two consecutive creases is 2l, the total length of the

membrane is 2F l. Denoting ŝ ∈ [0, 2F] as the dimensionless
urvilinear coordinate along the membrane longitudinal axis, the
arameter N = Z[(1 + ŝ)/2] describes the progressive number

of folds encountered, starting from the pinned support. Hence,
N = 0 for ŝ ∈ [0, 1] (between the pinned support and the
first mountain fold, ŝ = 1), N = 1 for ŝ ∈ [1, 3] (between the
first mountain and second valley folds), N = 2 for ŝ ∈ [3, 5]
(between the second valley and third mountain folds), and so on
and so forth. The undeformed configuration of the membrane,
characterized by flat segments between alternating transverse
mountain (∧-shape) and valley (∨-shape) creases can be de-
scribed by the dimensionless global coordinates as X̂undef(ŝ) =

ŝ cosα and Ŷundef(ŝ) = (−1)N sinα (s − 2N ). The membrane’s
local, θ (ŝ), and global, ψ(ŝ), rotational fields can be written as

θ (ŝ) = (−1)N
[
β − 2 arcsin

[
η sn

(
λ(ŝ − 2N ) + K(η), η

)]]
,

ψ(ŝ) = (−1)N
[
π − 2 arcsin

[
η sn

(
λ(ŝ − 2N ) + K(η), η

)]]
,

(7)

while the deformed configuration of the tensioned thin sheet
can be obtained by considering the properties of elliptic inte-
grals E(am(2K ± µ)) = 2E ± E(am(µ)) and cn(µ + K, η) =

−
√
1 − η2 sd(µ, η) [35]

ˆ (ŝ) = ŝ +
2
λ

[
E(η) − E

(
am(λ(ŝ − 2N ) + K(η), η), η

)
+ 2N (E (am(K(η) − λ, η), η)− E(η))] ,

ˆ (ŝ) = (−1)N
2η√

1 − η2 sd
(
λ(ŝ − 2N ), η

)
,

(8)
λ

3

here sd = sn/dn is a Jacobi elliptic function defined through the
acobi delta amplitude, dn =

√
1 − η2sn2. Finally, the dimension-

less horizontal displacement of the loaded support is δ̂ = 2F ûc,
with ûc expressed by Eq. (6)1, whereas the absolute value of the
dimensionless vertical displacement of any crease, v̂c, is described
by Eq. (6)2.

2.3. Surface accuracy during deployment

Several high-precision engineering applications, such as mem-
brane space antennas [12,13], require the knowledge of the sur-
face accuracy of the thin sheet during deployment, expressed as
a dimensionless quadratic mean f̂ of the out-of-plane coordinate
Ŷ (ŝ)

f̂ =

√
1
2F

∫ 2F

0
Ŷ (ŝ) dŝ. (9)

From the symmetry of the deformed membrane, it follows that
the quadratic mean of one half of a single creased membrane is
equivalent to that of a single and multiple creased thin sheets.
Therefore, in the derivation of f̂ , the expression of Ŷ (ŝ) from
Eq. (5)2 (with i = 1) can be employed, leading to

f̂ =
2
λ

√
η2 − 1 +

1
λ
E(am(λ, η), η) −

η2

λ

cn(λ, η) sn(λ, η)
dn(λ, η)

≈

√
2η2(η2 − 1)(λ− cosh λ sinh λ)

λ3
. (10)

.4. Elastic energy contributions and deformation mechanisms

In the hypothesis of inextensible membranes, the two elastic
echanisms responsible for the deployment of creased sheets
re (i) the fold opening, which is driven by the crease rotational
tiffness k, and (ii) the panel bending, characterized by the stiff-
ness B. Without loss of generality, we can exploit the translational
symmetry of the systems with multiple creases and restrict the
analysis to a membrane of length 2l with a single crease at s = l,
ig. 1c. In order to quantify the contribution of each unfolding
echanism, it is useful to compute (see Appendix A) the bending,

b, and crease, Ec, energies as

b =
4Bλη2

l

[
λ−

λ

η2
+

E(am(λ, η), η)
η2

−
cn(λ, η) sn(λ, η)

dn(λ, η)

]
,

Ec =
2B2λ2η2

k l2
[cn (λ+ K(η), η)]2.
(11)
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Fig. 2. Left: Contribution of crease energy Ω with respect to the total elastic energy as a function of ξ for different panel lengths l = [0.4; 2; 4; 20; 50]L∗ , or
quivalently, for different values of χ = l/L∗

= kl/B = [0.4; 2; 4; 20; 50]. The plot shows that at lower values of χ , the crease energy contribution prevails and the
eployment response is dominated by crease opening, while at very large χ , the high percentage of bending energy suggests a preferred panel bending mechanism.
t high tensioning force F , the energy contribution Ω follows Eq. (13a), while at low force the energy depends only on χ , Eq. (13b). Right: Contour plot of the
implified contribution of crease energy Ω as a function of the two dimensionless parameters ξ and χ , as expressed through Eq. (13a) (bottom-right) and Eq. (13b)
top-left), with the transition condition expressed by χ = 3ξ/2.
b
o
p
f
l
t
i
F
e

efining Γ = Eb/Ec as the ratio between the two energy contri-
utions yields

=
k

√
BF

×

[
2
λ (η2 − 1) dn(λ, η) + E(am(λ, η), η) dn(λ, η) − η2 cn(λ, η) sn(λ, η)

η2 dn(λ, η) cn2 (λ+ K(η), η)

]
,

(12)

o that the contribution of crease energy with respect to the total

lastic energy is Ω =
Ec

Ec + Eb
=

1
1 + Γ

. From this equation, we

can distinguish two limit cases that depend on the value of the
applied force F

Ω =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

1 +
2
3
k l
B

=
1

1 +
2
3χ
, F → 0 (η → sin

β

2
) (13a)

1
1 +

k
√
FB

=
1

1 + ξ
, F → Fmax (η → 1) (13b)

where Fmax is the maximum force applicable to the creased sheet
efore it is flattened (η → 1) and the elasticity or inextensibility
ssumptions cease to apply. Eqs. (13a) and (13b) suggest that

here are two dimensionless parameters, namely χ =
k l
B

and

=
k

√
FB

, which characterize the main deformation mechanism

nd proportion of the elastic energies. They are related through
he relationship ξλ = χ . At low tensioning force, the parameter
indicates that the dominant unfolding mode is crease opening
hen k l < B, or panel bending when k l > B, as noted from linear
nalyses [21,23] and as visible from Fig. 2a. However, when the
pplied tension increases significantly and geometric nonlinear-
ties prevail, the contribution of crease and bending energies is
efined by the parameter ξ , which combines tensioning force,

crease and bending stiffnesses. In this scenario, an increase of
crease rigidity k implies an increase of bending energy, while a
growth of either the applied force F or the membrane bending
stiffness B indicates an increase of the crease energy and the
associated higher contribution of fold opening mechanism.

Eq. (13a) suggests the existence of a characteristic length scale
L∗

= B/k [21]. When the length of each panel is small compared
to L∗, the unfolding response is typical of rigid origami, mainly
4

characterized by crease opening (Fig. 2a, yellow curve). When l ≫
L∗, the deployment mechanism resembles a flexible origami, with
higher contribution from panel bending (Fig. 2a, green and cyan
curves). When l ≥ L∗, the dominant energy contribution is panel
ending at low tensioning forces, while it transitions to crease
pening at high forces (Fig. 2a, orange and red curves). Fig. 2a
roves that the contribution of elastic energies, defined in closed
orm through Eq. (12), can be well approximated by the two
imit cases expressed by Eqs. (13a) and (13b), except for a limited
ransition region. This is due to the term within square brackets
n Eq. (12), which is ≈ 1, except for very low tensioning force
. In the hypothesis that such transition domain is negligible,
quating (13a) and (13b) gives the critical condition χ = 3ξ/2

that defines the use of each equation in the calculation of an
approximation of the crease energy contribution Ω , as shown in
Fig. 2b. In particular, Eq. (13a) should be used when χ < 3ξ/2,
while Eq. (13b) can be employed when χ > 3ξ/2. In the same
figure, the faded region represents a non-admissible combination
of ξ and χ , exceeding the limit of maximum applicable tension
force, obtained from Eq. (4) when η → 1. It should be noted
that the non-admissible domain is almost independent of the
parameter β that defines the undeformed configuration of the
creased membrane.

3. Methods

3.1. Experimental

The experimental investigation consisted of three different
tests: (i) uniaxial tension on dumbbell specimens to obtain ma-
terial properties, (ii) uniaxial tension on rectangular strips with
a single fold to characterize the crease response in terms of
rotational stiffness and rest angle, and (iii) deployment tests on
rectangular sheets with single and multiple creases, to validate
the analytical results developed in the previous section. The ex-
periments were performed on polyester thin films (DuPontTM

Mylar
®

A) with thickness 100µm and 37% opacity. The tests
were carried out with an Instron 5985 electro-mechanical testing
machine equipped with a 2530-50N load cell and 2713-007 self-
tightening roller grips. The VIC-3DTM (Correlated Solutions, v.9)
non-contact Digital Image Correlation (DIC) system was used to
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Fig. 3. Experimental setup for the quasi-static deployment of creased membranes (centre). The kinematic fields were measured through two-dimensional (left) and
three-dimensional (right) digital image correlation from lateral and frontal images of the sample, respectively. Examples of post-processed results include the rotation
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easure the full-field deformation of the membranes [36]. Two
tereo-mounted digital cameras, Basler acA2440 75µm 5.0 MP,
quipped with Schneider Kreuznach Xenoplan 1.9/35 mm lens,
nd VIC-Snap (Correlated Solutions, v.9) software were employed
o acquire images. Cameras set up and samples preparation were
etermined to enhance accuracy and minimize noise during im-
ge postprocessing. A random speckle pattern was applied to the
embrane to avoid aliasing. The black speckles were created by
pray paint or by depositing ink through a stamp roller, with
n average speckle dimension of 8 and 5 pixels, respectively.
he accuracy of the experimental results was not affected by the
ethod used to generate the speckle pattern. Adequate contrast
as achieved using white LED lights behind the specimen. The
alibration images were acquired using a calibration target with
-mm dot spacing. The experiments were performed at ambient
emperature, 21.0 ± 0.4 ◦C.

.1.1. Material properties
The material elastic properties were obtained by performing

niaxial tension tests on dumbbell samples (die A, ASTM D412)
riented along the machine (MD) and transverse (TD) manufac-
uring directions. Five tests were performed along each principal
irection. The bottom end of the specimen was held fixed, while
he top end was moved at a rate of 1 mm/min until a final
isplacement of 0.5 mm was attained. At the beginning of each
est, the sample was lightly pre-tensioned with a force of 0.05 N
n order to remove any initial slackness. The engineering stress
as computed from the measured force, while the longitudinal
nd transverse nominal strains were calculated through image
ost-processing by using a correlation subset of 33 × 33 pixels,
step size of 7 pixels and a filter size of 11 pixels. During

he tests, the maximum measured strain was 0.25%, and the
aterial response was linear elastic. From the stress–strain re-
ponse, Young’s moduli were calculated as 5.07 ± 0.07 GPa and
.36 ± 0.03 GPa for MD and TD, respectively. Similarly, from the
train values, the Poisson’s ratio was obtained as 0.26 ± 0.03
or MD and 0.35 ± 0.04 for TD. Given the slightly orthotropic
esponse, in the following experiments, only the stiffest direction
as considered, and all samples were cut along the transverse
irection TD, so that their average elastic properties were E =

.36 GPa and ν = 0.35.

.1.2. Crease response
The crease behaviour was characterized by testing folded rect-

ngular strips. A single crease was introduced at half-length
5

by manually pre-folding the membrane. Subsequently, the pre-
folded sheet was compressed between two platens at 1 kN for
1 min in the Instron electro-mechanical frame, before the load
was removed. The crease initial opening angle γ0 was mea-
sured using a Nikon ShuttlePix P-400Rv digital microscope after
24 hr from the end of the compression phase, in order to assess
the long-term equilibrium configuration after sufficient relax-
ation time was allowed, such that the material viscosity on the
fold opening angle was negligible [28]. Eight different samples
were tested, with total lengths varying between 60 and 100 mm,
widths of 10, 15, and 20 mm. The different geometries were
considered to investigate their effect on the crease response.

The V-shaped folded samples were then installed in the In-
stron machine to perform uniaxial tension tests and characterize
the fold rotational stiffness. The sample was attached to the
grip through a thin transparent tape, so that the membrane was
simply supported at its edges, with unconstrained rotation. A
displacement of 1 mm/min was imposed at the top end of the
specimen, until the membrane was fully tensioned. The ten-
sioning force F was measured through the load cell, while the
bending moment at the crease was calculated as Mc = F Yc,
here Yc is the normal distance between the tension direction
nd the fold. The variation of the distance Yc and the membrane
eformed configuration were measured during the tests through
wo optical methods: (i) stereo DIC, aiming at calculating the
hree-dimensional kinematic quantities from a frontal view of
he membrane, and (ii) a second approach utilizing a camera
n the side to assess the two-dimensional lateral profile of the
ample, Fig. 3. Matlab scripts were developed to calculate the
rease opening angle γ from the DIC results, and to compute
eformed shapes, end displacement δ and crease vertical position
c from the side view of the specimen.

.1.3. Quasi-static deployment test
The unfolding response of creased sheets was assessed through

niaxial tension tests on membranes with single and multiple
reases. The thin films were folded and installed in the testing
pparatus by means of the procedures described in the previous
ection. Rectangular polyester strips of width w = 15 mm
ere folded such that the length l of each panel was 50 mm

or the specimen with a single fold, 40 mm for doubly creased
embranes, and 30 mm for thin films with three folds. The width
as chosen to be negligible with respect to the length of the
embranes, with t ≪ w ≪ l, as in ribbons. However, considering

he translational symmetry of the sheets, boundary and loading
onditions, the analysis presented is valid for different membrane
idths and thicknesses, as long as the system remains slender,
ith t ≪ l. The quasi-static deployment was performed at
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mm/min displacement rate. During the experiment, the im-
osed displacement and tensioning force were measured by the
nstron machine, while the membrane deformed configurations
ere obtained through the optical methods previously discussed.
our tests were performed for samples with one and two creases,
wo of which were measured through frontal three-dimensional
IC, and two via lateral two-dimensional digital image correla-
ion. Since the two imaging methods yielded the same results,
he deformation of the samples with three creases was acquired
olely from lateral images and the custom-built Matlab code.

.2. Finite element modelling

The finite element approach complemented the experimental
tudy in the validation of the analytical results for the deploy-
ent of creased membranes. Similarly to the analytical solution,

he translational symmetry along the width allowed to model
he film as a two-dimensional geometry in Abaqus FEA 2018
Dassault Systèmes). The creased membrane was discretized with
inear beam elements with Young’s modulus E = 6.36 GPa
nd Poisson’s ratio ν = 0.35, measured from uniaxial tension
ests. The beam cross-section reproduced that of the deploy-
ent experiments, with width 15 mm and thickness 100µm.
he initial configuration of the membrane was defined by the
anel length and the crease initial angle γ0. Pinned boundary
onditions were imposed at one end of the model, while a force
as applied at the other edge of the beam, in the positive X
irection. The crease was modelled through a connector element
‘joint+rotation’) with linear elastic behaviour defined by the ro-
ational stiffness k. The results from the numerical simulations
ere imported in Mathematica (Wolfram, v.11) and compared
ith those from the analytical and experimental investigations.
he scripts developed for the analytical solution, Section 2, two-
imensional DIC, Section 3.1.2, and finite element modelling,
ection 3.2, can be found at github.com/fbosi/CreasedMembranes.

. Results and discussion

The section is devoted to the presentation of the experimental
esults and their comparison with the predictions obtained from
he analytical models developed in Section 2 and Appendix A, and
he numerical simulations described in Section 3.2.

.1. Fold rotational stiffness

The investigation of the creased samples, after fold creation
hrough compression test and the optical analysis of the long-
erm equilibrium shape, highlights that the crease opening angle
or a 100µm thick membrane is γ0 = 103.21 ± 6.35◦. The
ubsequent tension tests performed on the folded thin films,
s described in Section 3.1.2, show the relationship between
he normalized crease bending moment Mc/w and the change
n fold angle γ − γ0, Fig. B.8. It can be noted that the crease
esponse can be well described by a linear function that inter-
olates the discrete experimental measurements, thus validating
he assumption of linear rotational spring. Therefore, the fold
ormalized rotational stiffness K (i.e. fold rotational stiffness k
ivided by the sample width w), identified by the slope of the
inear fit, is obtained as K = 3.95 ± 0.13 mN/deg. From Fig. B.8,
he onset of a nonlinear moment–angle response can be observed
n the limit of very high tensioning forces, when the membrane is
lmost entirely flat and the normal position of the crease is Ŷc =

c/l ⪅ 0.02. In this limit case, the proposed solution loses accu-
acy as the assumption of constant rotational stiffness ceases to
xist, together with the hypothesis of membrane inextensibility,

ince non-negligible axial strains develop. m

6

Recent works have shown that the development of plasticity
uring fold creation [27] and material viscoelasticity [22] mainly
ffect the constant value of crease rotational stiffness and its
nitial opening angle γ0, while the membrane panels remain
lastic. Therefore, once the initial configuration and properties
f the folds were obtained, the crease modelling neglected any
onlinear effects. However, since the initial fold angle γ0 and
he crease stiffness k are affected by the material nonlinearities
nd are found to be the most difficult parameters to determine
xperimentally, sensitivity analyses are analytically performed in
rder to assess the influence of the initial geometry and fold
tiffness on the deployment of creased membranes. Hence, the
ensitivity studies are carried out by varying the initial opening
ngle γ0 and the dimensionless crease stiffness χ = kl/B. These
nalyses are conducted on a sheet with a single fold, but are
qually valid for an arbitrary number of folds thanks to the
ranslational symmetry. As explained in detail in Appendix B, the
nfluence of γ0 and χ on the surface accuracy f̂ is not significant
n the ranges investigated, thus suggesting that high variability
n the experimental characterization of the fold properties has a
ower influence on the prediction of the deformed configuration,
specially for the creased membranes that are mainly governed
y the panel bending mechanism. These parametric analyses
alidate the assumption of negligible nonlinearities in the crease
esponse, while providing a tool to assess their influence on the
eployment response, especially at high tensioning forces. The
odelling of a nonlinear crease stiffness for the regimes where

he linear approximation is less effective represents an interesting
xtension of this study.

.2. Deployment of membranes with single and multiple creases

The analytical predictions for the deployment of membranes
ith one, two and three folds are compared with the measure-
ents obtained from tension tests to assess the accuracy of the

heoretical model. It is worth noticing that the analytical and
inite element predictions were perfectly overlapping, thus val-
dating the accuracy of the developed mathematical formulation
or the nonlinear response of tensioned folded sheets, Section 2
nd Appendix A.
For the sheet with a single crease, Fig. 4 overlays the predicted

ehaviour (black and green curves) and measured response from
our experiments (pink-shaded areas and red curves). The applied
orce F is shown as a function of the vertical crease position
c (a), horizontal displacement δ at the tensioning end (b), and
urface accuracy f (c). All three plots exhibit a low standard
eviation, which testifies a good experimental repeatability, and
very good agreement between theory and experiments. The
rediction of the vertical position of the crease is in excellent
greement throughout the entire range of applied forces, while
he horizontal displacement appears slightly shifted, most likely
ue to an initial offset and load cell inaccuracy at very low forces,
ut it converges towards the theoretical value at high tension.
he measured surface accuracy f is in very good agreement with
he theoretical value, except at very high force, where the mem-
rane is almost fully flat and the effect of imperfections, small
isalignments and resolution of the imaging technique play a
ignificant role. Additionally, Fig. 4d superimposes the picture of
he side view of the membrane during one deployment test with
ts analytical prediction (dashed curves), for six tensioning forces.
he predicted deformed configuration captures the experimental
esults very well, with the two curves almost indistinguishable,
xcept at very low forces for the reasons mentioned above.
Similar conclusions can be drawn from the comparison be-

ween the theoretical solution and the measurements for the

embrane with two and three creases. Figs. 5 and 6 show the

github.com/fbosi/CreasedMembranes
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Fig. 4. Comparison between experimental results (red curve), analytical (black curve) and finite element (green curve) predictions for the deployment of a membrane
ith one crease: (a) tensioning force F vs. vertical position of the crease Yc , (b) tensioning force F vs. horizontal displacement δ, and (c) surface accuracy f vs.
ensioning force F . The coloured area represents the standard deviation of the four experiments performed. (d) Side views of a creased sheet during deployment,
t different tensioning forces: each image shows the comparison between the experimental deformed configuration (solid) and its analytical prediction (dashed),
verlaid with the undeformed configuration (F = 0). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version

of this article.)
crease absolute vertical position Yc (a), the horizontal displace-
ent of the tensioned end δ (b), and the quadratic mean surface
ccuracy f (c) as a function of the applied force F . In all plots, the
xperimental results (pink-shaded areas and red curves) are in
xcellent agreement with the analytical and finite element pre-
ictions (black and green curves, respectively), with the largest
iscrepancy that can be observed for the end displacement δ at

the lowest forces, similarly to the sheet with a single crease.
Slightly higher differences can be noticed for the membrane with
three creases, especially in the F − δ plot. This can be attributed
to the initial configuration, which is not perfectly symmetric due
to the inherently small differences in the opening angle of each
crease (see also the first images of Fig. 6d), and to the lower
accuracy of the custom-made DIC script at high forces. Further-
more, Figs. 5d and 6d report the analytically calculated deformed
configurations (dashed curves) juxtaposed with the lateral pic-
tures taken during the experiments, for the sheets with two
and three creases, respectively. For both systems, an excellent
agreement is found over the entire membrane for the six applied
forces presented. As noted before, the comparison improves at
higher forces, when the influence of any initial experimental
misalignment or antisymmetry diminish, and the theoretical and
experimental configurations are hardly distinguishable.

Overall, the experiments performed on creased sheets with
single and multiple folds testify the accuracy of the developed
nonlinear model over a wide range of tensioning forces and
over the entire spatial domain of the membrane. It should be
noted that typical origami structures possess multiple creases
converging into vertices, while the accordion-like membranes
studied do not have vertices. However, this study builds the
7

theoretical foundation for an exhaustive analysis where the inter-
action between sheet elasticity and the rigidity of the creases and
the vertices are simultaneously considered. The characterization
and modelling of the complex creases-vertices systems, outside
the scope of this paper, will enable the precise modelling of
three-dimensional creased systems, such as the Miura fold. The
higher rigidity of the vertices is expected to affect the mechanical
response and shape accuracy, especially when the combination
of panel length, tensioning force, stiffness of the creases and
vertices is such that the main deployment mechanism is crease
opening. For origami metamaterials and structures, usually this
occurs at high tensioning forces, when the membranes are almost
fully deployed. If panel bending prevails, it is believed that the
presented model can provide a reasonable estimate of the deploy-
ment of three-dimensional configurations with vertices, such as
the Miura-ori [19], up to a certain level of loading, after which
the rigidity of the vertices becomes significant.

4.3. Elastic energy contributions

For the tested membranes, we theoretically predict the elastic
energy contributions and identify the proportion associated with
the two mechanisms of fold opening and panel bending through
Eqs. (12), (13a) and (13b). As the constituent material is the same,
k and B are constants, and the two parameters that affect the
deployment mechanism are the tensioning force F and the length
of each panel l = [50, 40, 30] mm for the membranes with one,
two and three folds, respectively. Considering the sheet flexibility,
and observing the deformed configurations in Figs. 4d, 5d and
6d, one would conclude that the main deployment mechanism is
panel bending, which is associated with a higher contribution of
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Fig. 5. Comparison between experimental results (red curve), analytical (black curve) and finite element (green curve) predictions for the deployment of a membrane
ith two creases: (a) tensioning force F vs. vertical position of the crease Yc , (b) tensioning force F vs. horizontal displacement δ, and (c) surface accuracy f vs.
ensioning force F . The coloured area represents the standard deviation of the two experiments performed. (d) Side views of a creased sheet with two folds during
eployment, at different tensioning forces. Each image shows the comparison between the experimental deformed configuration (solid) and its analytical prediction
dashed), overlaid with the undeformed configuration (F = 0). (For interpretation of the references to colour in this figure legend, the reader is referred to the web
ersion of this article.)
ending energy, and a lower contribution of crease elastic energy
. At low tension forces, this is confirmed by the computation of
through Eq. (12) and the graphs shown in Fig. A.7, where the

ast majority of elastic energy is associated with sheet bending.
owever, an increase in applied tension produces an increase
f crease energy. Eventually, the crease opening mechanism be-
omes the dominant one (Ω > 50%) for the membranes with two
and three creases when the tension force is very high, the sheet
is almost fully flat, and the increment in deployment is mainly
caused by fold opening.

5. Conclusions

A mathematical formulation has been developed to predict the
unfolding response of creased membranes comprising an arbi-
trary number of parallel folds. Within the framework of Euler’s
elastica theory, the developed nonlinear model accounts for the
interplay between sheet bending and crease behaviour, which
has been modelled as a linear rotational spring. The analytical
solution was first obtained for a membrane with a single fold
and then extended to account for alternating mountain and valley
folds. The formulation enables the evaluation of the deformed
8

configuration, surface accuracy and interplay between membrane
bending and crease opening during deployment. In particular,
the analysis of the contribution of bending and crease ener-
gies has proven the existence of two dimensionless parameters
that govern the unfolding mechanism and characterize two de-
ployment regimes. Furthermore, sensitivity analyses have been
performed to assess the influence of the crease initial opening
angle and the rotational stiffness on the mechanical response.
Finite element analyses and experiments have been carried out
to validate the developed analytical solution and the assumption
of the crease constitutive model. The deployment tests were per-
formed on three sets of 100µm thick polyester sheets with one,
two and three creases, where 2D and 3D digital image correlation
techniques were used to evaluate the deformed configuration
of the tensioned membranes. The experimental measurements
of crease position, membrane end displacement, quadratic mean
surface accuracy and deformed shape have been found in excel-
lent agreement with the analytical predictions over a wide range
of tensioning forces and thin film configurations. This proves
the precision of the developed formulation, which represents an
accurate tool to guide the design and assess the response of
creased materials and structures undergoing deployment, such as
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Fig. 6. Comparison between experimental results (red curve), analytical (black curve) and finite element (green curve) predictions for the deployment of a membrane
ith three creases: (a) tensioning force F vs. vertical position of the crease Yc , (b) tensioning force F vs. horizontal displacement δ, and (c) surface accuracy f vs.

tensioning force F . The coloured area represents the standard deviation of the four experiments performed. (d) Side views of a creased sheet with three folds during
deployment, at different tensioning forces. Each image shows the comparison between the experimental deformed configuration (solid) and its analytical prediction
(dashed), overlaid with the undeformed configuration (F = 0). (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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lightweight membranes for space structures requiring ultrahigh
shape control.
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Appendix A. Analytical derivation of the equilibrium equa-
tions and energy contributions for creased sheets

The equilibrium equations of the creased membrane are ob-
tained by annealing the first variation of the total potential energy
V , Eq. (1), which can be expressed, considering integration by
parts and the symmetric rotations at the crease θ (l) = −θ (l),
2 1

9

as

δV(θ1, θ2) = −

∫ l

0
δθ1

[
Bθ ′′

1 − F sin(α + θ1)
]
ds

+ δθ1(l)
[
Bθ ′

1(l) + 2kθ1(l)
]
− Bθ ′

1(0)δθ1(0)

−

∫ 2l

l
δθ2

[
Bθ ′′

2 − F sin(α − θ2)
]
ds

+ δθ2(l)
[
−Bθ ′

2(l) + 2kθ2(l)
]
+ Bθ ′

2(2l)δθ2(2l),

(A.1)

here δθ1 and δθ2 represent the variations of θ1 and θ2, respec-
ively. Imposing δV = 0 and introducing the supplementary
ngle β = π − α, we obtain the nonlinear differential equations
nd boundary conditions for the first and second half of the
embrane, identified by i = 1 and s = [0, l], and i = 2 and
= [l, 2l], respectively

θ ′′

i + (−1)i F sin
[
(−1)iθi + β

]
= 0,

−1)iBθ ′

i (l) = 2kθi(l),
′

1(0) = 0 or θ ′

2(2l) = 0.

(A.2)

y introducing the auxiliary angle ϕi = (−1)iθi + β , the dimen-
ionless curvilinear coordinate ŝ = s/l, load λ2 = Fl2/B and
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Fig. A.7. Contribution of crease energy Ω with respect to the total elastic energy as a function of ξ (left) and λ2 (right) for the tested creased membranes, with
= [50, 40, 30] mm for the sheets with one, two and three folds, respectively. B and k are material properties common to all three sets of membranes.
t
t

otational stiffness χ = kl/B, the governing system becomes
′′

i + λ2 sinϕi = 0
′

1(0) = 0 or ϕ′

2(2) = 0

− ϕi(1) +
ϕ′

i (1) l
2χ

= 0.
(A.3)

he equilibrium configuration can be obtained through an an-
lytical manipulation of Eq. (A.3) based on integration and the
ollowing change of variables

1 = sin
ϕ1(0)
2

or η2 = sin
ϕ2(2)
2

ηi sinφi = sin
ϕi

2
,

(A.4)

eading to the solution for the two halves of the membrane

1(ŝ) = 2 arcsin
[
η1 sn

(
λŝ + K(η1), η1

)]
,

2(ŝ) = 2 arcsin
[
η2 sn

(
λ(ŝ − 1) + K(m, η2), η2

)]
,

(A.5)

here sn represents the Jacobi sine amplitude function, K(ηi) and
(m, ηi) are the complete and incomplete elliptic integrals of the
irst kind, and m is a parameter defined as

= arcsin
[

1
η2

sin
(
ϕ2(0)
2

)]
. (A.6)

tarting from Eq. (A.5), the membrane’s local rotational field is
escribed by Eq. (3), while its curvature is

′

1(ŝ) = −2
λ η1

l
cn

(
λŝ + K(η1), η1

)
,

′

2(ŝ) = 2
λ η2

l
cn

(
λ(ŝ − 1) + K(m, η2), η2

)
,

(A.7)

here cn represents the Jacobi cosine amplitude function. Substi-
uting Eqs. (3) and (A.7) into the boundary condition at the crease,
q. (A.2)2, yields to

− 2 arcsin [η1 sn (λ+ K(η1), η1)]

+ β −
λ η1 cn (λ+ K(η1), η1)

χ
= 0,

2 arcsin [η2 sn (K(m, η2), η2)]

− β −
λ η2 cn (K(m, η2), η2)

χ
= 0,

(A.8)

hich constitute the auxiliary equations necessary to obtain the
ought solution [34]. It should be noted that the integration of the
10
Fig. B.8. Normalized bending moment at the crease, Mc/w, reported as a
function of the change in fold angle γ − γ0 during uniaxial tension tests on
creased samples. The cloud of points represent experimental data, fitted by a
linear regression to obtain the normalized crease rotational stiffness K = k/w.

system (A.3) through the change of variable (A.4), for the right
side of the membrane (i = 2) from ŝ = 1 to ŝ = 2, provides the
relationship between λ, η2 and m

λ = K(η2) − K(m, η2). (A.9)

Eq. (A.9) can be employed in conjunction with the properties of
the Jacobi functions [35] to prove that Eqs. (A.8)1 and (A.8)2 are
equivalent, so that η1 = η2 = η, as expected from the symmetry
about the crease. Therefore, the unique relationship between the
load parameter λ and the kinematic parameter η can be obtained
by solving numerically Eq. (A.8)1, which is equivalent to Eq. (4).

In the global reference frame, the membrane’s deformed con-
figuration is described by Eq. (5), whereas in the local reference
frames, the dimensionless coordinates x̂i and ŷi of the points of
he deformed membrane are calculated from the integration of
he inextensibility constraints as

x̂i(ŝ) =
2η
λ

Ai sinβ + Bi cosβ,

ŷi(ŝ) = (−1)i(
2η
λ

Ai cosβ − Bi sinβ),
(A.10)



M. Gori and F. Bosi Extreme Mechanics Letters 56 (2022) 101849

w

M

T
E

Fig. B.9. Sensitivity analysis for (a) the crease initial opening angle γ0 and (b) the dimensionless rotational stiffness χ . Dimensionless force λ2 vs. dimensionless vertical
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where

A1(ŝ) = −cn
(
λŝ + K(η), η

)
,

A2(ŝ) = cn(K(m, η), η) − cn
(
λ(ŝ − 1) + K(m, η), η

)
,

B1(ŝ) = −ŝ +
2
λ

[
E

(
am(λŝ + K(η), η), η

)
− E (η)

]
,

B2(ŝ) = −ŝ + 1 +
2
λ

[
E

(
am(λ(ŝ − 1) + K(m, η), η), η

)
− E (am(K(m, η), η), η)] ,

(A.11)

E(η) and E(m, η) are the complete and incomplete elliptic inte-
grals of the second kind, and am represents the Jacobi amplitude
function.

The bending, Eb, and crease, Ec , energies can be defined through
the dimensionless coordinate ŝ = s/l as

Eb = 2 l
∫ 1

0

M(ŝ)2

2B
dŝ, Ec =

M(1)2

2k
, (A.12)

here M(ŝ) and M(1) are the bending moments along the mem-
brane and at the crease, respectively. Considering Eq. (A.7), their
modulus can be expressed as

M(ŝ) = 2 B
λ η

l
cn

(
λŝ + K(η), η

)
,

(1) = Bθ ′(1) = 2 B
λ η

l
cn (λ+ K(η), η)

= F Yc = F
2 η l
λ

cn (λ+ K(η), η) .

(A.13)

herefore, the bending and crease energies are expressed as in
q. (11), while their ratio Γ = E /E is defined from Eq. (12),
b c a

11
rom which the contribution of crease energy with respect to the

otal elastic energy becomes Ω =
Ec

Ec + Eb
=

1
1 + Γ

.

For the three sets of membrane tested in Section 4.2, the
ontribution of crease elastic energy Ω is analytically computed
o assess the dominant deformation mechanism, which varies
epending on the tensioning force F and the length of each panel
= [50, 40, 30] mm for the sheets with one, two and three

olds, respectively. The plots in Fig. A.7 show Ω as a function of
= k/

√
FB (left) and the dimensionless force λ2 = Fl2/B (right).

s noted in Section 2.4, an increase in panel length l leads to a
reater contribution of panel bending during deployment and a
ecrease of Ω . Fig. A.7 (left) further demonstrates the accuracy of
he simplified expressions (13a) and (13b) in capturing the energy
ontributions. Even though at lower tension forces the vast ma-
ority of elastic energy is associated with sheet bending, at high
ension the crease opening mechanism becomes the dominant
ne (Ω > 50%) for the membranes with two and three creases.

ppendix B. Crease rotational stiffness and sensitivity analysis

The fold rotational stiffness per unit width, K = k/w, is
alculated from the linear fit of the crease normalized moment–
ngle relationship, Mc/w vs. γ , as shown in Fig. B.8. It should be
oted that the high density and scattering of experimental data
t low angles is caused by the very low tensioning force, and
ence bending moment in the crease, resulting from an imposed
isplacement at the beginning of the test. Once the tension state
hroughout the membrane increased, the scatter in experimental
easurements decrease. Additionally, when the membrane is
lmost fully tensioned and the normal position of the crease is
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Ŷc = Yc/l ⪅ 0.02, the rotational response of the fold becomes
nonlinear, and the assumption of linear rotational spring, as well
as membrane inextensibility, ceases to exist. It should be noted
that the inextensibility hypothesis is consistent with the engi-
neering application of creased membranes for space antennas,
where the strain introduced in the system during deployment
should be negligible to avoid plasticity, failure or delamination of
the composite membranes, which can hinder both the structural
and functional performances.

Sensitivity analyses are analytically and numerically performed
on a sheet with a single fold to assess the influence of the
fold stiffness and initial geometry on the deployment of creased
membranes. In the former analysis, γ0 is varied by ±10◦ around
the mean value obtained experimentally, γ0 ≈ 100◦. The dimen-
sionless crease stiffness is kept constant at χ = 20, a value that
approximates the rotational stiffness obtained from the experi-
ments, Section 4.1. Fig. B.9a shows how the crease initial angle
affects the dimensionless plots of force λ2 vs. vertical position of
the crease Ŷc (left), force λ2 vs. horizontal displacement of the
loaded end δ̂ (centre), and quadratic mean surface accuracy f̂ vs.
force λ2 (right). As expected, since the length of the membrane is
kept constant, different initial angles γ0 imply higher variability
of Ŷc and δ̂ at low and high tensioning forces, respectively. The
surface accuracy f̂ , which indicates the membrane ability to reach
the fully tensioned and flat configuration, shows a pronounced
nonlinear decrement for high forces, and for the same value of
applied force results higher for smaller γ0.

In the second analysis, two orders-of-magnitude variation in
the crease stiffness is considered, with χ = [5, 20, 200], whilst
the initial opening angle is kept constant, γ0 = 100◦. Fig. B.9b
reports the analogous plots as in the previous analysis, with
the curves qualitatively following the same course. The figure
conveys that an increase in the crease rotation stiffness produces
higher Ŷc and f̂ , and smaller δ̂, for the same tensioning force
λ2. Despite the large variation in χ , the three curves appear
sufficiently close, which suggests that a high variability in the
experimental characterization of χ (or k) has a lower influence
on the accuracy of the prediction of the membrane deformed
configuration, especially when the deployment is driven by panel
bending mechanism. The main differences occur when estimating
the quadratic mean surface accuracy f̂ , where the curves asso-
ciated with different fold rotational rigidities diverge at higher
force. In particular, stiffer creases require a very high deployment
force to be opened, resulting in reduced ability to flatten the
membrane.
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