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ADAPTIVE MULTILEVEL SUBSET SIMULATION WITH SELECTIVE

REFINEMENT

D. ELFVERSON∗, R. SCHEICHL†, S. WEISSMANN‡, AND F.A. DIAZDELAO§

Abstract. In this work we propose an adaptive multilevel version of subset simulation to estimate the probability
of rare events for complex physical systems. Given a sequence of nested failure domains of increasing size, the rare
event probability is expressed as a product of conditional probabilities. The proposed new estimator uses different
model resolutions and varying numbers of samples across the hierarchy of nested failure sets. In order to dramatically
reduce the computational cost, we construct the intermediate failure sets such that only a small number of expensive
high-resolution model evaluations are needed, whilst the majority of samples can be taken from inexpensive low-
resolution simulations. A key idea in our new estimator is the use of a posteriori error estimators combined with
a selective mesh refinement strategy to guarantee the critical subset property that may be violated when changing
model resolution from one failure set to the next. The efficiency gains and the statistical properties of the estimator
are investigated both theoretically via shaking transformations, as well as numerically. On a model problem from
subsurface flow, the new multilevel estimator achieves gains of more than a factor 200 over standard subset simulation
for a practically relevant relative error of 25%.

Keywords. Rare event probabilities, adaptive model hierarchies, high-dimensional problems, Markov chain Monte

Carlo, shaking transformations.
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1. Introduction. Estimating the probability of rare events is one of the most important

and computationally challenging tasks in science and engineering. By definition, the proba-

bility that a rare event occurs is very small. However, its effect could be catastrophic, e.g.,

when it is associated with some critical system failure such as the breakthrough of pollutants

into a water reservoir or the structural failure of an airplane wing. An efficient and reliable

estimator is of utmost importance in such situations.

We are interested in estimating rare event probabilities occurring in mathematical models

of physical systems described by stochastic differential equations (SDEs) or partial differen-

tial equation (PDEs) with uncertain data, with possibly large stochastic dimension. Stan-

dard Monte Carlo (MC) methods are infeasible due to the huge amount of samples needed

to produce even a single rare event. Remedies for this are offered by different variance

reduction techniques, such as importance sampling [35, 36, 12], multilevel MC methods

[22, 7, 17, 21, 13, 29] and subset simulation [5, 6, 32, 37]. In the statistics and probabil-

ity literature [28], subset simulation is also known as splitting and can be interpreted as a

sequential Monte Carlo method [10, 16, 26, 15, 11]. There are also Bayesian versions of

subset simulation using Gaussian process emulators to reduce the number of model evalua-

tions [9]. Moreover, a cross-entropy-based importance sampling method for rare events and

a failure-informed dimension reduction through the connection to Bayesian inverse problems

has been addressed in [38].

In this work, we propose a multilevel version of the classical subset simulation approach

of Au & Beck [5] for rare event estimation in the context of complex models. More specifi-

cally, we combine the ideas of incorporating multilevel model resolutions across the subsets

proposed in [37] with the selective mesh refinement strategy proposed in [21]. As a result,

our method does not violate the subset property, critical in subset simulation, when chang-
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den (daniel.elfverson@gmail.com).

†Institute for Applied Mathematics & Interdisciplinary Center for Scientific Computing (IWR), Heidelberg Uni-
versity, D-69120 Heidelberg, Germany (r.scheichl@uni-heidelberg.de).

‡IWR, Heidelberg University, D-69120 Heidelberg, Germany (simon.weissmann@uni-heidelberg.de).
§Clinical Operational Research Unit, Department of Mathematics, University College London, London WC1H

OBT, UK (alex.diaz@ucl.ac.uk).

1

http://arxiv.org/abs/2208.05392v1


ing the model resolution. Furthermore, we formulate the subset simulation based on shaking

transformations to ensure asymptotic convergence of the resulting estimator, as shown in [24].

Let (Ω,Σ,P) be a probability space with σ-algebra Σ and probability measure P. The

sample space Ω can be seen as the input space of a model used to describe the behaviour of a

physical system. Let F ∈ Σ be a rare event that can be associated to system failure, that is, the

demand exceeding the capacity of the system under study. Given the above probability space,

subset simulation splits the estimation of P(F ) into a product of conditional probabilities by

introducing a sequence of nested events

(1.1) F = FK ⊂ FK−1 ⊂ · · · ⊂ F1 ⊂ F0 = Ω, Fj ∈ Σ, j = 0, . . . ,K,

corresponding to larger failure probabilities as the subscript j → 0. The rare event probability

P(F ) is usually prohibitive to estimate directly by MC sampling, but it can be expressed as

the product of conditional probabilities

(1.2) P(F ) =

K∏

j=1

P(Fj |Fj−1),

where each P(Fj |Fj−1) is larger than P(F ) and hence easier to estimate. The conditional

probabilities in (1.2) can be estimated effectively using Markov Chain Monte Carlo (MCMC).

Computer simulations to study physical systems very often take the form of SDE or PDE

models. Making use of a hierarchy of discretisations of these underlying models, we exploit

ideas from multilevel Monte Carlo (MLMC) methods [22, 7, 17, 21] to reduce the overall cost

of subset simulation. We refer to [27, 39] for different variants of MLMC estimators of rare

event probabilities. In principle, our approach is similar to the approach presented in [37].

However, in contrast to that work and more closely related to the ideas in MLMC methods, we

design the sequence of nested events in (1.1) such that most samples can be computed with

inexpensive, coarse models. This reduces the total cost significantly compared to classical

subset simulation, leading to more significant gains than the multilevel variant in [37].

Following the ideas in [20, 21], another key advance in our new method is the use of a

posteriori error estimators to guarantee the critical subset property, which may be violated

when changing the model resolution from one intermediate failure set to the next. It also al-

lows a selective, sample-dependent choice of model resolution. Finally, these three advances

lead to significant speed-up over classical subset simulation for our multilevel estimator.

In summary, the paper makes the following contributions: (i) The subset simulation

method is formulated via shaking transformations, incorporating a selective mesh refinement

strategy. The resulting algorithm is based on a MCMC method, where each sample involves

an adaptive mesh resolution based on its limit state function value. As a result, high accuracy

is only needed for samples with a rather small limit state function, whereas for most samples

low resolution evaluations are sufficiently accurate when the state is far away from failure.

(ii) Under certain assumptions, it is shown that the proposed selective refinement strategy

does not violate the subset property. Moreover, a detailed complexity analysis quantifies the

gains due to the selective refinement strategy. (iii) A novel, adaptive multilevel subset sim-

ulation method is proposed where the accuracy increases over the defined subsets. Through

a selective refinement strategy and appropriately chosen intermediate threshold values, the

failure sets satisfy the critical subset property. Our complexity analysis shows significant im-

provement through the proposed adaptive multilevel subset choice and through the additional

application of selective mesh refinement.

The paper is organized as follows. In Section 2, we formulate the problem and define

hierarchies of discretisations via two abstract, sample-wise assumptions. In Section 3, we ex-
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plore in detail the estimation of rare event probabilities, first using standard MC and classical

subset simulation, before proposing two improved estimators based on selective refinement

and adaptive multilevel subset selection. Section 4 contains a concrete implementation of the

proposed subset simulation algorithms via shaking transformations, as well as an asymptotic

convergence result. The complexity analysis of the novel approaches is provided in Section 5,

while Section 6 demonstrates their performance on a series of numerical experiments, starting

with two toy problems and finishing with a Darcy flow model. Finally, Section 7 offers some

conclusions.

2. Problem Formulation and Model Hierarchy. We consider a (linear or nonlinear)

model M on an infinite dimensional function space V , e.g., a PDE, which is subject to

uncertainty, or an SDE. The solution is modelled as a random field on the probability space

(Ω,Σ,P) with values in V . For any ω ∈ Ω, we denote by u(ω) ∈ V the solution of

(2.1) M(ω, u(ω)) = 0.

Given a quantity of interest Φ : V → R, i.e., a functional of the model solution u, we

are interested in computing the probability that a so-called rare event occurs. We let G =
G(ω) := Φ∗ − Φ(u(ω)) be the associated limit state function, which is negative when the

quantity of interest exceeds a critical value Φ∗. Thus, we want to compute the probability that

ω ∈ Ω is in the failure set

F := {ω ∈ Ω : G(ω) ≤ 0}.

For simplicity, we will assume that G is a real valued random variable with probability density

function (pdf) (with respect to Lebesgue measure) π : R → R+, which is assumed to be

unknown. If 1F denotes the indicator function of F , i.e., 1F (ω) = 1 if ω ∈ F and 1F (ω) = 0
otherwise, then the failure probability can also be expressed as the integral

(2.2) P = P (F ) =

∫

Ω

1F (ω)P( dω) =

∫

R

1(−∞,0](x)π(x) dx =

∫ 0

−∞
π(x) dx

which, for very small P ≪ 1, will be classified as a rare event. Note that the integral in

(2.2) is equivalent to the expected value Eπ[1F ]. We are interested in applications where not

only the dimension of V , but also the dimension of the underlying sample space Ω is high

(or infinite), e.g., in subsurface flow simulations where the permeability is described by a

spatially correlated random field. To estimate P , both V and the high-dimensional integral in

(2.2) need to be approximated in practice.

We return to the approximation of the above integral in Section 3 and finish this section

by formulating an abstract assumption on the numerical approximation of the model M and

of the limit state function G, for any given ω ∈ Ω. To this end, we introduce a hierarchy of

numerical approximations to G with increasing accuracy, namely Gℓ, for ℓ = 1, . . . , L.

ASSUMPTION 2.1. Let γ ∈ (0, 1) and q ≥ 0. We assume that

(2.3) |G(ω)−Gℓ(ω)| ≤ γℓ, for all ℓ ∈ N, P− a.s. in ω,

and that there exists a constant c0 > 0, such that

(2.4) Eπ [C [Gℓ]] ≤ c0γ
−ℓq, for all ℓ ∈ N,

where C [Gℓ] is the cost of computing one sample of Gℓ. Furthermore, we assume that the cdf

of G is Lipschitz continuous, i.e. there exists a constant cLip > 0 such that for any x1, x2 ∈ R

(2.5) |P(G ≤ x1)− P(G ≤ x2)| ≤ cLip|x1 − x2|.
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Note that increased accuracy is only needed for samples ω ∈ Ω, where the limit state function

G is small. Thus, in [20, 21] the following selective refinement assumption was introduced.

ASSUMPTION 2.2. Let γ ∈ (0, 1) and consider a fixed y ∈ R. We assume that Gℓ, now

denoted Gy
ℓ to emphasise the dependence on y, satisfies the weaker condition

(2.6) |G(ω)−Gy
ℓ (ω)| ≤ max

(
γℓ, |Gy

ℓ (ω)− y|
)

for all ℓ ∈ N, P− a.s. in ω.

As it has been shown in [21, Lemma 5.2] under Assumption 2.2, the expected costs of

computing 1Gy

ℓ
≤y(ω) can be reduced to

Eπ

[
C
[
1Gy

ℓ
≤y

]]
≤ c′0

ℓ∑

j=0

γ(1−q)j ≤ c0

(
1 + γ(1−q)ℓ

)
, for all ℓ ∈ N,

while the bias remains of order γℓ, i.e.

|P(Gy
ℓ ≤ y)− P(G ≤ y)| ≤ cyγ

ℓ

for some constant cy > 0 independent of γ and ℓ.

REMARK 2.3. For the complexity analysis of the standard MC method as well as of the

subset simulation we will consider a fixed y ∈ R and suppress the dependence of Gy
ℓ on y.

We then refer to Gℓ under Assumption 2 to the random variable Gy
ℓ satisfying (2.6).

In a PDE setting, we typically have error estimates or bounds of the type

(2.7) |G(ω)−Gℓ(ω)| ≤ C(ω)hα
ℓ

where hℓ is a discretisation parameter, such as mesh size, α is a convergence rate and C(ω) is

a constant that may depend on ω. Both α and C(ω) can be estimated using adjoint methods

or hierarchical error estimators, see, e.g., [23], or [14, 31] for SDEs or PDEs with random

coefficients.

If the corresponding sequence of meshes Tj , j ∈ N0, is obtained by uniform mesh re-

finement with hj = h02
−j for some fixed coarsest mesh T0, then the bound in (2.3) can be

achieved by choosing γ = 2−α and j(ω) ≥ max
(
0, ℓ + log2(h0C(ω)1/α)

)
. Note that this

crucially requires a sample-dependent mesh hierarchy. The constant q in (2.4) depends on

the (physical) dimension of the problem, the order of accuracy of the underlying numerical

method, and the choice of deterministic solver. The constant c0 depends on the distribution

of the constant C(ω). A similar choice is possible in the case of locally adaptive mesh re-

finement, driven by an a posteriori error estimator. In that case, the bound in (2.7) is typically

replaced by a sharper bound in terms of the number of mesh elements [8].

3. Adaptive Subset Simulation and Selective Refinement. In this section, we explore

in detail the estimation of the failure probability P given by (2.2), and propose two new

extensions of the classical subset simulation approach.

Let P̂ denote an estimator ofP . There are several sources of error in this estimator. These

include: systematic error due to the choice of mathematical model, numerical error due to

model approximation, and statistical error due to finite sampling size. Here, we will assume

the model is exact and will only consider how to control the numerical and the statistical

errors. We measure the quality of the estimator P̂ by its coefficient of variation (c.o.v.)

(3.1) δ
(
P̂
)
=

1

P

√
Eπ

[(
P̂ − P

)2]

and we let TOL > 0 be the desired accuracy for δ
(
P̂
)
.
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3.1. Estimating rare event probabilities by standard Monte Carlo. The most basic

way of estimating the probability in (2.2) to an accuracy TOL is to use a standard MC method

where all samples are computed with a numerical approximation to accuracy O(TOL). Let

FL := {ω ∈ Ω : GL(ω) ≤ 0} be the approximate failure set on a fixed numerical discretisa-

tion level L, and consider the standard MC estimator

(3.2) P̂MC =
1

N

N∑

i=1

1FL(ωi) =
1

N

N∑

i=1

1(−∞,0](G
(i)
L ) ,

where ωi ∈ Ω are independent and identically distributed (i.i.d) samples and each G
(i)
L =

GL(ωi) is computed to accuracy γL. This is an unbiased estimator for

(3.3) PL = P
(
FL
)
=

∫

Ω

1FL(ω)P( dω) = Eπ

[
P̂MC

]
,

and we can expand

δ
(
P̂MC

)2
=

Eπ

[
(P̂MC)2

]
− 2Eπ

[
P̂MC

]
P + P 2

P 2

=
Eπ

[
(P̂MC)2

]
− Eπ

[
P̂MC

]2
+ Eπ

[
P̂MC

]2
− 2Eπ

[
P̂MC

]
P + P 2

P 2

=

(
Eπ

[
P̂MC − P

]

P

)2

+
Vπ

[
P̂MC

]

P 2
L

P 2
L

P 2
=

(
1−

PL

P

)2

+
1− PL

NPL

P 2
L

P 2
,

(3.4)

which now includes also a bias error due to the numerical approximation GL ≈ G. As

shown in [21, Sec. 3], it follows from Assumption 2.2 that

(
1−

PL

P

)2

≤ c21γ
2L ,

for some constant c1 > 0. Thus, it suffices to choose

(3.5) L ∝ log
(
TOL−1

)

to guarantee that the first term on the right hand side of (3.4) is less than TOL2/2. We will

assume this throughout the paper.

The main challenge in achieving the required accuracy for δ
(
P̂MC

)
, is to ensure that the

second term on the right hand side of (3.4) is sufficiently small such that

(3.6)
1− PL

NPL

P 2
L

P 2
≤

TOL2

2
.

A sufficient condition for this to hold is

(3.7) N ∝ TOL−2P−1
L (P/PL)

2 .

Hence, the number of samples needs to be proportional to the inverse of the rare event prob-

ability. For realistic applications, where the cost C [GL] ≫ 1 and PL ≈ P ≪ 1, this is

completely infeasible. Under Assumption 2.1 and choosing L as in (3.5), the total cost of the

standard MC estimator would be

(3.8) Eπ

[
C
[
P̂MC

]]
= NEπ [C [GL]] ≤ Nc0γ

−Lq ≤ c2TOL−(2+q)P−1
L

P 2

P 2
L

,
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G(ω)

yK−2

yK−1

Ω

R

yK

FIGURE 3.1. A cartoon of the limit state function ω 7→ G(ω) and the resulting failure sets.

for some constant c2 > 0 that is independent of TOL. It is possible to improve this through

importance sampling techniques [35, 36, 12], but that requires some a priori knowledge of the

distribution of GL, which we typically do not have. We further note that the factor P/PL is

close to 1, since we have chosen L large enough such that P/PL ∈ (1−TOL/2, 1+TOL/2).
Furthermore, we note that the constant c1 crucially depends on the underlying distribu-

tion of G and GL and, in particular, on the rareness of the event and on the gradient of G on

the boundary of the failure domain. We refer to [40] for a detailed analysis of approximation

errors for rare event probabilities in the context of PDE based models.

3.2. Subset Simulation. In engineering applications, subset simulation [5, 6, 32] is one

of the most widespread variance reduction techniques to design an efficient estimator for P
in Equation (2.2). It has been successfully used in many different contexts and for different

applications, which include engineering reliability analysis [4], robust design [2], topology

optimisation [33], multi-objective optimisation [41], Bayesian inference [19] and model cal-

ibration through history matching [25].

The main idea is to define a sequence of nested failure sets that contain the target failure

set F , as in (1.1). This is accomplished using a sequence of intermediate failure thresholds

(3.9) 0 = yK < yK−1 < · · · < y0 = ∞.

That way, each intermediate failure set is defined as

Fj := {ω ∈ Ω : G(ω) ≤ yj} = {G ∈ (−∞, yj]}, for j = 1, . . . ,K.

The failure set F and some intermediate failure sets that contain it are illustrated in Fig. 3.1 via

level curves of G(ω). As stated in (1.2), the rare event probability P(F ) can be expressed as

product of conditional probabilities, i.e., P(F ) =
∏K

j=1 P(Fj |Fj−1), where each P(Fj |Fj−1)
is by construction larger than P(F ) – significantly so if K is sufficiently large.

To estimate P(F ) from the product of conditional probabilities we need to compute

(3.10) P(Fj |Fj−1) =

∫

R

1(−∞,yj ](x)πj−1(x) dx, for j = 1, . . . ,K,

where πj−1 is the pdf of G conditioned on the event G ≤ yj−1, i.e.

(3.11) πj−1(x) =
π(x)1(−∞,yj−1 ](x)

Z
with Z :=

∫ yj−1

−∞
π(x) dx .
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The standard MC estimator for the integral in (3.10) is given by

(3.12) P(Fj |Fj−1) ≈
1

N

N∑

i=1

1(−∞,yj ](G
(i)), G(i) ∼ πj−1.

In general, we can not generate i.i.d. samples from πj−1 directly, at least not efficiently. In

order to circumvent this, MCMC methods are commonly employed, see Section 4 below.

3.3. Subset Simulation with Selective Refinement. In practice we also need to take

into account the numerical approximations of the failure domains. Instead of having a fixed

computational mesh for all samples, which is the typical approach in the literature, we follow

[21] and use a sample-dependent approximation GL(ω) that guarantees instead that the error

in the limit state function satisfies either the bound (2.3) in Assumption 2.1 or the weaker

bound (2.6) in Assumption 2.2.

Firstly, in the case of Assumption 2.1, we use the sequence of intermediate failure sets

(3.13) FL
j := {ω : GL(ω) ≤ yj}, for ∞ = y0 > · · · > yK−1 > yK = 0 ,

which obviously fulfill the critical subset property

(3.14) FL = FL
K ⊂ FL

K−1 ⊂ · · · ⊂ FL
1 ⊂ FL

0 = Ω.

In the case of the selective refinement strategy, i.e., under Assumption 2.2, the following

sequence of intermediate failure sets is chosen:

(3.15) FL
j := {ω : G

yj

L (ω) ≤ yj}, for ∞ = y0 > · · · > yK−1 > yK = 0 .

We can guarantee the subset property provided the failure thresholds are sufficiently far apart.

LEMMA 3.1. Let j ∈ {1, . . . ,K}. Suppose that the random variable GL satisfies As-

sumption 2.2 and that yj−1 − yj ≥ 2γL. Then

FL
j = {ω : G

yj

L (ω) ≤ yj} ⊂ {ω : G
yj−1

L (ω) ≤ yj−1} = FL
j−1.

Proof. We will give a proof by contradiction. Fix ω ∈ Ω such that G
yj

L (ω) ≤ yj and

G
yj−1

L (ω) > yj−1.

Case 1: Assume that |G
yj

L (ω) − G(ω)| > γL, i.e. max(|G
yj−1

L (ω) − G(ω)|, γL) = yj −
G

yj

L (ω). If |G
yj−1

L (ω)−G(ω)| ≤ γL then

G
yj−1

L (ω) = G
yj−1

L (ω)−G(ω) +G(ω) ≤ γL + yj ≤ yj−1,

which contradicts G
yj−1

L (ω) > yj . On the other hand, if |G
yj−1

L (ω)−G(ω)| > γL then

G
yj−1

L (ω) = G
yj−1

L (ω)−G(ω) +G(ω) ≤ G
yj−1

L (ω)− yj−1 + yj < G
yj−1

L (ω),

which is a contradiction in itself.

Case 2: Now, assume that |G
yj

L (ω)−G(ω)| ≤ γL, i.e. max(|G
yj−1

L (ω)−G(ω)|, γL) = γL.

Now, if |G
yj−1

L (ω)−G(ω)| ≤ γL then

G
yj−1

L (ω) = G
yj−1

L (ω)−G(ω) +G(ω)−G
yj

L (ω) +G
yj

L (ω) ≤ 2γL + yj ≤ yj−1,

which contradicts G
yj−1

L (ω) > yj . If again |G
yj−1

L (ω)−G(ω)| > γL, then

G
yj−1

L (ω) = G
yj−1

L (ω)−G(ω) +G(ω)−G
yj

L (ω) +G
yj

L (ω)

≤ G
yj−1

L (ω)− yj−1 + γL + yj < G
yj−1

L (ω),

due to the assumed lower bound on yj − yj−1, which is again a contradiction in itself.

7



Hence, in both cases the numerical approximation of the rare event probability PL =
P(FL) on level L can be written as a product of intermediate failure set probabilities as

(3.16) PL =
K∏

j=1

P(FL
j | FL

j−1).

Finally, given estimators P̂j for P
(
FL
j | FL

j−1

)
, we define the subset simulation estimator as

(3.17) P̂ SuS =

K∏

j=1

P̂j .

In general, this is a biased estimator for PL, but it can be shown that it is asymptotically

unbiased [5]. We will return to this in Section 4. For simplicity, we will omit the dependence

on yj and write Gℓ(ω) instead of G
yj

ℓ (ω) in the following. This is also the case when referring

to Assumption 2.2 being satisfied.

3.4. Adaptive Multilevel Subset Simulation. We will now go one step further and

consider the sequence of failure sets

FML
j = {ω : Gℓj (ω) ≤ yj}, j = 1, . . . ,K,

where each Gℓj is computed only to tolerance γℓj with ℓj ≤ L, and yj and ℓj are adaptively

chosen. Typically ℓj ≥ ℓj−1 and ℓK = L.

Such a multilevel strategy was also at the heart of [37], but there the thresholds yj were

chosen to roughly balance the contributions from the individual subsets, i.e., P̂1 ≈ P̂2 ≈
. . . ≈ P̂K , as in classical subset simulation. This reduces the number of expensive fine

resolution samples only by a linear factor O(K). Furthermore, without any further conditions

the crucial subset property FML
j ⊂ FML

j−1 cannot be guaranteed. Thus, the focus in [37] is on

estimating the correction factor that arises due to the loss of the subset property.

To circumvent this problem, in the following lemma we propose a method whereby the

thresholds yj are chosen adaptively, to maintain the subset property. Crucially, we exploit

here the sample-wise error bounds in Assumptions 2.1 and 2.2.

LEMMA 3.2. Consider the sequence FML
j , j = 1, . . . ,K, where either Assumption 2.1

or Assumption 2.2 is satisfied. Let yK = 0 and y0 = ∞, and choose yj = yj+1 + (γℓj +
γℓj+1) > 0, for j = K − 1, . . . , 1. Then, the subset property FML

j+1 ⊂ FML
j holds.

Proof. First suppose that Assumption 2.1 holds. Then

(3.18) |Gℓj (ω)−Gℓj+1
(ω)| ≤ |G(ω)−Gℓj (ω)|+ |G(ω)−Gℓj+1

(ω)| ≤ (γℓj + γℓj+1),

and hence, if Gℓj+1
(ω) ≤ yj+1 then

(3.19) Gℓj (ω) ≤ Gℓj+1
(ω) + (γℓj + γℓj+1) ≤ yj+1 + (γℓj + γℓj+1) = yj,

which concludes the proof for Assumption 2.1.

The proof for Assumption 2.2 then follows directly since yj − yj−1 ≥ 2γℓj .

For simplicity, we assume that K = L and that ℓj = j for all j = 1, . . . ,K . The rare

event probability can then be written as

(3.20) P(FML
L ) =

L∏

ℓ=1

P(FML
ℓ | FML

ℓ−1),

8



G(ω)
Gℓ+1(ω)

Gℓ(ω)

yℓ

yℓ+1

γℓ

γℓ+1

Ω

ML

R

G(ω)
Gℓ+1(ω)

Gℓ(ω)

yℓ

yℓ+1

γℓ

γℓ+1

Ω

FML
ℓ+1

R

FIGURE 3.2. Illustration of the choice of failure thresholds in Lemma 3.2, which guarantee the subset property

FML
ℓ+1

⊂ FML
ℓ

. It holds, when yℓ−yℓ+1 = γℓ+1+γℓ and |Gℓ(ω)−Gℓ+1(ω)| ≤ γℓ+1+γℓ as chosen in Lemma

3.2 (left plot). If yℓ − yℓ+1 < γℓ+1 + γℓ, then Lemma 3.2 does not apply. In particular, for too small choices of

yℓ − yℓ+1 we may find ω ∈ Ω such that Gℓ+1(ω) ≤ yℓ+1, but Gℓ(ω) > yℓ, as illustrated by the red zone (in the

right plot).

yℓ+3 yℓ+2 yℓ+1 yℓ

γ
ℓ+3

+ γ
ℓ+2

γ
ℓ+2

+ γ
ℓ+1

γ
ℓ+1

+ γ
ℓ

FIGURE 3.3. Illustration of the shrinkage of the subsets FML
ℓ

with increasing ℓ.

where FML
ℓ = {ω : Gℓ(ω) ≤ yℓ}. However, this does not preclude us from using more

than L subsets. If the first intermediate failure set FML
1 is still a rare event, we can estimate

P(FML
1 |FML

0 ) = P(FML
1 ) using classical subset simulation with an additional K1 subsets

instead of plain MC, but with all evaluations of the limit state function on those additional

K1 subsets only computed to an accuracy of γ in Assumptions 2.1 and 2.2.

Let P̂1 be an estimator for P(FML
1 ) = P(FML

1 |FML
0 ) using standard MC or classical

subset simulation on discretisation level ℓ = 1. For ℓ > 1 we assume as above that we

are given estimators P̂ℓ for P
(
FML
ℓ | FML

ℓ−1

)
, which we will show in the following can be

constructed by MCMC sampling. We define the multilevel subset simulation estimator by

(3.21) P̂ML = P̂1

L∏

ℓ=2

P̂ℓ.

In practice, we propose to apply classical subset simulation for the estimation of P̂1.

An illustration of the idea behind Lemma 3.2 is given in Figure 3.2. An additional benefit

of the choice of thresholds in Lemma 3.2 is that the measure of FML
ℓ shrinks geometrically as

ℓ increases. See Figure 3.3 for an illustration. Thus, P(FML
ℓ | FML

ℓ−1) → 1 as ℓ → ∞ which

reduces the variance on the latter subsets that have to be computed to higher accuracy. As a

consequence, significantly fewer samples have to be computed at high accuracy reducing the

overall complexity of the estimator dramatically. We will return to this point in Section 5.

The multilevel subset simulation algorithm for P̂ML is summarised in Algorithm A.1 in

Appendix A. To estimate the conditional probabilities in (3.20) a MCMC algorithm is used,

which will be described in the following section. We have further included an adaptive choice

of Nℓ in Algorithm A.1 in order to verify the required tolerance w.r.t. the c.o.v. δ(P̂ ), where

sufficient bounds on δ(P̂ ) can be estimated via (5.1).
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Algorithm 4.1 Parallel One-Path algorithm [POP].

1: Given a seed X0,0 ∼ X
2: for j = 0, . . . ,K − 1 do

3: for i = 0, . . . , Nj+1 − 1 do

4: Generate Yj,i ∼ Y ,

5: Shake and accept/reject Xj,i+1 = MS
j (Xj,i, Yj,i)

6: end for

7: Estimate the probability of subset Fj+1 by

P̂j+1 =
1

Nj+1

Nj+1−1∑

k=0

1Aj+1
(Xj,k),

8: ij = argmin{k | Xk,j ∈ Aj+1}
9: Define initial state for next level Xj+1,0 = Xj,ij

10: end for

11: Result: P̂ =
∏K

j=1 P̂j

4. Shaking Transformations and Asymptotic Convergence. From the above discus-

sion we see that a crucial component of any subset simulation is an efficient estimator for the

conditional probabilities P(Fj |Fj−1), for j > 1. In other words, we need to generate samples

from the pdf given in (3.11). Due to the small probability of failure, standard MC sampling

is infeasible. Instead, several authors have developed MCMC algorithms [5, 32, 3]. Here,

we use the general, parallel, one-path (POP) algorithm based on shaking transformations in-

troduced in [24] and further developed in [1]. The key idea is to build one Markov chain,

exploring the space through shaking transformations and moving from the coarsest subset to

the finest via a sequence of rejection operators.

The shaking transformation of a random variable X with respect to the random variable

Y , acting on a measurable space (X,X ) and a measurable space (Y,Y), respectively, can be

defined as a measurable mapping S : X× Y → X that satisfies

(4.1) (X,S(X,Y )) = (S(X,Y ), X)

in distribution. Assuming that the rare event and the corresponding intermediate subsets can

be written as events of X , i.e.,

F = {X ∈ A}, Fj = {X ∈ Aj}, such that A,Aj ∈ X , j = 1, . . . ,K,

the shaking transformation will act as the proposal in the constructed MCMC algorithm. In

order to force the Markov chain to explore the subset Fj , we define the rejection operator

MS
j : X× Y → X, with MS

j (x, y) = S(x, y)1S(x,y)∈Aj
+ x1S(x,y)/∈Aj

.

The proposed MCMC algorithm in the earlier multilevel subset simulation paper [37] is

based on a preconditioned Crank-Nicholson (pCN) [30, 18] proposal which can in fact be

written as a shaking transformation and hence the theoretical results in [24] can be applied.

The property of being a shaking transformation is related to the detailed balance condition.

This observation has been made and verified already in [1, Thm. 8]. The general POP algo-

rithm is given in Algorithm 4.1.

Assuming that the resulting Markov chains (Xj,i)i≥0 are πj–irreducible and Harris re-

current under a small set condition, the POP algorithm converges in the sense that for every j

10



Algorithm 4.2 Parallel One-Path algorithm based on Gaussian transformation.

1: Given a seed Θ0,0 ∼ Θ and a correlation parameter η ∈ [0, 1]
2: for j = 0, . . . ,K − 1 do

3: for i = 0, . . . , Nj+1 − 1 do

4: Generate Yj,i ∼ Θ,

5: Shake and accept/reject Θj,i+1 = M
Sη

j (Θj,i, Yj,i)
6: end for

7: Estimate the probability of subsets Fj+1 by

P̂j+1 =
1

Nj+1

Nj+1−1∑

k=0

1Aj+1
(T (Θj,k)),

8: ij = argmin{k | T (Θj,k) ∈ Aj+1}
9: Define initial state for next level Θj+1,0 = Θj,ij

10: end for

11: Result: P̂ =
∏K

j=1 P̂j

there exists a constant Cj > 0 such that

E

[
|P̂j − P(X ∈ Aj+1 | X ∈ Aj)|

2
]
≤

Cj

Nj
.

In [1] the authors include a model for X via Gaussian transformations which has also

been considered in [32]. We consider X modelled through a one-to-one transformation T as

X(ω) = T (Θ(ω)), ω ∈ Ω, T : Rd → X measurable,

where Θ ∼ N (0, IRd). The underlying rare event can then be formulated as

A = {x ∈ X | ϕ(x, ȳ) ≤ 0}, ϕ : X× R ∪ {∞} → R

where ϕ is non–increasing in the second component in the sense that ϕ(x, y) ≥ ϕ(x, y′), for

any x ∈ X and y ≥ y′, and the convention ϕ(x,∞) := −∞ is assumed. Further, we assume

that ϕ is measurable in the first component. The nested subsets are built through a sequence

of level parameters ȳ := yK < · · · < yk < · · · < y0 ≤ ∞ by

(4.2) Aj = {x ∈ X | ϕ(x, yj) ≤ 0} ∈ X ,

such that

A := AK ⊂ · · · ⊂ Aj ⊂ · · · ⊂ A0 := X.

Note that a special case is ϕ(x, y) := G(x) − y for a model functional G : X → R, con-

necting the presented approach to the setting considered in the previous sections. The above

considered sequence of subsets Fj can then be written as Fj = {X ∈ Aj} ∈ Σ.

Consider the shaking transformation

Sη(x, y) =
√
1− η2x+ ηy,

which obviously satisfies (4.1), and let Y be an independent copy of Θ. The shaking trans-

formation (with rejection) is now defined as

M
Sη

j :

{
R

d × R
d → R

d,

(x, y) 7→ Sη(x, y)1T (Sη(x,y))∈Aj
+ x1T (Sη(x,y))/∈Aj

.
.

11



We note that this is in fact equivalent to using the pCN approach, which is in detailed balance

with the prior. This has the advantage that the acceptance rate does not decrease with the

dimension, which is the case, e.g., for traditional random walk proposals. The POP algorithm

is then of very similar form as one of the algorithms proposed in [32] to generate samples

from the conditional pdf πj−1. For completeness, details are provided in Algorithm 4.2.

Under certain assumptions geometric convergence of the resulting estimator can be verified.

THEOREM 4.1 ([1, Thm. 8]). Let j ∈ {0, . . . ,K− 1} be fixed and consider the Markov

chain (Θj,i)i≥0 resulting from Algorithm 4.2. Assume that

(4.3) sup
{θ |T (θ)∈Aj}

P(S(θ, Y ) /∈ Aj) = δ1 < 1

and let c ≥ 2 and q ≥ 2. Define V (θ) = exp(c
∑d

k=1 θk) and assume that the initial

condition Θj,0 is independent of the future evolution of the Markov chain and such that

E [V (Θj,0)] < +∞. Then, there exists C > 0 and a geometric rate r ∈ (0, 1) such that

for any measurable function g : Rd → R with

sup
θ∈Rd

|g(θ)|

V 1/q(θ)
< +∞

it holds true that

E

[∣∣∣∣∣
1

N

N∑

i=1

g(Θj,i)− E[g(Θ)
∣∣ T (Θ) ∈ Aj ]

∣∣∣∣∣

q]
≤ CN

−q/2
j ,

and
∣∣E[g(Θj,N ]− E[g(Θ)

∣∣ T (Θ) ∈ Aj ]
∣∣ ≤ Crn.

In this setting, the estimator P̂j of P(Fj |Fj−1) is then given by

(4.4) P̂j =
1

N

N∑

i=1

1{T (Θj−1,i)∈Aj} =
1

N

N∑

i=1

1(−∞,0](ϕ(T (Θj−1,i), yj)).

Note that through defining the limit-to-state function pointwise in yℓ by ϕ(x, yℓ) := Gℓ(x)−
yℓ, following Lemma 3.2 the subset property holds and Theorem 4.1 applies to our adaptive

multilevel subset simulation.

Since the sequences of samples {Θj−1,i}Ni=1 are dependent, we use convergence diag-

nostics to estimate the autocorrelation factor in the sequence. The autocorrelation factor is a

measure of the dependence in the sequence. Following [5], we use multiple chains to com-

pute an estimate of the autocorrelation factor φj . The total number of samples N to achieve

a certain accuracy of the estimator in (4.4) is determined by the c.o.v.

(4.5) δ
(
P̂j

)
=

1

P(Fj |Fj−1)

√
Eπj−1

[(
P̂j − P(Fj |Fj−1)

)2]
.

Expanding the square of the c.o.v., we can estimate

(4.6) δ(P̂j)
2 =

1− Eπj−1

[
P̂j

]

NEπj−1

[
P̂j

] ≈
1− P̂j

NP̂j

(1 + φj),

with autocorrelation factor φj = 0 for i.i.d. samples and φj > 0 for dependent samples.

12



5. Complexity Analysis. We will now bound the complexity of the new estimators.

5.1. Complexity of subset simulation with selective refinement. The square of the

coefficient of variation δ
(
P̂ SuS

)2
of the subset simulation estimator defined in (3.5) can be

expanded as in (3.4) into the sum of a bias term (identical to the bias term for MC) and the

relative variance Vπ

[
P̂ SuS

]
/P 2

L . The bias term can again be made less than TOL2/2 by

choosing L as before in (3.5). Moreover, applying results derived in [5] it turns out that

(5.1)

δ̂SuSL = E

[
(P̂ SuS − PL)

2

P 2
L

]
≤

TOL2

2
if δ̂(P̂j)

2 = Eπj−1

[
(P̂j − Pj)

2

P 2
j

]
∝ K−s TOL2 ,

where s = 1 if the estimators P̂j , j = 1, . . . ,K , are uncorrelated and s = 2 if they are

fully correlated. To simplify notation, the biased densities defined by FL
j−1 instead of Fj−1

in (3.11) are again denoted by πj−1 suppressing the dependence on L.

Let us now estimate the cost for the particular case where P̂j is chosen to be the MCMC

estimator for P
(
Fj | Fj−1

)
described in Section 4 with Nj samples. As it has been shown in

[5] the c.o.v. can be computed as

(5.2) δ(P̂j)
2 =

1− P (Fj | Fj−1)

NjP (Fj | Fj−1)
(1 + φj)

where φj is the autocorrelation factor of the Markov chain produced by Algorithm 4.2. We

note that (5.2) crucially depends on the fact that the underlying Markov chain generated

through the MCMC algorithm is ergodic. The ergodicity of the Markov chain can be obtained

from Theorem 4.1. In the following complexity analysis, we assume that (5.2) is satisfied.

Moreover, we assume an adaptive selection of the failure sets has been applied, e.g. as de-

scribed in [5], where the values of yj are chosen in the course of the algorithm, such that

P̂j ≈ p0, for all j = 1, . . . ,K . It was shown in [42] that the best performance is achieved for

values of the constant p0 ∈ [0.1, 0.3]. For simplicity, we assume (without loss of generality)

that P(Fj | Fj−1) = p0 for all j = 1, . . . ,K .

THEOREM 5.1. Suppose that

1. Assumption 2.1 is satisfied for some q ≥ 0 and γ ∈ (0, 1),

2. the subsets are chosen such that P(Fj | Fj−1) = p0 := P
1/K
L , for all j =

1, . . . ,K − 1, and

3. there exists a constant φ < ∞ such that φj ≤ φ in (5.2), for all j = 1, . . . ,K .

Then, for any TOL > 0 the maximum discretisation level L and the numbers of samples {Nj}
can be chosen such that

E

[
|P̂ SuS − P |2

P 2

]
≤ TOL2

with a cost that is bounded by

E

[
C
[
P̂ SuS

]]
≤ c4

P 2
L

P 2
TOL−(2+q)

(
log
(
P−1
L

))s+1

for some constant c4 > 0. Here, s = 1 if the estimators P̂j , j = 1, . . . ,K , are uncorrelated

and s = 2 if they are fully correlated.

If in addition Assumption 2.2 is satisfied, the cost can be bounded by

E

[
C
[
P̂ SuS

]]
≤ c4

P 2
L

P 2
TOL−max(2,1+q)

(
log
(
P−1
L

))s+1

.
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Proof. We first split

(5.3) E

[
|P̂ SuS − P |2

P 2

]
=

(
E[P̂ SuS − P ]

P

)2

+
P 2
L

P 2
E

[
(P̂ SuS − PL)

2

P 2
L

]
,

where the first term can be bounded by

(5.4)

(
E[P̂ SuS − P ]

P

)2

≤ 2

(
PL − P

P

)2

+ 2
P 2
L

P 2

(
E[P̂ SuS − PL]

PL

)2

.

To bound the bias error we choose L ∝ log(TOL−1) as in (3.5). Due to the assumptions of

the theorem we can choose Nj = N uniformly across all subsets. The expressions

A :=

(
E[P̂ SuS − PL]

PL

)2

and B := E

[
(P̂ SuS − PL)

2

P 2
L

]

have been analysed in [5], where it has been shown that

A ≤
K∑

i,j=1, j>i

δ(P̂i)δ(P̂j) + o

(
1

N

)
and B ≤

K∑

i,j=1

δ(P̂i)δ(P̂j) + o

(
1

N

)

if the estimators {P̂j} are correlated, whereas

A ≤
K∑

j=1

δ(P̂j)
2 and B ≤

K∑

j=1

δ(P̂j)
2

if the estimators {P̂j} are uncorrelated. If N is now chosen such that

(5.5) δ(P̂j)
2 ≤ c3K

−s TOL2

5

P 2

P 2
L

it follows that

(5.6) A ≤ c3
TOL2

5

P 2

P 2
L

and B ≤ c3
TOL2

5

P 2

P 2
L

.

Taking into account the choice of L in (3.5) and combining (5.3), (5.4) and (5.6), finally leads

to

E

[
|P̂ SuS − P |2

P 2

]
≤ TOL2 .

Now, using the third assumption of the theorem, i.e., that φj ≤ φ, a sufficient condition on

the number of samples to ensure that the bound in (5.5) holds is

N ∝
P 2
L

P 2
KsTOL−2 ,

where the proportionality constant depends on p0, φ and c3, but is independent of TOL and

K . Then, recalling that PL = pK0 and thus K ∝ log
(
P−1
L

)
it follows that

N ∝
(
log
(
P−1
L

))s+1P 2
L

P 2
TOL−2 .
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Hence, combining this with the assumed bound on the cost per sample in Assumption 2.1 and

using the fact that L ∝ log(TOL−1) implies γ−qL ∝ TOLq , the total cost to compute the

subset simulation estimator can be bounded by

E

[
C
[
P̂ SuS

]]
≤ KNc0γ

−Lq ≤ c4
P 2
L

P 2
TOL−(2+q)

(
log
(
P−1
L

))s+1

,

for some constant c4 > 0. Under the selective refinement Assumption 2.2 and for q > 1, we

can even bound the computational costs by

E

[
C
[
P̂ SuS

]]
≤ KNc0(1 + γ(1−q)L) ≤ c4

P 2
L

P 2
TOL−max(2,1+q)

(
log
(
P−1
L

))s+1

.

5.2. Complexity of adaptive multilevel subset simulation. We now turn our attention

to the complexity of the adaptive multilevel subset estimator defined in (3.21). We will make

use of the following convergence property in the analysis below, assuming that we can control

the ratio of the subset probabilities sufficiently well.

LEMMA 5.2. Suppose Assumption 2.1 is satisfied and yℓ is defined as in Lemma 3.2.

Furthermore, we assume that

(5.7)
P(G ≤ x1)

P(G ≤ x2)
≤ 1 + c̃|x1 − x2| log(P

−1),

for x1 > x2 > 0 and c̃ > 0 independent of P . Then the difference between the intermediate

probabilities can be bounded in the following way

1− P(FML
ℓ | FML

ℓ−1)

P(FML
ℓ | FML

ℓ−1)
=

1− P(Gℓ ≤ yl | Gℓ−1 ≤ yℓ−1)

P(Gℓ ≤ yl | Gℓ−1 ≤ yℓ−1)
≤ c5γ

ℓ log(P−1).

Proof. Applying the subset property we obtain

1− P(Gℓ ≤ yl | Gℓ−1 ≤ yℓ−1)

P(Gℓ ≤ yℓ | Gℓ−1 ≤ yℓ−1)
=

P(Gℓ−1 ≤ yℓ−1)

P(Gℓ ≤ yℓ)
−1 =

P(Gℓ−1 ≤ yℓ−1)− P(Gℓ ≤ yℓ)

P(Gℓ ≤ yℓ)
.

First, note that by Assumption 2.1 we have Gℓ ≤ G+ γℓ and G− γℓ−1 ≤ Gℓ−1, and thus

P(Gℓ ≤ yℓ) ≥ P(G+ γℓ ≤ yℓ) = P(G ≤ yℓ − γℓ),

P(Gℓ−1 ≤ yℓ−1) ≤ P(G− γℓ−1 ≤ yℓ−1) = P(G ≤ yℓ−1 + γℓ−1).

By definition we have yℓ−1 + γℓ = yℓ +(γℓ + γℓ−1) + γℓ, which together with (5.7) implies

0 ≤
P(Gℓ−1 ≤ yℓ−1)− P(Gℓ ≤ yℓ)

P(Gℓ ≤ yℓ)
≤

P(G ≤ yℓ−1 + γℓ−1)− P(G ≤ yℓ − γℓ)

P(G ≤ yℓ − γℓ)

≤ c̃(2γℓ + 2γℓ−1) log(P−1),

where we have used that P(Gℓ−1 ≤ yℓ−1) ≥ P(Gℓ ≤ yℓ) due to Lemma 3.2.

We note that the dependence on log(P−1) in equation (5.7) is the weakest assumption we can

take in order to obtain an improvement through our proposed multilevel subset simulation

strategy. However, the bound (5.7) crucially depends on the underlying state function G and

one might drop the dependence on log(P−1) for certain models.
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As in the classical subset simulation, we estimate the failure sets such that

(5.8) δ(P̂ℓ)
2 =

1− P
(
FML
ℓ | FML

ℓ−1

)

P
(
FML
ℓ | FML

ℓ−1

) (1 + φℓ)N
−1
ℓ ≤ L−sTOL2,

which guarantees that the relative variance of the multilevel estimator is bounded by TOL2.

We finish by stating and proving the main theoretical result of the paper on the complex-

ity of the proposed adaptive multilevel subset simulation method, with and without selective

refinement, under similar assumptions made for the single-level complexity result in Theorem

5.1. Recall that we have set K = L and ℓ = ℓj = j for j = 1, . . . ,K .

THEOREM 5.3. Suppose that

1. Assumption 2.1 is satisfied for some q ≥ 0 and γ ∈ (0, 1) and (5.7) holds,

2. the level thresholds yℓ are defined as in Lemma 3.2,

3. there exists a constant φ < ∞ such that φℓ ≤ φ in (5.8), for all ℓ = 1, . . . , L.

Then, for any TOL > 0 the maximum discretisation level L and the numbers of samples {Nℓ}
can be chosen such that

E

[
|P̂ML − P |2

P 2

]
≤ TOL2

with a cost that is bounded by

E

[
C
[
P̂ML

]]
≤

{
c7TOL−max(2,(1+q))(1 + φ) log(P−1), s = 1,

c7TOL−max(2,(1+q)) log(TOL−1)(1 + φ) log(P−1), s = 2,

for some constant c7 > 0. Here, s = 1 if the estimators P̂ℓ, ℓ = 1, . . . , L, are uncorrelated

and s = 2 if they are fully correlated.

If in addition Assumption 2.2 is satisfied, the cost can be bounded by

E

[
C
[
P̂ML

]]
≤

{
c7TOL−max(2,q)(1 + φ) log(P−1), s = 1,

c7TOL−max(2,q) log(TOL−1)(1 + φ) log(P−1), s = 2.

Proof. The result follows similarly as the proof of Theorem 5.1 for single-level subset

simulation. Note that the resulting number of samples

Nℓ ∝
P 2
L

P 2

1− P
(
FML
ℓ | FML

ℓ−1

)

P
(
FML
ℓ | FML

ℓ−1

) (1 + φℓ)L
sTOL−2

are now level dependent due to the fact that the probabilities P(FML
ℓ | FML

ℓ−1) differ in ℓ.
Hence, applying Lemma 5.2 the total computational costs result in

E

[
C
[
P̂ML

]]
≤ TOL−2Ls−1(1 + φ)

L∑

ℓ=1

P(FML
ℓ |FML

ℓ−1)
−1(1 − P(FML

ℓ |FML
ℓ−1))γ

−ℓq,

≤ TOL−2Ls−1(1 + φ)

L∑

l=1

c5γ
(1−q)ℓ log(P−1)

≤ c6TOL−2Ls−1(1 + φ)(1 + γ(1−q)L) log(P−1)

≤ c7TOL−max(2,1+q)Ls−1(1 + φ) log(P−1),

for some c5, c6, c7 > 0. If in addition Assumption 2.2 holds the bound can be improved to

E

[
C
[
P̂ML

]]
≤ c7TOL−max(2,q)Ls−1(1 + φ) log(P−1).
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FIGURE 6.1. Mean computational cost plotted against the estimated values of δ(P̂ ) (with tolerance TOL) for

the toy problem in Example 1 using standard MC (expected), classical subset simulation, as well as subset simulation

and multilevel subset simulation with selective refinement.

Clearly, the asymptotic complexity is significantly improved over classical subset simulation.

In addition to the gains due to the level-dependent cost of the samples and the variance re-

duction on the rarer subsets, an additional cost reduction in practice comes from the fact that

the accept/reject step for ℓ > 0 in Algorithm 4.2 is computed to tolerance γℓ−1 and only

accepted samples are then computed also to tolerance γℓ. The intermediate failure thresholds

and thus the failure sets FML
ℓ are defined a priori based on the value of γ. Thus, the proba-

bilities P(FML
ℓ |FML

ℓ−1) are problem dependent and optimal sample sizes Nℓ – like in MLMC

[22] – are difficult to compute. This would be an interesting area for future investigation.

6. Numerical Results. In the following, we consider three numerical examples with

increasing difficulty. We start the experiments with a one-dimensional toy example where we

can ensure Assumption 2.2. In this example, it is possible to verify the complexity results ex-

pected from Theorem 5.1 and Theorem 5.3 respectively. In our second example we consider

a rare event estimation problem based on a Brownian motion. In this case, Assumption 2.2

does not hold almost surely but only in Lp. The results of our numerical experiments remain

promising and we observe a significant improvement through our multilevel subset simula-

tion and the incorporation of selective refinement. The last experiment is based on an elliptic

PDE model and represents a more realistic scenario of application.

6.1. Example 1: Toy experiment. We start by verifying our derived complexity results

on a simplified toy model. We assume that G ∼ N (0, 1) and define the pointwise approxi-

mation Gℓ(ω) := G(ω)+κ(ω)γℓ with κ ∼ U({−1, 1}) such that (2.3) is obviously satisfied.

Applying Algorithm 1 in [21] allows to simulate Gy
ℓ satisfying Assumption 2.2. For any ac-

curacy level ℓ, starting on the coarsest level 1, the algorithm successively refines the accuracy

until |Gy
ℓi
(ω) − y| ≤ γℓ or |Gy

ℓi
(ω) − G(ω)| ≤ γℓ is satisfied. Note that in more realistic

scenarios one needs a posteriori estimates of the error |Gy
ℓi
(ω) − G(ω)|, see Section 6.3 for

more details. In this simplified example we increase the accuracy until |Gy
ℓi
(ω)− y| ≤ γℓ or

ℓi = ℓ since we know that |Gℓ(ω)−G(ω)| = γℓ. Let γ = 1/2 and assume that q = 2 for the

expected costs in (2.4).

The aim is to estimate the failure probability

(6.1) P(G ≤ −3.8) ≈ 7.23 · 10−5.

We compare standard MC, the classical subset simulation with and without selective
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refinement, as well as our proposed multilevel subset simulation. For the subset simulation,

we apply K = 5 subsets such that all P(Fj | Fj−1) ≈ [0.1, 0.2], where we choose the

threshold values (y5, y4, y3, y2, y1, y0) = (−3.8,−3.3,−2.8,−2,−1.3,∞). In contrast, for

the multilevel subset simulation we choose yℓ following Lemma 3.2 and let the number of

subsets increase according to L ∝ log(TOL−1). For the estimation of P̃1 in (3.21) we apply

a standard MC estimate. The highest accuracy level L and the numbers of samples on each

subset (Nj and Nℓ resp.) are chosen according to the assumptions in Theorems 5.1 and 5.3,

respectively. Fig. 6.1 shows the estimated c.o.v. δ(P̂ ) using the true reference probability of

equation (6.1) for the different applied estimators plotted against the computational cost. We

have used 100 runs for building the estimates of δ(P̂ ) for each algorithm.

6.2. Example 2: Brownian motion. In our second numerical example, we consider

estimating the probability that a standard Brownian motion drops below a threshold value

within a certain time interval. To be more precise, let (Bt)t≥0 be a Brownian motion. We are

interested in the estimation of

P(F ) = P
(
mint∈[0,1] Bt ≤ −4

)
,

where we can compute the reference value of P(F ) by

P
(
mint∈[0,1] Bt ≤ −4

)
= 2 · P(B1 ≤ −4) ≈ 6.3 · 10−5.

We define the limit state function pointwise by

G(ω) := mint∈[0,1] Bt(ω) + 4,

and introduce approximations of the limit state function such that

Gℓ(ω) = mint∈Tℓ
Bt(ω) + 4, Tℓ =

{ i

2ℓ
| i = 0, . . . , 2ℓ

}
.

The resulting approximation error can be bounded in Lp by

(6.2) E
[
|G−Gℓ|

p
] 1

p = E

[∣∣mint∈[0,1] Bt(ω)−mint∈Tℓ
Bt(ω)

∣∣p
]1/p

≤ Cp2
−ℓ/2,

for some constant Cp > 0 [34]. The Brownian motion is generated path-wise through a

Karhunen-Loéve expansion

Bt(ω) =
∞∑

i=1

ξi(ω)ϕi(t),

with ξi
i.i.d.
∼ N (0, 1

(i−1/2)2 ) and ϕi(t) =
√
2

π sin((i − 1/2)πt). See Fig. 6.2 for various real-

izations of the Brownian motion conditioned on the different chosen subsets, i.e. for different

level thresholds yj .

Following the error bound (6.2), we consider γ = 1√
2

and set again L ∝ log(TOL−1)

for the number of evaluated points of the Brownian motion, depending on the considered

tolerance value TOL. The number of subsets in the classical subset simulation is fixed to

KSL = 5, while KML = max(L(TOL) − 1, 8) subsets are considered in the multilevel

formulation, choosing yj according to Lemma 3.2 and the following values of ℓj for the

failure sets Fj = {ω : G
yj

ℓj
(ω) ≤ yj}:

j 1 2 3 4 5 . . . L− 1
ℓj 4 4 4 5 6 . . . L
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FIGURE 6.2. Paths of the Brownian motion conditioned on the different subsets Fj .
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FIGURE 6.3. Mean computational cost plotted against the estimated values of δ(P̂ ) (with tolerance TOL)

for the Brownian motion in Example 2 using standard MC (expected), classical subset simulation, as well as subset

simulation and multilevel subset simulation with selective refinement.

The MC estimates for the multilevel estimator ML are built using 100 paths, resulting in

Eπ[P̂
ML] ≈ 5.11 · 10−5 and δ(P̂ML) ≈ 0.0534 ≤ TOL =: 0.1 .

To compare the proposed multilevel method with classical subset simulation in Fig.

6.3 we compare the resulting costs for various choices of tolerance values TOL. Note

that we have estimated the expected number of samples for the classical MC estimator as

N = (TOL)−2P−1.

6.3. Example 3: Elliptic PDE. Finally, we consider the following diffusion equation,

which is used to model stationary Darcy flow:

(6.3)
−∇ ·A∇u = 0 in D,

subject to u = 0 on Γ1, u = 1 on Γ2, ν · A∇u = 0 on Γ3 ∪ Γ4,

where D = (0, 1) × (0, 1) is a unit square and Γ1, Γ2, Γ3, Γ4 are the left, right, upper, and

lower boundaries, respectively. The permeability A(x, ω) is a log-normal field. In particular,

log(A(x, ω)) is a stationary, zero mean Gaussian field N (0, C) with covariance operator C =
(−∆+τ2 ·id)−α, where ∆ denotes the Laplacian operator equipped with Neumann boundary
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FIGURE 6.4. Two realizations of the log-normal permeability field A(x, ω) (left) and the corresponding solu-

tion for the Darcy flow problem (6.3) (right) in Example 3. The first realization is sampled from the whole probability

space, whereas the second one is a rare event realization.

FIGURE 6.5. Different levels of refinement of the FE mesh for the Darcy flow problem (6.3) in Example 3.

conditions and we set τ = 0.1 and α = 1. The random field has been generated path-wise

through a truncated Karhunen-Loéve expansion. The limit state function is chosen to be

(6.4) G(u) = y −
1

|B|

∫

B

u(x)dx,

for B = [0.4, 0.6] × [0.9, 0.99] ⊂ D, i.e., ‘failure’ occurs when the mean of u over the

subdomain B exceeds y, with | · | denoting the area of B.

Now, given a sample ω ∈ Ω and defining H1
D(D) = {v ∈ H1(D) : v|Γ1

= 0, v|Γ2
= 1}

and H1
0 (D) = {v ∈ H1(D) : v|Γ1∪Γ2

= 0}, the weak form of (6.3) is equivalent to finding

u ∈ H1
D(D) such that

(6.5) a(ω;u, v) =

∫

D
A(x, ω)∇u · ∇v dx = 0, for all v ∈ H1

0 (D).

We approximate the limit state function and the weak formulation with a finite element

(FE) method. Let Th be a uniform triangulation of D, and suppose Vh denotes the associated

P1-Lagrange FE space. The FE approximation of the solution u of (6.5) on Th is then defined

to be the uh ∈ Vh ∩H1
D(D) satisfying

(6.6) a(ω;uh, vh) = 0 for all vh ∈ Vh ∩H1
0 (D).
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j 1 2 3 4 5
ℓj 2 2 2 3 4
Pj 0.05 0.13 0.17 0.38 0.83
αj — 0.45 0.32 0.22 0.18

j 1 2 3 4
ℓj 4 4 4 4
Pj 0.13 0.1 0.16 0.07
αj — 0.5 0.38 0.29

TABLE 6.1
Chosen level (ℓj), mean probability (Pj) and mean acceptance rates (αj) for each subset j after 100 runs of

the adaptive multilevel subset simulation estimator (left) and of the single-level subset simulation estimator (right),

both with selective refinement.

The approximation GL of G is defined as

GL = y −
1

|B|

∫

B

uL(x)dx,

where uL is the first solution on a sequence of uniformly refined meshes Th with h → 0 such

that |G−GL| ≤ γL or |G−GL| ≤ |GL|. To estimate the error in the limit state function GL

we use a-posteriori estimates, in particular the simple bound

|G(ω)−Gℓ(ω)| ≤ (1− γ−1)−1|Gℓ+1(ω)−Gℓ(ω)|.

which can be derived simply via the triangle inequality from Assumption 2.2. We used the

PDE Toolbox of MATLAB for our implementation. In the limit state function defined in

(6.4), we let y = 0.92 and choose γ = 1/4.

For the proposed single-level and multilevel estimator we choose L, Nj , Nℓ according

to Theorems 5.1 and 5.3, with a fixed number of subsets K = 4 for the classical (single

level) subset simulation. The number of subsets with the corresponding accuracy levels ℓj for

our multilevel subset simulation on the highest evaluated accuracy are presented in Table 6.1

(left). Moreover, the Table shows the mean probability for each level and the mean acceptance

rate for the Markov chains. The details for single-level subset simulation are presented in

Table 6.1 (right).

After 100 runs of this setting for the multilevel estimator ML, the estimated mean rare

event probability and relative variance resulted in

(6.7) Eπ

[
P̂ML

]
≈ 1.8 · 10−4 and δ

(
P̂ML

)
≈ 0.172.

and for the classical subset simulation estimator SuS

(6.8) Eπ

[
P̂ SuS

]
≈ 1.5 · 10−4 and δ

(
P̂ SuS

)
≈ 0.28.

For each level ℓ in the multilevel subset simulation, the mean number of samples computed

on each mesh level k are presented in Table 6.2 (left). In the selective refinement process,

the computation for each sample always starts on mesh level k = 1 and the numbers on

the lower mesh levels are the cumulative ones. Furthermore, the table shows the normalized

theoretical cost ck (assuming an optimal PDE solver, such as an algebraic multigrid method)

for one sample on each mesh level. It can be seen clearly that the vast majority of samples are

generated from inexpensive low-resolution simulations. Since the chosen regime is not yet

optimally balancing the cost, there is still potential for significant further gains in practice.

Finally, a comparison of the normalized cost for all the estimators is presented in Fig. 6.6

for various choices of the tolerance TOL. The vastly superior performance of the proposed

multilevel estimator is again apparent, e.g., for TOL = 0.25 there is a more than twenty-fold

gain in efficiency compared to subset simulation with selective refinement and a more than
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j\k 1 2 3 4

1 3602 610.7 0 0
2 3602 1902.9 0 0
3 3602 1564 0 0
4 2002 1071.6 326.2 0
5 502 281 108.5 15.2

Total 13310 5430.2 434.7 15.2
ck 1 16 256 4096

j\k 1 2 3 4

1 1602 523.5 169.3 30.2
2 1602 1117.5 569.4 107.8
3 1602 1054.1 567.2 114.1
4 1602 986.1 474.4 83.1

Total 6408 3681.2 1780.3 335.2
ck 1 16 256 4096

TABLE 6.2
Mean number of samples computed on mesh level k for subset j, for adaptive multilevel subset simulation (left)

and single-level subset simulation (right), both with selective refinement, estimated from 100 runs and summed up

over all mesh levels. The tables also show the total number of samples and the (normalized) theoretical cost per

sample ck on each mesh level.
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FIGURE 6.6. Mean computational cost plotted against the estimated values of δ(P̂ ) (with tolerance TOL)

for the Darcy flow problem (6.3) in Example 3 using classical subset simulation, as well as subset simulation and

adaptive multilevel subset simulation with selective refinement.

200-fold gain compared to standard subset simulation with all samples being computed on

the finest mesh level. Asymptotically the cost does appear to grow as predicted in Theorem

5.3, even though Assumption 2.2 (as in Example 1) does not hold uniformly in ω here.

Note that the selective refinement approach alone also leads to clear gains over standard

subset simulation and to a better asymptotic rate as predicted in Theorem 5.1.

7. Conclusions. In this paper, we propose a new multilevel subset simulation estimator

of the probability of rare events. By constructing a hierarchy of numerical approximations to

a model of a complex physical process, and by using a posteriori error estimation, the subset

property of the intermediate failure domains is preserved. The estimator was tested in a Darcy

flow problem, for which it reduced the cost compared to the classical subset simulation esti-

mator by more than a factor of 200 for a practically relevant relative error tolerance of 25%.

Given the wide applicability of subset simulation, several problems beyond the simulation of

rare events may also benefit from this dramatic increase in efficiency.
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Appendix A. Algorithm of adaptive multilevel subset simulation.

The following algorithm summarises the proposed adaptive multilevel subset simulation

algorithm with a standard MC estimator for the first intermediate subset. To employ classical

subset simulation for the estimation of P(FML
1 ), it suffices to replace lines 3-14 by a single-

level subset simulation which is again of the form of Algorithm 4.2 but on the coarse accuracy

level ℓ = 1.
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Algorithm A.1 Adaptive multilevel Parallel One-Path algorithm based on Gaussian transfor-

mation.

1: Given a seed Θ0,0 ∼ Θ and a correlation parameter η ∈ [0, 1]
2: Determine a sequence of failure thresholds, yL = 0 and yℓ = (γℓ + γℓ+1) + yℓ+1,

ℓ = 1, . . . , L− 1
3: for ℓ = 0 do

4: Set i = 0, N1 = 1, δ̂(P̂1) = ∞
5: Define the subset A1 = {x ∈ X | ϕ(x, y1) ≤ 0}

6: while δ̂(P̂1) ≤ TOL do

7: Generate i.i.d. Θ0,i ∼ Θ
8: Increase i = i+ 1, N1 = N1 + 1
9: Estimate the probability of subset FML

1 by

P̂1 =
1

N1

N1−1∑

k=0

1A1
(T (Θ1,k))

10: Estimate δ(P̂1) ≈ δ̂(P̂1)
11: end while

12: Set i0 = argmin{k | T (Θ0,k) ∈ A1}
13: Define initial for next level Θ1,0 = Θ0,i0

14: end for

15: for ℓ = 1, . . . , L− 1 do

16: Set i = 0, Nℓ+1 = 0, δ̂(P̂ℓ+1) = ∞
17: Define the subset Aℓ+1 = {x ∈ X | ϕ(x, yℓ) ≤ 0}

18: while δ̂(P̂ℓ+1) ≤ TOL do

19: Generate Yℓ,i ∼ Θ

20: Shake and accept/reject Θℓ,i+1 = M
Sη

ℓ (Θℓ,i, Yℓ,i)
21: Increase i = i+ 1, Nℓ+1 = Nℓ+1 + 1
22: Estimate the probability of subset FML

ℓ+1 by

P̂ℓ+1 =
1

Nℓ+1

Nℓ+1−1∑

i=0

1Aℓ+1
(T (Θℓ,i))

23: Estimate δ(P̂1) ≈ δ̂(P̂1)
24: end while

25: Set iℓ = argmin{k | T (Θℓ,k) ∈ Aℓ+1}
26: Define initial for next level Θℓ+1,0 = Θℓ,iℓ

27: end for

28: Result: P̂ML1 =
∏L

ℓ=1 P̂ℓ

25


	1 Introduction
	2 Problem Formulation and Model Hierarchy
	3 Adaptive Subset Simulation and Selective Refinement
	3.1 Estimating rare event probabilities by standard Monte Carlo
	3.2 Subset Simulation
	3.3 Subset Simulation with Selective Refinement
	3.4 Adaptive Multilevel Subset Simulation

	4 Shaking Transformations and Asymptotic Convergence
	5 Complexity Analysis
	5.1 Complexity of subset simulation with selective refinement
	5.2 Complexity of adaptive multilevel subset simulation

	6 Numerical Results
	6.1 Example 1: Toy experiment
	6.2 Example 2: Brownian motion
	6.3 Example 3: Elliptic PDE

	7 Conclusions
	References
	Appendix A. Algorithm of adaptive multilevel subset simulation

