
www.thelancet.com/microbe   Published online August 18, 2022   https://doi.org/10.1016/S2666-5247(22)00184-7	 1

Review

Lancet Microbe 2022

Published Online 
August 18, 2022 
https://doi.org/10.1016/ 
S2666-5247(22)00184-7

Institute for Global Health 
(C Garcia-Maurino Alcazar MD, 
C Oesser PhD, A Miltz PhD, 
Prof A Rodger MD, 
Prof N Field MBPhD) and 
Institute for Child Health 
(V M Paes PhD), University 
College London, London, UK; 
John Radcliffe Hospital, 
University of Oxford, Oxford, 
UK (V M Paes); Host-Microbiota 
Interactions Laboratory, 
Wellcome Sanger Institute, 
Hinxton, UK (Y Shao PhD, 
T D Lawley PhD); Royal Free 
Hospital, Royal Free London 
NHS Foundation Trust, 
London, UK (Prof A Rodger); 
Institute of Applied Health 
Research, University of 
Birmingham, Birmingham, UK 
(Prof P Brocklehurst MSc)

Correspondence to: 
Dr Cristina Garcia-Maurino 
Alcazar, Institute for Global 
Health, University College 
London, London WC1E 6JB, UK 
cristina.alcazar.19@ucl.ac.uk

The association between early-life gut microbiota and 
childhood respiratory diseases: a systematic review 
Cristina Garcia-Maurino Alcazar, Veena Mazarello Paes, Yan Shao, Clarissa Oesser, Ada Miltz, Trevor D Lawley, Peter Brocklehurst, 
Alison Rodger, Nigel Field

Data from animal models suggest a role of early-life gut microbiota in lung immune development, and in establishing 
susceptibility to respiratory infections and asthma in humans. This systematic review summarises the association 
between infant (ages 0–12 months) gut microbiota composition measured by genomic sequencing, and childhood 
(ages 0–18 years) respiratory diseases (ie, respiratory infections, wheezing, or asthma). Overall, there was evidence 
that low α-diversity and relative abundance of particular gut-commensal bacteria genera (Bifidobacterium, 
Faecalibacterium, Ruminococcus, and Roseburia) are associated with childhood respiratory diseases. However, results 
were inconsistent and studies had important limitations, including insufficient characterisation of bacterial taxa to 
species level, heterogeneous outcome definitions, residual confounding, and small sample sizes. Large longitudinal 
studies with stool sampling during the first month of life and shotgun metagenomic approaches to improve bacterial 
and fungal taxa resolution are needed. Standardising follow-up times and respiratory disease definitions and 
optimising causal statistical approaches might identify targets for primary prevention of childhood respiratory 
diseases.

Introduction 
Childhood respiratory diseases, including respiratory 
infection, recurrent wheezing, and asthma, are important 
causes of morbidity and mortality in children and at ages 
thereafter. Up to 30% of children worldwide will develop 
at least one viral lower respiratory tract infection (vLRTI) 
during their first 2 years of life,1 mainly due to respiratory 
syncytial virus, and a third of these children will have 
subsequent recurrent wheezing episodes.2 Although 
asthma-like symptoms might be present before age 
2 years, there are no reliable diagnostic tools to ascertain 
a diagnosis of asthma in children younger than 5 years.3,4 
Asthma prevalence from age 5 years to 14 years is 
estimated to be around 10%,5 making it the most 
prevalent chronic disease in childhood globally.6 Despite 
the huge health burden of vLRTIs, there are currently no 
widespread licensed primary prevention strategies for 
them or for asthma in children.3,7 This absence of 
strategies is partly due to an incomplete understanding 
of disease pathogenesis—although host immune 
response seems to play an important role in susceptibility 
to both vLRTI and asthma.8,9 It is now known that the 
innate and adaptive immune systems of individuals are 
influenced by their gut microbiota composition during 
the first year of life,10,11 which might be a determinant of 
childhood respiratory disease aetiology.

Animal models have provided evidence that early-life gut 
microbiota composition might influence respiratory 
immunity and susceptibility to both asthma and respiratory 
infections.12,13 This organ-level interaction is referred to as 
the gut–lung axis. Mechanistically, bioactive bacterial 
ligands and metabolites derived from the gut might enter 
the circulation to affect immune cell migration in the 
lung.14 Summarising available human observational 
evidence exploring the association between early-life gut 
microbiota composition and childhood respiratory 
diseases might help inform future intervention studies.

The gut microbiota is the largest and most diverse 
microbiota in the body, harbouring billions of bacteria 
(the predominant organisms), archaea, eukaryotes, and 
viruses.15 Gut microbiota colonisation starts at birth and 
is highly dynamic during the first years of life, stabilising 
after 1–3 years.16 Clinical, maternal, feeding, and 
environmental factors shape the early-life gut microbiota 
composition.17,18 For example, infants delivered by 
caesarean section have a higher abundance of 
opportunistic pathogens during the neonatal period 
than do infants delivered by a vaginal birth.18 To a lesser 
extent, the same is true for infants who are not 
breastfed.18 Gut microbiota is usually measured by stool 
sample collection and can broadly be described in terms 
of diversity and abundance. Diversity describes the 
number of different taxa within a community. α-diversity 
refers to the number of taxa detected per sample, 
whereas β-diversity indicates the difference in com
position between samples.19 More nuanced comparisons 
identify specific relative abundance of bacteria or fungi 
at different taxonomic levels.

In the past decade, genomic sequencing technologies 
and bioinformatic analytical tools have advanced 
considerably. Available platforms now allow the 
simultaneous sequencing of most or all genetic material 
present in stool samples,20 enabling an untargeted and 
more in-depth exploration of the gut microbiota 
composition and functional community dynamics.21 
A widely used genomic sequencing technique is the 
amplicon approach, which sequences the ribosomal 
16S rRNA gene and is highly conserved across all 
bacterial species. This sequencing technique enables 
resolution to the bacterial genus level.22 Shotgun 
metagenomic sequencing refers to the sequencing of all 
DNA present in a sample without targeting.22 This 
approach can readily resolve bacteria, fungi, viruses, and 
other microorganisms to strain level and can be used to 
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infer gene functionality.20 However, both 16S rRNA gene 
sequencing and shotgun metagenomic sequencing 
involve multiple steps and complex technical challenges 
that can introduce measurement bias, including sample 
storage, DNA extraction, sample quality control, and 
bioinformatic pipelines.19,20,23 Moreover, studies 
combining epidemiological and genomic sequencing 
data could be subject to a range of limitations that might 
threaten legitimate inference.20

We systematically reviewed the existing literature to 
examine the association between gut microbiota compo
sition during infancy (measured by genomic sequencing) 
and the subsequent development of respiratory disease 
during childhood.

Method 
A systematic literature review was done in accordance 
with the Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses guidelines.24 The protocol was 
prospectively registered in the International Prospective 
Register of Systematic Reviews (CRD42020184094).

Search strategy and selection criteria 
We comprehensively searched five electronic databases 
(MEDLINE [Ovid interface], Embase, Web of Science, 
Scopus, and Cochrane) for articles published with the full 
text in English between Jan 1, 2010, and April 27, 2021. A 
start year of 2010 was selected to ensure all studies using 
genomic sequencing for gut microbiota characterisation 
were captured.25 Four broad search terms were considered: 
“infancy”, “intestine”, “microbiota”, and “respiratory 
disease”. An information specialist was consulted and the 
search strategy was refined with an iterative process on 
the basis of inclusion of key studies to optimise the 
selection of MeSH terms and keywords. Additional 
studies were identified by searching the references of 
relevant systematic reviews and included studies 
(appendix pp 2–3).

Screening and data extraction 
The first reviewer (CG-MA) screened all titles, abstracts, 
and full texts of shortlisted articles. A second reviewer 
(VMP) screened 10% of studies at each stage of the 
screening process and results were compared between 
reviewers to check agreement. Any disagreement was 
resolved with a third reviewer (CO). Data were extracted 
by the first reviewer. The second reviewer independently 
extracted information from 80% of included studies to 
ensure accuracy in reporting and to minimise reviewer 
bias.

Strategy for data synthesis 
Differences in microbiota diversity, relative abundance of 
bacteria or fungi taxa (at species, genus, or family level), 
and any measure of association with 95% CIs relative to 
either diversity or abundance were extracted and reported 
as the main result. Other gut microbiota parameters 

analysed and findings related to gut microbiota 
composition and respiratory disease were also extracted 
(appendix pp 8–10).

Assessment of methodological quality 
Critical appraisal was performed independently by 
two reviewers (CG-MA and VMP) to assess the quality of 
included studies and provide context for the interpretation 
of the findings. Studies were assessed with the 
Strengthening the Reporting of Observational Studies in 
Epidemiology (STROBE) metagenomics framework for 
reporting of metagenomic studies.20 A checklist to 
evaluate reporting of the main sources of bias in 
metagenomic studies was generated from the framework 
(appendix pp 15–17). Studies were also assessed with the 
Newcastle-Ottawa Scale (NOS) quality assessment scale 
for evaluation of bias and study design limitations.26 By 
use of defined thresholds, the results from the NOS were 
translated to the Agency for Health Research and Quality 
standards and studies were rated as good, fair, or poor 
(table 1; appendix pp 11–12).38 When studies included 
multiple analyses aimed at answering several research 
questions within the same study, quality assessments 
were only applied to the analyses relevant to this 
systematic review.

Results 
4759 titles and abstracts were screened and 4648 of these 
studies were excluded. Reasons for exclusion included 
non-primary research, animal studies, in-vitro studies, or 
studies in which exposure or outcome were not relevant 
to the research question. After a full-text review of the 
remaining 111 studies, 11 were included (figure). 
Agreement between the first and second reviewer was 
high (κ=0·98).

Of the 11 included studies, eight were cohort studies28,29,32–37 

and three were nested case-control studies (table 1).27,30,31 
Nine studies were done in urban areas in Europe or the 
USA and two studies were done in rural areas of Europe 
and Ecuador.31,37 Four studies were from the same research 
group and based on the same birth cohort, with potential 
overlap of participants.27,30,35,36 Sample size ranged from 
76 participants to 917 participants, with a median of 319. 
Eight studies27–30,32,34,36,37 characterised the gut microbiota 
composition at more than one timepoint, but only three 
studies collected stool samples in the neonatal period (first 
month of life).29,32,33 All studies used amplicon sequencing 
targeting the 16S rRNA (V3 or V4 regions) gene for gut 
microbiome determination. Three studies included 
evaluation of the presence of fungi.29,31,37 Respiratory disease 
status was ascertained on the basis of parental reported 
symptoms or reported doctor diagnosis of respiratory 
disease in all but one study, in which the outcome was 
ascertained with clinical visits during acute respiratory 
episodes.32 Two studies mentioned that lung function tests 
were done,32,34 but it was unclear how these tests were 
integrated into respiratory disease definitions.

See Online for appendix
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Four of the 11 included studies were classified as poor 
quality,27–29,35 one was classified as fair quality,31 and six were 
classified as good quality (table 1, appendix pp 11–13).30,32–

34,36,37 Study design limitations were mainly due to potential 
selection bias or unadjusted confounders. Most studies 
selected participants on the basis of completed follow-up 
or availability of stool samples, whereas only three 
studies31,32,36 compared participants with and without stool 
availability or complete follow-up, showing low probability 
of selection bias. No studies presented hypothesised 
a-priori causal pathways regarding variables associated 
with exposures or outcomes (potential confounders),39 and 
three studies did not mention adjusting for confounding 
factors.27,28,35 The other eight studies adjusted for some 
potential confounders, such as breastfeeding or delivery 
method. However, other important potential confounders, 
such as socioeconomic status or smoking exposure,40 were 
not accounted for in most analyses of these eight studies.

Regarding the STROBE metagenomics checklist 
(appendix pp 14–17), all included studies provided at least 
partial methods for specimen collection, storage, and 
DNA extraction, although six studies27,30,31,34–36 did not clearly 
report time between sample collection and freezing. 
Six studies27,29–33 explicitly reported use of negative control 
samples to exclude contamination. Sequencing methods 
and bioinformatic pipelines were at least partly reported 
by all included studies. Seven studies amplified the 
V4 hypervariable region of the 16S rRNA gene, and 
four studies amplified the V3 region of the 16S rRNA 
gene.27,28,30,34 All studies except one28 used Illumina HiSeq 
or MiSeq sequencing platforms. Bioinformatic pipelines 
for data cleaning varied between studies. Four used 
Mothur27,30,31,32 and six used QIIME or QIIME2.29,31,33,35–37 All 
but one study33 used a version of the Greengenes database 
(2006 or 2013) as a reference for defining bacterial 
operational taxonomic units.

The statistical analyses used to establish the 
association between diversity and relative abundance of 
taxa and respiratory disease included univariate 
statistical tests,27 correlation matrices adjusted for false 
discovery rates,28 DESeq2,30,31,36 multivariate regression 
models adapted to microbiome data (eg, MaAsLin),41 
and predictive machine learning approaches.33,35 Most 
included studies compared microbiota diversity or 
raw relative abundance of taxa between participants 
with and without respiratory disease, whereas 
others used clustering approaches based on microbiota 
composition.29,32,34,37 Four studies used quantitative 
PCR as a confirmatory assay27,30,31,33 and one performed 
next-generation sequencing in a subset of 20 samples.33 
Two studies used experimental models (animal or in-
vitro experiments) to validate observational findings.27,29 
Four studies27,29.31,37 evaluated gut microbiota functionality 
by measuring concentrations of short chain fatty acids 
and bacterial metabolites42 in stool samples 
(appendix pp 8–10). Only two studies considered 
a-priori power calculations; however, no specific 

estimations of power were reported.30,33 Although cross-
sectional studies were excluded, the potential for 
reverse causality was identified in two of the included 
studies, in which respiratory disease was assessed 
before, at the same time as, or after one of the 
timepoints for stool collection.27,28

Study results have been summarised and stratified by 
type of respiratory disease and age at stool sample 
collection17 (tables 1–3). Two groups of studies were 
identified on the basis of respiratory outcome definition, 
including whether atopy was considered and age at 
outcome determination.3 The first group included nine 
studies that explored atopic wheeze or asthma27,29,30–32,34–37 

(table 2), of which four studies followed up participants to 
age 5 years,31,32,35,36 one study followed up participants to 
age 6 years,37 and one study followed up participants 

Figure: Study selection

1 potentially eligible study 
identified through other
sources

 

7347 potentially eligible studies 
identified through database 
search

4759 screened  

2589 duplicates excluded 

111 full-text studies assessed for 
eligibility

4648 excluded

11 studies included in systematic 
review 

100 excluded
 42 not original or peer-

reviewed research
 7 animal or in-vitro study 
 17 child gut microbiota 

was not the exposure
 17 outcome was not 

respiratory disease
 7 gut microbiota was not 

measured before 
onset of respiratory 
disease

 2 first microbiota 
measured after 
age 1 year

 5 microbiota evaluated 
with techniques other 
than next-generation 
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between age 6 years and age 11 years.34 The second group 
included studies exploring respiratory infections or 
studies exploring wheezing in the context of respiratory 
infections (first year of life), referred to as “respiratory 
infection or wheezing” (table 3).27,28,33,35 Two studies 
explored wheeze both with and without atopy (defined as 
positive prick test) at age 1 year and were included in both 
groups.27,35

Asthma and atopic wheezing 
Of the seven studies27,30–32,35–37 that explored the direct 
association between α-diversity and asthma or atopic 
wheeze, two reported that higher gut microbiota 
α-diversity in the first year of life, compared with lower 
α-diversity, was significantly associated with not having 
atopic wheeze at age 1 year, and not having asthma at ages 
5 and 6 years.35–37 The other five studies observed no 
association. Three studies used an alternative measure 
for describing overall gut microbiota composition. These 
studies explored gut microbial maturity on the basis of 
bacterial taxa compositional changes over time in a subset 
of healthy participants and compared this microbiota 
maturity with that of participants who developed 
childhood respiratory disease (appendix pp 7–10). 
One study used this method as a proxy for diversity, as 
they were positively correlated.37 One study reported that 
increased gut microbiota maturity at age 5 weeks, 
compared with decreased gut microbiota maturity, was 
associated with high risk of asthma in participants aged 
6–11 years,34 and two studies reported an association 
between an immature gut microbiota at age 12 months 
and increased risk of asthma at ages 5 years and 6 
years.32,37

Although results varied between studies, overall there 
was evidence of a low relative abundance of the genera 
Bifidobacterium29,31 in stools collected at ages 1 month and 
3 months and low abundance of the genera 
Faecalibacterium,27,35–37 Roseburia,32,35,37 and Ruminococcus35–37 

in stools collected at ages 3 months and 1 year being 
associated with asthma and atopic wheeze at ages 
1–6 years. Low relative abundance of Lachnospira27,30,35 at 
age 3 months but increased abundance of Lachnospira at 
age 1 year30,32 was also associated with asthma and atopic 
wheeze at ages 1–6 years. One study showed low relative 
abundance of Veillonella27 at age 3 months was associated 
with atopic wheeze at age 1 year, whereas two studies 
reported that high relative abundance of Veillonella at 
ages 3 months and 1 year was associated with asthma 
and atopic wheeze at age 5 years.

Three studies29,31,37 explored the association between 
fungi and asthma. One study sequenced the conserved 
fungal marker genes, including the 18S rRNA gene,31 and 
two studies sequenced the nuclear ribosomal Internal 
Transcribed Spacer (ITS1 and ITS2).29,37 High relative 
abundance of Candida and Rhodotorula and low 
abundance of Malassezia taxa measured at age 1 month  
in one study,29 and an increase of Pichia kudriavzevii at 

age 3 months measured in another,34 were associated 
with asthma and atopic wheeze at ages 4–5 years. The 
third study found no associations between fungal 
maturity and asthma at age 6 years.37

Respiratory infections and wheezing 
Four studies were included in the respiratory infections 
and wheezing group, in which respiratory disease 
definitions were highly heterogeneous. One study 
evaluated respiratory infections,33 another study evaluated 
wheezing in the context of respiratory infection,28 and 
two studies evaluated non-atopic wheeze27,35 at age 1 year. 
Three studies27,28,35 explored the association between 
α-diversity and respiratory infections or wheezing and one 
study reported that high α-diversity in the first year of life 
was associated with reduced recurrent wheezing at age 
1 year.35 The other two studies did not find an association 
between α-diversity and respiratory infections or 
wheezing. Two studies showed no association between 
relative abundance of species measured at ages 3, 9, and 
12 months and wheezing at ages 1–3 years.28,31 One study 
showed a lower relative abundance of Bifidobacterium and 
higher abundance of Klebsiella and Enterococcus at age 
1 week in children with higher cumulative incidence of 
respiratory infections at age 1 year than for children with 
lower cumulative incidence of respiratory infections.33 No 
study specifically explored vLRTI as an outcome.

Discussion 
To our knowledge, this systematic review is the first to 
consider the association between early-life gut microbiota 
and childhood respiratory diseases, including respiratory 
infections, with a focus on genomic sequencing to measure 
the gut microbiota. Large studies (>700 participants) 
reported high α-diversity as being protective of asthma and 
wheezing.35–37 Overall, there was evidence of low relative 
abundance of Bifidobacterium29,31,33 in stools collected before 
age 3 months being associated with respiratory infections 
at age 1 year and asthma at ages 4–5 years. Generally, 
low abundance of the genera Faecalibacterium,28,35–37 
Roseburia,32,35,37 and Ruminococcus,35–37 in stool samples 
collected at ages 3–12 months were associated with asthma 
and atopic wheeze at ages 1–6 years. However, there were 
important study limitations, including heterogeneous 
outcome definitions and follow-up times, residual 
confounding, small sample sizes, and heterogeneous 
bioinformatic and statistical approaches, with most studies 
not reporting effect estimates.

A previous systematic review by Zimmerman and 
colleagues25 in 2019 assessed the association between 
gut microbiota and atopy, including asthma. Study 
inclusion was not restricted by method of microbiota 
determination, and 11 studies that independently 
reported wheezing or asthma as their outcome were 
included. Four of those studies were also included in 
this systematic review.27,29–31 The other seven studies were 
excluded, as gut microbiota determination was not done 
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with genomic sequencing. Instead, these seven studies 
used culture,43,44 PCR testing targeting five bacteria,45,46 or 
denaturing gradient gel electrophoresis.47–49 Zimmerman 
and colleagues summarised study results at a bacterial 
family taxa resolution. They concluded that high relative 
abundance of Bacteroidaceae, Clostridiaceae, and 
Enterobacteriaceae and low relative abundance of 
Bifidobacteriaceae and Lactobacillaceae were associated 
with the development of allergic sensitisation, eczema, 
or asthma.

All studies included in this systematic review used 
16S rRNA gene amplicon sequencing, allowing a relatively 
untargeted starting point for exploring the gut microbiome 
and permitting us to summarise and compare study 
results at a bacterial genera level. Some studies reported 
that high relative abundance of non-commensal gut 
bacteria such as Klebsiella and Enterococcus at age 1 week33 
was associated with respiratory infections at age 1 year, that 
high relative abundance of Streptococcus at age 3 months 
was associated with atopic wheeze at age 5 years, and that 
high relative abundance of Rothia30 or Dialister36 at age 
1 year was associated with asthma at ages 4–5 years. 
However, study results seem to show more consistency 
with regard to low relative abundance of particular gut-
commensal bacteria genera, such as Bifidobacterium,29,31 
Faecalibacterium,27,29,35,36 Ruminococcus,35–37 or Roseburia,35,37 in 

the first 1–12 months of life being associated with 
respiratory disease.

The genus Bifidobacterium constitutes one of the most 
abundant bacteria in the gut of children during the first 
4 months of life50,51 and has been shown to modulate the 
systemic immune response of individuals through 
surface-associated molecules and microbiota-derived 
metabolites both in vitro and in vivo.52 Specific 
Bifidobacterium spp have been shown to affect respiratory 
disease susceptibility in mouse models of asthma and 
respiratory infection.12,13,53 A 2020 study showed that gut 
colonisation with Bifidobacterium infantis regulates the 
equilibrium between Th1 and Th2 responses, reducing 
symptoms of atopic asthma in an induced mouse 
model.12 Another study reported that, when challenged 
with influenza virus, mice with higher gut abundance of 
Bifidobacterium and Bacteroides showed increased 
influenza survival through an enhanced CD8 T-cell and 
well regulated macrophage response than mice with 
lower gut abundance, preventing excessive airway 
neutrophil influx.13

The bacteria genera Faecalibacterium, Ruminococcus, 
Lachnospira, Roseburia, and Veillonella correspond to the 
clostridia class, which has been described in the guts of 
children from around 4–6 months of age, coinciding with 
weaning off breastmilk.16 Ruminococcus (specifically 

Age at gut microbiota 
determination

α-diversity (respiratory disease 
vs no respiratory disease)

Relative abundance of bacteria taxa (or fungal 
taxa) in respiratory disease versus no respiratory 
disease

Age of participants at 
respiratory disease 
determination (outcome)

AHRQ rating

Fujimura et al (2016)29 ≤1 month Not reported Lower Bifidobacterium, Lactobacillus, 
Faecalibacterium, and Akkermansia; lower 
Malassezia; higher Candida and Rhodotorula

4 years (high risk of asthma) Poor

Stockholm et al (2018)32 ≤1 month No difference No difference 5 years (asthma) Good

Arrieta et al (2015)27* 3 months No difference Lower Faecalibacterium, Lachnospira, Rothia, 
Veillonella, and Peptostreptococcus

1 year (atopic wheeze) Poor

Boutin et al (2020)35* 3 months α-diversity decreased Lower Faecalibacterium, Lachnospira, Coprococcus, 
Roseburia, Blautia, Parabacteroides, and 
Ruminococcus

1 year (atopic wheeze) Poor

Stiemmsa et al 
(2016)30*

3 months No difference Lower Clostridiales and Lachnospira; higher 
Clostridium neonatale (species), Clostridiaceae 
(family), and Firmicutes (phylum)

4 years (asthma) Good

Arrieta et al (2018)31 3 months No difference Lower Bifidobacterium; higher Streptococcus, 
Veillonella, and Pichia kudriavzevii

5 years (atopic wheeze) Fair

Arrieta et al (2015)27* 1 year No difference Lower Oscillospira 1 year (atopic wheeze) Poor

Stiemmsa et al 
(2016)30*

1 year No difference Lower Clostridium neonatale; higher 
Lachnospiraceae and Rothia

4 years (asthma) Good

Stockholm et al (2018)32 1 year No difference Lower Roseburia, Alistipes, and Flavonifractor; higher 
Veillonella

5 years (asthma) Good

Patrick et al (2020)36* 1 year α-diversity decreased Lower Faecalibacterium prausnitzii, Ruminococcus 
bromii, and Rikenellaceae (family); higher Dialister

5 years (asthma) Good

Depner et al (2020)37 1 year α-diversity decreased Lower Faecalibacterium, Roseburia, and 
Ruminococcus

6 years (non-atopic asthma) Good

*Studies from the same cohort. AHRQ=Newcastle-Ottawa Quality assessment for cohort and case-control studies converted to the Agency for Healthcare Research and Quality scale. One paper29 did not report 
results independently by time of stool sample collection, but the authors reported consistent decreases in relative abundance of certain bacteria genera in gut microbiota (Lachnobacterium, Lachnospira, 
and Dialister) at all timepoints examined (5 weeks, 3·3 months, 5·3 months, and 7·8 months) in children who developed asthma (parent-reported doctor diagnosis of asthma at age 6–11 years) compared with 
children who did not develop asthma.

Table 2: Studies exploring asthma or atopic wheeze
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Ruminococcus gnavus) and Roseburia (specifically Roseburia 
inulinivorans) have been described as signature taxa in 
infants aged 12 months.16 Potential immune-modulation 
mechanisms have been described for Roseburia and 
Faecalibacterium, which produce butyrate, a bacterial 
metabolite with anti-inflammatory properties in animal 
and in-vitro models.42 Although one study included in this 
systematic review showed that inoculating germ-free mice 
with Lachnospira, Veillonella, Faecalibacterium, and Rothia 
improved airway inflammation in the adult progeny of 
these mice,27 little is known about the mechanistic role of 
these bacteria in respiratory disease.

Comparison of studies exploring respiratory infections 
and wheezing episodes in children younger than 5 years is 
challenging because of the inconsistent definitions for 
upper and lower viral respiratory infections and recurrent 
wheezing in the literature and clinical guidelines, and the 
difficulty in diagnosing asthma at ages 0–6 years.54 
Correctly classifying wheezing phenotypes could be crucial 
as they seem to have divergent underlying pathophysiology, 
shown by the variability in response to different treatments 
(eg, steroids or β2 agonists).55 In turn, these phenotypes 
might be linked to different early gut microbiota 
compositions. We stratified results by respiratory disease 
type but still found that outcome definitions were 
inconsistent within groups, were mostly ascertained by 
parental interviews (with potential recall bias), and 
follow-up of children only went beyond age 5 years in two 
asthma studies. Wheezing in children younger than 
5 years was used in most studies as a proxy for asthma, 
with some studies considering atopy and other studies not 
considering atopy. However, wheezing is a symptom and 
not a disease,55 so the results of these studies should be 
compared with caution and the measurements of 
outcomes are at risk of misclassification bias.

Only two studies included in this systematic review 
contained respiratory infections per se in their outcome 
definition.28,33 The largest and most robust study showed 
that low relative abundance of Bifidobacterium and high 
relative abundance of Klebsiella and Enterococcus in stool 

samples collected at age 1 week were associated with 
a higher number of respiratory infections evaluated at age 
1 year compared with those with low numbers of 
respiratory infections.33 As such, a considerable knowledge 
gap exists with respect to respiratory infections.

Neonatal gut microbiota composition is known to 
influence subsequent colonisation patterns, which might 
also affect subsequent microbiota and immune crosstalk 
and development in the long term.13 However, only three 
studies included in this systematic review collected stool 
samples in the neonatal period (first month of life),28,35,37 
even though this age has been highlighted as an important 
time period for potential microbiota-altering inter
ventions.56,57 Although Zimmerman and colleagues25 
reported consistency regarding study results in stool 
samples collected in the neonatal period in six wheezing or 
asthma studies, as our review only included three studies 
with neonatal stool samples, we found more consistency 
in results from studies with stool samples collected at ages 
3–12 months. Gut microbiota composition beyond the first 
year of life might also be important, although careful 
assessment of timing of respiratory disease ascertainment 
will be needed to avoid reverse causality.

Despite relatively good reporting of laboratory methods 
and bioinformatic pipelines, these methods and pipelines 
were heterogeneous, important information was 
sometimes missing, and potential procedure-specific 
bias was barely discussed. For example, six studies did 
not clearly report time between sample collection and 
freezing and no studies mentioned freeze –thaw cycles, 
although both can affect microbial profiles.23,58 Similarly, 
time between sample collection and processing, which 
introduces artifact to measures of relative abundance 
(eg, Bacteroides spp are selectively depleted at 
–80°C dependent on time in storage),59 was only explicitly 
mentioned by one study.37 Although microbiota 
characterisation through 16S rRNA gene amplicon 
sequencing allows bacterial determination robustly down 
to the genus level and is cost-effective, it is subject to bias 
associated with PCR primer-binding and bacterial 

Age at gut 
microbiota 
determination

Diversity (respiratory 
disease vs non-
respiratory disease)

Relative abundance of bacteria 
taxa (fungal taxa) in respiratory 
disease versus non-respiratory 
disease

Age of participants at 
respiratory disease 
determination (outcome)

AHRQ rating

Reyman et al (2019)33 ≤1 month Not reported Lower Bifidobacterium; higher 
Klebsiella and Enterococcus

1 year (cumulative incidence of 
respiratory infections)

Good

Arrieta et al (2015)27 3 months No difference No difference 1 year (wheezing) Poor

Boutin et al (2020)35 3 months α-diversity decreased Lower Faecalibacterium, 
Lachnospira, Coprococcus, and 
Oscillospira

1 year (recurrent wheezing) Poor

Laursen et al (2015)28 9 months No difference No difference 3 years (wheezing in respiratory 
infection context)

Poor

Arrieta et al (2015)27 1 year No difference No difference 1 year (wheezing) Poor

AHRQ=Newcastle-Ottawa Quality assessment for cohort and case-control studies converted to the Agency for Healthcare Research and Quality scale.

Table 3: Studies exploring respiratory infections or studies exploring wheezing in the context of respiratory infections
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taxonomic classification.60 Furthermore, the choice of 
reference database for bacterial taxonomic classification 
is crucial, and could lead to different results.61 In this 
systematic review, most studies used the Greengenes 
database; however, of note, this database was last updated 
in 2013.62 Use of an up-to-date reference database is 
important for accurate and high-resolution taxonomic 
assignment to enable comparisons of the sequencing 
output with a rapidly expanding and improving microbial 
genome taxonomy.63

A more informative genomic sequencing approach 
than the targeted amplicon sequencing method is shotgun 
metagenomic sequencing, which enables completely 
untargeted sequencing of all genetic material present in 
a stool sample; robust bacterial resolution down to 
a species or strain level; provides information about 
functionality; and detects viruses, archaea, fungi, and other 
microeukaryotes that do not possess the 16S rRNA gene.19,23 
Reporting microorganisms down to a strain or species taxa 
is crucial, as different species within the same genus can 
have different immunomodulatory effects.64

This systematic review has additional limitations. The 
search was restricted to studies published after 2010, and 
it is possible that some smaller studies were missed. One 
included study had important issues with reverse 
causality, and one study was a post-hoc analysis of 
a randomised controlled trial (RCT).28,34 These studies did 
not meet the predetermined exclusion criteria but have 
important limitations and should be interpreted 
cautiously. Findings were summarised in two groups on 
the basis of outcome definitions, but alternative ways of 
grouping study findings could be used. As most studies 
did not report effect estimates, publication bias cannot be 
assessed with a funnel plot. However, the fact that some 
of the studies included in this systematic review reported 
null findings is somewhat reassuring.

Several frameworks have been developed to aid 
decisions in establishing causation in microbiome 
studies.65,66 An important point in these frameworks is that 
inoculating a host and generating or preventing disease is 
a key step in providing evidence for causation.20,67,68 
However, although some Bifidobacterium spp have been 
shown to influence respiratory disease pathogenesis in 
animal studies,13,53 meta-analyses published between 2015 
and 2020, including RCTs testing the efficacy of probiotics 
and prebiotics to prevent respiratory disease, have not 
shown a reduction in childhood risk of asthma, wheezing, 
or respiratory infections.69–71 Improving RCT study design 
and optimising observational studies to identify key 
bacterial species (most RCTs have focused on particular 
Bifidobacterium spp and Lactobacillus spp) for subsequently 
informing intervention studies,70 alongside optimal 
timing of intervention,72 is important.

Another important consideration is that the entire 
process of microbiota ecosystem development could be 
the cause of health or disease,66 rather than the absence 
or presence of specific microorganisms. The role of gut 

fungi, only explored in three studies,29,31,37 and gut viruses 
should be considered.56,72 This concept has implications 
for future prevention strategies, potentially shifting the 
focus from introduction of single species towards 
designing probiotics with a rational mixture of species, 
or towards holistic interventions that might include 
changing perinatal clinical practice (eg, antibiotic use 
guidelines or diet).18,40 However, such interventions might 
prove more complex to design, implement, and evaluate. 

Another outstanding question when evaluating 
causality between gut microbiota and lung disease is the 
role of the respiratory microbiota.57 Given evidence of 
bidirectional influences between gut and respiratory 
microbiota,73 the potential effect of respiratory microbiota 
on the immune system, and the observed association 
between respiratory microbiota and childhood 
respiratory disease,57 respiratory microbiota might act 
as a confounder, mediator, or effect modifier in the 
association between gut microbiota and childhood 
respiratory disease.57 Longitudinal studies collecting both 
stool and respiratory samples might help to understand 
these complex interactions and elucidate the role of the 
gut–lung axis to identify targets for primary prevention 
interventions for childhood respiratory diseases.

Overall, there is observational evidence that low 
α-diversity and relative abundance of particular 
gut-commensal bacterial genera in the first year of life are 
associated with subsequent respiratory disease, especially 
asthma. There is less evidence for the association between 
low α-diversity and relative abundance of particular 
bacterial taxa in the first year of life and respiratory 
infections. However, the available evidence showed 
important limitations, and gut microbiota composition 
might not have a causal role in subsequent respiratory 
disease (despite the observed associations). Large 
longitudinal studies with stool and respiratory sampling 
during the neonatal period that use shotgun metagenomic 
sequencing to improve measurement resolution of the 
microbiome to a species or strain level are needed. 
Optimising statistical approaches for causal inference, 
standardising outcome definitions, and validating 
findings with experimental models will help move 
knowledge forward in the area of early-life microbiota and 
in the development of potential preventive and therapeutic 
interventions for childhood respiratory diseases.
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