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Abstract
In this paper we present gesttools, a series of general purpose, user friendly functions with which
to perform g-estimation of structural nested mean models (SNMMs) for time-varying exposures
and outcomes in R. The package implements the g-estimation methods found in Vansteelandt and
Sjolander (2016) and Dukes and Vansteelandt (2018), and is capable of analysing both end of study
and time-varying outcome data that are either binary or continuous, or exposure variables that are
either binary, continuous, or categorical. It also allows for the fitting of SNMMs with time-varying
causal effects, effect modification by other variables, or both, as well as support for censored data
using inverse weighting. We outline the theory underpinning these methods, as well as describing
the SNMMs that can be fitted by the software. The package is demonstrated using simulated, and
real-world inspired datasets.
Keywords: g-estimation, time-varying confounding, effect modification, R

1. Introduction

Applying causal inference to longitudinal observational studies is challenging when one aims to
quantify the joint effect of a sequence of exposures on subsequent outcomes. The likely presence of
time-varying variables associated with both exposures and outcome that are also affected by earlier
exposures, i.e. time-varying confounding, leads to analytical complexities that standard regression-
adjustment methods cannot address (Robins (1986, 2000a); Vansteelandt and Sjölander (2016)).
Causal inference in such cases is typically handled by one of the three ”g-methods”: inverse prob-
ability weighting (IPW) of marginal structural models (MSMs) (Robins (2000a)), g-estimation of
structural nested mean models (SNMMs) (Robins et al. (1992a)), or g-computation (Robins (1986)).

Recently, Vansteelandt and Sjölander (2016) showed how to yield g-estimators of causal ef-
fects for continuous outcomes via generalised estimating equations (GEE) which can be imple-
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mented using standard software. This‘trick’ was extended to include binary and count outcomes
by Dukes and Vansteelandt (2018) (Dukes and Vansteelandt (2018)). This paper presents gest-
tools, which implements the algorithms described in Vansteelandt and Sjölander (2016) and Dukes
and Vansteelandt (2018) in the statistical software R (R Core Team (2019)), to provide a flex-
ible framework for performing g-estimation in R. The functions of the package can be down-
loaded from CRAN, (https://CRAN.R-project.org/package=gesttools) (Tompsett
et al. (2020)), or from the GitHub repository https://github.com/danieltompsett/
gesttools (Tompsett et al. (2020)).

Software for g-computation is relatively common, for example the gformula set of software
packages provided for R,SAS and STATA (Lin et al. (2020); Logan (2019); Daniel et al. (2011)).
However there is a lack of standard software implementation for g-estimation due to its relative
complexity (Vansteelandt and Joffe (2014); Vansteelandt and Sjölander (2016)). Our search found
two notable R packages implementing g-estimation in R, DTRreg (Wallace et al. (2017a,b)), and
ivtools (Sjölander and Martinussen (2019)). The former mostly focuses on estimating dynamic
treatment regimes for data with an end of study outcome. The latter focuses on two stage least
squares, and g-estimation for settings containing an instrumental variable, focusing on data with
time to event, or end of study outcomes. G-estimation for survival outcomes has also recently been
considered in Seaman et al. (2019), which fits structural nested cumulative survival time models
(SNCSTMs), based on work in Dukes et al. (2019), but is not currently released as a formal software
package. Other examples of g-estimation software for survival time outcomes can be found with
stgest command in STATA (Sterne and Tilling (2002)) and the SNCFTMmacro in SAS (Picciotto
et al. (2012)).

The design principle of gesttools is to provide a suite of user-friendly and versatile functions for
general purpose g-estimation for a wide variety of exposure types, outcome types and SNMMs. No-
table features of the package include g-estimation of both end-of-study and time-varying outcome
data, the ability to define effect modification by specific covariates, specification of both overall or
time specific causal effects, and the choice to fit a pre-selected list of SNMM types. The package
supports exposure variables that are binary, continuous, or categorical and outcome variables that
are either binary or continuous. Confidence intervals are obtained via a bootstrap function.

A brief theoretical overview is given in section 2, including a description of the SNMMs that
can be fit by gesttools, and the interpretation of its fitted parameters. The methodology behind the
g-estimation methods used by gesttools is then described in section 3. Section 4 describes the main
functions of the package, with examples shown in section 5. The paper then concludes in section 6.

2. Structural Nested Mean Models

2.1 Overview

Suppose for now we have data with an end of study outcome variable. Let At denote the exposure
variable, measured at times t = 1, . . . , T , and YT+1 the outcome of interest measured at the end of
the study, at time T +1. Suppose also that there is a set of time-varying confounders of the exposure-
outcome relationships, Lt, also measured at t = 1, . . . , T , causally preceding the exposures at each
time t. Furthermore, let U represent unmeasured variables associated with Lt, and YT+1 but not
with At,∀t (Figure 1).

Longitudinal settings such as these pose analytical challenges because of the time-varying con-
founding induced by Lt. If we wished to estimate the joint causal effect of A1, A2, and A3 onto
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Figure 1: Directed Acyclic Graph (DAG) of a typical data setup for a time-varying causal effect and
time-varying confounding.

L1 L2 L3

A1 A2 A3

Y4

U

Y4, we would need to control for L1, L2, and L3 in order to remove the spurious associations they
create between A1, A2, A3 and Y4, but at the same time we would not want to control for L2 and
L3, because they lie on the causal path from A1 to Y , and A2 to Y , respectively. These correspond
to the red paths in Figure 1. Controlling for L2 and L3 would also introduce collider bias, as new
non-causal paths would be opened by this conditioning between A1 and Y4, and A2 and Y4, via U .
As a result standard regression-adjustment methods would give biased estimates of the joint causal
effect of A1, A2, and A3 when time-varying confounding is present (Daniel et al. (2013)). A stated
in the introduction, g-methods, such as g-estimation of SNMMs can deal with this issue.

2.2 SNMMs for End-of-Study Outcomes

Let at be the exposure history up to time t and YT+1(at,0) the outcome that would have occurred
had the exposure been set to its observed values up to time t, and set to 0 afterwards (if A is binary,
0 denotes no exposure). A general linear SNMM is defined as

E(YT+1(at,0) − YT+1(at−1,0)∣at−1, lt) = ψztat, ∀t = 1, . . . , T (1)

where lt is the covariate history up to t, zt is a vector that could include a function of t and/or lt (in
addition to a column of ”1”), and ψ is a vector containing the causal effect of At on YT+1, having
the same dimensions as zt. This model captures the effect of setting the exposure to its observed
values up to time t and then to no exposure after time t versus setting it to its observed value up to
time t − 1 and then to no exposure thereafter.

G-estimation as implemented by Vansteelandt and Sjölander (2016) exploits the fact that the
causal effect ofAT on YT+1, ψ,can be identified using regression models via adjustment for previous
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exposure and confounders times, that is AT−1 and LT , and a propensity score variable for the
likelihood of being exposed. After which ψzT is used to predict the potential outcome under no
exposure at the previous time period, Y (aT−1,0).

HT−1 = YT+1 − ψzTAT ,

where HT−1 denotes the potential outcome under no exposure at time T . The same process is then
repeated to find the causal effect of AT−1 on HT−1, controlling for AT−2 and LT−1, and so forth up
to the identification of the causal effect of A1 on H1.

As with all g-methods the following three assumptions are sufficient for identification of causal
effects: counterfactual consistency, where an individual’s counterfactual outcome under a specific
set of exposures is equal to their outcome had it been their observed exposure history; positivity,
that there is a non-zero possibility of receiving every feasible set of exposures; and conditional
exchangeability, specifically that YT+1(at,0) ⊧At∣Lt,At−1 = at−1, for all feasible sets of exposures
and for all t (Vansteelandt and Sjölander (2016); Robins (2000a); Hernán and Robins (2020)), which
amounts to a sequential no unmeasured confounding assumption. We make an additional paramet-
ric assumption that the SNMM correctly specifies the causal relationship between exposure and
outcome.

This g-estimation method can be applied to settings with binary, continuous and, as shown in
section 3.4, categorical exposure variables, an advantage over IPW of MSMs. Furthermore, the
causal effect ψ may vary with time, or be modified by time-varying covariates via the specification
of zt. Furthermore, g-estimation is more robust to model misspecification than g-computation, as
it does not require postulating a model for the distribution of Lt given the exposure and covariate
history At−1 and Lt−1 for each time t (Hernán and Robins (2020)).

With binary or count outcomes, SNMMs can be specified on the risk ratio scale, for example, as

E(YT+1(at,0)∣at−1, lt)
E(YT+1(at−1,0)∣at−1, lt)

= exp(ψztat), ∀t = 1, . . . , T. (2)

For purposes of simplicity, we will present the following sections 2 and 3 assuming a continuous
outcome and SNMM of the form in equation 1. These sections remain relevant to binary outcome
SNMMs of equation 2 with minimal changes to the methods. This is discussed in section 3.4.

Model Specification

The package gesttools allows users to choose from four specific types of SNMMs, based on the
form of ψzt. For an end-of-study outcome YT+1, the linear SNMMs we consider are as follows

Type 1: Overall Effect

The simplest SNMM sets zt = 1,

E{YT+1(at,0) − YT+1(at−1,0)∣at−1, lt} = ψat, ∀t = 1, . . . , T.

This model encodes a causal effect ψ of At on YT , the same for all exposure times. It may also
be interpreted as an overall, or average effect of exposure at any time on the end of study outcome.
If exposure is a treatment of some sort, ψ may be interpreted as the effect of the last portion of
treatment at any time on the outcome.
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Type 2: Modified Overall Effect

The other notable form for a SNMM is to allow effect modification of the causal effect by some
covariate L∗. In this case zt = (1, L∗t )′, leading to

E{YT+1(at,0) − YT+1(at−1,0)∣at−1, lt} = (ψ0 + ψ1l
∗
t )at, ∀t = 1, . . . , T.

Here, ψ0 represents the overall effect of exposure at any time on outcome when L∗t = 0, which is
modified by an amount ψ1 for each unit increase in the value of L∗t .

Type 3: Time-Varying Effect

The package will also give users the option to allow for a separate causal effect for each exposure
time t = 1, . . . , T , in the form

E{YT+1(at,0) − YT+1(at−1,0)∣at−1, lt} = ψtat, ∀t = 1, . . . , T.

Now ψ = (ψ1, . . . , ψT ) where ψt is specifically the effect of At on YT , and zt is a vector of zeros
with a 1 in the t’th position, so thatψzt = ψt. For example when t = 1ψzt = (ψ1, . . . , ψT )(1, . . . ,0)′.

Type 4: Modified Time-Varying Effect

A time-varying equivalent of SNMM type 2, denoted type 4 is specified as

E{YT+1(at,0) − YT+1(at−1,0)∣at−1, lt} = (ψ0t + ψ1tl
∗
t )at, ∀t = 1, . . . , T

Now ψ = (ψ1, . . . , ψT ) where ψt = (ψ0t, ψ1t), with ψ0t denoting the effect of At on YT+1 when
L∗t = 0, modified by an amount ψ1t for each unit increase in L∗t . Because ψzt = (ψ0t + ψ1tl

∗
t ), zt is

a matrix of zeros with (1, l∗t ) in the t′th row.
Equivalent specifications are available for binary outcomes modeled using equation 2.

Average Causal Effects and Structural Nested Mean Models

A key estimand in causal analysis is the average causal effect (ACE), sometimes known as the av-
erage treatment effect. With a single exposure and outcome, the ACE is defined as the difference in
potential outcomes under exposure and no exposure. In the case of a time-varying binary exposure,
several definitions are possible, one of which is as the difference in potential outcomes of always
being exposed, versus never being exposed. For example, if T = 2

ACE = E(Y3(1,1) − Y3(0,0)).

SNMMs do not provide direct insight into the ACE as they specify the effect of exposure versus
no exposure at a given time, given that exposure after that time is set to 0 (or a suitable reference
value).

However in Vansteelandt and Sjölander (2016) it is shown that, at least for a continuous expo-
sure, some SNMMs imply specific Marginal Structural Models (MSMs), for which the identification
of the ACE is trivial. In particular SNMM type 1 implies an MSM of the form

E(YT+1(at)) = α0 + ψ
T

∑
i=1
at
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where α0 is some constant value. It is then trivial to see that for a continuous YT+1, the ACE is
simply Tψ. Equivalently, SNMM type 3 implies the MSM

E(YT+1(at)) = α0 +
T

∑
i=1
ψtat

and thus the ACE is simply ∑T
i=1ψt.

For binary outcomes or SNMMs with effect modification, such as in types 2 and 4, there is no
obvious MSM to serve as an analogue and thus no obvious way to define an ACE, without invoking
additional models.

2.3 SNMMs for Time-varying Outcomes

Let Ys be a continuous time-varying outcome measured over times s = 2, . . . , T +1. A linear SNMM
is defined for each s as follows

E(Ys(at,0) − Ys(at−1,0)∣at−1, lt) = ψzstat, (3)

for all s = 2, . . . , T + 1 and t < s. We can define similar SNMM types as those for end-of-study
outcomes.

Types 1 and 2

These are the same as in section 2.2, encoding an overall, or effect modified causal effect for all t
and s as

E{Ys(at,0) − Ys(at−1,0)∣at−1, lt} = ψat, ∀s = 2, . . . , T + 1 and t < s

and

E{Ys(at,0) − Ys(at−1,0)∣at−1, lt} = (ψ0 + ψ1l
∗
t )at, ∀s = 2, . . . , T + 1 and t < s.

respectively.

Type 3

To allow for a time-varying causal effect with multiple outcomes, we define c = s − t as the step
length, that is number of time periods between exposure and outcome. A causal effect can then be
encoded for each c = 1, . . . , T , that is for each step length between exposure and outcome separately
by specifying the SNMM.

E{Ys(as−c,0) − Ys(as−c−1,0)∣as−c−1, ls−c} = ψs−cas−c, ∀c = 1, . . . , T and s > c.

Now ψ = (ψs−1, . . . , ψs−T ) and zst is a vector of zeros of length T with a 1 in the c’th position.
By replacing the earlier ψt with ψs−c in this way, we encode the causal parameter as the effect

of exposure on outcome c time periods later, that is the effect of As−c on Ys, ∀s > c. For example
ψs−1 represents the overall effect of exposure on the subsequent outcome.
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Type 4

We can also allow for effect modification with a type 3 SNMM as

E{Ys(as−c,0) − Ys(as−c−1,0)∣as−c−1, ls−c} = (ψ0
s−c + ψ1

s−cl
∗
t )as−c, ∀c = 1, . . . , T and s > c.

Here, the elements of ψzs, t are ψ = (ψs−1, . . . , ψs−T ) with zst a vector of zeros of length T with a
(1, lt) in the c’th position. Here ψs−c = (ψ0

s−c, ψ1
s−c), where ψ0

s−c denotes the effect of As−c on Ys
when L∗s−c = 0, modified by an amount ψ1

s−c for each unit increase in L∗s−c.

2.4 SNMMs for a Categorical Exposure

Suppose that At is a categorical exposure with 2 or more categories. These categories may take any
arbitrary list of names, but we assume for simplicity they are labeled as j = 0,1 . . . , k, where j = 0
denotes no exposure, or some other reference category. Define binary variables Aj

t (j = 0,1, . . . , k)
where Aj

t = 1 if At = j and 0 otherwise. A SNMM can be specified to modeling the causal effect of
exposure to categories 1, . . . , k, versus exposure to category 0 as follows

E(YT+1(at, a0) − YT+1(at−1, a0)∣at−1, lt) =
k

∑
j=1

ψjzta
j
t , ∀t = 1, . . . , T (4)

for an end of study outcome, or

E(Ys(at, a0) − Ys(at−1, a0)∣at−1, lt) =
k

∑
j=1

ψjzsta
j
t (5)

for all s = 2, . . . , T + 1 and t < s, where Ys(at, a0) is the counterfactual outcome of Ys that would
have occurred if exposure was set to its observed history up to time t and set to the reference
category afterwards, and ψj is a vector representing the causal effect of exposure to category j
versus exposure to the reference category 0. For simplicity, we set zt to be identical for each j.

Note there now exists a separate causal vector for exposure to each category j ∈ [1, k], versus
exposure to the reference category. SNMM types 1-4 can be defined in the same way as SNMMs
in sections 2.2 and 2.3 through specification of zt, allowing for effect modification, time-varying
effects, or both for each ψj .

3. Estimation

3.1 G-estimation for End-of-Study Continuous Outcomes

Suppose the data structure is as in Figure 1, and that we wish to fit a SNMM specified as in type 1.
Vansteelandt and Sjölander (2016) states that the g-estimator of the causal effect of AT on YT+1 can
be obtained as follows.

1. PS Model
Fit a propensity score model for A, regressing the exposure at each time point (At) on the
previous exposure history At−1, and covariate history Lt using a logistic regression model if
A is binary. For example

logit(P (At = 1∣at−1, lt)) = η0t + η1tat−1 + η2tlt ∀t = 1, . . . , T
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or a normal linear regression model if A is continuous

E(At∣at−1, lt)) = η0t + η1tat−1 + η2tlt ∀t = 1, . . . , T.

These models can also be consolidated into a single model for each exposure time t, by
including t as a factor variable in the model (Seaman et al. (2019)). From this model estimate
fitted values pt, representing the propensity score (or predicted score if A is continuous) for
exposure at time t for each individual.

2. Adjusted Outcome Model
Obtain an estimate of ψ, ψ̂(1), by regressing the outcome YT+1 on aT−1, lT , and the terms
zTaT and zT pT . For continuous Y this is a normal linear regression model

E(YT+1∣aT , lT , aT−1) = β0 + β1aT−1 + β2lT + β3zT pT + ψzTaT .

It can be shown that the coefficient of zTaT in the fitted outcome model is an estimate of the causal
effect of AT on YT+1, which we denote ψ̂(1) (Vansteelandt and Sjölander (2016)). This can be used
to predict the counterfactual outcome under no exposure after time T −1, which we label HT−1. By
definition HT = YT+1 and in general Ht = YT+1−∑T

i=t+1ψZiAi. Due to its recursive nature this can
be simplified to

Ht =Ht+1 − ψZt+1At+1.

3. Using ψ̂(1) from step 2, estimate the counterfactual outcomes under no exposure at time T
and T − 1 respectively as

ĤT = YT+1 and ĤT−1 = YT+1 − ψ̂(1)zTAT

4. Now fit the adjusted outcome model of step 2 to ĤT and ĤT−1 as follows

E(Ĥt∣at, lt) = β0 + β1at−1 + β2lt−1 + β3ztpt + ψztat.

for t = T,T − 1. These models are fit simultaneously by Generalising Estimating Equations
(GEE) with an independent working correlation. This results in an updated estimate ψ̂(2) for
the causal effects of AT−1 and AT on YT+1.

5. Step 3 is then repeated using ψ̂(2) to re-estimate HT and HT−1 and additionally derive ĤT−2.
Step 4 is then applied to all estimated Ht to obtain an updated estimate of ψ. This is repeated
until H1 is predicted and step 4 applied once more to obtain an estimate of ψ for the causal
effect of At on YT+1 for all t = 1, . . . , T .

G-estimation by this method is doubly robust, in that ψ will be unbiased provided that either the
propensity score model, or the outcome model is correctly specified (and the SNMM is correct). The
association between L and Y is not necessarily assumed correct, in fact it is not strictly necessary
to include L in the outcome model if there is no effect modification. If it is modeled correctly
however, then unbiased causal effects can be obtained even if the propensity score model is mis-
specified. Including the covariates L in the outcome model also leads to an gain in efficiency of
the estimator. Note that by default the adjusted outcome models only condition on the previous
exposure aT−1. A user may wish to condition on ALL previous exposure and confounder history
(at−1 and lt−1), by including them as additional confounding variables. These exposure histories
can be generated in gesttools using the FormatData function (see Implementation).
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Censoring Weights and Missing Data

Suppose the data also contains censoring, that is drop-out, described by a time varying censoring
indicator Ct that is set to 1 if the individual is censored by time t, and 0 otherwise. In this case,
censoring weights are applied to the adjusted outcome model to account for bias caused by loss to
follow up and are calculated as follows

wt =
I(CT+1 = 0)

∏T+1
i=t+1 P (Ci = 0∣Ci−1 = 0, ai−1, li−1)

where I(CT+1 = 0) is 1 when CT+1 = 0 and 0 otherwise. The probabilities P (Ct = 0∣Ct−1 =
0, at−1, lt−1) are estimated in the same way as the propensity scores, that is from a user-specified
logistic regression model such as

logit(P (Ct = 1∣at−1, lt)) = η0t + η1tat−1 + η2tlt, ∀t = 2, . . . , T + 1.

Note that such censoring weights are valid, provided that any variable used in the censoring model
above, is also used in the model for the propensity score. In the package, the weights wT are
calculated prior to the propensity score estimation in step 1 and the remaining wt are estimated at
the same time as Ht in steps 3 or 5.

By default data rows with missing outcome or exposure data not due to censoring are omitted
from the propensity and adjusted outcome models. Note that if At is missing at some time t for an
individual, then all counterfactuals Ht at times 1, . . . , t will also be missing, even if data on A exists
prior to time t.

3.2 G-estimation For Time-Varying Outcomes

When the outcome variable Yt varies over time and is measured at multiple time points, the SNMMs
described in section 2.3 can be estimated by g-estimation as follows.

1. Obtain propensity scores pt in the same way as in step 1 for the end of study outcome imple-
mentation.

2. Obtain an initial estimate for ψ by fitting an adjusted outcome model for Ys on as−2, ls−1,
zs(s−1)as−1 and zs(s−1)ps−1, for example as in the model

E(Ys∣as−1, ls−1, as−2, ps−1) = β0 + β1as−2 + β2ls−1 + β3zs(s−1)pt + ψzs(s−1)as−1,

∀s = 2, . . . , T + 1. The estimated of the causal parameter ψ, denoted ψ̂(1), that captures the
effect of exposure on the subsequent outcome time (that is the effect of As−1 on Ys).

3. Define Hst as the predicted counterfactual of the outcome Ys given exposure is set to its
history up to time t and to 0 from time t + 1 to time s. By again setting t = s − c, this may be
written as Hs(s−c), which we define as the c step predicted counterfactual of Ys. The one step
predicted counterfactual is given as Hs(s−1) = Ys, and in general

Hs(s−c) =Hs(s−c+1) − ψZs(s−c+1)As−c+1,

for c > 1. We can then predict the two step counterfactual Ĥs(s−2) = Ĥs(s−1)−ψ̂(1)Zs(s−1)As−1.
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4. Now update ψ̂(1) by fitting the adjusted outcome model

E(Ĥst∣At, Lt,At−1, Pt) = β0 + β1at−1 + β2lt + β3zstpt + ψzstat,

for s = 2, . . . , T + 1 and t = s − 1, s − 2, to obtain ψ̂(2).

5. Now apply steps 3 and 4 recursively, in each case using the updated ψ̂ to re-predict the ex-
isting counterfactuals and further predict the counterfactuals with an additional time period
between exposure and outcome. Then update ψ̂ by fitting all predicted counterfactuals using
the adjusted outcome model. Repeat until Hs(s−T ) is estimated and a final estimate of ψ is
reached.

The package will allow users to specify an optional argument cutoff, a value for c between 1 and
T which will stop step 5 once Hs(s−c) has been calculated. Note that choosing a ”wrong” value of
cutoff does not cause bias, but may change the interpretation of ψ, which will be relevant only
for causal effects up to c time periods after exposure. Missing data are handled in the same way
as in section 3.1. In the case of censored data, censoring weights are also applied similarly. The
censoring weights for Ĥst in the adjusted outcome model are

wst =
I(Cs = 0)

∏s
i=t+1 P (Ci = 0∣Ci−1 = 0, ai−1, li−1)

.

When implemented, these weights are calculated during step 3 of the algorithm.

3.3 G-estimation for Binary or Count Outcomes

G-estimation of SNMMs when the outcome is a binary or count variable can be more challenging.
For binary data the most obvious SNMM to fit, that uses a logistic link function for the outcome
data cannot be fit by standard g-estimation methods, and suffer from non-collapsibility (Tan (2019);
Tchetgen Tchetgen et al. (2009); Matsouaka and Tchetgen Tchetgen (2017)). Furthermore, additive
SNMMs that measure the mean difference are not recommended for binary outcomes as it is diffi-
cult to obtain a parameterisation in which the exposure effect is variation dependent of the nuisance
parameters Wang et al. (2017); Robins (2000b). Hence (Wang et al. (2017) and Dukes and Vanstee-
landt (2018)) recommend modeling the causal risk ratio, by fitting a multiplicative SNMM using a
log link function as follows.

E(YT+1(at,0)∣at−1, lt)
E(YT+1(at−1,0)∣at−1, lt)

= exp(ψztat) ∀t = 1, . . . , T. (6)

SNMM types 1-4 are defined in the exact same way as continuous outcomes, with the interpretation
of ψ now being a causal risk ratio, rather than a causal risk difference. Work in Dukes and Vanstee-
landt (2018) demonstrated that such SNMMs can be fit in the same way as for continuous outcomes
with only minor modifications of the above algorithms. Firstly, the adjusted outcome models in
steps 2 and 4 are gamma regression models with a log link, rather than normal linear regression
models, that is step 2 and step 4 now fit the model

E(Ht∣at−1, lt, at, pt) = exp(β0 + β1at−1 + β2lt−1 + β3ztpt + ψztat).
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Secondly, the potential outcomes under no exposure at time t are estimated as

ĤT = YT+1 and Ĥt = Ĥt+1exp(−ψ̂ZtAt).

Equivalent changes are made for datasets with time-varying binary outcomes.
If the binary outcome Ys is an indicator of survival up to time s, then the SNMM of equation 6

is equivalent to fitting a special case of SNMMs for survival data over discrete time periods known
as Structural Nested Cumulative Failure Time Models (SNCFTMs), explained in Picciotto et al.
(2012) and Dukes and Vansteelandt (2018).

3.4 G-Estimation for Categorical Exposures

Work by Vansteelandt and Sjölander (2016), specifically the case study of section 4, demonstrated
how g-estimation of SNMMs in the case of a categorical exposure can be performed with only minor
changes to the methods described in the rest of the section.

Propensity Score

The propensity score model is now a multinomial logistic model, fitting At against at−1 and lt

log {P (A
j
t ∣at−1, lt)

P (A0
t ∣at−1, lt)

} = η0jt +
k

∑
m=1

η1mjta
m
t−1 + η2jtlt ∀t = 1, . . . , T and j = 1, . . . , k.

From this model we obtain fitted values pjt, j = 1, . . . , k, representing the propensity score of
exposure to category j at time t.

Adjusted Outcome Model

For a continuous, end-of-study outcome, the first adjusted outcome model is now

E(YT+1∣at, lt) = β0 +
k

∑
j=1

β1ja
j
(T−1) + β2lT−1 +

k

∑
j=1

β3jzT pjT +
k

∑
j=1

ψjzTa
j
T .

Counterfactuals

The counterfactual outcomes are now calculated as

HT = YT+1 and Ht =Ht+1 − f(At+1)

where

f(At+1) = {
0 ∶ if At+1 = 0
ψjZt ∶ ifAt+1 = j

We note that due to the way in which the coding is performed (see section 4), and how the coun-
terfactuals are calculated as above, there is no need for the user to derive the binary variables Aj ,
and only the original categorical exposure is needed. These steps extend naturally to binary out-
comes and time-varying outcome SNMMs. Censoring weights are applied without change from the
previous sections.
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4. Implementation

4.1 Installation and Package Dependencies

The package can be downloaded from CRAN (Tompsett et al. (2020)) via the URL https://
CRAN.R-project.org/package=gesttools, or found at the Github repository https:
//github.com/danieltompsett/gesttools. The package has the following dependen-
cies: DataCombine and the slide function (Gandrud (2016)), geeM for fitting GEE models (Mc-
Daniel et al. (2013)), nnet for fitting multinomial models with multinom (Venables and Ripley
(2002)), rsample and the bootstraps function (Kuhn et al. (2019)), tibble and the as tibble
function (Müller and Wickham (2019)), tidyr and the nest legacy function (Wickham and
Henry (2019)), tidyselect and the all of function (Henry and Wickham (2020)),magrittr for
the %>% operator (Bache and Wickham (2014)), and the testthat package for testing the functions
(Wickham (2011)). The remaining required functions are found in the stats package. All depen-
dencies are automatically loaded when installed via CRAN.

4.2 Data Setup

The data to analyse must be in long format, that is each row holds the data for an individual at some
specific time t, in ascending order by time and id variable. Time periods must be labeled as numeric
integers starting from 1, going up to up to time T . We assume the convention that each row contains
At Lt and Yt+1, and Ct+1. This implies that the censoring indicator for each row should indicate
that a user is censored AFTER time t, specifically after At and Lt are measured, and the outcome
indicates the first outcome that occurs AFTER At and Lt are measured. For example, data at time
1, should contain A1, L1, Y2, and C2. If Y is an end of study variable, simply repeat its value on
each row. We expect the convention that censoring C occurs before the outcome Y is measured at
each time.

The outcome and exposure variables must be set up in a specific manner. They must be either a
continuous variable, or if binary, written as an as.numeric variable taking values 0 or 1, where
1 indicates the event or exposure. This also applies to any covariate that is an effect modifier. Effect
modification by categorical variables is not supported. Categorical exposures must be given as an
as.factor variable. The censoring indicator must also be written as an as.numeric variable
taking values 1 if censored, and 0 otherwise.

Crucially the data must be rectangular, that is there must exists a row entry for every time period
for all individuals. Data rows that are missing due to censoring or missing data must be included
with missing values for all variables besides the id and time variables. A function FormatData is
provided that can add these rows for a given long format dataset.

FormatData(data, idvar, timevar, An, varying, Cn=NA,
GenerateHistory = FALSE ,GenerateHistoryMax = NA)

The required inputs are data,idvar,timevar,An, and varying, which hold (in order) the
name of the data, and the variable names of the time, unique identifier (id), and exposure in quota-
tions. Users then specify for varying a vector of names in quotations of the time-varying variables
in the data, including the exposure, covariates, and if applicable the outcome, with the name of the
censoring indicator given in Cn. The result is a long format dataset that is given in ascending order
of time and id with missing rows added as necessary.
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Users can optionally generate variables corresponding to the lagged exposure history up to d
time periods prior by setting GenerateHistory = FALSE and GenerateHistoryMax =
d, which may be included as covariates in the g-estimation functions.

4.3 G-Estimation Functions

The main functions of the package are gestSingle and gestMultiple, which perform g-
estimation for data with a single end-of-study outcome, and a time-varying outcome respectively.

gestSingle(data, idvar, timevar, Yn, An, Cn, outcomemodels,
propensitymodel, censoringmodel, type, EfmVar,...)
gestMultiple(data, idvar, timevar, Yn, An, Cn, outcomemodels,
propensitymodel, censoringmodel, type, EfmVar, cutoff,...)

For data with a time-varying outcome, an optional input cutoff, sets a maximum value for the
step length c in the algorithm, for which counterfactuals are calculated and the causal parameter ψ
is defined. For example if cutoff = 2 then only the effect of exposure on the two subsequent
outcome time is calculated. This gives the user control over whether to model only short term effects
of exposure (cutoff = 1), or to model longer term effects of exposure up to c outcome periods
after the user was exposed. The full list of input arguments are as follows.

• data: A data frame in long format containing the data to be analysed.

• idvar: Character string specifying the name of the ID variable in data.

• timevar: Character string specifying the name of the time variable in the data. Note that
timevar must specify time periods as integer values starting from 1 (must not begin at 0).

• Yn: Character string specifying the name of the outcome variable.

• An: Character string specifying the name of the exposure variable.

• Cn: Optional character string specifying the name of the censoring indicator variable. Cn
should be a numeric vector taking values 0 or 1, with 1 indicating censored.

• outcomemodels: A list of formulas or formula objects specifying the outcome models for
Yn that includes all the confounders. See notes below on how best to specify these models.

• propensitymodel: A formula or formula object specifying the propensity score model
for An.

• censoringmodel: A formula or formula object specifying the censoring model for Cn.

• type: Value from 1-4, which will fit the corresponding SNMM type as described in section
2.

• EfmVar: Character string specifying the name of the effect modifying variable for types 2
or 4.

• cutoff: Available only for time-varying outcome g-estimation. An integer taking value
from 1 up to T, where T is the maximum value of timevar. Instructs the function to estimate
causal effects only up to cutoff time periods prior to outcome.
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Output

If type = 2 or type = 4, that is the SNMM has effect modification, EfmVar is taken as the
effect modifier. Each function outputs a vector corresponding to the fitted causal parameter ψ, a
summary of the propensity score weights and censoring weights labeled PropensitySummary
and CensoringSummary, as well as the dataset, returned as a tibble dataset with Data, which
includes the full list of propensity score and censoring weights. If An is the name of the exposure
variable, i is the current time period, and EfmVar is the name of the effect modifier, then each
element of ψ is labeled as follows for gestSingle

• type = 1: An: The effect of exposure at any time t on outcome.

• type = 2: An: The effect of exposure at any time t on outcome, when EfmVar is set to
zero.

An:EfmVar: The effect modification by EfmVar, the additional effect of A on Y for each
unit increase in EfmVar.

• type = 3: t=i.An: The effect of exposure at time t=i on outcome.

• type = 4: t=i.An: The effect of exposure at time t=i on outcome, when EfmVar is set
to zero.

t=i.An:EfmVar: The effect modification by EfmVar, the additional effect of A on Y at
time t=i for each unit increase in EfmVar.

For gestMultiple, the output for SNMM types 3 and 4 is instead

• type = 3: c=i.An: The effect of exposure at any time t on outcome c=i time periods
later.

• type = 4: c=i.An: The effect of exposure at any time t on outcome c=i time periods
later, when EfmVar is set to zero.

c=i.An:EfmVar: The effect modification by EfmVar, the additional effect of exposure on
outcome c=i time periods later for each unit increase in EfmVar.

When A is categorical, An is replaced with Anj, where j is the category level, indicating this is the
effect of exposure to category j, versus the reference category.

Notes

The input outcomemodels is specified as a list of T elements (the number of exposure times)
with each element being a formula, specifying an outcome model for the counterfactual outcome
against exposure An, any confounding variables L, and any history of exposure or confounding
variables. Note that these model should NOT include the propensity score. The relevant terms
for the propensity score are added automatically based on propensity scores predicted from the
propensitymodel formula. We recommend including timevar in propensitymodel to
allow for propensity scores to vary with time.

For gestSingle, element i of outcomemodels, that is outcomemodels[[i]] con-
tains the formula for the outcome models at time i, that is for (or up to) the counterfactuals Hi.
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For gestMultiple, outcomemodels[[i]] contains the formula for the outcome models for
the i-step counterfactuals, that is for (or up to) the counterfactuals Hs(s−i). If cutoff=i, then
outcomemodels only needs to be a list of i formula objects, up to the i step counterfactuals.

Every outcome model must include An and, if type is 2 or 4, every outcome model must
include An, EfmVar, and an An:EfmVar interaction, written in that order. To ensure this, every
outcome model must write An on the RHS before the EfmVar term. If not then the formula object
writes the interaction term as EfmVar:An which will not be recognised by the code. An alternative
is to write An*EfmVar in each model instead.

The models defined in outcomemodels and propensitymodel, should include the same
confounders of exposure and outcome as well as the value of the exposure at the previous time point.
This improves the chances of either the propensity or outcome model being correctly specified.
If fitting problems occur, consider removing confounders from the outcome models first. Fitting
problems can also occur due to the history of exposure. For example if At−1 is included in the
outcome model for T = 1, this history does not exist andAt−1 is simply set to the reference category
for every individual. As a final note all terms included in censoringmodel should also be in
propensitymodel.

If the outcome is time-varying, g-estimation become increasingly slow as T becomes large. For
example, when T = 3, there are 3+2+1 = 6 counterfactuals Hst to estimate for each individual, but
when T = 10 there are 10 + 9 + ... + 1 = 55 to estimate. Consider using cutoff to avoid this issue.

4.4 Bootstrap Function

Standard errors for the causal effect estimates are obtained with the bootstrap function gestboot.

gestboot(gestfunc, data, idvar, timevar, Yn, An, Cn=NA,
outcomemodels, propensitymodel, censoringmodel=NULL,
type, EfmVar=NA, cutoff = NA, bn, alpha= 0.05 ,
onesided = "twosided", seed = NULL,...)

The user is required to specify which of the g-estimation functions to be fit with gestfunc, one
of gestSingle or gestMultiple along with the functions required inputs. Users must also
specify bn, alpha and onesided, which define the number of bootstraps to generate, the con-
fidence level α and whether to fit a one or two sided interval (one of "upper", " lower" or
"twosided".) Confidence intervals for each element of ψ are taken as the α, 1 − α or (α2 ,1 −

α
2 )

quantiles of the ordered bootstrap estimates of each element of ψ for lower, upper, and two sided
confidence intervals respectively. These intervals are labeled in the same way as in the g-estimation
functions. Bonferroni corrected intervals for multiple comparisons are also generated with given
confidence level α

r where r is the number of elements of ψ. A full list of the bootstrapped estimates
of ψ are also output as a tibble dataset labeled boot.results.

5. Examples

5.1 Simulated Data

We begin by demonstrating gesttools using simulated datasets generated by the dataexamples
function included with the package.

dataexamples(n = 1000 , seed = NULL, Censoring = FALSE).
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The function outputs four datasets.

• datagest: A dataset with a continuous end of study outcome, and binary time varying
exposure. Designed to test gestSingle.

• datagestcat: A dataset with a continuous end of study outcome, and categorical time
varying exposure with three categories. Designed to test gestSingle.

• datagestmult: A dataset with a continuous time varying outcome, and binary time vary-
ing exposure. Designed to test gestMultiple.

• datagestmultcat: A dataset with a continuous time varying outcome, and categorical
time varying exposure with three categories. Designed to test gestMultiple.

Data are generated on n individuals, comprising of an id variable ”id”, time variable ”time”, con-
tinuous outcome Y (time-varying or end of study), time-varying binary exposure A, time-varying
confounder L, and baseline confounder U, over T = 3 time periods. If Censoring = TRUE the
data are appropriately censored with a censoring indicator Ct. For datagest, datagestmult,
the data are simulated as follows.

• Baseline covariate: U ∼ N(0,1)

• Covariates Lt ∼ N(1 +Lt−1 + 0.5At−1 +U), t = 1,2,3, A0 = 0

• Exposure: At ∼ Bin(1, expit(1 + 0.1Lt + 0.1At−1)) t = 1,2,3.

• Censoring indicator: Ct ∼ Bin(1, expit(−1 + 0.001 ∗Lt−1 + 0.001 ∗At−1)) t = 2,3,4.

• Time-varying outcome: Yt ∼ N(1 +At + γtAt−1 +∑t
i=1Lt +U,1) t = 2,3,4

• Or an End-of-study outcome: Y4 ∼ N(1 + 0.5A2 +A3 +L1 +L2 +L3 +U,1).
where we set (γ1, γ2, γ3) = (0,1/2,1/2). For datagestcat, and datagestmultcat, At is
categorical variable taking values ”a” (the reference category), ”b” or ”c”. We define the coefficient
for each category of At in the models via the ζ(At) function

ζ(At) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 ∶ if At = ”a”
2 ∶ if At = ”b”
3 ∶ if At = ”c”

We then generate At from the following multinomial distribution

• P (At = ”a”) = 1 − 3
5 ∗ expit(1 + 0.1 ∗Lt + ζ(At−1))

• P (At = ”b”) = 1
5 ∗ expit(1 + 0.1 ∗Lt + ζ(At−1))

• P (At = ”c”) = 2
5 ∗ expit(1 + 0.1 ∗Lt + ζ(At−1)).

Now L, Y ,U and C are generated as before, with At replaced by ζAt.
We first demonstrate gestSingle, by generating an appropriate dataset with n=1000 individ-

uals, and no censoring with the following code.
We make two notes. Firstly we use FormatData to create the lagged exposure Lag1A. Sec-

ondly, we allow the propensity score to vary with the time period by adding time as a variable in
propensitymodel.
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R> datas<- dataexamples(n = 1000, seed = 123, Censoring = FALSE)
R> data<-datas$datagest
R> data<-FormatData(data=data,idvar="id",timevar="time",An="A",
+ varying=c("A","L"),GenerateHistory=TRUE,GenerateHistoryMax=1)
R> idvar<- "id"
R> timevar<- "time"
R> Yn<- "Y"
R> An<- "A"
R> Cn<-NA
R> outcomemodels=list("Y˜A+U+L+Lag1A","Y˜A+U+L+Lag1A",
+ "Y˜A+U+L+Lag1A")
R> propensitymodel=c("A˜L+U+as.factor(time)+Lag1A")
R> censoringmodel=NULL
R> EfmVar=NA
R> type<- 1
R> gestSingle(data, idvar, timevar, Yn, An, Cn, outcomemodels,
+ propensitymodel, censoringmodel, type, EfmVar)

$psi
A

1.146566

$Data
# A tibble: 3,000 x 10

A Y L U id time L1A int prs w
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 1 4.62 -0.556 -0.560 1 1 0 1 0.753 1
2 0 4.62 1.86 -0.560 1 2 1 1 0.783 1
3 1 4.62 1.60 -0.560 1 3 0 1 0.774 1
4 0 1.49 -0.270 -0.230 2 1 0 1 0.758 1
5 0 1.49 -0.907 -0.230 2 2 0 1 0.719 1
6 1 1.49 0.859 -0.230 2 3 0 1 0.767 1
7 1 16.4 2.54 1.56 3 1 0 1 0.801 1
8 1 16.4 3.72 1.56 3 2 1 1 0.814 1
9 1 16.4 6.08 1.56 3 3 1 1 0.854 1
10 0 7.46 0.938 0.0705 4 1 0 1 0.775 1
# ... with 2,990 more rows

$PropensitySummary
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.6275 0.7680 0.7892 0.7923 0.8173 0.9169

$CensoringSummary
Mode NA’s

logical 1
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attr(,"class")
[1] "Results"

The output gives the causal effect of exposure on outcome, presumed to be the same at all 3 exposure
times, note that the true value is 1. We also see a preview of the data with the fitted propensity
scores prs and a summary of the propensity scores. We can obtain 95% confidence intervals via
the gestboot function using 1000 bootstrapped datasets.

R> gestfunc<- gestSingle
R> start<- Sys.time()
R> gestboot(gestfunc, data, idvar, timevar, Yn, An, Cn,
+ outcomemodels, propensitymodel, censoringmodel=NULL,
+ type = 1, EfmVar, bn = 1000, alpha = 0.05,
+ onesided = "twosided", seed = 123)
R> end<- Sys.time()
R> end - start

$original
A

1.146566

$mean.boot
A

1.148633

$conf
2.5% 97.5%

A 0.9006799 1.38613

$conf.Bonferroni
2.5% 97.5%

A 0.9006799 1.38613

$boot.results
# A tibble: 1,000 x 1

A
<dbl>

1 1.02
2 1.09
3 1.16
4 0.966
5 0.877
6 1.09
7 1.13
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8 1.27
9 1.24
10 1.23
# ... with 990 more rows

attr(,"class")
[1] "Results"
> end<- Sys.time()
> end - start
Time difference of 6.607419 mins

The output is straightforward; original gives the estimated value of ψ for the original dataset,
and mean.boot displays the average fitted value of ψ over the 1000 bootstrapped datas. The
1−α% and Bonferroni corrected confidence intervals for each element of ψ are given in conf and
conf.Bonferroni. A full list of estimates of ψ for each bootstrapped dataset is also given as a
tibble in boot.results. We note that the average bootstrapped value of ψ closely matches that
estimated form the original data, and that the confidence intervals include the true effect 1. Note
that in versions of R prior to version 3.6.0, results may differ slightly due to a change in the method
of random number generation.

We can also demonstrate g-estimation for a dataset with a time-varying outcomes and censoring
using gestMultiple. In particular, we will run g-estimation of SNMM type 3, a time-varying
causal effect, and specify long term effects of exposure up to 2 subsequent time periods by setting
cutoff = 2

R> datas<- dataexamples(n = 1000, seed = 123, Censoring = TRUE)
R> data<- datas$datagestmult
R> data<-FormatData(data=data,idvar="id",timevar="time",An="A",
+ Cn="C",varying=c("Y","A","L"),GenerateHistory=TRUE,
+ GenerateHistoryMax=1)
R> Cn<-"C"
R> outcomemodels=list("Y˜A+U+L+Lag1A","Y˜A+U+L+Lag1A",
+ "Y˜A+U+L+Lag1A")
> propensitymodel=c("A˜L+U+as.factor(time)+Lag1A")
> censoringmodel=c("C˜L+U+as.factor(time)")
> EfmVar=NA
> type<- 3
> cutoff<-2
> gestMultiple(data, idvar, timevar, Yn, An, Cn, outcomemodels,
+ propensitymodel, censoringmodel, type, EfmVar, cutoff)

$psi
c=1.A c=2.A

1.073489 1.122045
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$Data
# A tibble: 3,000 x 16

id U time Y A L C Lag1Y Lag1A
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 1 -0.560 1 0.204 1 -0.556 0 0 0
2 1 -0.560 2 NA 0 1.86 1 0.204 1
3 1 -0.560 3 NA NA NA 1 NA 0
4 10 -0.446 1 2.26 0 0.107 0 0 0
5 10 -0.446 2 3.50 1 2.18 0 2.26 0
6 10 -0.446 3 NA 0 2.08 1 3.50 1
7 100 -1.03 1 NA 1 -0.271 1 0 0
8 100 -1.03 2 NA NA NA 1 NA 1
9 100 -1.03 3 NA NA NA 1 NA NA
10 1000 -0.249 1 3.88 1 0.290 0 0 0
# ... with 2,990 more rows, and 7 more variables: Lag1L <dbl>,
# int <dbl>, prs <dbl>, cps <dbl>, C0 <int>, cprod <dbl>,
# w <dbl>

$PropensitySummary
Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s

0.6089 0.7627 0.7866 0.7903 0.8157 0.9442 701

$CensoringSummary
Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s

0.6783 0.7275 0.7411 0.7399 0.7527 0.7926 701

attr(,"class")
[1] "Results"
Warning message:
In gestMultiple(data, idvar, timevar, Yn, An, Cn, outcomemodels, :
Variables included in censoringmodel should ideally be included
in propensitymodel else propensity scores may be invalid.
>

Here the parameter c=1.A is the short term effect of A, that is the overall effect of exposure on
the subsequent outcome period, i.e As−1 on Ys, with c=2.A the longer term effect of exposure on
outcome 2 time periods later. The effect c=3.A was not estimated due to the cutoff option. As
before, the true effects are both 1. Note the warning message given which occurs whenever Cn is
supplied reminding the user than any variables used to model the censoring score must also be used
in the propensity score model.

Finally, we show a brief demonstration for a categorical exposure.

R> datas<- dataexamples(n = 1000 ,seed = 123, Censoring = FALSE)
R> data<- datas$datagestcat
R> data<-FormatData(data=data,idvar="id",timevar="time",An="A",
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+ varying=c("Y","A","L"),GenerateHistory=TRUE,
+ GenerateHistoryMax=1)
R> outcomemodels=list("Y˜A+U+L+A:L+Lag1A",
+ "Y˜A+U+L+A:L+Lag1A","Y˜A+U+L+A:L+Lag1A")
R> propensitymodel=c("A˜L+U+as.factor(time)+Lag1A")
R> EfmVar<-"L"
R> gestSingle(data, idvar, timevar, Yn, An, Cn=NA, outcomemodels,
+ propensitymodel, censoringmodel=NULL, type=2, EfmVar)

# weights: 24 (14 variable)
initial value 3295.836866
iter 10 value 3049.680743
final value 3029.176746
converged
$psi

Ab Ab:L Ac Ac:L
0.862709487 0.006566811 1.739354556 0.039175505

$Data
# A tibble: 3,000 x 12

id U time Y A L Lag1Y Lag1A Lag1L
<dbl> <dbl> <dbl> <dbl> <fct> <dbl> <dbl> <fct> <dbl>

1 1 -0.560 1 7.62 a -0.556 0 a 0
2 1 -0.560 2 7.62 c 1.86 7.62 a -0.556
3 1 -0.560 3 7.62 a 3.10 7.62 c 1.86
4 10 -0.446 1 9.54 b 0.107 0 a 0
5 10 -0.446 2 9.54 a 3.18 9.54 b 0.107
6 10 -0.446 3 9.54 b 3.08 9.54 a 3.18
7 100 -1.03 1 8.00 c -0.271 0 a 0
8 100 -1.03 2 8.00 a 1.66 8.00 c -0.271
9 100 -1.03 3 8.00 c 2.98 8.00 a 1.66
10 1000 -0.249 1 5.02 a 0.290 0 a 0
# ... with 2,990 more rows, and 3 more variables: int <dbl>,
# prs <dbl[,2]>, w <dbl>

$PropensitySummary
b c

Min. :0.09199 Min. :0.2656
1st Qu.:0.13249 1st Qu.:0.3186
Median :0.17779 Median :0.3433
Mean :0.16967 Mean :0.3530
3rd Qu.:0.19801 3rd Qu.:0.3870
Max. :0.26527 Max. :0.4870

$CensoringSummary
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Mode NA’s
logical 1

attr(,"class")
[1] "Results"

Now ψ displays the causal effects for each ψj , that contains the causal effects of exposure to cat-
egory j versus the reference. For example Ab is the overall effect of exposure to level ”b” versus
the reference level ”a”, when the effect modifier L = 0. Coefficients containing L are the effect
modifications, that is Ab:L is the additional effect of exposure to level ”b” for each unit increase in
L (or when L is set to 1 if L is binary).

5.2 The QMUL Clinical Effectiveness Group Database

As a simple case study, we demonstrate gesttools on a simulated dataset that is inspired by an ob-
servational study of diabetic patients from the Queen Mary University of London (QMUL) clinical
effectiveness group (CEG) database (Malawana et al. (2018)). The CEG database includes patient
data from three primary care trusts in East London. We are interested in a core cohort of approxi-
mately 45,282 type 2 diabetic (T2D) patients with data collected in 6 monthly intervals from 2011
to 2017.

The question of interest is a comparison of the impact of two ”second line” treatments on blood
glucose levels, measured by HbA1c level. Initial treatment for T2D involves use of Metformin.
When this fails two second line treatments are considered

• Metformin plus insulin, the baseline treatment

• Metformin plus Sulphonylureas

which will represent the binary exposure of interest. The simulated data will create a simplified
version of this data, consisting of n = 4902 eligible T2D patients who failed first line therapy. Each
patient has T = 6 exposure times, measured every 6 months, starting from when they were first
recorded (their baseline), and outcome (HbA1c levels) measured every 6 months from baseline up
to 3 years.

We are interested in the comparison of effects of second line treatments on Hba1c levels three
years after baseline, and, taking HbA1c as a time-varying outcome, the short term effect of treatment
at each time on HbA1c 6-12 months afterwards. The data, which we label dataQMUL is generated
by code found with the supporting material, along with the code required for analysis.

• We have baseline confounders sex (0=female, 1=male), centred age age and its square value
ageSQ, and the centred log value of HbA1c at baseline (t = 1) HbA1cB and its squared
value, Hba1cBSQ.

• Second line treatment exposure Treatment over t = 1, . . . ,6 taking value 0 if Metformin
plus insulin and 1 if Metformin plus Sulphonylureas.

• Time varying outcome over t = 2, . . . ,7 as the centred log HbA1c level HbA1c.
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• An end of study outcome, that is HbA1c at 3 years after baseline (T=7), labeled HbA1cEND.

• Time-varing confounders equal to the previous value of treatment (TreatmentL), the
previous outcome, labeled HbA1cL, and its squared value HbA1cLSQ.

We first use gestSingle to investigate the effect of Treatment on HbA1cEND, fitting a type 1
SNMM with bn=1000 bootstraps for a 95% confidence interval using gestboot.

R> idvar = "id"
R> timevar = "time"
R> Yn = "HbA1cEND"
R> An = "Treatment"
R>
R> outcomemodels<-list(
+ "Hba1cEND˜Treatment+TreatmentL+HbA1cL+sex+age+ageSQ+HbA1cLSQ",
+ "Hba1cEND˜Treatment+TreatmentL+HbA1cL+sex+age+ageSQ+HbA1cLSQ",
+ "Hba1cEND˜Treatment+TreatmentL+HbA1cL+sex+age+ageSQ+HbA1cLSQ",
+ "Hba1cEND˜Treatment+TreatmentL+HbA1cL+sex+age+ageSQ+HbA1cLSQ",
+ "Hba1cEND˜Treatment+TreatmentL+HbA1cL+sex+age+ageSQ+HbA1cLSQ",
+ "Hba1cEND˜Treatment+TreatmentL+HbA1cL+sex+age+ageSQ+HbA1cLSQ")
R>
R> propensitymodel<-c(
+ "Treatment˜TreatmentL+HbA1cL+sex+age+ageSQ+HbA1cLSQ+
+ as.factor(time)")
R>
R> gestboot(gestSingle,data, idvar, timevar, Yn, An,
+ Cn=NA, outcomemodels, propensitymodel, censoringmodel=NULL,
+ type=1, EfmVar=NA, bn=1000, seed=123)

$original
Treatment

0.008680741

$mean.boot
Treatment

0.008697338

$conf
2.5% 97.5%

Treatment 0.003469881 0.01425178

$conf.Bonferroni
2.5% 97.5%

Treatment 0.003469881 0.01425178

$boot.results
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# A tibble: 1,000 x 1
Treatment

<dbl>
1 0.00646
2 0.00900
3 0.0100
4 0.00852
5 0.00739
6 0.0129
7 0.0138
8 0.00860
9 0.00394
10 0.0106
# ... with 990 more rows

attr(,"class")
[1] "Results"

We note a small, but significant overall increase in log HbA1c levels at the end of follow up of about
0.008 when on Sulphonylureas, compared to insulin, in combination with Metformin. As this is a
type 1 SNMM the ACE can be calculated as shown in section 2.2 as 0.08 ∗ 6 ≈ 0.64, representing
the effect on HbA1c levels at end of study when always on Sulphonylureas compared to always on
insulin.

We now analyse the effect of Treatment on time varying HbA1c. We set cutoff =2 to in-
dicate that we are interested in the effect of Treatment on HbA1c level 1 or 2 time periods (6 months
to a year) later. Note that as we only calculate up to the two step counterfactuals, outcomemodels
needs only two formulas.

R> Yn = "HbA1c"
R> outcomemodels<-list(
+ "Hba1cEND˜Treatment+TreatmentL+HbA1cL+sex+age+ageSQ+HbA1cLSQ",
+ "Hba1cEND˜Treatment+TreatmentL+HbA1cL+sex+age+ageSQ+HbA1cLSQ")
R>
R> gestboot(gestMultiple,data, idvar, timevar, Yn, An,
+ Cn=NA, outcomemodels, propensitymodel, censoringmodel=NULL,
+ type=3, EfmVar=NA, cutoff=2, bn=1000, seed=123)

$original
c=1.Treatment c=2.Treatment

-0.01923040 0.02648829

$mean.boot
c=1.Treatment c=2.Treatment

-0.01939645 0.02637108
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$conf
2.5% 97.5%

c=1.Treatment -0.02407830 -0.01432729
c=2.Treatment 0.02107008 0.03144697

$conf.Bonferroni
1.25% 98.75%

c=1.Treatment -0.02437562 -0.01356692
c=2.Treatment 0.02016529 0.03211326

$boot.results
# A tibble: 1,000 x 2

‘c=1.Treatment‘ ‘c=2.Treatment‘
<dbl> <dbl>

1 -0.0243 0.0262
2 -0.0242 0.0232
3 -0.0191 0.0267
4 -0.0170 0.0290
5 -0.0188 0.0239
6 -0.0216 0.0242
7 -0.0220 0.0232
8 -0.0225 0.0230
9 -0.0183 0.0276
10 -0.0212 0.0244
# ... with 990 more rows

attr(,"class")
[1] "Results"

We note that there is a reduction in HbA1c levels 6 months after taking a Sulphonylureas com-
bination, compared to an insulin combination of around -0.02, but that after a year, those on a
Sulphonylureas combination had an increase in HbA1c levels of around 0.03. Both are shown to be
significant.

6. Concluding Remarks

The paper introduces and demonstrates a series of functions forming the package gesttools for
general purpose g-estimation of SNMMs. The package provides a variety of options to users in
terms of choice of model specifications, and is applicable to a number of different variable types for
both exposure and outcome. These functions have user friendliness in mind, allowing the choice
of SNMMs via simple options and a simple specification of the relevant propensity and outcome
models.

This implementation of g-estimation retains the double robustness property of the theory they
are based on, allowing for unbiased estimates provided that either the propensity or outcome model
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are correctly specified. We hope that the accessibility of these functions will encourage use of
g-estimation by practitioners.

A notable area of future improvement is in the analysis of survival, or time to event out-
come data. The package is capable of fitting Structural Nested Cumulative Failure Time Models
(SNCFTMs) to survival data in the case of discrete time periods, by treating failure time as a re-
peated measurement binary outcome (using the methods of Picciotto et al. (2012) and Dukes and
Vansteelandt (2018)). However, the packages ability to analyse survival data is limited, for exam-
ple when survival and exposure are treated as continuous measurements. Other work, such as in
Seaman et al. (2019) are capable of fitting SNCSTMs for continuous exposure and outcome mea-
surements, and are more specialised for the analysis of survival data in general. The possibility
of implementing additional functionality to gesttools, such as the handling of competing risks or
outcomes is consideration for future work.
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A Sjölander and T Martinussen. Instrumental Variable Estimation with the R Package ivtools.
Epidemiol.Methods, 8, 2019.

Jonathan Sterne and Kate Tilling. G-estimation of causal effects, allowing for time-varying con-
founding. The Stata Journal, 2(2):164–182, 2002.

Zhiqiang Tan. On doubly robust estimation for logistic partially linear models. Statistics and
Probability Letters, 155:108577, 2019.

Eric J. Tchetgen Tchetgen, James M. Robins, and Andrea Rotnitzky. On doubly robust estimation
in a semiparametric odds ratio model. Biometrika, 97(1):171–180, 12 2009.

Daniel Tompsett, Stijn Vansteelandt, Oliver Dukes, and Bianca De Stavola. gesttools: General
Purpose G-Estimation for End of Study or Time-Varying Outcomes, 2020. URL https://
CRAN.R-project.org/package=gesttools. R package.
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