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Abstract 37 
 38 
Nomograms are important clinical tools applied widely in both developing and aging 39 

populations. They are generally constructed as normative models identifying cases as 40 

outliers to a distribution of healthy controls. Currently used normative models do not 41 

account for genetic heterogeneity. Hippocampal Volume (HV) is a key endophenotype for 42 

many brain disorders. Here, we examine the impact of genetic adjustment on HV 43 

nomograms and the translational ability to detect dementia patients. Using imaging data 44 

from 35,686 healthy subjects aged 44 to 82 from the UK BioBank (UKB), we built HV 45 

nomograms using gaussian process regression (GPR), which - compared to a previous 46 

method - extended the application age by 20 years, including dementia critical age ranges. 47 

Using HV Polygenic Scores (HV-PGS), we built genetically adjusted nomograms from 48 

participants stratified into the top and bottom 30% of HV-PGS. This shifted the nomograms 49 

in the expected directions by ~100 mm3 (2.3% of the average HV), which equates to 3 years 50 

of normal aging for a person aged ~65. Clinical impact of genetically adjusted nomograms 51 

was investigated by comparing 818 subjects from the AD neuroimaging (ADNI) database 52 

diagnosed as either cognitively normal (CN), having mild cognitive impairment (MCI) or 53 

Alzheimer’s disease patients (AD). While no significant change in the survival analysis was 54 

found for MCI-to-AD conversion, an average of 68% relative decrease was found in intra-55 

diagnostic-group variance, highlighting the importance of genetic adjustment in untangling 56 

phenotypic heterogeneity.  57 
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Introduction 74 
 75 
Brain imaging genetics is a rapidly evolving area of neuroscience combining imaging, 76 

genetic, and clinical data to gain insight into normal and diseased brain morphology and 77 

function 1. Normative modelling is an emerging method in neuroscience, aiming to identify 78 

cases as outliers to a distribution of healthy controls and was shown to have potential to 79 

improve early diagnosis, progression models, and risk assessment2-5. Where conventional 80 

case-control studies generally require both cases and controls to be well clustered, 81 

normative models work well even when cases are not clustered or overlap with controls. 82 

Nomograms are a common implementation of normative models and have been used as 83 

growth charts of brain volumes across age in both developing and aging populations6-8. 84 

 85 
Normative modelling identifies cases by their deviation from normality, however, genetics 86 

shapes what is ‘normal’. Heritability studies have found that whole brain volume is 87 90% ± 4.8% heritable9, hippocampal volume is 75% ± 5%10-12, and other cortical brain 88 

areas between 34% and 80%13,14. Genome-wide association studies (GWAS) have identified 89 

genome wide significant variants that explain 13% ± 1.5% of the variation in hippocampal 90 

volume (HV) 15, 34% ± 3% in total cortical surface area, and 26% ±2% in average cortical 91 

thickness16. The gap between estimates from GWAS hits and formal heritability estimates 92 

(termed the ‘missing heritability’)17 implies that less significant variants also have an 93 

influence and that it may be captured through polygenic scores (PGS)18-20. In this work we 94 

demonstrate the impact of accounting for polygenic effects in normative modelling of HV.  95 

 96 
Damage to the hippocampus (which is integral to memory processes21) has been associated 97 

with major depressive disorder22, schizophrenia23 , Epilepsy24, and Alzheimer’s disease 98 

(AD)25. AD is a global health burden: 7% percent of people over 60 are diagnosed with 99 

dementia26 of which AD accounts for 70%27. The pathophysiological processes underlying 100 

AD, namely amyloid and tau pathology accumulation, are thought to precede brain atrophy, 101 

which typically starts in the hippocampus and medial temporal lobe and then spreads 102 

throughout the neocortex27.  103 

 104 

The normal variation of HV is of great clinical interest as the early and often prominent 105 

hippocampal atrophy seen in AD creates a need for early diagnosis and disease tracking. 106 
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Many studies have examined HV across age28,29, for example, a recent study by Nobis et. 107 

(2019)30 produced HV nomograms from UK Biobank (UKB) for use in clinical settings. It is 108 

important to note that some of the variation in the normative models can be explained by 109 

the clear impact of genetics on HV15,31. Thus far, the few attempts at including genetics in 110 

the construction of HV nomograms have focussed on disease related variants. For instance, 111 

two recent studies examined the impact of the AD-associated APOE gene32,33, showing that 112 

APOE4/4 carriers had significantly lower HV trajectories. This effect is likely driven by AD-113 

related disease processes since APOE4/4 carriers have a 10-fold risk of developing AD34,35. 114 

However, the genetic impact on variation in HV in healthy population remains 115 

underexamined in the context of nomograms. In this work, we close this gap. We built HV 116 

nomograms using a gaussian process regression (GPR) method (Figure 1A). We then 117 

computed a PGS of HV for subjects in our cohort and built genetically adjusted nomograms 118 

(Figure 1B). We found that genetic adjustment did in fact shift the nomograms and that, 119 

because the model requires no smoothing, our GPR nomograms provided an extended age 120 

range compared to previous methods.121 
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 122 
Figure 1: Study Overview. (A) Using 35,686 subjects from the UK BioBank, we generate 123 
nomograms using two methods: a previously reported Sliding Window Method (SWM), and 124 
Gaussian Process Regression (GPR). We find that GPR is more data efficient than the SWM 125 
and can extend the nomogram into dementia critical age ranges. (B) Using a previously 126 
reported genome wide association study, we generate polygenic scores (PGS) for the 127 
subjects in our UK BioBank table. We then stratify the table by PGS and generate 128 
nomograms for the top and bottom 30% of samples separately. We find the genetic 129 
adjustment differentiates the nomograms by an average of 100 mm3, which is equivalent to 130 
about 3 years of normal aging for a 65-year-old. 131 
 132 
 133 
 134 

  135 
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Results 136 

In the UKB sample 453 subjects were excluded for various conditions, 3497  137 

for genetic ancestry, and 28 subjects were outliers: leaving a total of 35,686 subjects. In the 138 

ADNI application dataset, 26 subjects were excluded for genetic ancestry, and 314 based on 139 

HV quality scores: leaving 818 subjects. 140 

 141 
SWA vs GPR for nomogram estimation 142 

Nomograms of healthy subjects generated using the SWA and GPR method displayed similar 143 

trends (Figure 2; Figure 2 – Figure Supplement 2). However, GPR nomograms spanned the 144 

entire training dataset age range (45-82 years) compared to the SWA (52-72 years). This is 145 

primarily because the SWA is a non-model-based approach that requires smoothing to avoid 146 

edge effects, and a gaussian smoothing window of width 20 was used 30. This extension 147 

allowed 86% of all diagnostic groups from the ADNI to be evaluated versus 56% in the SWA 148 

Nomograms (Figure 2; Figure 2 – Figure Supplement 2). Furthermore, our GPR nomograms 149 

confirmed previously reported trends: Overall, the average 50th percentile in male 150 

nomograms (4162 ±  222) was higher than the female nomograms (3883 ±  170), and 151 

within each sex, right HV was larger than left HV (Figure 2; Figure 2 – Figure Supplement 2). 152 

We also observed that along the 50th percentile, male HV declined faster (−20.3 mm3/year) 153 

than female HV (−14.6 mm3/year). Additionally, in GPR nomograms, HV peaks in women at 154 

age 53.5 years with a less pronounced peak in males at 50 years (Figure 2; Figure 2 – Figure 155 

Supplement 2). Training the GRP model with 16,000 samples took ~1 hour on a consumer 156 

grade machine (2.3 GHz 8-Core Intel Core i9).  157 
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 158 
Figure 2: Comparing Nomogram Generation Methods. Nomograms produced from healthy 159 
UKB subjects using the sliding window approach (SWA) (red lines) and gaussian process 160 
regression (GPR) method (grey lines) show similar trends. both left hemisphere nomograms 161 
(A, C) are lower than their right counterparts (B, D). Male nomograms are higher than 162 
female nomograms (A vs C) and (B vs D). Female HV shows a peak at 53.5 years of age, while 163 
male HV shows a less prominent peak at 50 years of age. SWA and GPR show good 164 
agreement, while GPR enables a 10-year nomogram extension in either direction. The 165 
benefits of this extension can be seen with scatter plots of ADNI subjects of all diagnoses 166 
overlayed (E, F). The extended age range of the GPR nomograms (45-82 years) enables the 167 
evaluation of an additional 43% of male data (E) and 34% of female data (F) (turquoise 168 
circles). A similar figure with only the Cognitively Normal ADNI subjects can be found in 169 
Figure 2 – Figure Supplement 2 170 
 171 
 172 

 173 
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Polygenic Score for Hippocampal Volume 174 

The calculated PGS, based on an earlier GWAS for average bilateral hippocampal volume15, 175 

as expected, showed a strong correlation with HV in the UKB data. Overall, the PGSs showed 176 

a significant positive correlation with HV across all 𝑝-value thresholds and training sample 177 

subsets (𝑝<2.7E-24; Table 1). PGSs explained more variance in males versus females. 178 

Furthermore, PGSs did not show detectable differences in left versus right HV; and 179 

explained the most variance in mean bilateral HV (Table 1, Figure 3 – Data Source 1). In all 180 

tested settings, the explained variance (R2) by the PGS across 𝑝-value threshold was similar: 181 

with one peak at the 1E-7 threshold (capturing few but very significant SNPs), a higher peak 182 

at the 0.75 threshold (capturing many SNPs with mostly small effect sizes) (Figure 3). For the 183 

ADNI dataset, this distribution increased with the threshold. When investigating mean HV 184 

across percentile of PGS at the 0.75 threshold (highest R2), the top and bottom 20% of 185 

scores accounted for 41% of the variance in HV (Figure 3); with similar values observed 186 

across thresholds in both datasets (Figure 3 – Figure Supplement 1, 2). 187 

 188 

 189 
 190 

Figure 3: Summary of PGS models. Polygenic Risk Score in models of mean HV across both 191 
sexes. (a) R2 of linear models across increasing p-value thresholds. All models are of bilateral 192 
HV and account for age, sex, and top 10 genetic principal components. The minimum R2 on 193 
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the y-scale is the R2 of the models without any PGS. (b) distribution of mean HV across 194 
percentiles of PGS. Excluding the top and bottom 20% of percentiles reduces the variance by 195 
49% (darker grey areas). Fitting a cubic polynomial to the means produces the grey line.  196 
 197 
Table 1: Association between Polygenic Scores (PGS) and Hippocampal Volume (HV). 198 
Linear models were built for HV (left; right; bilateral) using PGS across cohorts (male; 199 
female; both) at three representative 𝑝-value thresholds (1E-7; 0.01; 1). 𝑝-values of the 200 
slope were significant across all categories, with the lowest being associated with the 201 
threshold value of 1 in all but a single case (both/right). Variance explained (R2) increased 202 
from left to right to bilateral volumes and increased from female to male to both.  203 
 204 

Gender PGS 
threshold 

LEFT RIGHT BILATERAL 
Slope  
(x10-2) 𝑝-value R2 

Slope 
(x10-2) 𝑝-value R2 

Slope 
(x10-2) 𝑝-value R2 

FEMALE 
1E-7 10 1.8E-46 13% 9.4 2.4E-45 14% 11 1.4E-51 15% 
0.01 8.2 2.7E-26 13% 7.6 1.0E-27 13% 8.7 3.2E-30 14%

1 11 9.4E-54 13% 9.62 1.5E-48 14% 11 1.6E-57 15%

MALE 
1E-7  8.2 1.4E-35 18% 7.5 2.6E-35 18% 9.2 4.1E-40 20%
0.01 7.8 3.8E-29 18% 6.8 3.8E-27 18% 8.6 7.8E-32 20%

1 9.4 3.2E-48 18% 8.0 4.7E-43 18% 10 9.1E-52 20%

BOTH 
1E-7 8.4 8.1E-90 25% 7.9 6.4E-93 26% 9.3 3.1E-103 28%
0.01 7.4 9.3E-54 24% 6.7 3.3E-53 26% 8 2.3E-60 28% 

1 9.6 2.1E-99 25% 8.3 1.8E-89 26% 10 7.5E-107 28%
 205 
Slope = beta coefficient for PGS in the linear mode; 𝑝-value for the slope; R2 = variance 206 
explained by the linear model  207 
 208 
 209 
Genetics stratified Nomograms 210 

We will focus on the 𝑝-value threshold of 0.75 as it achieved best or close to-best 211 

performance overall (Figure 3 – Data Source 1). Genetics had a clear effect on the 212 

nomograms: the high-PGS nomograms were shifted upwards while the low-PGS nomograms 213 

were shifted downwards; an effect which could be observed at both the model and data 214 

level (Figure 4; Figure 4 – Figure Supplement 3), both by around 1.2% of the average HV (50 215 

mm3). Thus, the difference between high and low PGS nomograms was ~2.3% of the 216 

average HV (100 mm3). An ANOVA test of the percentiles produced with the adjusted vs 217 

unadjusted nomograms revealed that the groups were significantly different to each other 218 

(F>19; P<8.04e-6; Table 2). The HV peak previously observed at 50 years in males was less 219 

pronounced in the high-PGS nomogram and more so in the low-PGS nomogram (Figure 4, 220 

Figure 4 – Figure Supplement 1). Adjusting nomograms using ICV and AD PGSs, instead of 221 
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HV PGS, did not result in nomograms that were meaningfully different from the non-222 

adjusted nomograms (Figure 4 – Figure Supplement 2). 223 

 224 
Figure 4: Genetically Adjusted Nomograms. Results of genetic adjustment in bilateral male 225 
hippocampal volume (HV). (A, D) Nomograms of bilateral hippocampal volume (HV) 226 
generated from all male UKB samples overlayed with male ADNI samples. CN samples (red 227 
squares) centre around the 50th percentile, AD samples (turquoise triangles) lie mostly 228 
below the 2.5th percentile, and MCI samples (grey circles) span both regions. (B, E) 229 
Nomograms generated using only high PGS samples (top 30%) was shifted upward (red 230 
lines) compared to the original (black lines) by an average of 50 mm3 (1.2% of mean HV). 231 
Plotting the high PGS ADNI samples (top 50%) slightly improves intra-group variance. (C, F) 232 
similar results are seen in low PGS samples. Note, the black lines in panels (B, C) are the 233 
same as the nomogram in panel (A) and similarly the red lines in panel (B, C) are same as the 234 
nomogram in panels (E, F). 235 
 236 
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Table 2: Results of ANOVA tests of UKB HV Percentiles produced with genetically adjusted 237 
and unadjusted nomograms.  238 

SEX STRATA DF SUM SQ F-VALUE P-VALUE 

MEN 
HIGH 1 18786 22.84 1.8e-06 *** 
LOW 1 16407 19.96 8.04e-06 *** 

WOMEN
HIGH 1 27068 32.92 9.97e-09 *** 
LOW 1 30103 36.94 1.28e-09 *** 

 239 

 240 

External Evaluation on ADNI data 241 

In the ADNI dataset we investigated whether the shift in genetically adjusted nomograms 242 

could be leveraged for improved diagnosis. Using the non-adjusted nomogram, cognitively 243 

normal (CN) participants (𝑛 = 225) had a median bilateral HV percentile of 61% (±25% SD), 244 

Mild Cognitive Impairment (MCI) participants (𝑛 = 391) had 25% (±26% SD), and Alzheimer’s 245 

Disease (AD) participants (𝑛 = 121) had 1% (±9% SD) (Figure 5). Visual inspection revealed 246 

that while CN participants were spread across the quantiles, AD participants lay mostly 247 

below the 2.5% quantile, and MCI participants spanned the range of both CN and AD 248 

participants (Figure 4). Bisecting the samples by PGS showed that high PGS CN samples had 249 

median percentiles of 65% (±27% SD) and low PGS had 54% (±26% SD). When comparing the 250 

same samples against the genetically adjusted nomograms instead, high PGS CN samples 251 

had 60% (±26% SD) and low PGS had 59% (±26% SD). Thus, reducing the gap between high 252 

and low PGS CN participants by 9% (from 10% to 1%; a 90% relative reduction). Similar 253 

analysis showed a reduction in MCI participants by 10% (60% relative reduction), and 0.5% 254 

(56% relative reduction) in AD participants. The above effects persisted across most strata 255 

(i.e., sex and hemisphere) (Figure 5; Figure 5 – Data Source 1). 256 

 257 
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 258 
Figure 5: ADNI Dataset Percentiles in Genetically Adjusted/Non-Adjusted Nomograms. 259 
Plotting the percentile distribution of the different diagnostic groups across adjusted and 260 
non-adjusted nomograms reveals that genetic adjustment increases group cohesiveness. (A) 261 
The percentile distributions of the different diagnostic groups against the non-adjusted 262 
nomograms. (B) In CN samples for example, when plotting against the non-adjusted 263 
nomogram (left adjoined boxplots), the median percentile of the top 30% of samples 264 
(darker turquoise) was 65%, while the median for the lower 30% of samples (lighter 265 
turquoise) was 54%. When using the genetically adjusted nomogram instead (right adjoined 266 
boxplots), those median percentiles become 60% and 59% respectively; a 90% relative 267 
reduction. Similar results can be seen with MCI (C) and AD (D) samples, with 60% and 56% 268 
relative reduction respectively.  269 
 270 
Longitudinal Evaluation 271 

We also investigated whether genetically adjusted nomograms provided additional accuracy 272 

in distinguishing stable (𝑛 = 299) from MCI-to-AD progressing subjects (𝑛 = 83). With the 273 

non-adjusted nomogram, progressing MCI participants had a mean HV percentile of 11% 274 

and stable participants had 29% (Figure 6). Using the genetically adjusted nomograms, they 275 

had 10% and 28%, respectively. Cox proportional hazards models of percentiles obtained 276 

using both nomograms revealed little difference between the two in terms of clinical 277 

conversion: both models resulted in a hazard ratio of 0.97 for percentile in nomogram (beta 278 

of -0.03 at 𝑝-value < 4.87e-08); confirming that participants within lower HV percentiles 279 

where more likely to convert earlier.  280 
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 281 

 282 
 283 
 284 
 285 
 286 
 287 
 288 
 289 
 290 
 291 
 292 
 293 
 294 
 295 
 296 
 297 
 298 
 299 
 300 
 301 
 302 
 303 
 304 
 305 
Figure 6: Longitudinal Analysis. A selection of MCI samples longitudinal data plotted against 306 
nomograms of male mean HV. (a) all selected samples plotted against a non-adjusted 307 
nomogram. Lines connect visits of the same sample with diagnosis at each visit shown: CN 308 
as blue squares; MCI as green dots, AD as red triangles, and no diagnosis (NA) as grey 309 
squares. (b) samples from (a) with high PGS plotted against a nomogram generated from 310 
high PGS CN samples in UKB. (c) equivalent result for low PGS samples from (a). For all sub-311 
figures, the black lines -from top to bottom-represent the 2.5%, 5%, 10%, 25%, 50%, 75%, 312 
90%, 95%, and 97.5% quantiles respectively. 313 
 314 

315 
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Discussion 316 
 317 
We hypothesized that inclusion of genetic information associated with regional brain 318 

volume may substantially affect normative models. Indeed, the PGS for HV was significantly 319 

positively correlated with estimated HV from MRI; translating into a shift of around 100 320 

mm3 in nomograms based on PGS stratification (high vs low PGS). Importantly, this 321 

magnitude corresponds to ~3 years’ worth of HV loss during normal aging for a 65-year-old. 322 

While previous studies have examined the impact of disease associated variants, such as 323 

APOE status, on HV32,33 our study relied on genetic variants influencing HV in healthy 324 

subjects. This is an important difference: the APOE genotype is associated with present or 325 

future AD status rather than having a direct influence on HV in healthy populations. Indeed, 326 

GWAS studies of the hippocampus that exclude dementia patients find little influence of AD 327 

associated SNPs15. By design, nomograms are intended to model healthy progression and to 328 

simplify spotting disease related outliers. Therefore, in theory, accounting for the genetics 329 

of healthy variation in HV should enable earlier detection of AD-related HV decline aging 330 

individuals. Conversely, stratifying by APOE-e4 status when creating HV nomograms charts 331 

the different HV trajectories among APOE genotypes, however, at the same time masks the 332 

pathological decline and thus will theoretically decrease the sensitivity to HV decline.  333 

 334 

Subjects with extreme PGS account for significant amounts of the variance as indicated by 335 

the S-shape in the quantile plots (e.g., Figure 3). This has been observed in other PGS-trait 336 

combinations19,20,36. Furthermore, we found similar R2 values across all PGSs (±0.05 R2) with 337 

two peaks at thresholds of 1E-7 and 0.75. This reflects two types of genetic effects: the first 338 

is that few SNPs account for a substantial portion of the total variance in HV because of 339 

their high effect size (oligogenic effect) and the second is the combined effect of all 340 

common genetic variants on HV (polygenic effect). This type of effect has been reported in 341 

other studies of dementia37.  342 

 343 
In addition to demonstrating the clear effect of genetics on normative models, we have 344 

shown GPR to be effective for estimating nomograms. Using a model-based method allows 345 

us to generate accurate nomograms across the entire age range of the dataset. In fact, our 346 

GPR model can potentially be extended a few years beyond those limits (Figure 2 – Figure 347 

Supplement 1). In comparison, the SWA nomograms age range is reduced by 20 years 348 
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compared to the range of the training because of the required smoothing. Thus, compared 349 

to the SWA, we extended the age range forwards by 10 years, bringing it out to 82 years old, 350 

which is relevant for AD where most patients display symptoms at around age 65-7527,38. 351 

While some methods like LOESS regression can be used to mitigate this need39, the GPR’s 352 

model-based approach does not need smoothing to begin with. However, there is a 353 

possibility that our results suffer from edge effects. For example, we suspect that the peak 354 

noted in the male nomogram is likely due to under-sampling in the younger participants. 355 

We found that building nomograms is data efficient: with the SWA, using around 17% (3000 356 

samples) of training samples generated nomograms that were on average only 0.4% of 357 

average HV (19 mm3) different to those generated by the full training set. GPR nomograms, 358 

achieved the same level of accuracy with only 5% (900 samples) of the dataset (Figure 2 – 359 

Figure Supplement 3). 360 

 361 

Using PGS improves the normative modelling in an independent dataset. In ADNI genetic 362 

adjustment reduced the percentile gap between similarly diagnosed subjects with 363 

genetically predicted high and low HV. The impact of the PGS adjusted model on CN 364 

samples was greater than on MCI or AD samples. Genetic adjustment centred the CN 365 

samples closer to the 50th percentile. As the effect of building separate nomograms was to 366 

mitigate the impact of genetic variability on HV it was not surprising that this effect did not 367 

carry over to MCI and AD subjects, likely because the pathological effect of AD on HV (~804 368 

mm3 or 6.4% volume loss) far exceeds the shift in nomograms achieved with genetic 369 

adjustment (~100 mm3 or 0.8% of mean HV). Other studies have found that annual HV loss 370 

in CN subjects was between 0.38% and 1.73%7,40-43. Using the nomograms from our work, 371 

genetic adjustment corresponds to ~3 years of normal aging for a 65-year-old. However, 372 

despite this sizable effect, genetically adjusted nomograms did not provide additional 373 

insight into distinguishing MCI subjects that remained stable or converted to AD. 374 

Nonetheless, the added precision may prove more useful in early detection of deviation 375 

among CN subjects, for instance in detecting subtle hippocampal volume loss in individuals 376 

with presymptomatic neurodegeneration. 377 

 378 

While this study has shown the significant impact of PGSs on HV nomograms, we have 379 

identified areas for improvement. Integrating the PGSs into the GP models would remove 380 
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the need for stratification and allow for more adjustment precision, however, PGSs are 381 

prone to ‘site’ effects depending on the method and quality of genotyping and imputation. 382 

Consequently, using the ‘raw’ PGSs in predictive models presents its own challenges. Also, 383 

the PGSs used in this study were based on a GWAS of average bilateral HV in both male and 384 

female participants. Previous studies have shown a significant difference between these 385 

groups30, and nomograms estimated for these separate groups are distinct28,44,45 (Figure 2). 386 

Therefore, using separate GWASs for each of these strata would potentially give the PGSs 387 

more accuracy. A second limitation of this study is the reliability of HV estimates. There is a 388 

significant difference between manual and automated segmentation of the 389 

hippocampus28,44,45; more so than other brain regions46,47, and Freesurfer is known to 390 

consistently overestimate HV48. Therefore, other brain regions with higher SNP heritability 391 

like the cerebellum or whole brain volume14 may show more sensitivity on nomograms. 392 

Moreover, a recent study of PGS uncertainty revealed large variance in PGS estimates49, 393 

which may undermine PGS based stratification; hence a more sophisticated method of 394 

building PGS or stratification may improve results further. Finally, while NeuroCombat has 395 

been shown to remove most site effects, some may remain and still need to be adjusted for 396 
50. 397 

 398 

In conclusion, our study demonstrated that PGS for HV was significantly positively 399 

correlated with HV, translating into a shift in the nomograms corresponding to ~3 years’ 400 

worth of normal aging HV loss for a 65-year-old. We have additionally shown that this effect 401 

can be observed in an independent dataset. And while more work in this direction is 402 

needed, successful integration of polygenic effects on multiple brain regions may help 403 

improve the sensitivity to detect early disease processes. 404 

 405 

 406 

 407 

 408 

 409 

 410 

 411 

 412 
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 413 

 414 

Materials and Methods 415 

Datasets 416 

Data from a total of 39,664 subjects (18,718 female) aged 44 to 82 were obtained from the 417 

UKB (application number 65299) with available genotyping and imaging data. Imaging and 418 

genetic protocols are described in Bycroft et al. (2018)51 and Miller et al. (2016) 52, 419 

respectively. Briefly, for this analysis we used hippocampal volumes (HV) estimated with 420 

FreeSurfer53 at the initial imaging visit. The dataset preparation followed the process 421 

described by Nobis et. (2019)30. To ensure nomograms represent the spectrum of healthy 422 

aging, subjects were excluded based on history of neurological or psychiatric disorders, 423 

head trauma, substance abuse, or cardiovascular disorders. Furthermore, to control for 424 

population level genetic heterogeneity, only subjects with ‘British’ ethnic backgrounds were 425 

considered. The dataset was then stratified by self-reported sex. HV outliers were excluded 426 

using mean absolute deviation (MAD) with a threshold of 5.0. Subjects’ intracranial volume 427 

(ICV) was derived by using the volumetric scaling from T1 head image to standard space. 428 

Finally, ICV and scan date were linearly regressed out of the HVs.  429 

 430 

For an application dataset we used the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 431 

database (adni.loni.usc.edu)54. The ADNI was launched in 2003 as a public-private 432 

partnership, led by Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI 433 

has been to test whether serial magnetic resonance imaging (MRI), positron emission 434 

tomography (PET), other biological markers, and clinical and neuropsychological assessment 435 

can be combined to measure the progression of mild cognitive impairment (MCI) and early 436 

Alzheimer's disease (AD). A total of 1001 ADNI subjects (445 male) aged 55 to 95 were 437 

included in this analysis. Imaging and genetic protocols are described by Saykin et al. 438 

(2010)55 and by Jack et al. (2008)56, respectively. Briefly, we obtained HVs estimated with 439 

FreeSurfer v5.1. Subjects were excluded based on HV quality scores and based on genetic 440 

ancestry (i.e., restricted to self-reported white non-Hispanic ancestry). As with UKB, 441 

estimated volumes were stratified by sex, and ICV and scan date were regressed out of HV 442 

estimates. Finally, we used NeuroCombat57 to adjust across ADNI sites and harmonize the 443 

volumes with the UKB Dataset. To do this we modelled 58 batches (UKB data as one batch 444 
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and 57 ADNI sites as separate batches) and added ICV, sex, and diagnosis (assigning all UKB 445 

as Healthy and using the diagnosis columns in ADNI) to retain biological variation. 446 

Demographics were obtained from the ADNIMERGE table (date accessed: 19-06-2020). 447 

Furthermore, we used genotyping data of ADNI subjects pre-processed as previously 448 

described by Scelsi et. (2018)58. 449 

 450 

Sliding Window Approach 451 

As a baseline, we generated nomograms using the sliding window approach (SWA) 452 

described by Nobis et al. (2019)30. Briefly, we sorted UKB samples by age, and formed 100 453 

quantile bins, each containing 10% percent of the samples. This means that neighbouring 454 

bins had a 90% overlap. For example, if we had 5,000 samples, each bin contained 500 455 

samples and consecutive bins were shifted by 50 samples. Thus, bin number four would 456 

start at index 151. Then, within each bin, the 2.5%, 5%, 10%, 25%, 50%, 75%, 90%, 95%, and 457 

97.5% quantiles were calculated. The quantiles were then smoothed with a gaussian kernel 458 

of width 20. The smoothing was needed because towards the ends of the data, the sliding 459 

windows approach becomes sensitive to noise.  460 

 461 

Gaussian Process Regression  462 

Our proposed approach uses GPR to build nomograms. Briefly, a GP is a probability 463 

distribution over possible functions that fit a set of points59,60. In our application it is a 464 

distribution of possible ‘HV trajectories across age’. The GPR models were trained with the 465 

laGP 61 R library, which implements a local approximation method that allows large 466 

datasets to be trained on consumer grade machines. We applied the commonly used 467 

squared exponential covariance kernel function: 468 𝐾(𝑥ଵ, 𝑥ଶ) =  𝜎ଶ𝑒ି(௫భି௫మ)మଶ௅మ , 
where 𝑥ଵ and 𝑥ଶ are any two age values from the training set. The kernel function is hyper-469 

parameterized by a vertical scale (𝜎) and a length scale (𝐿), which, following initialization, 470 

are fitted using maximum likelihood estimation. The vertical scale is initialized to the mean 471 

HV of all samples, and the length scale is initialized to mean age difference between all 472 

samples. We trained models of left, right, and mean HV for each sex. Thanks to their 473 

probabilistic formulation, GP models naturally provide a standard deviation from which 474 
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quantiles can be easily computed. After training, we generated models for ages 45 to 82 by 475 

increments of 0.25 years, and quantile curves at 2.5%, 5%, 10%, 25%, 50%, 75%, 90%, 95%, 476 

and 97.5%. The UKB dataset was used to train the models and the ADNI dataset was used to 477 

test them. For all GPR models, we only tested the ADNI samples that lay within the age 478 

range of each model respectively.  479 

 480 

 481 

Polygenic Score for Hippocampal Volume 482 

A polygenic score (PGS) is a sum of the impact of a selection of genetic variants on a trait, 483 

weighted by the allele count. That is: 484 𝑃𝐺𝑆 = ෍ 𝐸𝑆௜ ∗ 𝐶௜∀ ௜ ∈ ௌே௉௦ , 
where (𝐸𝑆௜) is the effect size (e.g., beta or log(odds) ratio from GWAS summary statistics), 485 

and (𝐶௜) is the allele count of SNP 𝑖 in the subject (either 0,1 or 2). Thus, computing PGSs 486 

requires SNP-level genetic data. Using a previously reported GWAS of mean bilateral HV 487 

using 26,814 (European) subjects from the ENIGMA study15, we built a PGS for HV with 488 

PRSice v262. For both UKB and ADNI, we filter for minor allele frequency of 0.05, genotype 489 

missingness of 0.1, and clumping at 250kb; after which we were left with 70,251 potential 490 

SNPS to include for UKB and 114,812 for ADNI. The most widely applied strategy for SNP 491 

selection is 𝑝-value thresholding. We generated PGSs at 14 𝑝-value thresholds (1E-8, 1E-7, 492 

1E-6, 1E-5, 1E-4, 1E-3, 0.01, 0.05, 0.1, 0.2, 0.4, 0.5, 0.75, 1). These thresholds produced a 493 

range of polygenic scores comprising as little as 6 SNPs (p-value cut-off at 1E-8) to all 494 

available SNPs (p-value cut-off at 1.0). Model fit is then checked by regressing HV against 495 

these PGSs while accounting for age, age2, sex, ICV, and ten genetic principal components.  496 

 497 

Genetically Adjusted Nomograms 498 

Given the high heritability of HV we investigated whether nomograms can be genetically 499 

adjusted. Specifically, we used the top and bottom 30% samples by PGS (at 𝑝-value < 0.75 500 

threshold) separately to build genetically adjusted nomograms. We found that using a 30% 501 

cut-off provided a balance of training size and performance (Figure 2 – Figure Supplement 502 

4). Thus, PGS provided us with a way to place new samples in their ‘appropriate’ nomogram. 503 

For instance, within the ADNI dataset we generated PGSs and split the top and bottom (i.e., 504 
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high, and low expected HV, respectively) to test against genetically adjusted UKB 505 

nomograms. To evaluate the impact of genetic adjustment, we perform a series of ANOVA 506 

tests across adjusted nomograms. E.g., we performed an ANOVA test of the HV percentiles 507 

of the top 30% UKB samples in the unadjusted then the adjusted nomograms. We did the 508 

same for bottom 30% and for men and women. To assess the specificity of the HV-based 509 

PGS, we performed this genetic adjustment using PGSs of ICV and AD based on previously 510 

reported GWASs63,64.  511 

 512 

Longitudinal Analysis 513 

As nomograms are often used to track progression, we examined the impact of the 514 

genetically adjusted nomograms on prospective longitudinal data. To this end, we analysed 515 

patients from the ADNI cohort that were initially diagnosed as MCI and either converted to 516 

AD (progressor) or remained MCI (stable) within five years of follow-up. We tested whether 517 

the PGS-adjusted nomograms improved the separation between stable and progressor 518 

patients using Cox proportional hazards models while accounting for sex and age.  519 

 520 

Code and Data Availability 521 

The scripts and code used in this study have been made publicly available and can be found 522 

at: https://github.com/Mo-Janahi/NOMOGRAMS. All underlying data, and derived 523 

quantities, are available by application from the UK Biobank at 524 

http://www.ukbiobank.ac.uk, and by application from ADNI at 525 

http://adni.loni.usc.edu/data-samples/access-data/ . Summary statistics from all genome-526 

wide association studies described in this paper are available from the NHGRI-EBI GWAS 527 

catalog, study numbers: GCST003834, GCST002245, and GCST003961. URL: 528 

https://www.ebi.ac.uk/gwas/studies/ 529 

 530 
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Supplementary Figure Legends: 572 
 573 
Figure 2 – Figure Supplement 1: Expanded GPR Nomogram. a GPR model trained with 574 
mean bilateral HV of male subjects in the age range 45-82 (grey circles) and then generated 575 
nomograms for the age range 30-100. Within training data range nomogram follows data 576 
reasonably well. Outside data rage, nomogram flairs out from expected range after 2-6 577 
years. Fairing is faster in the lower ages because, outside the data range, the GPR model 578 
reverts to a normal distribution with zero mean. For all sub-figures, the black lines -from top 579 
to bottom-represent the 2.5%, 5%, 10%, 25%, 50%, 75%, 90%, 95%, and 97.5% quantiles 580 
respectively. 581 
 582 
Figure 2 – Figure Supplement 2: Model fit of healthy ADNI subjects. Nomograms produced 583 
from healthy subjects in the UKB using the gaussian process regression (GPR) method. 584 
Overlayed are scatter plots Cognitively Normal subjects from the ADNI dataset. Male 585 
subjects averaged (56.9% ± 24.6 SD) and Female subjects averaged (54.9 ± 26.5 SD). For 586 
both sub-figures, the black lines -from top to bottom-represent the 2.5%, 5%, 10%, 25%, 587 
50%, 75%, 90%, 95%, and 97.5% quantiles respectively.   588 

Figure 2 – Figure Supplement 3: Performance of GPR and SWM across sample size. Model 589 
training progression is shown for both SWM (top row) and GPR (middle row) models at 590 
representative training sizes.  Performance (bottom figure) is summarized using the mean 591 
distance between generated nomograms and the GPR nomograms built with the full 592 
training set (~15k) (shaded areas in the top two rows). By repeatedly sampling data from 593 
across age (10 times at each training sample size), we plot the average performance and 594 
95% CI of each method. Both methods are data efficient, SWM can achieve 20 mm3 mean 595 
difference (0.4% of mean HV) performance using ~3000 samples (20% of training set), and 596 
GPR can achieve the same performance using only 1000 samples (~7% of training set). 597 

Figure 2 – Figure Supplement 4: GPR model across top/bottom thresholds. Illustrated is 598 
Male bilateral HV. When stratifying by PRS, there is a trade-off between training set size and 599 
final model performance. In these figures, performance is measured by average distance 600 
between the percentile curves. At 10%, (leftmost column), the top/bottom strata contain 601 
~1500 samples each and the mean distance is 65 mm3, and at 50% (the rightmost column) 602 
they contain ~7500 and the mean distance is 21.5 mm3. For all sub-figures, the black lines -603 
from top to bottom-represent the 2.5%, 5%, 10%, 25%, 50%, 75%, 90%, 95%, and 97.5% 604 
quantiles respectively. 605 

 606 

Figure 3 – Figure Supplement 1: Summary of PGSs based on HV GWAS in UKB samples. The 607 
left set of graphs show the R-Squared of the regression models of PRS across HV for the 608 
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scores built across SNP P-Value thresholds. While the difference is small, we consistently see 609 
a dip in the R-Squared for the middle set of thresholds.  The set of figures to the right show 610 
the spread of HV across PRS percentile. We display the percentiles for the 0.75 threshold as 611 
it showed the best correlation with HV overall.  612 

 613 
Figure 3 – Figure Supplement 2: Summary of PGSs and models based on HV GWAS and 614 
ADNI samples. The left set of graphs show the R-Squared of the regression models of PRS 615 
across HV for the scores built across SNP P-Value thresholds. In contrast to the graphs seen 616 
in the UKB samples, the R-squared values for the most part increase with p-value threshold. 617 
The set of graphs on the right show the spread of HV across PGS percentiles, each at the 618 
score that had the highest R-Squared value from the corresponding left graph.  619 
 620 

Figure 4 – Figure Supplement 1: Genetically Adjusted Nomograms. For all sub-figures, the 621 
black lines -from top to bottom-represent the 2.5%, 5%, 10%, 25%, 50%, 75%, 90%, 95%, 622 
and 97.5% quantiles respectively.  623 

Figure 4 – Figure Supplement 2: Nomograms generated with the SWM by stratifying the 624 
sample set based on PGSs. Left column: PGS based on HV GWAS. Middle column: PGS based 625 
on ICV GWAS. Right column: PGS based on AD GWAS. For all sub-figures, the black lines -626 
from top to bottom-represent the 2.5%, 5%, 10%, 25%, 50%, 75%, 90%, 95%, and 97.5% 627 
quantiles respectively. 628 

Figure 4 – Figure Supplement 3: Training Data Ridge Plots. Histograms of bilateral HV 629 
across the different subsets of the datasets. Samples are grouped in bins of 5 years. N is the 630 
number of samples in each set and p is the p-value from a Shapiro-Wilks test of normality. 631 
Typically, this test would indicate a non-gaussian distribution with a p-value lower than 0.05 632 
(0.001 corrected for 48 multiple tests in this case).   633 
 634 
 635 
 636 
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Figure 2 – Figure Supplement 1: Expanded GPR Nomogram. a GPR model trained with 863 
mean bilateral HV of male subjects in the age range 45-82 (grey circles) and then generated 864 
nomograms for the age range 30-100. Within training data range nomogram follows data 865 
reasonably well. Outside data rage, nomogram flairs out from expected range after 2-6 866 
years. Fairing is faster in the lower ages because, outside the data range, the GPR model 867 
reverts to a normal distribution with zero mean. For all sub-figures, the black lines -from top 868 
to bottom-represent the 2.5%, 5%, 10%, 25%, 50%, 75%, 90%, 95%, and 97.5% quantiles 869 
respectively. 870 
 871 
 872 
 873 
 874 
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Figure 2 – Figure Supplement 2: Model fit of healthy ADNI subjects. Nomograms produced 895 
from healthy subjects in the UKB using the gaussian process regression (GPR) method. 896 
Overlayed are scatter plots Cognitively Normal subjects from the ADNI dataset. Male 897 
subjects averaged (56.9% ± 24.6 SD) and Female subjects averaged (54.9 ± 26.5 SD). For 898 
both sub-figures, the black lines -from top to bottom-represent the 2.5%, 5%, 10%, 25%, 899 
50%, 75%, 90%, 95%, and 97.5% quantiles respectively.   900 
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Figure 2 – Figure Supplement 3: Performance of GPR and SWM across sample size. Model 959 
training progression is shown for both SWM (top row) and GPR (middle row) models at 960 
representative training sizes.  Performance (bottom figure) is summarized using the mean 961 
distance between generated nomograms and the GPR nomograms built with the full 962 
training set (~15k) (shaded areas in the top two rows). By repeatedly sampling data from 963 
across age (10 times at each training sample size), we plot the average performance and 964 
95% CI of each method. Both methods are data efficient, SWM can achieve 20 mm3 mean 965 
difference (0.4% of mean HV) performance using ~3000 samples (20% of training set), and 966 
GPR can achieve the same performance using only 1000 samples (~7% of training set). 967 
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Figure 2 – Figure Supplement 4: GPR model across top/bottom thresholds. Illustrated is 1005 
Male bilateral HV. When stratifying by PRS, there is a trade-off between training set size and 1006 
final model performance. In these figures, performance is measured by average distance 1007 
between the percentile curves. At 10%, (leftmost column), the top/bottom strata contain 1008 
~1500 samples each and the mean distance is 65 mm3, and at 50% (the rightmost column) 1009 
they contain ~7500 and the mean distance is 21.5 mm3. For all sub-figures, the black lines -1010 
from top to bottom-represent the 2.5%, 5%, 10%, 25%, 50%, 75%, 90%, 95%, and 97.5% 1011 
quantiles respectively. 1012 
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Figure 3 – Figure Supplement 1: Summary of PGSs based on HV GWAS in UKB samples. The 1040 
left set of graphs show the R-Squared of the regression models of PRS across HV for the 1041 
scores built across SNP P-Value thresholds. While the difference is small, we consistently see 1042 
a dip in the R-Squared for the middle set of thresholds.  The set of figures to the right show 1043 
the spread of HV across PRS percentile. We display the percentiles for the 0.75 threshold as 1044 
it showed the best correlation with HV overall.  1045 
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Figure 3 – Figure Supplement 2: Summary of PGSs and models based on HV GWAS and 1076 
ADNI samples. The left set of graphs show the R-Squared of the regression models of PRS 1077 
across HV for the scores built across SNP P-Value thresholds. In contrast to the graphs seen 1078 
in the UKB samples, the R-squared values for the most part increase with p-value threshold. 1079 
The set of graphs on the right show the spread of HV across PGS percentiles, each at the 1080 
score that had the highest R-Squared value from the corresponding left graph.  1081 
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Figure 4 – Figure Supplement 1: Genetically Adjusted Nomograms. For all sub-figures, the 1125 
black lines -from top to bottom-represent the 2.5%, 5%, 10%, 25%, 50%, 75%, 90%, 95%, 1126 
and 97.5% quantiles respectively.  1127 
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Figure 4 – Figure Supplement 2: Nomograms generated with the SWM by stratifying the 1169 
sample set based on PGSs. Left column: PGS based on HV GWAS. Middle column: PGS based 1170 
on ICV GWAS. Right column: PGS based on AD GWAS. For all sub-figures, the black lines -1171 
from top to bottom-represent the 2.5%, 5%, 10%, 25%, 50%, 75%, 90%, 95%, and 97.5% 1172 
quantiles respectively. 1173 
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Figure 4 – Figure Supplement 3: Training Data Ridge Plots. Histograms of bilateral HV 1216 
across the different subsets of the datasets. Samples are grouped in bins of 5 years. N is the 1217 
number of samples in each set and p is the p-value from a Shapiro-Wilks (SW) test of 1218 
normality. Typically, this test would indicate a non-gaussian distribution with a p-value 1219 
lower than 0.05 (0.001 corrected for 48 multiple tests in this case).  1220 
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