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Neural computations can be framed as dynamical processes, whereby the
structure of the dynamics within a neural network is a direct reflection of
the computations that the network performs. A key step in generating
mechanistic interpretations within this computation through dynamics
framework is to establish the link among network connectivity, dynam-
ics, and computation. This link is only partly understood. Recent work
has focused on producing algorithms for engineering artificial recurrent
neural networks (RNN) with dynamics targeted to a specific goal man-
ifold. Some of these algorithms require only a set of vectors tangent to
the target manifold to be computed and thus provide a general method
that can be applied to a diverse set of problems. Nevertheless, computing
such vectors for an arbitrary manifold in a high-dimensional state space
remains highly challenging, which in practice limits the applicability of
this approach. Here we demonstrate how topology and differential ge-
ometry can be leveraged to simplify this task by first computing tangent
vectors on a low-dimensional topological manifold and then embedding
these in state space. The simplicity of this procedure greatly facilitates
the creation of manifold-targeted RNNs, as well as the process of design-
ing task-solving, on-manifold dynamics. This new method should enable
the application of network engineering–based approaches to a wide set of
problems in neuroscience and machine learning. Our description of how
fundamental concepts from differential geometry can be mapped onto
different aspects of neural dynamics is a further demonstration of how
the language of differential geometry can enrich the conceptual frame-
work for describing neural dynamics and computation.
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1 Introduction

Networks of neurons can be viewed as dynamical systems in which the
joint activity of all units is a state that represents the information stored
in the network and its dynamics represent computations (Vyas, Golub,
Sussillo, & Shenoy, 2020; Sussillo, 2014). Under this computation through
dynamics perspective, understanding neuronal computation requires
describing the dynamics of neural networks and how these are determined
by their connectivity structure (Schaeffer, Khona, Meshulam, International
Brain Laboratory, & Fiete, 2020; Finkelstein et al., 2021). Neural dynamics
are often conceptualized as trajectories in an n-dimensional vector space—
the state space—in which the distance along each dimension represents
the firing rate of individual neurons. Recent work suggests that in both
biological and artificial neural networks, such neural trajectories are often
confined to a lower-dimensional subspace of state space (Gao & Ganguli,
2015; Gao et al., 2017; Russo et al., 2018; Gallego, Perich, Miller, & Solla,
2017; Maheswaranathan, Williams, Golub, Ganguli, & Sussillo, 2019; Khona
& Fiete, 2021; Beiran, Meirhaeghe, Sohn, Jazayeri, & Ostojic, 2021) and oc-
casionally to a neural manifold with additional topological structure (Kim,
Rouault, Druckmann, & Jayaraman, 2017; Gardner et al., 2021; Chaudhuri,
Gerçek, Pandey, Peyrache, & Fiete, 2019). It has been further hypothesized
that the geometry and topology of these low-dimensional neural manifolds
are linked in a fundamental way to the computations carried out by the
network (Maheswaranathan et al., 2019; Gao et al., 2017; Jazayeri & Ostojic,
2021; Darshan & Rivkind, 2022; Chung & Abbott, 2021; Pollock & Jazay-
eri, 2020; Duncker & Sahani, 2021). This view therefore emphasizes that
understanding how network connectivity gives rise to structured neural
dynamics is a key goal toward explaining neural computations.

Achieving this goal will likely require the measurement of activity and
connectivity of large numbers of neurons spanning multiple brain regions
in individual animals. While recent technological developments have en-
abled simultaneous activity recordings from hundreds of neurons and
detailed reconstructions of network connectivity (Steinmetz et al., 2021;
Stringer et al., 2019; Winnubst et al., 2019; Osten & Margrie, 2013), a com-
plete description of a network’s structure and activity in behaving animals
remains largely beyond the reach of experimental neuroscience. On the
other hand, artificial recurrent neural networks (RNNs) can be trained to
solve a variety of tasks similar to those employed in experimental neuro-
science, and their connectivity structure and dynamics are perfectly known.
This makes them an ideal testing ground for developing theoretical and an-
alytical tools to investigate the links among connectivity, dynamics, and
computation (Sussillo, 2014; Sussillo & Barak, 2013; Mastrogiuseppe &
Ostojic, 2018). The majority of work employing RNNs to address these is-
sues uses tools from dynamical systems theory to reverse-engineer the neu-
ral dynamics of networks trained to perform a task (Sussillo & Barak, 2013;
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1792 F. Claudi and T. Branco

Schaeffer et al., 2020). This optimization-based approach allows RNNs to
discover how to best structure their dynamics to carry out a certain compu-
tation. An alternative approach is to develop general algorithms for directly
constructing networks with dynamics that are targeted to a preselected
manifold in an effort to produce a deeper understanding of how connectiv-
ity determines dynamics Recent work in this direction has led to methods
for engineering low-rank RNNs with targeted dynamics (Mastrogiuseppe
& Ostojic, 2018; Beiran, Dubreuil, Valente, Mastrogiuseppe, & Ostojic, 2020),
RNNs displaying manifold attractor dynamics (Darshan & Rivkind, 2022),
and general algorithms for producing manifold-targeted RNNs (Pollock &
Jazayeri, 2020; Biswas & Fitzgerald, 2020). Similarly, the neural engineer-
ing framework (NEF) outlined in Eliasmith and Anderson (2004) aims to
develop a general, theory-grounded framework for engineering targeted
neural networks (Barak & Romani, 2021; Eliasmith, 2005).

Briefly, the NEF provides a framework for mapping low-dimensional
dynamics to high-dimensional neural representations of external variables
through the definition of encoding, decoding, and dynamics functions. The
analytical methods used to derive the decoding function, however, de-
pend on understanding the relationship between stimuli and neural activity
(Humphries, 2003). When this relationship is complex, applying the NEF is
a challenging task. In addition, NEF is constrained to a specific manifold
set by a linear mapping followed by point-wise nonlinearity, and alterna-
tive methods are required for engineering RNNs targeted to a wider class
of manifolds.

Another recently developed method for RNN engineering that is partic-
ularly promising is the embedding manifolds with population-level Jaco-
bians (EMPJ; Pollock & Jazayeri, 2020), which enables the creation of RNNs
with dynamics confined to a target manifold in state space. Briefly, EMPJ
takes a set of vectors tangent to the target manifold and builds a system of
equations that yields the connectivity matrix for a network with dynamics
that lay on the target manifold. Tangent vectors play a dual role in EMPJ:
by being tangent to the target manifold, they confine the constructed RNN
dynamics to it, and their orientation and magnitude dictate the direction
and speed of the on-manifold (i.e., alongside the manifold’s surface) RNN
dynamics. Thus, producing specific on-manifold dynamics with EMPJ re-
quires that a set of precisely oriented tangent vectors is identified (e.g., tan-
gent vectors at points in the neighborhood of an attractor state should be
oriented toward that state to drive the dynamics toward it). However, com-
puting the required tangent vectors is complicated by the fact that for a suf-
ficiently high-dimensional state space, there is an infinite number of ways to
embed a low-dimensional manifold, and the position and orientation of the
tangent vectors depend on the choice of embedding (see Figure 1A). Fur-
thermore, the tangent vectors need to be computed anew when a different
embedding is selected or if the dimensionality of the state space is changed
(e.g., to produce networks with different numbers of units), requiring
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Engineering RNNs With Differential Geometry 1793

Figure 1: Topological manifolds and tangent vectors. (A) Left: The topologi-
cal manifold R

2 with a schematic representation of tangent vectors at a point.
Right: Embeddings of R2 in R

3. (B) Tangent vector fields. A tangent vector field
on the topological manifold R

2 (top) and embedded in R
3 (bottom). (C) Tangent

vectors. Left: A topological manifold M and a chart (x,U ) containing a point p
with tangent vectors through it. The basis functions fi through x(p) in the chart’s
local coordinates system x(U ) are shown. Right: Visualization of the manifold
and tangent vectors embedded inR

3 (bottom) and the relationship between tan-
gent vectors as curves through a point on the manifold and n-dimensional vec-
tors in the tangent plane (top).

additional effort for computing tangent vectors. Altogether, these proper-
ties restrict the set of problems to which EMPJ can easily be applied to those
for which computing tangent vectors on the target manifold is relatively
simple.
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1794 F. Claudi and T. Branco

In this work, we aim to address this limitation of EMPJ by demonstrat-
ing how tools from topology and differential geometry can be used to facil-
itate the task of computing tangent vectors. Specifically, we describe how
to compute the tangent vectors on a topological manifold prior to its em-
bedding in a high-dimensional state space. This new approach offers two
key advantages. First, on-manifold dynamics (e.g., position and number
of fixed points), which are specified by the relative orientation and mag-
nitude of the tangent vectors, are easier to conceptualize on the canonical
topological manifold rather than in its embedding in a higher-dimensional
state space (see Figure 1B). Indeed, they are generally chosen to match the
(often low-dimensional) dynamics of latent task variables (Pollock & Jazay-
eri, 2020; Kao, 2019; Jazayeri & Ostojic, 2021; Maheswaranathan et al., 2019)
and are thus independent of the embedding state-space dimensionality.
Second, once tangent vectors have been computed on a topological man-
ifold, the corresponding vectors on any embedding of the manifold can be
computed with minimal additional effort. This simplifies the task of com-
puting tangent vectors for EMPJ and reducing the requirements for addi-
tional computation when the manifold embedding or embedding space is
changed. While the techniques used here are well established in their re-
spective fields and routinely used in others (e.g., physics and engineering),
they are relatively new to neuroscience. We believe that our work shows
how ideas from differential geometry map naturally onto neural dynam-
ics concepts and are therefore a powerful framework for understanding
the link among connectivity, dynamics, and computation. We outline these
ideas in detail as a means of introducing them to the neuroscience commu-
nity (see the online mathematical appendix) and showcase their utility by
computing tangent vectors used to create manifold targeted RNNs.

2 Computing Tangent Vectors

In this section, we demonstrate the application of concepts from differential
geometry to the task of computing tangent vectors for creating manifold
targeted RNNs. We leave the precise definitions of key objects, highlighted
in italics, to the mathematical appendix and instead focus on providing an
intuitive understanding of the method.

2.1 Tangent Vectors on the Topological Manifold. A topological man-
ifold M is a topological space locally homeomorphic to Euclidean space R

d

(e.g., the plane and the sphere are locally similar to R
2 at every point).

In neuroscience, neural manifolds are often conceptualized as being situ-
ated or embedded in a higher-dimensional vector space R

n, the neural state
space. A topological manifold, however, does not necessarily exist within
a larger space. Indeed, computations are often more easily carried out on
the manifold prior to its embedding, as in the case of tangent vectors. For
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Engineering RNNs With Differential Geometry 1795

clarity, here we refer to a manifold embedded in state space as an embed-
ded manifold and as a topological manifold otherwise, although technically
both are topological manifolds. A topological manifold is simply defined by
a set and a topology. For example, the line R

1 manifold can be represented
by the set [0, 1] endowed with the standard topology. We leave the definition
of each of the manifolds used in this work to the section 5.

For a d-dimensional manifold M embedded in an n-dimensional space
(with n > d), tangent vectors are n-dimensional vectors tangent to M at a
point (see Figure 1C). This view of tangent vectors, however, depends on
the manifold being embedded in a larger vector space and thus cannot be
used as a general definition of a tangent vector on a topological manifold.
Instead, tangent vectors at a point p ∈ M are defined as equivalence classes
of parameterized curves γ : R ⊃ I → M such that two curves are equiva-
lent if they share the same directional derivative at p. This more abstract
definition of tangent vectors is equivalent to the traditional view of tangent
vectors for embedded manifolds (see below), but it enables us to compute
tangent vectors on the topological manifold directly.

Any tangent vector vp belongs to a tangent vector space at p : TpM and
can thus be defined as a linear combination of a set of basis vectors of TpM:
a set of linearly independent vectors ei ∈ TpM spanning TpM. A fundamen-
tal theorem in differential geometry establishes that dim(TpM) = dim(M)
such that d-many basis vectors need to be defined to obtain a complete ba-
sis set of TpM. The construction of the basis of TpM relies on the concept
of a chart of a topological manifold: a chart establishes a local coordinates
system by mapping an open neighborhood U ⊂ M to a subset of Rd using
a bijective map x (see Figure 1C). For a point p, it is then possible to deter-
mine its position x(p) in the local coordinates system defined by a chart. In
the same coordinates system, it is possible to define d-many parameterized
functions fi going through x(p) and parallel to one axis of the local coor-
dinates system. These can then be projected onto the manifold as x−1 ◦ fi,
thus producing a set of parameterized functions on the manifold with dif-
ferent directional derivatives that can act as representative functions for ba-
sis vectors of TpM (see Figure 1C). Let ei = [x−1 ◦ fi] be a basis vector; then
any tangent vector vp can be expressed as a linear combination of the basis
vectors, vp = ∑d

i=1 αiei, where the αi are scalar factors.
Computing a tangent vector of a topological manifold thus requires

(1) definition of the manifold itself, (2) construction of set of charts covering
the manifold, (3) definition of the basis functions fi, and (4) definition of the
scalar factors αi. We discuss the final step in more detail below, but for now,
we note that steps 1 to 3 need only be carried out once per topological man-
ifold. Once this has been done for a manifold, recomputing tangent vectors
for different factors αi requires only carrying out simple calculations (which
can be implemented in computer code) but no additional analytical work.
Indeed, tangent vectors on any embedding of the topological manifold can
also be effortlessly computed, as we show next.
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1796 F. Claudi and T. Branco

2.2 Tangent Vectors on the Embedded Manifold. The embedding of a
topological manifold can intuitively be conceptualized as placing the man-
ifold within another, higher-dimensional, manifold or, as in this case, in a
vector space, such that the resulting embedded manifold is still a topologi-
cal manifold (i.e., without tears or self-intersections). For a given sufficiently
high-dimensional embedding space, a manifold can be embedded in in-
finitely many ways, resulting in embedded manifolds with very different
geometries (see Figure 1A). Importantly, all embedded manifolds share the
same topological structure as a result of being an embedding of the same
topological manifold (e.g., any embedding of the plane is always an open
two-dimensional surface in a higher-dimensional space). Nevertheless, the
widely different geometry of the embedded manifolds results in differently
oriented tangent vectors, complicating the task of identifying tangent vec-
tors for RNN design (see Figure 1A).

This difficulty can be avoided simply by noting that given tangent vec-
tors computed on a topological manifold as described above and an em-
bedding function φ, φ can be used to easily compute the corresponding
tangent vectors on the embedded manifold. It is in fact possible to define a
pushforward map φ∗ : TpM → Tφ(p)φ(M) assigning to each element vp of the
tangent vector space at a point on M an element v∗

φ(p) of the corresponding
tangent vector space on the embedded manifold. An alternative equivalent
approach is to project the basis vectors of TpM, ei = [x−1 ◦ fi] onto the
embedded manifold as e∗

i = [φ ◦ x−1 ◦ fi] (see Figure 1C). Then, v∗
φ(p) =∑d

i=1 αie∗
i , where the αi are the same scalar factors as above. The v∗

φ(p) thus
defined are valid tangent vectors according to the definition of tangent vec-
tors as equivalence classes above. Creating manifold targeted RNNs, how-
ever, requires tangent vectors in the familiar form of n-dimensional vectors
at a point to build a system of equations that can be solved to obtain the
network’s connectivity (Pollock & Jazayeri, 2020). These can be obtained by
taking the derivative of the map φ ◦ x−1 ◦ fi and evaluating it at φ(p), which
can be done numerically since φ ◦ x−1 ◦ fi is a parameterized curve in R

n (it
is a map R → R

n). The n-dimensional basis vectors e∗
i obtained through the

derivative operation can then be combined to give the n-dimensional vector
form of v∗

p used for RNN fitting (see Figure 3A).
Most manifolds of interest in neuroscience are low dimensional, and for

these, embedding maps onto R
3 are easy to define. For example, for the

two-dimensional manifold S2 (the sphere), φ(p) = (sin(p0) ∗ (p1), sin(p0) ∗
sin(p1), cos(p0)) is an embedding (given an appropriate definition of the
manifold’s set; see section 5) as it gives the familiar unit sphere centered
at the origin. In general, however, embedding maps for arbitrarily large
embedding spaces, like the ones of interest in neuroscience, are harder to
define. To overcome this limitation, we note that an orthonormal (k × n)
matrix N acts as an embedding of Rk in R

n, for k < n. Thus, if an embed-
ding φ of M into R

k exists, it is possible to embed M in R
n as Nφ(M). This
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Engineering RNNs With Differential Geometry 1797

Figure 2: Tangent vectors on embedded manifolds. (A) Tangent vectors (black)
at selected points (blue dots) on one- and two-dimensional manifolds (light blue
lines and surfaces) embedded in R

64 visualized in PCA space. The tangent vec-
tors on the embedded manifold were computed with the procedure outlined in
this work. (B) Tangent vector fields on embeddings of the sphere in R

64 visual-
ized in PCA space. R64 was selected as an arbitrary high-dimensional embed-
ding space. Tangent vectors produced by three different tangent vector fields
on the sphere manifold are shown (see section 5 for details).

procedure can therefore be used to embed manifolds onto arbitrarily large
state spaces, with the limitation that only embeddings that are possible in
a lower-dimensional space can be used, therefore reducing the range of ge-
ometries of the embedded manifold. Figure 2A shows embeddings of one-
and two-dimensional manifolds in an arbitrarily high-dimensional vector
spaceRn (with n = 64; visualized in three-dimensional PCAspace) obtained
with this procedure. Importantly, the method for computing tangent vec-
tors described here is agnostic to the way that embedding maps are ob-
tained and can thus be used with embedding maps obtained through other
methods.

2.3 Tangent Vector Fields. In the preceding sections, we demonstrated
how a tangent vector can be defined as a linear combination of basis vec-
tors of TpM or Tφ(p)φ(M), which requires that d-many scalar coefficients αi

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/34/8/1790/2034891/neco_a_01511.pdf by U
N

IVER
SITY C

O
LLEG

E LO
N

D
O

N
 user on 04 August 2022



1798 F. Claudi and T. Branco

be specified. The choice of coefficients determines the orientation and mag-
nitude of the tangent vector and thus the on-manifold dynamics of the RNN
at that point, as discussed in section 1. To obtain the desired dynamics, it
is necessary to specify different coefficients for each point on the manifold
to produce vectors with different orientations and magnitudes. This can be
achieved by defining a map ψ : M → R

d assigning a d-dimensional vector
to each point on the manifold whose elements are the αi coefficients. Thus,
ψ effectively assigns a tangent vector to each p ∈ M, making it a tangent
vector field and different choices of ψ define different vector fields on the
same manifold (see Figure 2B). Importantly, ψ is defined on the topological
manifold such that a given vector field map can be used to generate RNNs
with the same on-manifold dynamics but different embedded manifold
geometry.

Thus, a vector field producing specific on-manifold dynamics (e.g., by
specifying the number and location, on the manifold, of fixed points) will
produce dynamics that will look different in state space (due to the different
embeddings of the manifold) but with the same on-manifold dynamics (see
Figures 1A and 1B).

On-manifold dynamics can therefore be defined on a d-dimensional
space independent of the number of units in the network (which deter-
mines the dimensionality of the state space) and how the n-dimensional
dynamics unfold in state space (which depends in part on the choice of em-
bedding function). Conceptually, ψ captures the latent variables dynam-
ics solving a given task, which often depends on the logical structure of
the task itself (e.g., on the number of latent variables and their dynamics;
Pollock & Jazayeri, 2020; Jazayeri & Ostojic, 2021; and Maheswaranathan
et al., 2019, though see Guest & Martin, 2021, for a discussion about multiple
realizability).

3 Constructing Targeted RNN

The main aim of this work is to define a procedure to simplify the compu-
tation of tangent vectors on target manifolds. In the preceding section, we
described how differential geometry allows for simple computation of tan-
gent vectors on embedded manifolds for any choice of embedding function
φ or tangent vector field function ψ given a topological manifold M. In this
section, we demonstrate that the tangent vectors computed as described
above can be used to produce RNNs with the desired dynamics. Pollock
and Jazayeri (2020) described a method for obtaining an RNN’s connectiv-
ity matrix from a set of tangent vectors. Here we propose a similar alterna-
tive procedure for achieving the same goal.

The RNNs used here are simple, autonomous, dynamical systems of n
identical units whose dynamics are defined as

ḣ = Wσ (h), (3.1)
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Engineering RNNs With Differential Geometry 1799

where ḣ represents the first derivative of the network’s state h with respect
to time, W is an n × n matrix whose entries define the strength of the con-
nection between two units, and σ is a nonlinear function (here tanh). Since
the RNN dynamics are entirely specified by W , once an initial condition
is selected, the task of creating manifold targeted RNNs can be reduced to
finding a W yielding the desired dynamics when the network’s state is ini-
tialized on the target manifold.

The network state corresponds to a point in the n-dimensional state
space. For an RNN whose dynamics are confined to a target (embedded)
manifold, this implies h = φ(p) ∈ φ(M). Similarly, ḣ represents a velocity
vector indicating how fast and in which direction the network state will
evolve and must therefore be tangent to the target manifold at all times.
Thus, ḣ is a tangent vector of the embedded manifold (ḣ = v∗

p ∈ Tφ(p)φ(M);
see Figure 3A). Using these identities, we can then rewrite equation 3.1 as

v∗
p = Wσ (φ(p)), (3.2)

to reflect the notation described in the previous section.
Given a point on the topological manifold and embedding map φ and

vector field map ψ , we can compute φ(p) and v∗
p (see Figure 3A) such that

equation 3.2 can be solved for W . However, equation 3.2 has n knowns and
n2 unknowns. Thus, in practice, we sample k-many points on the topologi-
cal manifold and build a system of equations,

⎡
⎢⎢⎢⎢⎣

v∗
p1

v∗
p2
...

v∗
pk

⎤
⎥⎥⎥⎥⎦

= W

⎡
⎢⎢⎢⎢⎣

σ (φ(p1))

σ (φ(p2))
...

σ (φ(pk))

⎤
⎥⎥⎥⎥⎦

, (3.3)

which can be used to solve for W using least squares. The choice of k (the
number of sampling points) does not generally affect the results as long
as the manifold is sampled with sufficient density. Manifolds with more
curvature and more rapidly varying vector fields require a larger number
of sampling points. The appropriate number for each target dynamics can
be determined empirically.

To evaluate the performance of our method, we defined tangent vec-
tor fields on embeddings of one- and two-dimensional manifolds in a state
space of arbitrary large dimensionality (Rn, with n = 64; see Figures 3B and
3C). Next, we used the procedure outlined in the previous section to ob-
tain RNNs targeted to the embedded manifolds and with dynamics spec-
ified by the tangent vectors (see section 5). To determine how well the
resulting RNN dynamics were confined to the target manifold, we eval-
uated the off-manifold drift of RNNs targeted to the sphere and cylinder
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1800 F. Claudi and T. Branco

Figure 3: Quantification of RNN dynamics. (A) Schematic illustrating the re-
lationship between ψ, φ, p, h, ḣ, and �vp. (B) RNN dynamics (salmon traces) of
RNNs fitted to one-dimensional manifolds embedded in R

64 visualized in PCA
space. Insets show the connectivity matrices of fitted RNNs. (C) Quantification
of dynamics drift. Inset: Schematic illustration of experiment setup. The dynam-
ics were chosen such that on-manifold dynamics would evolve along trajecto-
ries at a constant distance from the origin. Panels shows the dynamics (salmon)
of RNNs fitted to the cylinder (left) and sphere (right) embedded in R

64 visual-
ized in PCA space and the quantification of deviation from the manifold surface
(as a percentage of the initial distance) of the RNN dynamics over one revolu-
tion around the manifold (mean and standard deviation averaged across repeats
with RNNs initialized at different points on the manifold). (D) Quantification
of dynamics accuracy. Salmon RNN dynamics—black target vector field on the
plane manifold embedded in R

64 visualized in 2D PCA space. The black ker-
nel density estimates show the distribution of angular difference between RNN
dynamics and tangent vector field (see inset; see section 5 for more details).
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Engineering RNNs With Differential Geometry 1801

manifolds. Briefly, the target manifold and tangent vectors were chosen
such that on-manifold dynamics would unfold along trajectories at a con-
stant distance from the origin of state space (see Figure 3C, inset). We were
thus able to quantify off-manifold dynamics by measuring how the RNNs’
neural state’s distance from the origin changed over time, and we found
minimal off-manifold dynamics (1.00 ± 0.008 % and 0.996 ± 0.096 % of the
normalized distance for the plane and sphere manifolds respectively; see
Figure 3C). Empirically, the magnitude of the off-manifold dynamics drift
depends on several interacting factors, including the quality of the fit and
the choices for activation function, embedding map, and vector field. This
analysis shows that for an appropriate choice of embedding map and vec-
tor field map, our method yields tangent vectors that can be used to pro-
duce manifold targeted RNNs. Furthermore, the same tangent vectors can
be used with methods such as EMPJ (Pollock & Jazayeri, 2020) to produce
more accurately targeted dynamics.

To determine whether the on-manifold dynamics of RNNs constructed
through our procedure was precisely determined by the orientation of tan-
gent vectors used for the construction of the RNN, we constructed RNNs
targeted to the plane manifold embedded in a high-dimensional state space.
The RNN dynamics were specified by three different vector fields defined
over the plane. To measure how accurately RNN dynamics followed the
vector field, we measured the angle between RNN dynamics and tangent
vectors at various points on the manifold and found these to be small, indi-
cating that the RNNs’ dynamics matched the vector fields with high-fidelity
(0.011 ± 0.02, 0.022 ± 0.13, and 0.124 ± 0.31 radians for the three target vec-
tor fields, respectively; see Figure 3D). We next assessed how the rank of the
RNNs’ connectivity matrix reflected the choice of embedding map and the
dimensionality of the target embedding space. We measured the rank for
RNNs targeted to three different embeddings of the line manifold in state
spaces of varying dimensionality. We found that the connectivity matrices’
rank depended exclusively on the choice of embedding function and was

(E) Fixed points dynamics. Dynamics of an RNN fitted to the plane manifold
embedded in R

64 with a tangent vector field (black lines, inset) producing an at-
tractor state at the center of the manifold. The visualization shows the manifold
in two-dimensional PCA space with time on the third axis to illustrate the evo-
lution of the RNN dynamics. (F) Rank of the connectivity matrix of networks of
different dimensions fitted to three different embeddings of R1. (G) Task solv-
ing RNN dynamics. Left: Two-dimensional PCA visualization of the dynamics
of an RNN fitted to R

2 embedded in R
64 with the tangent vector field shown

in the figure. Arrows indicate the orientation of the RNN input vectors u1 and
u2. Right: Example trial. Purple lines show the two task inputs, dotted lines the
expected outputs. Solid orange lines show the outputs of the RNN. See section
5 for more details.
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1802 F. Claudi and T. Branco

not affected by the dimensionality of the target space (see Figure 3F). Differ-
ent embeddings of the one-dimensional line manifold produced embedded
manifolds with different minimal embedding dimensions, and the rank of
the neural networks’ connectivity reflected that.

The approach described here can also be used to create networks dis-
playing attractor dynamics through the appropriate choice of vector fields
(see Figure 3D). We exploited this property to create a network capable of
solving a two-bit memory task (adapted from Sussillo & Barak, 2013), by
engineering an RNN targeted to the plane manifold and with four attractor
states on it (see Figure 3G, left). The resulting network was capable of inte-
grating the transient task inputs correctly by ignoring redundant inputs and
using correct ones to switch between attractor states, thus correctly solving
the task (mean squared error between expected output and RNN predic-
tions: 0.035; see Figure 3G). In summary, these results show that tangent
vectors computed with the procedure outlined in this work can be used to
engineer manifold targeted RNNs.

4 Discussion

In this letter, we have leveraged topology and differential geometry to sim-
plify the task of computing vectors tangent to a manifold in state space.
These vectors can be used with local-geometry-based RNN engineering
algorithms (Pollock & Jazayeri, 2020) to create RNNs with dynamics that
unfold along the target manifold and have rich, task-solving, on-manifold
dynamics (see Figure 3). Our approach facilitates the computation of tan-
gent vectors by carrying it out on a topological manifold prior to embedding
it in state space. This has the advantage that once a tangent vector is defined
on the topological manifold, the corresponding vector can be computed on
any embedding of the manifold in state space.

By using the language of differential geometry, we can separately de-
fine the geometry of the embedded neural manifold (which depends on the
embedding function) and the on-manifold dynamics (specified by a vec-
tor field over the topological manifold) of an RNN targeted to it. Concep-
tually, the topology of a network’s activity manifold and its on-manifold
dynamics are determined by the logical structure of the task being per-
formed and are shared across networks with different architectures (Mah-
eswaranathan et al., 2019; Pollock & Jazayeri, 2020; Jazayeri & Ostojic, 2021;
Maheswaranathan et al., 2019). Nevertheless, the geometry of the embed-
ded manifolds is constrained by the properties of the individual network
(i.e., choice of hyperparameters) and largely independent of the computa-
tion being performed. For example, networks using ReLU as the nonlin-
ear activation function can produce accurate manifold targeted dynamics
only when the manifold is embedded in the positive range of state space.
On the other hand, networks using tanh require that the embedded mani-
fold is symmetric with respect to the origin. The choice of embedding map
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therefore influences the accuracy of the dynamics of the fitted RNNs, and
specific embedding may be chosen for different purposes. One may use an
embedding map aimed at producing neural dynamics that reproduce ex-
perimental recordings, or different embedding maps may be tested to as-
sess their effects on neural dynamics and computation (e.g., resilience to
noise). Our procedure for generating manifold targeted networks is flex-
ible enough to work with any choice of network architecture and em-
bedding function. This should facilitate the engineering of targeted RNNs
and enable future work investigating the links between manifold topology,
embedding, and network properties, as well as how these affect neural dy-
namics and computation. Importantly, differential geometry provides a lan-
guage for describing manifold topology and geometry independently, thus
mirroring the independent nature of these phenomena in artificial neu-
ral networks. In biological systems, a separation between the constraints
imposed by the task requirements and those imposed by the network prop-
erties may not necessarily be found. Nevertheless, we believe that the adop-
tion of differential geometry would still be useful for conceptualizing the
relationships between computations and network properties, as well as
for providing a tool for describing and comparing the geometry of neural
manifolds.

The intrinsic topology of neural manifold and on-manifold dynamics
is increasingly regarded as crucial for understanding neural computations
(Jazayeri & Ostojic, 2021; Darshan & Rivkind, 2022; Chung & Abbott, 2021).
Having a conceptual framework for exploring these ideas is thus crucial for
gaining further insights into the link among network connectivity, dynam-
ics, and computation. Given the intrinsically geometric nature of network
dynamics, we believe that differential geometry should be a fundamental
element of such framework. It allows for deep and precise understanding
of several key concepts in neural dynamics (e.g., manifold topology versus
embedded geometry), thereby providing a promising venue for the abstrac-
tion of fundamental mechanistic explanations of computation across neural
networks with different properties. The approach presented here is a step
in applying topology and differential geometry-based approaches to inves-
tigate the link of connectivity, dynamics, and computation, as well as to
enable the application of methods such as EMPJ (Pollock & Jazayeri, 2020)
to a wider class of problems in neuroscience and machine learning.

5 Methods

All work presented in this letter was carried out using custom Python code.
The code, including scripts to replicate all figures, is available at the GitHub
repository: https://github.com/FedeClaudi/manyfolds. The Python code
makes use of open source science software Python packages including
NumPy, scikit, vedo, and matplotlib (Harris et al., 2020; Pedregosa et al.,
2011; Hunter, 2007; Musy et al., 2022).
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5.1 Manifolds.

5.1.1 Manifold Definitions. Topological manifolds are defined by a choice
of set M and topology. Here we assume the standard topology through-
out. The following sets were used to define each manifold (× defines the
Cartesian product):

• Line R
1: M = [0, 1].

• Circle S1: M = [0, 2π ].
• Plane R

2: M = [0, 1] × [0, 1].
• Cylinder C: M = [0, 2π ] × [0, 1].
• Sphere S2: M = [0, π ] × [0, 2π ].

5.1.2 Manifold Embeddings. All manifolds were embedded in R
64 except

for Figure 3F. The embedding was achieved in two steps as described in the
text: a function φ : M → R

3 was used to embed the manifolds in R
3, and a

random orthonormal 3 × 64 matrix acted as an embedding map R
3 → R

64.
The following embedding functions φ were used:

• R
1 as helix.

φ(p) = ( cos(4∗π∗p)
2 ,

sin(4∗π∗p)
2 , p + 0.25)

• R
1 as line.

φ(p) = (sin(2p) − 0.5, 2 sin(p) − 1,−4 cos(p) + 3)
• S1 as curved circle.

φ(p) = (sin(p), 0.8 cos(p), cos(2p)2

2 + 0.5)
• S1 as bent circle.

φ(p) = (sin(p), 0.8 cos(p), cos(p)2

2 + 0.5)
• C as cone.

φ(p) = ( k sin(p0 )
2 ,

k cos(p0 )
2 , p1 + 0.1).

k = p1

2 + 0.4
• C as cylinder.

φ(p) = ( sin(p0 )
2 ,

cos(p0 )
2 , p1 + 0.1)

• R
2 as curved plane.

φ(p) = 2(p0, sin(p1), 0.4(p1 − p0)2)
• R

2 as flat plane.
φ(p) = (p0 + 0.2, p1 + 0.2,

(p0+p1 )
2 )

• S2 as unit sphere.
φ(p) = (sin(p0) cos(p1), sin(p0) sin(p1), cos(p0))

5.1.3 Visualizing Embedded Manifolds. Three-dimensional visualizations
of embedded manifolds and RNN dynamics were realized with the Python
package vedo (Musy et al., 2022). A set of m (25–1000) points was sampled
from the topological manifold, and the coordinates in embedding space
were computed. Then a PCA model was fitted using the scikit package
(Pedregosa et al., 2011), and the first three principal components were used
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to reduce the dimensionality of the point cloud to three dimensions. The
manifold’s surface was reconstructed in PCA space using algorithms im-
plemented in vedo (Musy et al., 2022). For Figure 3E, the first two principal
components were used, and the third dimension represented time.

5.2 Manifold Charts and Basis Functions. To define a set of charts cov-
ering the topological manifold, one or two charts per manifold were used.
When two charts were used, the chart set Ui and map xi were carefully se-
lected such that xi(Ui) was homeomorphic to the same set in R

d for each
chart, simplifying the definition of basis functions. The basis functions were
simply defined as maps fi : [0, 1] → xi(Ui) parallel to one axis of the lo-
cal coordinate space. For instance, for a two-dimensional manifold with
xi(Ui) ∼= [0, 1] × [0, 1], the first basis function for a point p ∈ M is defined
as f1(λ) = (λ, x(p)).

The following charts and basis functions were used:

• For R1, a single chart (x,U ) was defined with U = M and x := x(p) →
2p.

• For S1, two charts were used with U1 = [0, π], U2 = [π, 2π] and x1 :=
x(p) = p, x2 := x(p) = p − π .

• For R2, a single chart was used with U = M and x := x(p) = p.
• For S1, two charts were used with U1 = [0, π] × [0, π], U2 = [0, π] ×

[π, 2π] and x1 := x1(p) = ( p0

π
,

p1

π
), x2 := x2(p) = ( p0

π
,

p1−π

π
).

• For C, two charts were used with U1 = [0, π] × [0, 1], U2 = [π, 2π] ×
[0, 1] and x1 := x1(p) = ( p0

π
, p1) and x2 := x2(p) = ( p0−π

π
, p1).

5.3 Vector Fields. Tangent vector fields maps (ψ) were used to specify
the magnitude and orientation of tangent vectors. For Figure 2B, the follow-
ing vector field maps were used:

• ψ (p) = (− sign(cos(p0 ))
3 , 0).

• ψ (p) = (−λ
cos(p0 )

2 , λ
4 ) with λ = 1.5 − abs(cos(p0)).

• ψ (p) = ( 1
4 , 1

4 ).

For Figure 3B, the vector field was ψ (p) = 1, while in panel C, the vector
field used was ψ (p) = (0, 1) for the sphere and ψ (p) = (1, 0) for the cylinder.
In panel D, the three vector fields were:

• ψ (p) = 1
3 (sin(p0 p1), 1).

• ψ (p) = 1
3 (sin(π (p0 − 1

2 )) cos(π (p1 − 1
2 ))).

• ψ (p) = 1
3 (sin(2π p1), sin(2π p0)).

For panel E, ψ (p) = 3( 1
2 − p0,

1
2 − p1). The vector field for panel G is de-

scribed in section 5.9.
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5.4 Tangent Vectors Computation. To compute the tangent vector at a
point φ(p) on the embedded manifold, the position xi(p) of the point in the
chart representation was computed (given a chart (xi,Ui) such that p ∈ Ui).
Next, the basis functions were defined as described above to obtain a one-
dimensional curve in xi(Ui) ⊂ R

d for each basis. Next, the projection of the
basis functions onto the embedded manifold was computed as φ ◦ x−1 ◦ fi,
yielding one-dimensional curves in R

n. The derivative of these curves with
respect to the parameter λ of fi was computed and evaluated at the point
φ(p) to obtain the basis tangent vector. Finally, the tangent vector field map
ψ was evaluated at p to obtain the coefficients for the linear combination of
basis vectors and thus compute the tangent vector.

5.5 RNN Creation. The procedure for generating manifold targeted
RNNs is described in the main text. Here, we note that for each manifold,
a set of k = 3 − 100 equally spaced points was used to build the system of
equations whose solution, obtained via least squares using NumPy, gave
the RNN connectivity matrix W .

5.6 Dynamics Drift. To estimate how much the RNN dynamics drifted
off the surface of the target embedded manifolds over time, 10 RNNs were
fitted to the cylinder and sphere manifolds. The choice of manifold, em-
bedding function, and tangent vector fields was such that on-manifold dy-
namics would evolve along trajectories equidistant from the origin at all
times. Thus, off-manifold deviation could simply be determined by mea-
suring changes in the distance between the network state and the origin.
Each RNN was initialized at 25 different locations on the embedded man-
ifold and allowed to evolve until it completed an entire revolution around
the manifold and returned to its original position. The average and stan-
dard deviations of the normalized distance from the origin of state space
for all RNNs and all starting positions on a given manifold were computed
and are shown in Figure 3C.

5.7 Dynamics Accuracy. To estimate how accurately RNN dynamics
matched the direction prescribed by tangent vector fields, three different
vector fields on the flat plane embedded manifold were used, as described
above. For each, 10 RNNs were fitted to it and initialized at 81 different loca-
tions on the manifold, from where they were allowed to evolve for the sim-
ulation time equivalent of 5 seconds. The angle between the vector from the
initial location and the final RNN state and the tangent vector at the initial
location was computed for each initialization. The distribution of angular
differences is shown in Figure 3D.

5.8 RNN Matrix Rank. To estimate the rank of manifold targeted
RNNs’ connectivity matrices (see Figure 3F), RNNs with different number
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of units (n = 32, 64, 128, and 256) were fitted to the line manifold R
1 in R

n

with one of the following embedding maps:

• φ1(p) = (p, 0, 0), a straight line,
• φ1(p) = (p, sin(p), 0), a planar curve,
• φ1(p) = (p, sin(p), cos(p)), a three-dimensional curve,

to produce embedded manifolds with different extrinsic dimensionalities.
The rank of the connectivity matrix W of each RNN was then estimated in
Python, using the NumPy library.

5.9 Task-Solving Dynamics.

5.9.1 2-Bit Memory Task Design. The 2-bit memory task was created by
adapting the 3-bit memory task used in other work (Sussillo & Barak, 2013;
Maheswaranathan et al., 2019). In brief, two independent and time-varying
inputs were produced. At each time step, the inputs could assume values of
1, −1, or 0. The task’s goal consists of keeping track of the last nonzero value
received from each input. Given two inputs and two possible values for
each, four possible combinations are possible. The network must keep an
internal representation of the current combination and update it correctly in
response to new nonzero inputs. This includes ignoring redundant inputs
(e.g., two consecutive 1s), which should not change the network’s internal
representation.

5.9.2 RNN Design. As the starting point for designing the task-solving
RNN dynamic, we used the solution discovered by training networks on
the 3-bit memory task (Sussillo & Barak, 2013; Maheswaranathan et al.,
2019). The presence of two latent variables (the “state” of each input) nat-
urally suggests the use of a two-dimensional manifold, and the absence of
a periodic structure in the inputs suggests that a plane would be ideal. For
simplicity, we embedded R

2 in R
n (n = 64) as a flat plane by (1) selecting

a random unit norm n-dimensional vector (v0), (2) selecting a second ran-
dom vector orthogonal to the first (v1), and (3) using the embedding func-
tion φ(p) = 1

5 (p0v0 + p1v1) − 0.5. This yielded a target manifold consisting
of a randomly oriented square manifold centered at the origin. The scaling
factor 1

5 can constrain the dynamics closer to the origin where they evolve
more rapidly, and the manifold scale could be chosen to adjust the timescale
of the dynamics.

The requirement that the network be able to maintain four stable states
in the absence of stimuli suggests that four fixed-point attractors should be
included in the on-manifold dynamics. Stimuli should push the dynamics
from one attractor state to another to change the network’s internal memory,
but repeated stimuli should not push the network state outside the current
attractor’s basin of attraction. To achieve this, the following tangent vector
field was used: ψ (p) = 0.6(− sin(2.5π (p0 − 0.1)),− sin(2.5π (p1 − 0.1))).
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1808 F. Claudi and T. Branco

The RNN dynamics equation 3.1 does not include external inputs. To
create a task-solving RNN we modified equation 3.1 to

ḣ = Wσ (h) + Bu,

where u is the two-dimensional inputs vector and B is the (n × 2) input ma-
trix describing how each input affects each unit in the network. We defined

B :=

⎡
⎢⎣

| |
v0 v1

| |

⎤
⎥⎦

such that each input moved the network along one of the “sides” of the
plane manifold.

The network output was a two-dimensional vector defined as y = B−1h,
thus translating the position along each “side” of the embedded plane into
a scalar output.
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