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Abstract

Purpose: We propose a one-step tissue characterization method for spectral photon-counting
computed tomography (SPCCT) using eigentissue decomposition (ETD), tailored for highly
accurate human tissue characterization in radiotherapy.

Methods: The approach combines a Poisson likelihood, a spatial prior, and a quantitative prior
constraining eigentissue fractions based on expected values for tabulated tissues. There are two
regularization parameters: α for the quantitative prior, and β for the spatial prior. The approach is
validated in a realistic simulation environment for SPCCT. The impact of α and β is evaluated on
a virtual phantom. The framework is tested on a virtual patient and compared with two sinogram-
based two-step methods [using respectively filtered backprojection (FBP) and an iterative
method for the second step] and a post-reconstruction approach with the same quantitative prior.
All methods use ETD.

Results: Optimal performance with respect to bias or RMSE is achieved with different combi-
nations of α and β on the cylindrical phantom. Evaluated in tissues of the virtual patient, the
one-step framework outperforms two-step and post-reconstruction approaches to quantify
proton-stopping power (SPR). The mean absolute bias on the SPR is 0.6% (two-step FBP),
0.6% (two-step iterative), 0.6% (post-reconstruction), and 0.2% (one-step optimized for low
bias). Following the same order, the RMSE on the SPR is 13.3%, 2.5%, 3.2%, and 1.5%.

Conclusions: Accurate and precise characterization with ETD can be achieved with noisy
SPCCT data without the need to rely on post-reconstruction methods. The one-step framework
is more accurate and precise than two-step methods for human tissue characterization.
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1 Introduction

Personalized radiation therapy requires estimates of tissue physical properties for the calculation
of treatment dose. The common method for obtaining such properties in a clinical environment is
single-energy computed tomography (SECT), where a single CT number is used to infer physi-
cal parameters of interest for a given radiotherapy modality. For instance, in megavoltage photon
therapy and proton therapy, the relative electron density (ρe) and the relative proton stopping
power (SPR) are respectively required. SECT struggles to provide accurate physical properties,1
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with errors of up to 3.5% on the SPR.2 This intrinsically limits the accuracy achievable with
treatment plans. In the last decade, multi-energy CT (MECT) was explored to improve the accu-
racy of tissue characterization for radiotherapy. For instance, dual-energy CT (DECT) can pro-
vide a more accurate estimation of ρe and SPR for radiotherapy using information from two CT
numbers acquired at different energies.1,3 More recently, another MECT modality, spectral pho-
ton-counting computed tomography (SPCCT), which uses photon counting detectors to provide
up to four energy-resolved measurements, has been shown to provide further benefits compared
to DECT for tissue characterization and reducing proton range uncertainties.4–6

In those studies, the benefits of MECT were obtained using post-reconstruction methods,
where tissue characterization is performed on reconstructed CT number maps. The obtained
benefits typically require the use of bespoke methods for tissue characterization with MECT.
For instance, eigentissue decomposition (ETD) was introduced7 as an optimized decomposition
basis to maximize the reconstruction accuracy of human tissue elemental composition with
MECT. Furthermore, to deal with noisy MECT data, ETD was reformulated into a maximum
a posteriori (MAP) framework8 where eigentissue fractions are regularized to lie close to
expected values of tabulated human tissues. This regularization strategy is referred to as quan-
titative regularization. Combining ETD and quantitative regularization for MECT data results in
efficient denoising performance and allows material decomposition with more than two basis
materials for human tissues, which has been shown to be mandatory to maximize quantitative
accuracy of estimated radiotherapy-related parameters.6–9

For post-reconstruction characterization, the achievable accuracy of estimated physical
parameters is limited by reconstruction artifacts such as beam hardening. As a solution,
two-step sinogram-based tissue characterization methods were used to produce physical param-
eter maps directly from sinogram data.10,11 The two-step framework fits physical parameters
sinograms from sinogram data, then reconstructs physical parameters maps using either a filtered
backprojection (FBP) or an iterative method. While useful to mitigate artifacts, two-step methods
are susceptible to noise due to the instability (ill-conditioning) of the decomposition step, result-
ing in material projections corrupted by a high amount of correlated noise.12,13 Furthermore, the
two-step framework cannot fully take advantage of the ETD parametrization, as only two eigen-
tissue sinograms can be solved during the first step due to the similarity between eigentissue
basis functions and the lack of regularization in sinogram space.11 This overall limits the intrinsic
accuracy attainable with the two-step method for SPCCT; e.g., the benefits of using SPCCT
against DECT for accurate tissue characterization with ETD were lost due to the use of two
eigentissues.11

One solution is to implement a one-step tissue characterization framework, where reconstruc-
tion is formulated as a large-scale optimization problem and physical properties are estimated
directly from sinogram data. One-step methods were introduced in the last decade, first for
DECT14,15 and more recently for SPCCT,16,17 with a focus on K-edge imaging. As constraints
are formulated in the image domain, the approach is free from the above-mentioned limitations
of the two-step framework and may allow more accurate and precise tissue characterization.

Therefore, the main objective of this study is to develop a novel one-step reconstruction
framework with the ETD parametrization, to recapture the benefits of using SPCCT for human
tissue characterization, as obtained with post-reconstruction ETD.5 More specifically, we pro-
pose a unified framework that incorporates ETD, spatial regularization as well as the quantitative
prior8 into a one-step reconstruction approach. The aim is to maximize the quantitative accuracy
and precision of reconstructed physical parameters of human tissues relevant for radiotherapy
without the limitations of post-reconstruction methods. Each regularizer contributes toward
increased performance. The framework is validated in a realistic simulation environment for
SPCCT with four energy bins on a cylindrical phantom and a virtual patient. The performance
of the algorithm with various levels of quantitative and spatial regularization is first evaluated.
Then, using three optimized sets of regularization parameters, it is compared to (1) two imple-
mentations of the two-step framework using the ETD parametrization, and (2) the post-recon-
struction MAP implementation of ETD.8 As such, a second aim of this work is to report the
differences between the four tissue characterization schemes for the task of extracting highly
accurate radiotherapy-related parameters from SPCCT data. This was only reported previously
for DECT and a restricted characterization methods, each with its own parametrization.18
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By using the same parametrization of the attenuation coefficient for all methods, we can provide
insight into the intrinsic accuracy of all tissue characterization strategies.

2 Theory

2.1 Eigentissue Decomposition

2.1.1 Principles of eigentissue decomposition

Let j denote the index of a pixel in the image to reconstruct, and J the total number of pixels. Let
ðδϵ; : : : ; NϵδϵÞ be a uniform energy sampling, where Nϵ and δϵ are the number of energies
sampled and the energy resolution, respectively; ϵ is the index referring to photon energies.
The energy-dependent x-ray attenuation coefficient of a tissue located at the j’th pixel and for
the ϵth energy, μjϵ, is expressed as the product of the electron density relative to water of the
tissue at the j’th pixel, ρe;j, and a quantity proportional to its energy-dependent electronic cross
section, gjϵ

EQ-TARGET;temp:intralink-;e001;116;533μjϵ ¼ ρe;jgjϵ; (1)

where gjϵ is, by definition,11 equal to

EQ-TARGET;temp:intralink-;e002;116;498gjϵ ¼ NA

�
Z
A

�
w
ρwσjϵ; (2)

where ðZAÞw is the ratio of atomic to mass number of water, ρw is the mass density of water, NA is
Avogadro’s number, and σjϵ is the energy-dependent electronic cross section of the tissue, which
includes all relevant physical effects in the diagnostic energy range, and can be calculated with
the law of mixtures considering the elemental cross sections σm;ϵ. The attenuation coefficient of
Eq. (1) can also be expressed directly with the law of mixtures as a sum of its elemental con-
tributions

EQ-TARGET;temp:intralink-;e003;116;379μjϵ ¼
XM
m¼1

xjmgmϵ; (3)

whereM denotes the number of elementsm which compose the tissue, xjm is the partial electron
density of the m’th element in the tissue located at the j’th pixel, and gmϵ is proportional to the
energy-dependent electronic cross section of the m’th element, and is obtained from Eq. (2)
using the electronic cross section of the corresponding element, σmϵ (i.e., σjϵ is replaced by
σmϵ). For brevity, gmϵ is now referred to as an electronic cross section. By construction,P

M
m¼1 xjm ¼ ρe;j. For a given pixel, the M values xj1; : : : ; xjM thus span the electron density

and the elemental composition.7 Full tissue characterization implies the extraction of all xjm
from the N energy-resolved measurements with MECT. For human tissues, typically M ≥ N,
and the elemental basis cannot be used for tissue characterization with MECT.

This is solved by representing human tissues as a sum of K ≤ N basis materials, such as
water and bone,19,20 water, lipids and proteins,21 or water and iodine for contrast-enhanced
imaging.22,23 However, such decomposition bases cannot reproduce the full variability of the
elemental composition for human tissues.7 This can lead, for human tissues, to biased estimates
of ρe and SPR,11,24 and indicates that such bases are not optimal to characterize human tissues.
Lalonde and Bouchard7 performed principal component analysis (PCA) on the set of elemental
partial electron densities from a database of human tissues25 to extract a more optimal decom-
position basis, named the eigentissue basis, to represent the full range of variation in human
tissue composition. Using the K ≤ N most meaningful eigentissues for decomposition,
Eq. (3) is made compatible with MECT by using the model

EQ-TARGET;temp:intralink-;e004;116;107μ̂jϵ ¼
XM
k¼1

yjkgETkϵ ≈ y0gET0ϵ þ
XK
k¼1

yjkgETkϵ ; (4)
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where yjk represents the partial electron density of the k’th eigentissue in the j’th pixel, and gETkϵ is
its corresponding energy-dependent electronic cross section. The residual terms y0 and gET0ϵ re-
present the contribution of the ðK þ 1Þ’th to the M’th eigentissues, which are assumed constant
and equal, for every tissue, to the average over all tissues from the reference database. This
explains the lack of spatial dependency for y0. More details can be found in previous
studies.7,11 The electron density is estimated as ρe;j ≈ y0 þ

P
K
k¼1 yjk. Equation (4) is the

image-based formulation of ETD, and the K parameters to estimate at each image pixel j is
a vector of partial electron densities yj ¼ ðyj1 : : : yjKÞT. Using the transformation matrix
between the elemental and eigentissue partial electron densities obtained with PCA, the yjk can
be mapped back to the elemental composition of the sample.7

2.1.2 Adaptation to sinogram space

Let the index i represent a ray projected at angle θ and detected at location ξ. There are I sino-
gram pixels (I = number of projections Np× number of detectors Nd). Let also ψnϵ denote the
normalized effective x-ray spectrum, which includes contributions of the source and detector
response, where n is an index for a specific combination of source and/or detector response;
there are N different source/detector response combinations. The detected x-ray photon counts
from the i’th ray coming from the effective spectrum ψnϵ, with no object (blank scan), is N0

in,
while the detected x-ray photon counts after propagating through an object is Nin. The trans-
mission of the i’th ray for the n’th spectrum, tin, is the ratio tin ¼ Nin

N0
in
. The transmission model,

t̂in, is the polyenergetic forward model

EQ-TARGET;temp:intralink-;e005;116;456̂tin ¼
XNϵ

ϵ¼1

ψnϵsoft exp

�
−
XJ
j¼1

aijμjϵ

�
; (5)

where aij are elements of the projection matrixA, of size I × J, which provides the path length of
the i’th ray through the j’th pixel of the geometry. The soft exponential function, used instead of
the conventional exponential function, is

EQ-TARGET;temp:intralink-;e006;116;368softexpðrÞ ¼
�

e−r if r ≥ 0;
1 − r if r < 0:

(6)

This dampens the effect of possible negative attenuation obtained in early iterations, which
often leads to convergence issues, as proposed by Sidky et al.26 Inserting the ETD parametriza-
tion of μjϵ from Eq. (4) gives

EQ-TARGET;temp:intralink-;e007;116;285̂tinðyjkÞ ¼
XNε

ϵ¼1

ψnϵ softexp

�
gET0ϵ Yi0 þ

XK
k¼1

gETkϵ
XJ
j¼1

aijyjk

�
: (7)

As y0 is constant, we defined Yi0 ¼ y0
P

J
j¼1 aij, which is the Radon transform of the residual

eigentissue, assuming that all image pixels have the residual y0.

2.2 A Bayesian Framework for Image Reconstruction

Let yk ¼ ðy1k : : : yJkÞT be the J × 1 vector that contains all pixels of the image for the k’th
eigentissue fraction. All yk are regrouped in the JK × 1 vector of joint partial electron densities
y ¼ ðyT1 : : : yTKÞT. Similar vectors are also defined for the transmission measurements.
tn ¼ ðt1n : : : tInÞT is the I × 1 transmission vector which includes all I transmission measure-
ments for the n’th overall spectrum, and the IN × 1 joint transmission vector is t ¼ ðtT1 : : : tTNÞT.
The MAP estimator of the joint partial electron density vector, ŷ, is
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EQ-TARGET;temp:intralink-;e008;116;735ŷ ¼ arg max
y

PðyjtÞ ¼ arg max
y

�
PðtjyÞPðyÞ

PðtÞ
�
: (8)

PðyjtÞ is the posterior probability of the image containing physical properties defined in y
knowing that the transmission values t are measured. The right-hand side is obtained using
Bayes’ theorem, where PðtjyÞ is the likelihood and PðyÞ is the prior probability of y. It is more
convenient to minimize the negative logarithm of the posterior

EQ-TARGET;temp:intralink-;e009;116;650ŷ ¼ arg min
y

½lLðyÞ þ lPðyÞ� ¼ arg min
y

LðyÞ; (9)

where lLðyÞ ¼ − lnðPðtjyÞÞ is the negative log-likelihood and lPðyÞ ¼ − lnðPðyÞÞ is the
negative log-prior. LðyÞ is the total cost function to minimize. The likelihood and prior terms
are defined in Secs. 2.2.1 and 2.2.2.

2.2.1 Likelihood

Poisson statistics are used to describe energy-resolved photon counts on a detector pixel, tin.
Each count is assumed to follow a Poisson distribution and is independent from the other events.
This is realistic for spectral photon counting CT, as (1) the arrival of Poisson-distributed photons
is directly counted on the detector and (2) the low electronic noise does not importantly affect
the counting statistics. The measurement joint probability (the likelihood) is

EQ-TARGET;temp:intralink-;e010;116;483PðtjyÞ ¼
YN
n¼1

YI
i¼1

PðtinjyÞ ¼
YN
n¼1

YI
i¼1

expð−t̂inðyÞÞðt̂inðyÞÞtin
1

tin!
; (10)

where t̂inðyÞ is the model [Eq. (7)] of the transmission. The corresponding negative log-
likelihood is

EQ-TARGET;temp:intralink-;e011;116;408lLðyÞ ¼
XN
n¼1

XI

i¼1

ðt̂inðyÞ − tin lnðt̂inðyÞÞÞ: (11)

2.2.2 Prior

For the prior PðyÞ, by construction, eigentissue partial electron densities are expected to vary
within a specific range for human tissues,8 and fitted values can be constrained accordingly. This
constraint increases the robustness of image-based methods with noisy MECT data.5,9,27 As regu-
larization is performed pixel-wise on physical parameters, it is referred to as the quantitative
prior. Spatial regularization28 on maps of y is also used in this work and is referred to as the
spatial prior. The total prior is the product of quantitative and spatial priors.

Quantitative prior. Deriving eigentissues using PCA on a database of P tabulated human
tissues25 produces a set of known eigentissue partial electron densities for each tissue in the
reference database, each represented by a K × 1 vector yref;p, p ∈ ½1; : : : ; P�, with elements
yref;pk, k ∈ ½1; : : : ; K�. Therefore, there is prior knowledge available on the distribution of the
yjk, if one assumes that the scanned object is made of human tissues of similar composition to
those of the reference database. It is expected that, for the j’th pixel, the set of the K eigentissue
partial electron densities yj ¼ ð yj1 : : : yjK ÞT will lie in proximity to the partial electron
densities of one tissue in the reference database, yref;p. This proximity is modeled with a kernel
density estimator (KDE) using a Gaussian kernel

EQ-TARGET;temp:intralink-;e012;116;139PQðyjÞ ¼
XP
p¼1

wjpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞKjΣj

p exp

�
−
1

2
ðyj − yref;pÞTΣ−1ðyj − yref;pÞ

�
: (12)

The Gaussian kernel accounts for variability in the elemental composition and electronic
density of the patient’s tissues with respect to the reference database’s tissues. The pixel-

Simard and Bouchard: One-step iterative reconstruction approach based on eigentissue decomposition. . .

Journal of Medical Imaging 044003-5 Jul∕Aug 2022 • Vol. 9(4)

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Medical-Imaging on 04 Aug 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



dependent weight wjp of each Gaussian is defined later. The K × K matrix Σ is the kernel band-
width. By construction, eigentissues are uncorrelated within reference tissues. As proposed by
Lalonde et al.,8 Σ is the diagonal and defined as

EQ-TARGET;temp:intralink-;e013;116;699Σ ¼ α · Σy ¼ α ·

0B@ σ2y1 : : : 0

..

. . .
. ..

.

0 : : : σ2yK

1CA; (13)

where Σy is a K × K matrix with elements σyk representing the standard deviation in the k’th
eigentissue over all tissues of the database. To provide flexibility in cases of high noise or larger
compositional variation, a regularization parameter α is introduced. Considering Eq. (13), the
probability density function PQðyjÞ reduces to

EQ-TARGET;temp:intralink-;e014;116;585PQðyjÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2παÞK Q
K
k¼1 σ

2
yk

q XP
p¼1

wjp exp

�
−
dðyÞjp

2α

�
; (14)

where dðyÞjp represents the squared generalized distance between pixel yj and the p’th reference
tissue yref;p

EQ-TARGET;temp:intralink-;e015;116;501dðyÞjp ¼
XK
k¼1

ðyjk − yref;pkÞ2
σ2yk

: (15)

For this work, we develop a prior assuming that each tissue is equiprobable, such that opti-
mization is not biased towards a particular tissue. Note that this may not hold true for specific
anatomical sites; in that case, we recommend to tailor the reference database and prior prob-
abilities to reflect the site being studied. For a given yj, a simple formulation of wjp leading
to equal probability PQðyjÞ for each reference tissue is

EQ-TARGET;temp:intralink-;e016;116;390wjp ¼
(
1 if p ¼ arg min

p
ðdðyÞjp Þ;

0 otherwise:
(16)

Equation (16) is not twice differentiable; a smooth approximation to Eq. (16) is proposed,
using the transform

EQ-TARGET;temp:intralink-;e017;116;313πjp ¼ ðdðyÞjp þ εÞ−ν; (17)

which amplifies the differences between distances dðyÞjp of reference tissues, if ν is large
(in this work, ν ¼ 60). The constant ε is introduced to ensure no division by zero occurs if
yj coincides with a reference tissue; it is fixed to ε ¼ 10−5. It should be noted that varying
ν and ε within a reasonable range has no visible impact on the quality of reconstructed physical
parameters. πjp is normalized by its sum over all reference tissues to obtain a final weight wjp

between 0 and 1

EQ-TARGET;temp:intralink-;e018;116;198wjp ¼ ðdðyÞjp þ εÞ−νP
P
p 0¼1

ðdðyÞjp 0 þ εÞ−ν
: (18)

Equation (18) provides a smooth approximation to Eq. (16). The joint quantitative prior for
the entire image is

EQ-TARGET;temp:intralink-;e019;116;122PQðyÞ ¼ PQðy1; : : : ; yjÞ ¼
YJ
j¼1

PQðyjÞ ¼
�
ð2παÞK

YK
k¼1

σ2yk

�−J∕2 YJ
j¼1

XP
p¼1

wjp exp

�
−
dðyÞjp

2α

�
:

(19)
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Removing constant terms independent of yjk, the negative logarithm of the quantitative prior
on the eigentissue partial electron densities, lPQ

ðyÞ is

EQ-TARGET;temp:intralink-;e020;116;709lPQ
ðyÞ ¼ −

XJ
j¼1

ln

�XP
p¼1

wjp exp

�
−

1

2α

XK
k¼1

ðyjk − yref;pkÞ2
σ2yk

��
: (20)

Considering two eigentissues (K ¼ 2) and α ¼ 1000, Fig. 1 shows lPQ
ðyÞ.

Spatial prior. For image reconstruction purposes, the negative logarithm of the spatial prior,
lPS

ðyÞ, typically takes the form of a penalty function that acts on intensity differences between
nearest neighbor pixels29–31

EQ-TARGET;temp:intralink-;e021;116;595lPS
ðyÞ ¼

XK
k¼1

βk
XJ
j¼1

X
η∈N j

ωjη ϕðyjk − yηk; δkÞ; (21)

where each βk and δk are user-defined regularization parameters which control the strength of the
spatial prior for the k’th eigentissue fraction, while ϕðyjk − yηk; δkÞ is a user-defined potential
function that penalizes, for each of the K materials, differences between the j’th pixel and the set
of pixels defined in its neighborhood N j, noted with the index η. ωjη weights the importance of
the interaction between the j’th pixel and its η’th neighbor; it is set as the inverse of the Euclidian
distance between the pixels. The four direct neighbors are given a weight of 1, while the four
diagonal neighbors are given a weight of 1ffiffi

2
p . The desired spatial distribution of y is encoded into

the potential function ϕðyjk − yηk; δkÞ. ϕ should encourage smoothness across neighboring
pixels within the same organ/tissue, while accommodating sharp changes in y due to boundaries
between tissues. Many edge-preserving potential functions have been proposed in the literature28;
in this work, the Huber potential32 is used for all material channels

EQ-TARGET;temp:intralink-;e022;116;409ϕðyjk − yηk; δkÞ ¼
8<: ðyjk−yηkÞ2

2
; jyjk − yηkj ≤ δk;

δkjyjk − yηkj − δ2k
2
; jyjk − yηkj > δk:

(22)

Finite differences between nearest neighbors are encoded in a J × J finite difference matrix
D. For the set of all pixels corresponding to the k’th eigentissue partial electron density, yk, the
J × 1 vector of finite differences for the image yk is calculated as the product Dyk. Equation (21)
is then formulated as

0 0.5 1
y

1

-0.15

-0.1

-0.05

0

0.05

0.1

y 2

1.001

1.002

1.003

1.004

1.005

1.006

Fig. 1 Negative logarithm of the quantitative prior for K ¼ 2 and α ¼ 1000. Points illustrated with
black crosses are the reference tissues from White and Woodard’s database.25 The cost function
is constructed such that all reference tissues have equal probability, while regions of the search
space far from reference tissues are penalized.
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EQ-TARGET;temp:intralink-;e023;116;735lPS
ðyÞ ¼

XK
k¼1

βk
XJ
j¼1

ϕð½Dyk�j; δkÞ; (23)

where the sum on neighboring pixels η and the weights ωjη are encoded within D. The notation
½Dyk�j denotes the j’th row (or element) of the vector Dyk. An explicit form is ½Dyk�j ¼P

J
c¼1 Djcyck. Furthermore, each βk is defined to produce a similar level of spatial regularization

across eigentissue fractions, similar to the quantitative prior

EQ-TARGET;temp:intralink-;e024;116;642βk ¼
β

σ2yk
; (24)

where β is a global regularization parameter that controls the strength of the spatial regulariza-
tion. The σ2yk was defined in Eq. (13). The parameters δk define, in the Huber function, the tran-
sition between uniform regions of interest and edges between tissues. Similar, they are set as
proportional to the expected variability for each eigentissue fraction

EQ-TARGET;temp:intralink-;e025;116;550δk ¼ δσyk : (25)

The regularization parameter becomes a unique δ. Equations (24) and (25) allow to reduce
the number of free parameters in the spatial prior from 2K to 2.

2.2.3 Cost function

The cost function LðyÞ is the negative log of the posterior, obtained by combining the negative
log-likelihood of Eq. (11) with the negative log-prior [Eqs. (20) and (23)], assuming independ-
ence of the prior terms

EQ-TARGET;temp:intralink-;e026;116;420LðyÞ ¼ lLðyÞ þ lPðyÞ ¼ lLðyÞ þ lPQ
ðyÞ þ lPS

ðyÞ: (26)

2.3 Optimization Algorithm

A nonlinear conjugate gradient (CG) algorithm is used in this work, similar to the work of Cai
et al.14 Pseudocode for the optimization algorithm is given in Appendix A. For iteration κ, the
update direction d½κ� is guided by the Polak–Ribière scalar βPR, while the update step γ½κ� is
obtained through an approximative line search in the update direction d½κ�. The performance
of nonlinear CG has been shown to produce similar outcomes compared to other existing
algorithms.28 The CG method finds a solution ŷ to Eq. (9) through the following iterative
scheme:

EQ-TARGET;temp:intralink-;e027;116;275y½κþ1� ¼ y½κ� þ γ½κ�d½κ�: (27)

Calculation of d½κ� and γ½κ� at each iteration are detailed in Secs. 2.3.1 and 2.3.2, respectively.

2.3.1 Update direction d½κ�

The update direction for the first iteration is the steepest descent d½κ¼0� ¼ −∇Lðy½κ¼0�Þ, where
∇LðyÞ is the gradient of LðyÞ. Subsequent update directions are calculated via Gram–Schmidt
conjugation of the residuals, with the approach of Polak and Ribière33

EQ-TARGET;temp:intralink-;e028;116;158d½κþ1� ¼ −∇Lðy½κþ1�Þ þ β½κþ1�
PR d½κ�; (28)

where β½κþ1�
PR is the Polak–Ribière scalar, equal to

EQ-TARGET;temp:intralink-;e029;116;112β½κþ1�
PR ¼ max

�ð∇Lðy½κþ1�ÞÞT∇Lðy½κþ1�Þ − ð∇Lðy½κþ1�ÞÞT∇Lðy½κ�Þ
ð∇Lðy½κ�ÞÞT∇Lðy½κ�Þ

; 0

�
: (29)
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2.3.2 Line search for γ

To obtain the step size γ½k�, a line search is performed in the direction of the update, y½κ� þ γ½κ�d½κ�,
to find the γ½k� that minimizes LðyÞ along that direction. The optimal γ½k� is such that the following
directional derivative is zero:

EQ-TARGET;temp:intralink-;e030;116;678

d

dγ½k�
½Lðy½κ� þ γ½κ�d½κ�Þ� ¼ ð∇Lðy½κ� þ γ½κ�d½κ�ÞÞTd½κ� ¼ 0: (30)

By expanding the cost function LðyÞ into a second-order Taylor series14 and inserting it into
Eq. (30), a closed form expression for γ½κ� is found

EQ-TARGET;temp:intralink-;e031;116;608γ½κ� ¼ −
ð∇Lðy½κ�ÞÞTd½κ�
ðd½κ�ÞTHðy½κ�Þd½κ� ; (31)

where HðyÞ is the Hessian of LðyÞ. Equation (31) results from the approximation that the cost
function LðyÞ is a parabola; for a nonquadratic cost function such as the one of Eq. (26), Eq. (31)
is not exact, and can provide an inexact line search. To ensure that the update step provides a
descent step,14,28 the cost function at y½κ� þ γ½κ�d½κ� is calculated; if Lðy½κ� þ γ½κ�d½κ�Þ < Lðy½κ�Þ,
then the update step γ½κ� is conserved. If the cost function increases, γ½κ� is divided by two, and
the cost function is re-evaluated. This procedure is performed up to ζmax times if the cost function
does not decrease. After ζmax unsuccessful divisions, it is assumed that the search direction is
erroneous, and γ½κ� is reset to the negative of its original value for the current iteration [Eq. (31)].
In our experiments, we found that this procedure is always helpful to reach convergence.
However, when reset occurs in late iterations, it may be due to convergence instead of an
inaccurate line search; in that case, early stopping may be considered. The algorithm requires
closed-form expressions for ∇LðyÞ, and dTHðyÞd, which are reported in Appendix B.

3 Methodology

3.1 Simulation Framework

3.1.1 Phantom geometry and spectral information

The framework is implemented in MATLAB R2021a (MathWorks, Natick, Massachusetts,
United States), and uses two different geometries. First, a 16-plug cylindrical phantom is
generated, where each insert contains a tissue from White and Woodard’s database of human
tissues.25 The name and ρe of the inserts, the layout of the phantom as well as the ρe map are
respectively given in Figs. 2(a), 2(c), and 2(e). Phantom size is set to 512 × 512 pixels to
generate projection data [Eq. (5)], while the image is reconstructed on a 256 × 256 grid.
Reconstructed pixel size is always 1 × 1 mm2.

The virtual patient is similar to one introduced in previous work,9 although no contrast agent
is used in the current study. The virtual patient is generated from a DECT scan of a pelvis region,
with a semiautomatic assignation of tissues and densities. The density is scaled with the HUmap,
as detailed in Ref. 9. There are 16 materials assigned to the virtual patient, and elemental com-
position, as well as mass density variability, are introduced following the scheme of Yang et al.34

Details on the geometry are provided in Figs. 2(b), 2(d), and 2(f). Similar to the cylindrical
phantom, the size of the virtual patient is set to 460 × 784 pixels to produce sinograms and
is reconstructed on a 230 × 392 grid. To generate SPCCT data, a 140 kVp source spectrum from
the Siemens SOMATOM Definition Flash provided by the manufacturer (Siemens Healthineers,
Forchheim, Germany) is used. Four energy bins (N ¼ 4) are generated with a realistic photon
counting detector response model,35 which includes spectral distortion (K-escape, charge shar-
ing). Energy thresholds are set to 60, 72, and 91 keV, which correspond to optimized thresholds
to minimize overlap between energy bins, following the global search procedure detailed in
precedent work.11 The four resulting effective spectra ψnϵ are shown in figure 3b of that study.

11
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3.1.2 Sinogram generation

Sinogram data [Eq. (5)] is generated by considering a weighted sum of monoenergetic projec-
tions from 1 to 140 keV, at δϵ ¼ 1 keV intervals,9,24 and is obtained individually for each spec-
trum ψnϵ. The strip-integral model of the MIRT toolbox36 is used to generate the projection
matrix A. Elemental photon cross sections used to generate μjϵ are obtained from the
XCOM database.37 Sinogram data are generated using Np ¼ 720 projections and Nd ¼ 729

(cylindrical phantom) or 911 (virtual patient) detectors, each of 1 mm size. Poisson noise is
added to sinogram data Nin to obtain noisy measurements. Sinograms are generated without
scattering. Approximately 106 photons per projection angle are distributed between the four
energy bins, following the relative fluence of ψnϵ in each bin. This results in a noise level
of ≈100 HU per energy bin, which roughly matches experimental SPCCT noise levels reported
in the literature, between 80 and 112 HU.4,6

(a)

4
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7
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17

18

(b)

(c) (d)

(e) (f)

Fig. 2 Two geometries used in this work. (a) and (b) respectively list the inserts used in the cylin-
drical phantom and the virtual patient, along with their electron density. Figures (c) and (d) illustrate
the layouts of the plugs/tissues within the geometries, while (e) and (f) illustrate ρe maps (dynamic
range between 0.8 and 1.2).
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3.2 Practical Implementation of the Reconstruction Algorithm

A total of P ¼ 70 tissues from White and Woodard’s database25 (all 25 bone and 45 soft
tissues including all but thyroid) are used to (1) generate eigentissues7 and (2) create the
KDE in the quantitative prior [Eq. (14)]. For regularization parameters, δ is fixed to 0.02
based on the previous work of Cai et al.14 with the Huber prior and our own experiments.
For the spatial prior, δ has a limited impact on the quantitative accuracy of the method com-
pared to β, hence its fixed value. The parameters α and β are optimized on the cylindrical
phantom, as described in Sec. 3.3. For the optimization algorithm, following the nomencla-
ture of the pseudocode in Appendix A, the maximum number of iterations κmax is 2500,
while ζmax for the line search is set to 10, similar to Mory et al.28 In all experiments, setting
κmax ¼ 2500 resulted in a cost function varying by <10−5% between iterations, ensuring that
convergence is reached.

Finally, the optimization algorithm requires an initial guess y½κ¼0�. For this study, to focus
solely on the impact of α and β, the initial guess is obtained from ground truth ρe data instead of
estimated values. Due to the nonconvexity of the quantitative prior, all-zero initialization is not
recommended. Each pixel in the image to reconstruct is first assigned to one of five classes fol-
lowing its ρe. Pixels with ρe < 0.1 are identified as air, 0.1 ≤ ρe < 0.8 are lung, 0.8 ≤ ρe < 1 fat
tissues, 1 ≤ ρe < 1.11 soft tissues, and ρe ≥ 1.11 bone. For each of the five classes c, an initial set
of eigentissue partial electron densities yc ¼ ðyc1: : : ycKÞT is assigned, resulting in an initial image
guess y½κ¼0� that can take, for one eigentissue channel k, at most five different values. The initial yc
of lung is taken, using the nomenclature of the quantitative prior, as yref;plung

, with plung correspond-

ing to the index, in the reference database, of the deflated lung. Similar, for fat-based tissues,
the initial yc is taken as the average of the yref;p corresponding to low-density fat-like tissues
in the reference database (i.e., adipose tissue 3, adipose tissue 2, adipose tissue 1, yellow marrow,
mammary gland 1). For the soft tissue and bone classes, a similar procedure is performed by
averaging the yref;p of all the remaining soft and bone tissues in the reference database, respec-
tively. For air, as it is not present in the database that generates eigentissues, there is no value of
yref;p corresponding to air. To generate one, a global search is performed over a range of yc to find
a yair that produces minimal x-ray attenuation, while matching the density of air. Practically,
considering Eq. (4), a yair is found such that

P
K
k¼1 yair;kgETkϵ − y0gET0ϵ ¼ 0 under the constraint

that J1×K yair ¼ ρe;air, where J1×K denotes the 1 × K array of ones. Finally, it should be noted
that using the post-reconstruction solution as an initial guess produces similar results to those
obtained with the above initialization. It is recommended to use an initial guess reasonably close
to the solution to maximize performance.

3.3 Comparative Study

3.3.1 Cylindrical phantom

The cylindrical phantom is reconstructed for a range of α and β. A qualitative comparison show-
ing parametric maps as well as relative error maps on relevant physical properties as a function of
selected values of α and β is first shown in Figs. 3 and 4. Then, various quantitative metrics are
reported in Fig. 5 to further compare reconstructions and help selecting optimal regularization
parameters. The quantitative metrics are defined below.

Metrics are defined for a physical parameter θ, where θ ∈ fSPR; ρeg. The SPR is obtained
with the Bragg additivity rule using the elemental fractions obtained from eigentissue fractions for

the I-values. First, let θ̂j represent the reconstructed parameter at pixel j. The relative error (in %)

on θ for pixel j is δðθÞj ¼ 100 × ðθ̂j − θjÞθ−1j , where θj is the ground truth value. For parameter
θ and insert q in the cylindrical phantom, the mean relative error (bias) is obtained by averaging

over pixels of the insert: Bθ;q ¼ N −1
q
P

j∈Vq
δðθÞj . Similar, RMSEθ;q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N −1

q
P

j∈Vq
ðδðθÞj Þ2

q
. Here,

Vq is a region of interest associated with insert q (the inner 90% of all pixels in the insert) andN q

is the number of pixels in Vq. The standard deviation of θ in insert q is σθ;q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RMSE2

θ;q − B2
θ;q

q
.
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To quantify the overall accuracy and precision of parameter θ, the mean absolute bias, RMSE
and standard deviation averaged over all Q plugs are reported; e.g., the mean absolute bias is

jBθj ¼ 1
Q

PQ
q¼1 jBθ;qj. The other metrics are labeled RMSEθ and σθ.

While the plug-averaged metrics represent the overall quantitative performance, they may
not adequately factor in any form of spatial distortion or visual artifacts that can be introduced
in the reconstruction process, especially with strong regularization. Another comparison met-
ric that takes into account the overall spatial distribution of errors is thus proposed. The metric
is based on the water equivalent path length (WEPL) used in proton therapy. The WEPL is
defined, along a given path l, as WEPLl ¼ P

j∈lSPRj, where j denotes a pixel on the path l.

The relative error (in %) on WEPLl is δWEPL
l ¼ 100 × ð dWEPLl −WEPLlÞWEPL−1

l . The
reported metric is the RMSE on δWEPL

l calculated over L various paths l. Similar to
Vilches-Freixas et al.,18 WEPLl are generated by taking the Radon transform on ground truth
and estimated SPR maps for angles distributed from 0 to 179 deg, with increments of 1 deg.
Paths with WEPLl ¼ 0 are removed from the analysis, and the SPR of all pixels outside
the phantom geometry are set to 0. Practically, this results in L ¼ 43353 WEPL values for
the cylindrical phantom, which essentially covers all possible beam paths traversing the
phantom.

The optimal set of regularization parameters may depend on the subsequent task to per-
form (e.g., quantitative imaging for diagnostic purposes or treatment planning). Three sets of
optimized regularization parameters are extracted by looking at the combinations shown in
Figs. 3 and 4: the ones minimizing (1) the absolute bias jBSPRj, (2) the root-mean-square
error RMSESPR, and (3) the RMSE on the WEPL, calculated over the L paths defined
previously.

3.3.2 Virtual patient

The virtual phantom is reconstructed with the three sets of optimized regularization parameters,
as suggested in Sec. 3.3.1. The three resulting images obtained with the one-step framework are
compared with three methods. The first, referred to as two-step (FBP), is the sinogram-based
two-step ETD decomposition on all tissues,11 with K ¼ 2 eigentissues. The second, named
two-step (iterative), uses the same first step as the previous method, but reconstructs the yjk
using an adaptation of the iterative framework of Schirra et al.,38 a penalized weighted least
squares algorithm based on separable paraboloidal surrogates. All-zero initialization was used,
and regularization parameters βk and δk (one per eigentissue channel) were optimized to
minimize SPR bias, as presented in Sec. 3.3.1. Optimized parameters were δk ¼ 0.02σk and
βk ¼ 0.0005∕σ2k. For completeness, the update step is

EQ-TARGET;temp:intralink-;e032;116;293y½κþ1�
jk ¼ y½κ�jk þ

P
I
i¼1 aijḣikðYikÞ − β 0

kϕ
0ð½Dyk�j; δkÞ

−
P

I
i¼1 ḧikaijai þ β 0

kϕ
0ð½Dyk�j; δkÞ

; (32)

where Yik ¼
P

J
j¼1 aijyjk is the forward projection of eigentissue fractions yjk. ḣikðYikÞ ¼ Y0

ik−Yik

σ2ik

and ḧjk ¼ −1
σ2ik

are respectively the first and second derivatives of the marginal log-likelihood func-

tion, obtained after computing the diagonal elements of the inverse of the Fisher information
matrix, σ2ik, once the first step of the two-step method is complete and returns eigentissue sino-
grams Y0

ik; see Ref. 38 for details. Also, ai ≡
P

J
j¼1 aij, and β 0

k ¼ −βk
P

I
i¼1 aijḧikai.

The third comparison method is the post-reconstruction ETD with quantitative regularization
(α ¼ 0.4).8 For the post-reconstruction approach, the beam hardening correction algorithm of
Kijewski and Bjärngard39 is used, and the Z-space calibration is performed on a simulated
Gammex phantom, as detailed in Lalonde et al.5 A similar qualitative and quantitative analysis
to the cylindrical phantom is performed and reported in Figs. 6 and 7.
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4 Results

4.1 Impact of α and β

Figure 3 illustrates the resulting image quality for ρe using a selected set of regularization param-
eters α and β. Note that quantitative regularization increases as α gets smaller; the case α ¼ ∞
corresponds to no quantitative regularization. Spatial regularization increases as β gets larger,
with β ¼ 0 corresponding to no spatial regularization. To complement Fig. 3, corresponding
absolute error maps on ρe are also presented in Fig. 4.

Figures 3 and 4 illustrate that α and β must be carefully tuned to maximize precision and
accuracy, i.e., minimize the uncertainties and biases. To further investigate the quantitative
performance with respect to α and β and select optimal regularization parameters, Fig. 5 shows
the performance for various metrics related to the SPR, as this physical parameter naturally
combines ρe and the elemental composition.

Figure 5 generally shows that a set of parameters (α; β) that produce low bias lead to larger

standard deviations. The parameters that minimize jBSPRj are ðα̂B; β̂BÞ ¼ ð15000; 0.0001Þ,
and result in a performance of jBSPRj ¼ 0.19% and RMSESPR ¼ 1.32%. The regularization

values that minimize RMSESPR are ðα̂R; β̂RÞ ¼ ð2000; 0.001Þ, which provide a performance of
jBSPRj ¼ 0.40% and RMSESPR ¼ 0.48%. Finally, the α and β that minimize the RMSE on the

WEPL are ðα̂W; β̂WÞ ¼ ð5000; 0.0005Þ, and result in jBSPRj ¼ 0.35% and RMSESPR ¼ 0.55%.

The set of parameters (α̂W, β̂W) thus corresponds to a tradeoff between the minimal bias and
minimal RMSE cases.

Fig. 3 Electron density maps for various combinations of regularization parameters α and β.
Spatial variation increases from top to bottom, while quantitative regularization increases from
left to right.
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4.2 Performance on the Virtual Patient

The one-step reconstruction algorithm’s performance is compared with the two-step frameworks
(using FBP11 and an adapted iterative scheme38 for the second step) and the regularized post-
reconstruction8 frameworks. All approaches use eigentissues as a material basis. In the following
figures and the discussion, the one-step method which uses optimized regularization parameters

(α̂B, β̂B), (α̂R, β̂R), and (α̂W, β̂W) are respectively referred to as the minimal bias, minimal RMSE,
and WEPL-optimized cases. Figure 6 illustrates the relative visual performance of the different
ETD frameworks to estimate the SPR.

The quantitative performance of all implementations of ETD for the virtual patient is shown
in Fig. 7, where the bias and RMSE on the SPR for 6 selected tissues in the virtual patient are
reported for all methods. In addition, Table 1 summarizes the results of Fig. 7 by reporting the
average values of both metrics over all tissues.

5 Discussion

The proposed one-step framework combines spatial and quantitative priors to provide superior
performance compared to two-step and post-reconstruction methods with ETD. Figures 3–5
illustrate that both priors have a significant impact on the performance of the algorithm; using
only one prior leads to suboptimal performance. While the quantitative prior generally increases
precision, it also limits unnatural features in the images,27 which often appear with strong spatial
regularization. The case with ðα; βÞ ¼ ð∞; 0.001Þ leads to visible artifacts in the ρe map
(Fig. 4), especially around the sacrum (male) insert. Incorporating quantitative regularization,
for instance with ðα; βÞ ¼ ð7500; 0.001Þ, almost entirely eliminates non-physical features.

Fig. 4 Maps of absolute error on the electron density using the same set of regularization param-
eters as presented in Fig. 3.
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This study suggests that one-step reconstruction frameworks can benefit from quantitative
regularization, in addition to the commonly used spatial regularization.

A visual assessment of Fig. 4 illustrates how the minimal bias dataset, with ðα̂B; β̂BÞ ¼
ð15000; 0.0001Þ, results in important denoising without significantly introducing systematic

errors in plugs. While the minimal RMSE dataset [ðα̂R; β̂RÞ ¼ ð2000; 0.001Þ] leads to stronger
denoising, it produces larger biases in inserts, and results in poor performance around the sacrum
(male) insert. Although the average RMSE per plug can be an adequate metric, it is apparent that
it does not take into account potential image artifacts similar to those around the sacrum (male)
insert, hence the usefulness of another metric that considers the entire spatial distribution of
errors, such as the RMSE on the WEPL, to obtain optimal α and β. Such metric is particularly
relevant, for instance, in proton therapy beam range calculation.

Figures 6 and 7 illustrate the performance of the virtual patient. For precision, the one-step
framework is less noisy than its post-reconstruction and two-step counterparts. This is con-
firmed visually in Fig. 6, as well as quantitatively in Fig. 7. Indeed, as shown in Table 1, the
tissue-averaged RMSE on the SPR is largely reduced with the use of the one-step framework
with any set of optimized regularization parameters. For the two-step FBP framework, the
large RMSE of 13.27% is due to the use of the FBP and no regularization, which leads to
strong amplification of sinogram noise, which is equivalent to ≈100 HU in the image domain.
The improved precision compared to the two-step (iterative) framework is likely due to the
inclusion of the quantitative prior, and the removal of the first step (material decomposition in
sinogram space), which is not regularized. For post-reconstruction, the relatively large RMSE
of 3.24% is explained by the use of a quantitative prior only; there is no form of spatial
regularization in the post-reconstruction implementation of ETD. As noted in Figs. 3–5,
setting β ¼ 0 and adding quantitative regularization α can only provide a limited reduction
in RMSE compared to using both regularizers.
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Fig. 5 Quantitative performance of the one-step iterative reconstruction algorithm to estimate the
SPR on the cylindrical phantom for a range of regularization parameters α and β. (a) Through
(c) respectively show the plug-averaged absolute bias, standard deviation and RMSE on the
SPR in %, while (d) shows the RMSE on the WEPL calculated from SPRmaps and multiple paths.

Note that RMSESPR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2

SPR þ σ2SPR

q
.
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Furthermore, Figs. 6 and 7 and Table 1 also show that the one-step method outperforms other
ETD frameworks to minimize the bias on the SPR. First, the tissue-averaged absolute bias
(Table 1) is reduced from a range of 0.56% to 0.63% with the two-step framework (FBP or
iterative) to a range of 0.24% to 0.43% with the one-step framework using different
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Fig. 6 Performance of various implementations of ETD to estimate the SPR on the virtual patient.
(a) Shows SPR maps, while (b) shows relative SPR error maps.
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regularization parameters. This reduction is mostly attributed to the use of four eigentissues (one-
step) instead of two eigentissues (two-step) to parametrize the attenuation coefficient, which
reduces the truncation error that appears when estimating the elemental composition of the
eigentissues.7 Comparing the one-step framework with post-reconstruction, it might be expected
that post-reconstruction would be less biased than the one-step framework, as different eigen-
tissues are derived for soft tissues and bone in the post-reconstruction framework, which leads to
a theoretically more accurate parametrization for individual tissues. We attribute the worse
performance of post-reconstruction ETD (average absolute bias of 0.60%) to beam hardening
artifacts.

Qualitative and quantitative results also allow us to formulate recommendations for the
selection of regularization parameters α and β for the one-step framework. First, the minimal

RMSE case [with ðα̂R; β̂RÞ ¼ ð2000; 0.001Þ] produces highly corrupted SPR images of the
virtual patient (Fig. 6), especially along soft tissue and bone interfaces between the kidneys.
For this set of regularization parameters, the amplitude of such systematic errors is not as important
on the cylindrical phantom. This might be explained by the much more complex geometry to
reconstruct for the virtual patient. Furthermore, based on Table 1, the performance of the one-step
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Fig. 7 Quantitative performance of various implementations of ETD on selected tissues of
the virtual patient. Top illustrates the RMSE on the SPR, while the bottom plot shows the bias.

Table 1 Absolute bias and RMSE on the SPR for all ETD frameworks tested
on the virtual patient. Reported values correspond to the average over
the 6 tissues shown in Fig. 7.

Framework Absolute bias (%) RMSE (%)

Two-step (FBP) 0.56 13.27

Two-step (iterative) 0.63 2.53

Post-reconstruction 0.60 3.24

One-step (minimal bias) 0.24 1.49

One-step (WEPL-optimized) 0.31 0.88

One-step (minimal RMSE) 0.43 1.09
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method (minimal RMSE case) in terms of RMSE on the SPR is worse than the WEPL-optimized
case for the virtual patient. This shows that the optimization of α and β performed on a specific
geometry (cylindrical phantom) may not produce optimal parameters on a patient geometry. We
conclude that the regularization parameters optimized such that the RMSE in selected regions of
interest is minimal results in an unacceptable level of regularization, and poor image quality.

Fortunately, considering the SPR maps of Fig. 6, the minimal bias case, with ðα̂B; β̂BÞ ¼
ð15000; 0.0001Þ, does not produce any significant systematic errors comparable with the
minimal RMSE and WEPL-optimized cases. This case produces the minimal bias on selected tis-
sues of the virtual patient, results in natural-looking SPR maps and still largely reduces the RMSE
on the SPR compared with post-reconstruction, from 3.24% to 1.49%. We thus recommend to use
the current one-step framework with regularization parameters optimized to minimize the bias.

It should be noted that there have been previous implementations of quantitative priors for
iterative reconstruction in CT. Regularization has been proposed directly on attenuation data,40 or
implemented through a conservation of volumes constraints,15 which are not directly compatible
with ETD. More recently, Nakada et al.41 have introduced a quantitative prior for tissue type
assignation for spectral CT. While their cost function also used a Gaussian kernel centered
around reference tissues, it differs from the proposed prior as it is based on a Compton scattering
and photoelectric effect parametrization, which is not optimal to reproduce radiotherapy-related
quantities such as the proton stopping power.24 Furthermore, their quantitative prior uses three
regularization parameters, a covariance matrix sampled from the scanned object, and a restricted
set of possible tissues. This may require additional fine-tuning compared to the single parameter
(α) used in this work for the quantitative prior.

This study has some limitations. First, the conclusions and optimized regularization param-
eters are valid for this simulated imaging context, noise level, detector response, and selected
energy bins; results may vary otherwise. As noted previously, the optimization procedure for α
and β was also performed on a specific cylindrical phantom and used on the virtual patient; due
to differences in materials and geometry, the results obtained for the virtual patient may not be
optimal. Second, 2D reconstruction is used in the current study, but further improvements could
be obtained with the use of 3D regularization. Third, scattering was not simulated nor included in
the model proposed in this work. It is expected that the overall performance of all methods
investigated in this work may be reduced with the inclusion of scattering. In addition, the quan-
titative prior heavily relies on the work of White and Woodard25 to generate reference human
tissue centroids in the eigentissue space. The method is validated using the same reference tis-
sues, and may not be ideal for realistic data, if real tissue composition differs from the reference
database. Future studies on tissue stoichiometry for patients could be useful to improve the prior.
Finally, this study does not explicitly compare the performance of ETD against other paramet-
rizations of the attenuation coefficient. However, previous studies have demonstrated that ETD
provides more accurate tissue characterization compared to material basis decomposition for
post-reconstruction7,8 and two-step sinogram-based11 frameworks. It is therefore expected that
the same benefits would translate to the one-step framework.

Furthermore, additional steps are required before a full experimental evaluation of this method
can be carried out. For instance, ψnϵ, which includes the source spectrum and the detector response,
must be evaluated through a careful calibration procedure. Scattering should also be incorporated into
the model. This study illustrates the potential of the proposed method, and experimental performance
may be reduced. Also, the initial guess is derived using ground truth values of ρe; to maximize the
quality of the initial guess with experimental data, SPCCT bins could be merged to produce a low-
noise SECT dataset, fromwhich ρe can be inferred, similar to thework of Yu et al.42 Future work will
be focused on an experimental implementation of the method presented herein with a SPCCT scan-
ner, and an adaptation to contrast-enhanced imaging with ETD,9 which has been left out due to the
complexity of incorporating the conservation of volumes constraint in the model.

6 Conclusion

This study reports a one-step reconstruction algorithm to extract highly precise and accurate
radiotherapy-related parameters for human tissues with SPCCT, although it is compatible with
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DECT. The method uses eigentissues, a PCA-derived decomposition basis tailored for human
tissues, as well as two separate prior terms, which provide optimal performance when combined.
A quantitative prior, controlled by regularization parameter α, encourages eigentissue fractions
to lie in proximity of expected values for human tissues. The spatial prior, with parameter β,
encourages smooth intensity variations between eigentissue fractions of neighboring pixels.
With proper tuning of α and β, we show that the one-step framework provides increased accuracy
and precision to estimate ρe and SPR compared to a state-of-the-art post-reconstruction imple-
mentation of ETD,8 as well as a finely tuned two-step framework with iterative reconstruction,
although at the cost of increased computational complexity. Based on the results for the virtual
patient, we suggest that optimal parameters α and β should be selected to minimize biases in
selected regions of interest. The one-step framework is a key component in helping SPCCT reach
its full potential for tissue characterization and quantitative imaging.

7 Appendix A: Pseudocode for the Optimization Algorithm

The set of variables to optimize is y, the starting point y½κ¼0�, and the gradient and Hessian are
∇LðyÞ and HðyÞ. CG iterations are noted with κ, and the maximum number of CG iterations is
κmax. For the line search, the index ζ is used to count the number of times that the update step is
halved, up to a maximum of ζmax times.

Algorithm 1 Nonlinear conjugate gradient for one-step ETD.

κ←0

y←y½κ¼0�

r← − ∇LðyÞ
d←r

δ←rTd

while κ < κmax do

L0←LðyÞ
γ← rTd

dTHðyÞd

γ0←γ

ζ←0

while ζ < ζmax þ 1 and L0 > Lðyþ γdÞ do
if ζ < ζmax

γ←γ∕2

else if ζ ¼ ζmax

γ← − γ0

ζ←ζ þ 1

y←yþ γd

r← − ∇LðyÞ
δp←δ

δm←rTd

δ←rTr

βPR ¼ max
�

δ−δm
δp

; 0
�

d←rþ βPRd

κ←κ þ 1
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8 Appendix B: Closed form Expressions for ∇L�y� and dTH�y�d
For ease of reimplementation, final closed form expressions for derivatives of the cost function
are provided. For reference, some intermediate expressions used are listed in Table 2.

8.1 Gradient of the Cost Function

The gradient is divided into likelihood, quantitative prior and spatial prior contributions, per
Eq. (26)

EQ-TARGET;temp:intralink-;e033;116;632∇LðyÞ ≡
∂LðyÞ
∂yjk

¼ ∂lLðyÞ
∂yjk

þ ∂lPQ
ðyÞ

∂yjk
þ ∂lPS

ðyÞ
∂yjk

: (33)

The gradient of the negative log likelihood can be conveniently expressed as K backprojec-
tion operations

EQ-TARGET;temp:intralink-;e034;116;578

∂lLðyÞ
∂yjk

¼
XI

i¼1

Bikaij; (34)

where

EQ-TARGET;temp:intralink-;e035;116;522Bik ¼
XNe

ϵ¼1

gkϵFiϵ

�XN
n¼1

ψnϵ

�
tin
t̂in

− 1

��
: (35)

The gradient of the negative log prior (quantitative) is

EQ-TARGET;temp:intralink-;e036;116;460

∂lPQ
ðyÞ

∂yjk
¼ 1

σ2ykPj

XP
p¼1

�
2νKjp

�
Djkp − wjp

�XP
p 0¼1

Djkp 0

��
þ 1

α
wjpKjpΔjkp

�
; (36)

while the spatial contribution to the negative log prior is given as

EQ-TARGET;temp:intralink-;e037;116;397

∂lP;SðyÞ
∂yk

¼ βσ2yk
XJ
r¼1

DT
jrϕ

0
�XJ

c¼1

Drcyck; δk

�
¼ βσ2ykD

Tϕ 0ðDykÞ; (37)

where ϕ 0ð·Þ denotes the derivative of the Huber potential function.

8.2 Denominator of the Step Size

Similar to Eq. (33), the denominator of the step size from Eq. (31) is divided into contributions
from the likelihood, quantitative and spatial priors

Table 2 Intermediate expressions for the calculation of the gradient and Hessian.

Parameter Formula

Attenuation factor Aiϵ ¼ gET
0ϵ Y i0 þ

PK
k¼1 g

ET
kϵ

PJ
j¼1 aij y jk

Soft exponential factor F iϵ ¼
�
expð−AiϵÞ if Aiϵ ≥ 0;

1 if Aiϵ < 0:

Gaussian kernel K jp ¼ exp
�
−

d ðyÞ
jp

2α

�
Non-normalized probability Pj ¼

PP
p¼1 wjpK jp

Distance in eigentissue space Δjkp ¼ yjk − y ðpÞ
ref;k

Intermediate expression Djkp ¼ wjpΔjkpπ
1
ν
jp

Forward projection of the search direction φik ¼ PJ
j¼1 aij d jk
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EQ-TARGET;temp:intralink-;e038;116;735dTHd ¼ dTHLdþ dTHPQ
dþ dTHPS

d: (38)

Elements of the Hessian for the likelihood are noted as HðLÞ
jkj 0k 0 . Defining the quantities

EQ-TARGET;temp:intralink-;e039;116;694

8<:
Wiϵ ¼

P
K
k¼1 φikgkϵ;

X iϵ ¼
P

K
k 0¼1

φik 0

��P
N
n¼1 ψnϵ

�
1 − tin

t̂in

��
gk 0ϵθðAiϵÞ þ

P
N
n¼1 ψnϵtin

P
Ne
ϵ 0¼1

gk 0ϵψnϵ 0 expð−Aiϵ 0 Þ
t̂2in

�
;

(39)

where θðAiϵÞ denotes the Heaviside step function, a compact expression for the likelihood
term is

EQ-TARGET;temp:intralink-;e040;116;597dTHLd ¼
XI

i¼1

XNe

ϵ¼1

WiϵX iϵFiϵ: (40)

For the quantitative log prior, the Hessian matrix is largely sparse as it operates on a voxel-
wise basis. The update direction is generally written as

EQ-TARGET;temp:intralink-;e041;116;521dTHPQ
d ¼

XJ
j¼1

XK
k¼1

XK
k 0¼1

djk

�
1

Pj

�
1

σ2yk

�XP
p¼1

�
1

α

∂H1

∂yj 0k 0
þ 2ν

∂H2

∂yj 0k 0

��
−

∂Pj

∂yj 0k 0

∂lP;Qy
ðyÞ

∂yjk

��
djk 0 :

(41)

With the terms H1 and H2 defined as

EQ-TARGET;temp:intralink-;e042;116;444H1 ¼ wjpKjpΔjkp; (42)

EQ-TARGET;temp:intralink-;e043;116;400H2 ¼ Kjp

�
Djkp − wjp

�XP
p 0¼1

Djkp 0

��
: (43)

Equation (41) is based on the derivatives of H1;H2 and Pj:

EQ-TARGET;temp:intralink-;e044;116;355

8>>>>>>>>>>>><>>>>>>>>>>>>:

∂H1

∂yj 0k 0
¼ ∂wjp

∂yj 0k 0
KjpΔjkp þ wjp

∂Kjp

∂yj 0k 0
Δjkp þ wjpKjp

∂Δjkp

∂yj 0k 0
;

∂H2

∂yj 0k 0
¼ ∂Kjp

∂yj 0k 0

�
Djkp − wjp

�P
P
p 0¼1

Djkp 0

��
þ Kjp

�
∂Djkp

∂yj 0k 0
−
�

∂wjp

∂yj 0k 0

�P
P
p 0¼1

Djkp 0

�
þ wjp

�P
P
p 0¼1

∂Djkp 0
∂yj 0k 0

���
;

∂Pj

∂yj 0k 0
¼ P

P
p¼1

�
∂wjp

∂yj 0k 0
Kjp þ wjp

∂Kjp

∂yj 0k 0

�
;

(44)

which are functions of ∂wjp

∂yj 0k 0
, ∂Δjkp

∂yj 0k 0
, ∂Kjp

∂yj 0k 0
and ∂Djkp

∂yj 0k 0
:

EQ-TARGET;temp:intralink-;e045;116;187

8>>>>>>>>><>>>>>>>>>:

∂wjp

∂yj 0k 0
¼ 2ν

σ2
y 0
k

δjj 0
	
wjp

	P
P
p 0¼1

Djk 0p 0


−Djk 0p



;

∂Kjp

∂yj 0k 0
¼ − 1

ασ2yk
δjj 0KjpΔjk 0p;

∂Δjkp

∂yj 0k 0
¼ δjj 0;kk 0 ;

∂Djkp

∂yj 0k 0
¼ ∂wjp

∂yj 0k 0
Δjkpπ

1
ν
jp þ wjpδjj 0;kk 0π

1
ν
jp − 2

σ2yk
δjj 0wjpΔjkpΔjk 0pπ

2
ν
jp:

(45)

Simard and Bouchard: One-step iterative reconstruction approach based on eigentissue decomposition. . .

Journal of Medical Imaging 044003-21 Jul∕Aug 2022 • Vol. 9(4)

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Medical-Imaging on 04 Aug 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



in Eq. (45), δjj 0 and δjj 0;kk 0 refer to the Kronecker delta. It is left to the reader to combine
Eqs. (44) and (45) into Eq. (41), to obtain a final analytical expression. Finally, the contribution
of the spatial prior is

EQ-TARGET;temp:intralink-;e046;116;699dTHPS
d ¼

XJ
j¼1

XK
k¼1

djkβk
XJ
r¼1

DT
jrϕ

00
�XJ

c¼1

Drcyck; δk

��XK
k 0¼1

�XJ
j 0¼1

Drj 0dj 0k 0

��
; (46)

where ϕ 00ð·Þ is the second derivative of the Huber prior.
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