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Evolutionary game theory (EGT) is a branch of mathematics which considers
populations of individuals interacting with each other to receive pay-offs.
An individual’s pay-off is dependent on the strategy of its opponent(s) as
well as on its own, and the higher its pay-off, the higher its reproductive fit-
ness. Its offspring generally inherit its interaction strategy, subject to random
mutation. Over time, the composition of the population shifts as different
strategies spread or are driven extinct. In the last 25 years there has been a
flood of interest in applying EGT to cancer modelling, with the aim of
explaining how cancerous mutations spread through healthy tissue and
how intercellular cooperation persists in tumour-cell populations. This
review traces this body of work from theoretical analyses of well-mixed infi-
nite populations through to more realistic spatial models of the development
of cooperation between epithelial cells. We also consider work in which EGT
has been used to make experimental predictions about the evolution of
cancer, and discuss work that remains to be done before EGT can make
large-scale contributions to clinical treatment and patient outcomes.
1. Introduction
Cancer is an inherently evolutionary process [1]. In their seminal 2000 paper,
Hanahan & Weinberg [2] set out six characteristics shared by all human cancers,
which are acquired by a process of successive genetic mutation and eventually
result in populations of cellswith sufficiently altered physiology to be termed can-
cerous. Mutations can occur on a variety of scales, from single altered nucleotides
(point mutations) to entire missing or additional chromosomes. The vast number
of cells in the human body is such that any conceivable mutation is statistically
likely to exist in at least one cell [3], yet cancer cells are remarkably consistent in
their coremutations.Often every neoplastic cellwithin a large tumourwill contain
the samebaseline ‘driver’ set of genetic alterations,which occurearlyon in tumour
growth [4], and half of all early-cancer mutations occur within just nine genes [5].

Why, then, are these particular mutations so successful? To answer that ques-
tion, we must consider the factors that give a mutation-bearing cell an advantage
over a resident population in competition for space and resources, allowing it to
‘out-reproduce’ its neighbours and take over the population. This is complicated
by the fact that some mutations confer a reproductive advantage in certain
environments but not in others. West et al. [6] have suggested that spatial con-
straints are crucial to the developmental trajectory of invasive cancers, with
otherwiseneutralmutations selected fororagainst dependingon the environment
inwhich they first occur. Gatenby et al. [7] have argued that the traditional distinc-
tion between ‘driver’ (evolutionarily beneficial) and ‘passenger’ (evolutionarily
neutral) mutations is inappropriate without knowing their ecological and
environmental context, and that the six hallmarks of cancer can likely be acquired
through a variety of genetic trajectories. There is also significant evidence for gen-
etic heterogeneity within cancerous populations [8], fuelled by neutral mutations
which occur later in tumour growth and allow the tumour to quickly adapt to
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changes in environment. However, this heterogeneity is a
double-edged sword: carrying too many passenger mutations
has been shown to reduce tumour growth in a mouse model
of human cell lines [9].

The reproductive advantage conferred by a particular
mutation, therefore, is clearly not fixed, and depends on a
cell’s environment and the number of other mutations in its
carrier cells. The presence or absence of other cells, and the
phenotypic strategies they employ, also impact a carrier cell’s
reproductive capacity. The most obvious example of this is
contact inhibition (see [10] for a summary), where cells stop
proliferating when they are packed too densely, except when
they are transformed, at which point they begin to over-
proliferate [11]. Another is the Warburg effect [12], where a
population of cells switch to the less-efficient strategy of glyco-
lytic respiration, which acidifies the background environment
and damages all non-glycolytic cells. In this context, a cell’s fit-
ness is dependent not just on its own phenotypic strategy (i.e.
whether it is glycolytic or not) but on the phenotypic strategies
of its neighbours. This is where the framework of evolutionary
game theory (EGT) becomes useful: instead of a fixed-fitness
model, where the effect of a mutation is considered indepen-
dently of its context, EGT considers the interplay of different
phenotypic strategies within a population in order to develop
a fuller accounting of intercellular dynamics.

The purpose of this review is to summarize the contribution
of EGT to untangling the mechanisms which allow cancerous
mutations to spread, particularly on epithelia, where many
common cancers begin [13]. Simple epithelia are thin mono-
layers of cells kept in strict homeostasis in adult tissue [14], at
a roughly constant population size where each cell has
around six neighbours [15]. The gradual acquisition of cancer-
ous mutations is very difficult to monitor clinically, since by
the time a cancer patient reaches a doctor’s office the process
of tumour development is often significantly further advanced.
Studies of realistic cancer progression must also contend with
the difficulty of tracking exactly which genetic mutations are
passed on with each cellular reproduction. This is therefore a
context in which the tools of mathematical modelling can be
brought to bear, allowing us to make predictions about pro-
cesses that cannot be witnessed directly (see [16] for an
excellent review of the much broader field of mathematical
oncology). These ideas have also been used to model linguistic
and cultural evolution [17], which take place on a different
scale but which are fundamentally also sums of small,
difficult-to-record individual events, which we can only hope
to understand in terms of the aggregated forces driving them.

The applications of EGT to cancer have been recently well-
reviewed by Wölfl et al. [18], but the focus of that work is
on higher-level phenomena. A great deal of time is spent on
a description of cancer treatment as a ‘game’ between the
physician and the disease (see also [19] for a thorough discus-
sion of this), but the role of space is considered only briefly,
and finite-population and nonlinear-benefit effects only in
passing. All of these phenomena must be considered in
detail before EGT can be used to understand cancer on the
level of interactions between individual cells, which are par-
ticularly crucial in the early stages of cancer development,
when tumour-cell populations are small. This leaves a gap
in the literature which we hope to fill with this review.

Our particular focus is the question of how cooperation
develops and survives in tumour populations. Cooperation
is crucial to the development of cancer. One of its oft-cited
hallmarks is growth-factor self-sufficiency, as noted by
Hanahan & Weinberg [2]: cancer cells acquire the ability to
produce the substances that indicate to themselves and each
other that they can reproduce, instead of waiting for the
usual signals from the rest of the body. These growth factors
are diffusive, and require some energy cost to generate, so
that a cell which produces them increases the reproductive
ability of its neighbours while decreasing its own. This
system is thus perfectly set up for a ‘tragedy of the commons’
[20]. A ‘defector’ cancer cell, with a mutation allowing it to
free-ride off the growth factor produced by its neighbours
without producing any itself, should always have a reproduc-
tive advantage over growth-factor-producing ‘cooperators’.
Its descendants should take over the population and drive
cooperators extinct, limiting growth factor production and
preventing tumour development. Yet cooperation survives
in cancer, not just in this context but in a variety of others.
Tumour cells secrete factors that recruit stroma, such
as fibroblasts and immune cells, to the cause of cancer
development [21]. Producing these substances collectively
benefits the tumour population but comes at an individual
cost to reproductive fitness. Axelrod et al. [22] have sugges-
ted that populations which have acquired some of the
hallmarks of cancer but not others cooperate to propel each
other down the path to tumorigenesis, each producing a
growth factor the other needs. They term this phenomenon
‘by-product mutualism’, though it may also be thought of
as a division of labour. They also suggest intra-tumoural
heterogeneity as evidence for more general forms of
cooperation within cancer, with different cell populations
paying a fitness cost to develop abilities that the tumour as
a whole needs to survive. Cooperation is of course not the
only manner in which tumour cells interact: one of the very
few studies in which evolutionary-game-theoretic inter-
actions have been quantified experimentally in in vitro
cancer-cell populations [23] found comensalistic relation-
ships. But we would argue that cooperation is the most
promising avenue for theoretical and experimental explora-
tion, since it allows multiple cancer-cell populations to
speed each other along the path to malignancy. Identifying
the mechanisms by which cooperation develops, and how
those mechanisms might be disabled, is a vital step in slow-
ing the development of cancer before metastasis—or even
tumorigenesis—can occur.

The outline of this review is as follows. In §3, we discuss
some classical matrix games and outline the basic principles
of EGT. In §4, we consider the various dynamics that result
from these strategy-dependent interactions and efforts that
have been made to model them analytically, starting with
the well-known base case of the infinite and well-mixed
population. Section 5 offers a brief summary of adaptive
dynamics, the mathematics that results when evolving traits
are modelled as continuous variables. Section 6 discusses
the case of finite populations with defined ‘update rules’ gov-
erning reproduction. Section 7 focuses on spatial modelling
and discusses the advances that have been made over the
last two decades in the field of evolutionary graph theory,
from theoretical analyses of interacting agents on regular
graphs to more advanced simulation-based models of
simple epithelia. We consider studies that have applied the
ideas in each section to make predictions about the behaviour
of cancer, to give the reader a sense of the utility and limit-
ations of EGT. We conclude with a summary of current
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theoretical challenges within the field, and the experimental
and computational work that remains to be done in order
to rise to them.
 lsocietypublishing.org/journal/rsif

J.R.Soc.Interface
19:20220346
2. Games in cancer
The simplest case we consider is that of two agents, each of
which can follow strategy A or strategy B (conventionally
designated ‘cooperate’ and ‘defect’), interacting to receive a
pay-off determined by their interaction matrix,

A B
a b

g d

� �
A

B

By convention, this means that a strategy-A individual
receives pay-off α for interacting with another strategy-A
individual and β for interacting with a strategy-B individual;
the second row describes the pay-offs of strategy-B. Depend-
ing on the relative magnitude of pay-offs, this situation leads
to various incentive structures, which we refer to as social
dilemmas. This is one of many situations in EGT where our
terminology is inherited from the origins of game theory in
describing human behaviour, and misleadingly implies that
individuals must be sentient beings with conscious goals.
This is of course not true: in intercellular dynamics, game
theory becomes relevant whenever cells behave in a way
that affects their own and others’ reproductive fitness, imply-
ing the existence of a strategy-dependent pay-off matrix.
Here, a strategy is simply a phenotype, which may be deter-
mined by inheritance (subject to random mutation at birth)
or induced as a response to its environment [18]: a cell may
produce a growth factor or not, become motile or not, or so
on.

The two social dilemmas most often invoked to explain
tumour-cell behaviour are the Snowdrift game (also known
as the Hawk–Dove game or the game of chicken [24,25]
and often studied in yeast [26]) and the Prisoner’s Dilemma
[27–29]. The Snowdrift game is defined by the pay-off rank-
ing γ > α > β > δ and is relevant to the game of growth factor
production if we assume that it is better for a cell to produce
a growth factor at some cost to itself, even if no other cells do,
than it is to exist in an environment with no growth factor at
all.

This is rarely assumed, however, and the better-studied
social dilemma for this problem is the Prisoner’s Dilemma,
defined by the pay-off ranking γ > α > δ > β. This can be
made to satisfy the condition of ‘equal gains from switching’,
i.e. that β + γ = δ + α, which removes one degree of freedom. If
we further specify that B-players are not affected by inter-
action with each other, i.e. δ = 0, we can reduce the
Prisoner’s Dilemma to the two-parameter form

A B
b� c �c
b 0

� �
A

B

Here cooperation comes at a cost c and confers a benefit b.
A-players are called cooperators and B-players are called
defectors. The best outcome for a player is defecting against
a cooperator; the worst is cooperating against a defector.

What kind of scenarios arise from these games? The most
famous relevant concept here is that of the strict Nash equili-
brium [30], a situation where no player can get a better pay-
off by unilaterally changing strategy. The Prisoner’s Dilemma
has only one strict Nash equilibrium, where both players
defect. We can also consider which strategy is risk-dominant,
i.e. which strategy is better when no information is known
about the other player’s behaviour; here we compare
average pay-offs and say that strategy A is risk-dominant if
α + β > γ + δ. (In the Prisoner’s Dilemma, defection is risk-
dominant.) We say that a situation is Pareto-efficient if there
is no alternative choice of strategies which will leave a
player better off without making another worse off. For
instance, the all-defection strict Nash equilibrium in the Pris-
oner’s Dilemma is not Pareto-efficient, because both players
would be better off if they both decided to cooperate. A
type of two-player game not discussed in detail here is the
coordination game, defined by α > γ and δ > β, i.e. where each
strategy is the best play against itself. Neither the Prisoner’s
Dilemma nor the Snowdrift game are coordination games,
and while there has been some suggestion that coordination
games may exist in cancer, they have yet to be explicitly
identified [31]. It is worth noting that the oft-quoted one-
third rule [32] for the survival of ‘cooperation’—that under
certain conditions, cooperation is a favoured strategy if the
unstable equilibrium x� ¼ ðd� bÞ=ðaþ d� g� bÞ is greater
than one-third—is only relevant to coordination games.

A question that naturally arises is how to extend the two-
player game to interactions between larger groups of cancer
cells (or indeed any other kind of agent). A common
approach is to assume that every agent in a group plays a
two-player game with every other, and either accumulates
or averages the resulting pay-offs [33]: this is called pairwise
interaction. Archetti & Scheuring [34] have argued that multi-
player games have fundamentally different dynamics, and
cannot be approximated as sums of pairwise games. If we
still have only two strategies, A and B, and a group of N inter-
acting players, then we can represent a general game with
two vectors of length N with entries ak and bk for k = 0,…,
N− 1, where ak represents the pay-off to an A-player when
it interacts with k other A-players and bk the corresponding
pay-off to a B-player interacting with k A-players. Awide var-
iety of multiplayer games can be represented in this form
[35], the simplest of which is the N-person Prisoner’s
Dilemma, in which the benefits from cooperators are
pooled and shared evenly between all participants, such
that ak = b(k + 1)/N− c and bk = bk/N. This assumes that the
benefit from cooperation is a linear public good [36], which is
to say it is non-excludable (no individual can prevent another
from using it) and increases linearly with the number of
cooperators [34]. However, as of 2012, no in vivo linear
public goods had been observed experimentally, and to the
best of our knowledge none have been discovered since.
Instead, it has been suggested that the benefit from public
goods in cancer is sigmoidal in the number of cooperators in
a group [37], with pay-offs

bk ¼ VðkÞ � Vð0Þ
VðN � 1Þ � Vð0Þ ; ak ¼ bkþ1 � c,

for a saturating function V(k) = 1/(1 + es(k/N−h)) with inflexion
point h and steepness s. (A graphical illustration of various
linear and nonlinear benefit structures is provided in figure 1.)
This applies not merely to growth factor production but to
cooperation in, for example, the aforementioned Warburg
effect [12,38], whereby cancer cells switch to glycolysis for



benefit

benefit

benefit

no. cooperators

no. cooperators

no. cooperators

(b)

(a)

(c)

Figure 1. A graphical illustration of the benefit-to-cooperator relationship for
(a) the N-person Prisoner’s Dilemma, (b) a threshold game (e.g. the Volun-
teer’s Dilemma) and (c) a general sigmoid benefit function.
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energy production at some energy cost to themselves. This pro-
duces lactate, which acidifies the background, suppressing the
immune system, encouraging the production of growth factors
and promoting the death of non-glycolytic cells [39], which
confers a relative reproductive-fitness benefit to glycolytic cells.

A further type of multiplayer game is the threshold public
goods game, where some number K of cooperators must be
present in a group before any benefit is conferred to any
player. If K = 1 the game is called the Volunteer’s Dilemma
[40], relevant to the production of cell–cell adhesion mol-
ecules, which provide their benefit to an entire group as
soon as one cell within it produces them [41].
3. Evolution as a dynamical system
In order to model how the characteristics of a population will
change over time, we must make the link between game pay-
off and reproductive fitness. Say that a cell interacts with one
or more neighbours and obtains a total pay-off P. Its repro-
ductive fitness F is most commonly modelled as F = 1−w +
wP, where the parameter w > 0 is selection strength. In most
theoretical analyses, work is done in the limit of weak selec-
tion, w≪ 1, which is equivalent to assuming that interactions
between cells make only a small difference to their reproduc-
tive success. Where w = 0, there is no selection; this is referred
to as evolution under ‘neutral drift’ [42,43].

The simplest dynamics we can consider are that of an infi-
nitely large, well-mixed population, where every individual
is equally likely to interact with every other, and we can
neglect self-interactions. If we have two strategies A and B,
a general two-player game, and a population of which a
fraction x(t) are A-players, then the expected fitness of an
A-player is FA = 1−w +w(αx + β(1− x)). If reproduction is
proportional to fitness, the fraction of A-players will grow
linearly with the fitness advantage of strategy A over the
average member of the population, _x ¼ xðFA � FÞ. This
gives us the replicator equation first written down in [44],
and which here is of the form

dx
dt

¼ wxð1� xÞðða� gÞxþ ðb� dÞð1� xÞÞ:

This equation has two trivial stationary points, where the
population is all-A or all-B, and a heterogeneous equilibrium
(which requires α > γ, δ > β or α < γ, δ < β). As the success of
our strategies are dependent on the population composition,
we say the population is subject to frequency-dependent
selection. The replicator equation can also be extended to
include mutation, yielding the obviously named replicator–
mutator equation [45].

For the Prisoner’s Dilemma, the replicator equation becomes

dx
dt

¼ �cwxð1� xÞ:

Here, we can see the dynamics we expect from the existence of
the all-defector strict Nash equilibrium: there are no hetero-
geneous equilibria (i.e. cooperators and defectors cannot
stably coexist), and the fraction of cooperators in the population,
if non-zero, will always decline. If instead players interact in
groups of size n within the infinite population, then the same
mechanics arise. Any individual interacts with k cooperators
with equal probability for any cooperator fraction x, since
groups are selected at random. But cooperators always pay an
extra cost c, and are thus always at a disadvantage. (For a full
review of the dynamics of multiplayer two-strategy linear
games, see [46].) This leads to the fundamental observation
that an infinite well-mixed population interacting in the context
of a linear game will drive cooperators to extinction, i.e.
cooperation cannot survive without a mechanism to sustain it [47].
In order to develop an explanation for the persistence of
cooperation in biological systems, we can draw from several
possible mechanisms: stochasticity, i.e. the population is finite
[32]; assortment, i.e. the population is not well-mixed [48];
and nonlinearity, i.e. the pay-off for interaction is not linear in
the number of cooperators [34]. The first two of these mechan-
isms will be thoroughly discussed below, but it is worth
lingering for a moment on the third. The Volunteer’s Dilemma
[34] and sigmoid benefit functions [37] have all been shown to
support coexistence of cooperation and defection, even in the
infinite well-mixed population. For a review of the dynamics
of nonlinear games in infinite populations and examples of
the above, see [34], the conclusion of which argues lucidly
against the overassumption of assortment as an explanation
of cooperation where nonlinearity may suffice.

It is worth considering carefully here what we mean by
concepts like equilibrium and stability. Within the framework
of replicator dynamics in the infinite population, linearly
asymptotic fixed points (i.e. points to which the population
will converge if sufficiently close) correspond to strict Nash
equilibria [49,50]. Where the fixed point occurs at a coopera-
tor fraction x, the strict Nash equilibrium is a mixed strategy
where all players cooperate with probability x.
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These ideas of ‘evolutionary equilibrium’ have be used to
glean insight into the population characteristics that cancer
cells should acquire over time. This approach was pioneered
by Tomlinson 25 years ago [51]. In his original paper, he set
up a 3 × 3 pay-off matrix governing the interactions of cyto-
toxin-producing, cytotoxin-resistant and neutral cells, and
found the polyclonal fixed points of the resulting replicator
equation (i.e. where the proportions of each type in the
population were such that the pay-offs of all three types
were equal, and thus their frequencies did not change).
Different parameters of the pay-off matrix—for example,
those representing the fitness cost of resistance or the
impact of cytotoxin on non-resistant cells—were varied to
find their impact on the composition of the population at
these fixed points. For some regimes, all three types could
stably coexist, and for others a single phenotype would
become dominant. His crucial observation was that strategies
such as cytotoxin production could find evolutionary success
even at the expense of the tumour as a whole, and thus that
intra-tumour competition could be leveraged by clinicians to
impede tumour growth.

Replicator-dynamics models like the above have been
explored by Basanta and colleagues, among others, over the
last decade and a half, with linear well-mixed EGT models
applied to glioma progression [52], prostate cancer [53], the
Warburg effect [54], multiple myeloma [55], and to predict
the effect of anti-cancer therapies such as the ‘double bind’
of radiotherapy and the p53 vaccine [56] or antiglycolysis
treatment [57]. (The replicator-dynamics framework is appro-
priate when modelling systems where birth and death rates
are similar [58], but not for a substantially growing popu-
lation such as a metastatic tumour.) More recently, Li &
Thirumalai [59] extended this technique to nonlinear systems,
modelling growth as a saturating function of absorbed
benefit (i.e. using dx

dt ¼ xgðxÞ for g(x) nonlinear) and compar-
ing with the results of in vitro experiments to explain the
coexistence of cooperators (IGF-II producers) and defectors
(non-producers) in glioblastomas. The usual course of such
studies is to construct a simple model of phenotype inter-
actions in the form of a pay-off matrix, and then analyse
the dynamics of the resulting infinite-population replicator
equation to find which strategies will dominate, coexist, or
be driven extinct. The conceptual simplicity of this approach
comes at a cost, however: it is assumed that the system can
always reach equilibrium, which may not be feasible (a
catch identified by Tomlinson in 1997); and in order to
keep the analysis of the system’s fixed points algebraically
tractable, the pay-off matrix is reduced to two or three
parameters, often with significant loss of generality. The
imprecise biological meaning of these parameters, which rep-
resent the slightly vague concept of ‘fitness costs’ without
specifying a mechanism by which they are incurred, makes
these assumptions difficult to test experimentally. The
actual measurement of pay-off matrix elements requires the
construction of an ‘evolutionary game assay’, wherein the
proportions of different phenotypes in a culture are varied
in order to measure their effects on each other’s replication
rates. This is very difficult to do beyond a simple two-species
system in a well-mixed environment, much less in a setting
mimicking the genetically and spatially heterogeneous
environment of a developing tumour [60]. As mentioned,
Kaznatzcheev et al. [23] found comensalistic relationships
between drug-resistant and drug-sensitive cells in an in
vitro study of non-small-cell lung cancer exposed to alectinib.
Similarly, Wu et al. [61] fit a pay-off matrix to a system where
multiple myeloma cells interacted with bone-marrow stromal
cells with a spatially varying concentration of doxorubicin,
and found that if the matrix coefficients were made to be
functions of drug concentration, the model could successfully
predict the evolutionary trajectory of the system. Perhaps
most promisingly from a clinical perspective, Athreya et al.
[62] were able to distinguish between healthy and cancerous
lung biopsy samples with an accuracy of 95 per cent by find-
ing the Nash equilibria of a data-derived bimatrix game
representing cell–cell interactions in a developing adenocarci-
noma. This work, at the interface of machine learning and
game theory, shows the potential of even this simple formu-
lation of evolutionary incentives in the diagnosis and
treatment of cancer.
4. Continuous trait evolution and adaptive
dynamics

If strategies are not cleanly partitioned into ‘cooperation’ and
‘defection’, or similar, the concept of an evolutionary
equilibrium becomes trickier. For some insight, we turn to
the field of adaptive dynamics, which considers strategies
or traits as continuous variables determining fitness. A
common approach to visualizing this concept is the ‘fitness
landscape’, where the fitness of a population is plotted against
trait values [63]. This approach suggests an easy way to visu-
alize fitness peaks, but in practice, the idea becomes extremely
unwieldy whenever the system has more than two relevant
traits or where we have frequency dependence (requiring the
landscape to ‘heave and bulge’ as the population moves
across it). A more versatile tool is the canonical equation of
adaptive dynamics [64], which states that traits evolve continu-
ously according to a general fitness function F(u, U) for trait
values u of an invasive strategy and U of a resident strategy.
In two-species form, we have

dU
dt

¼ kðu, UÞ @Fðu, UÞ
@u u¼U

:

Here, the quantity k(u, U) is a coefficient scaling selection
strength, which can incorporate the effects of mutation and
(in a finite population) stochasticity. The dynamics here are
intuitive: traits evolve towards fitness maxima, just as physical
objects in energy landscapes move towards their minima. This
framework gives us a stronger foothold for understanding the
concept of evolutionary stability. An evolutionarily stable strat-
egy (ESS) U*, if adopted by most of the population, cannot be
replaced by any invasive strategy u [65]. This is equivalent
to requiring F(u, U*) < F(U*, U*), or F(u, U*) = F(U*, U*) and
F(u, u) < F(U*, U*) [49,66], so that the invading population is
disadvantaged when interacting with the initially dominant
resident population and never has a chance to grow. In the
linear fitness function represented by our pay-off matrix, this
condition is a > c, or a = c and a > d.

A convergence stable strategy (CSS) is such that any strat-
egyU in its vicinity will be replaced by a strategyU + ϵ slightly
closer to it [67]; this is equivalent to requiring that the CSS is
an evolutionary attractor, and nearby strategies will evolve
towards it. Apaloo [68] introduced the further concept of a
neighbourhood invader strategy, which as its name suggests
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can invade any nearby strategy; see [69] for a thorough discus-
sion of the way these properties interact and combine.

Adaptive dynamics can be applied to models of multi-
phenotype systems in cancer, using equations of the general
form

dxi
dt

¼ xiGðx, ui, u, RðxÞÞ

and

dui
dt

¼ kðui, uÞ @Gðx, v, u, RðxÞÞ
@v v¼ui

,

where here the fitness function (sometimes called the G-
function) is dependent on the population-density vector
x = (x1, x2,…, xn); the strategy vector u = (u1, u2,…, un),
where ui is the continuous-strategy variable of the ith species;
and some function R(x) representing resource availability.
These equations are usually constructed according to a
model designed by the researchers to mimic a cancerous
system and then solved numerically to generate the popu-
lation-trajectories xi(t). The interested reader is directed to
the work of Gatenby and co-workers, most notably the
2008 study [70] in which a G-function was constructed to
describe the adaptive landscape of epithelial cells during
carcinogenesis. This model was able to incorporate nutrient
uptake, the Warburg effect and inter-species competition,
controlled by the continuous variable ui assigned to each phe-
notype. When these equations were solved numerically, the
model predicted a realistic simulation of cancer progression.
Cunningham et al. [71] used a similar model to investigate
the evolutionary progression of metastatic cancers as they
spread out from their original environment and are forced
to adapt to different tissue conditions, and predicted that
regardless of their origin, all phenotypes within a given
organ should converge to a similar set of characteristics,
which should render them susceptible to targeted therapies.
The adaptive-dynamics approach has also been used by
Gatenby et al. to investigate the emergence of resistance to
cytotoxic drugs [72], and was explored in more detail in the
recent work by Bukkuri & Brown [73], who provided a
thorough overview of how to use adaptive dynamics to rep-
resent various models of multi-drug resistance. Their paper
presented G-function systems where resistance was assumed
to confer varying fitness cost, and where degrees of resistance
to separate drugs are assumed to be independent, covarying,
or mutually exclusive. This latter possibility is referred to as
the ‘double-bind’ model—see also [56]—because a popu-
lation cannot evolve to become resistant to one without
increasing its susceptibility to the other. Adaptive dynamics
has been used to suggest more specific clinical treatments:
in a 2020 paper, Reed et al. [74] used a G-function model of
independent resistances to different drugs, where resistance
was presumed to inflict a multiplicative cost on fitness, to
suggest patient-specific timings of ‘second-strike’ therapy in
sarcomas. Perhaps most clinically promising is the recent
development of ‘adaptive therapy’, whereby anti-cancer
drugs are applied in carefully timed cyclic bursts, reducing
the size of the tumour while maintaining a sizable population
of drug-sensitive cells. Between these bursts, the drug-
sensitive population recovers to close to its initial levels, keep-
ing the drug-resistant population under control through
competition for resources and thus delaying the onset of
metastasis. The cost paid by clinician and patient is to
relinquish the aim of ‘curing’ the cancer entirely, as opposed
to the current best-practice ‘maximum tolerable dose’ (MTD)
approach, which aims to kill all cancerous cells before resist-
ance can develop. Adaptive therapy has been the subject of
extensive theoretical and computational modelling in the
last few years [75–79]. In these studies, it compares favour-
ably to MTD, though its only clinical trial to date [80]
involved too few patients to provide conclusive proof of its
efficacy [81]. Evolution-inspired therapies are an exciting
new avenue of cancer treatment and their potential will hope-
fully be explored with further clinical trials in coming years.
5. Introducing stochasticity
When finite populations are considered a gulf develops
between ideas of Nash equilibrium and evolutionary stability,
as we now have to deal with the effects of stochastic drift.
Nowak et al. [32] showed that it is entirely possible for Nash
equilibria to be displaced by other strategies in a population
of finite size N as a result of stochasticity, which can buffet
populations away from stability. Any strategy arising in a
finite population must eventually either fixate (take over the
entire population) or be driven extinct [82], and so it serves
us better in this context to talk about a strategy’s fixation prob-
ability, ρ. A population with i mutants and N− i residents will
eventually fixate with probability ρi; if the probability of reach-
ing i + 1 or i− 1 mutants in the next timestep are Tþ

i and T�
i ,

respectively, then the system takes the form of a random
walk [83], from which we obtain the fixation probability of a
single mutant appearing in a resident population

r1 ¼
1

1þPN�1
i¼1

Qi
j¼1

T�
j

Tþ
j

:

In order to make use of this, we must consider our update rules
governing reproduction. In a model of a population of fixed
size with overlapping generations, like an epithelium, every
timestep must involve a birth and a death; this is called a
Moran process [84]. Most studies consider selection acting on
birth—to our knowledge there have been no analytical studies
of the mechanics of Moran processes with selection on death.
In ecological models, there are many possible update rules
(including Fermi updating [50,82], where two randomly
chosen individuals adopt each other’s strategies or not based
on a pairwise comparison of their fitnesses), but we will here
focus on two: birth–death, where an individual is selected to
reproduce proportionally to fitness and then an individual is
selected to die at random, and death–birth, where those
steps occur in reverse order. This apparently trivial distinction
can lead to very different dynamics in more complex models;
for details, see §7.

The versatility of this framework has led to a variety of
interesting mathematical extensions. The continuous process
relevant to the infinite population can be obtained from the
Markov chain above in certain limits, (e.g. [82,85]). Traulsen
et al. [50] identified the relevant parameter as Nw for selection
strength w, and found a smooth transition between ideas of
stability in infinite populations and the finite-population
requirement that an ESS must also be resistant to replacement
by random drift. Antal & Scheuring [83] used a similar
approach to find that the time taken for a mutant to fixate
under certain conditions of stability is of order NlnN. There



Figure 2. The directed line. Each vertex can reproduce into the vertex to its
right. If a mutation appears in the leftmost node (below), it cannot be
replaced and must eventually take over the entire line. If it appears in
any other node (above) it can never replace the residents to its left and
must eventually vanish. The effect of selection is completely negated.
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have also been attempts to introduce axiomatic rigour to
evolutionary dynamics in, for example [86–88], the latter of
which placed the Moran process within the Cannings
model of exchangeable reproduction and found general fix-
ation probabilities for all such processes. Wu et al. [89]
drew symmetries between a variety of evolutionary processes
under weak selection, also described in the infinite-popu-
lation case by Page & Nowak [87], and considered the
effect of including terms of order O(w2) and higher. Traulsen
et al. [82] extended the finite-population system described
above to an arbitrary number of strategies and mutation
rate, and found a critical mutation rate that fundamentally
altered the dynamics of the system. The theoretical frontier
of EGT, even in non-spatial models, is vast enough to
occupy mathematicians for decades to come.
Figure 3. The star, comprised of a collection of peripheral nodes connected
to a central node. All connections are undirected; replacement can occur from
the periphery into the centre or vice versa. If the number of nodes on the
periphery is very large, then the probability of any individual surviving at the
centre for long without being replaced is very small, so if a mutation is to
spread ‘lastingly’ it must do so periphery-to-periphery, which requires the
mutant to be chosen for reproduction twice—once to reproduce into the
centre and once again into another peripheral node. The effect of selection
is thus ‘squared’.

oc.Interface
19:20220346
6. The role of space
The results discussed above generally assume a well-mixed
population, in which every individual is equally likely to
interact with every other. Any realistic model of cancer devel-
opment must, however, contend with the effects of space [6],
as cells are constrained within anatomical structures and are
more likely to interact with cells closer to them. These limited
interactions create a dependence of fitness on a cell’s location
within the tissue architecture, so a mutation’s likelihood of
fixation is influenced by where in the tumour it first appears.
The interplay of space and survival strategy has been studied
within EGT for more than 30 years, first attracting significant
attention with Nowak and May’s seminal 1992 paper [90],
which illustrated how complex population structures can
blossom and die when cooperators and defectors are
arranged on a two-dimensional lattice. Progress was made
by Lieberman et al. [48], who introduced the field of evol-
utionary graph theory, i.e. the study of evolution on graph-
structured populations, in a paper that considered mutants
with a constant relative fitness advantage r. Two structures
discussed in that paper, the directed line and the star (illus-
trated in figures 2 and 3, respectively), are particularly
relevant to the development of cancer and worth lingering
on here. Cells arranged in a directed line can only reproduce
into the node to their right, and thus a mutation fixates if and
only if it arises in the leftmost node, regardless of its impact on
reproductive fitness; the directed line thus completely sup-
presses the effects of selection. Colorectal crypts have been
experimentally confirmed to follow such one-dimensional
neutral drift dynamics [91]. Another interesting structure is
the star, which consists of a large number N of nodes attached
to a single central node. In order for the mutation to spread
through the periphery, it must reproduce twice, once into
the centre and then again from there into a peripheral
node, without being replaced by a resident. This effectively
‘squares’ the effect of selection; a mutation with fitness
advantage r has fixation probability ρWM = (1− (1/r))/
(1− (1/rN)) in the well-mixed population and ρstar = (1− (1/
r2))/(1− (1/r2N)) in the star structure with birth–death updat-
ing. Structures have been found which amplify the effects of
selection further still, such as the funnel and the comet [92].
Star-like structures have been suggested to be relevant to
pancreatic and colon cancer [6], and may exist in cancers
more generally. Tumours have plastic hierarchies which
allow stem cells to differentiate and de-differentiate
themselves more easily than in normal tissue [93,94]. This
‘star structure effect’ may partly explain the accelerated
course of evolution in cancer.

Since this breakthrough, further research has focused on
classifying general graph structures in terms of their amplify-
ing or suppressive effects on selection [95,96]. An important
distinction to make here is between directed graphs, where
edges between two vertices vi, vj are labelled with arrows
(e.g. vi→ vj) to indicate that the offspring of vi may replace
the occupants of vj but not vice versa, and undirected
graphs, where individuals at any two vertices connected by
an edge can replace or be replaced by each other. On a
weighted graph, connections between vertices are quantified:
for every pair of vertices, we assign a probability wij that,
given that the occupant of vi is chosen to reproduce, it will
replace the occupants of vj. A fundamental result within evol-
utionary graph theory is the isothermal theorem [48], which
states that, using birth–death dynamics, a mutant with rela-
tive fitness r has fixation probability ρWM on a graph where
the temperature Ti ¼

P
j w ji of every vertex is equal. (A simi-

lar result holds for death–birth dynamics [97].) This condition
is called isothermality, and indicates that an individual’s
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probability of replacement—i.e. its mortality—is independent
of its position. Such structures never suppress drift. If all
vertices have the same fecundity,

P
j wij, then the graph

never suppresses selection. If both conditions are met, the
graph is called a circulation.

The simplest structure we can use to represent an epi-
thelium is the regular graph, where each node has the same
number of neighbours, k. Ohtsuki et al. [98] studied a version
of the Prisoner’s Dilemma on such graphs and found
that cooperation is favoured if the cost per neighbour c and
benefit b are such that b/c > k. As the graph becomes better-
connected, defectors become more likely to encounter
cooperators, and thus defection becomes a favoured strategy.
The elegant simplicity of this result arises from the conditions
under which it was derived, including the assumptions of
weak selection and pair approximation [99], meaning that
the probability of finding a cooperator or defector at a
vertex is assumed to be dependent only on the strategies of
its immediate neighbours. As one might expect, more com-
plex systems require more detailed criteria. One interesting
aspect of the Ohtsuki result is that it holds only for death–
birth updating; for birth–death updating under these
conditions, cooperation is never favoured. This result has
prompted a great deal of interesting work generalizing
update rules and their conduciveness to cooperation, particu-
larly the concept of compensated relation as a measurement of
the likely genetic impact of helping one’s neighbours [100]
and Zukewich’s mixed-update system [101]. In this study,
where death–birth updating was used with probability p
and birth–death otherwise, cooperation was favoured on
regular graphs if b/c > k/p; thus cooperation can be favoured
so long as p > 0. There is strong evidence that death precedes
birth on homeostatic epithelia [102], so this condition is
satisfied for our purposes.

Another useful concept in evolutionary graph theory is
the structure factor σ, a property of a graph structure (and
of its assigned update rule) quantifying the likelihood of
cooperators and defectors to assort under weak selection.
For the most general form of a two-player game,

A B

a b

g d

� �
A

B

and in the limit of weak selection, strategy A is favoured over
strategy B on a graph if σα + β > γ + σδ [43]. The higher the
level of assortment, σ, the more important the self-interaction
pay-offs α and δ become to the probability of fixation. For the
Prisoner’s Dilemma, cooperation is favoured if b/c > (σ + 1)/
(σ− 1). For the well-mixed infinite population, σ = 1, and we
recover the result that cooperation is never favoured. For
the well-mixed finite population of size N, σ = (N− 2)/N,
which tends to 1 as N tends to infinity and the effects of sto-
chastic drift vanish. These results hold for both death–birth
and birth–death updating. More complex structures have
structure factors that vary by update rule: for instance, a
star of size N has σ = 1 for death–birth updating but
σ = (N3− 4N2 + 8N− 8)/(N3− 2N2 + 8) for birth–death. The
former result applies for any mutation rate (i.e. allowing for
a certain proportion of random switches in strategy when
individuals reproduce), but the latter only holds when
mutation is very rare. Results for more complex structures
may obey even stricter criteria. Structure factors can be
calculated for multiplayer games [96], games with multiple
strategies [103] and, for certain systems, by simulating evol-
ution under neutral drift [104]. They have also been used to
incorporate the effect of spatial structure into adaptive
dynamics [105].

A number of fundamental adjustments need to be made
to EGT in order to properly consider the role of space: on a
regular graph, for instance, an extra term appears in the repli-
cator equation depending on the pay-off matrix, graph
structure and update rule, and this impacts our definition
of evolutionary stability [106]. Once we allow the number
of neighbours of a vertex to vary slightly, as it does on an epi-
thelium, matters are complicated still further; the criterion for
favourability on non-regular graphs is b/c > 〈k2 〉 / 〈 k 〉 [107],
where <> indicates an average. Cooperation on sparsely con-
nected, regular graphs is also most advantageous where the
networks governing interaction (for pay-offs) and compe-
tition (for reproduction) overlap [108]. Analytical work on
the impact of graph structure has yielded interesting general
results for the favourability of cooperation [42], but in order
to make specific observations about cellular interactions on
epithelia, we must turn to computational research.

Simulation-based work on the impact of graph structure
on EGT has traditionally focused on random, scale-free and
preferential-attachment graphs [33,109–111] or using imita-
tion-based updating [112], which are relevant to modelling
social interactions but inapplicable to epithelia. What results
we can use are more or less intuitive: Kun & Scheuring
[113], for example, found that allowing vertices to swap
positions on a regular graph decreased the favourability
of cooperation. This is the effect one might intuitively
expect, since random movement disrupts the ability of coop-
erators to assort. A more realistic model was developed by
Pavlogiannis & co-workers [114] in the form of the two-
dimensional shift update rule, which allows deaths and
births to occur anywhere in the epithelium (known as
‘global updating’) and cells between them to be shifted
along a path of least resistance. This approach is very compu-
tationally expensive, however, and required several weeks to
run on regular grids of maximum size 16×16. Techniques that
do not need to aggregate thousands of simulations to calcu-
late probability are significantly cheaper. Shakarian et al.
[115] have developed a deterministic simulation method for
calculating fixation probabilities on any network which
tracks the spread of ‘cooperator probability’ without the
expense of stochastic simulation.

To more directly study the spread of cooperation on
epithelia, researchers have used the Voronoi network, first
defined over a century ago, designed to represent the
locations of cell nuclei in a realistic biological sample
[116,117]. Voronoi nodes have an average of six neighbours
and very rarely fewer than four or more than eight. These
networks can be simulated dynamically by the inclusion in
a computational model of cell walls between nodes, which
exert forces on each other and cause the nuclei at their
centre to shift around. Archetti [118] simulated a public
goods game with sigmoid benefits on a Voronoi network
with local updating—i.e. requiring that deaths and births
must occur next to each other—and in a model where
benefits could diffuse beyond their immediate neighbours,
although without realistic fluid dynamics. He found that
such networks were slightly less conducive to cooperation
than regular networks of the same average degree. He
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attributed this to two phenomena: a slightly higher average
‘group size’ formed by all nodes touched by the diffusive
good, such that defectors were more likely to encounter the
benefits of cooperation; and non-uniform cooperator fitness
created by variability in neighbour numbers. Studies into
the effect of non-uniformity in such systems are ongoing.
Kaveh et al. [119] and Rychtár ̌ & Taylor [120] have found
analytically that variations in fitness within an invasive
population tend to hinder fixation. However, it has also
been suggested [121,122] that time-dependent fluctuations in
selection actually promote heterogeneity. Mahdipour-
Shirayeh et al. [123] have also noted that environmental
fluctuations can help deleterious mutants fixate on
one-dimensional rings, such as those in the colonic crypt.

To better understand the success of cooperation on realistic
simple epithelia, Renton & Page studied both the Prisoner’s
Dilemma [124] and sigmoid-benefit public goods games
[125] on Voronoi tessellations. They found that the crucial
mechanism required for cooperation to succeed was the spatial
decoupling of birth and death, with nuclei moving under the
forces created by cells vanishing and appearing anywhere in
the population. This decoupling allowed clusters of coopera-
tors to grow from within, where they are fittest, rather than
simply at the boundary, as required by local updating. Once
this was implemented, for example, the critical benefit-to-
cost ratio required for cooperation to be favoured in the Prison-
er’s Dilemma more than halved compared to a static network
with death–birth updating. They also found, in accordance
with the work of Archetti, that steeper benefit functions
enhanced cooperation. By varying their model parameters,
they obtained both coexistence and coordination behaviour
in their public goods games. Their key result is that
cooperation is favoured by local gameplay but global compe-
tition for offspring; this will be expanded upon in future
work. Cooperation thus becomes more likely when simu-
lations become more realistically biological, which is an
enormous relief to scientists trying to explain the existence of
experimentally observed phenomena.

Space can also be included in evolutionary-game-
theoretic models of cancer without the explicit incorporation
of graph structure. Studies such as those discussed in §4,
where replicator equations are constructed based on hypothe-
tical pay-off matrices and then examined for their equilibria,
can be made ‘pseudo-spatial’ by assuming that cell with one
phenotypic strategy have fixed locations and thus can interact
more or less with other phenotypes. Flach et al. [126] used
this approach to construct differential equations describing
the interactions between melanoma cells and fibroblasts
during tumour growth. In the model, the fibroblasts stabil-
ized ‘free’ cancer cells to become ‘fixed’, and stimulated the
division of those ‘fixed’ cells to create ‘blocked’ cells trapped
within the tumour. These three types of cancer cell were trea-
ted as separate populations, with free/fixed and fibroblast
growth rates dependent on population composition as a
whole. This pseudospatial approach was also used by Qian
et al. [127] to build a model of cooperation and defection in
niche construction, whereby tumour cells modify their micro-
environment to create more amenable conditions for their
survival. Other approaches to the inclusion of spatial effects
in differential-equation EGT models of cell–cell interactions
have been summarised by Durrett & Levin [128,129], includ-
ing patch models (where the population is segregated into
several interacting groups, again without the explicit inclusion
of space) and reaction–diffusion equations. Their work, along
with more recent studies [130–132] suggests that when space
is built explicitly into models of cancer, fundamentally differ-
ent population dynamics are obtained: there is no substitute,
as it were, for the reality of space. Agent-based modelling, in
which each cell is modelled as an individual and the system
is simulated computationally, is built around this concept. In
their excellent review, Adami et al. [133] provide a compelling
case for the use of agent-based modelling in EGT, pointing
out that it can easily accommodate stochastic phenomena
(probabilistic strategies, large mutation rates) that analytical
methods struggle to deal with. An et al. [134] also note that
agent-based modelling easily implements parallelism, allow-
ing multiple instantiations of the same object (i.e. cells of the
same phenotype) to observe the range of their possible beha-
viours in slightly different conditions. It also allows
observations of emergent behaviour: group dynamics of inter-
acting populations which cannot be guessed from their
behaviour in isolation. However, like all large-scale simu-
lations, agent-based models are generally computationally
expensive and time-consuming, and do not inherently explain
the mechanisms behind their results. They are useful for
observing the implications of particular models—An et al.
describe them as tools for testing ‘thought experiments’—
but must be backed up with mathematical verification
where at all possible [133]. They can also be used to tease
out ‘general phenomena’ from particular models, without
attaching precise quantification to those predictions. Manem
et al. [135], for example, used an agent-based model of indi-
viduals in space to find that a mutant with a constant
fitness advantage could invade a population more easily
from within a population than at its boundary, and with
more difficulty on an unstructured mesh than a regular
graph. Waclaw et al. [4] used an agent-based model of a
developing three-dimensional tumour, where successive
mutations had multiplicative fitness effects, to emphasize
the importance of cell motility to lesion growth and predict
that mutations with even a small fitness advantage could
spread quickly through cancerous tissue. Such studies can
also incorporate cooperation: Komarova incorporated realis-
tic mutation rates into the study of public goods games on
two-dimensional regular graphs [136], and found that spatial
constraints had complex and varied effects. As with the
modelling of any phenomenon, computational simulation
is a powerful tool that must be understood as an aid to
mechanistic understanding rather than a source of it. With
that caution observed, agent-based modelling can be an
invaluable tool for the understanding and prediction of cancer.
7. Conclusion
The study of EGT and its application to understanding inter-
cellular interactions in cancer has two main purposes. One is
to understand the process of tumorigenesis, the process by
which life turns against itself, simply because it is fascinating
and because it is there. Much of the analytical work summar-
ized in the first half of this review considers cooperation and
mutant fixation to that end. The second aim of the field is to
improve patient outcomes, often by modelling real-world
anti-cancer treatments computationally and analysing clinical
data. In a recent study, for example, the idea of destroying the
evolutionary advantage of cooperation was experimentally
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tested by re-engineering and re-injecting extracted cancer
cells to allow defectors to take over a population [137].

In order for the study of EGT to achieve its full poten-
tial—for those seeking to understand cancer, to treat it, or
both—an interdisciplinary effort is required. To make use of
studies quantifying precise critical benefit-to-cost ratios
required for cooperation to survive on epithelia, for example,
we must make precise what we mean by ‘benefit’ or ‘cost’—
what biochemicals enforce it, how quickly and how far do
they spread, and through what mechanisms can they be
altered? If we assume that treatments against public goods
raise the point of inflexion h of a sigmoid benefit function,
as in [118], how quickly does this happen, and by how
much? What is the set of public goods (and indeed public
detriments, such as lactic acid in the context of the Warburg
effect) that influence tumour-cell growth in a given context,
and how are these produced and shared between cells?
How widespread is the phenomenon of phenotype switching
at various stages of tumour development, and between
which phenotypes and at what rates does it occur? Dujon
et al. [138] have an excellent summary of broader questions
within the field, collated from 33 experts. Of particular
interest to EGT is the question of the extent to which
intra-tumoural heterogeneity is a cause or consequence of
oncogenesis, which can partially be addressed experimentally.

Once these questions are answered, a conceptual route
can be carved out towards preventative treatments for those
at risk of developing epithelial cancers and anti-cancer treat-
ments for those already diagnosed. This will require close
collaboration between theoreticians and experimentalists, fol-
lowing the work of Archetti [139] et al. and Calbo [140] et al.,
wherein games were successfully implemented in biological
systems. Models more realistic and complex than can be
handled by theoretical analysis alone—such as those invol-
ving density-dependence of homeostatic replication [141] or
contact inhibition and realistic models of cell extrusion
[10,142,143]—will require computational research to make
predictions and experimental input to test them. Improved
methods of monitoring the detailed clinical progression of
tumours [18,63] will aid this effort in the coming years. The
aim should be a feedback loop between theoretical, compu-
tational and experimental researchers, whereby the
assumptions of theory are redirected, and new predictions
are generated as existing ones are tested by experiment. No
single discipline can tackle the problem of halting tumorigen-
esis without a good grasp of what is known by researchers in
other, perhaps philosophically quite distinct, areas of science.
Only through collaboration and communication can we make
real progress towards understanding and curing cancer.
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