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Abstract—The unmanned aerial vehicle (UAV) technology pro-
vides a potential solution to scalable wireless edge networks.
This paper uses two UAVs, with accelerated motions and fixed
altitudes, to realize a wireless edge network, where one UAV
forwards the downlink signal to user terminals (UTs) distributed
over an area where another UAV collects uplink data. Both
downlink and uplink transmissions consider the active user
probability and the queue structure as well as the hovering
times of UAVs. Specifically, we develop a novel joint Q-Learning
multi-agent (JQ-LMA) algorithm to maximize the overall energy
efficiency of the edge networks, through optimizing the UAVs
trajectories, transmit powers, and the resistant distance between
UAVs. The simulation results demonstrate that the proposed
algorithm achieves much higher energy efficiency than other
benchmark schemes.

Index Terms—UAV swarm, energy efficiency, trajectory opti-
mization, multi-agent reinforcement learning, queue theory.

I. INTRODUCTION

Mobile devices and data traffic in the edge networks [1]
will grow exponentially over the next few years. To meet
these demands and provide the holographic coverage for the
future edge network, it is necessary to develop dynamic,
scalable, and self-organized networks. In the last decade, the
technology related to autonomous drones, also called Un-
manned Aerial Vehicles (UAVs), has been rapidly developed.
It is commonly regarded as an effective technology in future
wireless networks. However, due to the physical limitations of
the UAVs [2], such as short battery life, it would be difficult
to rely on a single UAV to complete complex tasks. Hence, in
many applications, multiple UAVs are required to cooperate
with each other to improve the energy efficiency of wireless
networks [3]. The energy efficiency of UAVs enabled wireless
networks has been addressed in various works. In [4], a UAV-
enabled wireless communication system with energy harvest-
ing has been investigated, where the total energy consumption
of the UAV is minimized while satisfying the minimal data
transmission requests of the users. In [5], the energy efficiency
is maximized by optimally planning the trajectory of the UAV
collecting sensor data from devices scattered around.

RL has been widely used in the field of UAVs too. In [6], an
adaptive federated RL-based jamming attack defense strategy
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has been developed. In [7], a deep RL algorithm has been used
to compute the optimal trajectories. In [8], a RL algorithm
has been proposed to control the transmission power and to
manage interference.

UAV-enabled technology in wireless communications has
been widely used. In [9], an analytical framework has been
developed to evaluate the performance of a finite, three dimen-
sional (3D) UAV network in the presence of interference. The
framework is based on stochastic geometry tools and uses the
Binomial Point Process (BPP) to model the spatial distribution
of the UAVs. In [10], radio interference is analyzed using
stochastic geometry and 3D grid-based designs of a primary
exclusive region is presented for a UAV network with spectrum
sharing.

The existing literature only addresses the downlink [4] or
uplink [11] of UAV-based wireless networks, but not both,
and also without a realistic energy consumption model and
a multi-UAV system. In order to fill this gap, this paper
studies a multi-UAV enabled wireless communication system,
where the uplink and the downlink are jointly optimized
for energy efficiency, considering both moving and hovering
energy consumption models, with the final aim to maximize
the system energy efficiency. To the best of our knowledge,
this has not been investigated in the existing literature. The
contribution of this paper lies in several directions.

o Multiple modes collaborative edge network. We design
a multi-agent-based edge network, with two UAVs in
charge of downlink and uplink transmission, where the
UAVs are with accelerating. Two interference sources are
considered.

¢ Service time managed by queue theory. We have
considered an M/M/1 queue formed by two queues in
both downlink and uplink for existing UTs and newly
coming UTs.

o Dynamic time scheme and corresponding energy con-
sumption. We consider a dynamic time scheme to use a
realistic fly and stop scheme for both UAVs.

o Multi-agent synergy approach for energy efficiency
maximization. We develop a novel RL-based JQ-LMA
algorithm to maximize the energy efficiency of the sys-
tem, with a dynamic learning rate and dynamic probabil-
ity of action choice.

II. SYSTEM MODEL

This paper considers a two UAV-enabled BSs and multiple
UTs time-division duplex (TDD) edge network as in Fig. 1.
One UAYV, Uy, is responsible for downlink transmission while



another UAV, Usg, is responsible for data collection from the
UTs in the uplink. Both are equipped with single-antenna and
elevated at fixed altitude ks and hp, respectively. Note that
all UTs are also with single-antenna and are geographically
distributed with Poisson Point Process (PPP) @ with density
A¢. Therefore, the number of active UTs will be A\¢ = pgAg,
if the active probability for UTs is pg. We assume that both
Ua and Up travel between the Macro Base Station (MBS)
and a certain destination area S for information transfer, and
no direct communication links are present between the MBSs
and the edge UTs.
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Fig. 1: System model. Two UAV-enabled BS Uy and Ug
are equipped with single-antenna each and UTs distributed
in destination area S.

Area § is divided into smaller regions. Each is entirely
covered by the footprint of the respective UAVs. The number
of regions depends on their radii. The footprint has a hexagonal
shape as we approximate the analysis of UTs on the edges
of the map in a low-density scenario Ua has a radius 74,
the number of sub-areas K = 3 \/5 -, and the set of all sub-

areas is denoted as K = {51, ..., S, ..., S }. Similarly, Ug will
have J = 3\%92 sub-ares and the set J = {51, ...,5;,.., 57}
Without loss 0? generality, the two UAV-enabled BSs serve
all the UTs located in S, and therefore we tag the starting
sub-area as S, € K and 5, ; € J, respectively. Once they
reach the next sub-area, they stop and change their status in
the hovering slots and start fulfilling requests. The time for
UAVs to carry out their respective actions may differ. The
flight time depends mainly on the distance travelled and the
flight speed. The hovering time depends on the UTs’ bit rate
request, their density, and the level of the achievable rate. Uy
and Upg can communicate with one UT at a time. We denote
T2 and T2 as the total transition times from one sub-area to
another for Uy and Ugp, respectively. Furthermore, T;lA and
T]? are the sums of all the time spent on hovering for U, and
Ug, respectively.

We assume that the two UAVs can serve area S simul-
taneously. The coverage radii for Uy and Up are 75 and
rp respectively. Based on the PPP model, the average active
user numbers in the coverage areas of Uy and Up are
Sa = )\G ‘2[7" % and Sg = G?’\Q[r%, respectively. We denote
®, ;, as the UT sub-set receiving the downlink signal from
Ua, g ; as the uplink signal UT sub-set to Ug.

1) LoS Probability: The communication links between two
nodes can be modeled by a probabilistic path loss model,
where both the line-of-sight (LoS) and non-LoS (NLoS) links
can be considered separately with different probabilities of
occurrences. The probability of having a LoS connection

between the two nodes with distance X is given by [12]

1
1+ aexp(—btan~

Pros(X) = (D

"% —a)
where a and b are two constants that depend on the environ-
ment, h; is the height of the correspondent i-th UAV-enabled

BS, where ¢ € {A,B}. The probability of NLoS links is

PNLos(X) = 1 — pros(X). )

2) Downlink Transmission: For downlink transmission, the
received signal to interference plus noise ratio (SINR) from
UAV U, to the associated UT in the @, is [13]

Puhafd; 2

SINRA(XA,O): 5:[ +0_2 )

3)
where P, is the transmit power from Ujy, o2 is the additive
noise power, fi, ~ I['(1,1) is the equivalent small-scale fading
channel power gain between U, and the UTs, and I'(kq, ko)
is the Gamma distribution with a shape parameter k; and a
scale parameter ko. In (3), 8 denotes a frequency dependent
constant parameter, dy , is the distance between the Uy to the
typical user o in ®, and can be computed by

dpo = \/ X2, + ha”, 4

where X, , is the projection distance from U, to the typical
user o. Note that § in (3) is the index of beaconing refereed
to the interference state from Ua to Ugp, given by

5= 1,  if both UAVs hovering, )
“ ] 0, otherwise.
The inter-cell interference Z,, from ®; is given by
ju = ugu6|yA|_aNa (6)

where X, is the average distance between a downlink typical
user o to the active UT set ®g. Also, g, ~ exp(l) is the
small scale fading channel power gain. The average distance
between a downlink typical user o to Ugp is given by

—a,

X, — Zue% |XtBu7Ad| (7)
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3) Uplink Transmission: The received SINR from typical
UTs in ®p to the serving UAV Usg; is defined as

Puhbﬁds_ao

SINRp(X3,) = T, 1 0%

®)

where dg = /X7 ; + hg” is the distance between typical UTs
to Up. The inter-cell interference is given by

Iy = PAga5|dA,B|_aLa 9

where dy5 = \/X75+ |ha — hg|?, and with g, ~ exp(1)
being the small scale fading channel power gain from the
interference U,




4) Queuing: In our system model, we consider the existing
queue in the target sub-area with L’ the UTs already in the
area below U; and the second queue formed by the new
arrivals L¢, during the hovering time. The arrival rate follows
a Poisson distribution with parameter v; and the service time
rate t,, follows an exponential distribution with parameter
1;. Since the proposed system can be considered as a finite
M /M /1 with an initial queue length L, we can compute the
expectation of service time for each UT as

1R

Hi = t = Q'

where Q; is the number of the approximate data requested,
for i € {A,B}. From [14], the number of new arrivals over
the service time will be L} = —%—. We can easily get the
average waiting time for each user in the queue under U; as

(10)

T = ﬁ—" Hence, the hovering time for U; will be
L, Lo _ Ly
Vi Hi Hi = Vi
Moreover, the total length in the queue needs to be less than
the total number of UTs in the target area while

L 1

i
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Y
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Furthermore, we have v; < p; in order to respect the existence
conditions of stationarity of the queue.

III. PERFORMANCE EVALUATION

The summarize tractable lower bound for the conditional
average downlink achievable rate between UEs and their
serving Ux can be computed as

X 2T pra
RE™ (01,u1) = ?i/ / log, [1 + Aaldfiduy, (13)
0 0

where A, is expressed as (14) shown at the top of the next

Downlink Area

Uplink Area

Fig. 2: Distance diagram between U and Up
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page. Note that Z(x1, x9, ) = ($12 + 292 — 23125 COS 19) / .
For what concern the data rate lower bound in the uplink
scenario, it can be computed as

—Low 1 2m /TB 1
R = — log, (1 + uodugdb, 15
B SB /0 0 g2( H(UQ)) 2 2 ( )
with
ar,
5Py B/ As? + (ha — hp)?  + 02
I(ug) = \/ (16)
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IV. ENERGY CONSUMPTION ANALYSIS

In this section, we analyze the energy consumption in the
whole process. We consider the energy consumption model as
rotary wings UAV based BSs, which includes communication-
related energy and propulsion power consumption. The non-
straight flight refers to the uniform accelerated movement in
the horizontal plane. For a rotary-wing UAV, its speed can be
computed as

3 2
’U(t) = 2<t2ds) 7}7]04,_1 + 3<t2ds> 7}27]0_;'_1, (17)

where dy is the space travelled and the power consumption
can be expressed as

Elm() =D
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0

dt, (18)

where Ty r11 is the transition time from one sub-area to the
next with f € {k,j} and F € {K,J}, g is the gravitational
acceleration, ay is the UAV acceleration given by

3 2
O,U(t) = Q(tzdb) + 6<t3d5) 7})f+1, (19)
and AK is the change in kinetic energy
1 2 2
AK = gm([o(Trp) P = O)F ), @0)

with v(T7,) the final and v(0) the initial U; speeds. In the
above, the UAV acceleration and speed functions have been
computed using an interpolation technique as in [15]. The
polynomial function used is cubic as we are in a system with
constant acceleration/deceleration. Moreover, ¢; € [1,2, ..., 5]
are the modelling parameters that depend on the UAV weight,
air density and rotor disc area, as specified in [16]. The
communication-related energy for the UAVs can be expressed
as [17]
Ep) = (T3t Py) + (T SpPy). @1)
Corollary 1: For the static speed v(t) — 0, the power
consumption corresponding to the hovering UAV at the fixed
location is asymptotically derived as

Eny = Th{er +es}, (22)

where T} is the total time spent hovering, defined as
T = K-ty (23)
T8 =J-t5. (24)
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Fig. 3: JQ-LMA algorithm framework.

V. PROBLEM STATEMENT AND JQ-LMA

In this section, we present our objective and details for the
JQ-LMA algorithm. The energy efficiency of the whole system
is maximized and computed as

KSARA + JSgRs
Die(any Etmy T 2icqany Eny T €

where & (im) denotes the mechanical power consumption of U
and U computed as (18), E(lh) denotes the hovering power
consumption (22), and &(,,) is the transmit power consumption
of Up and UTs in area S during the total period (21).
The trajectories are computed by solving the Travelling Sales
Problem (TSP) task jointly with transmit power management
and interference reduction problems in a 3D environment. To
achieve the maximum energy efficiency of the whole system,
the optimization problem can be formulated as

EE = 25)

max
o(t)

s.t.

E [EE ‘Vg(t)}
Cl:¢6€e{0,1},
C2: v(t) < Vinax,

where V7™ (als,0), © = (ca,c,P), ca = {Sox} and
cg = {S,;} are the optimized subarea sequence of UAVs
trajectories, and ?A is the transmit power constraint for Uy.
Overall, P; can provide the best trajectories and transmit
power and achieve maximum energy efficiency of the whole
network. To maximize the energy efficiency of the whole
destination edge area, we use multiple agent reinforcement
model (Ua, Ug) to achieve the minimum mutual interference
and energy consumption with two sets of states Sy and Spg,
and two actions sets C'a and Cp for U, and Ug, respectively.
By carrying out an action a € C;, for i € {A, B}, at the t-th
iteration of the algorithm, the agent moves from one state to
another state. In our proposed multiple agent algorithm, Up
sends position related information to agent U, which on the
other side will choose an action based on this information and
vice versa (Fig. 3).

Pl : (26)

Reward: The reward function of agent U, at each iteration
t is defined as

R-? _ SAﬁA . [1 + (KSA - G?)]_l

; 27)

where Gf is the number of users already served by correspond-
ing agent U, in the previous iterations, computed as
A A A
Gt = kt(La + Ln)’

ke < K, (28)

with k; as the number of sub-area already covered by Ua pre-
viously. Similarly, the Ug reward at each algorithm iteration
t can be defined as

. SBﬁB . [1 + (JSB — GtB)]71

R? B B

; (29)

where GE = j, (LB + LB), with j; < J. The proposed reward
function in (27) and (29) enables to achieve three objectives:
maximizing the average achievable rate for downlink and
uplink, maximizing the coverage area for the active UTs, and
minimizing the energy consumption. The terms (KSa — G2)
in (27) and (JSg — GP) in (29) can be considered as the
effective incremental coverage, which adds a penalty to the
actual value. Maximizing the cumulative reward is equivalent
to maximizing the energy efficiency.

Agents, States and Actions: We assume two agents A and
B, corresponding to U and Ug. The states of the agents are
the three-dimensional location of the UAVs at the t-iteration.
The action set Cp is the output of agent U, in the network.

2

5

+

Fig. 4: Actions direction.
Each action a* = [m, P,,] € Ca by Ua contains the
movement action and the transmit power action. Note that
m# represents the movement direction on a 2D surface as
m? € {0,1,2,3,4,5,6}, where value 0 indicates the hovering
action at the same position, as shown in Fig. 4. Different as
agent U, aP = [m}’] € Cp, and Cg does not have to consider
the transmit powers because P, are managed by the UTs.
Learning Rate: The learning rate factor oy € [0,1] can
control the speed of updated information at which the model
learns. In particular, a; = 0 means that the agent has stopped
learning, which uses the last episode ignoring all the steps
before. When the environment is deterministic the optimal
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Fig. 5: Q-Tables interaction at the ¢-th iteration.

learning rate, oy, will approach to 1. The step size used in
the JQ-LMA is adaptive and can be expressed as

t/T OéM/Oém :|_1

oy = I:Oél\/[-i—z

with ap, < ap < ay, and where T is the expected training it-
erations value. We assume that a; decreases every 7 iterations
following the degrowth factor M in (30). The dynamic
learning rate speeds up the training time and guarantees the
convergence of the algorithm, as proved in [18].

Discount Factor: The agents choose their policy according
to the discount factor v € (0,1) which is fixed during the
training process. The value of the discount factor will change
the behavior of agents, and a higher discount factor will make
the agents more greedy to look for future rewards.

Probability of action choice: In a classic Q-Learning
approach, when the states and actions begin to grow expo-
nentially, the probability (e;) that the agent will be able to
visit all the cells by performing all possible actions decreases
considerably. In JQ-LMA, we overcome this issue by employ-
ing a dynamic ¢;. The value of ¢; is used by the agent when
choosing what action to use. In particular, €; is the probability,
that the agent chooses the highest value of the available states
in the Q-Table, while a random action is taken to help the
agent explore with a probability 1 — ¢;. That is

i
at+1—{

where (1 — €:41) is the probability to take a random ac-
tion instead of follow the optimizing policy m; [19], and
argmax Q(o,,) is the max future Q-value, with o, =
(stA+17s?+1aatA+1)’ and of; = (StBHaStAHvaErl)- In JQ-
LMA, ¢, is linearly dynamic and increases for every 7 itera-
tions, up to a maximum value e); over the algorithm training,
according to the following constraints:

(30)

arg max (1)
random 1 — €41,

€t+1, (31)

t/T
€= €m - {1 + Z (32)
with €, < €; < ey At the iteration ¢ = 0, we have €; = €,
where €, is the minimum ¢; value used in the training. In this
situation, the probability to take a random action is higher
than to take an action based on argmax Q(oj, ). This initial
behavior allows the agents first to explore the environment and
enrich the Q-tables. An episode of the algorithm ends when
the agents have served all the users, or when the agent goes
out from the map. We define the value function V™ : S; — R’

eM/em — ]T}’

that represents the expected value obtained by following policy
m,; from each state s% € S;. The value function V; for policy
7w quantifies the goodness of the policy through an infinite
horizon and can be expressed as follows:

Vi (s1)

= Ex[Ri0; +VVi" (si11ls1)- (33)

VI. SIMULATIONS RESULTS

In this section, the performance of the proposed multi-UAV
system is evaluated by presenting numerical results. In the
simulations, we consider an area of 1 km?2. The horizontal
locations of the UAV-BSs are restricted in the area. We assume
that the noise power is 02 = —174 + 10log;, (BW) + Nf
dBm, where BW is the mmWave bandwidth equals to 3
GHz and Nf the noise figure equals to 10 dB. Moreover,
the frequency is equal to ﬁfc’ with f. = 1 GHz, the urban
environments parameters a and b respectively equal to 9.6 and
0.28. The footprint radii are 90 m for both UAVs, while the
altitudes are respectively 70 m for Uy and 80 m for Ug.
The UTs have a 250/km? density and an active probability
pe = 0.8. Furthermore, a1, and ay are 2 and 3 respectively
[20]. The propulsion modelling parameters are explicit in
[16]. Finally, the JQ-LMA parameters are 0.1 < oy < 1,
0.4 <€ <0.95 v=0.9, 7 =10, and the training iterations
250.

A. Dynamic Parameters Performance

Here we analyze the JQ-LMA dynamic parameters perfor-
mance in terms of time processing compared with others four
pairs parameters approaches: 1) with a fixed learning rate and
dynamic €;, 2) with a linearly dynamic oy and dynamic €, 3)
with a dynamic oy and fixed €, 4) with fixed o and e.

Fig. 6 shows the algorithm time processing of the five
parameters pairs against the footprint radii of Uy and Ug.
Results illustrate that the proposed approach largely decreases
the algorithm time processing. Compared with the static and
the only-learning rate dynamic approaches (green and grey
bars), the proposed parameters decrease the time with peaks
of 70% less, while compared to the linearly dynamic approach
(orange bars) the time decrease reaches up to 25%, and
compared to the only-e; dynamic approach (red bars) the
time is slightly lower. More importantly, the minimum time
processing is obtained with 7o = rg = 90 m for all the
approaches. At this value, it has reached the optimal trade-off
between the computational time for the flying movement and
the computational time for interference. Indeed, the number
of sub-flights done by the UAVs from one group of UTs to
another increases with lower radii, and statistically, the number
of times the UAVs serve simultaneously two UTs groups and
thus generate interference increases with higher radii, hence
increasing the computational time.

B. Performance Comparison

In this sub-section, we compare our algorithm with two
other approaches, a random action selection and a Zigzag
trajectory approach. Fig. 7 provides the results for the overall
system results in terms of achievable rate, energy consumption,



ining time process (s)

£ 10000

80 90 100 110
Radii 7, = g (m)

Fig. 6: Time processing against footprint radii, with rpo = rp,
T = 250, and 7 = 10.
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Fig. 7: JQ-LMA, Random and Zigzag comparison, with rp =
90 m, rg = 90, P, = 46 dBm P, = 30 dBm, hp = 70 m and
hp = 80 m, against UTs density.

and energy efficiency of the three approaches, against multiple
densities. The achievable rate curves in Fig. 7a are obtained
by the sum of (13) and (15), the energy consumption solid
curves in 7b, by the sum of (18), (21), and (22), while the
energy efficiency curves in Fig. 7c, by (25). Results in Fig. 7a
illustrates that with any kind of UTs density the JQ-LMA and
the Zigzag approach overcome the random approach. Results
in Fig. 7b illustrate that JQ-LMA and the random approach
with any kind of UTs density both save more than the Zigzag
approach. More importantly, Fig. 7c demonstrates the JQ-
LMA algorithm energy efficiency superiority compared to the
cited approaches, with the optimal point at A\¢ = 50/km?.
Finally, Fig. 8 compares the trajectories. In all three cases, the
UAVs totally cover the UTs distributed on the ground. It can
be easily noticed that the more confusing trajectory in Fig. 8c
does not allow to reach good levels of achievable rate and the
energy-intensive trajectory, due to square direction changes, of
the Zigzag UAVs in Fig. 8b.

VII. CONCLUSION

This paper proposes a multiple UAVs-enabled solution to
collaboratively optimize the whole system’s energy efficiency.

0200 400 600 800 1000

(@) JQ-LMA UAVs (b)

0 200 400 600 800 1000 0 200 400 600 800 1000

Zigzag UAVs (c) Random UAVs

trajectories. trajectories. trajectories.

Fig. 8: JQ-LMA, Zigzag and Random output trajectories, with
ra = 90 m and hy = 70, rg = 90 m and hg = 80 m,
A¢ = 250/km? and pg = 0.8.

The service time has been determined using queue theory
and several major energy consumptions, including the UAVs’
energy consumption, have been considered. We have proposed
JQ-LMA to improve the energy efficiency of the whole system.
The parameters for RL have been investigated to achieve a
quick training process. Our analysis has shown that the pro-
posed JQ-LMA approach achieves much better performance
than the zigzag and random approaches.
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