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Abstract
Astrophysical light curves are particularly chal-
lenging data objects due to the intensity and va-
riety of noise contaminating them. Yet, despite
the astronomical volumes of light curves avail-
able, the majority of algorithms used to pro-
cess them are still operating on a per-sample
basis. To remedy this, we propose a simple
Transformer model –called Denoising Time Se-
ries Transformer (DTST)– and show that it excels
at removing the noise and outliers in datasets of
time series when trained with a masked objec-
tive, even when no clean targets are available.
Moreover, the use of self-attention enables rich
and illustrative queries into the learned representa-
tions. We present experiments on real stellar light
curves from the Transiting Exoplanet Space Satel-
lite (TESS), showing advantages of our approach
compared to traditional denoising techniques1.

1. Introduction
Time series of observed flux –so called ‘light curves’– are
one of the most common data products of space observation.
Their analysis enables the precise study of distant objects
and phenomena within and beyond the solar system and
the Milky Way including stars (e.g. Christensen-Dalsgaard
et al., 2007), planets (e.g. Charbonneau et al., 2000; Di Ste-
fano et al., 2021) asteroids (Warner et al., 2009) or black
holes (e.g. Beskin & Tuntsov, 2002). However, light curves
are often affected by instrumental, photon and background
noise. In addition, the target itself often shows an unde-
sirable variability of similar frequencies to the underlying
scientific signal, making an optimal noise filter difficult to
achieve. All these factors render the analysis of light curves
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challenging, often requiring technical expertise to build spe-
cialised pre-processing pipelines before physical modelling
and interpretation.

Although the use of deep learning has started to emerge to
successfully address some problems related to light curves
(e.g. Sarro et al., 2006; Wang et al., 2016; Hložek et al.,
2020; Shallue & Vanderburg, 2018; Pearson et al., 2018;
Morvan et al., 2020; Nikolaou et al., 2020), these often ad-
dress only the later stages of data analysis and are limited
to building supervised learning models. These models are
indeed generally trained on scarcely labelled or simulated
data and thus suffer from biases or small training sizes when
applied to new or full datasets. On the other hand, there
already exist large datasets consisting of thousands to bil-
lions of light curves (e.g. Bakos et al., 2004; Pollacco et al.,
2006; Auvergne et al., 2009; Butters et al., 2010; Borucki
et al., 2010) with many more being generated by existing
and future space telescopes. We believe that tailored deep
learning models will be able to leverage these large datasets
to improve the efficacy and efficiency of light curve process-
ing in a self-supervised, semi-supervised or unsupervised
manner.

The self-attention mechanism (Parikh et al., 2016) and the
Transformer architecture (Vaswani et al., 2017) have initi-
ated a revolution in the field of natural language processing
(e.g. Devlin et al., 2019; Brown et al., 2020) and later com-
puter vision (Khan et al., 2021). Transformers exhibit good
generalisation, and offer easier training and better scalability
compared to Long Short-Term Memory Networks (Hochre-
iter & Schmidhuber, 1997). Work is under way to adapt
the Transformer architecture for time series tasks such as
forecasting (e.g. Li et al., 2020; Zhou et al., 2021; Woo
et al., 2022). In their study Zerveas et al. (2021) success-
fully pre-trained a Time Series Transformer via a masked
objective before fine-tuning it for classification and regres-
sion. Even though the use of masked objectives is common
in the aforementioned works, here our main objective is to
denoise the time series. The masked objective allows us
to solve the problem by means of a proxy imputation task
without requiring any fine-tuning.

Our main contributions consist in: (i) introducing a simple
self-supervised framework to perform time series denoising
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without access to clean targets; (ii) demonstrating how a
Transformer encoder with minimal modification can per-
form light curve denoising effectively, leveraging the num-
ber and diversity of available inputs, (iii) producing flexible2

and interpretable predictions by visualising attention scores
associated with imputation and denoising of sequences.

We present experiments on real light curves from the Tran-
siting Exoplanet Survey Satellite (TESS, Ricker et al., 2015).
This is the first time a deep learning model is proposed to
try to address both imputation and denoising on a dataset of
light curves.

2. Methodology
2.1. Problem Formulation

Given a univariate time series x = {x1, .., xt, .., xT } ∈
RT we seek to predict its trend3 y ∈ RT which has been
corrupted by a noise process ε such as xt = yt + εt for each
time step t. No assumption is made about the corruption
process except its independence from the trend. In particular,
ε can be heteroscedastic and non-Gaussian.

Let us consider a generic model f solely fed with corrupted
time series, i.e. trained without clean targets in a Noise2Self
setting (Batson & Royer, 2019). After masking a fraction
of each input x with randomly generated masks m, f pro-
duces predictions ŷ = f(x) of the same length as the input
but is trained with a regression loss computed solely on
the masked values: L(f(x), x,m). This masked objective
guarantees the independence of the predictions with respect
to the local values and their associated noise. If missing
values are present in the dataset, they are treated in the same
way as randomly masked values, making the method robust
to missing values. The only difference is that predictions
for truly missing values are not included in the calculation
of the training loss.

2.2. Denoising Time Series Transformer

An overview of the DTST is shown on Figure 1. For each
input time series an input mask is generated combining miss-
ing values and artificially masked values (at training only).
Masked and standardised inputs are linearly projected into
input embeddings z ∈ RT×D of the model’s dimension D.
Input embeddings corresponding to masked positions are
replaced by a learnable vector of dimension D, inspired
by the mask token used in Devlin et al. (2019). This is
a robust way of informing the model of the masked input
positions. Additionally, we have found a learnable vector to

2The flexibility of the model lies in its capability to handle
inputs with missing values, variable sizes and generating processes
characterised by different variances.

3The ‘trend’ here can contain low frequency variability, aperi-
odic or periodic patterns.

Figure 1. Schematic overview of the DTST model learning trend
representations of inputs with a masked objective. Masks repre-
sented in shaded blue areas include both missing and randomly
masked time steps during training. At test time, only truly missing
values are masked. Yellow modules represent the time-distributed
linear embedding and the prediction head respectively.

perform better than replacing masked values by zero as is
often done for time series imputation models (e.g. Cao et al.,
2018; Zerveas et al., 2021; Yi et al., 2020). However using
this scheme on its own affects the quality of the predictions
outside the masks and for this reason we replace 10% of
masked values in input with uniformly sampled values be-
tween −2 and 2 and do not replace their projected input
embedding by the mask embedding. This setting was the
most effective we have tried amongst several ones listed in
Appendix B.

Positional embeddings are then added to the input embed-
dings to provide positional information. Since they pro-
duced better results than trainable positional embeddings in
our experiments we used the same fixed positional embed-
dings as in Vaswani et al. (2017). We use a light version of
the original Transformer encoder with the hyperparameters
fixed to the values shown in Appendix C. Each encoder’s
output is finally projected back into the input dimension
using a distributed D × 1 linear layer.

3. Experiments
3.1. Dataset

We present experiments on a dataset of light curves from
the TESS satellite, acquired during the first visit of its first
sector in 2018. TESS light curves are challenging because
of their length (20, 076 time steps for short cadence data
spread over 30 days), their noise level, residual instrumental
systematics and missing blocks.

We select 2 minutes cadence light curves at the Presearch
Data Conditioning stage, i.e. after removal of the main
instrument systematics, cosmic rays and background noise
with the standard TESS pipeline (Jenkins et al., 2016). After
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rejection of 50 light curves with negative flux, the dataset
contains 15839 light curves. We selected 20% of all light
curves uniformly at random for testing and the remaining
80% for training and validation.

3.2. Training and evaluation

Because of their length we randomly crop each light curve
to select 400 consecutive time steps. A random mask is then
generated before subtracting the mean and dividing by the
standard deviation of the non-masked values for each input
segment. This procedure can be seen as a data augmentation
step, as the combination of cropping and masking operations
will produce different inputs at each epoch.

For training the DTST we use the noise-scaled masked mean
absolute error (NMMAE) defined as: NMMAE(ŷ, x,m) =

1
M∗n(x)

∑T
t=1mt|xt − ŷt|, where m is a binary mask equal

to 1 for masked time steps and 0 otherwise, ŷ is the model’s
output prediction, M =

∑T
t=1mt is the total number of

masked steps in x and n(x) is an estimate of the local noise
by computing the average moving standard deviation with a
window of size 10 and a step of 5. Compared to the mean-
squared error, the mean absolute error (MAE) is more robust
to outliers while rescaling using n(x) helps to account for
different variabilities in the training data. Predictions for
the full light curves are then obtained by stitching together
the predictions for segments of 400 time steps. In practice,
evaluation segments are designed so as to allow overlaps of
50 steps and remove the outer 25 steps for each prediction.

As evaluation metrics we use the MAE and the inter-quartile
range (IQR) of the detrended light curve as a measure of the
residual noise, both expressed as percentages of the stellar
flux. For both measures, lower values are desirable.

We compare the DTST to the median filter and Tukey’s
biweight algorithms with implementations from Hippke
et al. (2019) as baselines. These have shown optimal or
near-optimal performance in removing the noise prior to de-
tecting exoplanets in Kepler and TESS data. Both methods
require to set the window length –in time units for Tukey’s
algorithm and in number of cadences for the median filter.
For comparison we select two window lengths: a long win-
dow of 6 hours (∼ 300 time steps) which is adapted for
exoplanet transit detection and a short window of ∼ 2 hours
which provides comparable denoising scores to the DTST
but overfits some of the high frequency variability.

3.3. Results

After experimenting with various architectures and masking
scenarios (see appendix B) on the training set, we evaluated
the DTST and the baselines on the test set. Results are
presented in Table 1. On average, the DTST provides the
smallest residual noise and auto-correlation out of the sev-

eral baselines evaluated here. The difficulty for traditional
techniques here lies in reconciling the diversity of the stellar
processes composing the dataset, and it is therefore under-
standable that a single cadence-based or window-based filter
with a fixed window size will either fail to denoise targets
with high variability or overfit the noise on those with low
variability.

Table 1. Denoising performance on 3168 test light curves from
Sector 1. Averaged errors are given in percentage of the stellar
flux. Window sizes considered by the three algorithms to make
predictions are shown on the second line.

MEDIAN FILTER BIWEIGHT DTST
65 steps 181 steps 2 h 6 h 400 steps

IQR 0.393% 0.465% 0.398% 0.469% 0.385%
MAE 0.244% 0.286% 0.245% 0.286% 0.235%

We show examples of predictions in Figure 2 for different
test samples showing a range of variability patterns. We
corrupted the two inputs on the left (Figures 2a and 2b) with
random masks similar to those used during training. The
predicted time series shown in red on each upper sub-plot
plot shows very good agreement with the expected trend
for both masked and unmasked input time steps. In dashed
green line is shown a the result of a median filter on each
light curve with a window of 65 cadences (equivalent to 2
hours). While it provides good results for slowly varying
stellar processes (Figure 2b), this setting fails to account for
faster processes (Figures 2a and 2c) or inputs with many
missing values (Figure 2d).

On each third sub-plot we show the residual light curve in
units of stellar flux. The associated autocorrelation function
(ACF) of the model-fit residual is plotted on the last subplot
of each figure.The ACF is a useful tool to analyse the signif-
icance of residual time correlations as in Figure 2c. Target
140045538 indeed shows bursts of flaring activity which are
not predicted by the DTST and therefore leave a significant
signature in the ACF. As short transients or planetary tran-
sits may lie at the border between noise, outliers and signals,
further fine-tuning of the model may be needed for either
predicting or ignoring them consistently.

3.4. 1D Attention Maps

We use Rolling Attention (Abnar & Zuidema, 2020) to com-
bine the attention scores of all layers and heads. We direct
the reader to Appendix A for more details and examples.
This enables us to visualise which parts of the inputs re-
ceived more attention for producing the outputs, both during
training and validation. Thus we are using the generated
attention maps both for orienting the model’s development
and interpreting its predictions.
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(a) TESS Target 260504446
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(b) TESS Target 269829656
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(c) TESS Target 140045538
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(d) TESS Target 92257800

Figure 2. Diagnosis of predictions for four different test stars. On the left are two examples with random artificial masks (in orange)
mimicking the training process. On the right are two uncorrupted inputs, where the blue shaded masks indicate truly missing data in input.
Each sub-figure contains from top to bottom: (i) inputs as black dots, the DTST’s predictions as red line, and median filter with window of
65 cadences as green dashed line, (ii) rolling attention time series scaled between 0 and 1, (iii) the star-normalised residual errors and (iv)
the auto-correlation function with missing data ignored.

Our first observation is that both input tails often receive
high rolling attention scores. This is understandable as these
lack context on either their left or right and therefore prove
more challenging to predict. We also observed that large
masked regions receive generally less attention than non
masked regions. This is in fact a useful check during the
model’s development to verify if the model manages to
distinguish between the mask representation and the real
values. Furthermore, values surrounding the identified gaps
often show greater attention than average, probably as they
are particularly relevant for the prediction of masked values.
Finally it is often interesting to look at the attention pat-
terns for time steps corresponding to unexpected flux values.
Those are sometimes ignored such as the rightmost flaring
event on Figure 2c or conversely receive more attention than
average when they can inform predictions.

4. Conclusion
In this work we presented a conceptually simple framework
to denoise time series via a proxy imputation task. We
performed experiments and showed how such an approach
based on a Transformer encoder architecture is effective at
removing the noise in light curves from the TESS satellite.
Compared to traditional techniques, this model can offer
flexibility and increased performance when pre-processing
large datasets of light curves. Further works will extend
these experiments to other real and simulated datasets while
assessing the generalisation power and possible gain from
using a pre-trained model. Finally we would like to use
this approach as a basis for downstream tasks such as event
detection, imputation and upsampling.
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A. 1D Attention Maps
Attention from the model’s output to the input time series is computed using Attention Rollout (Abnar & Zuidema, 2020).
This procedure consists in recursively multiplying matrices of attention weights through the transformer layers, thus
accounting for mixing of attention in the network. Figure 3 shows more examples of predictions overlayed with their
corresponding input with Rollout Attention used to highlight time steps with greater attention.
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Figure 3. 1D attention maps computed with Attention Rollout and overlayed with predictions (red lines) for 16 random light curves from
TESS dataset. The size and opacity of individual point inputs is directly proportional to the Attention Rollout values.

B. Masking Strategy
Masking Patterns We explored various generating mechanisms for the distributions of masked values in each input.
Given a fixed ratio of values to mask, we tested using a Bernoulli distribution for time-independent masking and a
geometric distribution over masked blocks lengths. The geometric distribution was used to impose longer masks and thus
a more challenging imputation task to the model. Mean block lengths of 5, 10 and 20 were tested and final results were
presented for a window of 10 as it offered the best compromise between the length of signals to impute and denoising
performance.Intuitively, the length of masked blocks will control the degree of temporal locality of the noise processes to
remove, and using wider masked regions will indeed force the model to make use of longer-term dependencies to make
accurate predictions.

Masking Ratios We set the masking ratio to 30% after experimenting with 10%, 20%, 30%, 40% and 50%. Heuristically,
increasing the masking ratio speeds up training but also affects performance as fewer inputs are available for prediction.
When values are missing in the inputs, the masking ratio is considered with respect to the number of non-missing time steps.
This maintains the ratio of data used for training constant while avoiding degenerate cases where the random mask would be
empty or would cover the entirety of the non-missing input.

Replacement Strategy We considered various replacement strategies for masked input values: (i) replacing by zero, (ii)
by a uniformly random value centred on zero, (iii) by a special learnable vector (inspired by Devlin et al., 2019) in the
model’s space, and (iv) keeping the original values. Case (iv) was quickly discarded as it led to overfitting the noise. While
option (iii) offered the best imputation performance, we observed that it performed poorly on its own for denoising the full
inputs, and that this issue was mitigated by using case (ii) for a random fraction of input time steps, even as small as 10%.
This can be understood as an extra corruption operation on the input, thus forcing the model to provide coherent predictions
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even outside the regions whose embeddings are more explicitly masked with a dedicated vector. Whilst we have compared
these several cases, it would be interesting to investigate further the influence of the replacement strategy (e.g. different
distributions) and ratios on the denoising performance.

C. Hyperparameters
Fixed hyperparameters for all presented experiments are shown in Table 2.

For training we used Adam (Kingma & Ba, 2015) optimiser with learning rate 0.001 and β = (0.9, 0.999).

Table 2. Hyperparameters
PARAMETER VALUE

Learning rate 0.001
Batch size 64
Dim. model 64
Dim. feedforward 128
Num layers 3
Num. heads 8
Masking ratio 30%
Average masking length 10

D. Computational Efficiency
Even though training the DTST on thousands of time series can take up to several hours on a single V100 GPU, its inference
cost remains very low with around 10 µs for a full TESS light curve unfolded in windows of length 400 passed as a batch of
size ∼ 60. This is to be compared with ∼ 50 µs and ∼ 173 µs per TESS light curve for the efficient Wotan implementations
of biweight and median filter respectively.

The O(T 2) complexity in space and time of vanilla attention could be mitigated by using sparse attention (see e.g. Zhou
et al. (2021) in O(T log T ), Wang et al. (2020) in O(T )). Additional experimental studies would need to be performed to
evaluate their respective impact on performance and on the trade-off between long sequences and full attention.


