
1 

Federated 
Learning 

The pioneering distributed machine learning 
and privacy-preserving data technology 

 
Philip Treleaven, Malgorzata Smietanka, Hirsh 

Pithadia  
University College London 

 

Abstract 
Federated learning (pioneered by Google) is a 
new class of machine learning models trained 
on distributed datasets, and equally important 
a key privacy-preserving data technology. 
 
With huge amounts of data for analysis, 
organisations are faced with three major 
challenges: a) data comprises distributed and 
isolated data sets; b) analytics requires models 
to be trained across these independent data 
sets; and c) data sovereignty/privacy 
legislation is making collecting, sharing and 
analysing data increasingly difficult. 
 
This paper reviews federated learning both in 
terms of a) a federated data infrastructure for 
privacy-preserving data access; and b) 
federated machine learning applied to 
distributed data sets. Given the pivotal role of 
federated learning, the contribution of this 
paper is to place it in perspective to the other 
data science technologies. It includes 
discussions of the privacy challenges facing 
data analytics, relationship to the major data 
infrastructure technologies, and the emerging 
machine learning algorithms impacting 
federated learning.  

1. Data Ecosystems 
The old clichés ‘data is the new oil’ or ‘data is 
the new gold’, acknowledges firstly that data 
increasingly facilitates business; and secondly 
recognition of the monetary value of data. The 
two core aspects are: 

 Federated data infrastructure – 
privacy-preserving data 

infrastructure; a framework for 
collaboration, allowing secure 
communication with collaborating 
parties, such that ‘raw’ data does not 
leave the owner. 

 Federated machine learning – 
decentralized training of a machine 
learning model which enables 
collaborative learning while keeping 
data sources in their original location. 
For example, Google’s mobile phone 
users benefit from obtaining a well-
trained model without sending their 
personal data to the Cloud. 

 
Broadly, federated learning ecosystems 
address: 
 

 On-device (i.e. cross-device) 
infrastructures for mobile devices, IoT, 
Edge and other connected devices. For 
example, Google and Apple used it for 
keyboard (next-word prediction 
models). The data ecosystem is 
characterised by a very large number 
of devices (tens or hundreds of 
millions), with intermittency and low 
bandwidth connections. 

 Inter-organisation (i.e. cross-silo) 
infrastructures allowing collaborating 
organisations to contribute to the 
training with their local datasets. An 
example is the European MELLODDY 
project, where ten pharmaceutical 
companies collaborate in training a 
machine learning for drug discovery 
based on private, highly sensitive 
datasets. This data ecosystem is 
characterized by a smaller number of 
participants with good bandwidth and 
connectivity. 
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Federated learning is a pivotal technology for 
future data ecosystems (see Figure 1), 
impacting data management, working with 
other data science technologies, and 
increasingly data sovereignty issues. 
 
Data management is a major challenge as 
organisations: a) collect increasing amounts 
of heterogeneous data (e.g. business, 
economic, social media and alternative); b) 
data is stored in isolated data sets; c) work 
with partner organisations on collaborative 
analytics; d) need to secure the data; and e) 
monetise their data for their business, 
possibly as a new revenue stream. 
 
Data technologies participating in 
information management with federated 
learning are common digital identifiers, data 
standards, data analytics, and data record 
technologies: 

 Digital identifiers - data referencing 
using unique identifiers for 
referencing data objects. For example 
digital object identifiers (DOIs) that 
are unique, persistent and resolvable. 

 Data standards – this covers 
standards for representing data; 
including common data models for 
industry sectors (e.g. Finance FIB-
DM); and markup languages (e.g. 
eXtensible Markup Language XML). 

 Data analytics - new forms of 
‘statistics’, such as machine learning, 
computational statistics, and complex 
systems (e.g. deep neural networks, 
Monte Carlo simulation). 

 Data records – this covers the storing, 
sharing and synchronization of data 
transactions. Technologies relevant to 
federated learning include: 
distributed databases - data is stored 
across different physical locations; 
distributed ledgers - digital systems 
for synchronising transactions; and 
blockchain – a type of distributed 
ledger where transactions are 
validated by multiple independent 
computers. 

 

Data sovereignty/privacy is becoming a major 
political and social issue for governments, 

institutions and citizens (e.g. Google, 
Facebook, ByteDance TikTok, Tencent 
WeChat). Data sovereignty is the idea that data 
and its usage are subject to the laws and 
governance structures within the nation it is 
collected, as well as defining ownership and 
governmental rights of access. Influential 
programmes include: 

 EU General Data Protection 
Regulation (GDPR) – a legal 
framework that sets guidelines for the 
collection and processing of personal 
information 

 Singapore Personal Data Protection 
Act (PDPA) - governs the collection, 
use and disclosure of individuals' 
personal data. 

 California Consumer Privacy Act 
(CCPA) – covers the handling of 
personal information of all California 
Residents. 

 China Cybersecurity Law - enacted to 
increase data protection, data 
localization, and cybersecurity in the 
interest of national security. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Data Ecosystems 
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Google Federated Learning 
Google pioneered the concept of federated 
learning and provide an excellent illustration of 
the potential of the technology. Google’s 
federated Learning infrastructure (see Figure 
2) enables mobile phones to collaboratively 
learn a shared prediction model while 
keeping all the training data on device, 
decoupling the ability to do machine 
learning from the need to store the data 
in the Cloud. In contrast, the traditional 
machine learning model is to gather raw 
data together (e.g. Cloud) for training. 
This is characterised as ‘taking the data to 
the algorithm’. In contrast, federated 
learning is ‘taking the algorithm to the 
data’. 
 
As described in Further Reading, it 
operates as follows: A) your phone 
personalises the model locally depending on 
your usage; B) many users’ updates are 
aggregated; C) the aggregated updates form a 
consensus change to the shared model; and D) 
the shared models are updated. 

2. Data Politics 
Federated learning, as discussed, is a response 
to growing political, commercial and social 
challenges concerning data. We have limited 
discussion to key bullet points: 

 Data harvesting – the process of 
extracting and analysing (personal) 
data on users from online interactions. 
Leading companies include Google, 
Facebook, Amazon, Tencent, and 
ByteDance TikTok. They collect 
comprehensive personal and 
interaction data on users and their 
network of contacts; then use 
sophisticated machine learning 
algorithms for ‘deep’ behavioural and 
predictive analytics. 

 Data ownership – who own the data 
and the right to exploit it. It covers 
issues of ownership, stewardship and 
custodianship; responsibility for data 
content, context, safe custody and 
usage.  

 Data privacy –ensuring that the data 
shared by clients is only used for its 
intended purpose; and the right of 
individuals to have control over how 
their personal information is collected 
and used. 

 Data collaboration - spans: a) internal 
– companies in a group or 
departments in government; b) 
consortia – groups of companies 
partnering in analytics and business; 
and c) international – organisations 
such as financial regulators (e.g. AML). 

 Data security – means protecting 
digital data from destructive forces 
and from the unwanted actions of 
unauthorized users, such as a 
cyberattack or a data breach, that may 
compromise the integrity, 
confidentiality or privacy of the data. 

 Data legislation – controls how 
personal or customer information is 
used by organisations or government 
bodies. A prominent example being 
the EU General Data Protection 
Regulation (GDPR) covering data 
protection and privacy, plus transfer of 
personal data outside the EU. 

 Data sovereignty - the idea that data 
are subject to the laws and governance 
structures within the nation it is 
collected; central to competition, 
taxation, security and economic 
supremacy. 

 

Figure 2: Google Federated Learning 
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3. Data Infrastructures 
To provide context for federated learning, this 
part lists the associated data science 
technologies driving the emerging data 
ecosystems. Unfortunately space precludes 
detailed descriptions. We divide these data 
science technologies into: 

 Data technologies – includes solutions 
for data management and collection, 
as well as services that are based on 
data generated by both human and 
machines (e.g. Big data, common data 
models, markup languages).  

 Algorithm technologies – new forms 
of ‘statistics’, such as machine 
learning, computational statistics, and 
complex systems (e.g. neural 
networks, Monte Carlo simulation).  

 Analytics technologies – covering the 
application of the data technologies 
(e.g. natural language, sentiment 
analysis and behavioural analysis).  

 Infrastructure technologies – 
providing the infrastructure for 
information management and 
automation (e.g. distributed 
ledger/blockchain, computer-
executable ‘computable’ contracts). 

3.1 Data Technologies 
Important data technologies include: 

 Big Data – very large datasets of 
historic and real-time financial, 
economic, social media and alternative 
data; so complex that traditional data 
processing application software is 
inadequate to deal with them. 

 Data standards - the rules for 
specifying data. This includes: a) data 
models – standards for organizing data 
and how data relates to one another; 
b) markup languages - formats and 
tagging/typing are required in order to 
share, exchange, and understand data, 
include: XML and JSON.  

3.2 Algorithm Technologies 
Core new forms of ‘statistics’ include:  

 Computational Statistics - a large class 
of modern statistical methods that are 
computationally intensive (e.g. Monte 
Carlo methods). 

 Artificial intelligence – AI, machine 
learning and other systems able to 
perform tasks normally requiring 
human intelligence, such as self-
programming machine learning (ML) 
algorithms (e.g. artificial neural 
networks, federated machine 
learning). 

 Complex Systems - system featuring a 
large number of interacting 
components whose aggregate activity 
is nonlinear (e.g. agent-based 
systems). 

3.3 Analytic Technologies 
Core analytics technologies include: 

 Natural Language Processing (NLP) – 
the analysis and synthesis of natural 
language and speech. 

 Sentiment Analysis – using NLP, 
statistics, or machine learning 
methods to extract, identify, or 
characterize the sentiment content of 
text or speech. 

 Behavioural/Predictive Analytics – 
providing insight into the actions of 
people and predict future outcomes 
and trends. 

3.4 Infrastructure Technologies 
Core infrastructure technologies include: 

 Digital Object Identifiers (DOI) – a DOI 
is an identifier or handle, potentially 
persistent, used to identify objects 
uniquely, standardized by an 
international body. 

 Computable Legal Rules – a legal 
contracts encoded in a computer-
understandable notation and 
executable by a computer can 
automate commerce. 

 Federated Learning –- allows machine 
learning algorithms to be trained 
across distributed and isolated data 
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sets, with the potential for privacy 
preservation.  

 Internet of Things (IoT) - the inter-
networking of ‘smart’ physical devices, 
vehicles, buildings, etc. that enable 
these objects to collect and exchange 
data. 

 Data Security – these cover 
cryptographic techniques (e.g. 
Homomorphic Encryption, Secure 
Multiparty Computation and 
Differential Privacy, Public-Key 
cryptography) used to preserve 
confidentiality, privacy and integrity. 

 Distributed Ledger Technologies (DLT) 
– distributed databases that secures, 
validates and processes transactional 
data (e.g. blockchain). 

 Edge Computing –a decentralised 
network where data is processed by 
the device itself or by a local computer 
or server, rather than being 
transmitted to a data centre. 

3.5 Data Technology Stack 
To draw these data technologies together 
Figure 3 illustrates a ‘technology stack’. 
Arguably a global ‘DataNet’ infrastructure is 
emerging that might be described as doing for 
data what the Internet did for 
communications. At the base is distributed 
ledger and blockchain technology. Next data 
and cryptographic security. Then Big data 
conforming to common data standards 
often for a specific industry sector. Then we 
have digital object identifiers providing 
unique, persistent and resolvable addresses 
for the data objects. Lastly, we have 
emerging computer-executable legal 
contracts and regulations that are 
important for automation. 
 
Next we review AI machine learning, to provide 
context for federated machine learning. 

4. Machine Learning 
As discussed, new forms of ‘statistics’ cover 
three broad algorithm domains: 
Computational Statistics (e.g. Monte Carlo 
methods), Artificial Intelligence (e.g. artificial 

neural networks), and Complex Systems (e.g. 
agent-based systems). AI Algorithms divides 
into: a) knowledge or rule-based systems, b) 
evolutionary algorithms, and c) machine 
learning. 
 
(Koshiyama et al, 2020) in Further Reading 
provides detailed descriptions. 

4.1 Traditional Machine Learning 
Machine learning algorithms are broadly a 
combination of the classical trio of Supervised, 
Unsupervised and Reinforcement Learning, 
with the disruptors: Deep Learning, Adversarial 
Learning, Transfer/Meta Learning. This 
interaction constantly yields new models (e.g., 
Long Short-Term Memory, Generative 
Adversarial Networks, Generative Pre-trained 
Transformers). Brief descriptions of these 
machine learning models are presented since 
they underpin the new generation of 
federated machine learning models discussed 
later. 
 
Classic trio: 

 Supervised learning - given a set of 
inputs variables/predictors 𝐱 and 
outputs/dependent variables/targets 
𝐲, the goal is to learn a function 𝑓(𝐱) 
that approximates 𝐲.  

 Unsupervised learning - given several 
objects/samples/transactions 
𝐱1, … , 𝐱n, the goal is to learn a hidden 
map ℎ(𝐱) that can uncover a hidden 
structure in the data. This hidden map 
can be used to ‘compress’ 𝐱 (aka 
dimensionality reduction) or to assign 

 

Figure 3: Relationship of Technologies 
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to every 𝐱i a group 𝑐𝑘 (aka clustering 
or topic modelling). 

 Reinforcement learning - given an 
environment formed by several states 
𝒔1, 𝒔2, … , 𝒔𝑛, an agent, and a reward 
function, the goal is to learn a policy 𝜋 
that will guide an agent actions 
𝒂1, 𝒂2, … , 𝒂𝑘 through the state space 
so as to maximize occasional rewards.  

 
The disruptors:  

 Deep Learning - deep learning 
algorithms model high-level 
abstractions in data by using multiple 
processing layers, with complex 
structures or otherwise, composed of 
multiple non-linear transformations. 
An example used in federated learning 
is deep neural networks such as 
Convolutional Neural Networks (CNNs) 

 Adversarial Learning - adversarial 
machine learning is a technique which 
attempts to ‘fool’ models through 
malicious input.  

 Transfer/Meta Learning – these two 
learning paradigms are tightly 
connected, as their main goal is to 
encapsulate knowledge learned across 
many tasks and transfer it to new, 
unseen ones. In transfer learning, 
knowledge is transfer from a trained 
model to a new model by encouraging 
the new model to have similar 
parameters. In meta learning the 
learning method is abstracted and 
shared across tasks, and meta-learned 
explicitly with transfer in mind, such 
that the learning method generalize to 
an unseen task. Both are influential in 
federated learning. 

4.2 Federated Machine Learning 
The traditional machine learning strategy is to 
gather raw data together (e.g. in a central 
repository hosted in the cloud) for training. 
This is characterised as ‘taking the data to the 
algorithm’. In contrast, federated learning is 
‘taking the algorithm to the data’. The typical 
federated learning paradigm involves two 

stages: a) clients train models with their local 
datasets independently, and b) the data centre 
gathers the locally trained models and 
aggregates them to obtain a shared global 
model. 
 
Federated machine learning by definition aims 
to build a joint model based on data located at 
multiple sites. There are two processes: i) 
model training and ii) model inference. In the 
process of model training, information can be 
exchanged between parties but not the 
sensitive raw data. The exchange does not 
reveal any protected private portions of the 
data at each site. The trained model can reside 
at one party or be shared among multiple 
parties. At model inference stage, the model is 
applied to a new data instance (e.g. federated-
fraud detection system may receive a new 
claim from a policyholder insured in a different 
company. Parties collaborate in classifying the 
claim as legitimate or fraudulent and on 
predicting the total future claim amount from 
this claim.).  

5. Federated Learning Categories 
Federated learning is generating a wave of 
developments and publications. As discussed, 
System divide into: a) On-device (i.e. cross-
device) - infrastructures for mobile devices, 
IoT, Edge and other connected devices; b) 
Inter-organisation (i.e. cross-silo) - 
infrastructures allowing collaborating 
organisations to contribute to the training with 
their local datasets. 
 
To provide a perspective we next looks at 
categorising federated learning (see in Figure 
4): 

 Communication – communication or 
control of federated analysis: a) 
centralised learning – a central server 
orchestrates the different steps of the 
algorithms and coordinate 
participating nodes during the learning 
process; b) decentralised Learning - 
the participating nodes coordinate 
themselves to obtain the global model. 
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 Data – by data partition: a) horizontal 
federated learning – homogeneous 
data sets have the same feature space 
but distinct sample spaces; b) vertical 
federated learning – heterogeneous 
data sets with different feature spaces 
but the same sample space; and c) 
Federated transfer learning - here data 
sets differ not only in samples but also 
in feature space. 

 Federation – the scale of federation of 
nodes: a) multiple nodes – a large 
number of On-device nodes, such as 
smart phones, each with a relatively 
small amount of data and processing 
power; b) major nodes - a small 
number of major inter-organisation 
nodes, such as data centres, each with 
a large amount of data and processing 
power.  

 Security – the data privacy preserving 
techniques employed. Popular for 
federated learning are: a) secure multi-
party computation SMPC - a subfield of 
cryptography with the goal of creating 
methods for parties to jointly compute 
a function over their inputs while 
keeping those inputs private; b) 
homomorphic encryption - the 
conversion of data into an encrypted 
form that can be analysed and worked 
with as if it were still in its original 
form; and c) differential privacy - a 
system for sharing information 
describing the group patterns within a 
data set while withholding identifiable 
‘raw data’ about individuals in the 

dataset. These are discussed further in 

section 6. 

 Machine learning – the emerging 
federated machine learning models 
are variants of traditional models. 
Examples include: a) deep neural 
networks - networks multiple layers 
between the input and output layers; 
and b) gradient boosted decision trees 
- involves three elements: a loss 
function optimisation, a weak learner 
for predictions, and an additive model 
for minimizing the loss function. These 
are discussed in section 7. 

5.1 Communication or Control 
architecture  

As discussed, federated learning 
communication architectures either use a 
trusted centralised node (i.e. server) to 
orchestrate learning; or the decentralised 
nodes coordinate themselves to obtain a 
global model. Examples include FedAvg and 
SimFL. 

Centralised Federated Averaging (FedAvg) 
With centralised learning the trusted node 
aggregates the information from the other 
nodes and sends back training results (e.g. 
gradients or model parameters) to the 
participating nodes. Communication or control 
between the nodes can be synchronous or 
asynchronous.  

Decentralised GBDT FL (SimFL) 
With decentralised learning communications 
are performed amongst the nodes and every 
node is able to update the global model 
parameters directly. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Federated Learning Taxonomy 
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5.2 Data partition 
Federated learning systems are frequently 
classified by their data partition into how the 
data sets are distributed across the nodes; 
namely the sample and feature spaces: 

 Horizontal federated learning – 
homogeneous data sets share the 
same feature space but have different 
in samples;  

 Vertical federated learning – with 
feature-based learning multiple 
heterogeneous data sets share the 
same data space but differ in feature 
space;  

 Federated transfer learning - here data 
sets differ not only in samples but also 
in feature space with only a small 
portion of the feature space from both 
parties overlaps; and  

 
Different data characteristics causing 
federated learning engineering challenges are 
discussed later in the paper.  

5.3 Federation of nodes 
Classification by federation ranges from a) 
multiple nodes – a large number nodes each 
with a relatively small amount of data (e.g. 
smart phones, IoT devices); to b) major nodes - 
a small number of powerful nodes, each with a 
large amount of data (e.g. data centres). 
 
Federations of multiple or major nodes can 
span a single product line or company, or a 
small number of major organisations 
collaborating.  

6. Federated Learning Security 
mechanisms 

Given the importance of security mechanism 
for privacy-preserving data access, this section 
is a review of candidate and cryptographic 
schemes. Cryptography is the basic building 
block of data security. For federated learning, 
popular cryptographic schemes include Secure 
Multi-Party Computation (SMPC), 
Homomorphic Encryption (HE) and Differential 
Privacy (DP); often in combination and as 
ensembles. These schemes subsume and make 

use of other popular security mechanisms such 
as Cryptographic Hashing Functions and Elliptic 
Curve Cryptography (ECC). Zero Knowledge 
Proofs may also be used in future.  

Secure Multi-Party Computation 
Secure Multi-Party Computation (SMPC), also 
known as Secure Function Evaluation, involves 
jointly computing a function from the private 
input by each party without revealing the value 
of these private inputs to other parties. In 
federated learning terms this ‘function’ could 
be a model’s loss function during training or 
the model itself (during inference). An SMPC-
based scheme typically of two parts: a) online 
phase - involves the training of the machine 
learning model (e.g. using the triples 
generated in the offline phase); and b) offline 
phase - involves the bulk of the cryptographic 
operations such as the generation of triples. A 
common SMPC scheme currently used for 
privacy-preserving machine learning is the 
Secret Sharing based SPDZ scheme. 

Homomorphic Encryption  
Homomorphic Encryption (HE), first proposed 
by Rivest-Shamir-Adleman involves the direct 
computation over a ‘ciphertext’, without 
decrypting the ciphertext. There are a number 
of HE schemes used in conjunction with 
federated learning, often bucketed into three: 
a) partially HE schemes - support the 
evaluation of circuits consisting of only one 
type of gate; b) somewhat HE schemes - can 
evaluate two types of gates, but only for a 
subset of circuits; and c) fully HE schemes – 
allows the evaluation of arbitrary circuits of 
unbounded depth, and is the strongest notion 
of homomorphic encryption. 

7. Federated Machine Learning 
Models 

As discussed, considerable research is 
underway to create federated learning 
variants of traditional machine learning 
models. This includes deep neural networks, 
gradient boosted decision trees, logistic 
regression and support vector machines. 
Examples are: a) federated averaging - a 
central server is responsible for coordinating 
the training of models located in different 
devices; b) federated transfer learning – uses 
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transfer learning to improve model 
performance when we have neither much 
overlap on features nor on instances.  
 
Notable in federated learning is the pioneering 
work of Google, OpenMined and WeBank, who 
have published open source frameworks or 
libraries (i.e. Tensor Flow Federated, PyTorch 
and FATE, respectively) and made datasets 
available for training. 

Deep Neural Networks 
A popular basis for federated learning is deep 
neural networks; networks with multiple layers 
between the input and output layers. One of 
the standard aggregation methods is federated 
averaging (FedAvg) where parameters of local 
models are averaged element-wise with 
weights proportional to sizes of the client 
datasets. Deep neural networks are the basis 
of the open source platforms described below. 

Gradient Boosted Decision Trees  
Another popular approach is gradient boosting 
decision trees (GBDT). GBDT is a powerful 
techniques for building predictive models 
based on ‘boosting’, a family of algorithms that 
can upgrade weak learners to strong learners. 
Boosting methods are based on the idea that 
for a complex task, it is better to synthesize the 
judgments of multiple experts appropriately 
than to judge by any one of them alone. As 
discussed, GBDT involves three elements: a) a 
loss function to be optimized; b) a weak learner 
to make predictions; and c) an additive model 
to add weak learners to minimize the loss 
function. 

7.1 Open Source Tools 
An increasing number of powerful open 
sourced federated learning frameworks or 
platforms are now available. Prominent 
examples are Google TFF, OpenMined PySyft 
and WeBank FATE, as well as FedML 
Federated-XGBoost and Baidu PaddleFL.  
 
Briefly: 

 Google TensorFlow Federated (TFF) - 
Google TFF focuses on horizontal 
federated learning with a large 
population of client devices with 
heterogeneous computing 
capabilities.  

 OpenMined PySyft – PySyft uses the 
PyTorch machine learning platform to 
implement a federated learning 
model. PySyft is a Python library for 
secure and private deep learning. 
PySyft supports PyTorch, Tensorflow, 
and Keras with varying capabilities for 
remote execution, federated learning, 
differential privacy, homomorphic 
encryption, and secure multi-party 
computation. 

 WeBank FATE – WeBank’s Federated 
AI Technology Enabler (FATE) supports 
horizontal FL, vertical FL and federated 
transfer learning with a focus on 
secure protocols based on 
homomorphic encryption and multi-
party computation (MPC).  

 
In addition, open source federated datasets 
are emerging to support distributed training. 
This addresses the lack of high-quality training 
data generated from real-world applications, 
such as WeBank FedVision 
https://arxiv.org/abs/1910.11089  

8. Federated Learning 
Engineering Issues 

The engineering challenges associated 
federated learning relate to: a) data 
characteristics, b) model characteristics, c) 
performance efficiency, d) disparate systems, 
and e) availability of nodes. 

Data characteristics 
Data challenges are categorised by the 
‘unbalancedness’ (i.e. non- Independent and 
Identically Distributed) of local data samples: 
a) covariate shift - local samples have different 
statistical distributions; b) prior probability 
shift - local nodes may store labels that have 
different statistical distributions; c) concept 
shift – dividing into: i) local nodes share the 
same labels but have different features, and ii) 

https://arxiv.org/abs/1910.11089
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local nodes  the same features but different 
labels; and d) unbalancedness - the data 
available at the local nodes may vary 
significantly in size. Other data challenges 
include data augmentation and feature 
engineering.  

Model characteristics  
The next challenge relates to the training data, 
and choosing the hyperparameters (values 
used to control the learning process) and 
optimisers. Examples of parameters include 
the number of layers in a network, the number 
of nodes, learning rate, the structures of the 
network etc. Optimisers could include 
identifying batch sizes.  

Performance efficiency 
Performance is impacted firstly by node 
communications requirements and secondly 
by privacy-preserving cryptographic 
techniques. For example, vertical federated 
learning require constant communication 
between each of the nodes, since each node 
will be training their part of the model. Slow 
data communication between nodes can result 
in inefficient training. Cryptographic 
techniques add additional computation 
complexity to an already computationally 
intensive process- machine learning, thereby 
impacting training times and tying up 
resources.  

Disparate systems 
Next is disparity in the infrastructure 
components (e.g. nodes, communications, 
hosting/cloud environment). Most enterprises 
employ proprietary infrastructure (e.g. servers, 
cloud environments, firewalls) to protect their 
sensitive data, rather than agnostic 
frameworks and homogeneous nodes.  

Availability 
Lastly, distributed and collaborative training is 
impacted by availability of communications 
and nodes. Systems need to be reliable or 
tolerant to failure, otherwise it may interrupt 
the entire training process that may render all 
the work done by the other nodes as void.  

9. Federated Learning Case 
Studies 

As a conclusion, we discuss briefly federated 
learning applications illustrating On-device and 
Inter-organisations. 

9.1 On-device  
On-device (i.e. cross-device) covers large 
number of devices with intermittency and low 
bandwidth connections, such as mobile 
devices, connected vehicles, IoT, and Edge 
connected devices. 

Telecoms 
Google’s pioneering smart phone analytics 
system works across millions of devices 
optimising keystroke prediction. TensorFlow 
Federated (TFF) TFF has two layers: the 
federated learning API and the federated core 
API. The federated learning API allows 
developers to apply federated training and 
evaluation to existing TensorFlow models. The 
federated core API is the core foundation for 
federated learning. It is a system of low-level 
interfaces for writing federated algorithms in 
combination with distributed communication 
operations in strongly-typed functional 
programming environments. 

Autonomous Vehicles 
NVIDIA’s DRIVE suite of deep neural network 
tools for self-drive and AV vehicles. It 
comprises in-vehicle computer (DRIVE AGX) 
and complete reference architecture (DRIVE 
Hyperion), as well as data centre-hosted 
simulation (DRIVE Constellation) and deep 
neural network training platforms (DGX). 
DRIVE supports active learning, federated 
learning and transfer learning. Active learning 
allows an algorithm to interactively query a 
user to improve model accuracy. Transfer 
learning leverages previous training data, for 
example, knowledge gained while learning to 
recognize cars could apply when trying to 
recognize trucks. 

9.2 Inter-organisation 
Inter-organisation (i.e. cross-silo) comprise a 
small number of major participants with good 
bandwidth and connectivity allowing 
collaborating organisations to contribute to 
the training with their local datasets. 
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Healthcare 
The European MELLODDY (Machine Learning 
Ledger Orchestration for Drug Discovery) 
Consortium of pharmaceutical, technology and 
academic partners employs federated learning 
and Blockchain to Enhance AI-driven drug 
discovery. It uses federated learning on the 
chemical libraries of 10 pharma companies to 
support a modelling platform designed to 
quickly and accurately predict promising 
compounds for development, all without 
sacrificing the data privacy of the participating 
companies. 

Financial Services 
Tencent’s WeBank, China’s first all-digital 
financial institution, uses federated learning 
for credit-scoring, credit card fraud detection 
and AML. The credit scoring model is used in 
conjunction with WeBank’s own data, and 
encrypted invoice data from the Invoice Centre 
which stays on other invoice centres’ servers. 
WeBank uses the platform for loans, 
measuring the credit risk of small and micro-
enterprises, and having halved the number of 
defaults. In a further development WeBank 
and reinsurance giant Swiss Re’s Beijing branch 
have signed a MOU on joint research on the 
application of federated learning in 
reinsurance. 
 
Lastly, we only need to consider the 
accelerating pace of self-drive vehicles (e.g. 
cars, trucks, drones, ships, planes) and the 
need for connected coordination to 
understand the potential impact of federated 
learning. 
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