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Abstract 
 

Thyroid Cancer is the most common endocrine 
malignancy. Although the mortality rate of thyroid 
cancer is considered to be low, however the reoccurrence 
and persistence of the disease is still considered high. 
The most common type of thyroid cancer is papillary 
thyroid carcinoma consisting of >70% of all types of 
thyroid cancer. Thyroid cancer is heterogeneous and 
complex. BIG data in the form of publicly available gene 
expression (transcriptomics) datasets can provide 
valuable source to gain deeper understanding of complex 
diseases such as papillary thyroid carcinoma (PTC). In 
this study, we used a novel bioinformatics method based 
on adaptive filtering to reduce the number of genes 
expressed eliminating genes that are invariant across the 
various disease stages. In order to shed light on some of 
the mechanisms involved in PTC, the filtered genes were 
used in systematic pathway analysis searches across 
20,500 annotated cellular pathways using modified 
Kolmogorov-Smirnov algorithm to identify the relevant 
differentially activated cellular pathways across the 
various stages of the disease. Our analysis from 95 PTC 
patient biopsies consisting of 41 normal, 28 non- 
aggressive and 26 metastatic papillary thyroid carcinoma 
revealed 2193 differential activated cellular pathways 
among non-aggressive samples and 1969 among 
metastatic samples compared to normal tissue. The key 
pathways for non-aggressive PTC includes calcium and 
potassium ion transport, hormone signaling pathways, 
protein tyrosine phosphatase activity and protein tyrosine 
kinase activity. The key pathways for metastatic PTC 
include growth, apoptosis, activation of MAPK activity 

 
and regulation of serine threonine kinase activity. The 
most frequent genes across the enriched pathways were 
KCNQ1, CACNA1D, KCNN4, BCL2, and PTK2B for 
non-aggressive PTC, and EGFR, PTK2B, KCNN4 and 
BCL2 for metastatic PTC. Survival analysis results 
showed that PTK2B, CACNA1D and BCL2 contributed 
to poor survival of PTC patients. The study identified 
insights into mechanisms of PTC. 
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I. INTRODUCTION 

 
Thyroid cancer was ranked as the most common 
endocrine malignancy [1] and the 9th most common 
cancer overall. Globally, the incidence has been on the 
rise over the past three decades. Between 2006 and 2012, 
the annual incidence rate was 6.5% in women and 5.4 in 
men [2,3]. In the United States, thyroid cancer incidence 
rate was the highest among all cancers between 2000 and 
2009 [4]. The mortality rate of thyroid cancer is 
considered to be low at an estimated 44,000 deaths in 
both sexes combined, however the re-occurrence and 
persistence of the disease is considered high [5]. 
Morphologically, thyroid cancers are classified into 
different cellular subtypes such as papillary, follicular, 
medullary and anaplastic. Differentiated papillary 
thyroid carcinoma (PTC) form is the most common type 
and comprise more than 70% of all thyroid cases. 
Multiple reasons might play role in hindering the 
understanding of the molecular mechanism of papillary 
thyroid cancer including the fact there are many 
environmental and physiological trigger that may work 
synergistically with the genetic profile of the individual 



 

in initiating the cancer as well as the fact that response to 
therapy in each patient differ due to the intra-tumoural 
heterogeneity of thyroid cancer [6]. 
Many OMICs data were carried out on thyroid cancer, 
however most of those studies tended to be genomics by 
nature focusing on mutational screening of thyroid 
cancer patients. Since the highest percentage of thyroid 
cancer subtype is PTC, few transcriptomic analyses were 
carried out on PTC identifying some of the pathways 
involved in its pathogenesis [7] . However, such studies 
were carried out on small number of patients using 
classical bioinformatics analysis that provided limited 
insights into the molecular basis of PTC and did not 
identify clear diagnostic, prognostic targets. 
In this study, we carried out comprehensive in silico 
pathway analysis using adaptive filtering and advanced 
bioinformatics pipeline that has shown good ability to 
decouple the transcriptomic profiles between different 
stages of the same disease [8]. Most of the publicly 
available transcriptomics datasets were made using 
microarrays that can detect thousands of gene expression 
values simultaneously. Microarray technology presents 
the expression level of a gene as pixel intensity. In order 
to identify key genes, series of complex computational 
calculations needs to be carried out. Firstly, the scanned 
images is converted to pixel values and mapped to the 
specific genes using the coordinates on the microarray. 
Secondly, the gene expression values from all the 
samples undergoes global normalization algorithms in 
order to make them comparable to each other. Thirdly, in 
order to identify true differentially expressed genes 
(DEG) from the thousands of genes, set reduction is 
carried out using adaptive filtering techniques and finally 
the filtered dataset undergoes further reduction by 
applying systematically to well annotated pathways and 
for each pathway identify whether there is enrichment or 
not based on probabilistic techniques. 
In this study, we applied this advanced bioinformatics 
analysis that was previously validated on different cancer 
dataset and showed remarkable performance in uniquely 
stratifying different stages from the same cancer [8] to 
filter the publicly available thyroid cancer datasets. We 
aimed to identify novel cellular pathways and putative 
diagnostic and prognostic targets that may shed light on 
some of the molecular mechanisms involved in the 
initiation and progression of papillary thyroid carcinoma. 

 
I. HYPOTHESIS 

 
Using a combination of adaptive filtering and advanced 
bioinformatics algorithms to search for significantly 
activated cellular pathways can shed light on explaining 
some of the mechanisms of PTC provide better 
identification of true differentially expressed genes 
between different stages of PTC. 

 
A. Aim 

 
The aim of this study is to attempt to identify the key 
molecular targets by identifying the transcriptomic 

signature patterns that drive non-aggressive and 
metastatic PTC. Such an approach can provide insights 
into some of the molecular mechanisms involved in PTC 
progression. 

 
B. Objectives 

 
• Collect raw image gene expression microarray 

data 
• Carry out two different normalization routines 

on the microarray data 
• Apply two different filtering techniques on the 

normalized data; variation filter and co-efficient 
of variation-based filter followed by 
intersection of the genes from both filters. This 
is used to reduce the dataset 

• Identify significantly differentially activated 
cellular pathways using probabilistic model 
mining 20,500 well annotated cellular pathways 

• Identify differentially expressed gene (DEG) 
from each pathway 

• Validate the DEGs identified in larger cohort of 
PTC patients using survival analysis algorithms 

 
 

II. METHODOLOGY AND RESULTS 
 

A. Publicly available data sets for papillary 
thyroid carcinoma 

 
Gene sets available in gene expression omnibus (GEO) 
(https://www.ncbi.nlm.nih.gov/geo/) in association with 
papillary thyroid carcinoma was retrieved. Datasets 
inclusive of patient matched normal thyroid tissue 
transcriptomics were considered for analysis. In order to 
analyze the data with similar Affymetrix array, data sets 
obtained from Affymetrix Human Genome U133 Plus 
2.0 Array was considered. The three gene sets 
conforming to these criteria were GSE6004, GSE60542, 
and GSE3678. The raw CEL files corresponding to these 
gene sets were extracted and further processed for Gene 
Set Enrichment Analysis. The analysis for this study was 
approved by the Research Ethics Committee; the ethical 
approval number of the study is UHS-HERC-011- 
10062019. 

 
B. Raw microarray analysis and normalization 

 
The raw CEL files (n=95) obtained from the GEO for 
normal, non-aggressive and metastatic thyroid samples 
were processed for normalization using in house R script 
as described previously [8]. Two normalization 
algorithms; the Affymetrix microarray suite 5 (MAS5) 
and Gene Chip Robust Multiarray Averaging (GCRMA) 
implemented in Bioconductor using R software were 
applied to the transcriptomic data to normalize and 
remove the background noise. The non-variant probes 
were removed from the transcripts list, and adaptive 
filtering was performed to obtain the common set of 



 

variant probes. The flow chart for the process of 
normalization and filtration is shown in figure 1. 

 
C. Adaptive filtering of the microarray data 

 
In order to reduce the gene set further, combination of 
variation filtering [9] based on raw values and variance 
filtering based on co-efficient of variation was applied to 
the normalized data. Probes with MAS5 value > 50 and 
coefficient of variation (CV) 10-100% in GCRMA 
among all the cases were passed and intersected to obtain 
probes with common variant set. The filtered and 
intersected transcripts from all the samples were genes 
using the Broad Institute software [10]. The probes with 
maximum expression for each gene were chosen 
excluding the housekeeping genes and the probes not 
assigned to any gene. From the total number of 54,675 
probes in the Affymetrix Human Genome U133 Plus 2.0 
Array, following MAS5 and GCRMA filter 15801 
probes were extracted. These filtered probes were 
mapped to a total of 9394 genes which were used in 
absolute GSEA as mentioned next. 

 
D. Absolute Gene Set Enrichment Analysis 

 
Absolute Gene Set Enrichment Analysis (GSEA) is 
based on modification of the Kolmogorov-Smirnov 
algorithm [11] where the expression values for genes 
related to each pathways are placed in a list and tested 
using by taking one gene out a time and running the test 
to check if they are distributed randomly or there is 
significant enrichment in the genes at either end of the 
list. This is done across all genes in that pathway which 
will generate probability measure to see if the pathway is 
significantly activated across the different groups being 
test. In this study, the 9394 gene list obtained was further 
reduced by estimating the activated and enriched 
pathways in non-aggressive (NAG) and metastatic 
papillary thyroid carcinoma (PTC) samples  in 
comparison to normal tissue. GSEA search was carried 
out using around 20,500 annotated cellular pathways 
obtained across seven gene ontology sets C1 to C7 from 
the database (https://www.gsea-msigdb.org). The 
significantly activated pathways in different types of 
PTC samples were selected based on p < 0.05 and FDR 
< 0.25 as previously described [8,12] The pathways 
selected were further processed to identify differentially 
enriched genes between the normal versus non- 
aggressive and normal versus metastatic PTC cases. This 
was followed by reducing the set of available genes by 
identifying the frequency of gene occurrence across 
different activated cellular pathways. 
The three datasets normal, non-aggressive and metastatic 
papillary thyroid cancer samples were further processed 
for GSEA. The differentially activated significant 
pathways across the three different samples were 
identified by comparing the cancer samples with normal 
tissue. Based on the nominal p < 0.05 and false discovery 
rate (FDR) < 0.05, highly significant pathways were 
recorded. From the molecular functions and biological 

 

 
 

Figure 1. Flow chart illustrating the method followed in the 
study 

 
processes ontology gene set, ~1795 significant pathways 
were identified. The most significantly enriched 
pathways include calcium and potassium ion transport 
pathways, protein tyrosine kinase and phosphatase 
activity in normal versus non-aggressive set as shown in 
table 1. Amongst the normal versus metastatic set, 
apoptosis, activation of MAPK activity, regulation of 
protein serine threonine kinase activity and 
transmembrane receptor protein tyrosine kinase 
signaling pathway were among the significantly enriched 
pathways as shown in table 1. Example representation of 
the output from the absolute GSEA for each data set is 
shown in figure 2 showing the graph for enrichment 
score and the heatmap of the expression values of the 
genes. 



 

Table 1. List of the pathways activated in thyroid cancer 
samples in comparison to normal thyroid tissue analyzed by 
GSEA 

 

 
Abbreviations: ES, enrichment score; NES, normalized ES; NOM, nominal; 
FDR, false discovery rate. 

 

Figure 2. GSEA output A. for Non-aggressive set B. for 
Metastatic set 

 
E. Differential gene expression in PTC samples 

compared to normal thyroid tissue 
 

The differential gene expression analysis was addressed 
in two methods to obtain the information both based on 
pathway enrichment and microarray expression. 
In the first approach, the significantly enriched pathways 
for each sample set were used to obtain genes occurring 
frequently in all the enriched pathways using R script as 
described previously [8] . Statistical analysis was applied 
for the gene frequency values obtained and a 95- 
percentile cut-off value was calculated in each sample 
set. 
The enriched pathways from GSEA were subjected to 
gene frequency cutoff using the 95-percentile as a cut- 
off. Gene frequency can be defined as the number of 
times a gene occurs across all the enriched gene 
component from the significantly activated cellular 
pathways. This type of analysis showed the value for the 
frequency for non-aggressive (NAG) to be 13 and 
metastatic (MET) to be 10. Based on those frequency 
cutoff values, the number of genes with frequency higher 
than the cutoff in NAG was 355 and in MET was 280. 
The top 40 genes based on frequency cutoff were shown 
in figures 3A and 3B. 

The frequency analysis identifying the occurrence of 
each gene in more than one pathway identified BCL2, 
CACNA1D, KCNQ1, KCNN4, EGFR and PTK2B as 
important in the progression of PTC and thus can be 
considered as putative molecular targets. 

 

Figure 3. Gene frequency histogram in A) non-aggressive 
group and B) metastatic group 

 
 

F. Validation of the pathways and genes 
identified by GSEA in independent cohort 

 
Metascape Analysis 

 
To validate the pathways identified by GSEA, the high 
frequent genes from non-aggressive and metastatic 
samples were considered. The commonly occurring high 
frequent genes among both the sample types were input 
in the Metascape [13].The most frequent genes across the 
enriched pathways identified using the absolute GSEA 
were used to validate the cellular pathways activated 
between NAG and MET samples in comparison to 
normal samples. The validation was carried out using 
Metascape to search for well pathways annotated 
according to the Gene Ontology format [14,15]. The 
analysis revealed key cellular pathways such as calcium 
ion transport, positive regulation of protein 
phosphorylation and signaling by receptor tyrosine 
kinase were enriched in non-aggressive PTC as shown in 
figure 4A. In the metastatic PTC, in addition to the 
pathways identified in NAG group, other pathways 
related to caner hallmark are identified those include 
apoptosis and growth signaling pathways as shown in 
figure 4B. 



 

 

 
 

Figure 4. Metascape analysis for the high frequent genes from 
A. normal and non-aggressive set and B. normal versus 
metastatic set 

 
Survival analysis of the identified genes 

 
The survival analysis for the differentially expressed 
genes identified in the PTC samples was performed was 
carried out using the Kaplan-Meier algorithm via 
KMplotter [16] where an independent cohort of 502 
thyroid cancer patients’ data was used. Survival 
analysis of the differentially enriched genes showed that 
PTK2B, CACNA1D and BCL2 contribute to poor 
survival in an independent cohort of 502 thyroid cancer 
patients as shown in figure 5. 

 

Figure 5. KM Plot for high frequent genes 
 

Ion transport and tyrosine kinase and protein 
phostphatase pathways are involved in PTC 
progression 
Using the transcriptomics BIG data mining, this study 
identified using advanced bioinforamtics techniques the 
unique cellular pathways in non-aggressive and 
metastatic PTC. Interestingly, many of the genes and 
pathways overlapped between the two entities, these 
include calcium and potassium ion transport and tyrosine 
kinase and protein phosphatase pathways. The NAG 
group showed more unique association with regulation 
of hormone levels and cell signalling related to hormones 
whereas the study identified more impact of MAPK 

activation as well as activation of other cancer hallmark 
pathways such as regulation of apoptosis and cell growth 
in the metastatic pathways. Overall, pathway analysis 
indicated that PTC is highly complex disease with high 
level intra-tumoral heterogeneity. DEG analysis results 
identified the following target genes linked to PTC 
initiation and progression: BCL2, CACNA1D, KCNQ1, 
KCNN4, EGFR and PTK2B. 

 
BCL2 
B cell Lymphoma-2 (BCL2) is well know anti-apoptotic 
protein responsible for inhibiting programmed cell death 
or apoptosis [17]. Aksoy, M., et al. found that lower 
BCL2 expression in thyroid cancer supports the 
formation of oncoytic neoplasms in early thyroid cancer 
stages by inhibiting apoptosis of tumor cells [18]. This 
finding from this study supports the results obtained in 
our study where BCL2 overexpression infers poor 
survival for thyroid cancer patients (p < 0.01), and the 
frequency search showed that BCL2 is present in both 
the NAG and metastatic groups, therefore BCL2 may be 
putative marker for early PTC. 

 
CACNA1D 
One of the recurrent activated pathway identified from 
this study is related to ion transport and more specifically 
calcium and potassium transport. Many genes related to 
calcium and potassium transcrport were identified. 
CACNA1D gene is responsible for regulating positively 
charged calcium chanels (CaV1.3) across cell 
membranes and specifically adrenal gland to form alpha- 
1 subunit. These subunits are involved in the regulation 
of adrenal hormones production such as aldosterone 
which maintains blood pressure and fluid balance in the 
body [19,20]. Cancer cells can undergo oncogenic switch 
by transforming apopotosis inducing Ca influx pathway 
to proliferative calcium influx which in turn can promote 
growth and apoptosis resistance in cancerous cells [21]. 
This was also confirmed by the fact that pathway 
analysis showed the activation of calcium ion transport 
pathways in both NAG and metastatic PTC. The results 
from this study, showed that CACNA1D overexpression 
infers poor survival in thyroid cancer patients (p < 0.05) 
suggesting that it may be a putative prognostic marker 
for PTC progression. 

 
PTK2B 
Another protein identified is Protein tyrosine kinase 2 
beta (PTK2B). This has multiple functions including 
regulator of cell growth, survival, proliferation and 
invasion [21]. It encodes a cytoplasmic protein tyrosine 
kinase that is involved in calcium-induced regulation of 
ion channels and activation of the MAP kinase signaling 
pathway. Methylated PTK2B favouring overexpression 
is linked to c-Src activation, development of Pyk2/c-Src 
complex and the activation of ERK/MAPK signaling 
pathway [22]. The survival analysis in the current study 
showed that PTK2B gene silencing lead to poor survival 
in thyroid cancer patients (p < 0.0001). Few studies have 
shown some links between EGFR and PTK2B. The 



 

current study showed metastatic samples were enriched 
with EGFR and PTK2B genes and the combination 
might be effective in treating metastatic PTC. Therefore, 
since PTK2B is linked to EGFR, MAP kinase activation 
and calcium ion transport, it is probably an attractive 
theraputic target and since it is linked with poor survival 
it can be a good prognostic biomarker. This study shows 
the value of using computational approaches based on 
systems engineering in generating global solutions to 
reduce the genetic noisy dataset to identify key targets 
associated with PTC. The methodology in this study can 
be used for other complex diseases providing deeper 
insights into their mechanisms. 

 
IV. CONCLUSIONS 

 
Taken together, the adaptive filtering following by 
absolute GSEA managed to reduce the set of genes based 
on search of cellular pathways. The differentially 
activated cellular pathways and genes from this study 
showed the involvement of ion transport as well as other 
cancer related pathways including tyrosine kinase and 
protein phosphatase in the initiation of PTC during the 
non-aggressive phase and further progression to PTC 
metastatic phase. Understanding of differentially 
activated pathways during carcinogenesis, invasion and 
metastasis can have significant clinical outcome in 
developing better prognostic assays and molecular 
inhibitors that can replace classic generalized PTC 
treatments. DEG analysis of transcirptomics data 
identified putative diagnostic and prognostic target genes 
including EGFR, PTK2B, KCNQ1, KCNN4, BCL2 and 
CACNA1D which might be involved in key mechanisms 
of thyroid cancer pathogenesis. The survival analysis 
showed that BCL2, CACNA1D and PTK2B infer poor 
survival and are thus putative diagnostic and prognostic 
targets for PTC. 
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